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ABSTRACT

The possibility of generating a large range of elastic strain in low-dimensional materials offers a vast design space
that has led to a plethora of scientific and technological breakthroughs in the field of materials science. The
concept of using the elastic strain to engineer physical properties of materials has been found extremely useful in
many areas such as enhancing the charge mobility in microelectronics and ionics, inducing new physical
properties, regulating phase transitions in complex materials, band dispersion engineering in quantum well la-
sers, semiconductor band gap engineering and improving electrochemical performance of materials. Throughout
these progresses in elastic strain engineering, low-dimensional binary oxides have demonstrated their unique
advantages over other materials systems: high electron/hole mobility, high optoelectronic quantum efficiency,
low defects density, simple thermodynamics/kinetics, versatile functionality and intriguing responses to elastic
strain. This article reviews the most significant milestones of elastic strain engineering in low-dimensional binary
oxides. It provides reports and analyses of model binary oxide materials, strain-related phenomena, methods of
introducing and characterizing strains in low-dimensional materials and strain engineered physical properties. It
is our hope that this review can inspire more researchers seeking new scientific understanding as well as tech-

nological breakthroughs to explore this rich field of low-dimensional strained binary oxides.

1. Motivation

Strain engineering is a research field that utilizes strain (elastic or
inelastic) to tune the properties of a material by modifying its structural
attributes. Effects of hydrostatic strain (stress tensor €17 = €23 = €33 <0)
on properties of materials have been studied since the 17th century with
plenty of progress being made in the associated field of high-pressure
physics [1]. This review instead focuses on the progress made in
studying effects of non-hydrostatic elastic strain on properties of mate-
rials. Unlike hydrostatic stress, non-hydrostatic elastic tensile and shear
stresses in crystalline materials can be relaxed by plastic deformation or
fracture. Traditional bulk materials, e.g., Si, Ge and SiC, can only sustain
elastic strains less than 0.5% before inelastic relaxations from plasticity
or fracture set in [2], as shown by the crack in a three-dimensional (3D)
bulk material in the bottom left panel of Fig. 1. On the other hand, low
dimensional materials (one dimensional (1D) and two dimensional
(2D)), which have received increasing research focus over the past few
decades, have been shown to sustain elastic strains larger than 1%
without undergoing plastic deformation or fracture in their crystalline
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form. Since effective strain engineering, i.e., manipulation of functional
properties (e.g., electronic, magnetic, optical and catalytic properties) of
a material with elastic strain, is largely dependent on the magnitude of
elastic strain introduced in and sustained by a material, it can be said
that low-dimensional materials serve as good candidates for elastic
strain engineering hence providing an impetus to the field.
Low-dimensional materials (e.g., nanowires, nanosheets and thin films)
have been found to sustain large elastic strains (tensile or compressive)
introduced by various approaches such as bending [3] and tensile
loading in nanowires [4], nanoindentation in monolayers [5], buckling
in membranes [6] as well as heteroepitaxy in nanostructures [7], as
shown in the top panels of Fig. 1. So far, elastic strain engineering in
low-dimensional materials has led to significant progress in terms of
functionality as well as materials in a variety of research fields, including
piezotronics [8,9], ferroelectrics [10], catalysts [11], 2D crystals [12,
13], semiconductors [14] and even organic materials [15]. Hence, the
rich field of elastic strain engineering, with its promising applications in
energy harvesting, conversion and computing [16,17], was chosen as
the topic for this review. In this article, we focus on elastic strain
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engineering as enabled by a specific class of low-dimensional materials —
the binary oxides. Within the field of elastic strain engineering, strained
oxides (binary, ternary and even quaternary), have been extensively
studied both in terms of fundamental properties and technological ap-
plications. Elastic strain engineering in low-dimensional ternary oxides
received an impetus partially due to the demonstration of room tem-
perature ferroelectricity in strained SrTiOs films even though the bulk
SrTiOg crystal does not exhibit ferroelectricity [18]. Since then, research
on elastic strain engineering in low-dimensional ternary oxides has been
exhaustively discussed and reviewed in many articles [10,19]. However,
to the best of our knowledge, an article specifically and comprehensively
reviewing or highlighting elastic strain engineering in low-dimensional
binary oxides can hardly be found in literature.

Binary oxides exhibit a range of advantageous properties. These
include their ease of processing (ZnO nanobelts [20], nanowires [3],
nanohelice [21], nanotubes [22], monolayers [23] and microspheres
[24]), high carrier mobility [25] and high dielectric constant K [26,27].
Binary oxides are also compatible with complementary metal oxide
semiconductor (CMOS) systems [28] and support the possibility of
developing high performance transparent thin film transistors
(TFTs)/CMOS [25]. Some binary oxides are even multifunctional [29,
30] and superconducting [31]. Similarly, low-dimensional materials
also possess unique characteristics such as the size effect [32] and the
electronic confinement effect [33,34]. Consequently, low-dimensional
binary oxides, which combine the advantages of low dimensions with
those of a binary oxide system as shown in Fig. 1, deserve a special
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mention in the field of elastic strain engineering. The next few para-
graphs (Sections 1.1 and 1.2) describe the motivation behind combining
properties stemming from low dimensions with those of binary oxides.

1.1. Low-dimensional materials

Since 1970, when electron resonant tunneling was achieved and the
first laser based on quantum well structures was developed [35-37],
low-dimensional materials have attracted increasing interest in terms of
both fundamental studies and technological applications [34].
Low-dimensional materials can be defined as materials with an atomic
or nanometer size in one (2D materials such as quantum wells, graphene
and layered semiconductors), two (1D materials such as quantum wires
or nanowires) or three (0D materials such as quantum dots) spatial di-
mensions, possessing physical properties different from their bulk
counterparts. For example, the spatial confinement in low-dimensional
materials leads to quantum confinement of the electronic state wave
function as illustrated in the left panels of Fig. 1 which show the density
of states (DOS) for 3D crystalline materials, 2D quantum wells, 1D
nanowires and 0D quantum dots. Such electronic confinement in
low-dimensional materials significantly changes their electronic band
structure and these materials exhibit extraordinary electronic and op-
tical properties that can be harnessed for a wide range of potential ap-
plications. Detailed physics of size effects and electronic properties in
low-dimensional materials have been summarized in the review article
Ref. [33].
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Fig. 1. The new research field of elastic strain engineering in low-dimensional binary oxides with applications such as energy conversion and computing. Unique
characteristics of low dimensions (e.g., size effect and electronic confinement) and binary oxides (e.g., ease of processing, high carrier mobility, high K, CMOS
compatibility, transparent TFT and CMOS, and multifunction) are shown in the left panels and the right panels, respectively. Some approaches to sustain tensile and
compressive elastic strains in low-dimensional materials are shown in the top panels, e.g., nanoindentation, tensile loading, bending, buckling and epitaxy.
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In addition to possessing intriguing physical properties, low-
dimensional materials also serve as useful candidates for elastic strain
engineering due to their ability to sustain large values of elastic strains
unlike their bulk counterparts. Bulk crystals, which typically contain a
large number of in-grown defects such as dislocations or cracks, can only
sustain yield strains that are far (a factor of 100) below the ideal or
theoretically expected value. Even in well-annealed crystals with a low
dislocation density, plastic deformation can be induced by double cross
slip and other Frank-Read type multiplication processes much before the
theoretically expected elastic strain is reached [38]. On the other hand,
in low-dimensional materials, a larger elastic deformation can be
tolerated before yielding [39], which may be attributed to factors such
as limited defect (e.g., dislocation) density [40] and surface dislocation
nucleation and kinetics [152]. Hence, low-dimensional materials, as
compared to bulk materials, can be subjected to a broader range of
elastic strains, enabling effective elastic strain engineering. Details of
maximum values of elastic strain sustained and experimentally realized
in various low-dimensional materials are reviewed in Section 2.2.
Additionally, an inhomogeneous strain field (strain gradient) can also be
generated in low-dimensional materials, providing unprecedented op-
portunities to explore novel functional properties. Therefore, based on
the large range of elastic strain or strain gradient that can be sustained
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by low-dimensional materials, along with their inherent functional
properties arising from surface effects and electronic confinements, it
can be anticipated that elastic strain engineering would be very
intriguing and profitable in materials with low dimensions.

1.2. Binary oxides — advantages

Within the class of inorganic materials, oxides display perhaps the
most diverse range of functionalities [41], including hard oxides [42],
dielectric and ferroelectric oxides [43,44], magnetic oxides [45,46],
multiferroic oxides [7,47], semiconducting oxides [20], etc. There is a
wide range of studies and review articles on oxides [41,48,49],
including binary oxides (e.g., ZnO [50], SnO3 [51,52], TiO3 [53], copper
oxides [54], transition metal oxides [55,56] and tungsten oxides [57]),
ternary ferroelectric oxides [19,58,59] and complex oxides [48,60].
Among oxides, low-dimensional binary oxides, which combine the
intrinsic bulk properties of binary oxides with properties enabled by
reduced dimensions, demonstrate several unique advantages over other
materials systems. In addition to the advantages mentioned in Fig. 1,
low-dimensional binary oxides demonstrate thermodynamic and kinetic
stability in contact with silicon [26,61], high optoelectronic quantum
efficiency [62-64], versatile functionality [65,66], and intriguing
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Fig. 2. A summary of scientifically and technologically important physical properties of binary oxides. (a) Typical morphologies of ZnO nanostructures, e.g.,
nanobelt [20], nanowire [72], nanohelice [21], nanotube [22], monolayer [23], and microsphere [24]. (b,c) Effective mass (b) and room-temperature carrier
mobility (c) as a function of band gap in both binary (red) and ternary oxides (blue). Data points are taken from the references in Table 1. (d) Static dielectric
constants for gate oxides as a function of their band gaps. (e) Leakage current density as a function of “equivalent (to SiO5) oxide thickness” (EOT) for binary oxides
including HfO,, Al;03, Lay0O3, SiO, and SiO,N. (f) Magnetoelectric phase diagram of CuO. The critical magnetic field is recorded based on pyrocurrent (blue dots),
capacitance (green dots), magnetostriction (pink dots), sound velocity (red dots), and bulk magnetization data (black dots). The expected hypothetical phase
boundaries are predicted from theoretical analysis (dashed lines). (g) Schematic illustration of a conceptual design of a CMOS inverter based on n-type SnO, TFTs and
p-type SnO TFTs. Reprinted by permission of Wiley-VCH, American Chemical Society, American Institute of Physics, IOP Publishing and Elsevier.

(a) is adapted from Ref. [20-24,72]. (d) and (e) are adapted from Ref. [26]. (g) adapted is from Ref. [86].
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responses to strain [67] (details are reviewed in Section 6).

Binary oxides in a low-dimensional form are also easy to be syn-
thesized via various techniques. Techniques for depositing epitaxial thin
films (or layers) of oxides, e.g., pulsed laser deposition (PLD), molecular
beam epitaxy (MBE), metal-organic chemical vapor deposition
(MOCVD) and sputtering, have been well summarized in the review
article Ref. [41]. Binary oxides have also been synthesized in nano-
structured forms via liquid phase techniques such as the sol-gel and
Pechini methods (summarized in the review article Ref. [6,8]), as well as
vapor-phase methods such as chemical vapor deposition (CVD) [69].
Further improvements in synthesis techniques have also led to successful
synthesis of low-dimensional binary oxides in unique morphologies and
heterostructure forms, e.g., core/shell nanowires [70-74]. Fig. 2a shows
typical morphologies of ZnO nanostructures, including nanobelts [20],
nanowires [3], nanohelice [21], nanotubes [22], monolayer [23] and
microspheres [24]. Such single-crystal metal-oxide nanostructures have
a high crystalline quality and a low defect density [75].

Another significant advantage of binary oxides is their intriguing

Table 1
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electronic properties. Table 1 summarizes the effective mass, mobility
and band gaps of typical oxide materials (both binary and ternary).
Fig. 2b and c respectively present the effective mass and mobility of
binary and ternary oxides as a function of their band gap. The lower
electron effective mass in many metal binary oxides is a result of hy-
bridization of metal s orbitals with oxygen p orbitals [76]. On the other
hand, in ternary oxides, the second metallic element (often a transition
metal) has very localized d or f orbitals which affect the band structure
and are partially responsible for a large effective electron mass and a low
mobility. Thus, in general, as shown in Fig. 2b and c, the effective mass
of typical non-transition metal binary oxides (e.g., ZnO) is lower than
that of ternary oxides carrying a transition metal element.
Furthermore, oxides such as HfO, and ZrO, have high dielectric
constants K. Both HfO5 and ZrO; exhibit better performance than SiO to
serve as gate oxides in the miniaturization of CMOS transistors and have
attracted increasing attention for both fundamental research and com-
mercial applications [26,27]. Fig. 2d presents the static dielectric con-
stants for gate oxides as a function of their band gap. As shown in Fig. 2d,

Summary of band gaps, effective mass, and mobility of oxide materials. Abbreviations: experimental (expt.), calculation (cal.), n (n-type), p (p-type), i (indirect band
gap). All the listed oxides are direct band gap materials except the ones indicated with (i). The symbol “-” represents data that is not reported in literature.

Oxides Band gap (eV) me* /mg my* /mg Mobility at RT (cm?/Vs) Reference
Cdo 2.31(expt.) 0.27(expt.) - 75—135(n) [91]

Zn0O 3.3(expt.) 0.3(expt.) - 120—440(n) [50]

BeO 10.6(cal.) 0.65—0.80(cal.) - 238(n) [92]
a-PbO 1.78(i)(cal.) 0.4(cal.) 2.44(cal.) - [93]

MgO 7.8(exp.) 0.38(cal.) - - [94,95]
CaO 3.55(cal.) 0.33(cal.) 1.25(cal.) - [96]

NiO 4.3(expt.) 0.8—1.0(expt.) - [97,98]
MnO 3.6(exp.) 1.08(cal.) - [99,100]
EuO 1.1(exp.) 0.4(cal.) - ~20(n) [101,102]
Cu,0 2.2(expt.) 0.99(expt.) 0.58(expt.) 100(p) [54]
B-PbO, 1.4(expt.) 0.8(expt.) - ~100(n) [103]
CeO, 3.15(expt.) 0.42(expt.) 0.42(expt.) - [104]
TiOy(rutile) 3.0(i)(expt.) 0.09(cal.) 0.56(cal.) ~1(n) [105,106]
TiO,(anatase) 3.2(i)(expt.) 0.09(cal.) 0.8(expt.) ~10(n) [105,107]
HfO, 5.5(i)(expt.) 0.11(expt.) - - [108,109]
ZrO, 4.7(expt.) 0.6—2.0(cal.) 0.3(cal.) - [110]
Sn0, 3.7(expt.) 0.23—0.3(expt.) - 250(n) [111]
a-Al,03 6.3(cal.) 0.4(expt.) 0.36(expt.) - [112,113]
B-Gaz03 4.7(expt.) 0.28(expt.) - 130(n) [114]
Iny03 2.9(expt.) 0.3(expt.) - 270(n) [115,116]
In, SnyO3(ITO) 3.75(expt.) 0.35(expt.) - ~50(n) [117]
BaTiO3 2.6(cal.) 1.1—4(cal.) 7—8(cal.) - [118]
Ce:YAIO3 7.9(cal.) 2.34(cal.) 1.94(cal.) - [119]
Ce:LuAlO3 6.1(cal.) 0.42(cal.) 2.09(cal.) - [119]
Ce:Y3Al5015 7.9(cal.) 1.09(cal.) 1.98(cal.) - [119]
Ce:Lu3AlsOq o 7.9(cal.) 0.98(cal.) 2.43(cal.) - [119]
Ce:Y,SiOs 6.14(cal.) 0.70(cal.) 3.80(cal.) - [119]

Ce: LuySiOs 4(cal.) 0.50(cal.) 3.60(cal.) - [119]
BisGe3012 4(cal.) 0.60(cal.) 3.02(cal.) - [119]
Ce:BaHfO3 - 0.65(cal.) 3.68(cal.) - [119]
Ce:SrHfO3 - 0.66(cal.) 2.39(cal.) - [119]
SrGeOs3 3.5(expt.) - - 12(n) [120]
La:BaSnO3 3(expt.) 0.19(expt.) - 100(n) [121]
Sr:LaCoO3 2(expt.) 0.1—10(expt.) - 0.1—5(n) [122]
AgInO, 4.2(expt.) - - 0.47(n) [41]
CuGaO. 3.6(expt.) 0.42(cal.) 0.58—2.04(cal.) 0.23(p) [41]
SrTiO3 3.4(expt.) 5.0(expt.) - 3() [41]
MgIn,04 3.4(expt.) - 0.45(expt.) 14(n) [41,123]
SrCuy04 3.3(expt.) 0.99(expt.) 0.58—0.69(expt.) 0.46(p) [41]
Cd,ySn0Oy 2.1(expt.) 0.33—0.35(expt.) - 40(n) [41,124]
CulnO, 3.9(expt.) 0.37(cal.) 0.68—3.22(cal.) 0.2(p) [125,126]
CuScO, 3.3(expt.) 0.56—1.08(cal.) 0.45—3.12(cal.) 0.14(p) [125,127]
NaNbO, 1.38(cal.) - 0.64—1.36(cal.) - [128]
PbTiO3 3.2(cal.) - 0.48(cal.) - [128]
PbZrO3 3.6(cal.) - 0.44—1.09(cal.) - [128]
CuAlO, 3(expt.) - 2.53—2.64(cal.) 10(p) [128]
SrCu30, 3.3(expt.) - 2.01—2.22(cal.) 0.46(p) [128,129]
ZnRh,,04 2.7(expt.) - 3.47(cal.) 2.8 x 10'4(p) [128,130]
KTaO3 3.8(expt.) 0.55—0.8(expt.) - - [131,132]
KNbO3 3.3(expt.) 1.7(cal.) - - [133]
BiFeO3 2.6(expt.) 5—6.7(expt.) 0.1—3(p) [134,135]
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binary oxides, e.g., AloO3, HfO,, ZrO,, Y203 and LapO3, show high K and
reasonably large band gaps. Due to a high heat of formation and a wide
band gap, these oxides are thermodynamically and kinetically stable in
contact with silicon [61]. In addition, as plotted in Fig. 2e, the leakage
current density as a function of “equivalent oxide thickness” or “EOT”
(defined as (3.9/K) x t, where 3.9 is the static dielectric constant of SiO5
and t is the film thickness, giving a thickness of the gate oxide in terms of
its equivalent silicon dioxide thickness) for binary oxides (HfO2, Al,O3
and LayOs3) is lower than that for SiO,. Hence, binary oxides such as
Aly03, HfOy, ZrO,, Y203 and LayOs3 can replace SiO; as the gate oxide in
COMS devices. Moreover, some binary-oxide based devices, e.g., resis-
tive random access memories [28,77] and gas sensors [78], have already
been fully integrated into CMOS technology.

Additionally, the transparent nature of many oxides, especially when
combined with their excellent electronic properties (e.g., high mobility)
has rendered oxide-based TFT and CMOS devices as one of the most
promising technologies leading the next generation of flat panel displays
[49,79]. These oxides include both the n-type oxides such as ZnO [80,
81] and SnO; [82] and p-type oxides such as CupO [83] and SnO [84,
85]. Both n-type SnO5 TFTs and p-type SnO TFTs can be fabricated on
the same substrate and a corresponding conceptual design of a CMOS
inverter has been proposed by Yabuta et al. [86], as shown in Fig. 2g.

Another interesting property of binary oxides is their high photo-
luminescence (PL) quantum efficiency (the absolute yield within a ma-
terial from exciton creation to photon emission). A value of up to 20 %
has been observed in single-crystal ZnO nanowires [64] and a high
external quantum efficiency (EQE, defined as the number of electrons
detected per light photon) of up to 108 % has been reported in photo-
detectors based on metal oxide nanostructures [62,63]. In addition,
some binary oxides, such as EuO [30,66,87,88] and CuO [89] which are
multiferroic as well as semiconducting, exhibit versatile functionalities.
Wang et al. plotted the magnetoelectric phase diagram of CuO as shown
in Fig. 2f based on pyrocurrent (blue dots), capacitance (green dots),
magnetostriction (pink dots), sound velocity (red dots), bulk magneti-
zation data (black dots) and expected hypothetical phase boundaries
predicted from theoretical analysis (dashed lines) [90], uncovering a
remarkable hidden magnetoelectric effect in the multiferroic oxide CuO
[89].

The physical properties of binary oxides mentioned above can be
further combined with elastic strain to discover various intriguing
phenomena. One of the most well-known examples is that bending a
piezoelectric ZnO nanowire by using a conductive atomic force micro-
scopy (AFM) tip enables energy conversion from nanoscale mechanical
energy into electrical energy [67] (details are reviewed in Sections 6.1
and 6.3).

Beginning from the next section, we briefly introduce the concept of
elastic strain engineering with a focus on low-dimensional materials
(Section 2) and some common crystal structures of binary oxides (Sec-
tion 3), summarize approaches to introduce elastic strain in low-
dimensional materials (Section 4) and techniques to characterize
elastic strain (Section 5), then comprehensively review the physical
properties of binary oxides tuned by elastic strain and the corresponding
applications (Section 6). These include piezoelectricity (Section 6.1), the
piezoresistive effect (Section 6.2), the piezotronic and piezo-phototronic
effects (Section 6.3), ferroelectricity (Section 6.4), metal-insulator
transition (Section 6.5), band gap engineering (Section 6.6), magnetic
properties (Section 6.7), chemical reactivity (Section 6.8), ionic con-
ductivity (Section 6.9) and others (Section 6.10). Finally, challenges,
unresolved issues (Section 7.1) and perspectives (Section 7.2) are pre-
sented in Section 7. It is our hope that this review can inspire more
material scientists, in pursuit of scientific understanding as well as
technological breakthroughs, to explore the rich field of elastic strain
engineering of low-dimensional binary oxides.
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2. Introduction to strain engineering
2.1. Basic principles

Strain engineering is defined as achieving the desired functional
properties in a material by controlling strain ¢(x), where x denotes the
position vector in a material [136]. Here we briefly introduce some basic
concepts of this field. For a more detailed description, one can refer to
Ref. [137]. Strain € can be represented as a 3 x 3 symmetric tensor with
six independent components. While high-pressure physics deals with a
single hydrostatic degree of freedom, strain engineering focusses on the
non-hydrostatic part of ¢. The total strain ¢ at a given point is a sum of
the elastic strain (the recoverable part when the material returns to a
stress-free state) and the inelastic strain (the residual strain): ¢ = ¢, + ¢;,
where ¢, and ¢; are the elastic and inelastic strains, respectively [137]. &
represents the distortion of lattice vectors and can be measured by
selected-area X-ray or electron diffraction. ¢; represents changes related
to phase transformation or bonding topology which are difficult to be
quantified experimentally. Strain engineering includes elastic strain
engineering as well as inelastic strain engineering. In elastic strain en-
gineering, one aims to introduce and sustain an unconventionally large
elastic strain ¢, (normally larger than 1 %) in a material, so as to control
the functional properties of materials. In inelastic strain engineering,
inelastic strain ¢, localized in microstructural features such as
dislocation-swept areas, deformation twinning [138], multiferroic
domain patterns [139] or new phases [140], is used to modify the
physical properties of materials. In many applications, especially where
phase transformations are involved, elastic strain engineering and in-
elastic strain engineering often get coupled together. In the present re-
view, we focus on elastic strain engineering.

2.2. Elastic strain in low-dimensional materials

Bulk crystals can only withstand a maximum elastic strain of much
less than 1% due to the large number of in-grown defects (e.g., dislo-
cations or cracks) either inside or on the surface of the material [141].
Although the in-grown defect density can be reduced after annealing
[142], it increases rapidly once deformation occurs due to processes
such as dislocation generation by Frank-Read type multiplication typi-
cally seen in metals [38] and brittle fracture (Dugdale-Barenblatt model
of the crack tip) typically seen in ceramics [143], as shown in Fig. 3a and
b. With a decrease in size or volume of crystals to microscale or nano-
scale, the defect (e.g., vacancy [40]) density decreases due to increased
formation energy. In other words, during crystal growth,
low-dimensional materials easily reach their thermodynamic equilib-
rium shape, and can be expected to contain less defects as compared to
bulk materials, as shown in Fig. 3c. Additionally, due to the increased
surface area to volume ratio in low-dimensional materials, surface
dislocation nucleation and dislocation kinetics may play a critical role in
their deformation, as shown in Fig. 3d. Zhu et al. developed a reaction
pathway modeling of surface dislocation nucleation from a Cu nanowire
under uniaxial compression, revealing a possible mechanism of defor-
mation in low-dimensional materials [144]. Such a mechanism of defect
creation, controlled by surface nucleation, makes low-dimensional ma-
terials such as a nanowire, much stronger than their bulk counterparts in
which defect creation is controlled by growth/propagation (e.g., dislo-
cation generation by Frank-Read source). Hence, low-dimensional ma-
terials are likely to sustain elastic strains of 1 % and more [145-148].

The maximum elastic strain sustained by a low-dimensional material
depends on its size, as can be found in various metals. With decreasing
diameter, metal nanowires (e.g., Cu [149], Au [141,150] and Ag [151])
exhibit ultrahigh elastic strains that even approach the theoretically
expected maximum elastic strain in the given material. The dimen-
sionality effect can also be observed in ceramics, but with a different
mechanism — defect statics. For example, Wei et al. reported that the
maximum elastic strain sustained in ZnO nanowires increased up to 7.8
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(a)

P

Sa

% with decreasing diameter of the nanowires, as shown in Fig. 4a [152].
A linear relationship between the maximum elastic strain and the in-
verse of the diameter (1/D) was found in these nanowires, as shown in
Fig. 4b.

The dimensionality effect can also be observed in heteroepitaxial
thin films in which elastic strains are induced due to the film/substrate
lattice mismatch. However, such epitaxial films suffer from the presence

(a)

E

-
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Fig. 3. Schematic illustrations of the dimensionality effect
on dislocation development under a deviatoric stress. (a,b)
Schematics of a bulk crystal with in-grown defects (e.g.,
dislocations (marked as gray circles) and cracks) before (a)
and after (b) applying a deviatoric stress. Dislocation gen-
eration by a Frank-Read type multiplication process (inside
the material) and a brittle fracture (at the surface) due to a
crack tip (Dugdale-Barenblatt model) during deformation
in the bulk crystal. (c,d) Schematics of a low-dimensional
material (here a nanowire) with surface defects (marked
as gray circles) before (c) and after (d) applying a devia-
toric stress. An initial mobile dislocation (gray line in (d))
can be nucleated during deformation. Much larger
maximum elastic strains can be sustained in low-
dimensional materials than their bulk counterparts, due
to less defects and a mechanism of defect creation that is
controlled by surface nucleation as opposed to growth/
propagation typically seen in bulk materials.

of misfit dislocations that are formed during growth to relax the strain
energy. By varying the film thickness in heteroepitaxy, Shi et al. have
demonstrated large biaxial elastic strains up to 5% in ultrathin CeOq
films on (001)-oriented single crystal yttria-stabilized zirconia (YSZ)
[153]. Reciprocal space mapping revealed that the ultrathin CeO, films
were gradually relaxed while they remained coherently strained. Fig. 4c
shows the in-plane and out-of-plane lattice parameters for epitaxial
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Fig. 4. Dimensionality effects on maximum elastic strains in binary oxides (e.g., ZnO (a,b) and CeO, (c)). (a) Stress—strain curves of ZnO nanowires with different
diameters (100, 260 and 760 nm) and a secondary electron image of an individual nanowire (inset). (b) Critical strain (or maximum elastic strain) versus 1/D in ZnO
nanowires. (c) In-plane and out-of-plane lattice parameters versus film thickness in relaxed CeO, films epitaxially grown on YSZ substrates. Coherent films lie in the
shaded region. [152]. [153]. Reprinted by permission of American Chemical Society.

(a) (a) and (b) are adapted from Ref. (b) (c) is adapted from Ref.
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CeO-, films, revealing the dependence of strain on the thickness of het-
eroepitaxial CeOs thin films.

In general, a reduction in either dimensions of an internal feature or
structure or in overall physical dimensions of a low dimensional mate-
rial can lead to an increase in the maximum elastic strain. The ability to
introduce larger elastic strains in low-dimensional materials as
compared to their bulk counterparts widens the design space for elastic
strain engineering in these materials.

Large elastic strains can be introduced in various low-dimensional
materials by using different approaches, e.g., tensile loading
[149-152, 154-157], bending [6, 158-163], heterostructures in nano-
composites [164-168], heteroepitaxy [153, 169-180], and doping
[181-184]. These approaches are reviewed in Section 4. We have
summarized the experimentally measured elastic strain limits in typical
low-dimensional materials in Table 2 and Fig. 5 with binary oxides
highlighted in bold face. It can be seen that some low-dimensional
materials can sustain elastic strains of more than 20 %. For instance,
Lee et al. reported an elastic strain up to ~25 % in freestanding graphene
membranes measured by nanoindentation in an AFM system [185].
Similarly, foam like carbon nanotube films have been shown to exhibit a
high compressibility of ~22 % [186].

However, these large values of elastic strains only exist in certain
materials with specific morphologies. Different morphologies, sizes and
testing methods can lead to different experimental values of elastic
strains in low-dimensional materials. For instance, for low-dimensional
Si, Domenicucci et al. reported an epitaxial tensile strain of 1.08 % in a Si
thin film in the channel direction of an n-type FET device fabricated on s-
Si/SiGe-on-insulator [187], while Zhang et al. reported that
single-crystalline Si nanowires grown by the vapor-liquid-solid
approach and having diameters of ~100 nm can reach ~16 % tensile
strain [154]. In most materials listed in Table 2, the measured elastic
strain limits are larger than 1 %, while annealed bulk crystals usually
yield an elastic strain limit of less than 0.1 % [188].

2.3. Elastic strain engineering in low-dimensional materials

Strain can modify the electronic properties of materials. For instance,
elastic strain can enhance the electron mobility in a Si layer grown on a
Si;_xGex substrate [221], increase ferroelectric Curie temperature [178,
222], tune the tunneling electroresistance effect in BaTiO3 thin films
[223], and argument the superconducting transition temperature in
superconductors such as Laj ¢Srg1CuO4 [224] and (Lnj_xMy)2CuO4
[225]. In addition, elastic strain can open a band gap in a metallic
carbon nanotube [226] and modify the nature of the band transition
(direct versus indirect) in strained Ge layers [173], MoS; monolayers
[163], WSey multilayers [227], and atomically thin arsenene and anti-
monene layers [228]. Moreover, elastic strain can be used to modulate
the piezo-resistive effect in black phosphorus FETs [229], the
high-temperature zero-field quantum valley Hall effect in twisted gra-
phene bilayers [230], the giant piezoresistance effect in Si nanowires
[231] and room-temperature ferroelectricity in strained SrTiOs [18].

Elastic strain also modifies the optical properties of low-dimensional
materials, as observed by PL or cathodoluminescence (CL) spectroscopy
[161, 172,193, 232-239]. The emission peak energy can be shifted at a
rate of ~-210 meV/% strain (redshift) in AllnGaN/InGaN quantum well
structures [236], -45—99 meV/% uniaxial or biaxial strain in MoS,
layers [163,194,238,240], ~95 meV/% strain in WS, monolayers [241],
~-27 meV/% strain in MoSe; monolayers [161], ~-120 meV/% strain in
multi-layer black phosphorus [192] and ~-80 meV/% strain in GaA-
s/Aly 3Gag7As/GaAs core/shell nanowires [172]. Elastic strain can
improve electro-optical properties as well. For instance, a rapid decrease
in resistivity and a redshift in photocurrent spectra were observed in Ge
nanowires with a high tensile strain [242] and a significant linear
electro-optic effect was induced in a silicon electrooptic modulator by
adding a strained layer on top of a silicon waveguide [243].

Elastic strain engineering with respect to magnetic properties in low-
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dimensional materials includes generation or tuning of different spin
states in LaCoOj3 thin films [244], spin splitting in GaAs and InGaAs
epitaxial layers [245], the magnetocaloric effect in MnAs epitaxial
layers [246] and selective orbital occupancy in epitaxial
Lag,3Ca; ,3MnOs films [247]. Recently, Hong et al. reported that tensile
strains (up to 8 %) in nanoscale Laj 7Cag sMnO3 membranes can induce a
phase transition from the ferromagnetic metal phase to the insulator
phase [189].

Additionally, chemical properties can be affected by elastic strain.
Elastic strain can modify the surface reactivity in Ru (0001) [248], CoO
[218], TiO2 [249] and (100) epitaxial Laj _xSryCoOss (LSC) thin films
[250], the number of oxygen vacancies in MnO thin films [251],
superconducting EuBa;Cu3O7_s films [252] and SrCoOx films [176,253],
and ionic transport in CepgGdp2019-_x electrolyte films [6],
SrZrO3-RE;O3 nanocomposite films [167], cuboid Fe nanoparticles
[254], and Gdg 1Ce.902.5/Er,03 multilayers [174].

It has also been found that elastic strain can help to stabilize meta-
stable phases of some materials. For example, metastable phases of
halide perovskites such as black CsPbls [255] and a-FAPbI3 [215] can be
stabilized by epitaxial strain. Topological structures such as polar meron
in ferroelectric oxides can also be stabilized by epitaxial strain [213].

Elastic strain engineering has been widely utilized in technologically
practical devices. A successful example of this is the strained Si tech-
nology [256-259]. The carrier mobility in silicon-based devices can be
greatly enhanced by up to a hundred percent by introducing a few
percent epitaxial strain in films on Si;_xGey substrates [256]. Using
embedded SiGe in p-type FET devices, a uniaxial compressive strain can
be directly imparted to the channel region, resulting in more than 50 %
enhancement in hole mobility [260]. Further, using an ultrathin tensile
strained Si layer directly on insulator structures, IBM fabricated tran-
sistors exhibiting enhancement in both electron and hole mobility
without the SiGe layer and avoiding the related process integration
problems [257,261]. It was predicted that Moore’s law would eventually
break down due to physical limits on transistor scaling, but this was
delayed by introducing elastic strain engineering in silicon technology
over the last decade [137]. For a detailed review on strained silicon
technology, one may refer to the article written by Bedell et al. [262].

Detailed effects of elastic strain on various properties of low-
dimensional binary oxides are comprehensively reviewed in Section 6.

3. Binary oxides - Crystal structures

To study the effect of elastic strain on material properties, some fa-
miliarity with the symmetry of relevant crystal structures is necessary.
Crystal structure of a material is determined by the cation-anion bond
length and coordination. There are several common crystal structures in
binary or ternary oxides.

For monoxide (MO) type binary oxides (M=metal cation), common
structures are rock salt (Fig. 6a) and wurtzite (Fig. 6b). Examples of
rock-salt MO oxides include alkaline earth metal oxides (MgO, BaO and
CaO0) and some transition metal oxides (TiO, FeO and MnO). Examples
of wurtzite MO oxides include ZnO and BeO. In terms of electronic (or
magnetic) properties, MO oxides can be metals (LaO, NdO and TiO),
semiconductors (BeO, CdO, CoO, FeO, MnO, NiO, PbO and ZnO), in-
sulators (BaO, CaO, MgO, SrO), superconductors (NbO), or even mag-
nets (EuO). For dioxides (MO>), the common structures include fluorite
(Fig. 6¢) and rutile (Fig. 6d). Examples of fluorite MO, oxides include
CeOo, PrO,, and HfO,, which are typically insulators. Examples of rutile
MO, oxides include ferromagnetic CrO2, semiconducting SnOy and
TiOy, and metallic IrO5 and RuOs. For MyOs-type oxides having trivalent
cations, common structures include bixbyite and corundum (Fig. 6e).
M0s-type oxides with bixbyite structures are typically insulating,
including Ery03, Lay0O3, Nd203, Sm03 and Gd203. M2O3 oxides with
corundum structures include metals (V503), semiconductors (In,Os,
Beta-Gay03 and Tiy03), and insulators (AlyO3, CroO3 and Fe,O3).
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Table 2

Summary of experimentally reported elastic strains (either intentionally introduced or left behind after fabrication as residual strain) in low-dimensional materials. The
corresponding growth method and source of strain are also included. Here positive values represent tensile elastic strains, while negative values represent compressive
elastic strains. “IP” represents strain along the in-plane direction of the substrate. “OOP” represents strain along the out-of-plane direction of the substrate. Binary
oxides are in bold font.

Materials Morphology Growth methods Maximum elastic strain/% Methods to generate/sustain elastic strain Ref.
Recoverable
ZnO Nanowire PVD 7.3 Tensile testing [152]
Lag 7Cag.3MnO3 Freestanding membrane PLD 8.2 Tensile testing [189]
Si Nanowire VLS technique 16 Tensile testing [154]
Au Nanowire Chemical reduction 7.2 Tensile testing [155]
Ag Nanowire Chemical reduction 1.6 Tensile testing [156]
Cu Nanowire FIB 7.2 Tensile testing [149]
MoS Monolayer CVD 4.8 Tensile testing [4]
Cu-Zr Nanowire FIB 4.4 Tensile testing [190]
Nb NiTi:Nb nanocomposite Vacuum induction melting 5.6 Tensile testing [164,165]
SnO,, Microwire CVD 1.7 Bending [191]
GaAs Nanowire MOVPE 3.5(-1) Bending [172]
MoS, Monolayer Mechanical exfoliation 2.2 Bending [163]
MoSesy Monolayer Mechanical exfoliation 1.1 Bending [161]
Ce0,:Gd Freestanding membrane PLD 2(-2.7) Buckling [6]
Graphene Monolayer CVD 7.8(-7.8) Buckling [162]
Black P Sheet Mechanical exfoliation 5(-5) Buckling [192]
ReSe, Sheet Mechanical exfoliation 1.6 Buckling [193]
MoS, Monolayer CVD, Mechanical exfoliation 5.6 Buckling [194]
GaAs Ribbon Wet chemical etching 2.5 Buckling [195]
Graphene Monolayer Mechanical exfoliation 25 Nanoindentation [185]
Carbon Nanotube Pulsed 5.8 Nanoindentation [196]
laser vaporization
MoS, Monolayer Mechanical exfoliation 11 Nanoindentation [197]
VO, Nanowire Vapor transport -1.9 Compressive testing [198]
Carbon Nanotube film CVD -22 Compressive testing [186]
w Nanowire In situ welding -4.9 Compressive testing [199]
GaAs Nanowire MOCVD -11 Compressive testing [200]
Ce0,-Zr0O, Pillar FIB -7 Compressive testing [201]
BiFeO3 Film PLD -14 Compressive testing [202]
Cu-Al-Ni Pillar FIB -4 Compressive testing [203]
Irrecoverable
Ge InAlAs:Ge nanocomposite MBE 5.3 Nanocomposite [166]
SrZrO3 SrZrO3:Sm,03 nanocomposite PLD 1.3(00P) Nanocomposite [167]
BaTiO3 BiTiO3:Sm,03 nanocomposite PLD 2.35(00P) Nanocomposite [168]
BiFeO3 BiFeO3:Sm,03 nanocomposite PLD 1.5(00P) Nanocomposite [204]
BaZrO3 Ba,Cu307:BaZrO3 nanocomposite PLD, MOCVD 1.9(00P) Nanocomposite [205]
CoFe04 CoFe;04:BiFeO3 nanocomposite PLD -6(00P) Nanocomposite [206]
Zr0,:Y,03 Zr0,:Y,03/SrTiO; film RF sputtering 7(IP) Heteroepitaxy [169]
CeOy Ce0,/YSZ film PLD -5(IP) Heteroepitaxy [153]
Ce0,:Gd Ce0,:Gd/Er,03 film PLD -1.16(IP) Heteroepitaxy [174]
Ce0,:Gd Ce0,:Gd/SrTiO3/MgO film PLD 1.9(00P) Heteroepitaxy [175]
VO, VO,/Ti0,(001) film PLD -1.8(00P) Heteroepitaxy [207]
VO, VO,/Ti05(100) film Ion-beam deposition 3.7(IP) Heteroepitaxy [208,209]
HfO, Hf0,/Si(100) film RF sputtering -4(1IP) Heteroepitaxy [171]
EuO EuO/BaO superlattice MBE 6.4(IP) Heteroepitaxy [210]
Ge Ge/InGaAs/GaAs(100) film MBE 2.33(IP) Heteroepitaxy [173]
SrTiO3 SrTi03/Si(001) film MBE -1.7(IP) Heteroepitaxy [177]
BaTiO3 BaTiO3/DyScOs film MBE, PLD -1.7(IP) Heteroepitaxy [178]
BiFeO3 BiFeO3/YAIO; film MBE -4.5(IP) Heteroepitaxy [211]
CaTiO3 CaTiO3/NdGaO3 film PLD 1.1(IP) Heteroepitaxy [179]
EuTiO3 EuTiO3/DyScOs film MBE 1.1(IP) Heteroepitaxy [180]
HoMnO3 HoMnO3/Pt/c-Al,03 film PLD 1.2(1IP) Heteroepitaxy [212]
SrCoOy SrCoOy/KTaOs5 film PLD 4.2(IP) Heteroepitaxy [176]
PbTiO3 PbTiO3/PrScO3 film PLD 3.5(1IP) Heteroepitaxy [213]
BisTizFeOqo BisTizFeO;5/LaAlO; film PLD 2.2(IP) Heteroepitaxy [214]
a-FAPbI3 a-FAPbI3/MAPbCl, sBr; 5 Vapor transport -2.4(IP) Heteroepitaxy [215]
ZnO:Br Nanowire RF sputtering 0.45 Doping [183]
Ce0,:Sc Film PLD -1.7 Doping [184]
MoS2:N Sheet N, plasma treatment -1.7 Doping [181]
SnO,, Film PLD 1.7(00P) He implantation [182]
LaSrMnO3 Film PLD 0.94(00P) He implantation [216]
HVO, Film PLD 10.2 Hydrogenation [217]
CoO nanorod Cation exchange 4 Stoichiometry [218]
Pt Pt/Cu(111) core/shell nanopartical Impregnation -3.3 Core/shell [219]
GaAs GaAs/InGaAs core/shell nanowire MBE 7 Core/shell [220]
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Fig. 5. Summary of experimentally measured elastic strain limits (absolute values) in typical low-dimensional materials. Binary oxides are in bold font.
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Fig. 6. Common crystal structures of binary oxides, including (a) rocksalt (MgO), (b) wurtzite (Zn0O), (c) fluorite (HfO,), (d) rutile (SnO,), and (e) corundum (V,03).

4. Methods to introduce or sustain elastic strains

To successfully modify or tune material properties via elastic strain
engineering, control over the elastic strain introduced in a material is
crucial. In this section, we summarize different methods adopted by
different research fields to introduce and sustain elastic strains in low-
dimensional materials. These include reversible as well as irreversible
methods, as explained below.

4.1. Reversible methods

Reversible methods, in which the introduced elastic strain can also
be removed, mainly include the mechanical, electrical, thermal and
optical methods. In mechanical methods, strain (e.g., tensile and
compressive) can be generated either directly by loading nanowires
[152, 200, 263-265] and nanotubes [266] or indirectly by loading
substrates with the target nanostructures on their surface [267,268].
Bending nanowires [3, 67, 269-272], nanotubes [273], and monolayers
[163,238], and buckling ribbons [195,274,275], layers [162, 192-194,
240] and thin films [279] can generate compressive, tensile and shear
strains. Nanoindentation can generate compressive strains in nanowires
or nanobelts [276,277] and tensile strains in nanotubes [196] and
monolayers [185,197,278].

Electrical methods of introducing elastic strain include application of
an external bias to control biaxial strain in epitaxial thin films grown on
piezoelectric crystals, e.g., VO films on 0.72Pb(Mgl/3Nb2/3)—
0.28PbTiO3 (PMN-PT) crystals [279] or the use of electromechanical
resonators to dynamically generate tensile strains in VO, nanobeams
[280].

Thermal methods of introducing elastic strain include the thermal
expansion of substrates to generate elastic strain in overlying nano-
structures, e.g., VO, thin films [281] and transition metal dichalcoge-
nide (TMD) monolayers (MoSy, MoSes, WSy, WSey) [241]. A dynamic
phase transition triggered by temperature in VO, microbeams can
generate elastic strain in a CdS or halide perovskite film grown on the
beam [282,283] and in a MoS, sheet stacked on the beam [284].
Additionally, temperature-induced phase separation (spinodal decom-
position) can be observed in alloy compounds like LiyFePO4 [285,286],
V1_«TixOy [287], and TixSn;_xOy [288], generating strains at phase
interfaces due to a lattice mismatch between different phases.

Optical methods of introducing elastic strain include the use of
femtosecond lasers to induce a dynamic structural response and elastic
strain waves in low-dimensional materials, e.g., MoS; layers [289,290].
Laser-induced spinodal decomposition in MAPbBrs/MAPbI3 [291] and a
phase transition in VO, films [292] can also generate strains at phase
interfaces.

In chemical methods, strains (i.e., chemical strains) can be generated
by chemical processes, e.g., ion diffusion. In lithium-ion batteries,
lithiation-induced strains have been observed in high-energy density
anodes such as SnO;3 nanowires [293,294], Co304 hollow spheres [295],
Si nanowires [296] and nanoparticles [297,298], multiwalled carbon
nanotubes [299], Ge nanowires [300], LiCoO» layers [301], and LiNd-
TiOg3 layers [302]. Transfer of oxygen and hydrogen ions can generate
strains during phase transition in SrCoOx thin films [303,304] and VO3
thin films [217].
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4.2. TIrreversible methods

Irreversible methods, in which the introduced elastic strain cannot
be removed, include interfacial bonding (e.g., heteroepitaxy) and
growth and post processing (e.g., doping). Typically, elastic strains in
epitaxial thin films originate from the lattice mismatch in heteroepitaxy.
Materials strained by such an approach include semiconductors such as
Ge [173] and GaN [234], binary oxides such as ZrO, [169], CeOy [153,
174,175], VO [207-209] and HfO4 [171], ferroic oxides such as SrTiO3
[10,177], BaTiO3 [178] CaTiO3 [179], EuTiOs [180] and HoMnOg
[212], and transition metal oxides such as SrCoOy [176].

For heterostructures in nanocomposites, where one material is
embedded in the matrix of another material, both materials have elastic
strains. For instance, elastic strains have been observed in
(Lag.¢7Cap 33Mn03); _x:(MgO)y composite films consisting of MgO clus-
ters formed around the Lag ¢7Cag 33MnOs3 grains [305], in YBapaCugOy.5
films containing self-aligned nanodots and nanorods of BaZrOs [306], in
a ferromagnetic CoFe;O4 film containing vertically aligned multiferroic
BiFeO3; nanopillars [206], and in films containing vertically
self-assembled nanocolumns such as BaTiOs:CoFe;04 (film:nano-
column) [7], Lag7Srg3MnO3:ZnO [204], BiFeO3:Smy03 [204,307],
BaTiO3:Smy03 [168], RE(rare earth)-BayCusO7.5:BaZrOs [205], GaSb:
ErSb [308], SrZrOs3:SmyO3 [167] and SrTiOs:yttria-stabilized ZrOq
[309].

Irreversible strain can also be introduced by vdW epitaxy/growth.
Although the vdW interaction at such an interface is much weaker than
ionic or covalent bonding in conventional epitaxy, it can lead to elastic
strains in as-grown layers, e.g., Pbly/muscovite (Mica) [310], MoSy/-
SiO, [311], and Pb(Zr,Ti)O3 (PZT)/Mica [312]. In vdW heterostructures
formed by mechanical transfer, e.g., graphene/hydrogen silesquioxane
[313] and graphene/SiOy [162,314], large elastic strains have been
observed due to the vdW interaction between carbon atoms from the
overlying graphene and oxygen atoms from the underlying patterned
hydrogen silesquioxane or SiO; substrate.

Additionally, growth and post processing can lead to elastic strains in
thin films. For instance, by doping or alloying, elastic strains can be
introduced in perovskite oxides [315], superconductors [225], mono-
layer MoS; [181], binary oxide thin films such as SnO; [316] and CeO2
[184], and ZnO nanowires [183]. In films grown by hybrid MBE, stoi-
chiometry and oxygen partial pressures can be controlled, leading to
tensile elastic strains in CaTiOs films [317] and large strains and strain
gradients in epitaxial ferroelectric HoMnOg thin films [212], respec-
tively. Other growth strategies involving control over growth tempera-
ture, growth modes and growth time (film thickness), can help to
generate elastic strains and large strain gradients in epitaxial thin films
including Hf02 [318], V02 [319] and Lao‘7Sr0,3Mn03/PbZI'O.2Ti0.803
[320]. Post-processing, e.g., annealing and helium implantation, can
generate compressive elastic strain in acceptor doped CeO, films [184]
and lead to strain in Lag 7Srg.3MnOs3 [216] and SnO, [182] thin films.

All the methods of introducing or sustaining elastic strain mentioned
above are summarized in Table 3 and typical ones are schematically
illustrated in Fig. 7a—j, including both reversible (Fig. 7a—g) and
irreversible (Fig. 7 h—j) methods. Reversible methods include direct
(Fig. 7a—d) and indirect (Fig. 7e—g) methods. For instance, tensile
loading (a), compressive loading (b), bending of a nanowire (c) and
nanoindentation on a nanosheet (d) are direct approaches. Tensile
loading (e), bending (f) and compressive loading (g) of a substrate to
generate tensile (e—f) and compressive strains (g) in a nanosheet via
vdW interaction are indirect methods. Irreversible methods to introduce
strain due to interfacial bonding include epitaxial strains in hetero-
epitaxy (h), epitaxial strains in vdW epitaxy (i) and strains induced by
doping or alloying (j).

5. Characterization of strain

The various experimental techniques for characterizing strain are

10

Nano Energy 104 (2022) 107917

Table 3
Summary of methods to introduce and sustain elastic strain, including reversible
and irreversible methods.

Methods Materials and references

Reversible methods
Mechanical Tensile loading

stimulation

Si nanowires[263], ZnO nanowires
[152], VO, nanowires[264], carbon
nanotubes[266], graphene[321], MoS,
monolayers[4]

TiO, nanotubes[265], GaAs nanowires
[200], MoS; layers[267], graphene[268]
Si nanowires[270], Ag nanowires[269],
carbon nanotubes[273], MoS,
monolayers[163,238], ZnO nanowires
[3,67,271,272], VO, nanowire[198]

Si ribbons[274], GaAs ribbons[195],
graphene ripples[275], graphene[162],
MoS, layer[194,240], ReSe; layer[193],
black phosphorus multi-layers[192],
CeO, thin films[279]

Carbon nanotubes[196], Graphene
[185], MoS;, layers[197,278], ZnO
nanowires[276,277]

VO, films[279], VO, nanobeams[280],
BiFeOs3 films[202,322],
yttrium-stabilized ZrO, films[323],
LiCoO, layers[301], BaTiO3 crystals
[324]

VO, films[281], CdS/VO, microbeams
[283], LixFePOy4 crystals[285,286],

Vi _«TixO4 crystals[287], TiySnj_xO2
crystals[288], TMD layers[241],
CsPbBr3/VO, microbeams|[282],
MoS,/VO, microbeams[284]

CdS and CdSe nanocrystals[325], MoSy
layers[289,290], WSe; layer[326],
MAPbBr3/MAPbDI; rods and films[291],
VO, films[292]

Lithium alloy films[327], SnO,
nanowires[293,294], Co304 hollow
spheres[295], Si nanowires[296] and
nanoparticles[297,298], multiwalled
carbon nanotubes[299], Ge nanowires
[300], LiCoO layers[301], LiNdTiO3
layers[302]

SrCoOy films[303,304], VO, films[217]

Compressive
loading
Bending

Buckling

Nanoindentation

Electrical Electrical field

stimulation

Thermal
stimulation

Temperature

Optical
stimulation

Light

Ton diffusion Lithiation

Hydrogen and
oxygen ion transfer
Irreversible methods

Interfacial Heteroepitaxy Ge layers[173], ZrO5[169], CeO,[153,
bonding (horizontal 174,175], VO5[207-209], HfO5[171],
interface) SrTiO3[10,177], BaTiO3[178] CaTiO3
[179], EuTiO3[180], and HoMnO3[212],
SrCo0,[176], GaN[234] films
Nanocomposite (Lag.67Cap.33Mn03); _:(MgO)«[305],

(vertical interface) YBa,Cu307.5:BaZrOs[306], BaTiOs:
CoFe,04[7], Lag.70Sro.3Mn03:Zn0[204]
and BiFe03:Sm»03[204,307], BaTiO3:
Sm,03[168], RE(rare earth)-BayCuz07.5:
BaZrO3[205], GaSb:ErSb[308], SrZrOs3:
Smy03[167]and SrTiOs:yttria-stabilized
ZrO,[309] films

PbI,, films[310], MoS, layers[311], PZT
layers[312], graphene/hydrogen
silesquioxane([313], graphene/SiO,[162,
314]

VdW interaction

Growth strategy ~ Doping or alloying Perovskite oxides films[315],
and post- superconductors films[225], MoS,
processing monolayer[181], SnO, films[316], CeO4
films[184], and ZnO nanowires[183]
Stoichiometry CaTiOs5 films[317]
Oxygen partial HoMnOs3 films[212]
pressure
Polar cation layered oxide films[328]
ordering
Growth HfO,, films[318]
temperature

Growth mode VO, films[319]

(continued on next page)
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Table 3 (continued)

Methods Materials and references
Annealing CeO, films[184]
Buffer layer VO, films[329], HoMnO3 films[212]
Thickness ZrO, films[169], CeO, films[153], EuO

films[330], Pt/Cu(111) core-shell
nanoparticle[219],

Lag 7Sro.3sMnO3/PbZrg 5 Tig s03 films
[320]

Lag 7Sro.3MnO3 films[216], SnO, films
[182], VO, films[331]

Ion implantation

summarized in Table 4. Different variants of X-ray diffraction (XRD)
[332-338], several modes of electron diffraction [339-350], neutron
diffraction [351] and spectroscopy (e.g. Raman spectroscopy)
[352-355] are common techniques for characterizing strains.
Transmission electron microscopy (TEM) techniques including
convergent-beam electron diffraction (CBED) [346,347], nano-beam
electron diffraction (NBED) [348,349], high-resolution TEM (HRTEM)
[340,341] and dark-field electron holography (DFEH) [345] are also
often used for characterizing strain. In situ TEM mechanical tests can
measure the real-time strain imposed on a material [155, 190,

(a) 4 (b) ¥ (c)

&=

]
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356-363]. Besides, by fabricating electromechanical devices like reso-
nators [280], the strain state can be dynamically tracked.

By integrating the time dimension into electron microscopy, ultrafast
electron microscopy (UEM) expands static imaging to dynamic imaging.
UEM can match the ultrashort time resolution of atomic motions while
also providing atomic-scale spatial resolution. This technique has been
used to study graphite in four dimensional (4D) space, functional
nanomechanical systems, and irreversible phase transitions and crys-
tallization [364]. Particularly, elastic modulation in materials that oc-
curs at the speed of sound can be probed by UEM. For instance, by using
in situ femtosecond photoexcitation, dynamics of in-plane photo-in-
duced wrinkling in MoS; occurring on a picosecond time-scale have
been visualized [289]. Further, UEM has been used to reveal the
spatiotemporal evolution of photoexcited high-velocity elastic strain
waves in MoS; [290]. UEM is one of the most powerful tools available to
the materials science community for studying strain dynamics.

(d)

1
1

[ (o S—— |

Fig. 7. Schematic illustrations of representative methods of introducing/sustaining elastic strain in low-dimensional materials (1D (a—c) and 2D (d—j)), including
reversible (a—g) and irreversible (h—j) methods. (a—d) Direct reversible approaches to introduce/sustain elastic strain in a nanowire, e.g., tensile loading (a),
compressive loading (b), bending (c), and nanoindentation of a nanosheet (d). (e—g) Indirect reversible approaches to introduce/sustain elastic strain in a nanosheet
on top of a substrate, e.g., tensile loading (e), bending (f) and compressive loading (g) of the substrate leading to tensile (e—f) and compressive strain (g) in the
nanosheet via vdW interaction. (h—j) Irreversible methods of introducing/sustaining elastic strain in an epitaxial thin film via interfacial bonding (h and i) and
doping or alloying (j). (h) Epitaxial strain in heteroepitaxy. (i) epitaxial strain in vdW epitaxy. (j) Strain induced by doping or alloying.
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Table 4
Summary of characterization techniques for strain.
Experimental Characterizations Spatial References
techniques resolution
Using Electrons
Aberration-corrected Structure, elemental Atomic-scale [339-341,
TEM composition and 344]
chemical bonding
Off-axis electron Nanoscale Nanoscale [342]
holography electrostatic and
magnetic fields
Electron tomography 3D structural and Nanoscale [343]
chemical information
Dark-field electron Micrometer fields of Nanoscale [345]
holography (DFEH) view
Convergent-beam 2D strain mapping Nanoscale [346-349]
electron diffraction
(CBED) and nano-
beam electron
diffraction (NBED)
Electron backscattering ~ Strain mapping and ~20 nm [350,365]
diffraction (EBSD) 3D microscopy
Reflection high-energy Surface strain Beam size [366]
electron diffraction
(RHEED)
Ultrafast electron Strain dynamics Atomic scale [364]
microscope (UEM)
Using X-ray
XRD Strain and 10 ym [332,333]
composition analysis
3D X-ray microscopy Elastic strain tensors Submicrometer [334,335]
Coherent X-ray Quantitative 3D Nanoscale [336,3671]
diffraction (CXD) images of strain
Femtosecond XRD Strain dynamics Femtosecond [337]
(temporal)
X-ray absorption Interatomic distance Submicrometer [34]
spectroscopy determination
Using photons within ultraviolet-visible regime
Micro-Raman Strain distribution Submicrometer [352,368]
spectroscopy based on the Raman
shift
PL spectroscopy Strain mapping by Submicrometer [353]
measuring degree of
polarization
Digital image In-plain strain Micrometer [355]
correlation mapping
Other
Electrochemical strain Nanoscale mapping Tens of [301,323]
microscopy of ion diffusion nanometer

6. Elastic strain-tuned properties and applications of binary
oxides

6.1. Piezoelectricity

Piezoelectricity, a phenomenon where the electrical and the me-
chanical state of a material are coupled, was first demonstrated by
French physicists Jacques and Pierre Curie in 1880 [369]. In a piezo-
electric material, the application of mechanical stress or pressure leads
to accumulation of electric charge. Alternatively, an applied electric
field can induce mechanical deformation of a piezoelectric material
[370]. The first application of piezoelectricity was an ultrasonic sub-
marine detector invented by Langevin with Chilowski in 1916 and 1917
[371] and later developed by Robert Boyle using quartz crystals [372].
Langevin’s successful application of piezoelectricity in the generation
and detection of ultrasonic waves created an intense interest in further
development of devices, such as the invention of the first piezoelectric
crystal oscillator in 1921 by Cady [373]. Due to limited sources of
natural piezoelectric crystals, scientists searched for artificial piezo-
electric materials in the form of ceramics. BaTiOs, the first piezoelectric
ceramic, was discovered in 1946 by Arthur von Hippel at MIT [374].
Subsequently, PZT, first reported by Shirane et al. at the Tokyo Institute
of Technology, became the prevalent piezoelectric ceramic material due
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to its better reproducibility and higher speed of wave propagation over
BaTiOs [375]. Because of the growing concern regarding toxicity of
lead-containing devices, there has been a strong push over the years to
explore lead-free piezoelectric materials. Sodium potassium niobate ((K,
Na)NbO3), known as NKN, was discovered by a group of Japanese re-
searchers led by Yasuyoshi Saito in 2004 and is a promising candidate
with properties close to those of PZT.[44].

Low-dimensional materials that exhibit piezoelectricity, e.g., semi-
conducting wurtzite compounds (such as ZnO [67,376] and GaN [377]),
perovskite ferroelectrics (such as PZT nanowires [378,379] and nano-
fibers [380], BaTiO3 nanowires [381] and thin films [382], NaNbOs thin
films [383] and nanowires [384]) and oxides (such as SiOq crystals
[385], MoOy sheets [386], PbO sheets [387] and silicon-doped HfO5
thin films [388]), have received increased attention for use in piezo-
electric nanosystems [389]. A measure of piezoelectricity involves direct
measurement of the electric charges generated or the electric potential
produced under mechanical deformation, e.g., tensile loading [381] or
bending [67]. In bending experiments, a conductive AFM probe bends a
nanowire (ZnO [67] and GaN [390]), and the generated electric po-
tential across the nanowire is measured with the same conductive probe.
Piezoelectric properties of typical low-dimensional materials have been
well summarized in the review article Ref. [389].

Among binary oxides having a non-central symmetry as is necessary
for the piezoelectric effect, ZnO is a typical example [391]. Piezoelectric
properties of various type of ZnO nanostructures have been extensively
explored during the last decade. Zhao et al. reported the effective
piezoelectric coefficient of ZnO nanobelts (dgfg), obtained by piezores-
ponse force microscopy (PFM) in the strong indentation mode and
measured according to the equation

A= Vis=dJu;, @
where Ay is the vibration amplitude, V} is the vertical deflection signal of
the cantilever, § is the calibration constant of the photodetector sensi-
tivity and Uy is the amplitude of the testing AC voltage. The authors
found the effective piezoelectric coefficient of nanobelts to be much
larger than the value for bulk wurtzite ZnO [376]. In contrast, Fan et al.
showed that the piezoelectric coefficient for ZnO nanopillars with a
diameter of about 300 nm was smaller than the bulk value [392].
Scrymgeour and Hsu reported a similar study for ZnO nanorods
obtaining a variation of the piezoelectric coefficient from 0.4 to
9.5 pm/V [393]. Besides, Gao et al. reported the growth of piezoelectric
ZnO nanohelice [394] and a nonlinear electronic transport behavior of
the nanohelice was observed [395].

Various nanodevices employ low-dimensional materials, including
low-dimensional binary oxides with piezoelectric properties. The
photovoltaic effect observed in strained core—shell compound semi-
conductor nanowires was attributed to a piezoelectric field [396].
Photovoltaic performance was also enhanced by piezoelectric polariza-
tion in depletion-heterojunction ZnO/PbS quantum dot solar cells
(QDSCQ), as reported by Shi [397]. Besides, strain sensors based on
piezoelectric semiconductor nanowires with high sensitivity have also
been fabricated [398]. Liao et al. recently fabricated a highly stretchable
and multifunctional nanosensor consisting of ZnO nanowires and poly-
urethane fibers with three different sensing capabilities, i.e., strain,
temperature and ultraviolet (UV) [399]. Due to its portability and fiber
layout, this stretchable and multifunctional sensor is a promising
candidate for diverse smart sensing applications and multiparametric
sensing platforms.

Low-dimensional piezoelectric materials are also of importance for
use in piezoelectric nanogenerators (PENG) which convert mechanical
energy to electrical energy for the operation of low-power electronics.
PENGs have attracted significant attention and have been manufactured
based on ZnO nanowires [67,400], PZT [401] and flexible piezoelectric
polymers such as polyvinylidene fluoride (PVDF) [402]. In 2006, Wang
and Song first demonstrated PENGs based on ZnO nanowire arrays that
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harvested microscale and nanoscale mechanical energy [67]. Bending a
ZnO nanowire creates a strain field and charge separation across the
nanowire. The bent wire displays a rectifying effect, characteristic of a
Schottky barrier between the metal tip and the nanowire and leads to the
generation of an electrical current. The output of electrical energy from
one nanowire based on one piezoelectric discharge (PZD) event is
calculated as

AWPZD = VéC/Z (2)
where V, is the peak voltage of the discharge output. The elastic
deformation energy created due to displacement of the nanowire by the

AFM tip is calculated as

Wip = 3YIy2, /217 3

where Y is the elastic modulus, I is the moment of inertia, L is the length
of the nanowire and yy, is the maximum deflection of the nanowire. The
efficiency of electric power generation is then determined by the ratio

Efficiency = AWpzp/ AWgip C))

Where, AWgpp is the energy dissipated by the nanowire in the first cycle
of vibration. The authors reported high efficiencies in the range of

(@)

1A,
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17-30% which they attributed to the large deformation that could be
borne by the ZnO nanowires. Gao and Wang proposed the original
mechanism for a PENG based on ZnO nanowires, as shown in Fig. 8a-c,
suggesting that for a nanowire having a diameter of 50 nm and a length
of 600 nm, a piezoelectric potential of ~0.3 V was enough to drive the
metal-semiconductor Schottky diode at the interface of the AFM probe
and the nanowire [403]. The behavior of free charge carriers in the
PENG under thermodynamic equilibrium conditions was investigated as
well [404].

Meanwhile, Wang et al. developed a PENG driven by an ultrasonic
wave and producing a continuous direct-current output [405]. Liu et al.
further improved the performance of direct-current PENGs to obtain an
output current density of 8.3 yA/cm? by tuning the carrier density and
the characteristics of the Schottky barrier at the interface between the
metal electrode and the nanowire [406]. Subsequently, the performance
of PENGs with a Schottky contact structure, in terms of the open circuit
(0OCQ) voltage, was improved from the original 9 mV to 1 V [400,407]. In
2010, Hu et al. introduced a sandwich structure to PENGs by combining
piezoelectric ZnO nanowires with a dielectric and sandwiching them in
between two electrodes [408]. The output performance of PENGs with
the sandwich structure was further improved and the OC voltage was
raised from 2 V to 58 V [409,410]. Additionally, piezoelectric perfor-
mance of ZnO-based flexible nanogenerators can also be remarkably

(b)

Potential(V)
=

Min: -0.398

(c)

Max: 0.268
0.2
;’; 0.1
Z fo
5
= §-0.1
=
-0.2

Min: -0.269

Fig. 8. Fundamental theory of nanogenerator. (a) Schematic of a ZnO nanogenerator. Bending a ZnO nanowire creates an electric field and a potential distribution.
(b,c) Perturbation theory calculation of the piezoelectric potential distribution along the side (b) and at the top (c) of a nanowire pushed by a lateral force at the tip.
(a—c) are adapted from Ref. [403]. Reprinted by permission of American Chemical Society.
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enhanced by doping halogen elements which in turn introduce a lattice
strain [183]. Many applications based on high output performance
PENGs have been demonstrated, such as photon detection [409], envi-
ronmental monitoring [411], vehicle monitoring [412] and deformation
sensors [413-415].

Computational studies have also been undertaken to explore piezo-
electricity in low-dimensional binary oxides. However, computational
investigations of piezoelectricity are limited to nanowires with di-
ameters below 4 nm due to the associated computational cost [389].
Xiang et al. studied piezoelectricity in ZnO nanowires with diameters up
to 2.8 nm using DFT calculations and found that their effective piezo-
electric constants were larger than that of the bulk ZnO due to their free
boundaries [416]. The size-dependence of piezoelectricity in GaN and
ZnO nanowires with diameters in the range of 0.6—2.4 nm was also
studied by Agrawal and Espinosa based on first principle-based DFT
calculations [417]. Apart from benchmark DFT calculations, classical
polarizable core-shell interatomic potentials were also applied to
analyze piezoelectric properties of ZnO [418]. Moreover, Sun et al.
numerically estimated the potential, the output power and the energy
conversion efficiency of piezoelectric nanostructures, including rectan-
gular nanowires (BaTiOs nanowires), hexagonal nanowires (ZnO
nanowires) and two-dimensional vertical thin films (ZnO nanofins)
[419].

Recently, computational investigations of piezoelectricity in mono-
layers have been carried out. Piezoelectric coefficients for multiple 2D
material systems have been calculated by DFT and large in-plane
piezoelectric coefficients (d11) have been found in 2D metal oxides, e.
g., MgO (6.63 pm/V), CdO (21.7 pm/V), CaO (8.47 pm/V), and ZnO
(8.65 pm/V) [420]. Similar first-principles calculations focused on
monolayer II-VI group oxides (MO where M= Be, Mg, Ca, Sr, Ba, Zn, and
Cd) have also been reported, revealing that group II-VI oxides exhibit
highly promising piezoelectric properties, e.g., the highest e;; and di;
relaxed-ion coefficients are in BeO and BaO, respectively [421]. Single
layer transition metal dioxides (MO where M=Cr, Mo, W, Ti, Zr, Hf, Sn)
have been theoretically investigated as well, having comparable or
larger relaxed-ion piezoelectric coefficients (e.g., ~7 pm/V for TiOz and
~pm/V for ZrO;) compared to traditional bulk materials (e.g.,
2.3 pm/V for a-quartz [422] and 3.1 pm/V for wurtzite GaN [423])
[424]. Considering the large piezoelectric coefficient of ~114 pm/V in
PZT nanowires, the development of lead-free piezoelectric materials,
although much needed due to environmental concerns, has a long way
to go before they become comparable to PZT [378].

As reviewed above, piezoelectric properties of low-dimensional ZnO
have been extensively investigated and their application in electronic
nanodevices has been demonstrated. Additionally, low-dimensional
CdO may prove to be a promising candidate for future nanoscale
piezoelectric applications due to its much higher in-plane piezoelectric
coefficients over ZnO [420] and reasonably low formation energy with
respect to its bulk structure [425]. Although the formation energies of
2D MgO and CaO are higher, it may be possible to stabilize their 2D
structures via methods such as interfacial strain engineering.
Low-dimensional transition metal dioxides, such as TiO5 and ZrO,, are
good candidates for studying piezoelectric properties as well. Once 2D
structures can be achieved in these oxides, their piezoelectric properties
and applications will be very attractive.

6.2. Piezoresistive effect

The piezoresistive effect is a phenomenon in which mechanical strain
(¢) can affect the electrical resistance (R) of a material. R of a homo-
geneous structure is defined as:

(5)

where p is the resistivity, [ is the length and a is the average cross-
sectional area. The piezoresistive sensitivity, known as the gauge fac-
tor (GF), describes the fractional change in resistance (AR/R) under

R =pl/a,
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applied strain &, which is expressed as [426]:

_ARJR
==

GF (6)
The fractional change in resistance with strain (AR/R) is calculated

from the following relation [427]:

AR

R

Ap

(1 +2D—KT)€+7, @)

where (1+2v) accounts for geometric effects (v is the Poisson’s ratio)
and K is a constant related to the change in temperature with strain. In
semiconductors such as silicon, the change in carrier mobility due to
strain dominates the piezoresistive performance, while the geometric
effects can be neglected. Thus, the GF in semiconductors is orders of
magnitude larger than in metals (typically less than 2) [426]. In ZnO
nanobelts or nanowires, a GF varying from 300 to 1250 has been re-
ported [398,428].

A change in resistance with elongation was first observed in iron and
copper by William Thomson (Lord Kelvin) in 1856 [429]. In 1935,
adapted from analogous work on piezoelectricity, Cookson coined the
term ‘piezoresistance’ to describe the change in conductivity with stress,
distinct from the total fractional change in resistance [369,430]. In
1950, Bardeen and Shockley predicted relatively large piezoresistance in
single-crystal semiconductors [431]. Later in 1954, Smith reported the
first measurement of exceptionally large piezoresistive shear coefficients
in silicon and germanium [432].

Based on Bardeen and Shockley’s model, more refined models of
transport and energy band structure were proposed, e.g., Herring’s
Many-Valley model that explained the piezoresistance in n-type silicon
and germanium [433]. On the other hand, gaining an understanding of
the piezoresistance theory for p-type semiconductors was difficult due to
the complexity of their valence band structure and was improved upon
in late 1990’s due to computational advances [434,435]. Theoretically,
the piezoresistive effect originates from variation of the electronic
structure with strain, which changes the concentration, the effective
mass and the mobility of charge carriers, as well as the quantization
effect that occurs in the first few atomic layers of low-dimensional ma-
terials at the sub-10 nm scale [436].

Piezoresistive sensors were among the first micro-electro-
mechanical-systems (MEMS) devices [426]. The first silicon piezor-
esistive device, i.e., a diffused piezoresistive pressure sensing dia-
phragm, was realized by Tufte et al. in 1962 [437]. Piezoresistive
sensors were the first commercial devices that emerged in the 1980’s
[438]. Later, developments in silicon processing and modeling for the
integrated circuits (IC) industry allowed significant improvements in
sensitivity, resolution, bandwidth, and miniaturization of piezoresistive
devices [439]. Detailed history of the piezoresistive effect can be found
in the review article written by Barlian et al. [426].

When it comes to low-dimensional binary oxides, e.g., ZnO, great
emphasis has been laid on the piezoelectric effect in nanostructures with
a Schottky contact, as reviewed in the last section (Section 6.1). Essen-
tially, in semiconductors with a non-centrosymmetric crystal structure,
both the piezoelectric effect and the piezoresistive effect exist when
measured with a Schottky contact. Based on four-point measurements,
Zhu and Yang separated both effects and found that the resistivity in
ZnO nanowires decreases due to tensile strains [440]. By using a focused
ion beam (FIB) to deposit Pt electrodes, Han et al. achieved ohmic
contacts in ZnO nanowires and reported that up to a 113% increase in
conductance can be induced by bending [441].

Recently, Wang et al. studied the effect of elastic strain on the elec-
trical resistivity of ZnO nanowires with different sizes and cross-
sectional morphologies [442]. Fig. 9a shows the corresponding mecha-
noelectrical testing device for ZnO nanowires. Perfect ohmic contacts
were achieved by ion-beam Pt deposition, as shown in Fig. 9b. Schottky
contacts fabricated by e-beam Pt deposition were also studied for
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Fig. 9. Piezoresistivity in ZnO nanowires [442]. Experimental setup (a) and electrical measurement (b) of individual ZnO nanowires. Good ohmic contacts were
secured and retained, excluding the piezoelectric effect. (c) Electrical resistivity of cylindrical and hexagonal ZnO nanowires with different diameters without any
intentionally applied strain. (d) Effect of uniaxial tensile strain on the resistivity of a cylindrical ZnO nanowire. (e) Real-time resistivity response under applied stress.
(f) Piezoresistive coefficient of both types of nanowires with different sizes. The piezoresistive coefficient of cylindrical nanowires is generally higher than that of

hexagonal ones. Reprinted by permission of American Chemical Society.

comparison to exclude the piezoelectric effect. The contact made by
ion-beam Pt deposition exhibited superior performance probably due to
increased tunneling across the Schottky barrier caused by high energy
Ga ions injected on the surface [443]. Fig. 9c shows the size dependence
of the resistivity of ZnO nanowires and it can be seen that a much higher
resistivity was observed in hexagonal nanowires than cylindrical ones
with a similar sample diameter. The effect of elastic strain on the elec-
trical resistivity of a cylindrical ZnO nanowire is illustrated in Fig. 9d.
With increasing tensile strain, the resistivity shows a linear drop with a
piezoresistive coefficient of 2.01 x 10° Pa’l, Fig. 9e and f show the
real-time resistivity response under an applied stress and the piezor-
esistive coefficient of both types of nanowires with different sizes,
respectively. It can be found that the piezoresistive coefficient of cy-
lindrical nanowires is generally higher than that of hexagonal ones. Both
types of nanowires shown in Fig. 9c and f show similar trends, i.e., the
piezoresistive coefficient increases and the resistivity decreases as the
diameter increases [231].

In addition to nanowires, piezoresistivity in ZnO thin films [444] and
Al-doped ZnO-polydimethylsiloxane nanocomposites [445] have also
been reported. Based on the piezoresistive effect in ZnO, piezoresistive
sensors have been fabricated, e.g., a poly(3,4-ethylenedioxythiophene)
polystyrene sulfonate (PEDOT:PSS)/ZnggsMng 150 Schottky diode
based piezoresistive sensor with high pressure sensitivity and a fast
response [446], and an Al-doped ZnO thin-film transistor based strain
sensor with high deflection sensitivity [447].

Piezoresistivity has also been reported in other binary oxides. Li et al.
fabricated an ultrasensitive tactile sensor based on free standing VO,
nanomembranes, exhibiting giant electrical responses to external strains
[448]. Cao et al. reported a significant change in resistance in M1, M2
and R phases of VO3 microbeams at different strain states [449]. The
metal-insulator transition in VO3 will be reviewed in detail in Section
6.5. In the M2 phase of VO, nanowires, Sedlmayr et al. reported a strong
piezoresistive effect with an increase in resistivity of 51% per 1% of
strain [450]. Onuma et al. reported in 1998 that the piezoresistive

15

property of polycrystalline SnO5 films is comparable to that of poly-
crystalline Si thin films [451]. Recently, Sakurai et al. reported a
reversible and nonvolatile semiconductor-insulator transition in SnO,
microrods under an applied mechanical strain resulting from lattice
defects induced by the strain [452]. In low-dimensional monolayer
MoOgs, DFT calculations suggested a profound piezoresistive effect due
to an elastic strain effect on bandgap modulation [453]. Later, Wen et al.
experimentally reported presence of significant piezoresistivity in MoOg
nanobelts and its application in strain-enhanced oxygen sensors [454].
The piezoresistive effect has been found in Cu;0/CuO nanorods as well
and has been shown to enhance their photocatalytic property [455].

Strain sensitivity is an essential phenomenon for nanoscale device
applications since intrinsic strain can exist in most low-dimensional
materials [456]. The underlying mechanism of the piezoresistive effect
in low-dimensional materials, particularly in binary oxides, requires
further systematic theoretical study. When the sample size is beyond the
range of quantum confinement, the intrinsic band structure and the
surface state contribute to the enhancement of the piezoresistive coef-
ficient. However, for low-dimensional materials at the sub-10 nm scale,
the quantum confinement effect may play a substantial role and affect
the corresponding piezoresistive effect. Due to the presence of both
quantum confinement effect and an effect from the surface state in
low-dimensional materials, a giant piezoresistive effect might be
observed.

6.3. Piezotronic and piezo-phototronic effect

The piezotronic effect can be defined as the use of inner crystal
piezoelectric potential (piezopotential) as a “gate” voltage to tune or
control charge carrier transport properties in a piezoelectric material-
based device. The piezotronic effect has triggered numerous studies
ever since its discovery in 2006 [67]. The term ‘piezotronics’ refers to
electronics that harvest the piezotronic effect and have applications in
strain/force/pressure triggered/controlled electronic devices, sensors
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and logic units [457]. The fundamental principle of piezotronics was
first introduced by Prof. Zhong Lin Wang in 2007 [458]. Wurtzite and
zinc blende structured semiconductors with piezoelectric properties, e.
g., ZnO, GaN, InN, ZnS, CdS and CdSe, have attracted immense attention
since they exhibit the piezotronic effect and have potential in enabling
novel applications for sensors [459,460], transistors [461], electronics
[462], optoelectronics [463-465], smart MEMS [466] and
human-machine interfacing [467].

The theory of charge transport in piezotronic devices has been
investigated and numerical calculations have been performed for pre-
dicting the current-voltage characteristics of a general piezotronic
transistor i.e., a metal-ZnO nanowire-metal device [468]. As can be seen
in Fig. 10a, the piezotronic effect is observed when the gate voltage that
controls the channel length in metal-oxide-semiconductor (MOS) FET is
replaced by a piezopotential that controls transport across the
metal-semiconductor (M-S) interface. Fig. 10b and ¢ show the ideal
models of charge, electric field and energy distributions of piezoelectric
M-S Schottky contacts and p-n junctions. Band structure engineering at
heterojunction interfaces, an important aspect of piezotronics, has been
summarized by Shi et al. [469].

The piezo-phototronic effect results from a three-way coupling
among piezoelectricity, photonic excitation and semiconductor trans-
port. In the piezo-phototronic effect, strain induced piezopotential can
tune and control electro-optical processes [8, 458,470]. The funda-
mental theory of piezo-phototronics, especially for light-emitting diodes
(LEDs) [471], nanoLEDs [472], and photodetectors [473], has been
intensively studied by Wang’s group, and has been reviewed by Liu et al.
[470]. Based on analytical calculations and numerical simulations, Liu
et al. have proposed that piezoelectric polarization charges can induce a
change in the Schottky barrier height, the depletion region shift and/or
the formation of a charge channel, hence effectively enhancing the ef-
ficiency of LEDs, solar cells and photon detectors [470]. Many review
articles are available in literature on piezotronics [8,468,474-476] and
piezo-phototronics [9,17,457,470,477,478].

Devices based on the piezotronic and piezo-phototronic effect can be
categorized into several representative heterojunction systems based on
their different interfacial band structures engineered by the remnant
piezopotential. These include the metal-piezoelectric semiconductor
system (Schottky contact), the semiconductor-piezoelectric semi-
conductor system (p-n junction and other heterogeneous semiconductor
interfaces), and the electrolyte-piezoelectric semiconductor system.
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6.3.1. M-S Schottky contact

The M-S contact is a fundamental construction in semiconductor-
based electronics and optoelectronics [479]. The piezotronic and
piezo-phototronic effect in devices with a Schottky contact formed be-
tween a metal and a semiconductor are of high interest [477].
Strain-induced piezoelectric polarization charges present in the vicinity
of a local Schottky contact in piezoelectric semiconductors can effec-
tively modulate the Schottky barrier height (SBH) and thereby tune or
control the transport properties of the device [457,480,481].

In 2010, Yang et al. found an asymmetric change in the I-V curve of a
single ZnO micro/nanowire metal-semiconductor-metal (MSM) photo-
detector when external strains were applied [464]. The authors
observed an enhancement in performance of this photodetector under
compressive strain. This observation has proved to be one of the most
important criteria to distinguish the contribution of the
piezo-phototronic effect from non-polarity factors [482] in further in-
vestigations [483,484]. A theoretical model for describing the charac-
teristics of a metal-nanowire-metal structured piezo-phototronic
photodetector has been constructed by Liu et al., fitting well to the
experimental results of a CdS-based visible detector and a ZnO-based UV
detector [473]. Han et al. have reported that by introducing the
piezo-phototronic effect, the performance of a large array of Schottky
UV photodetectors, based on vertically aligned ZnO nanowires, can be
enhanced up to seven times in photoresponsivity, six times in sensitivity,
and 2.8 times in the detection limit [485]. Zhang et al. have reported a
similar enhancement of photo response in ZnO nanorods-based photo-
detector [486].

In addition to photodetectors, the performance of sensors with a
Schottky contact can also be enhanced by the piezotronic effect, e.g., a
ZnO nanowire-based strain sensor reported by Zhou et al. [398], a ZnO
thin film-based UV sensor reported by Wen et al. [487], a ZnO
nanowire-based protein sensor reported by Yu et al. [460], a flexible
oxygen sensor based on an individual ZnO nanowire reported by Niu
et al. [459], a ZnO micro/nanowire-based pH sensor et al. [488], a strain
sensor based on tunneling junction Ag/HfO,/n-Zn0O [489], Hy/NO5 gas
sensors based on ZnO micro/nanowires reported by Zhou et al. [490]
and DNA sensors based on a Schottky-contacted ZnO nanowire reported
by Cao et al. [491]. Fig. 11a shows that the sensitivity (change of cur-
rent) of an oxygen sensor based on a ZnO nanowire can be enhanced by
increasing the tensile strain. The working mechanism of this flexible
oxygen sensor can be understood by considering the piezoelectric
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Fig. 10. Fundamental theory of piezotronics [468]. (a) Schematic of an n-channel MOS FET, a semiconductor nanowire FET, and a piezotronic transistor with a
tensile strain and a compressive strain, illustrating the piezotronic effect when the gate voltage that controls the channel length is replaced by a piezopotential that
controls transport across the M-S interface. (b,c) Charge (top), electric field (middle) and energy (bottom) distributions in an ideal piezoelectric M-S Schottky contact
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J. Jiang et al.

Nano Energy 104 (2022) 107917

(a) 80 =@ 0 strain (b) 6 (C) o ] .
=@ 0.05% strain s 5 =D -600 pW/cm* - Q
60 [—9—0.1% strain 5} ) s S :
— |=9—0.15% strain B i ’ ) e /
R 4o |2 0-2% strai z Y P . /
t40 r 0:2% strain i SGT under compressive v?_ ;} r /
§ = strain = 1 f %
< & z /
20+ /
0,atmosphere .9
Ot . . g = 9
(v v v v v _v—+" = = =
0 200 P 4019 600 800 A0 05 00 0.0 0.5 1.0 15
oz (Torn) % (%) Strain(%)
(d) (e) ()
0843 : o Lot l57 130} §\ M 0] — A 17
Q- — i i
z 8. 3s D -
S o6t °- é .. | \§ o S < Zn0/Ga,0,
= % &.7 a. F540 > NG S R a0 per 54 P corelshell Tensile
[ & S, 5 0 : = L
5 04+ é‘ .. o -3, .. e C §\ ' o free light on
w 3. 8., = % 120 é.\é 5 6| free light off
2 3. N2 g l N6 o —— 0.060% light on
A L IPES ] WHW ! ~ st/ 0 0.060% light off
Compressive Tensie P~ ~ ,é N 145| ! \é I — 0.073% Iight s
o Ny T ot
00+ e Ry 9 s ) ) : ) g 1oL ) ) 0.073% light off
08 04 0.0 04 08 0.8 0.4 0.0 0.4 08 -6 -4 -2 0 4
Strain (%) Strain (%) Voltage (V)

Fig. 11. The piezotronic effect in M-S Schottky contacts (a—c) and the piezo-phototronic effect in heterojunctions (d—f). (a) An individual ZnO nanowire-based
oxygen sensor (insets) exhibiting improved device performance (change of current) due to the piezotronic effect [459]. (b) A single ZnO nanowire-based SGT
showing that a gating effect is produced by the piezotronic effect [466]. Insets show schematics of the SGT under compressive and tensile strains. (c)
Piezo-phototronic effect in a single SnO, microwire-based device. Insets show the device structure (top) and an optical image of the device (bottom-right) [191]. (d)
A ZnO/P3HT nanowire array structure (top right inset) showing that the CPGE current and the PV current are modulated by the piezotronic effect [S05]. Insets show
the measurement setup (top-right) and schematics of the device under compressive and tensile strains (bottom). (e) A flexible solar cell based on n-ZnO/p-SnS
core-shell nanowire array (top-right inset) showing that the cell efficiency is enhanced by the piezo-phototronic effect [509]. The bottom-left inset shows the device
under a compressive strain. (f) A deep UV photodetector based on the ZnO-Ga;O3 core-shell heterojunction (top-right inset) showing that its performance is
modulated by the piezo-phototronic effect [511]. Reprinted by permission of American Chemical Society, Wiley-VCH and Nature Publishing Group.

polarization charges induced by a tensile strain in the nanowire which
attract free electrons towards the M-S interface and decrease the SBHs at
both contacts [459]. A similar working mechanism was reported in a
ZnO thin film-based UV sensor [487]. When the thickness of ZnO de-
creases to an atomic scale, e.g., atomically thin ZnO sheets reported by
Wang et al., the strain sensitivity can be greatly enhanced [492].

Similar enhancement in performance has been found in devices
based on strain gated transistors (SGT) [461, 493-495]. The first
mechanical-electronic logic device triggered by piezoelectricity [466]
(Fig. 11b) and first resistive switching device [496] based on piezotronic
ZnO nanowires have been reported. Fig. 11b shows a gating effect of the
logic operations in response to an input strain in the ZnO nanowire SGT
and schematic illustrations of the transistor (insets) modulated by the
piezoelectric effect. Besides ZnO, the piezo-phototronic effect has been
observed in a single SnO, microwire-based device [191]. Fig. 11c shows
that the photocurrent of the SnO5 device increases more than one order
of magnitude with a strain of 1.7 %.

6.3.2. p-n junction/heterojunction

The p-n junction has been widely applied in optoelectronic devices
including LEDs [484], solar cells [463,497] and photodetectors [498].
Energy bands at the p-n junction can be tuned by the strain-induced
piezoelectric polarization charges as well, thereby effectively control-
ling the generation, separation, recombination and transport of
photo-induced charge carriers at the local hetero-/homojunction of
optoelectronic devices [457].

The piezo-phototronic effect has been found to remarkably enhance
the light emission intensity of several devices including a n-ZnO
nanofilm/p-Si micropillar heterostructure LED array [499], a flexible
LED array composed of PEDOT:PSS and patterned ZnO nanowires [467],
a pressure-sensitive Si/ZnO nanowires heterostructure matrix LED array
[500] and a single n-ZnO nanowire/p-GaN LED [501,502]. It can also
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enhance the emission efficiency of a hybridized inorganic/organic LED
based on a ZnO nanowire/p-polymer structure [503]. A mechanical
signal can be recorded by optical means, suggesting the potential
application of the piezo-phototronic effect in biological sciences,
human-machine interfacing and smart sensors [501].

In solar cells, the piezo-phototronic effect can be used to enhance
device performance as has been demonstrated in a flexible hetero-
junction ZnO/poly(3- hexylthiophene) (P3HT) solar cell (Fig. 11d) [463,
504-506], a flexible ZnO/CH3NH3Pbl3 perovskite solar cell [507], a
Si/ZnO solar cell [508] and a flexible solar cell based on n-ZnO/p-SnS
core-shell nanowire array (Fig. 11e) [509]. Fig. 11d shows that a strong
Rashba spin-orbit coupling can be induced by the structure inversion
asymmetry of the ZnO/P3HT heterointerface and both the circular
photogalvanic effect (CPGE) current and the photovoltaic (PV) current
in the nanowire array structure increase with decreasing strain,
revealing the piezotronic effect [505]. Fig. 11e shows a similar effect in a
flexible solar cell based on a n-ZnO/p-SnS core-shell nanowire array
(insets of Fig. 11le), which exhibits enhanced efficiency under
compressive strain [509].

The piezotronic effect has also been observed in photodetectors, e.g.,
a p-Si/ZnO nanowires hybridized photodetector [498], a MoS,- and
ZnO-based heterojunction p-n photodiode [510], deep UV photodetec-
tors based on a ZnO-GayOs3 heterojunction (inset of Fig. 11f) [511] and
Zn0O/ZnS core/shell nanowires [512-514], and a ultraviolet-visible-near
infrared (UV-Vis-NIR) photodetector based on a p-ZnO/Al;03/n-Si
structure [515]. Fig. 11f shows remarkable enhancement of sensitivity
(current on-off ratio) in the ZnO-GayO3 deep UV photodetector under
tensile strain [511]. Additionally, couplings of the piezotronic and pie-
zophototronic effect with a magnetic field (i.e., the piezo-magnetotronic
and piezo-photomagnetotronic effect) have also been observed, for
example, in ZnO/Co304 core/shell heterojunction nanowire arrays
[516].
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6.3.3. Electrolyte-semiconductor contact for catalysis

The interface between an electrolyte and a piezoelectric semi-
conductor is important in many energy conversion and storage systems
[517]. The impact of elastic strain and the piezotronic effect on interface
energetics can determine the redox reaction favored at the interface. For
instance, experiments have shown evolution of Hy and O, from me-
chanically agitated piezoelectric BaTiO3 and ZnO microstructures [518]
and single-crystalline Pb(Mgl/3Nb2/3)03-32PbTiO3 [519] in an
aqueous sonication bath. Using a piezoelectric ZnO thin film as a pho-
toanode in a photoelectrochemical (PEC) cell, Shi et al. investigated
barrier-height engineering by the piezotronic effect and found an in-
crease (decrease) in the photocurrent by a fixed amount under a con-
stant tensile (compressive) strain [415]. Fig. 12a shows the schematic
setup of a ZnO-based PEC cell for characterizing water splitting re-
actions. The I-V curves of the cell with and without strain, and the band
diagram of the entire PEC system (indium tin oxide (ITO)/ZnO in the
dashed ellipse) are shown in Fig. 12b and c, respectively. Under a static
tensile or compressive strain, the barrier height changed by ~1.5 mV
per 0.1 % strain and the PEC performance improved by ~5 % per 0.1 %
tensile strain, as illustrated in Fig. 12d and e, respectively.

By assembling TiO» nanoparticles on ZnO monocrystalline nano-
platelets, Wang et al. developed effective piezoelectric semiconductor
based hybrid photocatalysts and the piezotronic effect significantly
enhanced the photocatalytic performance [520]. Fig. 12f shows the
schematics of ZnO/TiO5 hybrid photocatalysts with and without strain
and the simulated potential distribution. Fig. 12g—i illustrate the
working mechanism, i.e., band diagrams of the ZnO/TiOy hetero-
junction without (g) and with (h, i) strain via the piezotronic effect. The
photogenerated electrons and holes can be effectively separated by
strain at the heterojunction interface, i.e., the piezotronic effect, thereby
continuously enhancing the photocatalytic performance and providing a
strategy for high-performance photocatalysis applications [520]. Simi-
larly, in direct Z-scheme ZnO-WOs_yx nanorod arrays and CuS/ZnO
nanowires, the photocatalytic efficiencies are enhanced by the piezo-
tronic effect of ZnO, as reported by Chen et al. [521] and Hong et al.
[522], respectively.
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6.3.4. Challenges and opportunities

The impacts of strain to the performance of electronic and opto-
electronic devices, such as LEDs, solar cells, photosensors/photodetec-
tors and PEC cells, have been demonstrated to be significant. By
applying a strain of less than 1 %, one can tune the efficiency or power of
the devices by up to a few times. If one can extend the laboratory
demonstrated concept into large scale systems, these progresses may be
harnessed for practical applications.

Although tremendous theoretical and experimental advancements
have been made, a systematic and comprehensive understanding of
piezotronics and piezo-phototronics and their full potential applications
is still necessary. When the size of piezoelectric semiconductors reaches
the atomically thin limit, the quantum confinement effect should be
considered in existing models of piezotronics and piezo-phototronics. As
mentioned in Section 6.1, many low-dimensional binary oxides other
than ZnO, e.g., CdO, MgO, TiO, ZrO,, exhibit comparable or better
piezoelectric properties. Thus, exploring their piezotronic and piezo-
phototronic properties might be a new promising direction for future
research.

6.4. Ferroelectricity

Ferroelectricity, used in analogy to ferromagnetism, is a character-
istic of particular materials that have a spontaneous and reversible
electric polarization [523]. Ferroelectricity was first discovered in
Rochelle salt by Valasek in the early 1920s [524]. It has been widely
studied for various applications including MEMS, radiofrequency iden-
tification (RFID) chips, and semiconductor memory devices [391,525].

Most ferroelectric thin films are perovskite structured materials
[526], e.g., PZT [527], SrBiyTay0q (SBT) [528], BaTiO3 [178,529] and
SrTiOg [18]. Elastic strain engineering of the perovskite ferroelectric
oxides has been well summarized in many review articles [10,19,530,
531]. However, these conventional perovskite ferroelectric materials
suffer from poor compatibility with silicon technology and CMOS inte-
gration. The scaling issue for application of ferroelectric random-access
memory (FeRAM) based on perovskite ferroelectric materials is an
example of their drawbacks. However, simple binary oxides with
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reactions. (b) I-V curves of the cell with and without strain. (c) Band diagram of the entire PEC system. The schematic in the dashed ellipse shows the detailed band
alignment of the ITO/ZnO interface. A Schottky barrier-like n-n junction is formed due to the slightly large work function of ZnO. (d,e) Piezotronic effect on the
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[520]. (f) Schematics of ZnO/TiO, hybrid photocatalysts with and without strain and the simulated potential distribution. (g—i) Band diagrams of the ZnO/TiO,
heterojunction without (g) and with (h, i) strain via the piezotronic effect. Reprinted by permission of American Chemical Society.
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ferroelectric properties have excellent compatibility with silicon tech-
nology and are well suited for applications in ferroelectric FETs and
capacitors [532-534]. In 2011, Boscke observed ferroelectric behavior
in SiO-doped HfOj thin film [535]. Since then, HfO5 and its analog ZrO,
have received a flurry of interest from the ferroelectric community [65,
536]. Ferroelectricity or antiferroelectricity can exist in a wide spectrum
of HfO,-based thin films, such as undoped [537], Si-doped [535],
Zr-doped [65,538] and Al-doped HfO, [539] as well as Hf doped ZrO,
[65,538].

Epitaxial strain has often been employed in epitaxial thin films to
achieve desired phases and corresponding properties. Analogous to the
observation of ferroelectricity in SrTiO3 [18] and BaTiO3 [178] epitaxial
thin films under biaxial tensile strain, epitaxial strain may induce
ferroelectricity in simple binary oxides as well. ZrO, exhibits four
experimentally reported phases, as shown in Fig. 13a, among which the
orthorhombic (Pca2;) phase, corresponding to a distortion of the
high-symmetry cubic phase, is the polar phase [540]. Ferroelectricity in
ZrOy (or HfO3) can be achieved by stabilization of this orthorhombic
phase via strain engineering.

Muller et al. discovered a field-driven and temperature-dependent
ferroelectric phase transition in sub 10 nm pure ZrO, thin films and Zr
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polarization—voltage and capacitance—voltage hysteresis for mono-
clinic HfOy, orthorhombic HfO; —ZrO, and tetragonal ZrO, based
metal—insulator—metal capacitors, revealing the stabilization of the
composition-dependent ferroelectric phase. Along with temperature
dependence of the ferroelectric phase transition, the authors attributed
these unusual findings to a size-driven tetragonal to orthorhombic phase
transition. The temperature of this phase transition was lowered to room
temperature in the sub 10 nm thin films. This size effect on phase
transition is also frequently observed in ZrO, nanoparticles due to a
decrease in their surface strain energy with decreasing size [541,542].
Recently, Bi et al. reported their research on a strained Hfy 5Zrg 502 film
grown on a highly doped GaN substrate, indicating that interfacial strain
plays a key role in the origin of ferroelectricity in the Hf 5Zry 50> film
[543]. Estandia et al. reported that the lattice strain of the epitaxial
Lag 67Srg.33Mn0O3 electrode is critical in the stabilization of the ortho-
rhombic phase of HfysZrgs0y [544]. Cheema reported enhanced
ferroelectricity in ultrathin (1 nm thick) HfjgZrg 205 film grown by
atomic layer deposition on silicon [545]. Their work demonstrated the
promising potential for ferroelectric applications in fluorite-structure
binary oxides over perovskite-derived complex oxides.

Using DFT calculations, Reyes-Lillo et al. investigated the experi-

rich HfO, —ZrO, mixed oxides [65]. Fig. 13b shows the mentally reported field-induced phase transition in thin-film ZrO, and
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(a) and (c) are adapted from Ref. [546], (d—f) are adapted from Ref. [66], (b) is adapted from Ref. [65].
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found a small energy difference between the nonpolar tetragonal and
polar orthorhombic structure [546]. The authors further predicted that
epitaxial strain could stabilize the ferroelectric phase of ZrO,, suggesting
an alternative stabilization mechanism other than the continuous sub-
stitution of Zr by Hf. Fig. 13c shows the calculated epitaxial strain and
the energy diagram of ZrO, indicating that the stabilization of ferro-
electricity can be expected at accessible values of compressive strain.
This was experimentally demonstrated by Fan et al. who reported that
an epitaxial strain, induced by the lattice mismatch between the ZrO,
film and the TiN/MgO (001) substrate, stabilized the orthorhombic
phase and ferroelectricity was achieved in the strained (111)-textured
ZrO, film [547].

In addition to ZrOs, using first-principles DFT calculations, Bousquet
et al. predicted that an appropriate epitaxial strain could induce ferro-
electricity in simple alkaline-earth-metal binary oxides such as barium
oxide (BaO) [66]. Recently, Yang et al. also investigated the effect of
epitaxial strain on the spontaneous polarization in alkaline-earth-metal
binary oxides (MgO, CaO, SrO and BaO) using DFT calculations [548].
The authors found a linear increase in polarization for both tensile and
compressive strains, with the polarization being as large as ~100
pCem? at a compressive strain of — 8%. Similarly, using analytical
calculations performed within the Landau-Ginzburg-Devonshire theory,
Morozovska et al. predicted that a ferroelectric phase could be induced
in otherwise non-ferroelectric binary oxides (BaO, EuO, MgO and Er,03)
by bending their cylindrical nanoparticles and nanowires [549].
Fig. 13d shows the calculated linear evolution of 1/g9 (go is static
dielectric tensor) with epitaxial strain in BaO, which is characteristic of a
displaced ferroelectric phase transition temperature. Inspired by ferro-
electricity in perovskite oxide superlattices [550], ferroelectric super-
lattices may also be constructed from alkaline-earth-metal binary oxides
due to their tendency to exhibit ferroelectricity. Fig. 13e shows the
calculated evolution of the Ay, and E, modes of BaO/SrO superlattice
with epitaxial strain, indicating that a ferroelectric ground state is ex-
pected irrespective of the epitaxial strain. In the ferromagnetic binary
oxide EuO, the amplitude of polarization can reach sizable values
(60 uC/cm? at —5.5 % of strain) with either an out-of-plane or an
in-plane orientation due to both compressive and tensile epitaxial
strains, as illustrated in Fig. 13 f. Djermouni et al. also investigated
strain effects on ferromagnetism and ferroelectricity in EuO by using
DFT+U-based first principles calculations and presented similar pre-
dictions i.e., a spontaneous polarization of the order of Ps(EuO)
= 57.50 pC/cm? with a strain of 5 % [551]. Recently, by using infrared
reflectance spectroscopy, Goian et al. provided experimental indications
of the ferroelectric phase induced by epitaxial tensile strain (6.4 %) in
EuO [210].

The excellent compatibility of simple binary oxides with silicon
technology makes them highly attractive for commercial applications in
devices. However, most binary oxides are expected to exhibit a centro-
symmetric crystal structure and therewith a linear dielectric character-
istic at room temperature. Nevertheless, the ferroelectric phase can be
stabilized by elastic strain engineering, as reviewed above for ZrO,. As
predicted by theoretical calculations, the realization of ferroelectricity
in other binary oxides can be possible with a large epitaxial strain.
Additionally, further experimental and theoretical studies of ferroelec-
tric nanowires and nanocrystals of binary oxides, which have strain
states different from thin films, are also necessary for a more complete
exploration of strain-dependent ferroelectricity in binary oxides.

6.5. Metal-insulator transition

Metal-insulator transition is a phase transition that is accompanied
by a huge resistivity change in many condensed-matter systems. The
early theoretical description of metals and insulators was based on the
filling of electronic bands while neglecting electron interactions, i.e.,
bands are partially filled in a metal while completely filled in an insu-
lator. However, the classic band picture cannot explain the poor
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conduction in many transition-metal oxides with a partially filled d-
electron band, as reported by de Boer and Verwey in 1937 [552]. The
insulating behavior may be attributed to strong Coulombic repulsion
between electrons (electron-electron correlation), as stated by Mott and
Peierls in the same year [553]. Since then, great efforts and much
progress have been made in both experimental and theoretical studies to
understand the metal-insulator transition in such strongly correlated
electronic systems [554]. In particular, transition-metal oxides were
extensively studied in the early years [555] and have regained interest in
recent decades due to remarkable discoveries of colossal magnetoresis-
tance in manganites [556] and high-temperature superconductivity in
cuprates [557].

Among transition-metal oxides, VO is a typical example that un-
dergoes a first-order metal-insulator transition at 341 K with a change in
conductivity by several orders of magnitude [558]. The metal-insulator
transition in VO, is accompanied by a structural phase transition from
the high-temperature tetragonal phase to the low-temperature mono-
clinic phase and an abrupt change in the lattice constant of about 1%
along the tetragonal c-axis [559]. Thus, a tensile or compressive elastic
strain along the tetragonal c-axis can drive the transition from metal to
insulator or insulator to metal [56]. Here, we mainly focus on the effect
of elastic strain on the metal-insulator transition in VO, in this section.

6.5.1. Mechanism of metal-insulator transition

The mechanism of metal-insulator transition in VO, i.e., whether the
transition is of a Mott (electron-electron correlation) [560] or a Peierls
(electron-lattice interaction) [561] type, has been long debated
[562-564]. The low-temperature insulating phase of VO, is not a con-
ventional Mott insulator and should be considered as a Peierls-Mott
insulator wherein both electron-electron and electron-lattice in-
teractions can contribute to the opening of an insulating band gap. Based
on cluster dynamical mean-field theory, Biermann et al. found that the
dimerization of vanadium atoms due to strong Coulomb correlations
plays a crucial role for the opening of a Peierls gap in the metal-insulator
transition of VOg [565]. Using soft-X-ray absorption spectroscopy,
Haverkort reported direct experimental evidence for orbital switching in
the V 3d states during the metal-insulator transition, suggesting an
orbital-driven Peierls-like transition [566]. A giant transfer of spectral
weight across the metal-insulator transition in VO, single crystals was
observed by Koethe et al., signaling that the transition is neither of the
standard Peierls nor the single-band Mott type [567].

Taking moderate values of strain into account, Aetukuri recently
reported that in the metallic phase of strained VO, thin films, orbital
occupations triggered the transition and the Tyyr (transition tempera-
ture) varied with over a range of 60 K, while orbital occupations in the
insulating state changed little with strain, indicating the importance of
orbital occupancy in the metallic state of VO, in governing the metal-
insulator transition [329]. A similar metal-insulator transition induced
by orbital-driven Peierls state with tetramer ordering was suggested in
spinals, such as Culr,S4, MgTizO4 and NaTiO, [568], and experimentally
observed in Fe3O4 [569]. In addition, using a combination of soft X-ray
spectroscopies, Laverock et al. showed that electron-lattice interaction
was involved in the metal-insulator transition of moderately strained
VO, and revealed strain dependence of the V-O hybridization that was
not anticipated by the band theory [570].

However, in highly strained VO, films, the Tyyr and some of the
electronic interband transitions differ substantially from bulk values,
while the lattice dynamics remain largely unchanged, highlighting the
important role of electronic correlations in driving the metal-insulator
transition [571]. The epitaxial strain in VOo/TiO films can suppress
the structural phase transition in a temperature range in the vicinity of
the metal-insulator transition [572] and modulate the electron corre-
lation effects inducing an orbital selective Mott transition [573], sug-
gesting that an electronic transition triggers the metal-insulator
transition. Using spectromicroscopy, Laverock et al. observed that pe-
riodic modulations in both crystal symmetry and V-V dimerization occur
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near the metal-insulator transition of strained VO, while a homoge-
neous conductivity transition occurs within a narrow temperature
range, supporting the effect of the strong electron correlation on the
metal-insulator transition [574]. In an epitaxial bilayer on a TiO3 (001)
substrate, consisting of slightly oxygen-deficient VO4_5 and stoichio-
metric VO, layers, Lee et al. demonstrated an isostructural, purely
electronically driven metal-insulator transition in VO3 [575].

In single-domain VO3 nanobeams, an equilibrium carrier density and
an activation energy corresponding to an optical gap in the insulating
phase were observed, indicating that electron-electron interactions play
a driving role in the metal-insulator transition [576]. From a theoretical
point of view, by using cluster-dynamic mean field theory calculations,
Lazarovits et al. studied the elastic strain effect on the electronic struc-
ture of VO3 in both the metal and the insulator phase. The authors found
that the increase of bandwidth induced by compressive strain along the
rutile c-axis was more important for the metal-insulator transition than
the Peierls bonding-antibonding splitting [577]. Later, the same group
presented a photoemission spectroscopic study and observed a crossover
from Peierls- to Mott-like transitions with increasing compressive strain
along the rutile c-axis. Thus, the Mott type transition appears to be the
dominant mechanism in the highly strained VO,. Additionally, experi-
mental evidence has shown that excited carrier density in the insulator
phase of VO, plays an important role when the metal-insulator transi-
tion is induced optically [292,578,579]. The effect of elastic strain on
the metal-insulator transition of VO, is further reviewed in the next
sections.

6.5.2. Metal-insulator transition in strained VO thin films

Elastic strain plays a fundamental role in the metal-insulator tran-
sition behavior of VO,. In VO, thin films, epitaxial elastic strain is given
by

d—d
% 100%

(8

Egp1 =
b

where dy is the lattice constant of the thin film and dj is the lattice
constant of the bulk counterpart. Elastic strains can be introduced in VO3
thin films via many approaches. Compressively strained VO3 thin films
that can be grown on TiOy (011) [580],TiO2 (001) [570, 581-584],
quartz [571], MgF, [585,586], CaFy [281] and Ge (100) [587] have
transition temperatures below that of bulk VO,. Tensile strained VO3
films can be grown on TiOy (110) [570,581], RuOy [588] and Al,O3
(001) [319,589,590], resulting in a shift of both the metal-insulator
transition and the accompanying structural phase transition towards
higher temperatures. Recently, Guo et al. found that the epitaxial strain
of VO, films can be partially released by a graphene buffer layer grown
on the Al,03 (001) substrate thereby modifying transport characteristics
of the films [591].

The epitaxial elastic strain resulting from lattice mismatch between
the film and the substrate depends on film thickness. By varying the
thickness of VO, films, different values of epitaxial strain can be intro-
duced, modulating the metal-insulator transition behavior, i.e., large
compressive (tensile) strains lead to a low (high) Tyt [583,584,589,
592,593]. It is suggested that with increasing film thickness, the
compressive (tensile) strain at the interface would be smaller and the
Tyt would be higher (lower). Based on interfacial strain dynamics
determined by means of synchrotron radiation and theoretical calcula-
tions, Fan et al. claimed that the epitaxial strain in an ultrathin VO, film
on a TiO, substrate strongly affects the electronic orbital occupancy and
the electron-electron correlation as well, thus changing the Tyt [583].
Besides, an abrupt change in Tyyr can be induced by epitaxial strain in
ultrathin VO, films with a thickness of 4.1 nm on a TiO5 (001) substrate
[582]. With increasing film thickness, the domain size decreases,
causing a broad metal-insulator transition behavior with respect to
temperature due to increased cracks and dislocations in the domain
boundary [584]. Yang et al. reported phase transformation of a
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(001)-VOo/TiO; film from the rutile phase, i.e., the tetragonal-like
phase, to the monoclinic M1 phase with increasing film thickness due
to thickness-dependent epitaxial strains [593].

The epitaxial strain can be further controlled by introducing a buffer
layer between the substrate and the overlying film. Aetukuri et al. re-
ported that different epitaxial strains, induced by varying the thickness
of a RuO; buffer layer, changed the metal-insulator transition temper-
ature of VO4 (001) thin films on TiO5 substrates from ~ 285 to ~345 K
continuously [329]. Recently, by using a TiOy layer as a buffer layer
(similar to the RuO, buffer), strained VO, films with a metal-insulator
transition temperature of ~317 K have been grown on Al,O3 (100)
substrates [170]. It has been suggested that the metal-insulator transi-
tion behavior of VO, films can be effectively tuned by the specific
microstructure of the TiO, buffer layer which in turn can be controlled
by the growth parameters.

In contrast to conventional thin film epitaxy, a buffer layer with a
large lattice mismatch has also been employed to modify the metal-
insulator transition characteristics of VO,. Use of a SnO, buffer layer
with a large lattice mismatch of 4% relieved the interfacial strain energy
between the VO, film and the TiO5 substrate and resulted in a much
sharper metal-insulator transition in VO, films as compared to those
grown without the SnO; buffer layer [207]. In addition, the epitaxial
strain in the highly mismatched VO,/Al;03 heterostructures can also be
influenced by the surface growth mode of VO, thereby affecting its
metal-insulator transition behavior [319]. Elastic strain engineering can
also be introduced by ion implantation, enabling a 3D local manipula-
tion of the metal-insulator transition of VO, films with a lateral spatial
resolution of a micrometer scale [331].

In addition to the static-strain effect, the metal-insulator transition
can also be influenced dynamically via a dynamic strain. Kikuzuki et al.
have studied the dynamic effect of strain states on the metal-insulator
transition in VO, thin films by using a low-frequency crystal bending
stage, showing that the resistance response of the film to strain excita-
tion is determined by the nucleation lifetime and growth lifetime of a
domain but limited by the presence of grain boundaries [594]. Using a
piezoelectric PMN-PT substrate, Petraru et al. have showed that the
biaxial strain in VO3 films can be tuned by simply applying an external
voltage to the piezoelectric substrate, thereby lowering the Tyt [279].

6.5.3. Metal-insulator transition in strained VO, nanobeams

In VO, epitaxial thin films, microscopic domain structures can form
and affect strain distribution due to the possible presence of misfit dis-
locations and grain boundaries, complicating the interpretation of
experimental results. Specifically in polycrystalline VO films, a phase
coexistence and percolation across a temperature range near Tyt was
observed by using scanning near-field infrared microscopy [578]. A
similar effect of microscopic domain structures on the local strain dis-
tribution was also seen in VO3 nanocrystals and larger microcrystals
[595,596]. In VO3 nanoparticles, the size or volume can significantly
affect the metal-insulator transition behavior, e.g., a broadened hys-
teresis width is seen with a reduced volume, which can be correlated
with defects such as grain boundaries and dislocations [597-600].
Fadlelmula et al. studied the effects of thickness on metal-insulator
transition in freestanding VO, nanocrystals by using argon ion-beam
milling, showing that even below a thickness of 4 nm, the
metal-insulator transition persisted and the Tyt decreased as the crystal
got thinner [601]. Additionally, Cao et al. have shown that a uniform
and continuously tunable uniaxial strain over 2% can be introduced in
freestanding VO, beams without fracturing and the metal-insulator
temperature can be effectively tuned up to the room temperature [198].

Wu et al. have observed that the resistivity in a freestanding single-
crystal VO3 nanobeam changed abruptly within a temperature range of
less than 0.1 °C at the Tyyr [602]. Further, the authors investigated the
effect of strain on the metal-insulator transition in single-crystal VOq
nanobeams and found that fully clamped samples on a SiO; surface
exhibited a remarkably different resistivity compared with freestanding
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ones. Uniaxial strain in elastic-misfit heterostructures led to the forma-
tion of periodic metal-insulator domains near Ty [602,603]. The au-
thors proposed that the energy of the nanobeam depends on the spatial
period of the domains as

de 1 — 672(2j+])m/} yt (fM +fi)l

EA= = S+ : 9
W= ; @+ 2 :

where, 1 is the spatial period of the domain pattern, ¢ = ZY(&'l‘f”lj‘zz) is the

volume density of the elastic misfit energy, Y. is the effective Young’s
modulus of the system, ey =4 ~ 0.011 is the elongation percentage
of the c-axis of VO2 during the metal-insulator transition, v is the Pois-
son’s ratio, y is the domain wall energy per unit domain wall area, t is the
nanobeam thickness and fy and f; are the free energy densities of the
metal and insulator phases respectively. Thus, the equilibrium spatial
period of domains (obtained by minimizing energy) is determined by a
tradeoff between the elastic misfit energy (the first term) and the domain
wall energy (the second term) with the period decreasing with an in-
crease in the Young’s modulus of the substrate. Parikh et al. proposed a
similar model to determine the energy of a VO2 nanobeam/SiO5 sub-
strate and obtained the fraction of the transformed phase as
H

= ——(T-T,
Y. effeMl2TMITg( )

m (10)

where H is the latent heat of transition, Tyr, is the equilibrium phase
transition temperature and the temperature Ty;r at which the phase
transition starts is given by

epemr Yerr T,

Tyvir = + Twirr, an
where &p is the pre-strain before transition [280]. Hence, compressive
(tensile) strains stabilize the metallic (insulating) phase and lower (in-
crease) the phase transition temperature [613]. Other approaches
adopted to introduce strain in VO, nanobeams and to thus modulate the
metal-insulator transition include the misfit in VO,/TiO5 core/shell
nanostructures [604], hydrogen doping in individual VO,
single-crystalline nanobeams on Au-coated Si substrates [605], and
controlling diameters in single-phase VO, wires [606]. Recently, Pendse
et al. demonstrated van der Waals epitaxy and chemical epitaxy of VO,
nanowires on h-BN and c-plane sapphire, respectively, revealing distinct
metal-insulator phase transition kinetics resulting from each type
growth [607].

In addition to interfacial strain, externally applied mechanical strain,
tunable over a wide range of values can influence the metallic and
insulating domains along single-crystal VO, nanobeams, and reduce the
Tyt to room temperature [198,576,608]. Critical stress o, needed to
trigger a transition at Tyyr is given by the uniaxial Clapeyron equation
[833]

do,

dTunr

H

& Tvir
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Considering the above experimental observations, it is necessary to
understand thermodynamics of the phase transition under different
strain conditions. Gu et al. constructed a phenomenological thermody-
namic potential and calculated the phase diagram of VO, under different
strain conditions, which agrees well with existing experimental data
[449,581,609,610], hence emphasizing the strong dependence of Tyyr
on the strain condition in both VO, films and nanobeams [611].

By using strain, Cao reported the propagation of metallic and insu-
lating domains during the metal-insulator transition and the stress-
temperature phase diagram for VO, [198]. In order to precisely study
the phase transition experimentally in an in situ manner, Park et al. used
a home-built nanomechanical strain apparatus to investigate the
metal-insulator transition in single-crystal VO, nanobeams [264].
Recently, Shi et al. reported that single-crystalline VO, actuators
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exhibited excellent performance resulting from internally lateral and
gradual strain engineering [612].

6.5.4. Strain-induced M2 phase of VO3

In VO, strain can enrich the phase space and induce another
monoclinic structure, the M2 phase [609]. M2 structure was widely
observed in Cr-doped VO, [559] and Al-doped VO, [613] in the early
days. The monoclinic M2 phase is a known Mott insulator suggesting
that electron-electron interactions may play an important role in
determining the mechanism of the metal-insulator transition [563,609].
Within the framework of the Ginzburg-Landau formalism, the M2 phase
can appear under a small perturbation of the M1 structure induced by
doping or stress [614].

In VO, thin films, the M2 phase has been observed when using
substrates with a mismatched symmetry, e.g., Al,O3 (001). Strain states
in these films can contribute to stabilization of the M2 phase [615,616].
In order to understand how the M2 phase can be stabilized by epitaxial
strain, Quackenbush et al. studied high quality epitaxial VO, films on
TiO, (001) and (100) oriented substrates [617]. The authors found that
tensile strain along the c-axis of the R phase in epitaxial VO, films raised
the Tyt and indeed stabilized the intermediate monoclinic M2 phase.

In strained VO, nanobeams or nanowires, the M2 phase can act as a
transitional structure between the M1 and the R phase during metal-
insulator transition [157,198,449,596,618,619]. A strain of about
0.5-1% can induce a reversible phase transition from M1 to M2 [362,
450] and in epitaxially grown single crystal VO3 nanowires, the insu-
lating M1 and M2 phases were seen to coexist during transition from the
M1 phase to the R phase at atmospheric pressure [157]. Using electro-
mechanical resonators, Parikh et al. dynamically tracked strain across
the metal-insulator transition in a VO5 nanobeam and the M1-M2 and
M2-R phase transitions by simultaneous resistance and resonance mea-
surements [280]. A triclinic T phase, which is a continuously distorted
variant of the M1 monoclinic phase, was identified during a discontin-
uous transition from both the M1 and T phases into the M2 phase [619].

Doping-induced chemical strain in VO, nanostructures can also sta-
bilize the monoclinic M2 phase. Strelcov reported the temperature-
doping level phase diagram for freestanding VO, nanostructures,
revealing a remarkable change of domain patterns (insets) and phases
depending on the dopant (Al) concentration [620].

6.5.5. Metal-insulator transition-based devices

Based on the unique characteristics of the metal-insulator transition
and properties of the various phases in low-dimensional VO, novel
nanodevices have been fabricated, e.g., sensors and switches, as sum-
marized in a recent review article by Liu et al. [621]. By utilizing the
phase transition between M1 and M2 phases, a freestanding VO,
nanobeam has been used to fabricate a flexible strain sensor, as reported
by Hu et al. and shown in the inset of Fig. 14a [622]. A localized M2
phase is formed due to a preloaded tensile strain which in turn originates
from the electrostatic interaction between the nanobeam and the plastic
substrate and can be detected by Raman spectroscopy. By loading tensile
and compressive strains, the phase transition between M1 and M2
phases can be tuned, as shown in the inset of Fig. 14b, resulting in a
change in the resistance of the device, as illustrated in both Fig. 14a and
b. The VO, nanobeam based device showed a high gauge factor and a
fast response (not shown here) in low strain ranges suggesting its po-
tential application as a flexible strain sensor [622]. In order to expand
the application of VO, based nanodevices, the same group fabricated a
single domain switch, as shown in the insets of Fig. 14c [623]. The
metal-insulator transition in this single domain device can be tuned by
coupling self-heating with external strain, exhibiting great controlla-
bility and quick switching [623]. Fig. 14c shows I-V curves of the device
under different axial compressive strains. It can be observed that the
current and threshold voltage gradually decrease with increasing
compressive strain.

In addition to VO, strain effects on the metal-insulator transition
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Fig. 14. Effect of elastic strain on the performance of metal-insulator transition-based devices. (a) I-V curves under different tensile and compressive strains in a VO,
nanobeam-based flexible strain sensor. Insets show an as-fabricated flexible strain sensor (middle left) and schematic illustrations of the device under strain (top left
and bottom right). (b) Resistance of the sensor dependent on external strain. Inset shows the transition between M1 and M2 phases in the presence of tensile and
compressive strain. Insets show schematics of the domain pattern under compression, in the original state and under tension. (c) I-V curves of a packaged VO,
nanobeam (insets) under different axial compressive strains. It can be seen that the current and threshold voltage decrease with increasing compressive strain.

Reprinted by permission of Wiley-VCH.
(a) and (b) are adapted from Ref. [622], (c) is adapted from Ref. [623].

behavior have also been observed in other oxides. In perovskite
manganite oxides, e.g., La;_x.yPryCayMnO3, Ahn et al. reported that
strain induced the coexistence of distinct metallic and insulating elec-
tronic phases [624]. In V0g thin films, epitaxial strains can stabilize a
metallic phase when the films are grown on Al;O3 (0001) substrates
[625], increase the Tyyr when the films are grown on LiTaO3 (0001)
substrates [626], and induce local insulating regions within a metallic
phase when the films are doped with Cr [627]. In hexagonal-phase bi-
layers of ScO,, using DFT calculations under the generalized-gradient
approximation with on-site Coulomb interactions, Loh and Pandey
theoretically reported a metal-semiconductor-metal transition under a
large tensile strain [628].

Strain can play an important role in determining a structural phase
transition, inducing a variation in the metal-insulator transition
behavior as reviewed in the case of VO,. New phases can also be induced
under high tensile strains, e.g., the metallic monoclinic X phase of VO3
as reported by Bai et al. [629]. However, epitaxial strains in VOg films or
mechanically loaded tensile strains in single crystal VO, nanobeams are
normally less than ~1 %. The abrupt change in the lattice constant of
VO5 (1 % along the tetragonal c-axis) during its metal-insulator transi-
tion, which can be triggered by external stimulations (e.g., tempera-
ture), may be used to generate strain in materials bonded with VO,
leading to observation of various new phenomena [282-284]. Further-
more, the strain-related properties in rare earth metal oxides such as
EuO which may also exhibit a metal-insulator transition may be
explored following strain engineering strategies similar to those used in
VO, [630].

6.6. Band gap engineering

Strain serves as a unique tool to modify the band structure and hence
numerous band-gap related properties of semiconductors. The following
sections illustrate strain-based band-gap engineering of various low-
dimensional binary oxides.

6.6.1. PL and CL of ZnO

The band structure of low-dimensional forms of ZnO has been found
to be sensitive to misfit strain as reflected in the PL and CL spectra.
Makino et al. presented have comparative studies of ZnO and GaN
epitaxial films grown on sapphire (0001) and demonstrated that ZnO-
based quantum well structures not only show a shift in their energy
levels due to the epitaxial strain but their optoelectronic properties are
also largely modified due to a piezoelectric field induced by the misfit
strain [631].

In individual ZnO nanowires, elastic strains can be generated by
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manipulating the nanowire into different shapes, e.g., L-shape and S-
shape, as reported by Han et al. [271]. Fig. 15a and ¢ show a ZnO
nanowire bent into an L-shape and an S-shape, respectively.
Low-temperature (81 K) CL of ZnO nanowires (both L- and S- shaped)
revealed a significant reduction in bandgap due to tensile strain, as
shown in Fig. 15b and d, respectively. The observed phenomenon, i.e., a
reduction in bandgap by the introduction of tensile strain, was explained
theoretically by both first-principles DFT and effective-mass envelope
function theory calculations. Similarly, using spatially resolved
low-temperature PL, Dietrich et al. studied the effect of uniaxial stress on
the PL properties of ZnO microwires [632]. The authors determined
maximum energy shifts of + 30 meV corresponding to tensile and
compressive strain of up to 1.5% along the c-axis.

In addition to elastic strain, strain gradients can also be introduced
by bending ZnO nanowires. Han et al. investigated the spatial distri-
bution of exciton spectra in bent ZnO microwires and found a significant
effect of strain gradient on the energy bandgap [633]. Fig. 15e and f
show the strain gradient in a bent ZnO microwire and CL spectra
collected along the bent ZnO microwire on the strain-neutral middle--
plane, respectively. The authors observed that the red shift of free
exciton energy was proportional to the strain gradient between the re-
gion with tensile strain and the neutral region. The total red-shift at r>0
(along the highest strain-gradient direction) was found to be

AE = Eae + hcpg 13)
[0

where a (<0) is the strain coefficient, ap = 5.29177 x 10"!! m is the Bohr
constant, f is the coefficient of the linear strain gradient effect, c
= 1.23982 eV-um is the product of the Planck’s constant with the speed
of light and g is the constant strain gradient across the neutral plane
(mid-plane) in the nanowire [633]. Later, Fu et al. reported direct
observation of the dynamics of exciton transport in a ZnO microwire
under a purely elastic bending strain [634]. The authors demonstrated
that the gradient due to inhomogeneous strain fields effectively drifts
excitons [272] and modifies electron-hole interactions as well as the fine
structures of bound exciton states [635,636]. Xu et al. reported that the
distribution of photon carriers may be affected by the piezoelectric field
in bent ZnO nanowires, leading to a net redshift of the free exciton PL
emission [637].

Along with bending and shaping, the size effect can simultaneously
contribute to the elastic strain effect on PL of low-dimensional materials.
Wei et al. reported that a ZnO nanowire with a diameter of 100 nm can
sustain a maximum elastic strain of 7.3 % using a uniaxial tensile
loading setup, as shown in the inset of Fig. 15g [152]. Combining the



J. Jiang et al.

(a)

55 S

20

_/i.\_ﬁ

— //

A% L
o N

——

:

T

Nano Energy 104 (2022) 107917

) 3.3 34 3.3 3.27 3.30 3.33
Photon energy/ eV Photo energy/ eV
(f) — , - (9) 3 :
r=0 i & (% pm™) |—0-%—5000-nm
= I\
% /R
& {0 000
- o= §
Q
g 2 3
Y g ' A g
v vV X S | : § A
Y & o T e st \\ o43| =
i 3372 000 —
T T T T __/
325 330 335 340 T T T

Photon energy/ eV

T T T T
3.15 3.20 3.25 3.30 3.35

Photon energy / eV

Fig. 15. Effect of elastic strain and strain gradient on the CL and PL of ZnO nanowires. (a—d) SEM images of an L-shaped (a) and an S-shaped (c¢) ZnO nanowire and
corresponding CL spectra along the bent nanowire in (b) and (d), respectively. The colored arrows in (a) represent the measurement positions in (b). The vertical axes
in (c) and (d) are consistent. A significant reduction in bandgap with strain is observed. (e,f) Strain gradient (inset of e) in a bent nanowire (e) and CL spectra
collected along the bent ZnO microwire on the strain-neutral middle-plane (f) showing the effect of the strain-gradient on CL. (g) Effect of tensile strain on PL in a ZnO
100 nm nanowire. Inset shows that the tensile loading induces a maximum elastic strain of 7.3% in the nanowire. Reprinted by permission of Wiley-VCH.

(a—d) are adapted from Ref. [271]. (g) are adapted from Ref. [152]. (e,f) are adapted from Ref. [633].

uniaxial tensile loading setup with a CL spectroscope, the authors
quantified the effect of size of the ZnO nanowire on its energy bandgap.
They observed that the critical strain, i.e., the strain at which there was a
change in the slope of the energy-strain curve, moved toward a higher
value with decreasing diameter of the nanowire. Fig. 15g shows the
variation in the near band edge emission peaks of a 100 nm nanowire
with increasing strain up to 7.3 %. This demonstrates that the size-effect
contributes to the effect of strain on the energy bandgap. The authors
modeled the total bandgap shift as

AE = A [e; —&.(D) |+ Az e, — €.(D)] (14
where A; and A, are the deformation potentials in low- and high-stress
stages, ¢1 and ¢, are tensile strains in low- and high-stress stages and
e:(D) is the size dependent critical strain.

Shifts in the band gap of ZnO due to elastic strain have also been
theoretically investigated for the bulk, the nanowire and the monolayer
forms [638-643]. Tse and Yu performed a series of computational
simulations when applying a compressive or tensile strain up to 5 % on
the crystal lattice, and provided a systematic explanation of the elec-
tronic and optical properties for bent ZnO nanowires [644]. Fu et al.
studied the dependence of band gap deformation potential on the strain
mode of ZnO micro/nanowires under both uniaxial tensile and bending
strains at room temperature [645]. The authors showed that the defor-
mation potential under uniaxial tensile strains varied between — 10.6 to
— 30.6 meV/% depending on the diameter of the nanowire. For
bending, the value was 27 meV/%.

6.6.2. Optical band gap of SnO2
Similar to ZnO, effect of strain on low-dimensional SnO, has been
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widely studied. Saniz et al. theoretically calculated the effect of uniaxial
strain on the band gap of SnO; using the GW approximation [646]. The
authors pointed out that the band gap of SnO; increases under uniaxial
compressive strain along the c-axis at a rate of 27 meV/GPa. Similarly,
using DFT within LDA, Mounkachi et al. recently studied the effect of
external pressure and internal strain on the band gap of bulk SnO2 and
SnO,, thin films [647].

In SnO; epitaxial thin films, biaxial epitaxial strain is normally used
to tune the band gap and optical properties. Zhou et al. experimentally
observed that the optical band gap in a SnO» epitaxial thin film grown on
an Al;O3 (0001) substrate significantly decreased with decreasing film
thickness, i.e., with increasing biaxial tensile strain in the bc plane
[648]. The same phenomenon, i.e., the variation of optical band gap of
SnO,, with epitaxial strain, was also reported by Rus et al. [649]. Their
experimental results showed that compressive out-of-plane strain of
SnO; films decreased with increasing film thickness, resulting in
shrinking of the band gap at a rate of 0.38 eV per 1% strain.

However, band structure engineering based on epitaxial strain is
severely limited by the availability of suitable substrates and the band
gap can only be modified in a discrete manner. Recently, helium ion
implantation into an epitaxial oxide film has been found to be an
effective method that can continuously induce a single axis lattice strain
along the out-of-plane lattice direction without changing the in-plane
lattice constants [216]. Herklotz et al. reported that the optical band
gap of the prototypical semiconducting oxide SnO, can be continuously
controlled by a single axis lattice strain induced by low-energy helium
implantation [182]. Fig. 16a and the inset show optical properties of
SnO;, thin films and the extrapolated optical band gaps with increasing
single axis lattice strain, respectively. As compared to the effect of
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Fig. 16. Effect of elastic strain induced by helium ion implantation on the optical properties of SnO, [182]. (a) Variation of the optical band gap with single axis
lattice strain (dependent on the helium dose). (b) Band gap as a function of the out-of-plane (oop) and in-plane (ip) strain calculated by DFT (solid lines), exper-
imental data on the opp uniaxial strain (black symbols) and the ip uniaxial strain (red symbols) published by Zhou et al. [648] for comparison. (c) Schematics of three
different strain scenarios: uniaxial oop strain, uniaxial and biaxial ip strain. Reprinted by permission of American Chemical Society.

traditional biaxial strain induced by epitaxy and reported in ref. [648]
(red symbols in Fig. 16b), extrapolated data from Fig. 16a (black sym-
bols) along with DFT calculations (solid lines in Fig. 16b) demonstrated
that uniaxial strain leads to a fundamentally different effect on both the
band structure and the crystal structure, as shown in Fig. 16b and c,
respectively.

6.6.3. Other oxides

Few experimental studies of the effect of elastic strain on the band
gap of binary oxides other than ZnO and SnO, have also been reported.
In HfO; thin films, changes in the optical band gap with increasing
epitaxial strain are not very significant, as reported by Bharathi et al.
[171]. By taking advantage of the two-way shape memory effect of a
TiNiNb substrate and in-situ mechanical bending, Du et al. experimen-
tally reported narrowing of the band gap of both rutile and anatase TiO2
films under the tensile strain [650].

Recently, Yang et al. investigated the band gap of alkaline-earth-
metal binary oxides (MgO, CaO, SrO and BaO) under epitaxial strain
using a DFT approach [548]. The authors revealed that the optical band
gaps of CaO, SrO and BaO decreased with increasing tensile as well as
compressive strain. Using DFT, Yin et al. have calculated that the band
gap of TiO; in the anatase phase can be effectively tuned by applying
stress along a soft direction (low Young’s modulus) [651]. Kelaidis et al.
obtained similar results for TiO5 using DFT with the introduction of the
Hubbard + U model [652]. In MoOs, contrary to TiO5 and RuO,, Dan-
dogbessi et al. reported that the calculated band gap increased as the
strain changed from compressive to tensile [653]. In an
octahedral-phase bilayer of ScO, Loh et al. theoretically reported that
the band gap increased and then decreased with increasing tensile strain
[628].

Low-dimensional materials with a high surface-to-volume ratio
exhibit a band structure different from their bulk counterparts due to
different strain states and deformation potentials on the surface. The
effect of strain on optical properties in atomically thin layers, e.g., MoS;
grown on flexible substrates [238], has been widely investigated, sug-
gesting the potential application of two-dimensional crystals in flexible
electronics and optoelectronics. Along similar lines, low-dimensional
binary oxides (thin film or nanostructure) that exhibit optical proper-
ties tunable by strain serve as attractive candidates for similar
applications.

6.7. Magnetic properties

The coupling of elastic strain to magnetism in multiferroic oxide
heterostructures has been widely investigated, especially in perovskite
oxides [10, 654-657]. Elastic strain tuning of magnetic properties in
binary oxides has been reported in only a few systems.
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EuO is one of the initially discovered ferromagnetic semiconductors
[658] that has recently received renewed focus [30,87,88]. The suc-
cessful integration of EuO with Si and GaN has created interest in
increasing the Curie temperature (T¢) of EuO to room temperature for
spintronic applications [659]. Cation and anion doping have been re-
ported to be an effective means to increase the T of stoichiometric EuO
from 69 K [660] up to 200 K [659,661,662]. A similar effect on T¢ can
be obtained by applying a biaxial strain in an epitaxial EuO film, as
theoretically calculated by Ingle and Elfimov [663]. The authors pointed
out that decreasing the lattice parameters was an effective method to
increase the T¢, as shown in Fig. 17a with experimental data from ref-
erences [664-666] (solid circles and triangles) for comparison. Addi-
tionally, compressive strain induced by substitution of Eu®" ions with
smaller ions such as Gd*" (introduced by co-evaporation during MBE)
can play an important role in enhancing the T of an epitaxial EuO thin
film, as reported by Altendorf et. al [662]. Melville et al. calculated the
effect of biaxial strain on the T¢ of EuO, specifically for biaxially strained
EuO/LuAlOg, revealing an enhancement of T¢ under a high compressive
strain, as shown in Fig. 17b [330]. The authors experimentally observed
a systematically lower T¢ in EuO/LuAlOs3 films with decreasing film
thickness, as shown in Fig. 17c. The lowered T can be attributed to the
+ 1.0% lattice mismatch and the resulting biaxial tensile strain in the
EuO/LuAlOj3 system as opposed to the complete lattice matching in the
EuO/YSZ system [667-669].

CoO, an antiferromagnetic material with a Neel temperature (Ty) of
293 K and a magnetic moment of 3.98 pg, is a promising candidate for
spintronic applications [670]. Due to the easily accessible ordering
temperature and the high-quality growth of a CoO film, CoO can serve as
a great model system to study the exchange coupling effect in a ferro-
magnetic/antiferromagnetic system. Csiszar et al. studied magnetic
properties of CoO thin films epitaxially grown on MnO(100) and Ag
(100) [671]. The authors found that the magnitude and orientation of
magnetic moments strongly depend on the epitaxial strain in CoO films.
Lamirand et al. found that in a strained ultrathin CoO/PtFe double layer
with a perpendicular magnetic anisotropy, a robust perpendicular shift
of the exchange bias was present up to the antiferromagnetic ordering
temperature, i.e., the room temperature, which may be attributed to the
coupling of the distorted CoO hexagonal layer with the perpendicular
magnetic anisotropy of the PtFe layer [672]. Later, the same group re-
ported that the strain related monoclinic distortion of ultrathin CoO
films in the exchange-coupled CoO/FePt/Pt(001) system led to a stable
Co?* spin configuration within the plane of the film, indicating the
effective role of strain in stabilizing the magnetic properties of the sys-
tem [673].

In a single-crystalline Fe/CoO/MgO(001) system, Zhu et al. reported
that strain in the CoO layer can be transferred by magnetostriction
through a field cooling process, inducing volume anisotropy of the Fe
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Fig. 17. Effect of elastic strain on the magnetic properties of EuO. (a) Effect of isotropic and biaxial strain in EuO on the calculated mean field T¢ [663] and
experimental T¢ [664] (solid circles) and Tj (tracks Tc) [665,666] (solid triangles). At insulator-to-metal transition, both solid lines change to dashed lines. (b)
Calculated biaxial strain effect on the Tc of EuO in the specific case of biaxially strained EuO/LuAlO3 [330]. (c¢) Film thickness dependence of T¢ in EuO/YSZ (red
circles) and EuO/LuAlO; (blue triangles). Theoretical calculation presented by Schiller et al. [667] is shown as a green dashed line and the mean-field approximations
[668,669] are shown as a purple solid line and a black dashed line. The vertical dashed lines indicate experimental values of the axial ratio without strain. Reprinted

by permission of American Chemical Society and American Physical Society.
(a) is adapted from Ref. [663]. (b,c) are adapted from Ref. [330].

layer and controlling the exchange coupling effect [674]. The same
group further investigated the relationship among strain, antiferro-
magnetic spin orientation and anisotropy in a single-crystalline
Fe/CoO/MnO/MgO(001) system [675]. By varying the MnO layer
thickness, the authors found that the transition of in-plane strain in the
CoO film from compression to expansion induced an antiferromagnetic
CoO spin reorientation transition, modifying the exchange coupling in
the ferromagnetic/antiferromagnetic bilayer. Fontaina-Troitino et al.
reported that in CoO octahedron-shaped nanoparticles, a weak
room-temperature ferromagnetism was observed, which was attributed
to a thin surface layer of Co304 and the strain at the CoO/Co304 inter-
face [676].

Similar phenomena of antiferromagnetic spin orientation modulated
by strain were observed in NiO films grown on Ag(001) and MgO(001)
[677,678]. Different antiferromagnetic spin alignments could be
attributed to epitaxial strain in the NiO films grown on different sub-
strates, e.g., the compressive and tensile strains introduced by Ag(001)
and MgO(001) substrates, respectively. Huang et al. investigated the
phase transition in beta-MnO, under negative pressure and external
strain by using DFT calculations and demonstrated the formation of a
ferromagnetic phase due to external strain. [679]. In epitaxial MnyO3
thin films grown on a MgO(001) substrate, Dang Duc et al. reported that
a compressive epitaxial strain changed the antiferromagnetic ordering
seen in the bulk material with a Curie temperature T¢ of less than 90 K to
ferromagnetic ordering with a T¢ of 175 K [680].

In corundum-type antiferromagnets CroO3 and FeyOs, Kota et al.
theoretically studied the effect of strain on the Ty [681]. The authors
calculated exchange coupling constants up to the fifth-nearest neighbors
by using first-principles DFT and the Ty by using a Monte Carlo simu-
lation. The simulated Ty increased (decreased) with tensile (compres-
sive) strain along the c-axis for both CryO3 and Fe;Os. The strong effect
of strain on the first- and second-nearest neighbor exchange coupling
constants of CrpO3 implies that strain engineering can be an effective
tool for improving the thermal stability of CroO3 based magnetoelectric
devices [682]. Recently, by using X-ray photoemission spectroscopy,
Pinho et al. quantified the impact of epitaxial strain on crystal field
splitting of a-Cr03 thin films [683]. Vila et al. fabricated epitaxial Cro03
thin films on «-Al;0O3 and SrTiOs substrates and reported a
strain-induced soft ferromagnetic response with both films exhibiting a
similar coercive field [684].

Punugupati et al. experimentally studied the magnetic properties of
antiferromagnetic and magnetoelectric CryO3 thin films deposited on
cubic-YSZ/Si(001) using PLD [685]. The authors found that although
bulk Cr,03 is antiferromagnetic with a Ty of 307 K, the deposited thin
films exhibited ferromagnetism like hysteresis loops with high
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saturations up to 400 K. The authors attributed the ferromagnetism in
Cr,03 thin films to oxygen related defects induced by strain [685]. Ef-
fects of strain on spin reorientation transition, i.e., the so-called Morin
transition, were comprehensively studied by Park et al. in
a-Fe;03(0001) films grown on Aly03(0001) substrates with a CroO3
buffer layer [686]. Compressive strain in the a-Fe;03(0001) films was
modulated by thickness of the CroO3 buffer layer on the Al,03(0001)
substrates, hence controlling the Morin transition temperature and the
TN

Intriguing physical phenomena, e.g., a giant magnetoelectric effect,
can be induced by an interplay between spin and lattice, thus attracting
physicists to study the spin-lattice coupling in materials, especially in
multiferroic compounds. Among binary oxides, EuO is a promising
material for spintronic devices due to its thermodynamic stability in
contact with silicon [61], pronounced metal-insulator transition
induced by ferromagnetism [687], and high spin polarization [88]. The
T of EuO can be increased by reducing the distance between the mag-
netic 4f electrons. Therefore, a large compressive strain in
low-dimensional EuO may need to be achieved for further enhancing the
Te.

6.8. Chemical reactivity

Lattice strain has been known to affect chemical reactions
[688-690]. In theory, an applied strain can change the energy landscape
of a reaction, e.g., turn an endothermic reaction into an exothermic one
and reduce energy barriers (i.e., mechano-chemical coupling) [691]. An
example that demonstrates this coupling in a chain of polymeric mole-
cules is the application of spatially precise forces on bonds between
single molecules by using an AFM tip, hence affecting the chemical re-
actions of the polymer [692,693]. Another example, which originates
from the experimental work of Gsell et al. [694] and theoretical work of
Mavrikakis et al. [248], is associated with the investigation of the
relationship between chemisorption on a metal surface and lattice
strain. Gsell et al. reported that lattice strain modified the chemisorption
properties of a Ru(0001) metal surface considerably [694]. Mavrikakis
et al. used DFT to assess how elastic strain changed the reactivity of a
thin metal surface by altering adsorption energies, activation energy
barriers and electronic structures [248].

The coupling of lattice strain to ion conduction and surface reaction
kinetics of low-dimensional oxides has attracted interest recently in the
context of oxygen transport and electrode reactions in solid oxide fuel
cells (SOFC) and electrolysis cells [219, 695-697]. As compared to
metals, surface reactivity of strained metal oxides is more complex due
to the increased chemical, electronic, and structural complexity. For
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instance, applying a elastic strain on the non-stoichiometric oxygen
structure can result in elemental segregation and phase separation [698,
699]. However, the possibility of modifying reactivity and ion transport
properties of oxides with elastic strain is worth studying further. The
perovskite family of oxides, such as La; _4SryMnO3 [700], LaCoOs3 [701,
702] and Laj _SryCoO3 [250,703], has been widely studied in terms of
surface reactions and electrocatalytic activity under strain for use as
SOFC cathode materials [704].

With respect to low-dimensional binary oxide materials, titanium
dioxide (TiO2) has attracted much attention due to its promising
application in photocatalysis [705,706]. However, the area of the most
reactive (001) surface is only a few percent of the total surface area of
anatase TiOs in equilibrium, which greatly limits the surface reactivity
[707]. Theoretical calculations suggested that external strain may be
used to change the band gap [651,708,709] as well as the formation
energy of surface oxygen vacancies in TiOy [710,711]. Experimental
work on rutile TiO5 nanostructures reported by Cha et al. showed that
the strain field of dislocations can indeed modify the band gap and
enhance photocatalytic activity [712]. Thus, fraction of the reactive
surface may be increased by a suitable external strain.

Jia et al. studied the equilibrium shape of anatase TiO, under an
applied strain via DFT calculations based on the bulk and surface elastic
properties of TiOz [249]. Fig. 18a shows that the fraction of the (001)
surface can be dramatically increased by a biaxial compressive strain
along the a-axes. Different area ratios lead to different behaviors under
different strains as can be understood from Fig. 18b. According to the
rule of Wulff construction [713], an increase in 1/cosf (0 is the angle
formed by the (101) and (001) surfaces) and a decrease in y(oo01)/7101)
with increasing biaxial compressive strain, as shown in Fig. 18b, suggest
an increase in the proportion of the (001) surface. A systematic study of
anatase TiO2(001)-(1 x4) surface using first-principles calculations has
also been reported by Shi et al., showing that tensile stress plays a crucial
role in determining surface reactivity [714].

Ceria (CeO») is a technologically important catalyst, catalyst support,
and ion transport membrane material [715,716]. By performing atom-
istic calculations, Sayle et al. revealed that tensile strain in CeO5 nano-
rods can lead to extraction of oxygen from their surface and increase
their tendency to oxidize CO to CO». [717]. Based on a DFT study cor-
rected for on-site Coulomb interactions, Wu et al. reported that strain
can shift the Ce 4 f orbital energy in CeO»(111), hence improving its
capacity for the electrocatalytic water splitting [718]. Another CeOa--
based study was carried out by Zhang et al. where strain-engineered
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polaronic defects were studied by using first-principles calculations
[719]. Additionally, it has been found that kinetics of point-defect re-
actions in Gd-doped CeO5 (GDC) thin films can be affected by thermally
induced strain [720,721]. Recently, Gopal et al. studied the oxygen
redox chemistry in CeOo films under large biaxial compressive and
tensile strains and revealed a non-monotonic effect of biaxial strain on
the equilibrium oxygen storage capacity of CeOas [722]. This
non-monotonicity was attributed to a tetragonal distortion under the
large biaxial strain. The inset of Fig. 18c shows a schematic image of the
unit cell of CeO, in the absence of strain (green), under compression
(blue) and under tension (red). Fig. 18c illustrates the tetragonal
distortion of CeO, under biaxial strain and Fig. 18d shows the vacancy
formation energy (Ey,c) as a function of relative volume with respect to
the unstrained bulk for CeO; 97 and CeO1 50.

Effect of elastic strain on chemical reactions is also seen in piezo-
electric materials, e.g., ZnO, where elastic strain can be used to tune
reactions occurring at the piezoelectric component-solvent interface, a
phenomenon termed as piezocatalysis [723]. Theoretical analysis of
piezocatalysis has indicated that a high piezoelectric coupling coeffi-
cient and a low electrical conductivity as well as an optimized electrical
permittivity can enable high electrochemical activity [723].

Great progress has been made in the area of strain-controlled elec-
trocatalysis on metal surfaces, as recently reviewed by Luo et al. [724].
In oxides, especially in low-dimensional binary oxides, systematic
experimental and theoretical investigations are needed to determine the
mechanism behind the effects of elastic strain on the surface reactivity of
different crystallographic planes.

6.9. Ionic conductivity

Since elastic strain affects reaction and diffusion kinetics via a
number of parameters like adsorption energy, oxygen defect formation
enthalpy, migration energy barrier, charge transfer barrier and the
dissociation barrier, ionic conductivity in oxides can be tuned with
elastic strain engineering. [691]. The migration energy barrier for ox-
ygen diffusion is a critical factor affecting ion conductivity in oxide
electrolytes. Lattice strain can reduce oxygen migration energy barriers
in oxide electrolytes for SOFCs, e.g., GDC or Sm-doped ceria (SDC) with
an energy barrier of 0.9—1.16 eV and YSZ with an energy barrier of
1.0—1.2 eV [725], leading to fast diffusion [696,726]. From an
atomic-scale point of view, coupling of the strain field with dopant
segregation around crystal defects such as dislocations may lead to
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(a,b) are adapted From Ref. [249]. (c,d) are adapted from Ref. [722].
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formation of faster ionic conduction pathways resulting in an
enhancement of ionic conductivity [727]. In Table 5, we summarize
typical experimental results from the literature on strain introduced in
thin films and multilayers of CeO, and ZrO; and the corresponding
relative change in conductivity and activation energy. This table is
included as a complementary and updated version to the table reported
in the review articles Ref. [691] and Ref. [728], with the addition of
recent relevant reports and the lattice strain and activation energy
values presented within them.

6.9.1. CeOy

In 1993, Adler et al. studied the influence of yttria doping in YDC
thin films and reported that long-range forces resulting from the doping
can play an important role in ion transport in the films [729]. A study on
GDC thin films reported that tuning the grain size can increase the ionic
conductivity of the film [730]. The influence of grain size as well as
micro strain on ionic conductivity in GDC was further investigated by
Rupp et al. [731,732] and Karageorgakis et al. [734].

Using static lattice simulation techniques, De Souza et al. predicted
that a biaxial, tensile strain of 4 % can increase the in-plane conductivity
of fluorite-structured CeO, at T =500 K by close to four orders of
magnitude [735]. Later, using DFT calculations, the same group studied
the effect of different strain states (uniaxial, biaxial and isotropic) and
strain magnitudes (up to & 7 %) on the migration of oxygen vacancies in
fluorite-structured CeO, [736]. For a tensile strain (¢ > 0), the authors
predicted the activation enthalpy of migration for oxygen vacancies to
be lower for the [100] orientation, suggesting a higher ionic conduc-
tivity in strained thin films of [100]-oriented CeO,.

Experimentally, a change in conduction by as much as three orders of
magnitude for strained thin films based on CeO; was confirmed [691,
757,758]. In epitaxial Cep 9Gdp 1025 thin films deposited on MgO(001)
with SrTiOg buffer layers, compressive out-of-plane strains up to 1.9 %

Table 5
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and tensile in-plane strains were introduced by varying the thickness of
the SrTiO3 buffer layers, resulting in an enhancement of in-plane ionic
conductivity [175]. Fluri et al. attached a multi-beam optical stress
sensor (MOSS) into a PLD system to enable measurement of stress during
growth of oxide thin films, as shown in Fig. 19a. The authors achieved
different tensile strains in SDC thin films on different substrates, e.g.,
single-crystal MgO, NdGaOs (NGO) and LaAlOs (LAO). The inset of
Fig. 19b shows a typical cross-sectional TEM image of an SDC film grown
on an MgO substrate with SrTiOs3 and BaZrOs as buffer layers.
Temperature-dependent ion conductivity (Fig. 19b) was measured for
SDC films grown on different substrates and hence experiencing
different values of strain. The authors found that an increase in tensile
strain lowered the activation energy for charge transport via oxygen ion
conduction (Fig. 19¢) [740]. By using different dopants and keeping a
constant film thickness, Shen et al. reported the effect of different
interfacial strains on the oxygen ion conductivity of CeOy films depos-
ited on Al;O3 substrates and doped with Y503, Gd2Os, or LayO3. [739].
Recently, Ahn et al. reported the effect of in-plane tensile strain on the
ionic conductivity of Cep9Gdp.102.5 (100) thin films [741,759]. The
ionic conductivity, which was measured in the out-of-plane direction by
electrochemical impedance spectroscopy analysis to avoid any inter-
ference from defects perpendicular to the surface, showed an enhance-
ment by approximately two orders of magnitude.

Elastic strains can also be introduced in epitaxial CeO films by using
metal substrates to improve ionic conductivity. Examples include CeOy/
Cu(111) with reported in-plane compressive strains of 5% [760] and 3.2
% [761] and CeO4/Pt(111) with an in-plane compressive strain of 3.3 %
[762]. Similar to heterostructures that show increased (decreased) ionic
conductivity due a tensile (compressive) strain, multilayers have also
been shown to exhibit strain-dependent ionic conductivity, e.g., tensile
SDC/YSZ multilayers [733] and biaxially compressed YDC/Ce;_xZrxO
multilayers [738]. Schweiger et al. fabricated multilayer microdot

Summary of selected reports from the literature on relative increase in conductivity and activation energy, as a result of elastic strain in thin films and multilayers.

Symbol “-” denotes that data is not available in literature.

Year Material Structure Elastic strain (%) T (K) Increase in conductivity Activation energy (eV) Ref.
Ce0, based materials

1993 Yttria-doped CeO, (YDC) Thin film - ~400—1000 ~10 0.81—0.94 [729]
2002 GDC/Al;03 Thin film 0.015—1 ~800—1100 ~1—10 1.0—1.3 [730]
2006 GDC/Al;03 Thin film 0.2—1.2 ~773 ~1.5 0.77—1.04 [731,732]
2010 SDC/YSZ Multilayer ~6 673—1073 ~10 0.76—1.09 [733]
2011 GDC/Al;03 Thin film 0.1—0.4 ~673—1273 ~10—10? ~0.8—2.2 [734]
2012 GDC/STO/MgO Thin film 0.7—1.9 723—1123 3—10 0.93—0.94 [175]
2012 CeOy Bulk -6—5 500 ~10* 0—1.1 [735]
2013 CeO Bulk -7—7 - - 0—1.1 [736]
2013 Gd and Y co-doped CeO, bulk -2.5—2.5 973—1873 - 0.70—0.75 [7371]
2014 YDC/CZO Multilayer 1.5—2.2 723—923 10'—10'° 0.84—0.95 [738]
2014 Doped CeO,/MgO Thin film 1.2—1.7 673—873 10 0.74—1.53 [184]
2014 GDC/Er;03 Thin film 1.16 638—873 ~7 0.75—1.06 [174]
2014 YDC, GDC/Al,03 Thin film -2—4.6 776—872 2 0.85—1.0 [739]
2015 GDC Thin film 0.46—2.7 293—873 - 0.93—1.01 [61
2016 SDC/MgO(BZ0,STO) Thin film 0—0.35 573—1000 2 0.71—0.76 [740]
2018 GDC Thin film 0—0.83 373—498 10? 0.91—0.96 [741]
2019 Rare-earth doped CeO, Thin film -0.5—0 293—773 ~0.1 0.70—0.97 [742]
ZrO, based materials

2003 YTZ Thin film 0—270 MPa (stress) 423—523 4.7—7.9 (resistivity) [743]
2005 YSZ on MgO Thin film - 673—1073 ~10—102 0.62—1.09 [744]
2007 CSZ/Al,03 Multilayer - 623—973 ~60 0.91—1.6 [745]
2008 YSZ/Y503 Multilayer 0.5—3.8 623—973 1.4—20 ~0.99—1.13 [746]
2008 YSZ/STO Multilayer 7 357—531 108 ~0.45—1.1 [169]
2009 YSZ/STO Multilayer 7 357—531 - ~0.64 [7471
2009 YSZ/Y,03(Luz0s3, Scz03) Multilayer -4.28—3.09 833 ~0.6—1.5 0.99—1.27 [748]
2010 YSZ bulk 0—8 400—1000 10*5—10%8 0.1—0.5 [749]
2010 YSZ/MgO Thin film 1 423—773 10%° 0.89—1.24 [750]
2012 YSZ/CeO Multilayer 0—5 673—973 1 1.07 [751]
2013 YSZ/GdZrO Multilayer 3 550—750 10% - [752]
2013 YSZ/Y,03 Multilayer 3.04 793 2 - [753]
2013 YSZ on Al,O3 Thin film 1—2 573—923 10%5—10'° 0.79—0.99 [754]
2017 YSZ/MgO(Al,03) Thin film 0.5—2.5 573—823 ~0.03—0.3 1.3—1.5 [755]
2018 YSZ/SNDC Nanowire - 400—600 2.5 0.86—0.90 [756]
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Fig. 19. Effect of elastic strain on the ionic conductivity of CeO,. (a) A PLD system equipped with MOSS and RHEED. A strained layer changes the curvature (1/p) of
the substrate and the direction of the reflected laser beams. The change of curvature is expressed as: 1/p = -(cosa/2 L)x (D-D)/Do, where « is the incident angle, L is
the optical path length and (D-Dy)/Dj is the change of relative distance between the laser beams. (b,c) Effect of the epitaxial tensile strain on ionic conductivity (b)
and activation energy for ion migration (c). Inset of (b) is a TEM image of the SDC film on MgO with buffer layers of SrTiO3 (STO) and BaZrO3 (BZO). Epitaxial strain
is induced by using different substrates [740]. Reprinted by permission of American Physical Society.

(a—c) are adapted from [740].

devices based on the multilayer heterostructure Gdgp ;Cep.9O2.5/Er,O3
and demonstrated that a compressive strain of up to 1.16 % altered the
activation energy of the devices by 0.31 eV, hence tuning their resistive
response and ionic transport [174]. Recently, Shi et al. reported a large
biaxial strain of ~5 % in ultrathin CeO, films grown on YSZ [153] and
studied their growth mode [763]. Such high epitaxial strain calls for a
systematic investigation into the effect of elastic strain on ionic transport
properties of CeO,. While epitaxy is one approach to introduce strain,
post annealing in acceptor doped ceria films can introduce strain as well,
thereby significantly modifying the oxygen ion conductivity [184].

Strain induced by twisting can also affect the association/migration
energies of oxygen ions in freestanding polycrystalline membranes of
doped CeOs in an in-situ manner. Shi et al. fabricated a freestanding
electrochemical membrane device based on a Cey 2Gdy gO1.9_x thin film
[6]. Using different Pt microelectrode designs, the authors studied the
electro-chemo-mechanical coupling in the films and observed that the
ionic transport could be tuned by varying compressive strain. For
different microelectrode designs and electrodes tested with freestanding
and substrate-supported Ceg 2Gdg gO1.9_« films, it can be found that with
increasing effective strain, the activation energy increases. The authors
also suggested that maximizing lattice tensile strain in the out-of-plane
direction of GDC film electrolytes could be a potential direction of
research to accelerate ionic diffusion in future micro electrochemical
conversion devices. Schweiger et al. fabricated a strain-modulated
memristive device based on the Gdg1Cep9O2_5/ErsO3 model system
[764]. The authors engineered the R,/Rop ratio and the persistence of
the system by modulating the interfacial strain.

6.9.2. ZrOy

In polycrystalline zirconia, it has been reported that an external
mechanical load can lead to variation in bulk and grain boundary ionic
transport [743]. Kosacki reported that the ionic conductivity of YSZ thin
films deposited on a MgO substrate was enhanced significantly at a
thickness less than 60 nm [744]. In multilayer systems such as
CSZ/Aly03 [745] and YSZ/Y,03 [746], with decreasing thickness of the
individual CSZ or YSZ layers, the oxygen ionic conductivity increased
and the corresponding activation energy decreased, which may be
attributed to strain at the interface.

In epitaxial YSZ/SrTiOs heterostructures, Garcia-Barriocanal et al.
reported a high lateral ionic conductivity enhanced by up to eight orders
of magnitude near room temperature [169]. A large interfacial strain
was introduced in the YSZ/SrTiOs heterostructures, providing both a
large number of carriers and a high-mobility plane. With decreasing YSZ
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thickness, the conductivity remarkably increased. However, the
observed enhancement of conductivity and the exact nature of
conductance (ionic or electronic) induced in the vicinity of the YSZ/STO
interface were debatable [747]. Nevertheless, this result attracted great
interest in studying the effect of lattice strain on ion conduction, espe-
cially in YSZ/STO heterostructures [765].

In YSZ thin films grown on a MgO substrate, Sillassen et al. reported
that the low temperature ionic conductivity was enhanced by more than
three orders of magnitude as compared to bulk YSZ, due to a combi-
nation of elastic strain and misfit dislocation density at the interface
[750]. In multilayered YSZ/GdyZr207 (GZO) films, a tensile strain of 3 %
resulting from lattice mismatch enhanced the oxygen ion conductivity
by two orders of magnitude as compared to that in the bulk YSZ [752].
An increased ionic conductivity and a reduced activation energy were
observed in strained YSZ thin films on (0001) Al,O3 substrates as well
[754]. Aydin et al. determined the oxygen ion diffusion coefficient for
transport in strained YSZ/Y203 multilayers and attributed an increase in
the coefficient with decreasing YSZ thickness to lattice mismatch strain
[753]. Zhang et al. fabricated composite Sm-Nd codoped CeO, film
electrolytes with YSZ nanowires to introduce a tensile strain, showing
great long term chemical stability with excellent conductivity at inter-
mediate temperatures [756].

Theoretical studies have explained some of the effects of strain on
ionic transport in ZrO. Schichtel et al. introduced a qualitative model
for estimating the influence of local lattice strain on the interfacial ionic
conductivity of ionic conductors [748]. By using DFT and the nudged
elastic band method, Kushima and Yildiz investigated the effect of lattice
strain on oxygen vacancy migration paths and barriers in YSZ, revealing
the underlying microscopic mechanism and the extent of increase in
oxygen ion conductivity of YSZ under biaxial lattice strain [749]. Strain
can lead to a more open migration pathway and a decrease in the O-C
bond strength thereby reducing the migration barrier and increasing
oxygen diffusivity. The authors found that the optimum biaxial lattice
strain to attain maximum benefit in terms of an enhanced oxygen
diffusivity in the material system was around 4 % in YSZ and the
diffusivity was higher at lower temperatures.

However, the large increase in conductivity can also be attributed to
conduction pathways along dislocation lines. Since a large dislocation
density was consistently found at interfaces with increased oxygen-ion
conductivity [748,750], the dominant reason for enhanced oxygen-ion
conductivity is still controversial. Using DFT calculations, Pennycook
et al. investigated the order of magnitude of ionic conductivity that was
possible in YSZ/STO multilayers [766]. The authors found that the
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colossal ionic conductivity could be explained in terms of a combination
of lattice mismatch strain and O-sublattice incompatibility, as shown in
Fig. 20a-b. By applying 7 % strain to YSZ, it can be found that significant
O-sublattice disorder occurs as low as 1000 K, as shown in Fig. 20b. The
extreme O-sublattice disorder at the YSZ/STO interface at room tem-
perature is comparable to the disorder found in strained bulk
vacancy-doped ZrO, at 2000 K. This disorder originates from the 7 %
lattice strain as well as the incompatibility of oxygen sublattices. Thus,
the low temperature conductivity of strained multilayers can be esti-
mated to be 10° times higher than that of unstrained bulk ZrO,.

As stated earlier, the mechanism behind enhancement of ionic con-
ductivity, i.e., whether the interfacial strain or the dislocation density
plays a dominant role, has not been fully understood yet. Meanwhile,
Pergolesi reported experimental evidence that lattice strain, grain
boundary conduction pathways or misfit dislocation conducting planes
cannot affect oxygen ion transport in multilayered YSZ/CeO5 [751]. Sun
et al. theoretically studied the effect of dislocations on diffusion kinetics
in strained CeO5 using atomistic simulations and revealed that an edge
dislocation slowed down oxide ion transport [767]. To unambiguously
identify the effect of interfacial strain on ionic conductivity, high-quality
uniform interfaces may be essential.

In addition to the epitaxial strain in heterostructures, new ap-
proaches for manipulating strain states in thin films are expected, e.g.,
mechanical twisting in oxygen ion conducting membranes reported by
Shi et al. [6]. The range of elastic strain values achieved in CeO,, ZrO,
and other binary oxides may be expanded, which can probably lead to
new understanding on the phenomenon of ion transport.

6.10. Others - thermoelectric effect, pyroelectric effect, flexoelectric effect

6.10.1. Thermoelectric effect

Elastic strain plays an important role in many functionalities of low-
dimensional binary oxides, beyond those mentioned in Sections 6.1
through 6.9. For example, elastic strain also affects the thermoelectric
properties of materials. The thermoelectric effect is the direct conversion
of a temperature gradient to an electric voltage and vice versa [768].
Thus, a thermoelectric device is able to convert heat directly into elec-
tricity. The conversion performance of thermoelectric devices is defined
by their figure-of-merit (ZT).
ZT=S"0/x, @s)

where S, ¢ and « are the Seebeck coefficient, the electrical conductivity
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and the thermal conductivity, respectively. Low-dimensional materials
have shown great potential for thermal management and thermoelectric
energy generation [769-772]. Elastic strain engineering can tune elec-
tronic and thermal properties in low-dimensional materials, further
enhancing their ZT, as reviewed by Zhang et al. for 2D materials [773].
Most oxides are poor thermoelectric materials because of their high
lattice thermal conductivity due to tightly bounded light oxygen ions
and relatively low electrical conductivity. However, there are excep-
tions. Low-dimensional oxides with promising thermoelectric properties
include the family of misfit layered cobaltates [774,775], StTiO3 [769,
7761, CaMnOj3 [777] and LagNiOg4.5 [778]. Simple binary oxides, such
as TiOy [779] and ZnO [780], are potential thermoelectric materials for
high-temperature power generation [781,782]. However, so far there
has been only limited research based on the effect of elastic strain on
thermoelectric properties of binary oxides. This research field is still
unexplored, calling for further studies to unravel new opportunities.

6.10.2. Pyroelectric effect and pyro-phototronic effect

Pyroelectric effect describes the time-domain temperature fluctua-
tion response of the polarization in polar materials. In the recent years,
pyroelectric effect has attracted researchers’ attention due to its po-
tential for waste energy conversion [783,784]. Pyro-phototronic effect is
a coupling effect of pyroelectric effect and photoelectric effect, which is
first proposed by Wang et al. [785,786]. Wang et al. utilized this
pyro-phototronic effect to achieve high-performance photo sensing in
ZnO/perovskite-heterostructured photodetector [786] and ZnO/Ag
Schottky junction-based photodetector [785]. Explicit external strain
effect on the pyroelectric effect or pyro-phototronic effect in
low-dimensional materials has yet to be investigated. However, the
theory of pyroelectricity suggests that [787] one may expect a strong
strain dependence of pyroelectric effect and pyro-phototronic effect in
low-dimensional materials.

6.10.3. Flexoelectric effect and flexoelectronics

Flexoelectric effect describes the generation of a spontaneous po-
larization by a strain gradient. In semiconductors, the flexoelectric po-
larization can modulate the metal-semiconductor interface for tuning
the transport properties. This mechanism is termed as flexoelectronics
[788]. Wang et al. reported a giant flexoelectronic effect in centro-
symmetric semiconductors such as Si, TiO, and Nb-SrTiOg [788]. Using
the flexoelectronic effect, the authors achieved high sensitivity, high
resolution and fast response in centrosymmetric semiconductor-based
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Fig. 20. Origin of the effect of elastic strain on ionic conductivity of ZrO,. (a) Strained structures of ZrO, at three temperatures (1000 K, top left, 1500 K, top right,
2000 K bottom left), unstrained cubic ZrO, at 2000 K (bottom right) based on quantum mechanical simulation. (b) Mean-square-displacement (MSD) of oxygen
atoms as a function of time at various temperatures based on molecular dynamics simulations. The inset shows an Arrhenius plot of diffusivity (D) from the strained
MSDs. (a,b) is adapted from Ref. [766]. Reprinted by permission of American Physical Society.
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electronic devices. Similarly, Kumar et al. reported a strong enhance-
ment in the self-powered UV response of the TiOs-based Schottky
photodetector by taking advantage of the flexoelectronic effect [789].
Since large strain gradients up to 10® m™ can be sustained in
low-dimensional materials [284], the flexoelectric and flexoelectronic
effects may greatly modulate materials’ properties. These effects on
low-dimensional materials, especially binary oxides, have been rarely
reported so far and need more investigations.

7. Challenges and perspectives
7.1. Challenges and unsolved issues

Although many studies and significant progresses have been made
during the last few decades related to the elastic strain engineering of
low-dimensional binary oxides, there are experimental challenges and
unsolved issues that remain. These mainly include: (1) synthesis of low-
dimensional binary oxides (especially freestanding thin films)
approaching the dimensional limit; (2) controllable dynamic strain/
strain gradient manipulation in thin films; (3) fast and convenient strain
characterization at the nanoscale.

Over the past decades, the semiconductor industry has witnessed the
success of thin film epitaxy especially since thin film morphology is
preferred in device applications. However, in the case of conventional
epitaxial thin films, the maximum elastic strain that can be achieved is
limited to about 1 %, which is far from the elastic strain limit. Hence,
there is plenty of room to introduce and sustain larger elastic strains in
thin films and thereby enable new functional properties. Commonly,
epitaxial strains are static. By utilizing phase transitions [283] or fer-
roelastic strain [279] from substrates, epitaxial strain in thin films may
be dynamically controlled. However, this technique is limited to mate-
rial systems that exhibit a favorable phase-transition.

Another feasible but challenging solution is the synthesis of free-
standing thin films. Although quasi-one-dimensional nanowires of bi-
nary oxides have been widely synthesized, two-dimensional
freestanding thin films are difficult to obtain. Strictly speaking, con-
ventional epitaxial thin films might not be in the scope of two-
dimensional materials due to strong bonding at the interface between
the epitaxial thin film and the substrate. Due to the recent development
of epitaxy techniques, e.g., vdW epitaxy [312,790], epitaxy using a
water-soluble buffer layer [791,792] and remote epitaxy using a gra-
phene buffer layer [591, 793-795], epitaxial thin films with thicknesses
approaching even the monolayer limit can be separated from the un-
derlying substrates and freestanding or quasi-freestanding thin films can
be fabricated. Freestanding films enable the possibility of manipulating
strain by using irreversible or dynamic approaches allowing strains and
strain gradients much larger than those obtained in heteroepitaxy. A
recent work reporting a uniaxial tensile strain exceeding 8% in free-
standing nanoscale Lag7Cap 3sMnO3s membranes is an exciting example
[189]. Moreover, strain gradients and their effects on material proper-
ties have received less attention due to the complexity and uncontrol-
lability associated with strain gradients. However, large strain gradients
can be induced in low-dimensional materials, breaking their symmetry
and yielding flexoelectricity [788,796] or the flexo-photovoltaic effect
[284,797] even in centrosymmetric crystals. The phase stability of these
two-dimensional freestanding thin films is a serious issue that needs to
be explored both theoretically and experimentally.

A number of challenges also remain to be solved regarding the
characterization of strain. Although electron-diffraction-based tech-
niques can directly yield 2D strain mapping of a thin film with an
atomic-scale resolution, a TEM sample is not representative of the film
used in a functional device and the sample preparation is time
consuming. Photon-based techniques, such as Raman and PL measure-
ments, are fast and convenient but are limited to a micrometer resolu-
tion due to the wavelength of photons used in these techniques.
Coherent X-ray diffraction is currently one of the best techniques for 3D
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strain mapping of samples (or devices) at the nanoscale. However, ac-
cess to coherent X-ray beam sources is limited. A lab-scale source of
coherent X-ray beams is highly desired for fast and convenient charac-
terization of strain.

7.2. Perspectives

The motivation behind this review is to shed light on the advantages
of low-dimensional binary oxides and to highlight how their properties
can be controlled by elastic strain engineering. The reported values of
elastic strain in many low-dimensional materials, measured by different
experimental methods have been summarized along with many effective
strain engineering approaches, strain characterization techniques and
related theoretical calculations. Due to the unique advantages of low-
dimensional binary oxides over other materials systems, tuning of
their functionalities and applications based on elastic strain is intriguing
and has been comprehensively reviewed. These functionalities and ap-
plications include piezoelectricity, the piezoresistive effect, piezotronic
and piezo-phototronic effects, ferroelectricity, metal-insulator transi-
tion, band gap engineering, magnetic properties, chemical reactivity
and ionic conductivity.

Piezoelectricity has been widely studied in the ZnO system. Since
elastic strain can enhance piezoelectricity [183], effective approaches to
increase the maximum elastic strain sustained by ZnO nanostructures,
may further enhance piezoelectricity in ZnO. In addition to ZnO, the
low-dimensional CdO can be another good candidate for future nano-
scale piezoelectric applications due to its much higher in-plane piezo-
electric coefficient than that of ZnO [420] and reasonably low formation
energy relative to its bulk structure [425]. Low-dimensional transition
metal dioxides, e.g., TiO2 and ZrO2, may be promising candidates for
studying piezoelectric properties as well.

The piezoresistive effect has been most widely investigated in ZnO
and SnO,. Because elastic strain changes electronic band structure, the
piezoresistive effect could be universal in materials. In low-dimensional
binary oxides, the underlying mechanism of the piezoresistive effect still
requires systematic theoretical investigation. When the sample size ap-
proaches the regime of the quantum confinement effect, both band
structure and surface modification can affect the piezoresistive coeffi-
cient. The quantum confinement effect in materials with their charac-
teristic dimensions close or below their Bohr radii may play a dominant
role. Giant piezoresistance might be observed in nanostructures as a
result of both surface states and the quantum confinement effect.

The piezotronic and piezo-phototronic effects have been extensively
studied in ZnO-based nanodevices by experimental as well as theoretical
means. Increasing the maximum elastic strain that can be sustained in
ZnO may further enhance the piezotronic effect and thereby the device
performance. Besides, low-dimensional binary oxides other than ZnO, e.
g., CdO, MgO, TiOs, ZrO,, that have piezoelectric properties better than
or comparable to those of ZnO might also exhibit promising piezotronic
and piezo-phototronic effects. In piezoelectric semiconductors with di-
mensions of a few nanometers, the quantum confinement effect should
be considered in the existing models of piezotronics and piezo-
phototronics, which might bring new understanding to the current
experimental observations.

Research on ferroelectricity in strained low-dimensional binary ox-
ides is limited and mainly focuses on strained ZrO,, because most binary
oxides are expected to exhibit a centrosymmetric crystal structure and
therewith linear dielectric characteristics at room temperature. Theo-
retical calculations have predicted that ferroelectricity can be realized in
centrosymmetric binary oxides with certain epitaxial strains. Therefore,
ferroelectricity in strained MgO, CaO, SrO, BaO and related superlattices
or nanostructures is worth an experimental exploration. Recently, an
unexpected giant polarization has been reported in a freestanding
crystalline oxide perovskite approaching the monolayer limit [792].
Whether ferroelectricity can exist in a monolayer binary oxide and how
it would behave are still open questions that remain to be answered.
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The metal-insulator transition has been extensively studied in
strained VO, thin films and nanobeams/microbeams. Epitaxial strains
sustained in VO thin films and compressive and tensile strains sustained
in VO3 beams can be further increased by decreasing the thickness of
films or the size of beams to the atomic scale. The abrupt change in the
lattice constant of VO upon phase transition (1 % along the tetragonal
c-axis), which can be triggered by external stimulations such as tem-
perature, can be used to generate strain in a material grown or trans-
ferred on VOs. In addition, possible robust metal-insulator transition
behaviors might be observed in other low-dimensional binary oxides.

Studies on band gap engineering modulated by elastic strain have
focused on strained ZnO and SnO,. Optical properties can be universally
modified by elastic strain for all materials, especially for semi-
conductors, since a change in the lattice constant under elastic strain
leads to a modified band structure. The band structure of a low-
dimensional material with a high surface-to-volume ratio is different
from that of its bulk counterpart due to surface strain states and different
deformation potentials. Therefore, binary oxide thin films or atomic-
scale nanostructures that exhibit promising optical properties are suit-
able candidates for further investigation of strain related band gap
engineering.

Magnetic properties of binary oxides are widely studied in terms of
spin-lattice coupling in strained CoO and EuO. EuO is a promising ma-
terial for spintronic devices due to its thermodynamic stability in contact
with silicon and a metal-insulator transition induced by pronounced
ferromagnetism and high spin polarization. To enhance T¢ in low-
dimensional EuO, large compressive strains are required. In-situ
studies on magnetic properties of single-crystal oxide nanostructures
under an external strain may be highly desirable.

Studies on the chemical reactivity of strained binary oxides mainly
focus on the TiOy system. Syntheses of nanoscale strained samples
without dislocations, first principles-based computational predictions
and systematic investigations to precisely determine the effect of elastic
strain on the surface reactivity of different crystallographic planes,
especially those of binary oxides, are desirable.

Tonic conductivity is being currently studied with a focus on strained
CeO2 and ZrO,. Atomically thin films or nanostructures with large
strains are essential for the enhancement of the ionic conductivity. More
systematic studies on the mechanism of the effect of strain on oxygen ion
transport are required. New methods for manipulating strain states in
thin films may also need to be designed.

As reviewed in this article, one can find that ZnO and VO, have been
extensively studied, while SnO;, ZrO;, TiOp and CeO; have been
moderately explored, along with few studies on CoO and EuO. Future
research in this field may be on newly designed ZnO and VO, based
heterostructure devices and their commercial applications, systematic
studies of elastic strain engineering in SnOy, ZrO,, TiO, CeO3, CoO and
EuO, and initial attempts of theoretical and experimental exploration of
elastic strain engineering in MgO, CdO, BaO, CrO, BeO and GeOs.
Moreover, elastic strains experimentally achieved in low-dimensional
binary oxides may be further increased to explore new functional
properties.

It can be found that among all the mentioned methods of introducing
elastic strain in low-dimensional materials, creating heterostructures is
one of the most effective ways of introducing a large static elastic strain
in a nanostructure via interfacial bonding between two materials [7,
153, 168, 176-178, 202, 204, 205, 234, 283, 291, 305-310, 320, 322].
However, such a strain is irreversible while in many electrical (e.g.,
pressure-enabled logic devices [798]) and optical devices (e.g.,
piezo-phototronic luminescence devices [17,799]), a reversible elastic
strain is necessary to dynamically control and tune the properties of the
semiconductor. Therefore, from the point of view of prospective appli-
cations, obtaining control over elastic strain or the elastic strain pattern
in semiconductor devices in a dynamic and in-situ manner may be the
next upcoming research field [282-284]. One may name it as dynamic
strain engineering. Also, further efforts may be allocated on
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understanding the role of external elastic strain on the tuning of internal
strain and phonon dynamics [784].

It is our hope that this review can inspire more scientists to explore
the untapped but rich field of low-dimensional, strained binary oxides to
seek both new scientific understanding as well as technological
breakthroughs.
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