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Shapley value provides a unique way to fairly assess each player’s contribution in a coalition and has enjoyed

many applications. However, the exact computation of Shapley value is #P-hard due to the combinatoric

nature of Shapley value. Many existing applications of Shapley value are based on Monte-Carlo approximation,

which requires a large number of samples and the assessment of utility on many coalitions to reach high

quality approximation, and thus is still far from being efficient. Can we achieve an efficient approximation of

Shapley value by smartly obtaining samples? In this paper, we treat the sampling approach to Shapley value

approximation as a stratified sampling problem. Our main technical contributions are a novel stratification

design and two sample allocation methods based on Neyman allocation and empirical Bernstein bound,

respectively. Experimental results on several real data sets and synthetic data sets demonstrate the effectiveness

and efficiency of our novel stratification design and sampling approaches.
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1 INTRODUCTION
The well-celebrated Shapley value [40] is the unique metric for fair allocation of rewards to

contributors based on their contribution towards a collective utility that satisfies all four desirable

properties in fairness, including allocation efficiency, symmetry, zero element, and additivity.

Shapley value is general and flexible to support various utility functions. Therefore, it has been

extensively employed in many applications, such as machine learning model explanation [32],

data/feature selection [14, 19], and data pricing in data markets [1, 9, 10, 28, 31]. For example, for
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data valuation and pricing, each data record can be viewed as a player, and the utility function can

be defined as the accuracy score of a machine learning model trained on the collective data.

Intuitively, the Shapley value of a player 𝑧 is the expectation of the marginal utility contribution

that 𝑧 makes for a coalition of players, that is
U(S∪{𝒛})−U(S)

(𝑛−1|S| )
, where S is a coalition of players such

that 𝑧 ∉ S,U is a utility function, and 𝑛 is the total number of players (see Section 3 for the concrete

technical details). One major challenge of applying Shapley value is the prohibitive computational

cost associated with exact computation, which in general involves evaluating the utility of an

exponential number of coalitions and the corresponding marginal contributionsU(S∪{𝒛})−U(S)
and thus is #P-hard [11]. In many applications, such as data pricing, training and testing large-scale

machine learning models for utility assessment is very costly. Consequently, using the exact Shapley

value is impractical in many large-scale applications that involve many players.

Naturally many large-scale applications turn to approximate Shapley value. A series of sampling

techniques have been proposed to efficiently estimate Shapley value [6–8, 19, 34]. Most of the

existing methods mainly focus on sampling marginal contributions following the original definition

of Shapley value. The proposed methods can be generally categorized based on their sampling

mechanisms: simple random sampling and stratified random sampling. Simple random sampling

is designed as sampling random permutations and computing average marginal contributions as

the Shapley value [8, 19, 36]. Alternatively, stratified random sampling is designed as stratifying

marginal contributions based on coalition cardinality and computing the expectation of the strata

average marginal contributions as the Shapley value [6, 7, 34]. Still, those methods have to obtain a

large number of samples and evaluate the utility of many coalitions in order to reach high quality

approximation and thus is not efficient.

Since utility evaluation in many applications is costly, the major bottleneck of sampling based on

marginal contributions is that one sample of marginal contributionsU(S ∪ {𝒛}) − U(S) can only

be used to update the Shapley value estimate for one player 𝑧, although coalition S may contain

many other players.

Can we design a new sampling strategy that makes good use of the utility assessment of one coalition
as much as possible? In this paper, we develop a novel stratification design based on a new notion,

complementary contribution, defined asU(S) − U(N \ S), where N is the set of all players. We

show that the Shapley value is the expectation of weighted complementary contributions. One

unique advantage is that a complementary contribution can be used to update the estimate of

Shapley value for every player. Therefore, the number of samples and utility evaluation can be

dramatically reduced to achieve a good approximation.

To further improve the effectiveness of sampling, we develop two methods that explore Neyman

allocation [38] and the empirical Bernstein bound [3], respectively, to achieve better sample alloca-

tion, i.e., the number of samples to allocate for each stratum. Specifically, to minimize the estimated

variance of Shapley value for a better approximation, we categorize complementary contributions

and derive an optimum sample allocation scheme based on the variance of the strata following

Neyman’s approach [38]. Moreover, the variance of the strata is unobservable and therefore requires

to be estimated. A sample allocation method has to incorporate the uncertainty of the estimated

variance of strata inherently. Therefore, we design an online sample allocation method that selects

an appropriate sample from a finite pool of samples during the sequential sampling process in the

hope of gradually reducing estimation errors empirically. When a sample is drawn, the empirical

Bernstein-Serfling inequality [3] is employed to evaluate the error bounds of stratified estimators

as a guide for the next sampling. We then propose an algorithm to select the next appropriate

sample in polynomial time. Our proposed methods are model-agnostic – they can approximate

Shapley value in the general class of games with any utility functions. Our extensive experimental
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results on real and synthetic data sets show that the proposed algorithms outperform the baseline

algorithms significantly, and the techniques designed for enhancing sample allocation can further

improve the approximation performance.

Shapley value is important for many applications across different domains, so there is a rich

body of studies on approximating Shapley value. The main novelty of the paper is that we propose

a new notion of complementary contributions for the first time for reformulating and computing

Shapley value, which allows reuse of the computation and hence enables drastic improvement of

the sampling cost. Concretely, we summarize our contributions as follows.

• We propose a novel stratification design by sampling complementary contributions, which can

dramatically reduce samples compared to marginal contributions.

• We further develop two sample allocation methods to improve the performance of the comple-

mentary contribution-based stratified sampling algorithm.

• Experiments on the cooperative games and data valuation tasks are conducted, which verify the

efficiency and effectiveness of our proposed algorithms.

The rest of the paper is organized as follows. Section 2 reviews the related work on Shapley

value and approximation. Section 3 discusses the preliminaries. We develop the novel notion of

complementary contributions and the new stratification algorithm for Shapley value computation

based on complementary contributions in Section 4. In Section 5 we present the sampling alloca-

tion methods based on the Neyman approach and the empirical Bernstein bound. We report the

experimental results and findings in Section 6. Finally, we conclude the paper in Section 7.

2 RELATEDWORK
Shapley value [40] has an incredible impact on the cooperative game theory, which has been

applied in tackling many problems, such as terrorist network [29], profit allocation [41], query

answering [12], data/feature selection [14, 19], and data pricing [1, 9, 10, 28, 31, 43].

Computing the exact Shapley value was proved to be #P-hard [11]. To address the challenge,

several techniques [6–8, 34, 36] were developed to approximate Shapley value. Castro et al. [8]

presented a permutation sampling method that estimates Shapley value as the expectation of

marginal contributions. Mitchell et al. [36] improved the permutation sampling via Quasi Monte

Carlo techniques. Maleki et al. [34] provided a stratified sampling algorithm that relies on an

assumption about the range of utilities and gives the sample size of each stratum based on the

Hoeffding bound [21], which was improved by Castro et al. [7]. Burgess and Chapman [6] provided

a stratified sampling algorithm that takes an assumption about the sample variance and sequentially

chooses strata to sample based on an empirical bound.

Shapley value has recently been used to quantify the contributions of data points towards training

machine learning models [1, 16–20, 23, 24, 26, 28]. The performance of a model trained using a

subset of the training data and tested on another test set is often used as the utility function.

Ghorbani and Zou [19] proposed two algorithms to accelerate the estimation of Shapley value in

this context. The first method truncates the calculation of the near-zero marginal contributions,

since the change in performance by adding one more training data point becomes smaller and

smaller as data increases. The second method updates the model by performing gradient descent on

one data point at a time to approximate marginal contributions. Jia et al. [23] focused on one family

of models relying on k-nearest neighbors, which are lazy models, and developed an algorithm

based on Locality Sensitive Hashing with sublinear complexity. Ghorbani et al. [17] proposed

distributional Shapley value to measure the value of data points where the dataset is drawn in an

independent and identically distributed (i.i.d.) manner from the underlying distribution. On the

basis of this work, Kwon et al. [26] derived the analytic expressions for distributional Shapley for
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Table 1. Some frequently used notations.

Notation Definition

𝑛 the number of players

U(·) utility function

N a set of 𝑛 players N = {𝒛1, . . . , 𝒛𝑛}
𝒛𝑖 the 𝑖𝑡ℎ player

S a coalition

𝑚 the total number of samples

SV𝑖 Shapley value of 𝒛𝑖
SV𝑖 approximate Shapley value of 𝒛𝑖

SV𝑖, 𝑗
the expected complementary

contributions of (𝒛𝑖 , 𝑗)-coalitions
SV𝑖, 𝑗 the estimation of SV𝑖, 𝑗

linear regression, binary classification, and non-parametric density estimation. Ghorbani et al. [18]

used Shapley value for annotation in batch active learning. They used Shapley values computed

on labeled data points to train a regression model that predicts Shapley values for unlabeled data

points. Ghorbani and Zou [20] applied Shapley value to identify responsible neurons and developed

a multi-armed bandit algorithm to explore neurons with high Shapley value.

The above studies design algorithms based on sampling marginal contributions following the

original definition of Shapley value, whereas in this paper we focus on developing novel and much

more efficient algorithms based on sampling complementary contributions with great potential in

reducing computational costs.

3 PRELIMINARIES
In this section, we review the notion of Shapley value and the classical approximation method.

Table 1 summarizes some frequently used notations.

Consider a set of 𝑛 players N = {𝒛1, . . . , 𝒛𝑛}. A coalition is a subset of players S ⊆ N that

cooperate to complete a task. We assume a utility function U(S) (S ⊆ N) that evaluates the
utility of a coalition S for a task. The marginal contribution of 𝒛𝑖 with respect to a coalition S is

U(S ∪ {𝒛𝑖 }) − U(S).
Shapley [40] laid out the fundamental requirements of fair reward allocation, including balance,

symmetry, zero element, and additivity. Specifically, balance (also known as efficiency) requires
that the total payoff should be fully distributed to all players. Symmetry specifies that two players

should receive the same reward if they have the same marginal contributions. Additivity indicates

that the reward value on two tasks should be the sum of the values on individual tasks. Zero element
specifies that a player should not be rewarded anything if the player does not make any marginal

contribution.

Shapley value measures the expectation of marginal contribution by 𝒛𝑖 in all possible coalitions.

That is,

SV𝑖 =
1

𝑛

∑︁
S⊆N\{𝒛𝑖 }

U(S ∪ {𝒛𝑖 }) − U(S)(
𝑛−1
|S |

) (1)

Shapley value is the only existing measure that satisfies all the four fundamental requirements.

Computing the exact Shapley value has to enumerate all the subsets of players as all possible

coalitions and thus is prohibitively expensive. The Monte Carlo simulation method [8] is commonly
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Algorithm 1:Monte Carlo Shapley value computation.

input :players N = {𝒛1, . . . , 𝒛𝑛} and𝑚 > 0

output :approximate Shapley value SV𝑖 for each player 𝒛𝑖 (1 ≤ 𝑖 ≤ 𝑛)
1 SV𝑖 ← 0 (1 ≤ 𝑖 ≤ 𝑛);
2 for k=1 to𝑚 do
3 let 𝜋𝑘

be a random permutation of {1, . . . , 𝑛};
4 for i=1 to n do
5 SV(𝒛𝜋𝑘 (𝑖 ) ) = U({𝒛𝜋𝑘 (1) , . . . , 𝒛𝜋𝑘 (𝑖 ) }) − U({𝒛𝜋𝑘 (1) , . . . , 𝒛𝜋𝑘 (𝑖−1) });
6 SV𝜋𝑘 (𝑖 )+ = SV(𝒛𝜋𝑘 (𝑖 ) );

7 for i=1 to n do
8 SV𝑖 = SV𝑖/𝑚;

9 return SV1, . . . ,SV𝑛 .

used to compute the approximate Shapley value. The pseudo-code of the Monte Carlo method is

shown in Algorithm 1. It samples random permutations of players, scans each sample permutation,

and calculates the marginal contribution of every player in the order of the permutation (Lines 3-6).

By examining a sufficiently large set of sample permutations, the final estimation of Shapley value

is the average of all the calculated marginal contributions in the samples (Lines 7-8). This Monte

Carlo simulation gives an unbiased estimation of the Shapley value. In practice, we can conduct

Monte Carlo simulation iteratively until the average empirically converges. The larger the number

of sample permutations, the smaller error bound between the computed Shapley value and the

exact Shapley value. The estimation quality is established by the following result [33].

Theorem 3.1 (MonteCarlomarginal contribution approximationqality [33]). According
to Hoeffding’s inequality, given the range 𝑟 of the utility function, an error bound 𝜖 , and a confidence
level 1 − 𝛿 , if the sample size of marginal contributions, i.e., the number of permutations, satisfies
𝑚 ≥ 2𝑟 2 log 2/𝛿

𝜖2
, then 𝑃 ( |SV𝑖 − SV𝑖 | ≥ 𝜖) ≤ 𝛿 .

In Algorithm 1 and any Shapley value approximation algorithms based on sampling marginal

contributions, one sample of marginal contributions U(S ∪ {𝒛𝑖 }) − U(S) can only be used to

update the Shapley value estimate for one player 𝑧, although coalition S may contain many other

players. As the evaluation of utility function is often costly in many applications, such as building

machine learning models, the limitation that one marginal contribution can only be used by one

player becomes the efficiency bottleneck.

4 SHAPLEY VALUE COMPUTATION BASED ON COMPLEMENTARY CONTRIBUTIONS
To tackle the efficiency bottleneck in Shapley value approximation based on marginal contributions,

in this section we develop a novel approach based on complementary contribution. We first describe

the definition of complementary contribution and discuss the related properties in Section 4.1

and then present a Shapley value computation algorithm based on sampling complementary

contributions in Section 4.2.

4.1 Complementary Contributions versus Marginal Contributions
Shapley value is a weighted sum of marginal contributions, a kind of utility difference. Our ob-

servation is that the utility weights of each pair of complementary coalitions are opposite in the
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Shapley value formula, thus intuitively the Shapley value can be reformulated based on complemen-

tary coalitions by regrouping utilities. In this section, we introduce the notion of complementary

contribution and show that Shapley value can be computed using complementary contributions.

Then, we compare complementary contributions and marginal contributions in Shapley value

computation.

Definition 4.1. Given a set of players N = {𝒛1, . . . , 𝒛𝑛} and a coalition S ⊆ N , the complemen-
tary contribution of S is

𝐶𝐶N (S) = U(S) − U(N \ S).
When N is clear from context, we also write 𝐶𝐶N (S) as 𝐶𝐶 (S).

Shapley value can be computed using complementary contributions.

Theorem 4.2. Given a set of players N = {𝒛1, . . . , 𝒛𝑛}, the Shapley value of 𝒛𝑖 (1 ≤ 𝑖 ≤ 𝑛) is

SV𝑖 =
1

𝑛

∑︁
S⊆N\{𝒛𝑖 }

𝐶𝐶N (S ∪ {𝒛𝑖 })(
𝑛−1
|S |

) . (2)

Proof. We rewrite Equation 1 to

SV𝑖 =
1

𝑛

∑︁
S⊆N\{𝒛𝑖 }

U(S ∪ {𝒛𝑖 }) − U(S)(
𝑛−1
|S |

)
=

1

𝑛

∑︁
S⊆N\{𝒛𝑖 }

U(S ∪ {𝒛𝑖 })(
𝑛−1
|S |

) − 1

𝑛

∑︁
S⊆N\{𝒛𝑖 }

U(S)(
𝑛−1
|S |

) .
Let S′ = (N \ {𝒛𝑖 }) \ S, that is, S = (N \ {𝒛𝑖 }) \ S′. We have

SV𝑖 =
1

𝑛

∑︁
S⊆N\{𝒛𝑖 }

U(S ∪ {𝒛𝑖 })(
𝑛−1
|S |

) − 1

𝑛

∑︁
(N\{𝒛𝑖 })\S′⊆N\{𝒛𝑖 }

U((N \ {𝒛𝑖 }) \ S′)(
𝑛−1

|N\S′ |−1
)

=
1

𝑛

∑︁
S⊆N\{𝒛𝑖 }

U(S ∪ {𝒛𝑖 })(
𝑛−1
|S |

) − 1

𝑛

∑︁
S′⊆N\{𝒛𝑖 }

U((N \ {𝒛𝑖 }) \ S′)(
𝑛−1

|N\S′ |−1
) .

In the second term of the above, rename variable S′ to S. Moreover,

(
𝑛−1

|N\S′ |−1
)
=
(
𝑛−1
|S′ |

)
, since

|N \ S′ | − 1 + |S′ | = 𝑛 − 1. We have

SV𝑖 =
1

𝑛

∑︁
S⊆N\{𝒛𝑖 }

U(S ∪ {𝒛𝑖 })(
𝑛−1
|S |

) − 1

𝑛

∑︁
S⊆N\{𝒛𝑖 }

U(N \ (S ∪ {𝒛𝑖 }))(
𝑛−1
|S |

)
=

1

𝑛

∑︁
S⊆N\{𝒛𝑖 }

U(S ∪ {𝒛𝑖 }) − U(N \ (S ∪ {𝒛𝑖 }))(
𝑛−1
|S |

)
=

1

𝑛

∑︁
S⊆N\{𝒛𝑖 }

𝐶𝐶N (S ∪ {𝒛𝑖 })(
𝑛−1
|S |

) .

□

Shapley value can be computed using marginal contributions (Equation 1) or complementary

contributions (Equation 2). Are there any differences?

As analyzed at the end of Section 3, each marginal contributionU(S∪{𝒛𝑖 }) −U(S) can be used

only for player 𝑧𝑖 in Equation 1. However, each complementary contributionU(S) − U(N \ S)
can be used for all players 𝒛 𝑗 ∈ S in computing their Shapley values using Equation 2. Moreover,

complementary contributionU(N \S) −U(S) = −(U(S) −U(N \S)) can be used in computing

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 48. Publication date: May 2023.



Efficient Sampling Approaches to Shapley Value Approximation 48:7

the Shapley values for players 𝒛 𝑗 ∈ N \ S. In other words, a complementary contributionU(S) −
U(N \ S) can be used by every player in its Shapley value computation.

When there are many players or the evaluation of coalition utility is expensive, we have to

conduct a Monte Carlo approach to approximate Shapley value based on a sample of utility values.

The fact that a complementary contribution can be used in computing the Shapley value of every

player provides a promising way to estimate Shapley value more efficiently.

One may think that it may be possible to memorize and maximally reuse utility computations

when computing Shapley value based on marginal contributions. Below we analyze why this is not

feasible. When using complementary contributions, each sample of complementary contributions

and its corresponding coalition utilities are used 𝑛 times, which achieves the sample utilization

maximization. To maximize sample utilization when using marginal contributions, each sampled

coalition utility U(S) should be memorized and (re)used for all 𝒛𝑖 ∈ N to compute marginal

contributions, which are {U(S∪{𝒛𝑖 }) −U(S)|𝒛𝑖 ∉ S}∪{U(S)−U(S\{𝒛𝑖 }) |𝒛𝑖 ∈ S} (1 ≤ 𝑖 ≤ 𝑛).

Let A = {S1, . . . ,S𝜏 } denote 𝜏 sampled coalitions. Given S𝑗 ∈ A, to fully utilize S𝑗 for all 𝒛𝑖 ∈ N ,

when 𝒛𝑖 ∈ S𝑗 , S𝑗 is used to construct marginal contribution of U(S𝑗 ) − U(S𝑗 \ {𝒛𝑖 }) and thus

S𝑗 \ {𝒛𝑖 } needs to be sampled and belongs to A, which implies any subset of S𝑗 belongs to A;

when 𝒛𝑖 ∉ S𝑗 , S𝑗 is used to construct marginal contribution ofU(S𝑗 ∪ {𝒛𝑖 }) − U(S𝑗 ) and thus

S𝑗 ∪ {𝒛𝑖 } ∈ A, which implies any superset of S𝑗 belongs to A, and thus N ∈ A. Since any subset

of S𝑗 belongs to A for S𝑗 ∈ A, we can infer that any subset of N belongs to A. Therefore, a

sampling method based on marginal contributions can maximize the sample utilization if and only

if all coalition utilities are memorized. However, this is not feasible because the total number of

coalition utilities is 2
𝑛
, growing exponentially.

4.2 Computing Shapley Value Using Complementary Contributions
In this section, we develop an algorithm to compute the approximate Shapley value based on

sampling complementary contributions.

Definition 4.3. Given a set of players N = {𝒛1, . . . , 𝒛𝑛}, a coalition of 𝑗 players (1 ≤ 𝑗 ≤ 𝑛) is
called a 𝑗-coalition. Moreover, for a player 𝒛𝑖 (1 ≤ 𝑖 ≤ 𝑛), a 𝑗-coalition that contains 𝑧𝑖 is called

a (𝑧𝑖 , 𝑗)-coalition. Denote by𝔖𝑖, 𝑗 = {S ∪ {𝑧𝑖 }|S ⊆ N \ {𝒛𝑖 }, |S| = 𝑗 − 1} (1 ≤ 𝑗 ≤ 𝑛) the set of
(𝑧𝑖 , 𝑗)-coalitions, and by SV𝑖, 𝑗 the expected complementary contributions of (𝑧𝑖 , 𝑗)-coalitions.
That is,

SV𝑖, 𝑗 =
∑︁
S∈𝔖𝑖,𝑗

𝐶𝐶N (S)(
𝑛−1
𝑗−1

) =
∑︁
S∈𝔖𝑖,𝑗

U(S) − U(𝑁 \ S)(
𝑛−1
𝑗−1

) . (3)

Using Theorem 4.2 and Definition 4.3, we have the following immediately.

Corollary 4.4. Given a set of players N = {𝒛1, . . . , 𝒛𝑛}, the Shapley value of 𝒛𝑖 (1 ≤ 𝑖 ≤ 𝑛) is
SV𝑖 =

1

𝑛

∑𝑛
𝑗=1 SV𝑖, 𝑗 .

According to Corollary 4.4, approximating the Shapley value of 𝑧𝑖 ∈ N (1 ≤ 𝑖 ≤ 𝑛) can be

reformulated as a stratified sampling process of all complementary contributions containing 𝑧𝑖 .

The stratification design is to divide all complementary contributions into 𝑛 strata such that the

𝑗-th stratum contains all (𝑧𝑖 , 𝑗)-coalitions. Then, to approximate SV𝑖 (1 ≤ 𝑖 ≤ 𝑛), we can first

estimate SV𝑖, 𝑗 (1 ≤ 𝑗 ≤ 𝑛) by sampling with replacement. Let 𝐶𝐶
𝑖, 𝑗

N be a random variable with

uniform distribution on the set {𝐶𝐶N (S)|S ∈ 𝔖𝑖, 𝑗 }. The expectation of 𝐶𝐶
𝑖, 𝑗

N is SV𝑖, 𝑗 . Given a

random sample of 𝐶𝐶
𝑖, 𝑗

N of size𝑚𝑖, 𝑗 {𝐶𝐶N (S1), . . . ,𝐶𝐶N (S𝑚𝑖,𝑗
)}, where S1, . . . ,S𝑚𝑖,𝑗

∈ 𝔖𝑖, 𝑗
, the

mean over the sample is SV𝑖, 𝑗 =
1

𝑚𝑖,𝑗

∑𝑚𝑖,𝑗

𝑘=1
𝐶𝐶N (S𝑘 ), which is an estimation of SV𝑖, 𝑗 . Then, an

estimation of SV𝑖 is SV𝑖 =
1

𝑛

∑𝑛
𝑗=1 SV𝑖, 𝑗 .
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Algorithm 2: Shapley value computation based on complementary contributions.

input :players N = {𝒛1, . . . , 𝒛𝑛} and𝑚 > 0

output :approximate Shapley value SV𝑖 for each player 𝒛𝑖 (1 ≤ 𝑖 ≤ 𝑛)
1 SV𝑖 ← 0 (1 ≤ 𝑖 ≤ 𝑛); SV𝑖, 𝑗 ,𝑚𝑖, 𝑗 ← 0 (1 ≤ 𝑖, 𝑗 ≤ 𝑛);
2 for k=1 to𝑚 do
3 let 𝜋𝑘

be a random permutation of {1, . . . , 𝑛};
4 let 𝑖 be a random value drawn from {1, . . . , 𝑛};
5 S ← {𝒛𝜋𝑘 (1) , . . . , 𝒛𝜋𝑘 (𝑖 ) };
6 N \ S ← {𝒛𝜋𝑘 (𝑖+1) , . . . , 𝒛𝜋𝑘 (𝑛) };
7 𝑢 ←U(S) − U(N \ S);
8 for j= 1 to i do
9 SV𝜋𝑘 ( 𝑗 ),𝑖+ = 𝑢;

10 𝑚𝜋𝑘 ( 𝑗 ),𝑖+ = 1;

11 for j=i+1 to n do
12 SV𝜋𝑘 ( 𝑗 ),𝑛−𝑖− = 𝑢;

13 𝑚𝜋𝑘 ( 𝑗 ),𝑛−𝑖+ = 1;

14 for i=1 to n do
15 SV𝑖 =

1

𝑛

∑𝑛
𝑗=1 SV𝑖, 𝑗/𝑚𝑖, 𝑗 ;

16 return SV1, . . . ,SV𝑛 .

The detailed algorithm is shown in Algorithm 2. We first randomly generate a pair of comple-

mentary coalitions S and N \ S, calculate the complementary contribution 𝑢, assign the value

𝑢 to 𝑛 players in N , and update the corresponding counts of 𝑚𝑖, 𝑗 (Lines 3-13). By drawing 𝑚

samples of complementary contributions, the final estimation of the Shapley value is the average

of complementary contribution means (Lines 14-15).

Now we show that the estimated Shapley value SV𝑖 in Algorithm 2 is unbiased.

Theorem 4.5. Given a set of players N = {𝑧1, . . . , 𝑧𝑛}, Algorithm 2 gives an unbiased estimation
of Shapley value for every player, that is, 𝐸 [SV𝑖 ] = SV𝑖 (1 ≤ 𝑖 ≤ 𝑛).

Proof. Denote by 𝐶𝐶N (S1), . . . ,𝐶𝐶N (S𝑚𝑖,𝑗
) a sample of 𝐶𝐶

𝑖, 𝑗

N (1 ≤ 𝑖, 𝑗 ≤ 𝑛) drawn by Algo-

rithm 2. The expectation of the sample SV𝑖, 𝑗 =
1

𝑚𝑖,𝑗

∑𝑚𝑖,𝑗

𝑘=1
𝐶𝐶N (S𝑘 ). We have

𝐸 [SV𝑖, 𝑗 ] = 𝐸 [ 1

𝑚𝑖, 𝑗

𝑚𝑖,𝑗∑︁
𝑘=1

𝐶𝐶N (S𝑘 )] =
1

𝑚𝑖, 𝑗

𝑚𝑖,𝑗∑︁
𝑘=1

𝐸 [𝐶𝐶N (S𝑘 )]

According to Equation 3, 𝐸 [𝐶𝐶N (S𝑘 )] = SV𝑖, 𝑗 . Thus, 𝐸 [SV𝑖, 𝑗 ] = SV𝑖, 𝑗 .

Now, consider the estimate SV𝑖 produced by Algorithm 2. We have

𝐸 [SV𝑖 ] = 𝐸 [ 1
𝑛

𝑛∑︁
𝑗=1

SV𝑖, 𝑗 ] =
1

𝑛

𝑛∑︁
𝑗=1

𝐸 [SV𝑖, 𝑗 ] =
1

𝑛

𝑛∑︁
𝑗=1

SV𝑖, 𝑗 = SV𝑖 .

That is, SV𝑖 is an unbiased estimation of SV𝑖 . □
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5 SAMPLE ALLOCATION
In stratified sampling, it is important to allocate samples to strata properly. We allocate the sample

size in each stratum uniformly in Algorithm 2. In principle, we should allocate larger sample

sizes to the larger or more variable strata. In this section, to strengthen the efficiency in our

stratified sampling approach to Shapley value approximation using complementary contributions,

we incorporate the Neyman allocation in Section 5.1 to better allocate samples to each stratum

and the empirical Bernstein bound in Section 5.2, which can dynamically collect samples based on

previous sampling results.

5.1 Allocation Based on the Neyman Approach
In Section 4.2, complementary contributions𝐶𝐶 (S) are naturally stratified into𝑛 strata𝔖𝑖,1, . . . ,𝔖𝑖,𝑛

according to the coalition size. We need to estimate the expectation of complementary contribution

SV𝑖, 𝑗 in every stratum𝔖𝑖, 𝑗 (1 ≤ 𝑗 ≤ 𝑛). How should we allocate sample sizes to these estimators?

To address the problem, we develop an approach following Neyman allocation [38]. Neyman allo-

cation is the optimal allocation that allocates samples to strata and minimizes the sample variance

of the estimator.

We start from the relationship between the variance of SV𝑖 and the sample size of𝔖𝑖, 𝑗 (1 ≤
𝑗 ≤ 𝑛).

Lemma 5.1. Given a set of players N = {𝑧1, . . . , 𝑧𝑛}, for player 𝑧𝑖 (1 ≤ 𝑖 ≤ 𝑛), the variance of
SV𝑖 is 𝑉𝑎𝑟 [SV𝑖 ] = 1

𝑛2

∑𝑛
𝑗=1

𝜎2

𝑖,𝑗

𝑚𝑖,𝑗
, where 𝜎2

𝑖, 𝑗 is the variance of random variable 𝐶𝐶𝑖, 𝑗

N and𝑚𝑖, 𝑗 is the
sample size assigned to stratum𝔖𝑖, 𝑗 (1 ≤ 𝑗 ≤ 𝑛).

Proof. For a sample of𝑚𝑖, 𝑗 𝑗-coalitions {S1, . . . ,S𝑚𝑖,𝑗
} ⊆ 𝔖𝑖, 𝑗 (1 ≤ 𝑗 ≤ 𝑛), we obtain a sample of

𝑚𝑖, 𝑗 complementary contributions {𝐶𝐶N (S1), . . . ,𝐶𝐶N (S𝑚𝑖,𝑗
)}. From the sample we can estimate

random variable 𝐶𝐶
𝑖, 𝑗

N . The expectation of the sample SV𝑖, 𝑗 =
1

𝑚𝑖,𝑗

∑𝑚𝑖,𝑗

𝑘=1
𝐶𝐶

𝑖, 𝑗

N (S𝑘 ).
Thus, we have

𝑉𝑎𝑟 [SV𝑖, 𝑗 ] = 𝑉𝑎𝑟 [ 1

𝑚𝑖, 𝑗

𝑚𝑖,𝑗∑︁
𝑘=1

𝐶𝐶
𝑖, 𝑗

N (S𝑘 )] =
1

𝑚2

𝑖, 𝑗

𝑚𝑖,𝑗∑︁
𝑘=1

𝑉𝑎𝑟 [𝐶𝐶𝑖, 𝑗

N (S𝑘 )] =
𝜎2

𝑖, 𝑗

𝑚𝑖, 𝑗

.

Thus,

𝑉𝑎𝑟 [SV𝑖 ] = 𝑉𝑎𝑟 [ 1
𝑛

𝑛∑︁
𝑗=1

SV𝑖, 𝑗 ] =
1

𝑛2

𝑛∑︁
𝑗=1

𝑉𝑎𝑟 [SV𝑖, 𝑗 ] =
1

𝑛2

𝑛∑︁
𝑗=1

𝜎2

𝑖, 𝑗

𝑚𝑖, 𝑗

.

□

According to Lemma 5.1, the sum of variance of approximate Shapley value is given by∑𝑛
𝑖=1𝑉𝑎𝑟 [SV𝑖 ] = 1

𝑛2

∑𝑛
𝑖=1

∑𝑛
𝑗=1

𝜎2

𝑖,𝑗

𝑚𝑖,𝑗
, which is under the effect of the sample size𝑚𝑖, 𝑗 and variance

𝜎2

𝑖, 𝑗 (1 ≤ 𝑖, 𝑗 ≤ 𝑛). Since a sample of complementary contributions can be used in computing the

Shapley value of all players, it is difficult to find the sampling scheme given the required sample

size𝑚𝑖, 𝑗 to minimize

∑𝑛
𝑖=1𝑉𝑎𝑟 [SV𝑖 ]. In order to overcome the difficulty, we seek to approximately

solve the problem by relaxing the exact sample size𝑚𝑖, 𝑗 to the expected sample size 𝐸 [𝑚𝑖, 𝑗 ].
Denote by𝔖 𝑗 = {S|S ⊆ N , |S| = 𝑗} the set of 𝑗-coalitions (1 ≤ 𝑗 ≤ 𝑛). We draw samples from

𝔖 𝑗
independently. Let𝑚 𝑗 be the sample size in𝔖 𝑗 (⌈𝑛/2⌉ ≤ 𝑗 ≤ 𝑛). After drawing a coalition S

from𝔖 𝑗
, we can estimate the complementary contribution𝐶𝐶N (S), which can be used inSV𝑖, 𝑗 for

𝒛𝑖 in S and SV𝑖,𝑛− 𝑗 for 𝒛𝑖 inN \S. The probability that a sample belongs to𝐶𝐶
𝑖, 𝑗

N is the probability

that 𝒛𝑖 belongs to the sampled 𝑗-coalition, i.e.,
𝑗

𝑛
(1 ≤ 𝑖, 𝑗 ≤ 𝑛). Thus, it is easy to see that the
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expected sample size of 𝐶𝐶
𝑖, 𝑗

N is 𝐸 [𝑚𝑖, 𝑗 ] = 𝑗

𝑛
𝑚max{ 𝑗,𝑛− 𝑗 } (1 ≤ 𝑖, 𝑗 ≤ 𝑛) after drawing𝑚max{ 𝑗,𝑛− 𝑗 }

samples. Considering the sum of variance of approximate Shapley value when the sample size of

𝔖𝑖, 𝑗
is

𝑗

𝑛
𝑚max{ 𝑗,𝑛− 𝑗 } (1 ≤ 𝑖, 𝑗 ≤ 𝑛), we have:

𝑛∑︁
𝑖=1

𝑉𝑎𝑟 [SV𝑖 ] =
1

𝑛2

𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=1

𝜎2

𝑖, 𝑗 · 𝑛𝑗
𝑚max{ 𝑗,𝑛− 𝑗 }

=
1

𝑛

𝑛∑︁
𝑗=⌈𝑛/2⌉

∑𝑛
𝑖=1 (

𝜎2

𝑖,𝑗

𝑗
+ 𝜎2

𝑖,𝑛− 𝑗
𝑛− 𝑗 )

𝑚 𝑗

.

Given the total number of samples𝑚, the relaxed variance minimization problem is formulated

as follows.

min

𝑛∑︁
𝑗=⌈𝑛/2⌉

∑𝑛
𝑖=1 (

𝜎2

𝑖,𝑗

𝑗
+ 𝜎2

𝑖,𝑛− 𝑗
𝑛− 𝑗 )

𝑚 𝑗

,

s.t.

𝑛∑︁
𝑗=⌈𝑛/2⌉

𝑚 𝑗 =𝑚.

Using the method of Lagrange multipliers, we can get:

𝑚 𝑗 =

𝑚

√︂∑𝑛
𝑖=1 (

𝜎2

𝑖,𝑗

𝑗
+ 𝜎2

𝑖,𝑛− 𝑗
𝑛− 𝑗 )∑𝑛

𝑗=⌈𝑛/2⌉

√︂∑𝑛
𝑖=1 (

𝜎2

𝑖,𝑗

𝑗
+ 𝜎2

𝑖,𝑛− 𝑗
𝑛− 𝑗 )

. (4)

Since the sample allocation method shown in Equation 4 depends on the unobservable true

variance, we use the unbiased sample variance instead. We divide the Shapley value computation

process into two stages and correspondingly divide the samples into two parts. The pseudo-code is

given in Algorithm 3.

In the first stage (Lines 2-11), we sample at least 𝑚𝑖𝑛𝑖𝑡 samples for SV𝑖, 𝑗 . We then compute

unbiased estimations of 𝜎2

𝑖, 𝑗 using Bessel’s correction based on samples collected in the first stage

(Line 12). Let 𝐶𝐶N (S1 ∪ {𝒛𝑖 }), . . . ,𝐶𝐶N (S𝑚𝑖,𝑗
∪ {𝒛𝑖 }) be𝑚𝑖, 𝑗 samples for computing SV𝑖, 𝑗 , then

𝜎2

𝑖, 𝑗
= 1

𝑚𝑖,𝑗−1
∑𝑚𝑖,𝑗

𝑘=1
(𝐶𝐶N (S𝑘 ∪ {𝒛𝑖 }) − 1

𝑚𝑖,𝑗

∑𝑚𝑖,𝑗

𝑘=1
𝐶𝐶N (S𝑘 ∪ {𝒛𝑖 })). Let 𝑚𝑓 𝑖𝑟𝑠𝑡 be the number of

samples used in the first stage, the number of remaining samples is𝑚 −𝑚𝑓 𝑖𝑟𝑠𝑡 . We calculate𝑚 𝑗

according to Equation 4 using the unbiased sample variance 𝜎2

𝑖, 𝑗
(Lines 13-14). In the second stage

(Lines 15-22), we complete the remaining sampling according to𝑚 𝑗 . The final estimation of Shapley

value is the average of all complementary contribution means (Lines 23-24).

5.2 Allocation Based on the Empirical Bernstein Bound
The algorithm based on the Neyman approach aims to minimize the sample variance using a sample

allocation scheme, but the two-stage sampling is heavily controlled by the results of the first-stage

sampling, which limits the potential of dynamic updates. In this section, we adopt the empirical

Bernstein-Serfling inequality [3] to design a dynamic sample allocation method based on the sample

variance in order to compute the approximate Shapley value more effectively in practice.

The precision of SV𝑖 (1 ≤ 𝑖 ≤ 𝑛) crucially depends on the estimation quality of SV𝑖, 𝑗 (1 ≤ 𝑗 ≤
𝑛). We obtain a bound on the total absolute error of approximate Shapley value as follows.

Theorem 5.2. Given a set of players N = {𝒛1, . . . , 𝒛𝑛}, if for 1 ≤ 𝑖, 𝑗 ≤ 𝑛, |SV𝑖, 𝑗 − SV𝑖, 𝑗 | ≤ 𝜖𝑖, 𝑗

holds with probability at least 1 − 𝛿 (0 < 𝛿 ≤ 1, 𝜖𝑖, 𝑗 > 0), then ∑𝑛
𝑖=1 |SV𝑖 − SV𝑖 | ≤ 𝜖 holds with

probability at least (1 − 𝛿)2𝑛 , where 𝜖 = 1

𝑛

∑𝑛
𝑖=1

∑𝑛
𝑗=1 𝜖𝑖, 𝑗 .
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Algorithm 3: Shapley value computation based on the Neyman approach.

input :players N = {𝒛1, . . . , 𝒛𝑛},𝑚𝑖𝑛𝑖𝑡 > 1 , and𝑚 > 0

output :approximate Shapley value SV𝑖 for each player 𝒛𝑖 (1 ≤ 𝑖 ≤ 𝑛)
1 SV𝑖 ,SV𝑖, 𝑗 ,𝑚𝑖, 𝑗 ← 0 (1 ≤ 𝑖 ≤ 𝑛); 𝑐 ← −1;
2 while 𝑐 ≠

∑𝑛
𝑗=1𝑚1, 𝑗 do

3 𝑐 =
∑𝑛

𝑗=1𝑚1, 𝑗 ;

4 for i=1 to n, j = 1 to n do
5 if 𝑚𝑖, 𝑗 < 𝑚𝑖𝑛𝑖𝑡 then
6 let S be a sample drawn from𝔖 𝑗

;

7 𝑢 ←U(S) − U(N \ S);
8 for 𝒛𝑖 ∈ S do
9 SV𝑖, |S |+ = 𝑢;𝑚𝑖, |S |+ = 1;

10 for 𝒛𝑖 ∈ N \ S do
11 SV𝑖, |N\S|− = 𝑢;𝑚𝑖, |N\S|+ = 1;

12 compute 𝜎2

𝑖, 𝑗
(1 ≤ 𝑖, 𝑗 ≤ 𝑛);

13 𝑚𝑓 𝑖𝑟𝑠𝑡 ←
∑𝑛

𝑗=1𝑚1, 𝑗 ;

14 𝑚 𝑗 = ⌈
(𝑚−𝑚𝑓 𝑖𝑟𝑠𝑡 )

√︄∑𝑛
𝑖=1 (

𝜎2

𝑖,𝑗

𝑗
+

�
𝜎2

𝑖,𝑛− 𝑗
𝑛− 𝑗 )

∑𝑛
𝑗=⌈𝑛/2⌉

√︄∑𝑛
𝑖=1 (

𝜎2

𝑖,𝑗

𝑗
+

�
𝜎2

𝑖,𝑛− 𝑗
𝑛− 𝑗 )

⌉ (⌈𝑛/2⌉ ≤ 𝑗 ≤ 𝑛);

15 for 𝑗 = ⌈𝑛/2⌉ to 𝑛 do
16 for k = 1 to𝑚 𝑗 do
17 let S be a sample drawn from𝔖 𝑗

;

18 𝑢 ←U(S) − U(N \ S);
19 for 𝒛𝑖 ∈ S do
20 SV𝑖, |S |+ = 𝑢;𝑚𝑖, |S |+ = 1;

21 for 𝒛𝑖 ∈ N \ S do
22 SV𝑖, |N\S|− = 𝑢;𝑚𝑖, |N\S|+ = 1;

23 for i=1 to n do
24 SV𝑖 =

1

𝑛

∑𝑛
𝑗=1 SV𝑖, 𝑗/𝑚𝑖, 𝑗 ;

25 return SV1, . . . ,SV𝑛 .

Proof. Since 𝑃𝑟 ( |SV𝑖, 𝑗 − SV𝑖, 𝑗 | ≤ 𝜖𝑖, 𝑗 ) ≥ 1 − 𝛿 , we have

𝑃𝑟 (
𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=1

|SV𝑖, 𝑗 − SV𝑖, 𝑗 | ≤
𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=1

𝜖𝑖, 𝑗 )

≥𝑃𝑟 (∩𝑖, 𝑗=1,...,𝑛{|SV𝑖, 𝑗 − SV𝑖, 𝑗 | ≤ 𝜖𝑖, 𝑗 })

=

𝑛∏
𝑖=1

𝑛∏
𝑗=1

𝑃𝑟 ( |SV𝑖, 𝑗 − SV𝑖, 𝑗 | ≤ 𝜖𝑖, 𝑗 ) = (1 − 𝛿)2𝑛 .
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Since

∑𝑛
𝑖=1 |SV𝑖 −SV𝑖 | ≤ 1

𝑛

∑𝑛
𝑖=1

∑𝑛
𝑗=1 |SV𝑖, 𝑗 −SV𝑖, 𝑗 |, we have 𝑃𝑟 (

∑𝑛
𝑖=1 |SV𝑖 −SV𝑖 | ≤ 𝜖) ≥

(1 − 𝛿)2𝑛 . □

Theorem 5.2 guides us to allocate more samples to the estimator SV𝑖, 𝑗 that is relatively farther

from its expected value in order to reduce the error bound of Shapley value 𝜖 . It is worth considering

developing an approach that monitors the estimation quality of SV𝑖, 𝑗 in an online manner and

allocates samples adaptively. Thus, we use the empirical Bernstein-Serfling inequality to estimate 𝜖𝑖, 𝑗 .

The empirical Bernstein-Serfling inequality is suitable to this online scenario, since it is based on the

up-to-date and observable information via replacing the variance by the sample variance [2, 3, 35, 37].

The empirical Bernstein-Serfling inequality [3] on Shapley value is shown as follows.

Theorem 5.3. (Empirical Bernstein-Serfling Inequality [3]) Given a set of players N =

{𝒛𝑖 , . . . , 𝒛𝑛}, the range 𝑟 of the utility function, a sample without replacement of 𝐶𝐶𝑖, 𝑗

N of size𝑚𝑖, 𝑗

{𝐶𝐶N (S1), . . . ,𝐶𝐶N (S𝑚𝑖,𝑗
)}, where S1, . . . ,S𝑚𝑖,𝑗

∈ 𝔖𝑖, 𝑗 (1 ≤ 𝑖, 𝑗 ≤ 𝑛; 1 < 𝑚𝑖, 𝑗 ≤
(
𝑛−1
𝑗−1

)
), with

probability at least 1 − 𝛿 (𝛿 > 0) we have

| 1

𝑚𝑖, 𝑗

∑︁𝑚𝑖,𝑗

𝑘=1
𝐶𝐶N (S𝑘 ) − SV𝑖, 𝑗 | = |SV𝑖, 𝑗 − SV𝑖, 𝑗 |

≤ 1

𝑚𝑖, 𝑗

[
√︃
2(𝑚𝑖, 𝑗 − 1)𝜎2

𝑖, 𝑗
𝜌𝑚𝑖,𝑗

log (10/(1 + 𝛿)) + 𝜅𝑟 log (10/(1 + 𝛿))],

where 𝜅 = 14

3
+ 3
√
2, 𝜎2

𝑖, 𝑗
= 1

𝑚𝑖,𝑗−1
∑𝑚𝑖,𝑗

𝑘=1
(𝐶𝐶N (S𝑘 ) − SV𝑖, 𝑗 )2, and

𝜌𝑚𝑖,𝑗
=


1 − 𝑚𝑖,𝑗−1
(𝑛−1𝑗−1)

if𝑚𝑖, 𝑗 ≤
(
𝑛−1
𝑗−1

)
/2(

1 − 𝑚𝑖,𝑗

(𝑛−1𝑗−1)

)
(1 + 1/𝑚𝑖, 𝑗 ) if𝑚𝑖, 𝑗 >

(
𝑛−1
𝑗−1

)
/2

.

To obtain a better estimation of Shapley value by reducing the bound 𝜖 , it is intuitive to assign

the next sample to the estimators SV𝑖, 𝑗 with a larger bound estimated by the empirical Bernstein-

Serfling inequality [3] 𝜖𝑖, 𝑗 =
1

𝑚𝑖,𝑗
[
√︃
2(𝑚𝑖, 𝑗 − 1)𝜎2

𝑖, 𝑗
𝜌𝑚𝑖,𝑗

log (10/(1 + 𝛿)) + 𝜅𝑟 log (10/(1 + 𝛿))]. Con-
sidering that a sample of complementary contributions can be used to update Shapley value of all

players, we propose a method to select the next specific sample from a finite pool of complementary

contributions. Given the previous sampling results, the next sample of complementary contributions

is selected as

arg max

𝐶𝐶N (S)
{
∑︁
𝒛𝑖 ∈S

𝜖𝑖, |S | +
∑︁

𝒛𝑖 ∈N\S
𝜖𝑖, |N\S| }.

(5)

Equation 5 provides a way to appraise the gain of samples from a view of Theorem 5.3. Taking

the complementary contributions with the largest sum of error bounds contributes to tightening

the bounds of most estimators with larger error bounds, which helps to reduce approximation

errors of Shapley value. Thus, the complementary contribution with the largest sum of bounds is

the most cost-effective selection in this sense. A combination of the empirical Bernstein-Serfling

bound and sample selection is promising.

Finding the answer to Equation 5 is not easy. A brute-force solution is to enumerate complemen-

tary contributions, calculate the sum of corresponding bounds, and take the one with the largest

sum of bounds. Note that there are 2
𝑛−1

pairs of complementary coalitions, the time cost of such a

brute-force solution is prohibitively high,𝑂 (𝑛 · 2𝑛). To tackle the problem, we develop a polynomial

time algorithm. The key idea is to find the 𝑗-coalition with the largest sum of bounds in𝔖 𝑗
for

𝑗 ∈ [⌈𝑛/2⌉, 𝑛], then select the coalition with the largest sum of bounds among the coalitions ob-

tained in the first step and evaluate the corresponding complementary contribution. By converting
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𝜖𝑖,𝑛− 𝑗 to the sum of 𝜖𝑖, 𝑗 and the difference Δ𝑖,𝑛− 𝑗 = 𝜖𝑖,𝑛− 𝑗 − 𝜖𝑖, 𝑗 , Equation 5 is equivalent to finding

arg max

𝐶𝐶N (S)
{
∑︁
𝒛𝑖 ∈S

𝜖𝑖, |S | +
∑︁

𝒛𝑖 ∈N\S
(𝜖𝑖, |S | + Δ𝑖, |N\S| )}

= arg max

𝐶𝐶N (S)
{
∑︁
𝒛𝑖 ∈N

𝜖𝑖, |S | +
∑︁

𝒛𝑖 ∈N\S
Δ𝑖, |N\S| }.

(6)

Thus, the question of finding the 𝑗-coalition with the largest sum of bounds in𝔖 𝑗 (⌈𝑛/2⌉ ≤ 𝑗 ≤ 𝑛)
is equivalent to finding

arg max

𝐶𝐶N (S)

∑︁
𝒛𝑖 ∈N\S

Δ𝑖,𝑛− 𝑗 ,𝑤ℎ𝑒𝑟𝑒 |S| = 𝑗 . (7)

We can obtain ⌈𝑛/2⌉ complementary contributions while 𝑗 traverses from ⌈𝑛/2⌉ to 𝑛, and then

select the complementary contribution with the largest sum of bounds.

The detailed algorithm is shown in Algorithm 4. We first compute Δ𝑖, 𝑗 (Lines 1-3). Then, we

find the first 𝑛 − 𝑘 players with the largest Δ𝑖,𝑛−𝑘 to construct S and compute the sum of bounds

𝜖{S,N\S} when |S| = 𝑛 − 𝑘 (Lines 6-20). 𝜖𝑚𝑎𝑥 is set to record the largest sum of bounds. We update

𝜖𝑚𝑎𝑥 and the corresponding S′ (Lines 21-22). Finally, we output𝐶𝐶N (S′) and S′ as the result (Line
23).

Theorem 5.4. The time complexity of Algorithm 4 is 𝑂 (𝑛2).

Proof. Because the (𝑛 − 𝑘)𝑡ℎ largest Δ𝑖,𝑛−𝑘 can be selected in 𝑂 (𝑛) time by the classic selection

algorithm [5] and there are 𝑂 (𝑛) such operations as 𝑘 goes from ⌈𝑛/2⌉ to 𝑛, overall the algorithm
takes 𝑂 (𝑛2) time. □

We show a running example of Algorithm 4.

Example 5.5. Given N = {𝒛1, 𝒛2, 𝒛3, 𝒛4, 𝒛5}, let us assume the current bound matrix is M, where

the element in row 𝑖 and column 𝑗 is error bound 𝜖𝑖, 𝑗 (1 ≤ 𝑖, 𝑗 ≤ 5).

M =


1 2 3 4 5

1 2 3 4 5

3 4 2 5 1

4 1 5 3 2

5 2 4 1 3


Since Δ𝑖, 𝑗 is computed as 𝜖𝑖, 𝑗 − 𝜖𝑖,𝑛− 𝑗 (1 ≤ 𝑖 ≤ 5, 1 ≤ 𝑗 ≤ 2), we can get a matrix Δ, where the
element in row 𝑖 and column 𝑗 is Δ𝑖, 𝑗 (1 ≤ 𝑖 ≤ 5, 1 ≤ 𝑗 ≤ 2).

Δ =


1 2

1 2

3 4

4 1

5 2


−


4 3

4 3

5 2

3 5

1 4


=


−3 −1
−3 −1
−2 2

1 −4
4 −2


Since 𝜖𝑖, 𝑗 = 𝜖𝑖,𝑛− 𝑗 + Δ𝑖, 𝑗 (1 ≤ 𝑖 ≤ 5, 1 ≤ 𝑗 ≤ 2), M can be written as follows.

M =


4 3 3 4 5

4 3 3 4 5

5 2 2 5 1

3 5 5 3 2

1 4 4 1 3


+


−3 −1 0 0 0

−3 −1 0 0 0

−2 2 0 0 0

1 −4 0 0 0

4 −2 0 0 0


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Algorithm 4: Sample Selection.

input :players N = {𝒛1, . . . , 𝒛𝑛} and bounds 𝜖1,1, . . . , 𝜖𝑛,𝑛
output :complementary contribution 𝐶𝐶N (S′) and coalition S′

1 for i=1 to n do
2 for j=1 to ⌊𝑛/2⌋ do
3 Δ𝑖, 𝑗 = 𝜖𝑖, 𝑗 − 𝜖𝑖,𝑛− 𝑗 ;

4 𝜖𝑚𝑎𝑥 ←
∑𝑛

𝑖=1 𝜖𝑖,𝑛 ; S′ ← N ;

5 for k=⌈𝑛/2⌉ to 𝑛 − 1 do
6 𝑢 ← the (𝑛 − 𝑘)𝑡ℎ largest Δ𝑖,𝑛−𝑘 ;

7 S ← ∅;
8 for i=1 to 𝑛 do
9 if Δ𝑖,𝑛−𝑘 > 𝑢 then
10 S = S ∪ {𝒛𝑖 };

11 𝑖 ← 1

12 while |S| < 𝑛 − 𝑘 do
13 if Δ𝑖,𝑛−𝑘 == 𝑢 then
14 S = S ∪ {𝒛𝑖 };
15 𝑖+ = 1;

16 𝜖{S,N\S} ← 0;

17 for 𝒛𝑖 ∈ S do
18 𝜖{S,N\S}+ = 𝜖𝑖,𝑛−𝑘 ;

19 for 𝒛𝑖 ∈ N \ S do
20 𝜖{S,N\S}+ = 𝜖𝑖,𝑘 ;

21 if 𝜖{S,N\S} > 𝜖𝑚𝑎𝑥 then
22 𝜖𝑚𝑎𝑥 = 𝜖{S,N\S} ; S′ ← S;

23 return 𝐶𝐶N (S′),S′.

For𝑘 = 3, the second largestΔ𝑖,2 is -1. Thus, we selectS = {𝒛1, 𝒛3} and 𝜖{{𝒛1,𝒛3 },{𝒛2,𝒛4,𝒛5 }}=3+3+2+5+4-
1+2=18. For 𝑘 = 4, the first largest Δ𝑖,1 is 4. We select S = {𝒛5} and 𝜖{{𝒛5 },{𝒛1,𝒛2,𝒛3,𝒛4 }}=4+4+5
+3+1+4=21. For 𝑘 = 5, 𝜖{{𝒛1,𝒛4,𝒛2,𝒛3,𝒛4,𝒛5 },∅}=5+5+1+2+3=16. Since 21 > 18 > 16, S′ is {𝒛5} and the

sample of complementary contributions is 𝐶𝐶N ({𝒛5}) after running Algorithm 4.

The pseudo-code of approximate Shapley value computation using sample selection is shown in

Algorithm 5. We initialize the empirical Bernstein-Serfling bound 𝜖𝑖, 𝑗 with at least two samples for

computing the variance (Lines 2-12). Then, we sequentially select samples based on up-to-date 𝜖𝑖, 𝑗 .

We run Algorithm 4 to get the sample that yields the largest sum of bounds (Line 14). We update

the estimators and recompute 𝜖𝑖, 𝑗 after drawing a new sample (Lines 15-20). Repeating the process

until the total number of samples is reached, the final estimation of the Shapley value is simply the

average of all the calculated means (Lines 21-22).

6 EXPERIMENTS
In this section, we report experimental results evaluating our proposed algorithms for computing

Shapley value, including the effectiveness and the efficiency.
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Algorithm 5: Shapley value computation based on the Bernstein bound.

input :players N = {𝒛1, . . . , 𝒛𝑛} and𝑚 > 0

output :approximate Shapley value SV𝑖 for each player 𝒛𝑖 (1 ≤ 𝑖 ≤ 𝑛)
1 SV𝑖 ,SV𝑖, 𝑗 ,𝑚𝑖, 𝑗 ← 0 (1 ≤ 𝑖, 𝑗 ≤ 𝑛); 𝑐 ← −1;
2 while 𝑐 ≠

∑𝑛
𝑗=1𝑚1, 𝑗 do

3 𝑐 =
∑𝑛

𝑗=1𝑚1, 𝑗 ;

4 for i=1 to n,j = 1 to n do
5 if 𝑚𝑖, 𝑗 < 2 then
6 let S be a sample drawn from𝔖 𝑗

;

7 𝑢 ←U(S) − U(N \ S);
8 for 𝒛𝑖 ∈ S do
9 SV𝑖, |S |+ = 𝑢;𝑚𝑖, |S |+ = 1;

10 for 𝒛𝑖 ∈ N \ S do
11 SV𝑖, |N\S|− = 𝑢;𝑚𝑖, |N\S|+ = 1;

12 compute 𝜖𝑖, 𝑗 (1 ≤ 𝑖, 𝑗 ≤ 𝑛);
13 for k=1 to𝑚 −∑𝑛

𝑗=1𝑚1, 𝑗 do
14 run Algorithm 4 to get 𝑢 and S′;
15 for 𝒛𝑖 ∈ S′ do
16 SV𝑖, |S′ |+ = 𝑢;𝑚𝑖, |S′ |+ = 1;

17 recompute 𝜖𝑖, |S′ | ;

18 for 𝒛𝑖 ∈ N \ S′ do
19 SV𝑖, |N\S′ |− = 𝑢;𝑚𝑖, |N\S′ |+ = 1;

20 recompute 𝜖𝑖, |N\S′ | ;

21 for i=1 to n do
22 SV𝑖 =

1

𝑛

∑𝑛
𝑗=1 SV𝑖, 𝑗/𝑚𝑖, 𝑗 ;

23 return SV1, . . . ,SV𝑛 .

6.1 Experiment Setup
We conduct experiments on a computer with an Intel(R) Xeon(R) Silver 4214 CPU running Ubuntu

with 128GB memory. The code for experiments is available in https://github.com/ZJU-DIVER/

ShapleyValueApproximation.

6.1.1 Methods Compared. We compare our proposed algorithms with several baseline algorithms

as follows.

• MC: theMonte Carlo simulation algorithm,which randomly samples permutations, developed

by Castro et al. [8].

• MCN: the algorithm that improves MC by stratified random sampling of marginal contribu-

tions with optimum allocation, developed by Castro et al. [7].

• MCH: the algorithm with Hoeffding bound based on sampling of marginal contributions,

developed by Maleki et al. [34].

• CC: the proposed algorithm based on complementary contributions (Algorithm 2).
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• CCN: the enhanced algorithm with sample allocation based on Neyman approach (Algo-

rithm 3). We set𝑚𝑖𝑛𝑖𝑡 =𝑚𝑎𝑥 (2, ⌊ 𝑚
2𝑛2
⌋) in the experiment results reported in Sections 6.2 and

6.3, where𝑚 is the sample size and 𝑛 is the number of players.

• CCB: the enhanced algorithm with sample allocation based on empirical Bernstein bound

(Algorithm 5).

6.1.2 Test Cases. To evaluate the efficiency and effectiveness of the methods, we employ both

payoff allocation in cooperative games and data valuation in machine learning. Three cooperative

game examples and a data valuation task are used as follows. The setting of cooperative game

examples is following the same way by Castro et al. [8].

A Voting Game [39]. In a voting game, the principle of minority obeying majority is used. Shapley

value in this game can be thought of as an index of voting power. The set of players of a non-

symmetric voting game defined by Owen [39] for a voting process of a presidential election in the

United States is N = {1, . . . , 51} and the utility function in this game is given by

U𝑣 (S) =
{
1, if

∑
𝑖∈S𝑤𝑖 >

1

2

∑
𝑗∈N 𝑤 𝑗

0, otherwise

where𝑤𝑖 is the weight of votes for player 𝑖 , {𝑤1, . . . ,𝑤51} = {45, 41, 27, 26, 26, 25, 21, 17, 17, 14, 13, 13,
12, 12, 12, 11, 10, . . . , 10︸     ︷︷     ︸

4

, 9, . . . , 9︸  ︷︷  ︸
4

, 8, 8, 7, . . . , 7︸  ︷︷  ︸
4

, 6, . . . , 6︸  ︷︷  ︸
4

, 5, 4, . . . , 4︸  ︷︷  ︸
9

, 3, . . . , 3︸  ︷︷  ︸
7

}, and the subscript 𝑣 anno-

tates that the utility function is for this voting game.

An Airport Game [30]. In an airport game, an airstrip accommodating a given plane can accom-

modate any smaller plane at no additional cost. Shapley value in this game is a fair distribution of

costs, deciding how to distribute the cost of an airstrip among different planes who need airstrips of

different lengths. The set of players of an airport game is N = {1, . . . , 100} and the utility function

in this game is given by

U𝑎 (S) =𝑚𝑎𝑥𝑖∈S{𝑐𝑖 },

where {𝑐1, . . . , 𝑐100} = {1, . . . , 1︸  ︷︷  ︸
8

, 2, . . . , 2︸  ︷︷  ︸
12

, 3, . . . , 3︸  ︷︷  ︸
6

, 4, . . . , 4︸  ︷︷  ︸
14

, 5, . . . , 5︸  ︷︷  ︸
8

, 6, . . . , 6︸  ︷︷  ︸
9

, 7, . . . , 7︸  ︷︷  ︸
13

, 8, . . . , 8︸  ︷︷  ︸
10

, 9, . . . , 9︸  ︷︷  ︸
10

,

10, . . . , 10︸     ︷︷     ︸
10

} and the subscript 𝑎 annotates that the utility function is for this airport game.

A minimum spanning tree game [4]. In a minimum spanning tree game, a group of agents located

at different geographical places share some services that can only be provided by a common supplier.

Shapley value in this game is used to allocate the cost associated with the minimum spanning tree

among the agents. The set of players of a minimum spanning tree game is N = {1, . . . , 100} and
the cost associated with an edge (𝑖, 𝑗) is

𝐶𝑖, 𝑗 =


1, if 𝑖 = 𝑗 + 1, 𝑖 = 𝑗 − 1, 𝑖 = 1 ∧ 𝑗 = 100, 𝑖 = 100 ∧ 𝑗 = 1

101, if 𝑖 = 0 or 𝑗 = 0

∞, otherwise.

The utility function in this game is the sum of the edge cost of the minimum spanning tree, i.e.,

U𝑚 (S) = the minimum spanning tree of the graph 𝐺 |S∪{0} , where 𝐺 |S∪{0} is the partial graph
restricted to the players in coalition S and the source node 0.
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A data valuation task. In this task, Shapley value is used to evaluate the contribution of each data

point toward training a machine learning model. We used a real Breast Cancer Wisconsin dataset

from the UCI machine learning repository [13]. We randomly sampled 600 data points for the task

of training models and 99 points as the test dataset. Support Vector Machine (SVM) is employed

as the machine learning model, and the utility function is the accuracy score of the trained SVM

model on the test dataset. We choose SVM mainly because SVM has been successful in various

applications, and is often considered one of the classic classifiers. It has also been used by recent

works [28, 31] for Shapley value computation.

We used the above settings in Section 6.2 and 6.4 and the extended settings with varying numbers

of players in Section 6.3.

6.1.3 Evaluation metric.
Average error ratio. Given benchmark Shapley value SV𝑖 and estimated Shapley value SV𝑖

(1 ≤ 𝑖 ≤ 𝑛), the average error ratio for the estimated Shapley value compared to the benchmark

Shapley value is

average error ratio =
1

𝑛

𝑛∑︁
𝑖=1

| SV𝑖 − SV𝑖

SV𝑖

|.

Maximum error ratio. Given benchmark Shapley value SV𝑖 and estimated Shapley value SV𝑖

(1 ≤ 𝑖 ≤ 𝑛), the maximum error ratio for the estimated Shapley value compared to the benchmark

Shapley value is

maximum error ratio = max

𝑖
| SV𝑖 − SV𝑖

SV𝑖

|.

Computing the exact Shapley value SV𝑖 for evaluation purposes is prohibitively expensive

because it grows exponentially with the number of players. Therefore, we use the true Shapley

value reported in [8] as the benchmark Shapley value in Figures 1(a)(b)(c), Figures 2(a)(b)(c),

and Figures 6(a)(b)(c) and use the estimated Shapley value computed by the classic Monte Carlo

simulation algorithm with 100000 permutations as the benchmark Shapley value for all other

experiments.

Average coefficient of variation. Given a set of estimated Shapley value {SV1

𝑖 , . . . ,SV𝑘
𝑖 }

(1 ≤ 𝑖 ≤ 𝑛,SV𝑘
𝑖 > 0) obtained by computing 𝑘 times using the same algorithm under the same

setting, where SV 𝑗

𝑖
denotes the 𝑗𝑡ℎ estimated Shapley value of 𝒛𝑖 computed by the algorithm, the

average coefficient of variation is

average CV =
1

𝑛

𝑛∑︁
𝑖=1

√︃
1

𝑘

∑𝑘
𝑗=1 (SV

𝑗

𝑖
− 1

𝑘

∑𝑘
𝑗=1 SV

𝑗

𝑖
)2

| 1
𝑘

∑𝑘
𝑗=1 SV

𝑗

𝑖
|

.

6.2 Effectiveness
We experimentally study the effectiveness of the proposed algorithms in four test cases, including

the voting game, the airport game, the minimum spanning tree game, and the data valuation task.

Figures 1(a)(b)(c)(d) and Figures 2(a)(b)(c)(d) show the average error ratios and the maximum error

ratios of the estimated Shapley value with varying numbers of samples𝑚 for the four test cases,

respectively. Both error ratios decrease with the increasing number of samples, indicating that the

estimated Shapley value becomes closer to the accurate Shapley value. We observed that players

with smaller Shapley values usually have larger error ratios. This is because even when the absolute

error value is small, it can result in a large error ratio on a small Shapley value. CC, CCN, and CCB
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Fig. 1. Shapley value computation effectiveness (average error ratio).
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Fig. 2. Shapley value computation effectiveness (maximum error ratio).

significantly outperform the baselines, including MC, MCN, and MCH, and achieve a small error

even given a small number of samples. Boosted by improvements in sample allocation, both CCN

and CCB outperform CC. As CCB constantly monitors the bounds of estimators and dynamically

picks samples, it shows an advantage over CCN when given a relatively small number of samples.

We note that this performance gain does come at a higher computation cost. Given the increasing

number of samples, CCN obtains a more accurate estimation of the variance of each stratum since

the number of samples in the first stage increases and the final sample allocation is closer to the

theoretical optimum allocation. Thus, as the number of samples increases, CCN outperforms CCB

in some cases.

6.3 Efficiency
We experimentally study the efficiency of the proposed algorithms. We simulate four test cases on

varying numbers of players. For the voting game, the airport game, and the minimum spanning tree

game, we generated 100, 200, 300, 400, and 500 players, where each player has randomly generated

𝑤𝑖 /𝑐𝑖 /𝐶𝑖, 𝑗 . For the data valuation task, we randomly sampled 100, 200, 300, 400, and 500 data points

from the Breast Cancer Wisconsin dataset [13] to form different numbers of players and adopted the

accuracy of the SVM model on the test dataset of size 99 as the utility function. Figures 3(a)(b)(c)(d)

investigate the time cost for the algorithms to achieve an average error ratio ≤ 10%. Since CCB

needs to update bounds and choose samples sequentially, which leads to a high time cost for large

datasets, we omit some experimental results for CCB. The time cost required for the baselines

increases sharply with the increasing number of players, while CC and CCN require significantly

less time to achieve the same approximation error ratio, which verifies the efficiency and scalability

of our algorithms.
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Fig. 3. Shapley value computation efficiency.
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Fig. 4. Shapley value computation scalability.

Since it is hard to obtain a sufficiently accurate Shapley value as the benchmark Shapley value for

comparison in tolerable time on large datasets, we perform an analysis of the proposed algorithms

by measuring the average coefficient of variation. We simulated the voting game, the airport game,

and the minimum spanning tree game with 100, 500, 1000, 5000, and 10000 players and randomly

generated𝑤𝑖 /𝑐𝑖 /𝐶𝑖, 𝑗 for each player. For the data valuation task, we used a real Adult dataset from

the UCI machine learning repository [13], randomly sampled 100, 500, 1000, 5000, and 10000 data

points for the task of training models and computing Shapley value, and randomly sampled 1000

points as the test dataset. SVM is employed as the machine learning model and the utility function

is set to the accuracy score of the SVM model on the test dataset. Figures 4(a)(b)(c)(d) present the

average CV of MC, MCN, MCH, CC, CCN, and CCB with 10000𝑛 samples. The average CV of CC,

CCN, and CCB are much smaller than MC, MCN, and MCH, which confirms the convergence of

the estimated Shapley value computed by our proposed algorithms. Thus, CC and CCN are scalable

on larger data sets.

Moreover, Figures 5(a)(b)(c)(d) show the time cost for the algorithms to achieve an average CV

≤ 0.25 on four test cases with the varying number of players. The time cost increases with the

increasing number of players. Some experimental results for CCB are not shown for large number

of players due to the high time cost. CC and CCN perform well, beating all the other algorithms for

all the scenarios tested, especially on data valuation tasks.

6.4 Effect of𝑚𝑖𝑛𝑖𝑡 in CCN
We study the performance of CCN with varying initialization sample size 𝑚𝑖𝑛𝑖𝑡 . Given a total

number of samples 5000𝑛, we set𝑚𝑖𝑛𝑖𝑡 to 20, 30, 40, 50, and 60, respectively. Figures 6(a)(b)(c)(d)

show the average error ratio of CCN in four test cases. The average error ratio of CCN first decreases

and then increases with the increase of𝑚𝑖𝑛𝑖𝑡 . As𝑚𝑖𝑛𝑖𝑡 increases, the estimation of 𝜎2

𝑖, 𝑗 becomes more

accurate so that a sample allocation scheme that is closer to the theoretically optimal allocation can
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Fig. 5. Shapley value computation scalability.
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Fig. 6. Effect of𝑚𝑖𝑛𝑖𝑡 in CCN.

be obtained, thereby improving the performance. Moreover, since the number of samples allocated

in the second stage decreases as𝑚𝑖𝑛𝑖𝑡 increases, the average error ratio of CCN increases.

6.5 Comparison
We analyze the performance of the proposed algorithms by comparing them to FastSHAP [22],

a state-of-the-art learning-based method for Shapley value approximation. We would like to

emphasize that our algorithms have significant advantages compared to FastSHAP. 1) FastSHAP

studies a special task of model explanation. In this task, Shapley value assigns a value to each

feature to represent the effect of that feature on the model prediction. The features of each data

tuple are treated as players, and the utility function of a subset of features (players) is the model

prediction of these features. It requires additional effort to adapt the method to the wide range

of scenarios that we consider. 2) FastSHAP trains a neural network based on sampling coalition

utilities on the training dataset to predict Shapley values on the test dataset. It cannot output an

unbiased estimation of Shapley value even given a huge amount of training time. In contrast, CC

can output more accurate Shapley value as the number of samples increases, and gives an unbiased

estimation as shown in Theorem 4.5.

Besides the two advantages, our algorithms still outperform FastSHAP following the specific

experimental settings in FastSHAP. We test the algorithms on the model explanation task using

Census dataset [25] which contains 12 features, News dataset [15] which contains 60 features,

and Bankruptcy dataset [27] which contains 96 features. For the original models to be explained,

gradient boosted trees are used for Census dataset and Bankruptcy dataset, and neural networks

are used for News dataset. Figures 7(a)(b)(c) and Figures 8(a)(b)(c) show the average error ratios

and the maximum error ratios of each method for the three datasets, respectively. FastSHAP has

been trained to converge, and its result is shown as horizontal lines. Training FastSHAP takes 46
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Fig. 7. Comparison to FastSHAP (average error ratio).
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Fig. 8. Comparison to FastSHAP (maximum error ratio).

minutes, 25 minutes, and 124 minutes for the three datasets, respectively, enough for the sample-

based algorithms to take more than 300 million samples. As the number of samples increases, our

algorithms provide Shapley values with smaller error ratios and outperform FastSHAP.

6.6 Discussion
Complementary contributions, each of which can be used to compute Shapley value for each player,

provide a promising and more efficient method for estimating Shapley value. Experimental results

show that CC and its variants significantly outperform the baselines. CCN and CCB improve the

accuracy of CC by incorporating variance estimation. CCB involves additional overhead time due

to sample selection, which does not scale well compared to CCN. Therefore, it costs more time to

achieve a level of convergence, as shown in Figures 5(a)(b)(c)(d). However, given a small number of

samples, CCB has the best performance, as shown in Figures 1(a)(b)(c)(d) and Figures 2(a)(b)(c)(d).

In many applications, such as evaluating client contribution in cross-silo federated learning [42],

the time cost for utility evaluation is prohibitively high. The major concern in computing Shapley

value is how to reduce and choose samples to achieve a more accurate approximation with limited

samples. CCB is favorable in this scenario because the cost of choosing samples is much smaller

than the cost of evaluating utilities.

7 CONCLUSION
In this paper, we proposed the first stratified sampling method based on complementary con-

tributions for approximating Shapley value, economizing valuable computational resources by

conveniently reusing evaluated complementary contributions. We further proposed two sample al-

location methods to improve sampling performance. The Neyman allocation-based method derives

the sample allocation scheme with minimum variance for sampling complementary contributions.
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The empirical Bernstein bound-based method monitors Shapley value estimators in an online fash-

ion and picks samples to reduce approximation errors. Experimental results on real and synthetic

datasets show that the proposed algorithms based on sampling complementary contributions with

sample allocation strategies clearly outperform baseline algorithms based on sampling marginal

contributions in effectiveness and efficiency.

There are several interesting directions for future research. CCB while effective in some scenarios,

incurs significant computational overhead. It would be interesting to explore the approximate CCB

method to achieve a good tradeoff between the sampling cost and the sample size required. In

addition, there are several related and practical challenges: 1) how to quickly recalculate Shapley

value when some players join/leave the coalition, and 2) how to fairly compute Shapley value when

the utilities of some coalitions are uncertain.
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