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transmitted from the transmission window are in ascending order
(from right to left).

FBDT sends two sets of ordered packets from transmission win-
dow - one with ascending and another with descending sequence
numbers. Packets with ascending sequence numbers are sent as
forward data transmission over one SPTCP (and the associated
RAT) and packets with descending order are sent as backward data
transmission over another SPTCP. For example, consider six pack-
ets to be transmitted over two SPTCPs with heterogeneous delays
as shown in Fig. 4. FBDT starts by sending Packet1 and moving
towards the end of the transmission window over SPTCP1 (forward
data transmission). In parallel, FBDT starts sending Packet6 and
moves towards the beginning of the transmission window over
SPTCP2 (backward data transmission). FBDT relies on the fact that
SPTCP delivers reliable and in-order packets to the receiver.

Eliminating HoL Blocking. FBDT eliminates HoL and Out-Of-
Order packet arrivals by delivering an in-ordered small set of pack-
ets - referred as transmission window- to the application through
meta sockets. For example, consider the setup depicted in Fig. 4,
in which there are 6 packets to be transmitted from the transmis-
sion window. FBDT starts by sending Packet1, Packet2, ... from the
forward data transmission over SPTCP1 and Packet6, Packet5, ...
from the backward data transmission over SPTCP2. Suppose that
Packet2 is delayed or lost over SPTCP1 due to the uncertainty of the
wireless channel. The backward data transmission would continue
serving packets from backward including Packet2 over SPTCP2
since SPTCP1 was unable to deliver Packet2. As a result, FBDT
will never encounter HoL blocking or Out-Of-Order packets at the
meta-level since it will receive the packets either from the forward
or backward directions.

Figure 4: Left: Transmit window at the sender. Right: Receive

window at the receiver. Each window accommodates 6 pack-

ets. FBDT sender transmits packets from both forward and

backward directions. The pointers showing the next forward

and backward packets to be served are also illustrated.

Eliminating Re-Transmission and Re-Transmission Time-

out. Unacknowledged packets in the FBDT transmission window
are transmitted by either of the two SPTCPs or both in case of a
delayed SPTCP transmission. FBDT will discard duplicate pack-
ets, which can happen due to delayed SPTCP transmissions. For
example, consider there are six packets in the FBDT transmission
window as show in Fig. 4. Suppose that packet2’s transmission is
being handled by SPTCP1 but it is delayed. Meanwhile if backward
transmission successfully transmits Packet2 over SPTCP2, then
the receiver would receive Packet2. Now, suppose packet2 is also
finally delivered to the receiver by SPTCP1- forming a duplicate
packet. When this happens, the receiver will discard the duplicate
packet based on the packets’ sequence numbers. This eliminates

the need for re-transmission and re-transmission timeout since the
best effort solution adopted by FBDT ensures packet transmission
on other SPTCP(s).

FBDT always Achieves the Optimal Rate. One of the key
issues faced by traditional MPTCP architectures is to decide on
how to optimally split the traffic across SPTCPs? Additionally, we
strive for an architecture that can get the summation of individual
RAT throughput values (in isolation) across all channel conditions.
FBDT ensures optimal traffic splitting across RATs and as we will
show later through experimental evaluation, achieves the desired
additive throughput aggregation in all channel conditions. Recall
that FBDT transmits data from both forward and backward direc-
tions and the two pointers move inwards (after successful ACK
reception) at their own rates, meeting at a certain point. The rate at
which the pointers move towards each other depends on the rate
at which each of the individual SPTCPs is able to complete their
transmission successfully. As a result, this mechanism automati-
cally splits the traffic optimally between SPTCP(s) based on their
individual throughput values. Using the TCP throughput equation
in [32], we can theoretically derive the number of packets served
from the forward direction as:

𝑁𝑓 𝑤𝑑 = 𝑁 (
𝑊𝑓 𝑤𝑑𝑅𝑇𝑇𝑏𝑤𝑑

𝑊𝑓 𝑤𝑑𝑅𝑇𝑇𝑏𝑤𝑑 +𝑊𝑏𝑤𝑑𝑅𝑇𝑇𝑓 𝑤𝑑
) (1)

Here 𝑅𝑇𝑇𝑓 𝑤𝑑 and𝑊𝑓 𝑤𝑑 denote the forward path (RAT) RTT and
forward path transmission window size, respectively. 𝑁 denotes
the total number of packets to be served. The number of packets to
be served from the backward direction can be derived by swapping
𝑓 𝑤𝑑 subscripts with 𝑏𝑤𝑑 and vice versa.

3.2 Detailed Architecture

We now discuss the details of different components of FBDT.
Transmission Window. To transmit in both forward and back-

ward directions, FBDT buffers data in a transmit buffer before trans-
mitting across SPTCP(s). We refer to this buffer as FBDT trans-
mission window and fix its size to 1MB in our experiments. FBDT
sender and receiver will agree on the transmission window size be-
fore transmission and can periodically adapt that to accommodate
any dynamics in RATs’ data rates.

Sequence Numbers. To ensure in-order data delivery, FBDT
assigns unique Sequence numbers to the data segments to be sent
by SPTCPs. These unique sequence numbers are also used by the
receiver to discard duplicate packets as they are delivered to the
receive meta socket.

Acknowledgements. ACK(s) are necessary in FBDT for both
forward and backward transmission pointers to advance inwards
in the FBDT transmission window. In SPTCP, when an ACK is
sent by the receiver, it also includes information about the next
set of packets that are expected to be sent by the sender. MPTCP
also uses ACKs at its level. In particular, MPTCP piggybacks its
ACKs on the option fields of the SPTCP ACKs. The information
includes the expected next set of packets (Data Segment Sequence
numbers or DSSs) MPTCP expects to receive. We use the same
idea of piggybacking information on SPTCP ACKs. However, as
FDBT leverages two (forward and backward) data transmission
paths, our piggyback data specifies the next set of packets (sequence
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numbers) the receiver expects to receive on both the forward and
backward directions. This idea can significantly boost performance
in the presence of unreliability. For example, consider a dual radio
WiFi + WiGig setup. Suppose there is an outage on the uplink
transmission of WiGig, which blocks its TCP ACKs. In this case,
downlink WiGig data packets would still be acknowledged through
FBDT ACKs transmitted by WiFi. As a result, there would be no
need for redundant transmission of WiGig data packets over WiFi.

In-Order Delivery Across FBDT Transmission Window.

Forward and backward send windows move inward as they receive
FBDT ACKs. The two send windows will meet at a certain point
based on the throughput of the two directions. As they reach this
point, it is possible that one of the SPTCP send windows has com-
pleted successfully and is ready to move on to next set of data, while
the other sliding window is still waiting for ACKs of the data trans-
mitted. When this situation happens, the early completed sliding
send window would wait for at most RTT of the other transmis-
sion end, and then would proceed to transmitting unacknowledged
packets in the other sliding window. This could be redundant infor-
mation transmission but is required to ensure a high overall system
throughput. As packets are checked based on their sequence num-
bers at the receiver, they will be dropped if a duplication occurs
at the receiver. For example, assume a transmission window size
of ten with ten packets for transmission ordered from one to ten.
Forward and backward transmission start by sending from one and
ten, respectively, and proceed to moving inwards. Let us assume
forward sliding window has successfully completed sending packet
three and backward has transmitted packets five and four and is
waiting for their ACK(s). The forward sliding window will wait
for an 𝑅𝑇𝑇𝑏𝑤𝑑 before transmitting packets 4 and 5 over its SPTCP.
After transmitting this redundant data, the forward or backward
will not wait for the ACK(s) any longer since the data should be
reached either by forward or backward, which ensures in-order
delivery as well. As a result, the data in the transmission window
is updated with the next set of ten packets to be transmitted from
the meta-socket buffer3.

RAT to Direction Mapping. The mapping of RATs to forward
or backward directions impacts the performance. In FBDT, the
forward direction is mapped to the more reliable RAT (e.g., WiFi)
and the backward direction is mapped to the less reliable RAT (e.g.,
WiGig). Suppose the reverse mapping and packets 1 to 6 in the
transmit window size. If WiGig is assigned to the forward direction
but is blocked, packet 1 would take a long time until it’s reached
at the receiver. This also blocks delivery of packets 6, 5, and 4
(which are sent on WiFi) to the receive meta socket and application
(since packets need to be delivered in-order to the higher layer).
Assigning the more reliable RAT to the forward direction removes
this type of blocking, which can be particularly important if initial
packets have a higher priority (e.g., importance) than later packets
in the transmission window. FBDT can also dynamically adapt this
assignment based on historical RATs’ performance.

FBDT Scheduler. FBDT schedules segments from its transmit
window to the SPTCPs from forward and backward directions by
maintaining Send_Window𝑓 𝑤𝑑 (with𝑊𝑓 𝑤𝑑 size) and Send_Window𝑏𝑤𝑑

3It is possible that both SPTCPs fail to deliver packets 4 and 5. In this case, FBDT
will inform the application layer, which would result in retransmission or another
mitigation scheme by the application.

Figure 5: FBDT Scheduler

(with𝑊𝑏𝑤𝑑 size) sliding windows, respectively. For each of the two
(forward and backward) directions, the size of these send win-
dows are determined similar to how SPTCP calculates them, i.e.,
𝑠𝑒𝑛𝑑_𝑤𝑖𝑛𝑑𝑜𝑤 = Min(𝑐𝑤𝑛𝑑 , 𝑟𝑤𝑛𝑑). Additionally, FBDT maintains
separate Snd_Una4 and Snd_Nxt pointers for both forward and
backward sliding windows (see Fig. 5). FBDT schedules packets
to SPTCPs depending on the available space in 𝑐𝑤𝑛𝑑 and moves
Snd_Una and Snd_Nxt appropriately in their FBDT transmission
windows. FBDT sender will move the Snd_Una pointers of both for-
ward and backwardwhen it receives the corresponding acknowledg-
ments at FBDT level. Additionally, FBDT receiver will acknowledge
both forward and backward with the expected Fwd_Snd_Nxt and
Bwd_Snd_Nxt, respectively. Finally, FBDT moves Snd_Nxt pointer
of forward and backward as it schedules packet to SPTCP for trans-
mission. The two sliding windows will meet at a point depending
on the throughput of forward and backward SPTCPs. FBDT de-
couples the two (FWD and BWD) congestion control algorithms
(CCAs) and lets each CCA to decide on its transmission based on
the congestion and reliability of its underlying network.

FBDT completes serving its transmissionwindowwhen Fwd_Send_Nxt
and Bwd_Send_Nxt are equal or cross over each other. At this point,
FBDT will wait for either of the Snd_Una to meet their Send_Nxt
before redundant packet transmission begins. Suppose backward
transmission was able to successfully complete earlier and both
Fwd_Send_Nxt and Bwd_Send_Nxt has crossed over each other.
Then backward transmission of FBDT will wait for RTT𝑓 𝑤𝑑 and
start transmitting redundant unacknowledged packets in the for-
ward sliding window. FBDT will not wait for the ACKs of redun-
dant packets since the packets are scheduled in both of the SPTCPs,
which will likely deliver them in-order to the receiver. FBDT will
move on to load the transmission window with the next set of data
and proceeds with their transmission.

The rate at which Send_Window𝑓 𝑤𝑑 and Send_Window𝑏𝑤𝑑

move towards each other depends on the rate (throughput) of each
SPTCP. As FBDT adds up the throughput of each individual SPTCP,
we can approximate its total throughput leveraging SPTCP through-
put formula [32] as:

𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡𝐹𝐵𝐷𝑇 = 𝛾 × (
𝑊𝑓 𝑤𝑑

𝑅𝑇𝑇𝑓 𝑤𝑑
+
𝑊𝑏𝑤𝑑

𝑅𝑇𝑇𝑏𝑤𝑑
) (2)

4Una stands for Un-acknowledged.
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Here, 𝛾 is a scalar factor that accounts for overhead. In practice,
we have observed that FBDT throughput is very close to the sum-
mation of individual RAT data rates, irrespective of the channel
conditions. In other words, 𝛾 is very close to one.

FBDT Congestion Control. FBDT supports both coupled and
decoupled Congestion Control Algorithms (CCAs). Out of the box
design supports decoupled CCA where it lets each of the two
SPTCPs’ congestion control algorithms work to the fullest extent
without FBDT’s interference. However, FBDT can be easily ex-
tended to coupled congestion control by controlling the amount
of packets scheduled for each of the two SPTCP(s). Coupled CCA
is sometimes preferred over decoupled CCA since it is shown to
better maintain fairness over bottleneck links [20, 33, 34].

4 360◦ VIDEO RATE-DISTORTION PACKET
SCHEDULING AND RATE ALLOCATION

In this section, we propose a rate-distortion (R-D) optimization
framework to maximize the client viewport quality [35ś37]. We
consider the setup depicted in Fig. 1, in which an edge server is
connected to different BSs, which may use different access technolo-
gies. The 360◦ video is streamed from the server and the application
at the server has statistical models on how clients explore differ-
ent 360◦ videos. The video is streamed to the client leveraging a
multi-RAT transport layer protocol such as MPTCP or FBDT.

Videos are encoded as Groups of Pictures (GoPs) representing
one second worth of video data. Each compressed GOP comprises
multiple video frames captured at a given temporal rate. For ex-
ample, the 360◦ video dataset that we will later use in our perfor-
mance evaluation (Section 6) uses 30 frames per GoP universally.
In 360°videos, each video frame is spatially broken up into small
sectors or tiles that can be independently compressed across the
duration of a GOP. In our study, the tiles are encoded at a given
quantization parameter (QP) independently, so a frame can include
tiles with many different QPs. The tiles at the same spatial location
are jointly encoded across a GoP.

4.1 Maximizing the Viewport Quality

We aim to maximize the viewport quality of the delivered content
across all clients, given statistical models on how clients explore
the 360◦ video look-around panorama as well as historical data on
the average throughput of each RAT. For ease of presentation, we
assume only one client.

We use𝐶 to denote the set of𝐾 RATs and𝐶𝑘 as a random variable

representing the data rate of the 𝑘𝑡ℎ RAT. For a given GoP, let 𝑇
denote the set of tiles 𝑡 , 𝑁 the total number of tiles, 𝜋 an ordering
of the tiles, and 𝑅(𝑡) as the compression parameter of tile 𝑡 . We
also use 𝐵𝑅 (𝑡 ) to denote the size of the compressed tile 𝑡 in bits.

Maximizing the viewport quality is equivalent to minimizing
the respective viewport distortion (or reconstruction loss), since
there is a one-to-one mapping between the two objectives [3, 38].
Let 𝐿𝜋 (𝑡) denote the observation-weighted reconstruction loss of
tile 𝑡 . 𝐿𝜋 (𝑡) is the distortion of the compressed tile weighted by the
likelihood that the tile will be observed and the chance that it will
miss its deadline under ordering 𝜋 . We formally capture 𝐿𝜋 (𝑡) as:

𝐿𝜋 (𝑡) = 𝜖𝜋 (𝑡, 𝑑𝑡 )𝑃 (𝑡)𝐷 (𝑅(𝑡)) (3)

Here, 𝑃 (𝑡) is the probability that a tile 𝑡 will be observed by the
client (which can be easily derived since we have statistical models,
e.g., probability density functions, on how clients view 360◦ videos),
𝑑𝑡 the deadline of tile 𝑡 in seconds (a tile received after its deadline
would not be shown to the client), 𝐷 (𝑅(𝑡)) is the distortion for tile
𝑡 at compression rate 𝑅(𝑡), and 𝜖𝜋 (𝑡, 𝑑𝑡 ) is the probability that a
tile under ordering 𝜋 will miss its deadline 𝑑𝑡 . We can easily derive
𝜖𝜋 (𝑡, 𝑑𝑡 ) using historical throughput statistics for each RAT.

The viewport maximization (distortion minimization) problem
can then be posed as minimization of the reconstruction loss across
all tiles subject to a capacity constraint:

P1 : min
𝜋,𝑅

1

𝑁

∑︁

𝑡 ∈𝑇

𝐿𝜋 (𝑡)

𝑠 .𝑡 .
∑︁

𝑡 ∈𝑇

𝐵𝑅 (𝑡 ) ≤ 𝐶agg

The output of the optimization problem are the ordering of all tiles 𝜋
and the compression rate 𝑅(𝑡) for each tile 𝑡 . Note that we assume a
1 second GoP length, and hence the sum of the size of all tiles should
be less than the aggregate throughput, which is posed as a constraint
in problem P1. The above optimization problem is non-convex as
it represents a mixed-integer programming, depending on discrete
and continuous variables at the same time. In the next section, we
propose an approximation algorithm to solve the problem5.

4.2 Observation Weighted Sorting (OWS)

We pursue a solution strategy called Observation Weighted Sorting

(OWS), which orders the tiles such that if parts of a frame are
dropped (e.g. due to a connection changing unexpectedly in the
middle of sending a GoP), the impacted frames can still be assembled
without losing too much quality.

To address the non-convexity of the problem, we adopt a decom-
position approach that divides the problem into two sub-problems
in a manner that allows the two to reinforce each other. For a given
ordering of tiles in a GoP, we first compresses the tiles based on
their likelihoods of being observed as part of the client viewport
and the expected aggregate transmission rate. We then find an
ordering of the tiles by sorting them according to a loss function,
which incorporates both the likelihood that the client will observe
the tile as well as the likelihood that the rate will be too low to send
the tile before the deadline. By iterating over the two sub-problems
for a given maximum number of iterations, we arrive at an ordering
of the tiles and a compression rate for each tile.

Algorithm 1 summarizes the key steps in OWS. The algorithm
initially orders the tiles based on their default placements in the
frames (Line 3). Next, we derive the compression rates for all tiles
(Line 5). Note that the objective function here does not have the

5Our proposed optimization approach can lead to nearby tiles being compressed at
drastically different rates, but this is unlikely to matter to a user viewing the video. In
empirical studies it is not uncommon that users leave large portions of high quality
videos alone, such as the sky above the camera in a skydiving video. Furthermore, one
can imagine many scenarios (e.g., clear skies) where the loss from more aggressive
compression is negligible due to the content of that section of video. While it is possible
to select a low compression rate for a highly detailed tile that the user is unlikely to
observe, it is proportionally less likely: Selecting more aggressive compression on
highly detailed tiles induces greater distortion, which the problem is set up to minimize.
So the structure of the problem and the ability of users to even perceive the difference
in quality at all make this risk acceptably low.

136



MMSys ’23, June 7ś10, 2023, Vancouver, BC, Canada Suresh Srinivasan, Sam Shippey, Ehsan Aryafar, and Jacob Chakareski

𝜖𝜋 (𝑡, 𝑑𝑡 ) parameter from the definition of loss function in Eq. (3).
This turns the problem into a convex problem, which can be solved
optimally and in a fast manner through conventional solvers such
as CVX. Next, we compute the loss 𝐿𝜋 (𝑡) of each tile (Line 6) and
sort the entire tiles in the GoP in ascending order by their loss
(Line 7). The algorithm iterates over the two solutions for a fixed
given number of iterations 𝑀 and the best overall ordering and
compression is ultimately selected as the output of OWS.

Algorithm 1 Observation Weighted Sorting (OWS)

1: Inputs: Tiles 𝑇 , Rate data 𝐶 ,𝑀 , Observation
likelihood for tile 𝑡 𝑃 (𝑡)

2: Output: 𝜋 and 𝑅(𝑡), ∀𝑡 ∈ 𝑇
3: Initialization: Default(𝑡 )
4: for m = 1 to𝑀 do

5: Rates← min𝑅
∑
𝑡 ∈𝑇 𝑃 (𝑡)𝐷 (𝑅(𝑡))

s.t. 𝐵𝑅 (𝑡 ) ≤ 𝐶𝑎𝑔𝑔
6: Losses← 𝜖 (𝑡, 𝑑𝑡 )𝑃 (𝑡)𝐷 (𝑅(𝑡)) for 𝑡 ∈ 𝑇
7: 𝜋 ← sort(zip(𝑇, 𝐿𝑜𝑠𝑠𝑒𝑠), 𝑘𝑒𝑦 = 𝐿𝑜𝑠𝑠𝑒𝑠)

8: end for

9: return 𝜋 , 𝑅(𝑡)

5 IMPLEMENTATION

We implemented FBDT as a daemon in the user space in Linux
on both the client and server. Client connects to the server using
two different BSD SPTCP sockets - one for WiFi and another for
WiGig. FBDT maintains a transmission window using char array -
whose size is configurable. The FBDT daemon on the server sends
packets through FBDT transmission window. Every segment in the
transmission window -set to Maximum Segment Size (MSS)- is num-
bered with an FBDT sequence number. As mentioned in the design
section, we use the more reliable RAT - WiFi- as forward transmis-
sion and the less reliable RAT - WiGig- as backward transmission.
FBDT transmit window on the server maintains FWD pointer and
BWD pointer for both forward and backward transmissions. Both
pointers move inward as cumulative ACKs are received from the
client. In our implementation, the client sends a cumulative ACK
on each transmission from the user space with both forward and
backward ACKs. When both FWD and BWD pointers meet at some
point within the transmission window, the transmission window
is reloaded with a new set of data to be transmitted. FBDT receive
window on the client also maintains a FWD and BWD pointer, and
they move inward as they receive packets from the server.

Migrating FBDT to the Linux Kernel. We have migrated
FBDT to the latest Linux Kernel-5.18-rc7+ and replaced the existing
MPTCP protocol. This includes replacing the default MPTCP sched-
uler as well as the protocol with FBDT. Additionally, we modified
the (i) protocol.c file of mptcp in the kernel, (ii) mptcp_sendmsg
with FBDT transmission algorithm, and (iii) mptcp_send_ack and
subflow ack with FBDT ACK(s). These are piggybacked on TCP
ACK(s). As per FBDT design, we eliminated MPTCP retransmis-
sion logic, Out-Of-Order buffer logic, and retransmission timeout
from the MPTCP code, since it is no longer needed by FBDT. We
have publicly released our software on GitHub [17] so that other
researchers in the community can reproduce our results and expand
on our software.

6 PERFORMANCE EVALUATION

In this section, we evaluate the performance of our system through
a mixture of experiments and measurement-driven simulations. We
first conduct over-the-air experiments to quantify the throughput
that can be achieved with different MPTCP protocols and under
different channel and client mobility conditions. We consider a
dual WiFi+WiGig setup with only a single client. Next, we conduct
simulations to study the viewport quality under different MPTCP
protocols and tile ordering and coding schemes. We leave perfor-
mance evaluation in multi-client scenarios, when the number of
clients is large, and with different mixture of traffic types across
clients as part of our future work.

6.1 Experimental Setup

Network Deployment. Fig. 6(a) depicts some of our hardware.
Our network is composed of two Netgear Nighthawk X10 routers.
These routers support both WiFi and WiGig. We set one router as
WiFi only and the other router as WiGig only to emulate a non-
colocated BS scenario. The routers are connected to a Dell server
with connections discussed in Section 2. Our client device is an Acer
TravelMate laptop that has both WiFi and WiGig wireless cards.
This laptop is placed on top of a TurtleBot robot. The robot can be
programmed to stay stationary or mobile with a configurable speed
and mobility pattern. These devices are deployed in an indoor office
environment depicted in Fig. 6(b).

Channel Conditions and Mobility Patterns. We consider
three different scenarios: (i) LoS: In this setup, the client (TravelMate
laptop) is placed at a fixed location about 8 feet from the WiGig
BS. The client has a LoS channel to both BSs and remains fixed at
its location throughout the experiment, (ii) nLoS: In this setup, the
client remains fixed at the location similar to the LoS experiment
but a human blocker stands about 3 feet in front of the WiGig BS
throughout the experiment, (iii) Mobility: In this setup, the client
device (on top of robot) moves in a rectangular pattern of 6ft by 2ft,
as depicted in Fig. 6(b). There is no human blocker between the robot
and the BSs. In this setup, the client initially faces directly the BSs in
a LoS channel condition. But then the robot turns 90◦ followed by
two other 90◦ turns. In these positions, the client channel becomes
nLoS because the body of the laptop blocks the LoS path. As a result,
in this setup the client frequently switches between LoS and nLoS
channel conditions.

Traffic Generation. We use iPerf to generate downlink TCP
traffic from the network to the client. This communication lasts
for 5 minutes. We repeat each experiment two times and plot the
average and CDF curves (with throughput values sampled over one
second intervals).

Implemented Solutions. We experimented with the following
protocols: (i) FBDT: our proposed architecture, (ii) MuSher [29],
which is the state-of-the-art MPTCP scheduler designed for dual
radio WiGig+WiFi (i.e., 802.11 ad+ac) setups. We used the software
code that was publicly released by MuSher authors to implement it
in our hardware. We have been able to successfully replicate their
results, (iii) MPTCP: As we mentioned in Section 2, minRTT and
BLEST are two of the default MPTCP schedulers implemented in
Linux Kernel. We present only the results achieved under BLEST
as in all of our experiments BLEST outperformed minRTT. Finally,
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of different RATs, which makes the protocol sub-optimally split
the traffic between RATs with much more emphasis on WiFi to a
degree that it achieves even a lower performance than MPTCP.

6.3 Viewport Quality

Setup. We evaluated our tile ordering and transmission rate selec-
tion algorithm (OWS) through measurement-driven simulations us-
ing communication data rates achieved by our dual radioWiFi+WiGig
setup discussed in the previous section. Leveraging the through-
put rate traces on each RAT for every one second, we developed
a simulator to test out different 360◦ video tile ordering and rate
selection methods. We considered all the 15 videos from the pub-
licly available 8K UHD video dataset [31] as well as the 3DoF head
navigation data[46] to choose quality points (QPs) for each of the
tiles of the video based on how likely they are to be observed, as
part of the user’s viewport. We assume that RAT data rates are
available to the packet scheduling and rate allocation algorithm.
In addition to OWS (detailed in Algorithm 1) we consider an al-
ternative algorithm which performs the same transmission rate
selection but does not reorder the tiles, which we call FIX. We have
also conducted experiments using other, alternative tile-orderings
(such as sorting them by how likely a viewer is to see them) but
this did not result in any improvements and therefore have not
included their results here.

Viewport Quality. Fig. 6(f) depicts the mean PSNR gain across
all 360◦ videos for three simulated channel conditions: LoS, nLoS,
and mobility. The PSNR gain is calculated as the difference in PSNR
across two schemes: OWS on top of FBDT and FIX on top of MPTCP.
We observe that even in the LoS scenario where the throughput
gap between MPTCP and FBDT is low, there is still more than 10 dB
gain in PSNR due to the superior rate and tile ordering selection of
OWS compared to FIX. This relative gain further increases to 13 dB
in nLoS/Mobility scenarios where there is larger throughput gaps
between the two transport layer solutions. We have also obtained
results on relative gain across GoPs for different individual videos
(omitted due to page limitations), which show lower PSNR variance
in LoS and higher variance in nLoS/Mobility conditions.

7 RELATEDWORK

MPTCP Evaluation. Several works [47ś51] have studied MPTCP
performance but these works consider scenarios that consist of
wired paths or wireless setups with only sub-6 GHz RATs. Other
works have studied MPTCP performance in networks that use
mmWave RATs, e.g., [52, 53] studied dual WLANs with 802.11 ac
(sub-6 GHz)+ad (60 GHz) and show that MPTCP can get a lower
performance than using only WiGig, [54ś58] explores MPTCP in
5G+LTE through simulations, and MuSher [29] explores dual 802.11
ac+ad through implementation. FBDT is implemented in Linux,
supports any number of RATs, and outperforms MuSher when
client frequently switches between LoS and nLoS channels.

MPTCP Schedulers. In addition to the schedulers discussed
in Section 2, several schedulers have been proposed, including
schedulers that try to: (ii) address the challenges associated with
heterogeneous paths [28, 59ś61], (ii) leverage the differences in
subflow RTTs [28, 59, 61ś64], (iii) improve MPTCP performance
for special use cases [65ś67], and (iv) require modifications to the

application [68]. FBDT supports multi-RAT scenarios with vastly
different characteristics across RATs, has superior performance in
mobile, LoS, or nLoS scenarios, and does not require explicit infor-
mation from the lower layers or modifications to the application.

360◦ Video. Despite the popularity of 360◦ video, only low
quality 360◦ videos are widely available. Published 360◦ video nav-
igation data sets includes the works by [46, 69ś71]. We used the
public data set by [46] to generate the user look-around panorama.
Recent work has studied bandwidth savings that can be achieved by
caching [72]. Other works have studied the R-D characteristics of
360◦ videos, including: (i) the quality-rate dependency of two-layer
scalable encoding [73], (ii) R-D dependency of compressed 360◦

videos under diverse sphere-to-planar projection methods [74], and
(iii) tradeoffs of tiled 360◦ video for end-to-end streaming [75]. Our
work considers the joint operation of R-D with the underlying
transport protocol and substantially improves the viewport quality.

Multi-RAT VR. Several recent works have studied the potential
benefits of using multiple RATs to enhance mobile virtual reality
systems and 360◦ video streaming performance, e.g., by: (i) using
Raptor codes and developing Raptor coding adaptation [76], (ii)
optimizing tile rate selection while leveraging MPTCP [77, 78], (iii)
leveraging visible light communication (VLC) in addition to WiFi
and optimizing the placement of VLC BSs [38], and (iv) integrating
millimeter wave and WiFi access points and optimizing the allo-
cation of communication and computation resources in a mobile
multi-user VR arena system [79, 80]. In contrast, we (i) replace
MPTCP with FBDT and (ii) build a real prototype, which proves
high system performance in LoS, nLoS, and mobility conditions.

8 CONCLUSION

In this paper, we introduced a new multi-RAT transport layer pro-
tocol named łFBDT" to address the underlying causes of MPTCP’s
poor performance when used on top of high frequency wireless
radios. We also developed an optimization framework (deployed on
top of the transport layer) to maximize the client viewport quality
by taking into account statistical models on how clients explore
the 360◦ look-around panorama and data rates of each RAT. We
implemented our protocols on COTS hardware and conducted nu-
merous experiments to evaluate the system performance in practice.
We showed that FBDT provides a 2.5x gain against state-of-the-art
MPTCP protocol when a mobile client routinely switches between
LoS and nLoS conditions. We also showed that our viewport opti-
mization method provides an average of 12 dB increase in PSNR
across a variety of UHD videos and client channel conditions.
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