
A Gradient Descent Multi-Algorithm Grid Search
Optimization of Deep Learning for Sensor Fusion

Thomas M. Booth
309th SWEG/EDDGE Team

U.S. Air Force
Hill AFB, UT, USA

thomas.booth.2@us.af.mil
tom.booth@NexusDE.com

Sudipto Ghosh
Senior Member, IEEE

Department of Computer Science
Colorado State University
Fort Collins, CO, USA

sudipto.ghosh@colostate.edu

Abstract—Sensor fusion approaches combine data from a suite
of sensors into an integrated solution that represents the target
environment more accurately than that produced by an individ-
ual sensor. Deep learning (DL) based approaches can address
challenges with sensor fusion more accurately than classical
approaches. However, the accuracy of the selected approach can
change when sensors are modified, upgraded or swapped out
within the system of sensors. Historically, this can require an
expensive manual refactor of the sensor fusion solution.

This paper develops 12 DL-based sensor fusion approaches
and proposes a systematic and iterative methodology for selecting
an optimal DL approach and hyperparameter settings simul-
taneously. The Gradient Descent Multi-Algorithm Grid Search
(GD-MAGS) methodology is an iterative grid search technique
enhanced by gradient descent predictions and expanded to
exchange performance measure information across concurrently
running DL-based approaches. Additionally, at each iteration,
the worst two performing DL approaches are pruned to reduce
the resource usage as computational expense increases from
hyperparameter tuning. We evaluate this methodology using an
open source, time-series aircraft data set trained on the aircraft’s
altitude using multi-modal sensors that measure variables such
as velocities, accelerations, pressures, temperatures, and aircraft
orientation and position. We demonstrate the selection of an
optimal DL model and an increase of 88% in model accuracy
compared to the other 11 DL approaches analyzed. Verification
of the model selected shows that it outperforms pruned models
on data from other aircraft with the same system of sensors.

Index Terms—Deep Learning, Sensor Fusion, Optimization

I. INTRODUCTION

Multi-sensor systems such as aircraft and autonomous ve-
hicles use a suite of multi-modal sensors to collect data about
their environment. A sensor fusion approach combines the
sensor data into an integrated solution that represents the
environment more accurately than what could be accomplished
using a single sensor. For example, in this paper, variables
such as velocities, accelerations, pressures, temperatures, and
aircraft orientation and position are fused to calculate the
aircraft’s altitude. In practice, certified altimeters reliably per-
form this task. However, altitude was selected as a certified
truth source target to demonstrate the Gradient Descent Multi-
Algorithm Grid Search (GD-MAGS) methodology.

Multi-modal sensor fusion presents numerous challenges
that arise from the data to be fused, the imperfection and

diversity of the sensor technologies, and the nature of the envi-
ronment. Of the many challenges listed in Khaleghi et al. [1],
this paper addresses the following: outliers and spurious data,
conflicting data, data imperfection, data modality, operational
timing, and static vs dynamic phenomenon.

Deep Learning (DL) is quickly becoming the leading
approach compared to previous classical methods in time-
series prediction algorithms as shown by the performance of
Recurrent Neural Network (RNN) based approaches in the M5
competition [2]. Therefore, this paper developed 12 DL-based
approaches to sensor fusion, for the target data set, derived
from a combination of techniques to common problems seen
in this data set and mentioned in Pires et al. [3]. These
approaches were created from a baseline RNN algorithm
variant called Long-Short Term Memory (LSTM) and 11
other combinations of data ingest and batch mode techniques.
We explore the advantages of applying a supplemental data
modeling technique which ingests additional data for situations
where there is insufficient data to properly train RNN models.
Since data filtering techniques are common prior to training
models with empirical data, we apply two such techniques
on three noisy signals providing unexpected and conflicting
values. We also apply a classification technique since data
classification can lead to more accurate regressive DL models.
Additionally, two batch mode techniques are implemented to
identify the differences between the two.

For developing and deploying sensor fusion solutions, en-
gineers need a resource efficient and systematic methodology
to select the most accurate DL approach with optimal hy-
perparameter settings. Training and testing a combination of
DL approaches and LSTM hyperparameters on a statistically
significant and representative subset of the data can reduce
time and resource usage. From here, it follows that the selected
model will likely perform well when trained and tested on the
full data set.

This paper takes a first step in addressing this problem
by providing an automatable and systematic methodology for
selecting an optimal DL approach and RNN hyperparameters
for a set of data from a specific sensor configuration. The
next steps in this process will involve standardizing DL
model performance data import into a Model Based System

Engineering (MBSE) SysML model for data driven decisions
and resource limited sensor architecture optimizations.

The GD-MAGS methodology is a modification of the iter-
ative grid search [4] technique. However, it expands on it by
exchanging Neural Network (NN) performance information
across multiple NN approaches rather than a single NN.
Additionally, this information is used with gradient descent
based equations to speed up convergence across multiple DL
approaches. This paper evaluates the potential accuracy and
flexibility of a RNN, specifically the LSTM algorithm, applied
to real-time aircraft data from an open NASA data set [5]. The
NASA data was recorded onboard a single type of regional
jet operating in commercial service over a three year period
and was chosen for its availability to publish and the known
accuracy in the altitude measurement. The LSTM algorithm is
trained using inputs from the aircraft multi-modal sensors with
the altitude as the target variable. We evaluated the accuracy
of this selection methodology on two other aircraft of the same
type with the same sensor suite to verify the selected DL model
is an optimal solution for those as well.

Section II summarizes previous work on sensor data fu-
sion to orient the reader to the typical difficulties involved.
Section III describes the NASA data set. We describe the
12 DL-based approaches and the GD-MAGS methodology in
Section IV. Then we present the results and discuss them in
Sections V and VI, respectively. Lastly, we present our con-
clusions and outline directions for future work in Section VII.

II. RELATED WORK

This section summarizes previous sensor fusion and related
time-series prediction work as of Aug 2022 using DL ap-
proaches, each with advantages and disadvantages. These DL
approaches demonstrate valuable results for time-series fore-
casting models and for real-time sensor fusion applications.
While the forecasting models employ hyperparameter tuning
and ensemble approach optimizations, it is unclear that any of
the sensor fusion applications apply tuning or optimizations
across multiple DL approaches or on their respective hyper-
parameters for resource limited embedded systems typically
found with sensor systems.

The area of DL research has seen significant growth in
popularity and application in recent years [2]. Recently, the
data forecasting community has shown that DL-based ap-
proaches or a hybrid classical and DL approach can be more
accurate compared to previous classical methods alone in time-
series prediction algorithms [2]. N-BEATS [6], DeepAR [7],
and Temporal Fusion Transformers for Interpretable Multi-
Horizon Time Series Forecasting [8] are a few of the state-of-
the-art approaches in forecasting models for accuracy, speed
of training and speed of prediction with a trained model.
However, these large, time-series forecasting models, such
as DeepAR [7], take on the order of tens of minutes for a
prediction with a pre-trained model. This prediction latency
does not meet the timing requirements needed for real-time
sensor fusion algorithms on embedded systems which can only
tolerate latency on the order of milliseconds depending on the

application. The two main DL techniques used in sensor fusion
are Convolutional Neural Networks (CNN) and RNNs [4].

Hyperparameter tuning for RNN, CNN or any other ML
algorithm is vital to ensure the true performance is reached [9],
[10]. However, the methodology described by Weerts et al. [9]
requires on the order of 1,000 hyperparameter configurations
trained per data set and ML algorithm which is a large com-
putational cost. Additionally, Oreshkin et al. [6] emphasises
the importance of optimizing the ensemble approaches to
time-series forecasting. These best practices in time-series
forecasting appear to be missing in many DL-based sensor
fusion papers.

Two commonly used methods of hyperparameter tuning is
grid search and random search, where grid search is common
practice with three or fewer hyperparameters [4]. Bergstra
and Bengio [11] state that random search hyperparameter
optimization is more efficient than grid search for solutions
that are not sensitive to the hyperparameters being adjusted.
For the application in this paper, the hyperparameters being
tuned show that they strongly affect the performance measure,
therefore the grid search technique was the basis of our
gradient descent implementation.

In terms of sensor fusion applications, several papers [7],
[12], [13] implemented some form of DL algorithms with
success, however, it was unclear if any method was used to find
an optimized combination of ensemble layer configurations,
data ingest approaches and hyperparameters combined. To the
best of our knowledge, our optimal selection methodology for
deep learning approaches enhances the state of the art for DL
sensor data fusion.

III. NASA AIRCRAFT DATA SET

We use a publicly available NASA data set [5] to develop,
demonstrate, and evaluate the methodology. The data was
recorded onboard multiple aircraft with the same sensor suite
of a single type of regional jet operating in commercial service.
The data files contain detailed aircraft dynamics, system
performance and other engineering parameters captured on the
data recorder.

The data set contains information for 35 different aircraft
tail numbers averaging 5,355 flight files per aircraft with an
average file size of 2MB. Each flight file contains an average
of 125,000 sample points and represents a full flight that
includes aircraft ground operations, take-off, flight, landing,
and post landing ground operations. Additionally, each file
has 188 aircraft time-series variables that include sensor data
and other serial bus messages. These messages varied in
recorded frequency between 0.25 and 16 Hz. Using prior
aircraft knowledge, we manually identified 26 variables as
DL model inputs with an altitude target variable for a total
of 27 variables. Of these 26 input variables there are 8
different data modalities. The sensors on this aircraft collected
heterogeneous data such as altitude, altitude rate, acceleration,
pressure, temperature, speed, orientation, and position. While
several chosen variables, such as Selected Airspeed, Selected
Vertical Speed, and Ground Speed may not be required for

the DL approaches to accurately model altitude, we included
them to mimic some superfluous and possibly conflicting data.

TABLE I
SENSOR VARIABLE NAMES AND DESCRIPTIONS

Name Units Rate(Hz) Description

ALT feet 4 Pressure altitude LSP (Truth Source)

Time secs 16 Time in GMT seconds
FPAC G 16 Flight path acceleration
BLAC G 16 Body longitudinal acceleration
CTAC G 16 Cross track acceleration
VRTG G 8 Vertical acceleration
LATG G 4 Lateral acceleration
LONG G 4 Longitudinal acceleration
RALT feet 8 Radio altitude LSP
ALTR ft/min 4 Altitude rate
IVV ft/min 16 Inertial vertical speed
VSPS ft/min 1 Selected vertical speed
PSA mbars 2 Average static pressure
PI mbars 2 Impact (dynamic) pressure
PT mbars 2 Total pressure
TAS knots 4 True airspeed
CAS knots 4 Calculated airspeed
GS knots 4 Ground speed
WS knots 4 Wind speed
CASS knots 1 Selected airspeed
PTCH deg 8 Aircraft pitch angle
ROLL deg 8 Aircraft roll angle
DA deg 4 Aircraft drift angle
TAT °C 1 Total air temp
SAT °C 1 Static air temp
LATP deg 1 Latitude position LSP
LONP deg 1 Longitude position LSP

Table I shows the 26 input variables and the target ALT
variable, but also includes units, recorded frequencies, and
brief descriptions provided by the NASA source files. We
created continuous data at 16 Hz from signals recorded at
lower rates using the pad method from Python pandas as a
requirement for input into the LSTM algorithm.

Fig. 1 shows a single flight with 11 of the 26 variables
aligned and plotted against Time to provide insight into a
few of the challenges with fusing multi-modal sensor data.
For instance Fig. 1(a) shows the aircraft’s ground operations
as a flat line of ALT before take-off and after landing.
However, Figs. 1(b) and 1(d) show large fluctuations in
altitude rate (ALTR) and body long acceleration (BLAC),
respectively, while on the ground which is in conflict with
ALT. Additionally, Fig. 1(c) shows unrealistic periodic data
supplied from vertical, lateral, and longitudinal accelerations
(VRTG, LATG, LONG). The top and bottom red colored data
in this subplot both belong to VRTG data. Realistic VRTG
values for passenger aircraft are centered around 1 G so
the periodic data shown near -3 G’s are considered noise.
The LATG and LONG data in this same subplot overlap
significantly and have realistic values for passenger aircraft
centered around 0 G’s. However, they both exhibit similarly
noisy behavior with unrealistic and periodic data at -1 G. These
challenges in outliers and spurious data, conflicting data, and
data imperfection mentioned above as well as data modality
operational timing, and static vs dynamic phenomenon drove

Fig. 1. Aircraft altitude, altitude rate and acceleration

the need to develop the 12 different DL approaches described
in Section IV-A that are part of this paper’s selection process.

IV. METHODOLOGY

This section describes the GD-MAGS methodology which
enhances and adds multiple concurrent DL approaches to
the grid search hyperparameter optimization technique. We
describe the 12 DL-based approaches developed for the NASA
data set, the initial LSTM hyperparameters, the rule that prunes
the worst performing approaches, and the gradient descent
rules used with grid search to tune the hyperparameters of
the sensor fusion model. We use a portion of the NASA data
set to reduce the computational resources and time of this
study. One out of the 35 tail numbers from the data set was
chosen at random along with 20 random flight files out of
5,355 of this tail number’s data set. This subset of 20 files is
used throughout this study to reduce stochastic results.

Fig. 2 is a Systems Modeling Language (SysML) internal
block diagram (ibd) of the GD-MAGS optimization archi-
tecture. The DL_Training application shown creates the
sensor fusion model using the LSTM algorithm with the Adam
optimizer from the PyTorch.NN module. DL_Training
trains each NN model using input training data, a DL ap-
proach, and hyperparameters provided by the Bootstrap
application. DL_Training measures the model accuracy
by comparing its output to the target altitude in the testing
data using PyTorch MSELoss to calculate the performance
measure, Mean Squared Error (MSE). The MSE function is
based on (1), where n is the number of data points, and Tt

and Yt are the target and predicted values at time (t).

MSE =
1

n

n∑
t=1

(Tt − Yt)
2 (1)

Fig. 2. SysML diagram of Optimal Selection Methodology for sensor fusion.

The prune and tune loop shown with green item flows in
Fig. 2 contains the Prune N Tune procedure which includes
the GD-MAGS optimization rules. The methodology starts
with an initial DL Configuration matrix that contains the DL
approaches and initial hyperparameters. Prune N Tune starts
the first iteration by sending this initial DL configuration
matrix to Bootstrap which completes 3 iterations of the
bootstrap loop, shown with blue items flows, to calculate an
average MSE. During each iteration, Bootstrap provides
DL_Training 13 random training files, 7 random test files
and a single DL configuration to produce a single model and
MSE measurement. Bootstrap runs all configurations in the
DL configuration matrix in parallel, after which, it returns the
average model MSE for each configuration to Prune N Tune.
Calculating the average MSE reduces stochastic data from
affecting the selection results. Before starting a new refinement
iteration, the minimum MSE of the DL configuration matrix
is checked against the user specified convergence criterion.
The refinement iterations will continue until this convergence
criterion has been met or the optimal solution has been found.

The criterion can be an absolute MSE value, a gradi-
ent/optimality condition, or one of the user’s choosing. When
the criterion is satisfied, Prune_N_Tune will stop the refine-
ment iterations and export the selected best performing model
embedded with a Model Card [14] containing performance
metrics and all information needed to reproduce it. If the
convergence criterion isn’t satisfied, a new refinement iteration
begins and Prune N Tune applies the pruning and hyper-
parameter tuning rules based on the average MSE gradient

objective function. Prune N Tune creates a new DL configu-
ration matrix comprised of the pruned set of approaches and
the newly tuned set of hyperparameters and sends this to
Bootstrap which repeats the refinement iterations within
the selection methodology until convergence is reached.

A. DL approaches

This section describes how each DL approach was created
from a baseline LSTM approach. The GD-MAGS methodol-
ogy performs best on a large set of DL approach combinations
to better identify the optimal model for the data set. To build
the other 11 DL approaches from the baseline LSTM approach
several techniques were applied which include: two data filter
techniques, one supplemental data model, one classification
technique, and two batch mode techniques. Table II lists
the names of these approaches that are compiled from the
combination of techniques used to build each one. Also listed
are the number of sensor variable inputs used for the LSTM
algorithm. The fourth column is described and referenced in
a later section.

TABLE II
DEEP LEARNING APPROACHES

Approach Name Input # Prunedi

1 Baseline 26 5
2 Base+Outlier 26 5
3 Base+RemoveVar 23 Selected
4 Base+Outlier+Model 27 4
5 Base+RemoveVar+Model 24 4
6 Base+Class 26 4
7 Base+Class+Outlier 26 3
8 Base+Class+RemoveVar 23 4
9 Base+Class+Outlier+Model 27 3
10 Base+Class+RemoveVar+Model 24 4
11 Base+Flightbatch 26 2
12 Base+Outlier+Flightbatch 26 2

The Baseline, or Base, approach name or prefix refers to
the baseline DL-based approach that implements the LSTM
algorithm without additional techniques. This approach sets
a frame of reference for comparison with the 11 other ap-
proaches that build on this baseline with other techniques. The
following paragraphs describe the implementation of the six
techniques used. These techniques are applied to the data in
each approach in the order they appear in the approach names
in Table II. These techniques are applied to the data before it
is fed to the LSTM algorithm. The Flightbatch technique is
an exception and is applied during the LSTM algorithm.

The Outlier technique is the first of two data filter tech-
niques applied in this paper. It uses the Python Scikit-Learn
IsolationForest outlier algorithm chosen for its per-
formance against other well known outlier detection algo-
rithms for data sets larger than 1,000 samples [15]. The
IsolationForest algorithm was used to evaluate its effect
on the model’s accuracy by reducing outliers, or noise, in the
three noisy signals discussed in Section III.

RemoveVar is the second data filter technique applied which
removes the three noisy variables (VRTG, LATG, LONG)

from the input, thereby bypassing the need for outlier detection
all together. The goal is to compare its model performance
against the Isolation Forest algorithm performance.

The Model technique addresses possible limitations of the
aircraft’s sensors and available data recorded. This is a supple-
mental data model that provides ground elevation data as input
to the LSTM algorithm. The intent is to provide additional
data to the LSTM algorithm to more accurately model the
target altitude (ALT) through a Digital Terrain Elevation Data
(DTED) table lookup from the GMTED2010 [16] database.
This database is commonly used on aircraft or can be added
to the aircraft’s software if needed.

The Class technique classifies the flight data as either
ground operations or in-flight data to remove conflicting
ground data from the training set. This technique deletes all
ground data before the LSTM algorithm is trained on the rest
of the sensor data, towards improving the final solution.

Two different batch mode techniques are included to analyze
the effects of splitting time series data in two ways when
training models. The first batch method, which is implemented
in the baseline approach, appends the flight data from all 13
training flight files into a single data frame and trains the
model in equal batch sizes of 50,000 data points at a time.
This technique ignores the beginning and end of individual
flight files and iteratively trains forward through the model,
calculates loss, back-propagates the loss, and performs the
single optimization step for each batch file until moving onto
the next epoch. The second batch mode approach, known as
Flightbatch, customizes each batch size to contain each of the
13 flight files and performs the same back-propagation steps
as the baseline which is also describe in Yao et al. [13].

For each approach, the techniques above are applied to the
input data, then the data is scaled near unity using scikit-learn
MinMaxScaler and fit_transform to reduce truncation
and rounding errors. Next, a sequence length sized windowing
scheme is applied. Finally, the training and testing data parti-
tions are created and the model is trained. The testing partition
is scaled with the training MinMaxScalar values with scikit-
learn’s transform function before measuring MSE.

B. Initial LSTM hyperparameters
Initial learning rates (LR) and numbers of epochs (Epochs)

are chosen for quick model convergence, then tuned in subse-
quent iterations. The purpose of this technique is to eliminate
relatively poor performing approaches early in the process
when it is computationally cheap. Initial values for number
of hidden units (Units) were spread out evenly to produce
an initial MSE gradient to inform the tuning rules. Sequence
lengths 8 and 16 were chosen as factors of the 16 Hz signals.
Selection of the RNN hyperparameters, guidance for initial
values, and the information about the Adam optimization
algorithm are not described here, but an introduction to these
can be found in [4].

C. GD-MAGS Optimization Rules
This section describes the DL approach pruning rule and

the gradient descent hyperparameter tuning rules applied to

the grid search method across concurrent DL approaches.

Approach pruning rule: For each refinement iteration, re-
move the two worst performing DL approaches from the
DL configuration matrix. Here, performance is based on the
lowest MSE of best hyperparameters for the approach. More
than two approaches can be removed per iteration if there
is a consistent trend of poor approach performance across
iterations. Be cautious when removing additional approaches
before iteration three in order to have sufficient confidence.

Learning rate tuning rule: The MSE gradient from the best
and worst performing hyperparameter configurations is the
basis for the learning rate and epoch number tuning rules. The
learning rate is reduced proportionally to this gradient with
a diminishing damping factor applied. The factor slows the
learning rate reduction early in the process when the gradient
is large. However, this factor is reduced at each iteration as the
solutions converge. The new learning rate for the next iteration
(LRi+1) is calculated using (2),

LRi+1 =
LRibest

ratioLR
(2)

where LRibest is the best performing hyperparameter config-
uration learning rate for the current iteration i. The ratioLR

is the learning rate ratio calculated in (3),

ratioLR =
1

Fd

MSEworst

MSEbest
(3)

where Fd is the diminishing damping factor, MSEworst

and MSEbest are the worst and best performing hyperpa-
rameter configuration’s average MSE, respectively. The ratio
FdMSEworst

MSEbest
must always remain greater than one and initial

recommended values of Fd should produce LRi+1 less than 1
order of magnitude (OOM) smaller than LRi. Very large initial
Fd will drop the LRi+1 several OOM leading to convergence
that will be overly resource intensive and the methodology
will most likely skip optimum solutions. Very small FD

will increase LRi+1 compared to LRi and lead to divergent
solutions.

Epoch number tuning rule: Assuming the previous models
were sufficiently converged, the number of epochs for the next
iteration (Epochsi+1) are adjusted using (4),

Epochsi+1 = Epochsibest

(
LRibest

LRi+1
)

)
(4)

where Epochsibest is the Epoch number of the best perform-
ing hyperparameter configuration. If there is indication this
hyperparameter configuration sufficiently converged at a lower
Epoch number, then reduce Epochsibest to the Epoch number
at convergence before calculating Epochsi+1.

Hidden unit tuning rule: Hidden unit tuning can be difficult
to implement and performance of the hidden units can change
between iterations. Therefore it is recommended to keep a
range of hidden units throughout hyperparameter tuning, as
suggested by the grid search technique, to provide additional
coverage to find the optimal solution.

Sequence length tuning rule: The sequence lengths are also
adjusted once performance trends are observed. Consideration
of the data set frequency and data ingest method is important
when applying this tuning rule. For instance, this data set’s
primary recording rates are 16, 8, and 4 Hz, therefore recom-
mended sequence lengths are equal to the frequencies found
in the data. Otherwise, stale data created by the pad method
for the 8 and 4 Hz signals can reduce overall performance of
the model other sequence lengths are used.

D. Methodology verification

This methodology’s selection accuracy is verified by using
20 random flights each from two other randomly chosen air-
craft tail numbers within this data set. The verification executes
the bootstrap loop in Fig. 2 using the random data from the
other aircraft and three pre-trained models of varying per-
formance from the selection process. The optimally selected
pre-trained model and two other lower performing models are
compared for relative performance based on average MSE.
This verifies that the initially trained and selected model
continues to outperform non-optimal pre-trained models on
other aircraft with the same sensors.

V. RESULTS

Executing this methodology on the NASA data set pro-
duced 248 unique aircraft altitude sensor fusion models before
selecting an optimal solution. It started from an initial DL
configuration matrix with 72 DL-approach and hyperparameter
configurations then executed the methodology discussed in
Section IV. The initial matrix was composed of the hyperpa-
rameters shown in Table III and all of the DL approaches listed
in Table II. Table III also lists the final selected model’s hyper-
parameters. Model training and testing of the DL configuration
matrix for each iteration was run in parallel. Section V-A
summarizes the results from all refinement iterations and the
application of the rules. Section V-B presents the convergence
of each refinement iteration’s results. Lastly, section V-C
presents the results from the methodology verification.

TABLE III
LSTM HYPERPARAMETERS

Config SeqLen LR Epochs Units

Initial Matrix

1 8 0.01 1,000 10
2 8 0.05 1,000 20
3 16 0.01 1,000 10
4 16 0.03 1,000 20
5 16 0.05 1,000 20
6 16 0.05 1,000 25

Optimal Model (Iteration 4)

31 16 0.0007 3,500 20

A. Refinement iterations

As mentioned previously, the first step of this methodology
is to train and measure the performance of the DL configura-

Fig. 3. Minimum MSE Across Refinement Iterations for each DL Approach

tion matrix and then use the average bootstrap loop MSE as
inputs into the second iteration for pruning and tuning.

As expected, the average MSE generated from the first
iteration did not meet the convergence criterion, therefore the
methodology proceeded onto iteration two. In iteration two the
Prune N Tune procedure pruned approaches 11 and 12 for
being the worst two performing approaches. This is indicated
in the Prunedi column of Table II and can be seen in Fig. 3
by the missing data points between the iteration 1 and 2 lines.

The best and worst performing hyperparameter configura-
tions, one and five in Table III, respectively, were used to
calculate the second iteration’s learning rate and Epochs using
equations (2), (3), and (4). An initial damping factor of 4
was chosen and is divided by 2 each successive iteration.
Model convergence data indicated the number of initial epochs
were larger than needed for convergence, therefore Epochsibest
was reduced before the calculations. No trends were identified
within the hidden units, therefore additional values were added
to expand exploration of the hyperparameters. No significant
performance difference between sequence lengths were iden-
tified, therefore two additional sequence length configurations
equal to 8 were added to expand coverage as well.

Iterations two through four proceeded in much the same way
as iteration one. The worst two DL approaches were pruned
and the hyperparameters tuned according to the associated
equations. However, iteration four pruned an additional two
DL approaches based on a trend of consistently low perfor-
mance across iterations one through three. Also, iteration five
proceeded with the single best performing approach. Fig. 3
displays the progression of each iteration’s best tuned ap-
proaches as the GD-MAGS methodology is performed on the
data. This figure also indicates performance differences for DL
approach as the hyperparameters are tuned. This is observed
in the inconsistent drop of MSE across DL approaches per
iteration.

Fig. 4. Best and Worst DL approaches across iterations

The results from iteration five returned a minimum MSE
that was greater than iteration four’s minimum MSE as seen in
Fig. 4 by the rise in MSE at iteration five in the lower blue line.
From this observation, it was determined that the minimum
had been found in iteration four and the procedural loop
was terminated. Ideally, additional iterations centered around
iteration four’s data would further refine the optimal configura-
tion, however finding the location of a minimum was deemed
sufficient for this study. Therefore, the Base+RemoveVar ap-
proach and hyperparameter configuration 31 from Table III
was selected as the optimal model.

B. Convergence results

This section presents the selection methodology’s conver-
gence across all 12 DL approaches and the hyperparameter
space. Fig. 4 shows convergence of the best and worst DL
approaches and hyperparameters as the blue and red lines
draw nearer to each other. The dotted green lines and percent-
age labels quantify the convergence between best and worst
approaches at each iteration by listing the percent difference
between them. Fig. 4 also shows the optimal bootstrap average
at iteration four and the the MSE of the selected model from
the best of the three bootstrap loop models. This figure also
labels the best and worst performing DL approaches across
the five refinement iterations. The final selected configuration
in iteration four has a bootstrap loop average MSE of 2.93e-
06 while the selected model has an MSE of 1.09e-06. When
comparing error of altitude output from this selected model
to the seven test files used in iteration four the maximum in-
flight error was 155.4 ft as the aircraft is transitioning from
level flight into a descent. Larger errors are present for this
comparison but they occurred in transitions between disparate
flight files and aircraft post-landing maneuvers which are
artifacts of the batch process and classification, respectively.
These errors were not considered as in-flight errors, but were
included in the standard deviation. The standard deviation of
the errors across all seven flights is 29.7 ft.

Fig. 5. Relative Performance Verification with Two Other Aircraft Data Sets

C. Verification results

The optimally selected model from the Base+RemoveVar
approach and the two next highest performing models from
iteration 4, Baseline and Base+Outlier, were selected as the
models to use for model selection verification. These models
were trained on tail number 687 and the verification testing
was performed on tail numbers 660 and 675 which were
all chosen randomly. These three pre-trained models ingested
data from the training set and two other aircraft tail numbers
as verification data sets. A bootstrap loop average for each
model and data set was calculated and plotted in Fig. 5. This
figure shows that the average bootstrap MSE for the optimally
selected model continues to outperform the other two models
on two other aircraft data sets.

VI. DISCUSSION

The focus of this paper is the GD-MAGS optimal selection
methodology for DL-based sensor fusion solutions across a
range of DL approaches. The novel approach here focused
on the system of combining several different data techniques,
Neural Network algorithms and hyperparameter tuning to-
gether, rather than simply investigating a new method of
Deep Learning algorithms alone. This methodology could have
continued to iterate using the MSE gradient after iteration
five and further refined the hyperparameters, but we decided
this minimum was sufficient for demonstration purposes. The
value of this methodology has been shown by its successful
identification of the best DL approach and hyperparameter
configuration. Part of this success can be shown by the
removal of 6 DL approaches known to perform poorly.
In one example of this, two under performing approaches
were eliminated in the first iteration. The second worst ap-
proach, Base+Outlier+Flightbatch, only differed from the best
approach, Base+Outlier by their respective batch sizes of
125,000 to 50,000 and had an 88% difference in average MSE
as shown in Fig. 4. This matches observations made by Keskar
et al. [17] that found when using a larger batch size, there is
a degradation in the quality of the model, as measured by its
ability to generalize.

In the second example, the methodology pruned another
four approaches when it correctly identified the lower per-
forming Model technique approaches. A key assumption used
in this technique was discovered late in this study to be wrong.
We incorrectly assumed, initially, that the RALT measurement
indicated an aircraft terrain following feature that kept it
roughly 5,500 ft above the earth, instead, this was a limitation
of the range of the radar altimeter sensor. Therefore, the data
provided by this technique added meaningless and possibly
misleading data to the LSTM algorithm which proved to affect
the model’s accuracy. The selection methodology correctly
pruned the DL approaches with this technique and demon-
strated value in removing an under-performing approach.

Two possible challenges of implementing this methodology
is balancing the correct number of bootstrap loops and number
of flight files to use. Increasing bootstrap loops or files slows
down the selection process significantly. Too few bootstrap
loops or files introduces the risk of stochastic results or poorly
generalized models. We verified our choices of bootstrap loops
and number of files used in this demonstration by analyzing the
average MSE for 20 bootstrap loops and doubling the number
of test files for the selected model. This showed that the
average MSE with three bootstrap loops vs 20 only differed by
1.04e-07. It also showed that the average MSE using 14 testing
files, instead of the 7 done in this paper, for 20 bootstrap
loops only differed by 2.34e-08. These values are less than
the difference between the best and second best model average
MSE and indicates using 7 testing files for 3 bootstrap loops
was sufficient for this data set. However, we recommend users
perform similar studies on their data.

VII. CONCLUSIONS AND FUTURE WORK

The GD-MAGS selection methodology successfully demon-
strated it is capable of selecting a single DL approach out
of many and while tuning hyperparameters to generate an
optimal sensor fusion model for a system of multi-modal
sensors. This methodology provides a reliable process that
many engineers can apply to sensor data fusion problems
with the knowledge it will converge on an optimal solution.
Our methodology has also verified that its selected sensor
fusion model generalizes well to other aircraft tail numbers
with the same sensors. This verification provides a compelling
justification that this optimization methodology can be applied
across many data sets and the selected optimal model can be
applied to characteristically similar sensor fusion problems.
The generalization of this methodology also applies to other
real-time sensor integration problems outside of the aircraft
industry. Our demonstration and experience with this method-
ology has provided valuable insights into possible areas of
advancement for sensor fusion.

It is currently unknown if refining each DL approach’s
hyperparameters individually, rather than all together, would
provide a faster convergence to the optimal solution. Future
work will investigate this and will also pursue a software
framework to be used by other researchers. Additional work
will apply this selection methodology to different types of

sensors and other target variables to measure its generalization
performance on more complex sensor fusion problems. This
will include implementation of additional DL algorithms,
ensemble networks and a variety of other data ingestion
techniques from current sensor fusion literature. Future work
is aimed at ingesting DL-based sensor fusion algorithm’s
information into a SysML system model of a resource lim-
ited sensor suite towards analysis of design and architecture
optimizations and Pareto trade-offs.

ACKNOWLEDGMENT

This work was supported in part by funding from NSF under
Award Number OAC 1931363, the US Air Force STEM+M
program, the AFSC/309th Software Engineering Group, and
NexusDE LLC.

REFERENCES

[1] B. Khaleghi, A. Khamis, F. O. Karray, and S. N. Razavi, “Multisensor
data fusion: A review of the state-of-the-art,” Information Fusion,
vol. 14, no. 1, pp. 28–44, 2013.

[2] S. Makridakis, E. Spiliotis, and V. Assimakopoulos, “The M5 accuracy
competition: Results, findings and conclusions,” Int J Forecast, no. Oc-
tober, pp. 1–44, 2020.

[3] I. M. Pires, N. M. Garcia, N. Pombo, and F. Flórez-Revuelta, “From
data acquisition to data fusion: A comprehensive review and a roadmap
for the identification of activities of daily living using mobile devices,”
Sensors (Switzerland), vol. 16, no. 2, 2016.

[4] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press,
2016.

[5] NASA, “DASH Link,” 2018.
[6] B. N. Oreshkin, D. Carpov, N. Chapados, and Y. Bengio, “N-BEATS:

Neural basis expansion analysis for interpretable time series forecasting,”
in International Conference on Learning Representations, 2020.

[7] D. Salinas, V. Flunkert, J. Gasthaus, and T. Januschowski, “DeepAR:
Probabilistic forecasting with autoregressive recurrent networks,” Inter-
national Journal of Forecasting, vol. 36, no. 3, pp. 1181–1191, 2020.

[8] B. Lim, S. Arık, N. Loeff, and T. Pfister, “Temporal Fusion Transformers
for interpretable multi-horizon time series forecasting,” International
Journal of Forecasting, vol. 37, no. 4, pp. 1748–1764, 2021.

[9] H. J. P. Weerts, A. C. Mueller, and J. Vanschoren, “Importance of Tuning
Hyperparameters of Machine Learning Algorithms,” arXiv, 2020.

[10] J. Bergstra, D. Yamins, and D. D. Cox, “Making a Science of Model
Search: Hyperparameter Optimization in Hundreds of Dimensions for
Vision Architectures,” Proceedings of the 30th International Conference
on Machine Learning, vol. 28, 2013.

[11] J. Bergstra and Y. Bengio, “Random search for hyper-parameter opti-
mization,” Journal of Machine Learning Research, vol. 13, pp. 281–305,
2012.

[12] S. M. Howard and M. S. Lewicki, Deep Learning for Sensor Fusion.
PhD thesis, Case Western Reserve University, 2017.

[13] S. Yao, S. Hu, Y. Zhao, A. Zhang, and T. Abdelzaher, “DeepSense: A
unified deep learning framework for time-series mobile sensing data
processing,” 26th International World Wide Web Conference, WWW
2017, pp. 351–360, 2017.

[14] M. Mitchell, S. Wu, A. Zaldivar, P. Barnes, L. Vasserman, B. Hutchin-
son, E. Spitzer, I. D. Raji, and T. Gebru, “Model cards for model re-
porting,” FAT* 2019 - Proceedings of the 2019 Conference on Fairness,
Accountability, and Transparency, no. Figure 2, pp. 220–229, 2019.

[15] S. Liu, H. Liu, V. John, Z. Liu, and E. Blasch, “Enhanced situation
awareness through CNN-based deep multimodal image fusion,” Optical
Engineering, vol. 59, no. 05, p. 1, 2020.

[16] D. Danielson, J.J., Gesch, “Global Multi-resolution Terrain Elevation
Data 2010 (GMTED2010),” U.S. Geological Survey Open-File Report
2011-1073, vol. 2010, p. 26, 2011.

[17] N. S. Keskar, J. Nocedal, P. T. P. Tang, D. Mudigere, and M. Smelyan-
skiy, “On large-batch training for deep learning: Generalization gap and
sharp minima,” 5th International Conference on Learning Representa-
tions, ICLR 2017 - Conference Track Proceedings, pp. 1–16, 2017.

	Introduction
	Related Work
	NASA Aircraft Data Set
	Methodology
	DL approaches
	Initial LSTM hyperparameters
	GD-MAGS Optimization Rules
	Methodology verification

	Results
	Refinement iterations
	Convergence results
	Verification results

	Discussion
	Conclusions and Future Work
	References

