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A B S T R A C T

Objective: Severe infection can lead to organ dysfunction and sepsis. Identifying subphenotypes of infected
patients is essential for personalized management. It is unknown how different time series clustering algo-
rithms compare in identifying these subphenotypes.
Materials and Methods: Patients with suspected infection admitted between 2014 and 2019 to 4 hospitals in
Emory healthcare were included, split into separate training and validation cohorts. Dynamic time warping (DTW)
was applied to vital signs from the first 8 h of hospitalization, and hierarchical clustering (DTW-HC) and partition
around medoids (DTW-PAM) were used to cluster patients into subphenotypes. DTW-HC, DTW-PAM, and a previ-
ously published group-based trajectory model (GBTM) were evaluated for agreement in subphenotype clusters,
trajectory patterns, and subphenotype associations with clinical outcomes and treatment responses.
Results: There were 12473 patients in training and 8256 patients in validation cohorts. DTW-HC, DTW-PAM, and GBTM
models resulted in 4 consistent vitals trajectory patterns with significant agreement in clustering (71–80% agreement,
P < .001): group A  was hyperthermic, tachycardic, tachypneic, and hypotensive. Group B  was hyperthermic, tachycardic,
tachypneic, and hypertensive. Groups C  and D had lower temperatures, heart rates, and respiratory rates, with group C
normotensive and group D hypotensive. Group A  had higher odds ratio of 30-day inpatient mortality (P < .01) and group D
had significant mortality benefit from balanced crystalloids compared to saline (P < .01) in all 3 models.
Discussion: DTW- and GBTM-based clustering algorithms applied to vital signs in infected patients identified
consistent subphenotypes with distinct clinical outcomes and treatment responses.
Conclusion: Time series clustering with distinct computational approaches demonstrate similar performance
and significant agreement in the resulting subphenotypes.
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INTRODUCTION

Severe infection can lead to organ dysfunction and sepsis, which is

associated with high morbidity, mortality, and costs.1 Decades of
clinical trials have failed to identify one-size-fits-all treatments that
improve mortality for patients with severe infection and sepsis,
which is likely due to the significant heterogeneity in this popula-

tion.2,3 This has resulted in research focused on identifying subphe-
notypes (ie, subgroups) that may benefit from targeted treatments,
leading to a precision medicine approach to treating patients with

infection.4

In addition to being heterogeneous, the physiological responses

to infection are dynamic and rapidly evolve over minutes to

hours.5,6 There has been recent focus on subphenotyping patients

using time series clustering algorithms to capture this dynamic heter-

ogeneity. Most work has applied time series clustering to univariate

longitudinal data such as temperature measurements, ventilator

parameters, vasopressor requirements, and severity of illness scores

to identify subphenotypes within critically ill patients.7–11 Our

recent work used group-based trajectory modeling (GBTM) to iden-

tify sepsis subphenotypes using multivariate longitudinal vital signs

(ie, temperature, heart rate, respiratory rate, and blood pressure)

from the first 8 h of hospitalization.12 The vitals trajectory subphe-

notypes had distinct clinical characteristics and outcomes such as

ICU admission and mortality. Importantly, the vitals trajectory sub-

phenotypes demonstrate heterogeneity of treatment responses to

normal saline versus balanced crystalloids, representing the first

clinically feasible phenotyping method demonstrating heterogeneous

responses to intravenous fluids.

Although GBTM is a popular classical approach to time series

clustering, it has some limitations that may restrict the discovery of

subphenotypes.13,14     First, GBTM assumes a polynomial shape

underlying trajectories (eg, linear vs quadratic) instead of allowing

for an unrestricted trajectory form. Second, GBTM aligns patients

without temporal warping (eg, vital signs at hour 1 of a patient are

aligned with vital signs at hour 1 of another patient), and thus may

fail to recognize similar but temporally shifted sequences. Alterna-

tive time series clustering algorithms using dynamic time warping

(DTW) may overcome these limitations. DTW is an algorithm that

computes the distance between temporal sequences by warping the

sequences to an optimal alignment.15 Clustering algorithms are then

applied to the DTW distances to identify trajectory subphenotypes.

This approach has the advantage of discovering trajectories with

nonpolynomial shapes and identifying temporally distorted but simi-

lar trajectories. DTW-based clustering has been used to identify

organ failure trajectories and biomarker trajectories in COVID-19

and sepsis patients.11,16,17      Despite the theoretical differences

between GBTM and DTW-based models, it is unknown whether

these distinct algorithms would identify different or similar subphe-

notypes of patients with infection using longitudinal vital signs.

OB J E C T IV E
The objectives of this study were: (1) to develop and validate vital

sign trajectory models using DTW-based clustering algorithms, (2)

to compare the subphenotype clustering agreement between the

DTW-based models and a previously published GBTM model,12 (3)

to compare clustering performance between models using model fit

metrics (ie, mean squared error and Davies–Bouldin index), and (4)

to compare clustering performance between models using clinical

validity metrics (ie, associations of subphenotypes with clinical out-

comes and treatment responses).

METHODS

Study cohort
The study cohort included adult patients presenting to the Emer-
gency Department with suspected infection on admission between
January 2014 and December 2019 to 4 hospitals in the Emory
Healthcare system. Suspected infection was defined as a combina-
tion of antibiotic administration within 6 h of presentation and
body fluid culture collection. The following exclusion criteria were
applied: (1) patients who died or were discharged within the first 8
h, (2) patients transferred to other hospitals during the admission,

and (3) patients with less than 3 complete sets of vital signs.12 The
study cohort was partitioned into training and validation cohorts by
admission year: (1) training—admissions between 2014 and 2017
and (2) validation—admissions between 2018 and 2019. The tem-
porally separate validation cohort was designed to simulate prospec-
tive implementation of the subphenotype model to evaluate stability
over time with potential changes in patient population, hospital
practices, and outcomes.

Measurement of vital signs
Vital signs (ie, oral temperature, heart rate, respiratory rate, systolic,
and diastolic blood pressure) from the first 8 h of hospitalization
were used in the analysis. Nonphysiological vital signs were

excluded.18 The vital signs in the training cohort were standardized
to the mean and standard deviation of the training cohort, and the
vital signs in the validation cohort were standardized to the mean
and standard deviation of the validation cohort. Standardization of
variables ensures that all variables are on comparable scales, which
can minimize the impact of one variable on the DTW distance met-
ric (eg, temperature does not influence the distance more than respi-
ratory rate). Additionally, standardization can also reduce the
impact of outliers, so that the DTW calculation is more robust to
extreme values. Vital signs were binned into 8 1-h blocks of time;
the mean measurement of each vital sign was used if multiple meas-
urements were available in the 1-h time block. Missing vital sign val-
ues were imputed using last observation carried forward (LOCF). If
there remained missing data after imputation with LOCF (eg, vital
sign at the first hour was missing), next observation carried back-
ward (NOCB) was used. Carry forward imputation uses the conser-
vative assumption that the most likely value of the missing data is
the same as the closest-in-time measured value of that vital sign (eg,
the most likely temperature measurement is the temperature meas-
urement that is temporally closest to the missing value). Further,
carry forward imputation has been used in similar studies of time

series clustering using DTW in critically ill patients.11,16

Algorithm development and model selection
The original vitals trajectory subphenotypes were developed and vali-
dated using GBTM, a finite mixture model that is used to identify

clusters following similar trajectories of variables over time.13,14 The
algorithm computes the underlying coefficients for the polynomial
functions describing the trajectories of the vital signs over time for
each of the groups. As reported, a 4-group model fit the training and
validation data best. In this study, 2 additional time series clustering
algorithms were developed and compared to the original GBTM

model: (1) dynamic time warping with hierarchical clustering
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(DTW-HC) and (2) dynamic time warping with partitioning around

medoids (DTW-PAM). DTW is an algorithm that computes the dis-

tance between 2 multivariate temporal sequences by warping the

sequences to an optimal alignment. The DTW algorithm computes a

distance matrix between pairs of patients and this distance matrix is

combined with an additional clustering algorithm (ie, HC and PAM)

to identify clusters.

To select the optimal number of clusters and to capture stable

clustering assignments from DTW-HC and DTW-PAM, we tested 2

through 6-group models using consensus clustering.19 In consensus

clustering, the algorithm (eg, DTW-HC, DTW-PAM) is run 100-

times with varying subsamples of patients (subsampled at 80% for

each run). The cumulative results for each clustering solution across

the 100 runs result in a consensus matrix capturing the distance

between patients (ie, the proportion of runs a pair of patients was

clustered together). A cumulative density plot of the consensus

results was used to calculate the area under the cumulative density

function (CDF) curve. A delta area plot was used to evaluate the rel-

ative change in the area under the CDF curve with each additional

cluster number, and the optimal cluster number was the number of

clusters at which there was the highest delta change in area under

the CDF curve. Once the optimal number of clusters were selected

for DTW-HC and DTW-PAM using the above criteria, a hierarchi-

cal clustering algorithm with complete linkage was applied to the

consensus matrix to obtain the final cluster assignments for both

models. The code used to generate the DTW-HC and DTW-PAM

models presented in this manuscript is available on GitHub at

https://github.com/siva-bhavani122/Sepsis_Project

Model agreement
Model agreement between the 3 distinct clustering algorithms
(GBTM, DTW-HC, and DTW-PAM) was calculated to evaluate
whether all algorithms converged on the same underlying physiolog-
ical trajectories of patients with infection. Adjusted Rand Index
(ARI) was used to evaluate the similarity in clustering results

between the 3 models.20 An ARI of 0 indicates that the models
resulted in nonsimilar clustering and any similarities in matches are
due to chance. An ARI of 1 indicates that the models resulted in per-
fectly matched clusters. Significance of the ARI between models (ie,
testing nondifference from 0) was calculated using a published per-

mutational procedure.21 A heatmap was used to visualize the agree-
ment between subphenotypes across models.

Internal clustering metrics of model performance
Since there is no ground truth to determine the “best” model, we used
both internal and external metrics of model performance. The inter-
nal metrics (ie, model fit metrics) used were mean squared error and

Davies–Bouldin index.22,23 A patient’s mean squared error from their
assigned subphenotype was calculated as the sum of the squared dif-
ferences between predicted vital signs (ie, trajectory centroid values)
and observed vital signs over the 8-h period. Pairwise testing was per-
formed (ie, patients’ mean squared error from 2 models were com-
pared) across the 3 combinations of models (GBTM and DTW-HC;
GBTM and DTW-PAM; DTW-PAM and DTW-HC).

The Davies–Bouldin index is a ratio of within cluster and

between cluster separation, with lower values reflecting better per-

formance (ie, patients within clusters are separated by smaller dis-

tances while patients in different clusters are separated by larger

distances). The Davies–Bouldin index was measured at each time

point and visualized over the 8-h period for the 3 models.

External clinical metrics of model performance
Using chi-squared testing, the DTW-HC subphenotypes and the DTW-

PAM subphenotypes were evaluated for association of subphenotypes

with outcomes (30-day inpatient mortality, ICU admission, vasopressor

and inotrope requirement, renal replacement therapy, mechanical ven-

tilation). All outcomes were dichotomous variables. Vasopressor use

was defined as the use of norepinephrine, vasopressin, epinephrine,

dopamine, or phenylephrine, without a threshold for total daily dose.

Inotrope use was defined as the use of milrinone or dobutamine, with-

out a total daily dose threshold. Renal replacement therapy was defined

as requiring one or more sessions of hemodialysis.

In logistic regression, the primary outcome of 30-day inpatient

mortality was evaluated for association with subphenotypes when

adjusting for age, sex, race, and comorbidities (congestive heart fail-

ure, chronic pulmonary disease, diabetes mellitus, hypertension,

chronic kidney disease, liver disease, and metastatic cancer).

Model performance in validation cohort
Each of the vitals trajectory subphenotypes in both DTW-HC and
DTW-PAM models can be represented as a set of 8 centroids for
each of the 5 vital signs (ie, the mean value of that vital sign for that
subphenotype at every hour from hour 0 to hour 7). Patients in the
validation cohort were assigned to the vitals trajectory subpheno-
type that resulted in the lowest mean squared error from the cent-

roids as done in prior work.7,12      The associations between
subphenotypes and outcomes were evaluated in the validation
cohort as described above for the training cohort.

Model performance in randomized controlled trial data
The Isotonic Solutions and Major Adverse Renal Events Trial
(SMART) was a randomized controlled trial (RCT) comparing bal-

anced crystalloids versus normal saline in critically ill patients.24 In
this secondary analysis of the SMART trial, the DTW-HC and
DTW-PAM models were applied to the first 8 h of hospitalization
vital signs from sepsis patients in the study, by assigning patients to

the subphenotype that resulted in the lowest mean squared error.12

The primary outcome was 30-day inpatient mortality for each sub-
phenotype compared between the balanced crystalloid and normal
saline treatment arms using a logistic regression model accounting

for baseline covariates as prespecified in prior work.25 Heterogene-
ity of treatment effect (HTE) was calculated using the ANOVA like-
lihood ratio test between a full logistic regression model predicting
mortality including interaction terms between the subphenotype and
treatment assignment compared to a nested model without the inter-
action terms.

R E S U LT S
There were 20 729 patients with suspected infection in the study

cohort: 12 473 patients in the training cohort and 8256 patients in

the validation cohort (Supplementary Figure S1). The training

cohort was a median of 62 years (IQR 48–75 years), with 51%

males, 38% Black patients, 55% White patients, and 7% other race,

and with a 2.1% mortality rate. The validation cohort was a median

of 62 years (IQR 47–74 years), with 53% males, 39% Black

patients, 53% White patients, and 8% other race, and with a 2.2%

mortality rate.

The 4-group model had the highest delta change in area under

the CDF curve for both DTW-HC and DTW-PAM algorithms (Sup-

plementary Figures S2 and S3). The 4 subphenotypes identified

https://github.com/siva-bhavani122/Sepsis_Project
https://academic.oup.com/jamia/article-lookup/doi/10.1093/jamia/ocad063#supplementary-data
https://academic.oup.com/jamia/article-lookup/doi/10.1093/jamia/ocad063#supplementary-data
https://academic.oup.com/jamia/article-lookup/doi/10.1093/jamia/ocad063#supplementary-data
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Figure 1. Trajectories of vital signs in the first 8 h of admission compared between models. All 3 models converged on 4 visually similar vitals trajectory subphe-
notypes: group A  was hyperthermic, tachycardic, tachypneic, and hypotensive. Group B  was also hyperthermic, tachycardic, and tachypneic, but not as pro-
nounced as group A, and were hypertensive. Groups C  and D had lower temperatures, heart rates, and respiratory rates, with group C  having normal blood
pressure and group D being the most hypotensive subphenotype.

using DTW-HC and DTW-PAM qualitatively matched the previ-
ously developed GBTM subphenotypes: group A was hyperthermic,
tachycardic, and tachypneic, and were relatively hypotensive. Group
B was also hyperthermic, tachycardic and tachypneic, but not as
pronounced as group A, and was hypertensive. Group C and group
D had lower temperatures, heart rates, and respiratory rates, with
group C being normotensive and group D being the most hypoten-
sive subphenotype (Figure 1).

The distributions for subphenotype membership in DTW-HC
were group A (N ¼ 2282, 18%), group B (N ¼ 2093, 17%), group C

(N ¼ 3273, 26%), and group D (N ¼ 4825, 39%). For DTW-PAM:

(N ¼ 3011, 24%), and group D (N ¼ 3697, 30%). For the previously

published GBTM algorithm: group A (N ¼ 3483, 28%), group B

(N ¼ 1578, 13%), group C (N ¼ 4044, 32%), and group D

(N ¼ 3368, 27%). The ARI was significant between all 3 models

(P < .001), suggesting substantial interalgorithm agreement in classi-

fication. Between DTW-HC and DTW-PAM, 80% of patients were
classified into the same subphenotype, with an ARI 0.68. Between
DTW-HC and GBTM, there was 71% agreement and ARI 0.41,
and between DTW-PAM and GBTM, there was 79% agreement
and ARI 0.55 (Figure 2).

Both DTW-HC and DTW-PAM had significantly lower mean
group A (N ¼ 3297, 26%), group B (N ¼ 2468, 20%), group C squared error compared to GBTM (P ¼ .04 and P < .001,
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Figure 2. Heatmap of agreement in subphenotype classification between models. The heatmap presents the percentage of cross-classification of groups A
through D compared between the 3 models. The percentage represents the percent of patients in a subphenotype of the model labeled on the x-axis that were
classified in the subphenotype of the model labeled on the y-axis, with the diagonal representing agreement in classification (eg, group A  in one model classified as
group A  in the other model). Darker shades represent higher percentages.

respectively). DTW-PAM also had significantly lower mean squared

error compared to DTW-HC (P < .001) (Supplementary Figure S4).

Davies–Bouldin index was lowest for GBTM at all time points, sig-

nifying better performance (Supplementary Figure S5). Thus, DTW

methods had a better fit (ie, lower mean squared error) to individual

trajectories, while GBTM had better intergroup separation and

intragroup cohesion (ie, lower Davies–Bouldin index).

Model performance in training and validation cohorts
Clinical characteristics and outcomes were consistent across all 3
models: groups A and B were younger, while groups C and D were

older (P < .001). Group A had the fewest baseline comorbidities,

with the lowest prevalence of congestive heart failure, diabetes mel-

litus, hypertension, and chronic kidney disease (P < .001). Group B

had the highest dialysis requirement (P < .001). groups A and D had

higher rates of vasopressor use, ICU transfers, and 30-day mortality

(P < .001, Supplementary Tables S1–S3 and Figure 3). Consistent

with the GBTM results, on logistic regression, group A had higher
odds ratio (OR) of 30-day inpatient mortality in both DTW-HC and
DTW-PAM in the training cohort (DTW-HC—OR 1.89, 95% CI

1.27–2.82, P ¼ .002; DTW-PAM—OR 1.68, 95% CI 1.16–2.42,

P ¼ .006) and validation cohort (DTW-HC—OR 2.38, 95% CI

1.46–3.87, P < .001; DTW-PAM—OR 2.24, 95% CI 1.40–3.61,

P < .001). Group D had higher 30-day mortality only in the valida-

tion cohort (DTW-HC—OR 1.69, 95% CI 1.09–2.61, P ¼ .02;

DTW-PAM—OR 1.74, 95% CI 1.12–2.72, P ¼ .01; Figure 4).

Model performance in R C T  cohort
In the SMART secondary analysis, there was significant HTE of bal-

anced crystalloids versus saline in all 3 algorithms (P ¼ .03 for

GBTM, P ¼ .04 for DTW-HC, and P ¼ .02 for DTW-PAM). Group

D had lower OR of mortality with balanced crystalloids compared

https://academic.oup.com/jamia/article-lookup/doi/10.1093/jamia/ocad063#supplementary-data
https://academic.oup.com/jamia/article-lookup/doi/10.1093/jamia/ocad063#supplementary-data
https://academic.oup.com/jamia/article-lookup/doi/10.1093/jamia/ocad063#supplementary-data
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Figure 3. Clinical outcomes in subphenotypes in the training cohort. Presented are the clinical outcomes (in percentage) for requiring ICU transfer, dialysis,
mechanical ventilation, vasopressors, inotropes, and for 30-day mortality across the 3 models. Asterisk denotes that the outcome was significantly associated
with subphenotype in that model. There was significant association between subphenotype and ICU transfer, dialysis, vasopressors, and inotropes in all 3 mod-els.
Groups A  and D had high ICU transfers and vasopressor use. Group D had high inotrope use. Group B  had high incidence of requiring dialysis. Groups A  and D had
higher 30-day mortality in all models, with significant associations in the GBTM and DTW-PAM models. DTW-PAM: dynamic time warping-partition around
medoids; GBTM: group-based trajectory model.

to saline in all 3 models (GBTM—OR 0.42, 95% CI 0.24–0.72,
P ¼ .002; DTW-HC—OR 0.49, 95% CI 0.29–0.82, P ¼ .006; DTW-

PAM—OR 0.49, 95% CI 0.29–0.81, P ¼ .005; Figure 5 and Supple-

mentary Figure S6). Group B trended towards higher OR of mortal-
ity with balanced crystalloids in all 3 models (GBTM—OR 2.42,
95% CI 0.67–8.72, P ¼ .2; DTW-HC—OR 2.06, 95% CI 0.77–

5.51, P ¼ .2; DTW-PAM—OR 2.74, 95% CI 0.94–8.05, P ¼ .07).

DISCUSSION

In this multicenter study comparing 3 multivariate time series clus-

tering algorithms applied to vital signs from patients with infection,

we found substantial consistency in the resulting trajectory subphe-

notypes. First, the optimal number of clusters were 4 subphenotypes

for all 3 models. Second, there was significant agreement in subphe-

notype classification between models. Third, all models found sub-

phenotypes with similar trajectory shapes. Fourth, all models found

subphenotypes with similar distribution of clinical outcomes. Fifth,

all 3 models demonstrated HTE to intravenous fluids and identified

a consistent subphenotype with a significant mortality benefit from

balanced crystalloids. This consistency is clinically significant and

provides evidence that the vitals trajectory subphenotypes have a

physiological basis independent of the computational approach.

Since there is no definitive method of confirming the “best” sub-

phenotyping algorithm, a multifaceted approach was used to evalu-

ate the algorithms for: (1) agreement in subphenotype classification

and consistency of underlying trajectory patterns, (2) comparison of

internal model fit metrics, and (3) comparison of external clinical

https://academic.oup.com/jamia/article-lookup/doi/10.1093/jamia/ocad063#supplementary-data
https://academic.oup.com/jamia/article-lookup/doi/10.1093/jamia/ocad063#supplementary-data
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Training

Group A

GBTM 2.04 (1.44−2.88)

HC 1.89 (1.27−2.82)

PAM 1.68 (1.16−2.42)

Group B

GBTM 0.95 (0.57−1.57)

HC 1.21 (0.78−1.88)

PAM 0.8 (0.51−1.27)

Validation

Group A

2.26 (1.46−3.49)

2.38 (1.46−3.87)

2.24 (1.4−3.61)

Group B

1.99 (1.11−3.57)

1.64 (0.94−2.87)

1.58 (0.91−2.73)

Group C Group C

GBTM

HC

PAM

GBTM 1.5 (1.07−2.09)

HC 1.33 (0.95−1.86)

PAM 1.22 (0.86−1.71)

0

Group D

1 2

Odds ratio

1.88 (1.22−2.89)

1.69 (1.09−2.61)

1.74 (1.12−2.72)

3 1

Group D

2

Odds ratio

Model

GBTM

3 DTW−HC

DTW−PAM

Figure 4. Odds ratio of 30-day mortality in the training and validation cohorts. Presented are the odds ratio (OR) of 30-day mortality in a logistic regression model
adjusting for demographics and comorbidities, with group C  as the reference subphenotype. The results are presented for the 3 models in the training and valida-tion
cohorts. Group A  had higher 30-day mortality in all 3 models in the training and validation cohorts. Group D had higher 30-day mortality in the GBTM model in both
training and validation cohorts, and only in the validation cohort in the DTW-HC and DTW-PAM models. DTW-HC: dynamic time warping-hierarchical clus-tering;
DTW-PAM: dynamic time warping-partition around medoids; GBTM: group-based trajectory model.

metrics of model performance using associations with clinical out-

comes and treatment responses. The most important finding was

that all 3 algorithms found consistent subphenotypes with 71–80%

agreement in classification using longitudinal vital signs. The 4 sub-

phenotypes were: group A—higher temperature, heart rate, and res-

B had the highest dialysis requirement. Group C had the lowest ICU

requirement. These outcomes were similarly distributed in the vali-

dation cohorts in all 3 models. Additionally, all models discovered

the same subphenotype (group D) in RCT data with significant ben-

efit from balanced crystalloids. Intravenous fluids are one of the
piratory rate, and lower blood pressure; group B—higher most common interventions in sepsis, but after multiple RCTs

temperature, heart rate, and respiratory rate (although not as pro-

nounced as group A), and high blood pressure. Group C—relatively

lower temperature, heart rate and respiratory rate, and normal

blood pressure. Group D—relatively lower temperature, heart rate,

respiratory rate, and the lowest blood pressure. The trajectory

shapes for these subphenotypes were consistent in both the training

and validation cohorts in all 3 models.

Internal metrics of model performance were compared using
mean squared error and Davies–Bouldin index, without a consistent
“winner”. Both DTW algorithms had lower mean squared error
compared to GBTM, with DTW-PAM having the lowest mean
squared error. However, GBTM had the lowest Davies–Bouldin
index, suggesting reduced within cluster separation and increased
between cluster separation. DTW offers the advantage of identifying
unrestricted trajectory shapes, while GBTM is restricted to the speci-

fied polynomial function.13,15     This potential advantage likely
resulted in lower mean squared error for the DTW models. How-
ever, this advantage may be offset by the computational cost of
DTW, especially if there is no additional benefit in clinical metrics of
model performance. DTW operates on quadratic time and
requires the pairwise comparison of all patients in the training
cohort—resulting in the building of a 12 473 by 12 473 distance
matrix for this study’s training cohort. With larger datasets, this

type of model building may not be feasible.26

The subphenotypes had similar clinical outcomes and treatment

responses in all 3 models, with groups A and D having the highest

mortality, and the highest vasopressor and ICU requirement. Group

enrolling over 35 000 patients, there is still uncertainty in what type
of intravenous fluids (balanced crystalloids vs saline) should be

given to which patients.27 In our study, all 3 models found that
group D had a number needed to treat with balanced crystalloids of
6–8 patients for a reduction in 30-day mortality. This is a significant
clinical finding, and suggests that regardless of computational
approach, there may be an underlying physiological pattern that can
inform clinical practice and portends a significant mortality benefit
from balanced crystalloids.

Despite differences in internal model fit metrics, the consistency

in trajectory shapes, clinical outcomes, and responses to treatments

suggest similar clinical performance in the 3 algorithms. For high

frequency oscillating data such as continuous vitals monitoring,

DTW’s unrestricted shape may be advantageous in identifying dis-

tinct latent subphenotypes that GBTM would not be able to identify.

Additionally, for data over a longer observation window, DTW’s

nonlinear temporal warping and matching may identify patterns

that would otherwise be missed with GBTM. For sparse clinical

measurements over a short observation window such as the data

used in our study, we recommend GBTM given its parsimony and

relative computational simplicity. The appropriate time series clus-

tering algorithm for different critical care settings requires further

research.

The study had several limitations. First, the 3 algorithms eval-

uated are in no way comprehensive, and represent a small portion of

the growing number of multivariate time series clustering algorithms

available; some of these algorithms may identify consistent
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Figure 5. Odds ratio of 30-day mortality with balanced crystalloids compared to saline. Presented are the odds ratio (OR) of 30-day mortality in patients in each
subphenotype treated with balanced crystalloids compared to saline across the 3 models (GBTM, DTW-HC, and DTW-PAM). All 3 models showed significant het-
erogeneity of treatment effect (P <  .05), and group D had a significantly lower OR of mortality with balanced crystalloids compared to saline in all 3 models
(GBTM—OR 0.42, 95% CI 0.24–0.72, P ¼  .002; DTW-HC—OR 0.49, 95% CI 0.29–0.82, P ¼  .006; DTW-PAM—OR 0.49, 95% CI 0.29–0.81, P ¼  .005). Since the entire
confidence interval for group B  could not be presented in the figure, the arrow signifies that the confidence interval extends beyond the presented axis. DTW-HC:
dynamic time warping-hierarchical clustering; DTW-PAM: dynamic time warping-partition around medoids; GBTM: group-based trajectory model.

subphenotypes while others may discover distinct latent subpheno-

types. Second, all hospitals in the study were within a single health

system. Third, missing vitals data were present since the data were

collected as clinically indicated, which may have introduced inaccur-

acies in subphenotype membership assignment.

This study is the first of its kind to compare multiple multivariate

time series clustering algorithms in identifying subphenotypes of

patients with infection. The findings of this study provide important

insights for investigating dynamic subphenotypes in critically ill

patients. The results suggest that time series clustering can be used

internal metrics of clustering fit, and external metrics of association
with relevant clinical outcomes. Additionally, selecting the optimal
model should take into consideration implementation factors such
as model parsimony, computational expense, and feasibility for real-
time patient subphenotyping.
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