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ABSTRACT

Sensor fusion combines data from a suite of sensors into an integrated solution that represents the target environ-
ment more accurately than that produced by individual sensors. New developments in Machine Learning (ML)
algorithms are leading to increased accuracy, precision, and reliability in sensor fusion performance. However,
these increases are accompanied by increases in system costs. Aircraft sensor systems have limited computing,
storage, and bandwidth resources, which must balance monetary, computational, and throughput costs, sensor
fusion performance, aircraft safety, data security, robustness, and modularity system objectives while meeting
strict timing requirements. Performing trade studies of these system objectives should come before incorporating
new ML models into the sensor fusion software. A scalable and automated solution is needed to quickly analyze
the effects on the system’s objectives of providing additional resources to the new inference models. Given that
model-based systems engineering (MBSE) is a focus of the majority of the aerospace industry for designing
aircraft mission systems, it follows that leveraging these system models can provide scalability to the system
analyses needed. This paper proposes adding empirically derived sensor fusion RNN performance and cost mea-
surement data to machine-readable Model Cards. Furthermore, this paper proposes a scalable and automated
sensor fusion system analysis process for ingesting SysML system model information and RNN Model Cards for
system analyses. The value of this process is the integration of data analysis and system design that enables
rapid enhancements of sensor system development.
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1. INTRODUCTION

Sensor fusion and sensor fusion architectures have been researched for many decades'™ and continuous advance-
ments have been made as sensors, computational power, fusion algorithms, and the collection of data improve
in performance and capability. Currently, one of the fastest growing segments in sensor fusion is in Machine
Learning (ML) and Deep Learning (DL) algorithms. DL is becoming the leading approach compared to previous
classical methods in time-series prediction algorithms as shown by the performance of Recurrent Neural Network
(RNN) based approaches in the M5 competition.” These large ensemble DL algorithms consume large amounts
of computational resources when forecasting. This is not a problem with scalable compute resources, but the
ability to run these models on a resource-limited system, such as aircraft or automobiles, may not meet system
timing requirements. When considering sensor fusion solutions for resource-limited systems, choosing the best
sensor fusion method is more than selecting the model with highest accuracy and precision.® Sensor system
software designs need to estimate the resource needs of new sensor fusion models as they are developed and
before they are implemented. The speed of developing software and new sensor fusion models will continue to
outpace hardware upgrades. Therefore, system analysis and design of these limited-resource systems must keep
pace with rapid releases of new DL sensor fusion architectures, algorithms, and models.

Safety of flight, system robustness, security, openness, and system modularity objectives are considerations
for system analysis and design. Model-Based Systems Engineering (MBSE) is a practice that is focused on
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building model-based designs capable of complex trade studies. MBSE has been shown to provide significant
advantages to project performance”® for complex systems. The system development, qualification, verification
and validation, and trade studies were more efficient while using MBSE. The Systems Modeling Language
(SysML) has become the ubiquitous MBSE language in the aerospace industry and if these SysML system
models become the Authoritative Source of Truth (ASoT) for aircraft system specifications, then it is imperative
that models contain the information needed for sensor system analyses. This information needs to delivered in
a standardized machine-readable format or API for future analysis scalability. In addition to the need for a
standardized SysML system model API, DL models need to have machine-readable data, or Model Cards,? to
enable the automation of and to integrate sensor fusion DL algorithm development with system analysis and
design (i.e. close the feedback loop). These DL Model Cards need to contain quantitative data of the sensor fusion
performance (accuracy, precision, reliability, latency, etc) and the resource costs (CPU cycles/speed, volatile and
non-volatile memory, data size and rates, etc).

The goal of this paper is to evaluate a scalable and automated process we developed that easily passes sensor
fusion model information back to system analysis and design through the use of SysML system models and DL
Model Cards. We refer to this as the sensor fusion system analysis process in this paper. This process is executed
on a case study to evaluate its usefulness. The goal of the case study is to choose the best sensor fusion model for
a limited-resource system using pre-trained RNN-based sensor fusion models. An objective function scores the
performance of four models as a function of network throughput, model inference latency, data pre-processing
latency, accuracy, generalization, and volatile and non-volatile memory consumed. A SysML sensor system model
provides system specifications, while the pre-trained DL models provide the performance and cost measurements
for the Model Cards. The DL model will be chosen based on the input from the SysML model and the Model
Cards and the output of the objective function. The novelty here is the scalable and automated process that
uses the machine-readable RNN Model Cards and system input from a SysML model for system analysis and
design.

Section 2 summarizes previous work applying Machine Learning (ML) to sensor fusion and the application
of Model Cards to ML. Section 3 describes the proposed extension to Model Cards for RNN-based sensor fusion
models on resource-limited systems. Section 4 describes the use case and the application of the sensor fusion
system analysis process. We then present the results and discuss them in Sections 5 and 6, respectively. Lastly,
we present our conclusions and outline directions for future work in Section 7.

2. RELATED WORK

This section reviews several applications of ML to sensor fusion and time-series forecasting. Specifically Sec-
tion 2.1 reviews three different methods used for sensor fusion and time-series forecasting and highlights the
need to share quantitative model performance and cost information with the sensor fusion industry for analysis
on limited-resource systems. Section 2.2 discusses the current methods for delivering AI/ML model, data, and
service information to the consumers of these products in a responsible manner. This section notes the lack of
standardization in the delivery of this information and lack of machine-readable formats being proposed.

2.1 ML in Sensor Fusion

The first application of ML to sensor fusion applications reviewed in this paper is for an autonomous driving
vehicle which should be a resource-limited system. Howard and Lewicki'® utilized RNNs for sensor fusion in
an autonomous driving vehicle, which increased certainty in the recognition, localization, and prediction of
surrounding objects. This application used model performance to compare four different RNN-based approaches
for sensor data fusion. However, this paper did not mention the resource cost.

Ensemble methods of layered RNNs and Convolutional Neural Networks (CNNs) are increasing the perfor-
mance and accuracy over basic ML algorithms. The DeepSense framework!! uses layers of CNNs and RNNs
together for sensor data fusion on embedded devices and also measure its performance and system costs. Yao
et al.'' noted an acceptable system trade-off of accuracy for energy on their battery-powered systems, where
an acceptable degradation in accuracy consumed less energy. The results of this study provided latency and
energy consumption for their inference model on two resource-limited devices, however it is not mentioned if
these specifications are provided with the models in something similar to Model Cards. The absence of Model



Cards makes it difficult for anyone to use or analyze the applicability of these pre-trained models on their system
without any guidance. The latency of the DeepSense!! CNN models were on the order of 100 milliseconds on a
Nexus 5 mobile phone, while the random forest model took on the order of 300 milliseconds on an Intel Edison
and about 50 milliseconds on the Nexus 5.

On the other end of the spectrum from the mobile capable DeepSense model, the DeepAR'? models are
large, ensemble, time-series forecasting algorithms and predictions take on the order of tens of minutes when
running on a single p2.xlarge AWS EC2 compute instance with 4 CPUs and 1 GPU. This specific RNN-based
model is not used for sensor fusion, but this type of predictive inference may be valuable on aircraft or other
resource-limited devices in the future. Therefore system performance, cost, and latency would be good additions
to Model Cards. Additional system analysis is needed as DL techniques become more advanced and the aerospace
industry starts adopting them. This highlights that the application of DL models for sensor fusion systems are
missing a standardized specification for model performance and cost in a machine-readable format.

2.2 Model Cards

This section compiles the previous work done toward the responsible use of AT/ML models in the commercial and
government industries. There are many papers that comment on the need for a standardized set of meta-data
to ship with any pre-trained AI/ML model to engender trust. As stated in Richards et al.,'® recent work has
outlined the need for increased transparency in Al for data sets,'* 16 models,” and services.'®'” Furthermore,
Arnold et al.'” envision this meta-data in FactSheets to contain purpose, performance, safety, security, and
provenance information to be completed by AI service providers. Additionally, Richards et al.'® describe a
general methodology for creating FactSheets however, they fail to take the next step to provide a machine-
readable format or schema to help automate ingest of the meta-data created by software applications.

Mitchell et al.” developed Model Cards as a step towards the responsible democratization of ML and related Al
technology and increased transparency. They recommend a benchmark evaluation in a variety of conditions, such
as different cultural, demographic, or phenotype groups that are relevant to the intended application domains.
Mitchell et al.? discuss that Model Cards should be standardized and we intend to start this standardization
process for RNN-based ML models.

Gebru et al.'® developed Datasheets for Datasets that focus on the characteristics of ML data sets since
these fundamentally influence the model’s behavior. These Datasheets aim to provide data provenance for the
ML community and increase the standardized processes for documenting ML data sets. The Dataset Nutrition
Label'% also focuses on data provenance to mitigate concerns of bias, safety, and security. Data provenance has
significant safety impacts as it pertains to sensor fusion models used in aircraft. Mitchell et al.? also recommends
using Datasheets as a complement to Model Cards which is also our goal in this paper.

Blasch et al.'® provides guidance for ranking/scoring AI/ML models for intended system evaluations in the
Multisource AI Scorecard Table (MAST) for System Evaluation, however, like the other papers, it does not
directly address ML costs for resource-limited systems.

Model Cards and Factsheets overlap and focus on purpose, performance, safety, security, transparency, and
responsible use. In this paper, we extend these concepts to include system costs to analyze ML model’s impact
on resource-limited systems.

3. MODEL CARD EXTENSION

This section describes the current work that builds on previous work accomplished on Model Cards, Datasheets,
Nutrition Labels, FactSheets, and MAST by extending them to include quantitative meta-data for system-level
analysis of resource-limited systems. We also begin the process of combining these efforts into machine-readable
Model Card formats in an effort toward standardization and automation.



3.1 RNN Meta-Data

The Model Card extension in this paper will focus on performance and system cost measurements of RNN-based
ML models. This is work done toward the goal of generalizing these quantitative measurements for all ML
algorithms eventually. The concepts developed here will be applicable to other ML, Model Card extensions, such
as other Neural Networks (NN), regression, Random Forest, Bayesian, K-means, Ensemble methods, etc. Table 1
includes the performance and cost measurements suggested for this extension and other key quantities from the
previous work we’re building on. These quantities are broken into six main categories: RNN properties, data
pre-processing properties, model Datasheet, training metrics, bootstrap aggregation (or bagging) metrics, and
benchmark metrics.

Table 1: RNN Quantitative Model Card Extension Properties

NAME DESCRIPTION
RNN algorithm Name of the RNN algorithm implemented
Model Name Custom field to name the approach/method

RNN Properties

Number of Inputs Number of inputs for RNN

N Outputs Number of outputs of RNN

Hidden Units Number of RNN hidden units

RNN Layers Number of RNN layers

Sequence Length RNN sequence length (Number of previous time steps used in prediction)
Learning Rate RNN optimizer learning rate

Optimizer RNN optimizer

Data Pre-Processing Properties

Preprocessor Name Data preprocessor file name

Preprocessor Location URL or network location available to users

Input Data Frequency Frequency of input for RNN

Input Variables List of input variable names used to train the model
Output Variables List of output variable names used to train the model

Model Datasheet

Data Set Location URL or network location available to users
Train Files List of file names used to train the model
Test Files List of file names used to test the model
Validation Files List of file names used to test the model

Training Metrics

Test MSE,, Normalized Mean Squared Error on test data set

Test MSE Mean Squared Error on test data set (non-normalize)

Test Error Max Max error on test data set (w/Units)

Test Error Min Min error on test data set (w/Units)

Test Error Mean Mean error on test data set (w/Units)

Test Error Std Standard deviation of error on test data set (non-normalized)
Error Units Non-normalized value units

Training MSE Normalized Mean Squared Error on training data set
Validation MSE Normalized Mean Squared Error on validation data set

Bagging Metrics

N Bootstrap Loops Number of Bootstrap loops for aggregation

File Replacement Boolean to indicate there was file replacement or not

Test mean MSE Mean of the Normalized Mean Squared Error on bootstrap test set
Bagging Model Cards List of model card files used in bootstrap loops

Benchmark Metrics

Device Name Custom name for devices used on benchmark

Device Specifications URL or network location of benchmark device specifications
Benchmark Files List of files used to generate performance and cost

Inference Latency Time in microseconds to run inference on benchmark data set
Preprocessor Latency Preprocessor latency on the benchmark data set

Volatile Memory Usage Volatile memory (MB) allocated to preprocessor and model
Non-Volatile Memory Usage Size of Non-Volatile memory (MB) of preprocessor and model
Data Throughput Amount of data flowing across networks for this model’s input
Validation MSE,, Normalized Mean Squared Error on test data set

Validation MSE Mean Squared Error on the test data set (w/Units)
Validation Error Max Max error on test data set (w/Units)

Validation Error Min Min error on test data set (w/Units)

Validation Error Mean Mean error on test data set (w/Units)

Validation Error Std Standard deviation of error on the test data set (w/Units)




The Datasheet, pre-processing, training, and bagging categories provide details of the provenance of the
raw data as it is processed, trained on, and tested with. This also creates the provenance of the model. These
categories together capture the equivalent of what Booth and Ghosh refer to as a DL approach.'? A DL approach
is the end-to-end process from raw data, through data processing, to model training and selection. This DL
approach replicates what must happen in real-time sensor fusion models from raw data to model prediction.
Providing training, testing, and validation accuracy provides an indication of the model’s ability to generalize
well which adds additional transparency to these models.

The RNN properties are the hyperparameters and other basic properties used to train the RNN model. The
bagging metrics represent best-practices in ML training to remove the stochastic error from noisy data sets when
measuring performance.?® The benchmark section quantifies the model performance and cost on benchmark
devices toward the estimation of these values on the targeted system. Ideally, this data would be measured on
a device representative of the targeted system.

3.2 Model Card Format

There are numerous machine-readable formats and we will not attempt to cover even a fraction in this paper.
However, when making a choice about the format, we recommend that the Model Card format needs to be
a common and open standard with a broad range of well-supported libraries in multiple languages. We only
explored 2 different machine-readable Model Card formats during this effort for conciseness. The first format
embedded the Model Card into the PyTorch class object itself. The standard PyTorch library is widely available,
common, open-source, and Python is currently the most used software language.?! Embedding the Model Card
in the object class guarantees the information doesn’t get separated from the RNN model itself, however as
Python libraries and PyTorch, specifically, is updated it may break backward compatibility with previously
created object classes and render these model cards unreadable. For this reason, we explored defining a common
schema file for model cards as a backup and for storage in future data catalogs for ML models. The YAML
format is the second machine-readable format used in this study. YAML files are more human-readable than
XML, have a wide variety of libraries in different languages, and are commonly used. More specifically, for this
study, Python will be used as the analysis tool and provides at least two YAML libraries, 1 of which is currently
supported. An example Model Card extension YAML file is located in Appendix A.

4. APPROACH

This section describes the sensor fusion system analysis process and how it integrates ML model development
into system analysis and design. Section 4.1 describes the case study used to evaluate the implementation of this
analysis process. Section 4.2 will describe the SysML model built to provide data for the analysis. Section 4.3
describes the objective function and analyses developed for this case study.

Figure 1 shows the sensor fusion system analysis process being evaluated in this paper. For clarity, this is the
SysML process model and is separate from the sensor system SysML model (i.e. SysML system model). This
figure shows a SysML Query that reads SysML Model Information from the Sensor System SysML Model and
writes the system specifications and data to a SysML system Model Card YAML file (e.g. Appendix B) that
will be read by the Sensor Fusion Model Evaluation and Sensor Fusion Model Development applications. The
Sensor Fusion Model Development application represents the model selection process of the previous study'®
that generated the RNN models used in this study. For this case study, the Sensor Fusion Model Development
reads the SysML Model Card, loads the previously trained RNN models, evaluates the models on a benchmark
PC, and creates an RNN Model Card (e.g., Appendix A) for each of the models. After the RNN Model Cards
are created, the Model Card Ingest application reads in each RNN Model Card and provides the information to
the Sensor Fusion Model Fvaluation analysis application. This application executes an Analysis of Alternatives
(AoA) application based on the system objective function, then executes a Monte Carlo analysis application to
return the distribution of possible objective function values given a range of random objective variable values.
The results of these analyses provide information back to the system engineers that will modify the SysML
system model, as the ASoT, which will inform the next iteration of sensor fusion software development.

In a production environment the SysML system model would also provide hardware, software and data
specifications to a team of system developers that would build or update the physical sensor system, as shown



in the grey boxes in Fig. 3. Once the physical sensor system has been built and generates data, the data will be
loaded into a Data Warehouse where the Sensor Fusion Model Development could begin or continue to iterate
on a solution.
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Figure 1: SysML internal block diagram (ibd) of the system analysis process

4.1 Case Study

In this case study an RNN sensor fusion model is used for predicting the aircraft’s altitude from a set of 26
multi-modal and multi-sensor inputs. A SysML system model was built to provide the data specifications of the
sensor system. SysML system models generally provide more than this, however, this model was limited in scope
for the purpose of this case study. We use RNN models pre-trained on a publicly available NASA data set,??
from a previous sensor fusion study,'® to evaluate the sensor fusion system analysis process. The NASA data
was recorded onboard multiple aircraft with the same sensor suite of a single type of regional jet operating in
commercial service. The data files contain detailed aircraft dynamics, system performance and other engineering
parameters captured on the data recorder.

The SysML system model provides the data size (bits) and update rate (Hz) of each variable in the system.
The RNN Model Card of each pre-trained model lists the input and output variables used. Each pre-trained model
has different RNN variables that affect the system cost while running. Table 2 shows the RNN hyperparameters
for each model that could also contribute to additional resource costs. For instance, a sequence length of 16
requires 16 of the previous time steps to be stored and used to predict the altitude at the next time step. This
could increase the volatile memory resources needed and possibly affect the inference latency. Also, larger RNN
hidden units could possibly increase the volatile memory used during model predictions. More RNN model inputs
could directly increase the amount of throughput resources consumed by the model. However, throughput is a
function of variable sizes and update rates, so the impact to system resources depend on variable size and rate.



Table 2: Top 4 models from the GD-MAGS example!”

DL N Seq. Hidden
Approach Inputs Length  Units
Base-+RemoveVar 23 16 20
Baseline 26 8 25
Base+Outlier 26 4 25
Base+RemoveVar+Model 24 8 15

The RNN pre-trained models were trained by an LSTM algorithm using an ADAM optimizer implemented in
PyTorch. This is the baseline for each of the DL approaches originally created to test GD-MAGS methodology'?
on this same NASA data set. Fig. 2 shows the results of the GD-MAGS evaluation. This figure show the bagging
average Mean Squared Error (MSE) for the top four pre-trained models selected from the previous study.!?
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Figure 2: Top four DL approaches from GD-MAGS study!?

4.2 SysML System Model

We built a generic SysML system model to represent a possible sensor architecture for the NASA data set. A
SysML internal block diagram (ibd) of this system is shown in Fig. 3. This system contains two serial buses
(BUS1 and BUS2), five sources of sensor and flight data, one pilot display, and one mission computer. The
mission computer contains the sensor fusion software and the pilot display shows the pilot the predicted altitude
from the sensor fusion model. This figure also labels the data flowing between the computers, sensors and display
across the two buses. This SysML system model also defines the composite data signals flowing across these
buses shown in Fig. 4. Fig. 4a shows a SysML block definition diagram (bdd) of the decomposition of the BUS
1 and BUS 2 sensor data. Fig. 4b shows a bdd of the data further decomposed into individual data elements
from the NASA data set. The data elements are defined by signal frequency and element size in bits. The data
information was extracted from this SysML system model to build the SysML Model Card YAML file shown in
Appendix B. This SysML Model Card YAML file is used to calculate the RNN Model Card’s throughput cost.

4.3 Analysis

Two simple, but representative, system analysis applications were created and executed on this case study to
evaluate the effectiveness of our sensor fusion system analysis process. The first analysis is an AoA developed
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Figure 3: SysML internal block diagram (ibd) of the sensor system

for this case study which presents five different alternative scenarios for an aircraft sensor system. The second
is a Monte Carlo analysis that looks at a random distribution of 10,000 different scenarios to see the range of
objective function performance for each model on the system.

We created the objective function defined in Eq. (1) for this case study to score each model’s system per-
formance and cost. Lower values of this objective function indicate a better score. BenchMSFE is the Mean
Squared Error of the model on the benchmark data, GenM SE is a measure of the model’s ability to generalize
well and is calculated by Eq. (2), where M SFE,,, is the bagging MSE average during the bootstrap testing
phase. Infer is the model inference latency, Preproc is the data pre-processing latency, Throughput is the
system data throughput required for the sensor fusion model, vMem is the volatile memory consumed during
inference, nvMem is the non-volatile memory needed to store the static model. Each of these quantities are
multiplied by coefficients C7 - C7 to modify the weight each quantity has on the objective function. These 7
coeflicients must always add up to 1.

fz) = Z(ClBenchMSEn, CyGenM SE,,CsInfer,, CyPreproc,, CsThroughput,, CsvMem,,, ConvMem,)
1)

GenMSE = |MSE,,, — BenchM SE)| (2)

All performance and cost variables were normalized in Eq. (1), as indicated by the ,, using the Min-Max
Scaling method shown in Eq. (3). Where min(z) is the minimum value across each of the four models, max(x)
is the maximum across the four models, z is the original model value and 2’ is the normalized value on a scale
of [0,1]. Normalization reduces number biases of very large or very small objective function variables.

;o —min(z)
v max(x) — min(z) ®)

We developed five different scenarios for the AoA and estimated the seven weighted coefficients for each of
them. Fig. 5 shows a plot each of the seven weighted coefficients values for each of the five different scenarios. The
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Figure 4: SysML block definition diagrams (bdd) of the data model

first scenario is one in which the aircraft has practically unlimited resources and therefore the MSE and GenMSE
are weighted the most heavily, inference and pre-processing latency are still important, but weighted less than
MSE. Resource costs were weighted at almost zero. The second scenario is one in which all of the current sensor
fusion models meet or exceed the overall system tolerance for accuracy. This means that additional accuracy in
the model is shadowed by poor accuracy elsewhere in the system. This scenario weighs the MSE and GenMSE low
while weighing inference and pre-processing speed higher since there are still timing requirements to meet. The
third, fourth, and fifth scenarios are ones in which the throughput, volatile memory, and non-volatile memory,

respectively, are near their constrained limits and are each weighted high.

The Monte Carlo analysis for this case study operates on the same principle as the AoA. However, for each
Monte Carlo run a random weight was assigned to each of the seven coefficients and they were normalized to
sum to one. The objective function was calculated for this run and this was repeated for 10,000 runs to capture

the distribution of performance scores possible for each model.
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5. RESULTS

The sensor fusion system analysis process described in Section 4 was implemented and executed in Python. First,
an example NASA data file was chosen that was not part of the training, testing or validation that happened in
the original study'® that produced the four DL approaches used in this case study. Next, a SysML sensor system
model was created and all of the data variables used in each of the DL approaches were modeled and allocated
to the appropriate sensors, computers, displays, and serial bus traffic. This SysML data model informed the
creation of the SysML Model Card yaml file. Unfortunately, this was done manually since the SysML v2 (beta)
API query tool implementation was not complete by the time this study was done.

After the SysML Model Card was defined and the DL approaches were prepped, each RNN sensor fusion
model was run through a series of inference test loops to measure and record the quantities needed for the RNN
Model Card. We measured each inference event and repeated this 3 times to get average performance and cost
measurements for the RNN Model Cards. The previous performance metrics and data used to train, test and
validate these DL approaches initially was captured and recorded in the model object class by the previous
study.!? This data was extracted from these object classes and recorded in the RNN Model Card yaml files.
Unfortunately, not all the data listed in the current RNN Model Cards were captured in this previous study so
some values are blank/null in the example file. The lack of data did not affect this study, but a completed Model
Card is recommended for future and more complex studies.

The next two sections summarize the results from the AoA and the Monte Carlo analysis using these RNN
Model Cards and the SysML Model Card as inputs. These analyses are automated and can produce new results
anytime changes to either of these two input files are made.

5.1 Analysis of Alternatives

Once the SysML and RNN Model Cards were created they were read in and each performance and cost mea-
surement was normalized using the Min-Max Scaling method listed in Eq. (3). This normalized each value on
a scale of 0-1. The set of coefficients for each AoA scenario shown in Fig. 5 and described in section 4.3 were
used as inputs to the objective function (Eq. (1)) and the results are shown in Fig. 6b. The objective function
is a discrete minimization function, meaning lower values are better. These values represent system costs which
should be minimized and also sensor fusion error which should also be minimized. Fig. 6a is the same data
as Fig. 2, but was placed next to Fig. 6b to highlight the differences in relative performance when additional
performance and cost measurements are considered. In Fig. 6b the Unlimited Resources scenario is plotted in red
and closely resembles the plot in Fig. 6a that shows the relative performance based solely on MSE. This indicates
that the Base+RemoveVar DL approach is still the best model for this scenario. Fig. 6b also shows that the
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Base+Remove Var+Model model is the best model for the second scenario where all models meet or surpass the
system MSE tolerance. This indicates that when system costs are the driving factors and other areas of your
system limit your accuracy, then models that require fewer resources are the best choice. The other scenarios
indicate a similar trend that shifts the focus away from performance measures alone for selecting DL approaches
for sensor fusion. Fig. 6b also shows a trend that each model has its own distribution of objective function values
with the spread of different coefficients used in each scenario. This observation leads to a Monte Carlo analysis
to quantify the relative performance distribution of these four models in any random scenario.

5.2 Monte Carlo Analysis

The Monte Carlo analysis begins where the AoA left off. The AoA only considered five different, but specific,
scenarios, while this analysis is focused on the statistical quantities of 10,000 different random scenarios. This
Monte Carlo analysis varied the weight coefficients randomly for each of these different scenarios and plotted
each scenario in Fig. 7Ta. This figure shows a similar view as Fig. 6b except includes all 10,000 scenarios. Fig. 7b
is a plot of the distributions of the objective function values for each of the four models. It is easy to see that
the Base+RemoveVar model outperforms the other models on average when measured by the objective function.
This happens to line up with comparing these four models on MSE performance alone as well. However, the
Base+Remove Var+Model model is a close second place on average which does not line up with MSE measure-
ments alone. The other two models have almost identical distributions and may result in very little performance
difference between the two if selected for a sensor fusion system.

6. DISCUSSION

The objective function used in this case study may not necessarily be the most ideal equation. The results shown
in the Monte Carlo distribution plots show that this equation and distribution of coefficients drastically favors



the RemoveVar function out of the four models. This may indicate a bias towards these DL approaches with
fewer variables, which end up affecting multiple other objective variables such as throughput, pre-processing,
and volatile memory. However, the system analyst must decide what objective variables are important to their
specific system and write the objective function accordingly.

The SysML Model Card was not the focus of this paper and the manual creation of the SysML Model Card in
this study is not scalable. However, it was a useful machine-readable file that provided the ability to evaluate the
rest of the sensor fusion system analysis process. The current SysML version (1.6) has many advantages, however
interfaces to SysML are currently tool dependent and not standardized. The updated SysML v2 language beta
and SysML v2 Application Programming Interface (API) beta specifications could be foundational this effort by
providing a standard machine-readable interface for system models.?3

In this paper our intention was to start the Model Card standardization process RNN-based ML sensor fusion
models. We realize this may not be the final answer, but we recognized that progress needed to happen in this
area and decided to release our progress to date. These additions to Model Cards provide additional and future
possibilities toward storing Model Cards in a data library to read in quickly and iterate on analyses. This is the
scalability and automation that will greatly improve sensor fusion system analysis.

A Model Card library would make searching for models with certain characteristics for specific uses relatively
easy. You could analyze this Model Card library to see where there are gaps in your modeling which could
drive development of new and specific models. If developed correctly and for very specific purposes, models
could become analogous to software micro services that are optimized to perform very specific tasks. A Model
Card catalog of these micro-service MLL models would enable a designer or developer to choose from and deploy
models with accurate estimates of their performances and cost metrics. These ideas, while somewhat fanciful,
need enabling technologies and we believe this extension to Model Cards will provide a step in that direction.

7. CONCLUSION

The results shown in this paper indicate accuracy performance measurements provide an adequate estimation of
overall model performance for systems with scalable resources. However, it is easy to see that resource-limited
systems must consider both performance and cost measurements when analyzing model performance. This
observation reinforces the need to perform system analyses on sensor fusion models. Sensor fusion algorithm
development and performance will continue to accelerate and drive the need to provide a scalable and automated
system analysis process. This paper has shown that this process benefits from standardized, machine-readable,
and quantitative ML, Model Cards in addition to machine-readable SysML system model specifications.

The novelty in this paper is the addition of system resource costs in machine readable RNN Model Cards for
system analysis of sensor fusion models with the input of machine-readable SysML system specifications. These
novel contributions are the enabling technology that supports rapid iterations and incremental improvements of
sensor fusion algorithm development, system analysis and design, and sensor fusion model implementation.

Future work will focus on more advanced analyses and optimizations on this open sensor fusion system and
more complex systems. This will most likely drive improvements and updates to the proposed RNN Model Card
as additional analyses require changes. Future work could also add more ML algorithm specific Model Cards
such as CNN or ensemble networks and lead to a generic ML Model Card schema where each ML Model Card
overlaps. The current RNN Model Card yaml example and future improvements are on GitHub?* to encourage
collaboration and provide iterative updates to the community. Additional Model Card improvements will also
be directed at increased statistical analysis of the training, testing, and validation data sets to quantify the
differences between the training and the testing and validation data sets. At a minimum, this should include
statistical quantities comparing these datasets such as Z-Test, T-Test and Analysis of Variants. SysML v2 and
its API will also be the focus of future work to better automate this system analysis and design process.
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APPENDIX A. RNN MODEL CARD EXTENSION YAML EXAMPLE

rnn-based_model_card:
name: Base+removeVar
RNN_algorithm: LSTM
model_metrics:
RNN_properties: {epochs: 3500, hidden_units: 20, learning_rate: 0.0007, n_inputs: 23,
n_outputs: 1, sequence_length: 16}
input_data_frequency: 16
input_variable_names: [time, RALT, PSA, PI, PT, ALTR, IVV, VSPS, FPAC, BLAC, CTAC,
TAS, CAS, GS, CASS, WS, PTCH, ROLL, DA, TAT, SAT, LATP, LONP]
model_datasheet:
testing_files: [687200107241524.parquet, 687200104301119.parquet,
687200104261527 .parquet, 687200104181334.parquet, 687200107301239.parquet,
687200104170717 .parquet, 687200107170234.parquet]
testing_files_location: /mnt/SPIE/ml-model-cards/data
training_files: [687200107101600.parquet, 687200107060930.parquet,
687200107192334 .parquet, 687200107150546.parquet, 687200107311025.parquet,
687200107181544 .parquet, 687200104162039.parquet, 687200104202027 .parquet,
687200107251652.parquet, 687200104181127.parquet, 687200107251002.parquet,
687200107122323.parquet, 687200107171131.parquet]

training files_location: /mnt/SPIE/ml-model-cards/data
validation_files: [687200107101623.parquet, 687200107060931.parquet,
687200107181541.parquet, 687200104162032.parquet, 687200104202023.parquet,
687200107192330.parquet, 687200107150549.parquet]
validation_files_location: /mnt/SPIE/ml-model-cards/data
output_variable_names: [ALT]
performance:
test: {MSE: 389.1024435718944, MSE_norm: 1.0885067922572489¢e-06,
mean_error: 8.00731361488409, min_error: 0.0, std_error: 29.48358127688793,
max_error: 421.5643005371094, units: ft}
train: {MSE: 15.48635814304236, MSE_norm: 3.140855255878705e-07,
mean_error: 13.48635814304236, min_error: 0.00018310546875,
std_error: 14.29056638518885, max_error: 89.2213134765625, units: ft}
validation: {MSE: 386.1021435718944, MSE_norm: 4.5026759064453724e-07,
mean_error: 13.48635814304236, min_error: 0.00018310546875,
std_error: 14.29056638518885, max_error: 160.2213134765625, units: ft}
bagging metrics:
model_datasheet: {dataset: null}
n_bootstrap_loops: 3
performance:
testing: {max_MSE: null, mean_MSE: 2.933555492745654e-06, min_MSE: null,
std_MSE: null}
training: {max_MSE: null, mean_MSE: 1e-07, min_MSE: null, std_MSE: null}
validation: {max_MSE: null, mean_MSE: null, min_MSE: null, std_MSE: null}
properties: {N_bootstrap_datasets: 3, replacement: false}
benchmark:
dataset: {location: /mnt/SPIE/ml-model-cards/data, name: example_flight.parquet}
devicel:
device_ID: 1
name: CovidPC
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RAM:
CAS_latency: 16
first_word_latency: {speed: 8.889, units: ns}
size: 32
speed: 3600
units: GB
voltage: {units: V, value: 1.35}
processor:
LiCache_Data: {units: kB, value: 192}
LiCache_Instruction: {units: kB, value: 192}
L2Cache: {units: kB, value: 3072}
L3Cache: {units: MB, value: 32}
TDP: {units: W, value: 65}
core_clock: {units: GHz, value: 3.6}
name: AMD Ryzen 5 3600
ncores: 6
type: CPU
performance:
data_processing_latency: {units: seconds, value: 0.2591249942779541}
model_inference_latency: {units: seconds, value: 0.401350736618042}
nonvolatile_memory_used: {units: MB, value: 7.4619035720825195}
throughput: {units: Kbps, value: 2.8}
validation: {MSE: 386.1021435718944, MSE_norm: 4.5026759064453724e-07,
mean_error: 13.48635814304236, min_error: 0.00018310546875,
std_error: 14.29056638518885, max_error: 160.2213134765625, units: ft}
volatile_memory_used: {units: MB, value: 2084.9192708333335}"
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APPENDIX B. SYSML MODEL CARD YAML EXAMPLE

sysml_model_card :

name : 'NASA Sensor System SysML modell'

file : 'simple_nasa_avionics_sensor_model.mdzip'
file_location : '/mnt/SPIE/sysml-model-cards-for-dl-sensor-fusion'
sysml_version : '1.6'
data_model :
data :

ALT : {size : 16, rate : 4}
time : {size : 32, rate : 1}
FPAC : {size : 32, rate : 16}
BLAC : {size : 32, rate : 16}
CTAC : {size : 32, rate : 16}
VRTG : {size : 32, rate : 8}
LATG : {size : 32, rate : 4}
LONG : {size : 32, rate : 4}
RALT : {size : 16, rate : 8}
ALTR : {size : 16, rate : 4}
IVV : {size : 16, rate : 16}
VSPS : {size : 16, rate : 1}
PSA : {size : 16, rate : 2}
PI : {size : 16, rate : 2}
PT : {size : 16, rate : 2}
TAS : {size : 16, rate : 4}
CAS : {size : 16, rate : 4}
GS : {size : 16, rate : 4}
WS : {size : 16, rate : 4}
CASS : {size : 16, rate : 1}
PTCH : {size : 16, rate : 8%}
ROLL : {size : 16, rate : 8}
DA : {size : 16, rate : 4}
TAT : {size : 8, rate : 1}
SAT : {size : 8, rate : 1}
LATP : {size : 32, rate : 1}
LONP : {size : 32, rate : 1}
networks :
BUS1 :
constraints :
throughput : {datarate : 1, units : 'Mbps'}
data : [RALT, ALTR, IVV, VSPS, PSA, PI, PT, TAS, CAS, GS, WS, CASS, PTCH, ROLL,
DA, TAT, SAT, ALT]
BUS2 :
constraints :
throughput : {datarate : 1, units : 'Mbps'}
data : [time, FPAC, BLAC, CTAC, VRTG, LATG, LONG, VSPS, CASS, LATP, LONP, ALT]
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