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ABSTRACT

Federated Learning (FL) allows clients to form a consortium to train

a global model under the orchestration of a central server while

keeping data on the local client without sharing it, thus mitigating

data privacy issues. However, training a robust global model is

challenging since the local data is invisible to the server. The local

data of clients are naturally heterogeneous, while some clients can

use corrupted data or send malicious updates to interfere with the

training process artificially. Meanwhile, communication and com-

putation costs are inevitable challenges in designing a practical FL

algorithm. In this paper, to improve the robustness of FL, we propose

a Shapley value-inspired adaptive weighting mechanism, which

regards the FL training as sequential cooperative games and adjusts

clients’ weights according to their contributions. We also develop a

client sampling strategy based on importance sampling, which can

reduce the communication cost by optimizing the variance of the

global updates according to the weights of clients. Furthermore, to

diminish the computation cost of the server, we propose a weight

calculation method by estimating differences between the Shapley

value of clients. Our experimental results on several real data sets

demonstrate the effectiveness of our approaches.
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1 INTRODUCTION

Federated Learning (FL) [25, 32] is a distributed machine learning

paradigm that enables local clients to collectively train a central

model under the coordination of a server. Specifically, the server

organizes the collaborative training process through model param-

eter interaction while the raw data of each client is stored locally.

Therefore, it preserves the privacy of clients by preventing the ex-

posure of raw data. FL has shown extensive applications in many

fields, such as medical care [37], finance [27], and data markets [44].

For example, for medical care, several hospitals can collectively

train a disease classifier without sharing the raw data of patients in

the FL paradigm, thus protecting their privacy.

Motivation.Despite the promising progress inmitigating problems

of privacy [1, 47], Non-IID data [24], and communication cost [28],

FL still suffers from a great vulnerability in robustness. For example,

the data of different clients naturally tends to be heterogeneous [34];

some malicious clients may use corrupted data or even send noised

parameters to manipulate the model [35]. The performance of the

central model can be dramatically degraded in such complex yet

practical scenarios. Thus, robustness is a crucial desideratum for

an FL algorithm. However, it is challenging to develop a robust FL

algorithm since the server has little prior knowledge of clients due

to privacy concerns.

Standard FL treats all clients indiscriminately, andweights clients

either uniformly or proportionally to the size of their local data

sets when aggregating the local model updates, which lacks ro-

bustness since both the value of clients and data are unequal in

reality. To address the problem, some works consider that valu-

able clients should be more similar to each other, such as Krum [2]

and coordinate-wise median-based algorithms [50]. These works

require all clients to participate in each round for their statistical

error rate guarantee, incurring intractable communication cost.
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Majority-based and geometric median-based robust aggregation

methods [3, 15, 18, 35, 46] have been further proposed, which allow

partial client participation. However, they cannot maintain effec-

tiveness when malicious clients account for a large proportion and

submit similar gradients. In addition, some valuable clients whose

local data sets and gradients differ from others may be filtered out

by majority-based and similarity-based methods. Therefore, the

above methods often lead to suboptimal performance since they do

not consider a fair valuation of the influence of each client.

Shapley Value (SV) is a concept to measure each player’s con-

tribution in the cooperative game theory [39]. It has been proven

as the unique way that satisfies four desired properties for contri-

bution allocation: balance, symmetry, additivity, and zero element.

Specifically, the Shapley value of one player is the weighted average

of all its marginal contributions, which is the utility differences

between player sets with and without the player. Shapley value

captures all possible cooperation scenarios of each player and hence

can distinguish valuable players from malicious players. Naturally,

Shapley value can be employed to evaluate the contribution of

clients. The Shapley value of clients can be computed on the server

by evaluating the utilities based on gradients without accessing the

raw data. In addition, Shapley value is a model-agnostic solution,

i.e., it can provide a fair evaluation for each client regardless of the

type of training models and attack methods. To this end, can we

design a robust FL algorithm based on Shapley value of the clients?

Challenges. Despite the appealing properties of Shapley value,

there are several challenges in adopting Shapley value to evaluate

the contributions of clients and further design a robust FL algorithm.

First, the clients participating in the training process vary from

round to round, making it hard to use Shapley value to evaluate

the relative contributions between all clients. Second, the commu-

nication cost is one of the bottlenecks in implementing FL [13, 20].

It is necessary to ensure the convergence and reduce the commu-

nication cost when dynamically adjusting the weights of clients.

Third, computing the exact Shapley value for the clients under

FL requires retraining the models for different subsets of clients

and the computation is known to be a #P-hard problem due to the

enumeration of subsets [10]. When there are a large number of

clients, a huge computation cost on the server is inevitable, even

with Shapley value approximation methods. It is challenging to

design an efficient Shapley value-based weighting method.

Contributions. To improve the robustness of FL, we design an

adaptive federated learning algorithm, which adapts the weights

of clients for aggregating the local model updates according to

their historical contributions. Each client’s weight is set to be pro-

portional to its surrogate federated Shapley value (Definition 4.3),

which combines the marginal contributions of selected clients in

all rounds and provides an effective approximation of the Shapley

values by the clients’ overall contributions to the ongoing training

process. In addition, we give a thorough analysis of the convergence

and stability of our proposed method.

We also put effort into improving the convergence and reducing

the communication cost of adaptive federated learning. Our analysis

shows that theweights of clients significantly impact the variance of

the global update estimator. To reduce the variance of the estimator

of global update, the clients with higher weights should be selected

with higher probability. Thus, we develop a client sampling method

according to importance sampling, which adjusts client selection

probability dynamically in the training process.

Furthermore, we propose a more efficient Shapley value approxi-

mationmethod to reduce the computation cost in adaptive federated

learning. Inspired by the fact that the sample of differences between

Shapley values of clients has smaller variances than that of Shapley

values themselves, we estimate the differences between Shapley

values of clients first and then derive surrogate federated Shapley

values from the differences, rather than directly calculating sur-

rogate federated Shapley values as existing inefficient sampling

approaches do.

The main novelty of the paper is that we treat the FL training as

sequential cooperative games for the first time to enhance its ro-

bustness, and the server can use weighting and sampling strategies

based on Shapley value of clients. Concretely, we summarize our

contribution as follows.

• Significance or broad impact. We focus on addressing the

fundamental problem in federated learning: improving the ro-

bustness to heterogeneous data challenges and poisoning attacks.

• Proposed method. We propose an adaptive weighting method

based on the surrogate federated Shapley value for robustness.

We further develop a client-importance sampling strategy to

enhance communication efficiency and a surrogate federated

Shapley value approximation method to save computation cost.

• Theoretical guarantee. We provide a formal convergence anal-

ysis showing that the proposed algorithm can achieve the same

convergence rate as state-of-the-art. Besides, we give the stability

analysis of adaptive federated learning on the upper bound of

the loss change in consecutive rounds.

• Experimental validation. We perform a comprehensive evalu-

ation of a range of vulnerable scenarios on different real datasets.

The results demonstrate that our proposed algorithm signifi-

cantly improves the robustness of federated learning over the

baselines in different settings, e.g., achieving 13.8% improvement

in accuracy compared to the best-performing baseline algorithm

RFL [35] on realistic healthcare dataset Fed-ISIC2019 [11].

2 RELATEDWORK

In this section, we discuss related work on robust federated learning

and Shapley value.

2.1 Federated Learning

Federated learning has attracted widespread attention since it al-

lows collaborative model optimization without exposing the local

data. Many efforts [20, 25, 51] have been made on various aspects

of FL, such as user privacy requirements, Non-IID data challenges,

and communication issues.

Ensuring robustness of FL faces many complicated scenarios,

such as 1) heterogeneous/imbalanced data, 2) irrelevant data, and

3) poisoned data or model updates. Training on heterogeneous and

imbalanced data among clients, which is pervasive in real-world

applications, can result in biased models [38]. Thus, Shuai et al. [40]

proposed a personalized federated learning framework that can

simultaneously address local and global data imbalance. Dishon-

est clients may participate in model training using irrelevant data
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for improper remuneration [33], which can lead to catastrophic

failure of models. To address the issue, Cho et al. [8] proposed bi-

ased client selection, which allows clients with higher local loss to

have more opportunities to participate in the training. Even worse,

malicious clients may use corrupted data to attack the training pro-

cess [23, 49]. To address the problem, Han and Zhang [16] assumed

that some clients are trusted so that they can evaluate the credibility

of other clients by predicting results on trusted items. Tahmasebian

et al. [41] proposed a robust aggregation algorithm inspired by the

truth inference methods via incorporating the client’s reliability

in the aggregation against the poisoning attacks. However, these

methods fail to deal with collusion attacks since they cannot evalu-

ate the contributions of individual clients fairly. Besides, they are

designed for specific robust issues, which are not flexible for all

scenarios.

There are many works focusing on the communication optimiza-

tion of FL. Luo et al. [30, 31] proposed an efficient FL algorithm

that optimally chooses control variables, e.g., communication in-

terval, to reduce the communication rounds and an adaptive client

sampling method to tackle system and statistic heterogeneity to

minimize wall-clock time. Recently, several adaptive optimization

approaches in FL have been proposed to improve convergence, such

as the decomposition of ordinary differential equations of corre-

sponding centralized optimizers [19]. However, how to reduce the

communication cost while ensuring the robustness of FL is not

considered by the above methods.

2.2 Shapley Value

Shapley value is widely used in the game theory and computer

science fields due to its pragmatic properties. Recently, many works

have focused on evaluating the value of clients in FL based on

Shapley value [12, 29]. The intuition is to encourage clients to

participate in the training process truthfully by providing a fair

and accurate assessment of clients. However, the high computation

complexity of Shapley value limits its potential applications in

FL. Some sampling-based approximation methods are proposed

to improve the computation efficiency [14, 52] in general settings.

Wang et al. [44] proposed a variant of the Shapley value amenable

to FL, which captures the value of clients based on the rounds they

participate in. Zheng et al. [53] proposed an efficient and secure

Shapley value calculation approach under a two-server protocol.

Fairly evaluating the contribution of each client is essential to

determine whether that client is helpful, which has not been well

studied by existing works. In this paper, we focus on leveraging

Shapley value to develop a new FL algorithm that is robust to

heterogeneous data challenges and poisoning attacks.

3 PRELIMINARIES

In this section, we review the related definitions and notations used

in the paper. Table 1 summarizes the frequently used notations.

3.1 Federated Learning

Standard Federated Learning [32]. Consider a set of clientsN =

{1, . . . , |N |} such that client𝑘 ∈ N owns local dataset𝐷𝑘 consisting

of |𝐷𝑘 | = 𝑛𝑘 sample points. The central server aims to make the

local clients collaboratively train a machine learning model without

Table 1: Some frequently used notations.

Notation Definition

N the whole client set

C𝑡 the selected client set in round 𝑡

P𝑡 the client selected probability vector in round 𝑡

𝑚 the expected number of clients in each round

𝒙
𝑡 the central model parameters after training 𝑡 rounds

𝒙
𝑡
𝑖,𝑟

the local model parameters of client 𝑖

after training 𝑟 local steps in round 𝑡

V𝑡
𝑖 the model parameter updates of client 𝑖 in round 𝑡

exposing their raw data. The standard federated learning training

executes the following steps until the stop criterion is met: (1) the

server selects a random fraction of clients and broadcasts the global

model parameters to the selected clients; (2) each selected client

locally computes an update to the model by training on their local

datasets and then sends the update to the server; (3) the central

server aggregates and applies these updates to the global model

parameters. The objective of the central server takes the following

form [7].

min
𝒙∈R𝑑

𝐹 (𝒙) ≔

N∑︂

𝑖=1

𝑤𝑖𝐹𝑖 (𝒙),

where 𝐹𝑖 : R
𝑑 → R is typically taken as a continuously differen-

tiable local loss function, 𝒙 ∈ R𝑑 are the model parameters, 𝑤𝑖 is

the weight of client 𝑖 , and
∑︁N
𝑖=1𝑤𝑖 = 1. The weights of clients are

usually set to be proportional to their data size.

Task-Specific Federated Learning. Standard federated learning

trains a central model by minimizing the loss computed on the

local data of all clients. It ignores the potential mismatch between

the training objectives and the specific task of the server. Recently,

several works have utilized a global validation dataset to solve

this issue [23, 33, 43, 44]. The validation dataset is used to capture

the desired input-output relation of the global model. Given the

validation dataset 𝐷𝑣 , the training goal of the central server can be

formulated as follows.

max
𝒙∈R𝑑

Φ(𝐷𝑣, 𝒙),

where Φ is a metric used to measure the global model performance

on 𝐷𝑣 , e.g., accuracy or negative empirical loss.

3.2 Shapley Value

Consider a set of clientsN = {1, . . . , |N |}. A coalition S is a subset

of N that cooperates to complete a task. A utility functionU(S)

(S ⊆ N) is the utility of a coalition S for a task, e.g., the accuracy

of the central model trained with S. The marginal contribution of

client 𝑖 with respect to a coalition S isU(S ∪ {i}) − U(S).

Shapley [39] laid out the fundamental requirements of fair re-

ward allocation, including balance, symmetry, additivity, and zero

element. Specifically, balance requires that the total payoff should

be fully distributed to all clients. Symmetry specifies that two clients

should receive the same reward if they have the same marginal

contributions. Additivity indicates that the reward value on two

tasks should be the sum of the values on individual tasks. Zero

element specifies that a client should not be rewarded if the client

does not make any marginal contribution.

2098



KDD ’23, August 6–10, 2023, Long Beach, CA, USA Qiheng Sun et al.

Shapley value measures the expectation of marginal contribution

by 𝑖 in all possible coalitions. That is,

SV𝑖 =
1

|N |

∑︂

S⊆N\{𝑖 }

U(S ∪ {𝑖}) − U(S)
(︁ |N |−1
|S |

)︁ . (1)

According to Equation (1), we can find that computing the exact

Shapley value requires enumerating all utilities for all client subsets

by retraining the global model, which is impractical for weight

adjustment in the training process.

4 FRAMEWORK OF SHAPLEYFL

Wedesign a robust FL algorithmwith an adaptive weightingmethod

based on the surrogate federated SV and an independent uniform

sampling strategy in Section 4.1. A theoretical analysis of the con-

vergence and stability is given in Section 4.2.

4.1 Federated Learning with Adaptive Weights

To achieve robust federated learning, we can compute the Shapley

value of each client, which measures its marginal contribution

towards the global model, and then use that as a weight to aggregate

the local model updates. Computing the Shapley value directly

requires training the central model with each client subset from

scratch and deriving themarginal contributions. This huge time cost

makes it infeasible to dynamically adjust the weights in the training

process. Fortunately, the collaborative training in each round is the

cooperation of a subset of clients and can be used to derive the

marginal contributions of each client during that round. Inspired

by this, we compute and combine the marginal contributions of

each client in sequential rounds as an approximation of its standard

Shapley value to adjust its weights.

We define the training process of each round 𝑡 (𝑡 ≥ 1) as a

cooperative game G(𝒙𝑡 , C𝑡 ,D𝑣,U𝐹 ), where 𝒙
𝑡 is the global model

parameter at the beginning of round 𝑡 , and C𝑡 is the client subset

that participates in round 𝑡 . Ψ(𝒙𝑡 ,S) = 𝒙
𝑡 − 𝜂𝑔

∑︁
𝑖∈𝑆

𝜂𝑙V
𝑡
𝑖

|S |
returns

the model parameter after updating 𝒙
𝑡 by client subset S where

V𝑡
𝑖 is the model parameter update vector of client 𝑖 in round 𝑡 , and

𝜂𝑔 (𝜂𝑙 ) is global (local) learning rate, respectively. The utility of a

coalition S ⊆ C𝑡 is the performance of the global model updated by

S in round 𝑡 , i.e.,U𝐹 (S) = Φ(𝐷𝑣,Ψ(𝒙
𝑡 ,S)). We define the partial

federated Shapley value of each client in round 𝑡 as follows.

Definition 4.1. (Partial Federated SV) In a cooperative game

G(𝒙𝑡 , C𝑡 ,D𝑣,U), the partial federated Shapley value of client

𝑖 ∈ C𝑡 in round 𝑡 is

SV𝑡
𝑖 =

1

|C𝑡 |

∑︂

S⊆C𝑡 \{𝑖 }

U𝐹 (S ∪ {𝑖}) − U𝐹 (S)
(︁ |C𝑡 |−1
|S |

)︁

=

∑︂

𝑆⊂C𝑡 \{𝑖 }

Φ(D𝑣,Ψ(𝒙
𝑡 ,S ∪ {𝑖})) − Φ(D𝑣,Ψ(𝒙

𝑡 ,S))

|C𝑡 |
(︁ |C𝑡 |
|S |

)︁ .

The partial federated SV measures the aggregate marginal con-

tributions of the client with respect to all subsets of the selected

clients in each round. The advantage is that it does not require

retraining the model from scratch and can be directly computed

based on the model updates from that round. By combining them

from sequential rounds for each client, it provides an approximation

of the overall marginal contributions of the client towards training

the global model so far. However, the ranges of the partial federated

SV in different rounds are unequal since the change in the central

model performance tends to get smaller as the training process

goes on. Thus, we adopt the min-max normalization in each round

to eliminate the influence of unequal ranges of partial federated SV

in Definition 4.2.

Definition 4.2. (Normalized Partial Federated SV) Given SV𝑡
=

{SV𝑡
𝑖 |𝑖 ∈ C

𝑡 }, the normalized partial federated SV is defined as

NSV𝑡
𝑖 =

SV𝑡
𝑖 −min(SV𝑡 )

max(SV𝑡 ) −min(SV𝑡 )
, (2)

where max(·) and min(·) return the maximum and minimum ele-

ment of a set, respectively.

Remark 1. According to the balance property, the sum of the

partial federated SV of selected clients in each round equals the perfor-

mance improvement of the central model in that round. The absolute

value of the partial federated SV is trivial since the incremental model

performance in a single round is small. Instead, min-max normaliza-

tion maintains the relative size of the partial federated SV of selected

clients in each round, which is preferable in evaluating the relative

contributions of clients.

We then combine the normalized partial federated SV in different

rounds in Definition 4.3.

Definition 4.3. (Surrogate Federated SV) Given T sequential co-

operative games G(𝒙𝑡 , C𝑡 ,D𝑣,U𝐹 ) (1 ≤ 𝑡 ≤ 𝑇 ), the surrogate

federated Shapley value of client 𝑖 during the first 𝑡 games is

SSV𝑡
𝑖 =

{︃
𝛽 ∗ SSV𝑡−1

𝑖 + (1 − 𝛽) ∗ NSV𝑡
𝑖 , 𝑖 ∈ C𝑡 ,

SSV𝑡−1
𝑖 , 𝑖 ∉ C𝑡 ,

(3)

where 𝛽 (0 ≤ 𝛽 ≤ 1) controls the update rate of the surrogate

federated SV.

Remark 2. The surrogate federated SV is updated by the normal-

ized partial federated SV in each round and thus can capture the

contributions of clients in the training process so far. Therefore, it is

suitable for dynamically adjusting clients’ weights in time. The hyper-

parameter 𝛽 can adjust the timeliness of contributions. For example,

𝛽 = 0 means the surrogate federated SV completely depends on the

normalized partial federated SV in the current round.

Adaptive Training Objective. The contribution of each client to

the global loss is weighted by its surrogate federated SV so far. We

formulate the adaptive training objective of the central server in

round 𝑡 (1 ≤ 𝑡 ≤ 𝑇 ) as follows.

min
𝒙∈R𝑑

𝐹 𝑡 (𝒙) ≔

𝑁∑︂

𝑖=1

𝑤𝑡
𝑖 𝐹𝑖 (𝒙) =

𝑁∑︂

𝑖=1

SSV𝑡
𝑖∑︁𝑁

𝑗=1 SSV
𝑡
𝑗

𝐹𝑖 (𝒙) . (4)

We present a simple adaptive FL algorithm named AFedSV. Meth-

ods for enhancing convergence and efficiently calculating the surro-

gate federated SV will be presented in Section 5. AFedSV adopts an

independent uniform client sampling strategy where the probabil-

ity of each client being selected per round is 𝛾 =
𝑚
|N |

. The detailed

algorithm of AFedSV is shown in Algorithm 1. Let 𝑅 be the number

of local steps(batches) that clients train locally in each round, and

𝒙
𝑡 be the central model parameters at the beginning of round 𝑡 . The
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Algorithm 1: Adaptive Federated Learning Based on Shap-

ley Value with Uniform Sampling (AFedSV)

input : initial global model parameters 𝒙1

global and local step-sizes 𝜂𝑔, 𝜂𝑙
initial P = [𝛾, · · · , 𝛾]

output :global parameter 𝒙𝑇+1 after training 𝑇 rounds

1 foreach communication round 𝑡 = 1, 2, · · · ,𝑇 do

2 sample clients 𝐶𝑡 ∼ P;

3 server broadcasts 𝒙𝑡 to all clients in 𝐶𝑡 ;

4 foreach client 𝑖 ∈ 𝐶𝑡 do

5 initialize local model 𝒙𝑡𝑖,0 ← 𝒙
𝑡 ;

6 foreach local step 𝑟 = 1, 2, · · · , 𝑅 do

7 compute mini-batch gradient 𝑔𝑖 (𝒙
𝑡
𝑖,𝑟−1);

8 update 𝒙𝑡𝑖,𝑟 ← 𝒙
𝑡
𝑖,𝑟−1 − 𝜂𝑙𝑔𝑖 (𝒙

𝑡
𝑖,𝑟−1);

9 computeV𝑡
𝑖 =

∑︁𝑅
𝑟=1 𝑔𝑖 (𝒙

𝑡
𝑖,𝑟−1);

10 sendV𝑡
𝑖 to master;

11 server calculates weights𝑤𝑡
𝑖 (1 ≤ 𝑖 ≤ |N |) in round 𝑡 ;

12 server updates global model

𝒙
𝑡+1 ← 𝒙

𝑡 − 𝜂𝑔
∑︁
𝑖∈𝐶𝑡

𝑤𝑡
𝑖

𝛾 𝜂𝑙V
𝑡
𝑖 ;

13 return global model parameters 𝒙𝑇+1

server broadcasts the current central model parameters 𝒙𝑡 to the se-

lected clients (Lines 1-2). The selected clients conduct local training,

which updates the received parameters using their local data (Lines

4-9). 𝒙𝑡𝑖,𝑟 (0 ≤ 𝑟 ≤ 𝑅) is the model parameters that are updated

from 𝒙
𝑡 with local data of client 𝑖 after 𝑟 local steps in round 𝑡 .

Given the learning rate of local clients 𝜂𝑙 , 𝒙
𝑡
𝑖,𝑟 = 𝒙

𝑡 − 𝜂𝑙𝑔𝑖 (𝒙
𝑡
𝑖,𝑟−1),

where 𝑔𝑖 (𝒙
𝑡
𝑖,𝑟 ) is an unbiased estimator of ∇𝐹𝑖 (𝒙

𝑡
𝑖,𝑟 ). The estimator

of update vector of client 𝑖 ∈ C𝑡 in round 𝑡 can be represented as

V𝑡
𝑖 =

∑︁𝑅
𝑟=1 𝑔𝑖 (𝒙

𝑡
𝑖,𝑟−1). The local parameter updates are sent to the

server after local training (Line 10). The server uses the received

parameter updates to calculate the surrogate federated SV of clients

and update the global model parameters using the weighted local

updates according to the surrogate federated SV (Lines 11-12). We

have

E

[︃ ∑︂

𝑖∈C𝑡

𝑤𝑡
𝑖

V𝑡
𝑖

𝛾

]︃
= E

[︃ 𝑁∑︂

𝑖=1

𝑤𝑡
𝑖V

𝑡
𝑖

]︃

= E

[︃ 𝑁∑︂

𝑖=1

𝑅∑︂

𝑟=1

𝑤𝑡
𝑖 𝑔𝑖 (𝒙

𝑡
𝑖,𝑟−1)

]︃
=

𝑁∑︂

𝑖=1

𝑅∑︂

𝑟=1

𝑤𝑡
𝑖 ∇𝐹𝑖 (𝒙

𝑡
𝑖,𝑟−1) .

(5)

Equation (5) shows the estimator of updates of partial clients is an

unbiased estimator of updates of all clients. Computing the nor-

malized partial federated SV is crucial for dynamically adjusting

weights. An efficient normalized partial federated SV approxima-

tion method is proposed in Section 5.2 as a complement to weight

calculation.

4.2 Theoretical Analysis

Since the loss functions of most effective models in FL are non-

convex, we mainly focus on the convergence analyses in non-

convex settings. Besides, we give an upper bound on the difference

of the loss change in consecutive rounds to show the stability of

our proposed algorithm. Due to space limitations, we provide the

proof in the full paper placed in our code repository.

Convergence Analysis. Assume that the local loss function 𝐹𝑖
(1 ≤ 𝑖 ≤ |N |) is L-smooth, which is consistent with the gen-

erally adopted assumption [21]. 𝑔𝑖 (𝒙
𝑡
𝑖,𝑟 ) can be decomposed to

its expectation ∇𝐹𝑖 (𝒙
𝑡
𝑖,𝑟 ) and an auxiliary estimator 𝛿𝑖 (𝒙

𝑡
𝑖,𝑟 ), that

is 𝑔𝑖 (𝒙
𝑡
𝑖,𝑟 ) = ∇𝐹𝑖 (𝒙

𝑡
𝑖,𝑟 ) + 𝛿𝑖 (𝒙

𝑡
𝑖,𝑟 ) for 𝑖 ( [1 ≤ 𝐼 ≤ |N |), where

E[𝛿𝑖 (𝒙
𝑡
𝑖,𝑟 )] = 0. Assumptions 1 and 2 capture the variation range

of local gradients and the similarity among local gradients of local

loss functions, respectively, which are widely used in FL [22].

Assumption 1. For round 𝑡 (1 ≤ 𝑡 ≤ 𝑇 ), local step 𝑟 (1 ≤ 𝑟 ≤ 𝑅),

and client 𝑖 (1 ≤ 𝑖 ≤ |N |), E[∥𝛿𝑡𝑖,𝑟 ∥
2 |𝒙𝑡𝑖,𝑟 ] ≤ 𝑀 ∥∇𝐹𝑖 (𝒙

𝑡
𝑖,𝑟 )∥

2 + 𝑐

holds for some𝑀 ≥ 0 and 𝑐 ≥ 0.

Assumption 2. For round 𝑡 (1 ≤ 𝑡 ≤ 𝑇 ),
∑︁ |N |
𝑖=1 𝑤𝑡

𝑖 ∥∇𝐹𝑖 (𝒙) −

∇𝐹 𝑡 (𝒙)∥2 ≤ 𝜌 holds for some 𝜌 ≥ 0.

Denote by Δ𝒙 (𝑡) the global update vector estimator of the server,

which is obtained by training one round for objective 𝐹 𝑡 . The effec-

tive global update vector 𝜂Δ𝒙 (𝑡) can be denoted as follows.

𝜂Δ𝒙 (𝑡) = 𝜂𝑔

∑︂

𝑖∈C𝑡

𝑅−1∑︂

𝑟=0

𝑤𝑡
𝑖

𝛾
𝜂𝑙𝑔𝑖 (𝒙

𝑡
𝑖,𝑟 ) =

𝜂

𝑅

∑︂

𝑖∈C𝑡

𝑅−1∑︂

𝑟=0

𝑤𝑡
𝑖

𝛾
𝑔𝑖 (𝒙

𝑡
𝑖,𝑟 ), (6)

where 𝜂 = 𝑅𝜂𝑙𝜂𝑔 is the effective step size of the global update vector

and the global learning rate 𝜂𝑔 ≥

√︂
5𝛾
4
.

According to Equation (6), we have

E[Δ𝒙 (𝑡)] = E[
1

𝑅

|N |∑︂

𝑖=1

𝑅−1∑︂

𝑟=0

𝑤𝑡
𝑖 𝑔𝑖 (𝒙

𝑡
𝑖,𝑟 )] =

1

𝑅

|N |∑︂

𝑖=1

𝑅−1∑︂

𝑟=0

𝑤𝑡
𝑖 ∇𝐹𝑖 (𝒙

𝑡
𝑖,𝑟 ).

Denote by 𝒙 (𝑡) the model parameters that are updated from 𝒙
𝑡 by

one round for objective 𝐹 𝑡 , i.e., 𝒙 (𝑡) = 𝒙
𝑡 −𝜂Δ𝒙 (𝑡). Then, the itera-

tions of adaptive FL satisfy Theorem 4.4 (see proof in the Appendix),

which gives the standard form of convergence result of adaptive

federated learning for one round in the non-convex setting [7].

Theorem 4.4. Under Assumptions 1 and 2, we can get

E[𝐹 𝑡 (𝒙 (𝑡))] ≤ E[𝐹 𝑡 (𝒙𝑡 )] −
3

8
𝜂 (1 −

10

3
𝜂𝐿)∥∇𝐹 𝑡 (𝒙𝑡 )∥2

+
𝜂

8
(1 + 2𝜂𝐿)𝜌 +

𝜂2𝑐𝐿

2𝑅𝛾
(
5𝛾

4𝜂2𝑔
+ 𝜔𝑡 )

by setting 𝜂 ∈ (0,
𝛾

8𝐿 (2+𝑀/𝑅)
] and 𝜔𝑡

=
∑︁𝑁
𝑖=1 (𝑤

𝑡
𝑖 )

2.

Remark 3. We analyze the upper bound of the loss change for the

model in one training round since the training objectives vary in each

round. It can be seen that the upper bound depends on the weights

when adopting a uniform independent client sampling strategy and

learning rates under Assumptions 1 and 2. When the client weights are

set to uniform, the convergence guarantee recovers the state-of-the-art

non-convex FL complexity guarantee provided in [22]. The advantage

of adaptive weights compared to uniform weights is that the training

objective can reflect the contributions of clients. To achieve a tighter

convergence guarantee, we propose a new client sampling strategy in

Section 5.1.
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Stability Analysis. Training objectives vary in each round for

adaptive FL since clients’ weights are adjusted in the training pro-

cess. The convergence stability is manifested in the difference of the

loss change in training the initial model parameters for objectives

in consecutive rounds. However, there is no analysis of the stability

of convergence in existing adaptive FL works. To fill the gap, we

give its upper bound in Theorem 4.5.

Denote by Δ𝒙 (𝑡 + 1) the global update vector estimator of the

server, which is obtained by training one round for objective 𝐹 𝑡+1.

The effective global update vector 𝜂Δ𝒙 (𝑡 + 1) can be denoted as

follows.

𝜂Δ𝒙 (𝑡+1) = 𝜂𝑔

∑︂

𝑖∈C𝑡

𝑅−1∑︂

𝑟=0

𝑤𝑡+1
𝑖

𝛾
𝜂𝑙𝑔𝑖 (𝒙

𝑡
𝑖,𝑟 ) =

𝜂

𝑅

∑︂

𝑖∈C𝑡

𝑅−1∑︂

𝑟=0

𝑤𝑡+1
𝑖

𝛾
𝑔𝑖 (𝒙

𝑡
𝑖,𝑟 ).

Thus, the model parameters that are updated from 𝒙
𝑡 by training

one round for objective 𝐹 𝑡+1 can be denoted by 𝒙 (𝑡 + 1) = 𝒙
𝑡 −

𝜂Δ𝒙 (𝑡 + 1).

Theorem 4.5. Under Assumptions 1 and 2, we can get

{E[𝐹 𝑡+1 (𝒙 (𝑡 + 1))] − E[𝐹 𝑡+1 (𝒙𝑡 )]} − {E[𝐹 𝑡 (𝒙 (𝑡))] − E[𝐹 𝑡 (𝒙𝑡 )]}

≤
3

8
𝜂 (1 −

4

𝜂
−
10

3
𝜂𝐿)E[∥∇𝐹 𝑡 (𝒙𝑡 )∥2]

+
𝜂𝜌

4
+ 2𝜂2𝐿(

𝜌

4
+

𝑐

𝑅𝛾
) −

3

8
𝜂 (1 −

10

3
𝜂𝐿)E[∥∇𝐹 𝑡+1 (𝒙𝑡 )∥2]

by setting 𝜂 ∈ (0,
𝛾

8𝐿 (2+𝑀/𝑅)
] and 𝜂𝑔 ≥

√︂
5𝛾
4
.

Remark 4. Theorem 4.5 shows the difference of the upper bound

on the loss change of training the model on objective 𝐹 𝑡+1 and the

lower bound on the loss change of training the model on objective

𝐹 𝑡 . Thus, it gives the upper bound on the convergence change of the

model on different training objectives.

5 OPTIMIZATION: CLIENT SAMPLING AND
WEIGHT CALCULATION

To reduce the communication cost, we propose an optimal client

sampling method based on client-importance sampling in Section

5.1. Further, we propose an efficient approach to calculate the nor-

malized partial federated SV based on the differences in the partial

federated SV to mitigate the computation cost in Section 5.2.

5.1 Client-Importance Sampling

Only a subset of clients communicates their updates to the server

in each round due to the limited communication bandwidth. In-

spired by importance sampling, we design a client sampling ap-

proach that minimizes the variance of the estimator of global up-

dates, which is crucial for ensuring faster convergence [7]. De-

note by P𝑡 = [𝑝𝑡
1
, · · · , 𝑝𝑡

|N |
] the probability vector, where 𝑝𝑡𝑖 is

the probability that client 𝑖 be selected in C𝑡 . The expected num-

ber of clients involved in each round is
∑︁ |N |
𝑖=1 𝑝𝑡𝑖 ≤ |N |, denoted

by𝑚. Following the training objective in Equation (4) and using

the effective step-size 𝜂 = 𝑅𝜂𝑙𝜂𝑔 , the global update estimate vec-

tor in round 𝑡 is Λ𝒙 (𝑡) =
1

𝑅

∑︁
𝑖∈C𝑡

∑︁𝑅−1
𝑟=0

𝑤𝑡
𝑖

𝑝𝑡𝑖
𝑔𝑖 (𝒙

𝑡
𝑖,𝑟 ). Denote by

X𝑡 = 1

𝑅

∑︁ |N |
𝑖=1

∑︁𝑅−1
𝑟=0 𝑤

𝑡
𝑖 𝑔𝑖 (𝒙

𝑡
𝑖,𝑟 ), the variance of Λ𝒙 (𝑡) can be repre-

sented as follows.

𝑉𝑎𝑟 [Λ𝒙 (𝑡)] = E[∥Λ𝒙 (𝑡) − E[Λ𝒙 (𝑡)] ∥2]

= E[∥Λ𝒙 (𝑡) − X𝑡 + X𝑡 − E[Λ𝒙 (𝑡)] ∥2]

= E[∥Λ𝒙 (𝑡) − X𝑡 ∥2] + E[∥X𝑡 − E[Λ𝒙 (𝑡)] ∥2]

+ 2E[⟨Λ𝒙 (𝑡) − X𝑡 ,X𝑡 − E[Λ𝒙 (𝑡)]⟩] .

Due to the fact that E[Λ𝒙 (𝑡)] = E[X𝑡 ], we have E[⟨Λ𝒙 (𝑡) −

X𝑡 ,X𝑡 − E[Λ𝒙 (𝑡)]⟩] = 0. Then, we can get

𝑉𝑎𝑟 [Λ𝒙 (𝑡)] = E[∥Λ𝒙 (𝑡) − X𝑡 ∥2] + E[∥X𝑡 − E[Λ𝒙 (𝑡)] ∥2] .

Denote by X𝑡𝑖 =
1

𝑅

∑︁𝑅−1
𝑟=0 𝑔𝑖 (𝒙

𝑡
𝑖,𝑟 ), we have

E[∥Λ𝒙 (𝑡) − X𝑡 ∥2] = E[∥Λ𝒙 (𝑡) −

|N |∑︂

𝑖=1

𝑤𝑡
𝑖X

𝑡
𝑖 ∥

2]

= E[∥
∑︂

𝑖∈C𝑡

𝑤𝑡
𝑖X

𝑡
𝑖 −

|N |∑︂

𝑖=1

𝑤𝑡
𝑖X

𝑡
𝑖 ∥

2] = E[

|N |∑︂

𝑖=1

(1 − 𝑝𝑡𝑖 ) (𝑤
𝑡
𝑖 )

2

𝑝𝑡𝑖
∥X𝑡𝑖 ∥

2],

where the last equation can be derived from the key lemma of [17].

Thus, we can get

Var[Λ𝒙 (𝑡)] = E[

|N |∑︂

𝑖=1

(𝑤𝑡
𝑖 )

2

𝑝𝑡𝑖
∥X𝑡𝑖 ∥

2] − E[

|N |∑︂

𝑖=1

(𝑤𝑡
𝑖 )

2∥X𝑡𝑖 ∥
2]

+ E[∥

|N |∑︂

𝑖=1

𝑤𝑡
𝑖X

𝑡
𝑖 − E[Λ𝒙 (𝑡)] ∥

2] .

(7)

It shows that the variance of the global update estimate vector

is affected by three factors: the norm of the estimator of the local

update vector ∥X𝑡𝑖 ∥
2, the weight of clients 𝑤𝑡

𝑖 , and the sampling

strategy (selected probability of each client 𝑝𝑡𝑖 ). The knowledge of

all estimators of the local update vectors X𝑡𝑖 (1 ≤ 𝑖 ≤ |N |) cannot

be obtained due to the partial client participation in each round.

In addition, in our framework, the weights are determined by the

surrogate federated SV of the clients in Section 4.1 to increase the

robustness of FL. Thus, we focus on how to minimize the vari-

ance by adjusting the selected probability of each client here. Since

E[
∑︁ |N |
𝑖=1

(𝑤𝑡
𝑖 )

2

𝑝𝑡𝑖
∥X𝑡𝑖 ∥

2] is the only term affected by the sampling

strategy, the selected probability of each client should be positively

related to its weight to minimize the variance if we omit the norm

differences between estimators of local update vectors. The weights

of clients are updated after the partial clients are selected in each

round in our framework. So we use the weights in the previous

round as an approximation. Hence, according to the relationship

between the weights of clients and the sampling strategy on the

variance, an optimization problem is proposed as follows and the

solution is presented in Theorem 5.1 (see proof in the Appendix).

min
P𝑡

|N |∑︂

𝑖=1

(𝑤𝑡−1
𝑖 )

2

𝑝𝑡𝑖
, subject to𝑚 =

|N |∑︂

𝑖=1

𝑝𝑡𝑖 , 𝑝
𝑡
𝑖 ∈ [0, 1] . (8)

Theorem 5.1. LetL𝑡 contain 𝑙 (0 ≤ 𝑙 < 𝑚) clients with the largest

weights in round 𝑡 − 1. The optimal solution of Equation (8) is the one

with the smallest value obtained by Equation (8) among the following
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𝑚 possible solutions (|L𝑡 | = 0, 1, · · · ,𝑚 − 1).

𝑝𝑡𝑖 =

⎧⎪⎪⎨
⎪⎪⎩

(𝑚 − |L𝑡 |)
𝑤𝑡−1
𝑖∑︁

𝑗∉L𝑡 𝑤
𝑡−1
𝑗

, 𝑖 ∉ L𝑡

1, 𝑖 ∈ L𝑡 .
(9)

We get a new adaptive federated learning algorithm improved

from AFedSV by employing client-importance sampling, named

AFedSV+. The detailed algorithm is shown in Appendix Algorithm 2.

Algorithm 2 is similar to Algorithm 1. The main difference is to

determine the client sampling probability according to Theorem 5.1

(Line 7).

Convergence Analysis.We give an analysis of the convergence

of adaptive federated learning with importance sampling. Denote

by ˜︁𝒙 (𝑡) = 𝒙
𝑡 − 𝜂Λ𝒙 (𝑡) the estimator of global parameters that 𝒙𝑡

be updated after round 𝑡 where clients are sampled according to

probability vector P𝑡 . The improvement factor is defined as

𝛼𝑡 =
E[∥Λ𝒙 (𝑡) −

∑︁ |N |
𝑖=1 𝑤𝑡

𝑖X
𝑡
𝑖 ∥

2]

E[∥Δ𝒙 (𝑡) −
∑︁ |N |
𝑖=1 𝑤𝑡

𝑖X
𝑡
𝑖 ∥

2]
. (10)

Theorem 5.2. Under Assumptions 1 and 2, we can get

E[𝐹 𝑡 (˜︁𝒙 (𝑡))] ≤ E[𝐹 𝑡 (𝑥𝑡 )] − 3

8
𝜂 (1 −

10

3
𝜂𝐿)∥∇𝐹 𝑡 (𝒙𝑡 )∥2

+
𝜂

8
(1 + 2𝜂𝐿)𝜌 +

𝜂2𝑐𝐿

𝑅𝛿

by setting 𝜂 ∈ (0,
𝛾

8𝐿 (2+𝑀/𝑅)
] , 𝛿 =

𝑚
𝛼𝑡 ( |N |−𝑚)+𝑚

and 𝜂𝑔 ≥

√︂
5𝛿
4
.

Remark 5. The convergence guarantee recovers Theorem 4.4 when

adopting the uniform independent client sampling (𝛼𝑡 = 1). Differ-

ently, the upper bound becomes tighter when 𝛼𝑡 is reduced by using

the proposed client importance sampling. The variance of the estima-

tor of global updates can be reduced by the client importance sampling

strategy, and experimental results verify the strategy is empirically

effective.

5.2 Normalized Partial Federated SV Estimation

While our surrogate federated SV used as weights for clients avoids

the prohibitive cost of computing Shapley value directly, it still

requires enumerating all subsets of the participating clients and

computing the marginal contributions based on the model perfor-

mance on the validation dataset in each round. In this section, we

present an efficient normalized partial federated SV approxima-

tion method to further reduce the computation cost of adaptive

federated learning.

Observe that the differences between the partial federated SV in

each round have a smaller variance since its range is smaller than

that of the partial federated SV. We propose to use the differences

to estimate normalized partial federated SV efficiently.

Our proposed method computes the normalized partial federated

SV of participating clients in each training round. To lighten nota-

tions, we omit the round marker 𝑡 (e.g., SV𝑖 for SV
𝑡
𝑖 ) and assume

all clients participate in round 𝑡 . Given the partial federated Shapley

value SV = [SV1, · · · ,SV |N |] for clients N = {1, . . . , |N |}, let

ΔSV𝑘,𝑖 = SV𝑘 − SV𝑖 be the difference of partial federated SV

between client 𝑘 and 𝑖 . Then ΔSV𝑘 = [ΔSV𝑘,1, · · · ,ΔSV𝑘,𝑛].

According to Equation (1), we have

ΔSV𝑘,𝑖 =
1

|N |

∑︂

S⊂N\{𝑘 }

U𝐹 (S ∪ {𝑘}) − U𝐹 (S)
(︁ |N |−1
|S |

)︁

−
1

|N |

∑︂

S⊂N\{𝑖 }

U𝐹 (S ∪ {𝑖}) − U𝐹 (S)
(︁ |N |−1
|S |

)︁

=
1

|N | − 1

∑︂

S⊂N\{𝑘,𝑖 }

U𝐹 (S ∪ {𝑘}) − U𝐹 (S ∪ {𝑖})
(︁ |N |−2
|S |

)︁ .

(11)

The last equation can be derived by splitting subsets S in the

first equation into three parts, including either 𝑖 or 𝑘 and including

neither 𝑖 nor 𝑘 , and then rearranging the terms. We omit the math-

ematical operations due to space limitations. With the differences,

we can reformulate the normalized federated SV of 𝑖 as follows.

NSV𝑖 =
SV𝑖 −min(SV)

max(SV) −min(SV)

=
[SV𝑘 −min(SV)] − [SV𝑘 − SV𝑖 ]

[max(SV) − SV𝑘 ] − [min(SV) − SV𝑘 ]

=
max(ΔSV𝑘 ) − ΔSV𝑘,𝑖

max(ΔSV𝑘 ) −min(ΔSV𝑘 )
.

(12)

Equation (12) allows us to get the normalized federated SV of all

clients based on the differences between the partial federated SV of

all clients and any client 𝑘 .

We propose a sampling algorithm to compute the difference

between the partial federated SV of any client 𝑘 and others. The

detailed algorithm is shown in Appendix Algorithm 3, named DMC.

Denote by ΔSV𝑘,𝑖, 𝑗 (0 ≤ 𝑗 ≤ |N | − 2) the expected difference

in utility between coalition S ∪ 𝑘 and S ∪ 𝑖 with |S| = 𝑗 and

S ⊂ N \ {𝑘, 𝑖}. That is,

ΔSV𝑘,𝑖, 𝑗 =

∑︂

S⊂N\{𝑘,𝑖 }, |S |=𝑗

U𝐹 (S ∪ {𝑘}) − U𝐹 (S ∪ {𝑖})
(︁ |N |−1
|S |

)︁ . (13)

We have ΔSV𝑘,𝑖 =
1

|N |−1

∑︁ |N |−2
𝑗=0 ΔSV𝑘,𝑖, 𝑗 by Equations (11) and

(13). To approximate ΔSV𝑘,𝑖 , we can estimate ΔSV𝑘,𝑖, 𝑗 (0 ≤

𝑗 ≤ |N | − 2). Denote by A𝑘,𝑖, 𝑗
= {S|S ⊆ N \ 𝑘, 𝑖, |S = 𝑗 |}. Let

X
𝑘,𝑖, 𝑗
N
(S) be a random variable with uniform distribution on the set

{U𝐹 (S∪𝑘)−U𝐹 (S∪𝑖)) |S ∈ A
𝑘,𝑖, 𝑗 }. Thenwe haveE[X

𝑘,𝑖, 𝑗
N
(S)] =

ΔSV𝑘,𝑖, 𝑗 . Given a random sample of X
𝑘,𝑖, 𝑗
N
(S) of size 𝑚𝑖, 𝑗,𝑘

{X
𝑘,𝑖, 𝑗
N
(S1), · · · ,X

𝑘,𝑖, 𝑗
N
(S𝑚𝑘,𝑖,𝑗

)}, where S1, · · · ,S𝑚𝑘,𝑖,𝑗
∈ A𝑘,𝑖, 𝑗 ,

the sample mean ΔSV𝑘,𝑖, 𝑗 =
1

𝑚𝑘,𝑖,𝑗

∑︁𝑚𝑘,𝑖,𝑗

𝑜=1 X
𝑘,𝑖, 𝑗
N
(S𝑜 ) is an unbi-

ased estimation of ΔSV𝑘,𝑖, 𝑗 . Because

E[
1

𝑚𝑘,𝑖, 𝑗

𝑚𝑘,𝑖,𝑗∑︂

𝑜=1

X
𝑘,𝑖, 𝑗
N
(S𝑜 )] =

1

𝑚𝑘,𝑖, 𝑗

𝑚𝑘,𝑖,𝑗∑︂

𝑜=1

E[X
𝑘,𝑖, 𝑗
N
(S𝑜 )] = ΔSV𝑘,𝑖, 𝑗 .

By equally stratified sampling X𝑘,𝑖,0
N
(S), · · · ,X

𝑘,𝑖, |N |−2
N

(S) , we

can get ΔSV𝑘,𝑖, 𝑗 (0 ≤ 𝑗 ≤ |N | − 2). Now, consider the sample

mean ΔSV𝑘,𝑖 =
1

|N |−1

∑︁ |N |−2
𝑗=0 ΔSV𝑘,𝑖, 𝑗 . We have

E[
1

|N | − 1

|N |−2∑︂

𝑗=0

ΔSV𝑘,𝑖, 𝑗 ] =
1

|N | − 1

|N |−1∑︂

𝑗=0

E[ΔSV𝑘,𝑖, 𝑗 ] = ΔSV𝑘,𝑖 .
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That is, ΔSV𝑘,𝑖 is an unbiased estimation of ΔSV𝑘,𝑖 .

6 EXPERIMENTS

In this section, we experimentally study AFedSV/AFedSV+. In Sec-

tion 6.1, we provide details of datasets used and experimental setup.

In Section 6.2, we evaluate a variety of data and model poison-

ing scenarios on standard image dataset CIFAR-101 and Fashion-

MNIST2 to verify the robustness of AFedSV/AFedSV+. In Section 6.3,

we further apply our algorithms on a realistic cross-silo health-

care dataset Fed-ISIC2019 [9, 11, 42]. Due to space limitations, the

experiment evaluating the effectiveness of DMC is given in Ap-

pendix B.5. We also add more experimental details in the supple-

mentary material to enhance reproducibility. The code for exper-

iments is available at https://github.com/ZJU-DIVER/ShapleyFL-

Robust-Federated-Learning-Based-on-Shapley-Value, which is im-

plemented using PyTorch.

6.1 Datasets and Experimental Setup

We implement AFedSV/AFedSV+ on standard image datasets

CIFAR-10 and Fashion-MNIST. The CNN network is adopted as the

central model since it is widely used in the field of image classifica-

tion. As in previous works, we focus on the more challenging Non-

IID setting and simulate the synthetic Non-IID partitions of Fashion-

MNIST and CIFAR-10 datasets. The details of the datasets are given

in Appendix B.1. Moreover, we study 5 popular data and model poi-

soning scenarios based on the Non-IID data setting [2, 5, 35, 36, 48]:

1) imbalanced data with long-tailed distribution; 2) irrelevant data

with open-set label noise; 3) malicious clients with closed-set label

noise; 4) malicious clients with data noise; 5) attacks with gradient

poisoning. The details of Non-IID setting and poisoning strategies

are given in Appendix B.2 and B.3, including the partition strategy

of innocent client/malicious client and the test dataset/validation

dataset.

We further experiment on a realistic cross-silo healthcare dataset

Fed-ISIC2019. The detailed dataset description is given in Appen-

dix B.1. We follow the setting in [11] and end up with a 6-client

federated version of ISIC2019. The best-performing EfficientNets

architecture is used as the central model. Since the data distribution

among hospitals is fixed, it is no longer necessary to further simu-

late Non-IID partitions. Considering that the hospitals are honest

and the data cannot be distorted locally, we care about Byzantine

failures where some clients just fail and send random gradients,

which is studied in the experiment.

Proposed algorithms.

• AFedSV: Adaptive FL with uniform sampling in Algorithm 1.

• AFedSV+: Communication-efficient adaptive FL with the client

importance sampling strategy in Algorithm 2.

Baseline Algorithms.

• FedAvg [32]: The most popular FL algorithm.

• FedProx [26]: The algorithm that copes with the Non-IID prob-

lem by adding a proximal term to the loss function.

• FedSV [44]: The algorithm that is extended for robust FL using

the SV variant in [44].

1CIFAR-10: http://www.cs.toronto.edu/ kriz/cifar.html
2Fashion-MNIST: https://github.com/zalandoresearch/fashion-mnist

• S-FedAvg [33]: The algorithm that considers the irrelevant

data/clients and modifies FedAvg by selecting relevant clients

with an SV-based score.

• RFA [35]: The Robust Federated Aggregation (RFA) relies on a

robust aggregation oracle in FL based on the geometric median.

6.2 Performance on Image Classification

Results on CIFAR-10. Figure 1 shows the accuracy of

AFedSV/AFedSV+ along with other baselines in 5 different data

scenarios (mentioned in Section 6.1) on CIFAR-10. The averaged re-

sults after 5 independent experiments reveal that AFedSV+/AFedSV

significantly outperforms baselines in various data settings. With

up to 8.1%, 7.3%, 20.7%, 7.9%, and 11.0% performance improvement

of AFedSV+ compared to FedAvg, FedSV, FedProx, S-FedAvg, and

RFA, respectively.

Take the performance improvement in the open-set label noise

setting as an illustration. As shown in Figure 1(b), the average

accuracy of AFedSV+ on the central server test set 𝐷𝑇 after 150

rounds of global communication is 58.22%. It is 8.1%, 17.5%, and

6.3% improvement over the average accuracy of FedAvg, FedProx,

and RFA, respectively. We believe that the failure of FedProx in

the irrelevant/malicious data setting (even compared to FedAvg) is

because it adjusts the loss function and aggregates the gradients

produced by the irrelevant clients with the same weight as an in-

nocent client. By contrast, AFedSV+ limits the impact of irrelevant

clients by estimating its contribution and assigning lower proba-

bility via computing SV-based global weight. Although S-FedAvg

and FedSV also introduce the concept of Shapley value, AFedSV+

still has 5.7% and 4.4% improvement over the average accuracy of

S-FedAvg and FedSV, respectively. AFedSV+ converges much faster

than S-FedAvg and FedSV since it amplifies the impact of gradients

collected by clients with higher Shapley value and samples clients

based on previous knowledge.

The results also reveal that introducing client-importance sam-

pling could accelerate convergence and improves global model

accuracy. Comparing the performance of AFedSV+ and AFedSV,

AFedSV+ has a better convergence rate and higher model accuracy.

This is because the optimal client sampling method in AFedSV+

allows the selection of optimal clients with higher probability than

the uniform sampling strategy in AFedSV. The greater involvement

of these clients ensures higher model accuracy. Such a pattern is

even more evident at Fashion-MNIST.

Results on Fashion-MNIST. Figure 2 shows the accuracy of

AFedSV/AFedSV+ along with other baselines in 5 different data

scenarios (mentioned in Section 6.1) on Fashion-MNIST.

Agreeing with the results on CIFAR-10, the results reveal that

AFedSV+/AFedSV significantly outperforms baselines. However,

it is worth mentioning that in the closed-set label injection set-

ting, the global accuracy of all algorithms dropped significantly on

Fashion-MNIST. We believe this is due to the relative simplicity of

the Fashion-MNIST dataset where a simple CNN network could

achieve high performance. Thus, the flipped labels exert a severely

negative impact on the gradients. Even if the aggregated weight

of the gradient from the malicious client is set low, it still exerts

a vastly negative impact on global accuracy. As for the CIFAR-10

dataset, since the accuracy of the simple CNN network is relatively
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Figure 1: Evaluation results on CIFAR-10 (Section 6.2).
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Figure 2: Evaluation results on Fashion-MNIST (Section 6.2).

low, the effect of closed-set label noise is relatively insignificant.

Also, comparing AFedSV+ and AFedSV confirms the benefit of

client-importance sampling.

6.3 Performance on Medical Diagnosis

Following the setting in [11], we set the fraction of clients par-

ticipating in training to 1.0 due to the limited number of clients.

Thus, the impact of the client importance sampling strategy is not

studied, i.e., we only evaluate AFedSV instead of both. Also, we

omit S-FedAvg since it degenerates to FedAvg. We simulate the

gradient attack as mentioned in Section 6.1 with 2 malicious clients

that upload perturbed gradient in each round. For fairness consid-

eration, we implement 10 independent experiments with 25 rounds

using random seeds to generate candidates for malicious clients.

Figure 3 shows that AFedSV outperforms baselines. The average
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Figure 3: Evaluation results on Fed-ISIC2019 (Section 6.3).

accuracy of AFedSV on 25 rounds reaches 64.24%, which has 25.1%,

13.7%, 13.4%, 4.4% improvement compared to FedAvg, FedProx, RFA,

and FedSV, respectively. The error bar indicates the fluctuation of

global accuracy caused by choosing different malicious client can-

didates. Naturally, setting the client with the largest data size (9930)

as a malicious client has a more significant negative impact on

global model accuracy than the client with the smallest data size

(351). Thus, the consistently smaller error bar of AFedSV verifies

the robustness of our adaptive weighting mechanism compared to

baselines.

7 CONCLUSION

In this paper, in order to enhance the robustness of federated

learning, we proposed an adaptive Shapley value-based weight-

ing method. We produced a client-importance sampling strategy to

save communication costs and a normalized partial federated SV

estimation method to mitigate the computation cost. We provided

a thorough theoretical analysis of the convergence and stability of

AFedSV and AFedSV+. Extensive experiments on several real-world

applications (e.g., vision and healthcare) were conducted to validate

the robustness of our proposed methods.
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APPENDIX

The organization of the appendix is as follows. Section A provides

the details of Algorithms 2 and 3. Section B provides the details

of the experiment to guarantee reproducibility. Section C provides

proof of theoretical results.

A ALGORITHM

Algorithm 2: Adaptive Federated Learning Based on Shap-

ley Value with Importance Sampling (AFedSV+)

input : initial global model parameters 𝒙1

initial global and local step-sizes 𝜂𝑔, 𝜂𝑙
initial P1

= [ 𝑚
|N |

, · · · , 𝑚
|N |
]

output :global parameters 𝒙𝑇+1 after training 𝑇 rounds

1 foreach communication round 𝑡 = 1, 2, · · · ,𝑇 do

2 sample clients 𝐶𝑡 ∼ P𝑡 ;

3 server broadcasts 𝒙𝑡 to all clients in C𝑡 ;

4 local training in round 𝑡 the same as Algorithm 1;

5 server calculates weights𝑤𝑡
𝑖 (1 ≤ 𝑖 ≤ |N |) in round 𝑡 ;

6 server updates global model

𝒙
𝑡+1 ← 𝒙

𝑡 − 𝜂𝑔
∑︁
𝑖∈C𝑡

𝑤𝑡
𝑖

𝑝𝑡𝑖
𝜂𝑙V

𝑡
𝑖 ;

7 server calculates P𝑡+1 by Theorem 5.1;

8 return global model parameters 𝑥𝑇+1;

Algorithm 3: Shapley Value Difference Computation

(DMC)

input :clients N = {1, . . . , |N |}

number of total samples𝑀 > 0

output :approximate difference between Shapley value for

each client 𝑖 (1 ≤ 𝑖 ≤ |N |) and 𝑘

1 ΔSV𝑘,𝑖 ← 0 (1 ≤ 𝑖 ≤ |N |);

2 ΔSV𝑘,𝑖, 𝑗 ← 0 (1 ≤ 𝑖 ≤ |N |, 0 ≤ 𝑗 ≤ |N | − 2);

3 for _ =1 to ⌊𝑀/(|N | − 1)⌋ do

4 for i = 1 to n do

5 for j = 0 to |N |-2 do

6 let S be a random sample drawn from A𝑘,𝑖, 𝑗 ;

𝑢 ←U(S ∪ {𝑧𝑘 }) − U(S ∪ {𝑧𝑖 });

ΔSV𝑘,𝑖, 𝑗+ =
𝑢

⌊𝑚/( |N |−1) ⌋
;

7 for i=1 to |N | do

8 for j=0 to |N |-2 do

9 ΔSV𝑘,𝑖+ =
1

|N |−1
ΔSV𝑘,𝑖, 𝑗 ;

10 return ΔSV𝑘,1, . . . ,ΔSV𝑘, |N | ;

B REPRODUCIBILITY

B.1 Dataset description

The CIFAR-10 dataset consists of 60000 32x32 color images in 10

classes, with 50000 training images and 10000 test images. The

Fashion-MNIST dataset is a 28x28 grayscale image dataset used

to replace the traditional handwriting dataset MNIST, which also

has ten labels and consists of a train set of 60000 images and a test

set of 10000 examples. We randomly split 2000 images(20%) of the

original test dataset as the global validation dataset and the rest

8000 images as the real test dataset.

The Fed-ISIC2019 dataset contains 23,247 dermoscopy images

with 200*200*3 input dimensions collected from different hospi-

tals. The training entails identifying images from eight distinct

melanoma classes. We follow [11] and re-split into train dataset

with 18597 images(80%) with 9930,3163,2691,1807,655,351 images

for the corresponding client and 4650 images(20%) for the valida-

tion dataset and test dataset. We also randomly split 20% of the

4650 images as the global validation dataset, and the rest be the test

dataset. We measure classification performance through balanced

accuracy, defined as the average recall in each class.

B.2 Non-IID setting

The performance of the FL central model in Non-IID FL settings has

been a well-known challenge due to the diversity of gradients. Con-

sequently, as in previous works, we focus on the inconsistency and

simulate the synthetic Non-IID partitions of Fashion-MNIST and

CIFAR-10 datasets. For illustration, the experiment in Section 6.2

set the total number of clients to 100 and the proportion of clients

participating in training in each communication round to 0.1. The

training data is sorted by label and then divided into 200 shards.

Consequently, each shard has 250 images for the CIFAR-10 dataset

and 300 images for the Fashion-MNIST dataset. Then, each client

is assigned two shards of data, which guarantees that each client

can only have 1 or 2 consecutive labels and further ensures the

non-identical distribution with each other.

B.3 Vulnerable scenario simulation

We consider the following popular vulnerable scenario based on

the Non-IID data setting.

Imbalanced data with the long-tailed distribution. To create

the imbalanced version of CIFAR-10, we reduce the number of train-

ing samples per class in the original datasets. Then we follow [4]

to obtain long-tail distribution with different imbalance ratios (IR),

which denote the ratio between the number of samples in the largest

and that in the smallest class. Long-tailed imbalance follows an

exponential decay in sample sizes across different classes.

Irrelevant data with open-set label noise. In this experiment, we

simulate irrelevant clients by injecting label noise. We follow [33]

and adopt the method of open-set noise[45], which assigns labels

of known categories to data of unknown categories. By way of illus-

tration, we assign the label aeroplane to an image of a truck in the

classification task that involves a truck, ship, and automobile. We

inject half of the training images with label noise in both CIFAR-10

and Fashion-MNIST.

Malicious clients with closed-set label noise. In this experiment,

we simulate malicious clients by injecting label noise. The mali-

cious clients flip the local sample labels during training to generate

faulty gradients. In particular, the label of each training sample in

Byzantine clients is flipped from 𝐿 to (𝐿 + 1)%𝐶 , where 𝐶 is the

total categories of labels and 𝐿 ∈ {0, 1, · · · ,𝐶 − 1}.
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Malicious clients with data noise. In this experiment, we simu-

late malicious clients by injecting random noise into real, raw data.

𝐷𝑚 = 𝐷ℎ + 𝑁 (𝜇, 𝜎
2𝐼 ). In particular, we set 𝜇 = (0, · · · 0) ∈ R𝑑 and

𝜎 = 1.

Malicious client with gradient poisoning. In this experiment,

we simulate malicious clients by sending perturbed gradients. We

consider a typical scenario of gradient poisoning called a random

Byzantine Attack. Specifically, assuming the original value of a

gradient element is a, the value after adding noise is given by a *

(1 + b), where b is randomly sampled from a uniform distribution

[-0.5, 0.5].

B.4 Hyperparameter choosing

We first validate the impact of weights update rate 𝛽 as shown

in Equation 3. The hyperparameter 𝛽 limits the updates rate of

the adaptive weight of each client, thereby influencing FL global

accuracy. We implement AFedSV+ with varying 𝛽 and explore the

averaged convergence global accuracy on CIFAR-10 with open-set

label noise. The experimental results in Table 2 reveal that too

large or too small weight update rate is not conducive to the model

training. Consequently, we set 𝛽 = 0.3 for AFedSV/AFedSV+ in the

experiments afterwards.

Table 2: Impact of weights update rate.

𝛽 0.1 0.3 0.5 0.7 0.9

Test Accuracy 0.5482 0.5822 0.5784 0.5660 0.5588

B.5 Effectiveness of SV Calculation

We adopt the universal benchmark algorithms, including Monte

Carlo algorithm (MC) [6] and Truncated Monte Carlo (TMC) al-

gorithm [14] for approximating Shapley value as baselines. We

compare DMC with MC and TMC in the scenario of gradient poi-

soning. We set the proportion of clients participating in each round

to 0.2, i.e., 20 clients are selected in each round (|N | = 20). We

compute the average of the Mean Squared Errors (MSEs) to verify

the effectiveness of the proposed algorithms. Given benchmark nor-

malized Shapley value NSV𝑖 and estimated normalized Shapley

value NSV𝑖 (1 ≤ 𝑖 ≤ |N |) computed by the proposed algorithms,

we compute𝑀𝑆𝐸 (NSV,NSV) = 1

|N |

∑︁ |N |
𝑖=1 (NSV𝑖 − NSV𝑖 )

2.

Computing the exact normalized Shapley value NSV𝑖 for evalua-

tion purposes is prohibitively expensive because it grows exponen-

tially with the number of players. Therefore, we use the estimated

Shapley value computed by the Monte Carlo algorithm with 2000

sampled permutations (sufficiently large) as the benchmark Shap-

ley value. We conduct the experiment for the first communication

round due to the enormous computation cost for the benchmark

Shapley value. In addition, we omit the experiment on Fed-ISIC2019

since it only has six clients, which is too few for evaluating Shapley

value computation.

Table 3 shows that DMC consistently outperforms baselines in

MSE where the first row in the table shows the number of sampled

permutations in each algorithm. We observe that the advantage of

DMC over baselines is more obvious when the number of samples
is small because the estimated normalized SV becomes closer to

the accurate normalized SV with increasing samples.

Table 3: MSEs for CIFAR-CNN and FMNIST-CNN (Sec-

tion B.5).

Dataset Method 80 160 240 320 400

CIFAR

MC 5.66e-2 3.23e-2 1.41e-2 9.04e-3 8.87e-3

TMC 3.48e-2 3.38e-2 3.13e-2 3.08e-2 2.71e-2

DMC (ours) 1.52e-2 1.40e-2 1.36e-2 8.72e-3 7.81e-3

FMNIST

MC 1.05e-2 9.43-3 7.08e-3 5.25e-3 4.22e-3

TMC 2.81e-2 2.94e-2 2.33e-2 2.19e-2 2.03e-2

DMC (ours) 7.14e-3 5.54e-3 5.16e-3 4.93e-3 3.76e-3

C PROOF

C.1 Proof of Theorem 5.1

Proof. It is easy to understand that if client 𝑖 has a larger weight

than client j, then the selection probability of i should be larger

or equal to j, or we can switch the probabilities to get a better

solution. Thus, we can know there are no clients with a probability

of less than 1 that have larger weights than those with a selected

probability of 1. Then, we can enumerate all possible values of L𝑡

and solve the simpler optimization problem

min

∑︂

𝑖∉L𝑡

(𝑤𝑡−1
𝑖 )

2

𝑝𝑡𝑖
𝑠𝑡 .

∑︂

𝑖∉L𝑡

𝑝𝑡𝑖 =𝑚 − |L𝑡 |. (14)

Equation (14) can be solved using the Lagrange multipliers method.

At last, we can check which solution can minimize equation (8)

while the probability of each client is in the proper domain. □
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