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ABSTRACT

Federated Learning (FL) allows clients to form a consortium to train
a global model under the orchestration of a central server while
keeping data on the local client without sharing it, thus mitigating
data privacy issues. However, training a robust global model is
challenging since the local data is invisible to the server. The local
data of clients are naturally heterogeneous, while some clients can
use corrupted data or send malicious updates to interfere with the
training process artificially. Meanwhile, communication and com-
putation costs are inevitable challenges in designing a practical FL
algorithm. In this paper, to improve the robustness of FL, we propose
a Shapley value-inspired adaptive weighting mechanism, which
regards the FL training as sequential cooperative games and adjusts
clients’ weights according to their contributions. We also develop a
client sampling strategy based on importance sampling, which can
reduce the communication cost by optimizing the variance of the
global updates according to the weights of clients. Furthermore, to
diminish the computation cost of the server, we propose a weight
calculation method by estimating differences between the Shapley
value of clients. Our experimental results on several real data sets
demonstrate the effectiveness of our approaches.
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1 INTRODUCTION

Federated Learning (FL) [25, 32] is a distributed machine learning
paradigm that enables local clients to collectively train a central
model under the coordination of a server. Specifically, the server
organizes the collaborative training process through model param-
eter interaction while the raw data of each client is stored locally.
Therefore, it preserves the privacy of clients by preventing the ex-
posure of raw data. FL has shown extensive applications in many
fields, such as medical care [37], finance [27], and data markets [44].
For example, for medical care, several hospitals can collectively
train a disease classifier without sharing the raw data of patients in
the FL paradigm, thus protecting their privacy.

Motivation. Despite the promising progress in mitigating problems
of privacy [1, 47], Non-IID data [24], and communication cost [28],
FL still suffers from a great vulnerability in robustness. For example,
the data of different clients naturally tends to be heterogeneous [34];
some malicious clients may use corrupted data or even send noised
parameters to manipulate the model [35]. The performance of the
central model can be dramatically degraded in such complex yet
practical scenarios. Thus, robustness is a crucial desideratum for
an FL algorithm. However, it is challenging to develop a robust FL
algorithm since the server has little prior knowledge of clients due
to privacy concerns.

Standard FL treats all clients indiscriminately, and weights clients
either uniformly or proportionally to the size of their local data
sets when aggregating the local model updates, which lacks ro-
bustness since both the value of clients and data are unequal in
reality. To address the problem, some works consider that valu-
able clients should be more similar to each other, such as Krum [2]
and coordinate-wise median-based algorithms [50]. These works
require all clients to participate in each round for their statistical
error rate guarantee, incurring intractable communication cost.
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Majority-based and geometric median-based robust aggregation
methods [3, 15, 18, 35, 46] have been further proposed, which allow
partial client participation. However, they cannot maintain effec-
tiveness when malicious clients account for a large proportion and
submit similar gradients. In addition, some valuable clients whose
local data sets and gradients differ from others may be filtered out
by majority-based and similarity-based methods. Therefore, the
above methods often lead to suboptimal performance since they do
not consider a fair valuation of the influence of each client.
Shapley Value (SV) is a concept to measure each player’s con-
tribution in the cooperative game theory [39]. It has been proven
as the unique way that satisfies four desired properties for contri-
bution allocation: balance, symmetry, additivity, and zero element.
Specifically, the Shapley value of one player is the weighted average
of all its marginal contributions, which is the utility differences
between player sets with and without the player. Shapley value
captures all possible cooperation scenarios of each player and hence
can distinguish valuable players from malicious players. Naturally,
Shapley value can be employed to evaluate the contribution of
clients. The Shapley value of clients can be computed on the server
by evaluating the utilities based on gradients without accessing the
raw data. In addition, Shapley value is a model-agnostic solution,
i.e., it can provide a fair evaluation for each client regardless of the
type of training models and attack methods. To this end, can we
design a robust FL algorithm based on Shapley value of the clients?

Challenges. Despite the appealing properties of Shapley value,
there are several challenges in adopting Shapley value to evaluate
the contributions of clients and further design a robust FL algorithm.
First, the clients participating in the training process vary from
round to round, making it hard to use Shapley value to evaluate
the relative contributions between all clients. Second, the commu-
nication cost is one of the bottlenecks in implementing FL [13, 20].
It is necessary to ensure the convergence and reduce the commu-
nication cost when dynamically adjusting the weights of clients.
Third, computing the exact Shapley value for the clients under
FL requires retraining the models for different subsets of clients
and the computation is known to be a #P-hard problem due to the
enumeration of subsets [10]. When there are a large number of
clients, a huge computation cost on the server is inevitable, even
with Shapley value approximation methods. It is challenging to
design an efficient Shapley value-based weighting method.

Contributions. To improve the robustness of FL, we design an
adaptive federated learning algorithm, which adapts the weights
of clients for aggregating the local model updates according to
their historical contributions. Each client’s weight is set to be pro-
portional to its surrogate federated Shapley value (Definition 4.3),
which combines the marginal contributions of selected clients in
all rounds and provides an effective approximation of the Shapley
values by the clients’ overall contributions to the ongoing training
process. In addition, we give a thorough analysis of the convergence
and stability of our proposed method.

We also put effort into improving the convergence and reducing
the communication cost of adaptive federated learning. Our analysis
shows that the weights of clients significantly impact the variance of
the global update estimator. To reduce the variance of the estimator
of global update, the clients with higher weights should be selected
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with higher probability. Thus, we develop a client sampling method
according to importance sampling, which adjusts client selection
probability dynamically in the training process.

Furthermore, we propose a more efficient Shapley value approxi-
mation method to reduce the computation cost in adaptive federated
learning. Inspired by the fact that the sample of differences between
Shapley values of clients has smaller variances than that of Shapley
values themselves, we estimate the differences between Shapley
values of clients first and then derive surrogate federated Shapley
values from the differences, rather than directly calculating sur-
rogate federated Shapley values as existing inefficient sampling
approaches do.

The main novelty of the paper is that we treat the FL training as
sequential cooperative games for the first time to enhance its ro-
bustness, and the server can use weighting and sampling strategies
based on Shapley value of clients. Concretely, we summarize our
contribution as follows.

e Significance or broad impact. We focus on addressing the
fundamental problem in federated learning: improving the ro-
bustness to heterogeneous data challenges and poisoning attacks.
Proposed method. We propose an adaptive weighting method
based on the surrogate federated Shapley value for robustness.
We further develop a client-importance sampling strategy to
enhance communication efficiency and a surrogate federated
Shapley value approximation method to save computation cost.
Theoretical guarantee. We provide a formal convergence anal-
ysis showing that the proposed algorithm can achieve the same
convergence rate as state-of-the-art. Besides, we give the stability
analysis of adaptive federated learning on the upper bound of
the loss change in consecutive rounds.

Experimental validation. We perform a comprehensive evalu-
ation of a range of vulnerable scenarios on different real datasets.
The results demonstrate that our proposed algorithm signifi-
cantly improves the robustness of federated learning over the
baselines in different settings, e.g., achieving 13.8% improvement
in accuracy compared to the best-performing baseline algorithm
RFL [35] on realistic healthcare dataset Fed-ISIC2019 [11].

2 RELATED WORK

In this section, we discuss related work on robust federated learning
and Shapley value.

2.1 Federated Learning

Federated learning has attracted widespread attention since it al-
lows collaborative model optimization without exposing the local
data. Many efforts [20, 25, 51] have been made on various aspects
of FL, such as user privacy requirements, Non-IID data challenges,
and communication issues.

Ensuring robustness of FL faces many complicated scenarios,
such as 1) heterogeneous/imbalanced data, 2) irrelevant data, and
3) poisoned data or model updates. Training on heterogeneous and
imbalanced data among clients, which is pervasive in real-world
applications, can result in biased models [38]. Thus, Shuai et al. [40]
proposed a personalized federated learning framework that can
simultaneously address local and global data imbalance. Dishon-
est clients may participate in model training using irrelevant data
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for improper remuneration [33], which can lead to catastrophic
failure of models. To address the issue, Cho et al. [8] proposed bi-
ased client selection, which allows clients with higher local loss to
have more opportunities to participate in the training. Even worse,
malicious clients may use corrupted data to attack the training pro-
cess [23, 49]. To address the problem, Han and Zhang [16] assumed
that some clients are trusted so that they can evaluate the credibility
of other clients by predicting results on trusted items. Tahmasebian
et al. [41] proposed a robust aggregation algorithm inspired by the
truth inference methods via incorporating the client’s reliability
in the aggregation against the poisoning attacks. However, these
methods fail to deal with collusion attacks since they cannot evalu-
ate the contributions of individual clients fairly. Besides, they are
designed for specific robust issues, which are not flexible for all
scenarios.

There are many works focusing on the communication optimiza-
tion of FL. Luo et al. [30, 31] proposed an efficient FL algorithm
that optimally chooses control variables, e.g., communication in-
terval, to reduce the communication rounds and an adaptive client
sampling method to tackle system and statistic heterogeneity to
minimize wall-clock time. Recently, several adaptive optimization
approaches in FL have been proposed to improve convergence, such
as the decomposition of ordinary differential equations of corre-
sponding centralized optimizers [19]. However, how to reduce the
communication cost while ensuring the robustness of FL is not
considered by the above methods.

2.2 Shapley Value

Shapley value is widely used in the game theory and computer
science fields due to its pragmatic properties. Recently, many works
have focused on evaluating the value of clients in FL based on
Shapley value [12, 29]. The intuition is to encourage clients to
participate in the training process truthfully by providing a fair
and accurate assessment of clients. However, the high computation
complexity of Shapley value limits its potential applications in
FL. Some sampling-based approximation methods are proposed
to improve the computation efficiency [14, 52] in general settings.
Wang et al. [44] proposed a variant of the Shapley value amenable
to FL, which captures the value of clients based on the rounds they
participate in. Zheng et al. [53] proposed an efficient and secure
Shapley value calculation approach under a two-server protocol.
Fairly evaluating the contribution of each client is essential to
determine whether that client is helpful, which has not been well
studied by existing works. In this paper, we focus on leveraging
Shapley value to develop a new FL algorithm that is robust to
heterogeneous data challenges and poisoning attacks.

3 PRELIMINARIES

In this section, we review the related definitions and notations used
in the paper. Table 1 summarizes the frequently used notations.

3.1 Federated Learning

Standard Federated Learning [32]. Consider a set of clients N =
{1,...,|N|} such that client k € N owns local dataset Dy consisting
of |Dg| = ni sample points. The central server aims to make the
local clients collaboratively train a machine learning model without
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Table 1: Some frequently used notations.

Notation | Definition
N the whole client set
[ the selected client set in round ¢
P the client selected probability vector in round #
m the expected number of clients in each round
x! the central model parameters after training ¢ rounds
ot the local model parameters of client i
Lr after training r local steps in round ¢
V! the model parameter updates of client i in round #

exposing their raw data. The standard federated learning training
executes the following steps until the stop criterion is met: (1) the
server selects a random fraction of clients and broadcasts the global
model parameters to the selected clients; (2) each selected client
locally computes an update to the model by training on their local
datasets and then sends the update to the server; (3) the central
server aggregates and applies these updates to the global model
parameters. The objective of the central server takes the following

form [7].
N
Z w;Fi(x),
i=1

where F; : RY — R is typically taken as a continuously differen-
tiable local loss function, x € RY are the model parameters, w; is

min F(x) =
xeRd

the weight of client i, and Z{\z/ 1 wi = 1. The weights of clients are
usually set to be proportional to their data size.

Task-Specific Federated Learning. Standard federated learning
trains a central model by minimizing the loss computed on the
local data of all clients. It ignores the potential mismatch between
the training objectives and the specific task of the server. Recently,
several works have utilized a global validation dataset to solve
this issue [23, 33, 43, 44]. The validation dataset is used to capture
the desired input-output relation of the global model. Given the
validation dataset Dy, the training goal of the central server can be
formulated as follows.

max ®(Dy, x),

xeRd
where ® is a metric used to measure the global model performance
on Dy, e.g., accuracy or negative empirical loss.

3.2 Shapley Value

Consider a set of clients N = {1,..., [N|}. A coalition S is a subset
of N that cooperates to complete a task. A utility function U(S)
(S € N) is the utility of a coalition S for a task, e.g., the accuracy
of the central model trained with S. The marginal contribution of
client i with respect to a coalition S is U(S U {i}) — U(S).

Shapley [39] laid out the fundamental requirements of fair re-
ward allocation, including balance, symmetry, additivity, and zero
element. Specifically, balance requires that the total payoff should
be fully distributed to all clients. Symmetry specifies that two clients
should receive the same reward if they have the same marginal
contributions. Additivity indicates that the reward value on two
tasks should be the sum of the values on individual tasks. Zero
element specifies that a client should not be rewarded if the client
does not make any marginal contribution.
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Shapley value measures the expectation of marginal contribution
by i in all possible coalitions. That is,

1 US Ui} -US)
SVi=— ~ (1)
Nl s N8N

According to Equation (1), we can find that computing the exact
Shapley value requires enumerating all utilities for all client subsets
by retraining the global model, which is impractical for weight
adjustment in the training process.

4 FRAMEWORK OF SHAPLEYFL

We design a robust FL algorithm with an adaptive weighting method
based on the surrogate federated SV and an independent uniform
sampling strategy in Section 4.1. A theoretical analysis of the con-
vergence and stability is given in Section 4.2.

4.1 Federated Learning with Adaptive Weights

To achieve robust federated learning, we can compute the Shapley
value of each client, which measures its marginal contribution
towards the global model, and then use that as a weight to aggregate
the local model updates. Computing the Shapley value directly
requires training the central model with each client subset from
scratch and deriving the marginal contributions. This huge time cost
makes it infeasible to dynamically adjust the weights in the training
process. Fortunately, the collaborative training in each round is the
cooperation of a subset of clients and can be used to derive the
marginal contributions of each client during that round. Inspired
by this, we compute and combine the marginal contributions of
each client in sequential rounds as an approximation of its standard
Shapley value to adjust its weights.

We define the training process of each round ¢ (¢ > 1) as a
cooperative game G (x*, C, Dy, Ur), where x! is the global model
parameter at the beginning of round ¢, and C? is the client subset
that participates in round ¢. ¥(x?,S) = x! - Ng Zies ’7—3“[ returns
the model parameter after updating x? by client subset S where
(Vl.t is the model parameter update vector of client i in round ¢, and
1g (1) is global (local) learning rate, respectively. The utility of a
coalition S C C! is the performance of the global model updated by
S in round t, i.e., Up(S) = ®(Dyp, ¥(x?, S)). We define the partial
federated Shapley value of each client in round ¢ as follows.

Definition 4.1. (Partial Federated SV) In a cooperative game
G(xt,Ct, Dy, U), the partial federated Shapley value of client
i€ C!inroundtis
1 Up(SU{i}) - UR(S)

t Ct|-1
I scen ( |3|| )

D(Dy, ¥(x', S U {i})) — P(Dy, ¥(x', S))

ct(%)

SV =

ScCh\{i}

The partial federated SV measures the aggregate marginal con-
tributions of the client with respect to all subsets of the selected
clients in each round. The advantage is that it does not require
retraining the model from scratch and can be directly computed
based on the model updates from that round. By combining them
from sequential rounds for each client, it provides an approximation
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of the overall marginal contributions of the client towards training
the global model so far. However, the ranges of the partial federated
SV in different rounds are unequal since the change in the central
model performance tends to get smaller as the training process
goes on. Thus, we adopt the min-max normalization in each round
to eliminate the influence of unequal ranges of partial federated SV
in Definition 4.2.

Definition 4.2. (Normalized Partial Federated SV) Given SV =
{8V f li € C'}, the normalized partial federated SV is defined as
; SV? — min(SV?)
NSV; = ; - N
max(SV*') — min(SV?*)
where max(-) and min(-) return the maximum and minimum ele-
ment of a set, respectively.

@)

REMARK 1. According to the balance property, the sum of the
partial federated SV of selected clients in each round equals the perfor-
mance improvement of the central model in that round. The absolute
value of the partial federated SV is trivial since the incremental model
performance in a single round is small. Instead, min-max normaliza-
tion maintains the relative size of the partial federated SV of selected
clients in each round, which is preferable in evaluating the relative
contributions of clients.

We then combine the normalized partial federated SV in different
rounds in Definition 4.3.

Definition 4.3. (Surrogate Federated SV) Given T sequential co-
operative games G (x!,C!, D,,Ur) (1 < t < T), the surrogate

federated Shapley value of client i during the first ¢t games is
BxSSVITL+(1-p) =« NSVI, ieCt
SSViTL, igC’,
where f (0 < f < 1) controls the update rate of the surrogate
federated SV.

S8V = { 3)

REMARK 2. The surrogate federated SV is updated by the normal-
ized partial federated SV in each round and thus can capture the
contributions of clients in the training process so far. Therefore, it is
suitable for dynamically adjusting clients’ weights in time. The hyper-
parameter 5 can adjust the timeliness of contributions. For example,
B = 0 means the surrogate federated SV completely depends on the
normalized partial federated SV in the current round.

Adaptive Training Objective. The contribution of each client to
the global loss is weighted by its surrogate federated SV so far. We
formulate the adaptive training objective of the central server in
round ¢t (1 < t < T) as follows.

N N t
min F(x) = wiFi(x) = —— L (x). (@)
)= PR =

We present a simple adaptive FL algorithm named AFedSV. Meth-
ods for enhancing convergence and efficiently calculating the surro-
gate federated SV will be presented in Section 5. AFedSV adopts an
independent uniform client sampling strategy where the probabil-
ity of each client being selected per round is y = % The detailed
algorithm of AFedSV is shown in Algorithm 1. Let R be the number
of local steps(batches) that clients train locally in each round, and
x" be the central model parameters at the beginning of round ¢. The
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Algorithm 1: Adaptive Federated Learning Based on Shap-
ley Value with Uniform Sampling (AFedSV)
1

input :initial global model parameters x
global and local step-sizes 14, 111
initial P = [y, ,y]

output: global parameter xT*1 after training T rounds

1 foreach communication roundt =1,2,---,T do

2 sample clients Ct ~p;

3 server broadcasts x! to all clients in C?;

4 foreach client i € C! do

5 initialize local model xi{ 0 < xt;

6 foreach local step r =1,2,--- ,Rdo

7 compute mini-batch gradlent gl(xl 1)
8 L updatex <—x” 1 r]lg,(x” NE

9 compute V/ = 25:1 gi (xi’ril);

10 send "Vit to master;

1 server calculates weights wf(l <i < |NJ]) inround t;

12 server updates global model

t
t+1 t Wi t.
X =Ty 2iect Tl’ll(vi B

T+1

X

13 return global model parameters x

server broadcasts the current central model parameters x’ to the se-
lected clients (Lines 1-2). The selected clients conduct local training,
which updates the received parameters using their local data (Lines

-9). xl{r (0 < r £ R) is the model parameters that are updated
from x? with local data of client i after r local steps in round ¢.
Given the learning rate of local clients 5, xf’r =x! - r]lgi(x{r_l),
where g,-(x;.ir) is an unbiased estimator of VF,'(xi{ +)- The estimator
of update vector of client i € C* in round ¢ can be represented as
(Vt Zf 1 gl(xl _1)- The local parameter updates are sent to the
server after local training (Line 10). The server uses the received
parameter updates to calculate the surrogate federated SV of clients
and update the global model parameters using the weighted local
updates according to the surrogate federated SV (Lines 11-12). We

have
[ t] [
lEC’

—E[Zngxxl, 1)]

i=1r=
Equation (5) shows the estimator of updates of partial clients is an
unbiased estimator of updates of all clients. Computing the nor-
malized partial federated SV is crucial for dynamically adjusting
weights. An efficient normalized partial federated SV approxima-
tion method is proposed in Section 5.2 as a complement to weight
calculation.

N

Z trv_t
Z waw (xL, ).

i=1r=

®)

4.2 Theoretical Analysis

Since the loss functions of most effective models in FL are non-
convex, we mainly focus on the convergence analyses in non-
convex settings. Besides, we give an upper bound on the difference
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of the loss change in consecutive rounds to show the stability of
our proposed algorithm. Due to space limitations, we provide the
proof in the full paper placed in our code repository.

Convergence Analysis. Assume that the local loss function F;
(1 < i < |N]) is L-smooth, which is consistent with the gen-
erally adopted assumption [21]. g,-(xiir) can be decomposed to
its expectation VFi(xf’r) and an auxiliary estimator 5,~(xl.t’ ,)> that
is g,-(xf,r) = VFi(xf’r) + 5i(x£r) fori ([1 < I < |N|), where
E[5i(x£r)] = 0. Assumptions 1 and 2 capture the variation range
of local gradients and the similarity among local gradients of local
loss functions, respectively, which are widely used in FL [22].

AssumPTION 1. Forroundt (1 <t <T), local stepr (1 <r <R),
and client i (1 < i < [NI), B[|I8!,|I*|x!,] < M|VFi(x! )|I* + ¢
holds for some M > 0 and ¢ > 0.

ASSUMPTION 2. For roundt (1 <t
VF!(x)||? < p holds for some p > 0.

< 1), SNWVF(x) -

Denote by Ax(t) the global update vector estimator of the server,
which is obtained by training one round for objective F. The effec-
tive global update vector r]Ax(t) can be denoted as follows.

DI ",

lECtr 0

nAx(t) =ng Y Z —mgz(xlr) . (©

ieCt r=0
where 17 = R4 is the effective step size of the global update vector

. S5y
and the global learning rate ng > /5.
According to Equation (6), we have

|N|R 1 1 IN|R-1
E[Ax(t)] = Z Z wigi(xt )] = wiVFi(xl,).
i=1 r=0 l=l r=0

Denote by x(t) the model parameters that are updated from x’ by
one round for objective F?, i.e., x(t) = x* — nAx(t). Then, the itera-
tions of adaptive FL satisfy Theorem 4.4 (see proof in the Appendix),
which gives the standard form of convergence result of adaptive
federated learning for one round in the non-convex setting [7].

THEOREM 4.4. Under Assumptions 1 and 2, we can get

B (e(0)] < BIF (x)] = 2n(1 = a0 [VF ()

2
n n“cL 5y :
+ =(1+2nL + —(—
8( nL)p 2Ry(4172 ")

by setting n € (0. ] and o = ZNl(wt)2

4
> SL(2+M/R)

REMARK 3. We analyze the upper bound of the loss change for the
model in one training round since the training objectives vary in each
round. It can be seen that the upper bound depends on the weights
when adopting a uniform independent client sampling strategy and
learning rates under Assumptions 1 and 2. When the client weights are
set to uniform, the convergence guarantee recovers the state-of-the-art
non-convex FL complexity guarantee provided in [22]. The advantage
of adaptive weights compared to uniform weights is that the training
objective can reflect the contributions of clients. To achieve a tighter
convergence guarantee, we propose a new client sampling strategy in
Section 5.1.
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Stability Analysis. Training objectives vary in each round for
adaptive FL since clients’ weights are adjusted in the training pro-
cess. The convergence stability is manifested in the difference of the
loss change in training the initial model parameters for objectives
in consecutive rounds. However, there is no analysis of the stability
of convergence in existing adaptive FL works. To fill the gap, we
give its upper bound in Theorem 4.5.

Denote by Ax(t + 1) the global update vector estimator of the
server, which is obtained by training one round for objective F**1.
The effective global update vector nAx(¢ + 1) can be denoted as
follows.

nAx(t+1) = ng Z Z

ieCt r=0

t+1

(D IPI

lECt r=0

(xl,) = —gi(x],).

Thus, the model parameters that are updated from x? by training
one round for objective F'*! can be denoted by x(t + 1) = x% —
nAx(t +1).

THEOREM 4.5. Under Assumptions 1 and 2, we can get
{BIF™! (x(t +1))] - BIF™*! (x")]} = {E[F' (x(1))] - E[F!(x")]}
< 29(1- 2 - ZyDEIVF ()]
n 3

np 2, P, € 3 10 41 1y )2
— +2n°L(~ + —) — -n(1 = —nL)E[||VF
+ 7+ 2 LG+ ) = g1 = TaDBIIVF )]

: [5
by setting n € (0, m] andng > Ty.

REMARK 4. Theorem 4.5 shows the difference of the upper bound
on the loss change of training the model on objective F**! and the
lower bound on the loss change of training the model on objective
F!. Thus, it gives the upper bound on the convergence change of the
model on different training objectives.

5 OPTIMIZATION: CLIENT SAMPLING AND
WEIGHT CALCULATION

To reduce the communication cost, we propose an optimal client
sampling method based on client-importance sampling in Section
5.1. Further, we propose an efficient approach to calculate the nor-
malized partial federated SV based on the differences in the partial
federated SV to mitigate the computation cost in Section 5.2.

5.1 Client-Importance Sampling

Only a subset of clients communicates their updates to the server
in each round due to the limited communication bandwidth. In-
spired by importance sampling, we design a client sampling ap-
proach that minimizes the variance of the estimator of global up-
dates, which is crucial for ensuring faster convergence [7]. De-
note by P! = [pi, e ’pItNI] the probability vector, where pit is
the probability that client i be selected in C’. The expected num-
ber of clients involved in each round is Z‘ - pl |N|, denoted
by m. Following the training objective in Equatlon (4) and using
the effective step-size n = Rr]mg, the global update estimate vec-

tor in round ¢ is Ax(t) = % LS ot RN gl(x ,)- Denote by

r()p
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ZlNl Zf o Wi gl(x . the variance of Ax(t) can be repre-
sented as follows.

Var[Ax(1)] = E[||Ax(t) - E[Ax(1)][1%]
= E[[lAx(t) - X' + X' —E[Ax(1)]]1%]
= E[l|Ax(1) - X*[|*] + E[|X* - E[Ax(D)][1%]
+2E[{Ax(t) - X', X! —E[Ax(t)])].
Due to the fact that E[Ax(t)] = E[X?], we have E[{Ax(t) —
X! Xt —E[Ax(t)])] = 0. Then, we can get

Var[Ax(t)] - X'[*] +E[|IX*

= E[||Ax(?) ~E[Ax(D)][1%].

Denote by z\’it Zf 0 g,(xf’r), we have

IN|
E[[lAx(t) - X*[1%] = E[l|Ax(t) - wax;nz]

IV

=E[| ) wix! - > wiX[|*] =E

ieCt i=1

INI (1 _ 12
[Z( Pp)( w;)

i=1 i

X121,

where the last equation can be derived from the key lemma of [17].
Thus, we can get

\NI( z)z INI
Var|Ax(t)] = BLY ——IIX{ 1] Zw) 111
i

B[] ) wiX! - E[Ax(5)]]1°].
i=1

It shows that the variance of the global update estimate vector
is affected by three factors: the norm of the estimator of the local
update vector [|X l.t ||?, the weight of clients wl.t , and the sampling
strategy (selected probability of each client pf ). The knowledge of
all estimators of the local update vectors (\’it(l < i < |N]) cannot
be obtained due to the partial client participation in each round.
In addition, in our framework, the weights are determined by the
surrogate federated SV of the clients in Section 4.1 to increase the
robustness of FL. Thus, we focus on how to minimize the vari-
ance by adjusting the selected probability of each client here. Since

[ZINl (W ) ||Xt|| ] is the only term affected by the sampling

strategy, the selected probability of each client should be positively
related to its weight to minimize the variance if we omit the norm
differences between estimators of local update vectors. The weights
of clients are updated after the partial clients are selected in each
round in our framework. So we use the weights in the previous
round as an approximation. Hence, according to the relationship
between the weights of clients and the sampling strategy on the
variance, an optimization problem is proposed as follows and the
solution is presented in Theorem 5.1 (see proof in the Appendix).

[N (wi=1)2 IN|
min L , subjecttom = L optelo,1].  (8)
ni ; s j ;pl plefo1]

THEOREM 5.1. Let L containl (0 < I < m) clients with the largest
weights in round t — 1. The optimal solution of Equation (8) is the one
with the smallest value obtained by Equation (8) among the following
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mpossiblesolutions(|£’|=O,l,-~-,m—1).
_prt Wi : t
S B A 0
1, ie Lt

We get a new adaptive federated learning algorithm improved
from AFedSV by employing client-importance sampling, named
AFedSV+. The detailed algorithm is shown in Appendix Algorithm 2.
Algorithm 2 is similar to Algorithm 1. The main difference is to
determine the client sampling probability according to Theorem 5.1
(Line 7).

Convergence Analysis. We give an analysis of the convergence
of adaptive federated learning with importance sampling. Denote
by x(t) = x' — nAx(t) the estimator of global parameters that x*
be updated after round ¢ where clients are sampled according to
probability vector . The improvement factor is defined as

E[[|ax(t) - SN wixt)2)

al = ~ ) (10)
BlllAx(6) - S wixt )]
THEOREM 5.2. Under Assumptions 1 and 2, we can get
— 3 10
E[F'(x(1)] < E[F'(x")] - gna- gfiL)IIVFt(xt)II2
2
n°cL cL
+-(1+2nL)p + —
( nLp + s
58

by setting n € (0. ].6=

y
> 8L(2+M/R) (N =mm 4ndng 2

REMARK 5. The convergence guarantee recovers Theorem 4.4 when
adopting the uniform independent client sampling (' = 1). Differ-
ently, the upper bound becomes tighter when a' is reduced by using
the proposed client importance sampling. The variance of the estima-
tor of global updates can be reduced by the client importance sampling
strategy, and experimental results verify the strategy is empirically
effective.

5.2 Normalized Partial Federated SV Estimation

While our surrogate federated SV used as weights for clients avoids
the prohibitive cost of computing Shapley value directly, it still
requires enumerating all subsets of the participating clients and
computing the marginal contributions based on the model perfor-
mance on the validation dataset in each round. In this section, we
present an efficient normalized partial federated SV approxima-
tion method to further reduce the computation cost of adaptive
federated learning.

Observe that the differences between the partial federated SV in
each round have a smaller variance since its range is smaller than
that of the partial federated SV. We propose to use the differences
to estimate normalized partial federated SV efficiently.

Our proposed method computes the normalized partial federated
SV of participating clients in each training round. To lighten nota-
tions, we omit the round marker ¢ (e.g., SV; for S(Vf) and assume
all clients participate in round ¢. Given the partial federated Shapley
value SV =[SV, .-+, 8V ] for clients N = {1,...,|N]}, let
ASVi ;i = SV — SV, be the difference of partial federated SV
between client k and i. Then ASV} = [ASVy 1, -, ASVi ]
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According to Equation (1), we have

1 Urp(S U{k}) — UR(S)
R SCNV{k} (‘%_‘1)
a1 Up(S U {i}) - Up(S)
N s Ry (lﬂfl)
__ 1 Ur(SU{kD) -Ur(SU{i})
NI=1 g Rt %5 .

(11)

The last equation can be derived by splitting subsets S in the
first equation into three parts, including either i or k and including
neither i nor k, and then rearranging the terms. We omit the math-
ematical operations due to space limitations. With the differences,
we can reformulate the normalized federated SV of i as follows.

SV - min(SV)

NSVi= ax(SV) — min(SV)
SV - min(SV)] - [SVy - SVi]
= Tmax(SV) - SV — min(SV) SV, 2
max(ASVy) - ASVy;

" max(ASVy) — min(ASVy)”
Equation (12) allows us to get the normalized federated SV of all
clients based on the differences between the partial federated SV of
all clients and any client k.

We propose a sampling algorithm to compute the difference
between the partial federated SV of any client k and others. The
detailed algorithm is shown in Appendix Algorithm 3, named DMC.
Denote by ASVy; ; (0 < j < |N| - 2) the expected difference
in utility between coalition S U k and S U i with |S| = j and
S c N\ {k,i}. That is,

Up(S U (k) - Up(S U )
IN1-1
( 1S )

AS(Vk,i,j =
ScN\{k,i},|S|=j

. (13)
We have ASV ; = ﬁ Z lNl 2 ASVy; j by Equations (11) and
(13). To approximate AS(Vk,,, we can estimate ASV;; (0 <
j < IN| - 2). Denote by AKI = {S|S € N\ k,i,|S = j|}. Let
X/Ii}l’] (8) be a random variable with uniform distribution on the set
{Up(SUK)~Up(SUI)|S € AR/} Then we have E[X ™ (S)] =
ASVy ;- Given a random sample of X’;}i’j(S) of size m; jx
(X (S0, X (Smy)), where S+, Sy, € AR,
the sample mean ASV; ; = L i Xk”(SO) is an unbi-

my;; “~o=1
ased estimation of ASVy ; ;. Because

Mi,i,j Mp,i,j

Zxklj(so Z

By equally stratified sampling X’;}l’o S),--- ,X,’i}l’lNl_z(S) , we
can get ASVy; ; (O < j < |N| - 2). Now, consider the sample

(X5 (So)] = ASV ;.

mean ASV ; = |N\ 1 Z‘Nl AV ASVy ; ;- We have
1 IN|-2 1 IN]-1
E[—— ASVyiil = —— E[ASVi il = ASVy ;.
[|N| 1 jZ:;) k,z,]] IN[ -1 JZ:;] [ k,t,]] k,i
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That is, ASV ; is an unbiased estimation of ASVy ;.

6 EXPERIMENTS

In this section, we experimentally study AFedSV/AFedSV+. In Sec-
tion 6.1, we provide details of datasets used and experimental setup.
In Section 6.2, we evaluate a variety of data and model poison-
ing scenarios on standard image dataset CIFAR-10' and Fashion-
MNIST? to verify the robustness of AFedSV/AFedSV+.In Section 6.3,
we further apply our algorithms on a realistic cross-silo health-
care dataset Fed-ISIC2019 [9, 11, 42]. Due to space limitations, the
experiment evaluating the effectiveness of DMC is given in Ap-
pendix B.5. We also add more experimental details in the supple-
mentary material to enhance reproducibility. The code for exper-
iments is available at https://github.com/ZJU-DIVER/ShapleyFL-
Robust-Federated-Learning-Based-on-Shapley-Value, which is im-
plemented using PyTorch.

6.1 Datasets and Experimental Setup

We implement AFedSV/AFedSV+ on standard image datasets
CIFAR-10 and Fashion-MNIST. The CNN network is adopted as the
central model since it is widely used in the field of image classifica-
tion. As in previous works, we focus on the more challenging Non-
IID setting and simulate the synthetic Non-IID partitions of Fashion-
MNIST and CIFAR-10 datasets. The details of the datasets are given
in Appendix B.1. Moreover, we study 5 popular data and model poi-
soning scenarios based on the Non-IID data setting [2, 5, 35, 36, 48]:
1) imbalanced data with long-tailed distribution; 2) irrelevant data
with open-set label noise; 3) malicious clients with closed-set label
noise; 4) malicious clients with data noise; 5) attacks with gradient
poisoning. The details of Non-IID setting and poisoning strategies
are given in Appendix B.2 and B.3, including the partition strategy
of innocent client/malicious client and the test dataset/validation
dataset.

We further experiment on a realistic cross-silo healthcare dataset
Fed-ISIC2019. The detailed dataset description is given in Appen-
dix B.1. We follow the setting in [11] and end up with a 6-client
federated version of ISIC2019. The best-performing EfficientNets
architecture is used as the central model. Since the data distribution
among hospitals is fixed, it is no longer necessary to further simu-
late Non-IID partitions. Considering that the hospitals are honest
and the data cannot be distorted locally, we care about Byzantine
failures where some clients just fail and send random gradients,
which is studied in the experiment.

Proposed algorithms.

o AFedSV: Adaptive FL with uniform sampling in Algorithm 1.

o AFedSV+: Communication-efficient adaptive FL with the client
importance sampling strategy in Algorithm 2.

Baseline Algorithms.

o FedAvg [32]: The most popular FL algorithm.

o FedProx [26]: The algorithm that copes with the Non-IID prob-
lem by adding a proximal term to the loss function.

o FedSV [44]: The algorithm that is extended for robust FL using
the SV variant in [44].

LCIFAR-10: http://www.cs.toronto.edu/ kriz/cifarhtml
2Fashion-MNIST: https://github.com/zalandoresearch/fashion-mnist
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o S-FedAvg [33]: The algorithm that considers the irrelevant
data/clients and modifies FedAvg by selecting relevant clients
with an SV-based score.

o RFA [35]: The Robust Federated Aggregation (RFA) relies on a
robust aggregation oracle in FL based on the geometric median.

6.2 Performance on Image Classification

Results on CIFAR-10. Figure 1 shows the accuracy of
AFedSV/AFedSV+ along with other baselines in 5 different data
scenarios (mentioned in Section 6.1) on CIFAR-10. The averaged re-
sults after 5 independent experiments reveal that AFedSV+/AFedSV
significantly outperforms baselines in various data settings. With
up to 8.1%, 7.3%, 20.7%, 7.9%, and 11.0% performance improvement
of AFedSV+ compared to FedAvg, FedSV, FedProx, S-FedAvg, and
RFA, respectively.

Take the performance improvement in the open-set label noise
setting as an illustration. As shown in Figure 1(b), the average
accuracy of AFedSV+ on the central server test set D after 150
rounds of global communication is 58.22%. It is 8.1%, 17.5%, and
6.3% improvement over the average accuracy of FedAvg, FedProx,
and RFA, respectively. We believe that the failure of FedProx in
the irrelevant/malicious data setting (even compared to FedAvg) is
because it adjusts the loss function and aggregates the gradients
produced by the irrelevant clients with the same weight as an in-
nocent client. By contrast, AFedSV+ limits the impact of irrelevant
clients by estimating its contribution and assigning lower proba-
bility via computing SV-based global weight. Although S-FedAvg
and FedSV also introduce the concept of Shapley value, AFedSV+
still has 5.7% and 4.4% improvement over the average accuracy of
S-FedAvg and FedSV, respectively. AFedSV+ converges much faster
than S-FedAvg and FedSV since it amplifies the impact of gradients
collected by clients with higher Shapley value and samples clients
based on previous knowledge.

The results also reveal that introducing client-importance sam-
pling could accelerate convergence and improves global model
accuracy. Comparing the performance of AFedSV+ and AFedSV,
AFedSV+ has a better convergence rate and higher model accuracy.
This is because the optimal client sampling method in AFedSV+
allows the selection of optimal clients with higher probability than
the uniform sampling strategy in AFedSV. The greater involvement
of these clients ensures higher model accuracy. Such a pattern is
even more evident at Fashion-MNIST.

Results on Fashion-MNIST. Figure 2 shows the accuracy of
AFedSV/AFedSV+ along with other baselines in 5 different data
scenarios (mentioned in Section 6.1) on Fashion-MNIST.
Agreeing with the results on CIFAR-10, the results reveal that
AFedSV+/AFedSV significantly outperforms baselines. However,
it is worth mentioning that in the closed-set label injection set-
ting, the global accuracy of all algorithms dropped significantly on
Fashion-MNIST. We believe this is due to the relative simplicity of
the Fashion-MNIST dataset where a simple CNN network could
achieve high performance. Thus, the flipped labels exert a severely
negative impact on the gradients. Even if the aggregated weight
of the gradient from the malicious client is set low, it still exerts
a vastly negative impact on global accuracy. As for the CIFAR-10
dataset, since the accuracy of the simple CNN network is relatively
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Figure 1: Evaluation results on CIFAR-10 (Section 6.2).
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Figure 2: Evaluation results on Fashion-MNIST (Section 6.2).

low, the effect of closed-set label noise is relatively insignificant.
Also, comparing AFedSV+ and AFedSV confirms the benefit of
client-importance sampling.

6.3 Performance on Medical Diagnosis

Following the setting in [11], we set the fraction of clients par-
ticipating in training to 1.0 due to the limited number of clients.
Thus, the impact of the client importance sampling strategy is not
studied, i.e., we only evaluate AFedSV instead of both. Also, we
omit S-FedAvg since it degenerates to FedAvg. We simulate the
gradient attack as mentioned in Section 6.1 with 2 malicious clients
that upload perturbed gradient in each round. For fairness consid-
eration, we implement 10 independent experiments with 25 rounds
using random seeds to generate candidates for malicious clients.
Figure 3 shows that AFedSV outperforms baselines. The average

0.80

075 ] I AFedSV
: I FedAvg

0.70 | FedProx

5 10 15 20 25
Communication Rounds

Figure 3: Evaluation results on Fed-ISIC2019 (Section 6.3).
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accuracy of AFedSV on 25 rounds reaches 64.24%, which has 25.1%,
13.7%, 13.4%, 4.4% improvement compared to FedAvg, FedProx, RFA,
and FedSV, respectively. The error bar indicates the fluctuation of
global accuracy caused by choosing different malicious client can-
didates. Naturally, setting the client with the largest data size (9930)
as a malicious client has a more significant negative impact on
global model accuracy than the client with the smallest data size
(351). Thus, the consistently smaller error bar of AFedSV verifies
the robustness of our adaptive weighting mechanism compared to
baselines.

7 CONCLUSION

In this paper, in order to enhance the robustness of federated
learning, we proposed an adaptive Shapley value-based weight-
ing method. We produced a client-importance sampling strategy to
save communication costs and a normalized partial federated SV
estimation method to mitigate the computation cost. We provided
a thorough theoretical analysis of the convergence and stability of
AFedSV and AFedSV+. Extensive experiments on several real-world
applications (e.g., vision and healthcare) were conducted to validate
the robustness of our proposed methods.
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APPENDIX

The organization of the appendix is as follows. Section A provides
the details of Algorithms 2 and 3. Section B provides the details
of the experiment to guarantee reproducibility. Section C provides
proof of theoretical results.

A ALGORITHM

Algorithm 2: Adaptive Federated Learning Based on Shap-
ley Value with Importance Sampling (AFedSV+)

1

input :initial global model parameters x
initial global and local step-sizes 14, 7;
initial P! = i T
output:global parameters x!*! after training T rounds
1 foreach communication roundt =1,2,---,T do
2 sample clients C? ~ P?;
3 server broadcasts x? to all clients in Cy;
4 local training in round ¢ the same as Algorithm 1;
5 server calculates weights wit(l <i < |NJ]) inround t;
6 server updates global model
e xt - Ng 2iect :_gﬂl(vit§
7 server calculates P**! by Theorem 5.1;

s return global model parameters xT*1;

Algorithm 3: Shapley Value Difference Computation
(DMC)

input :clients N = {1,...,|N|}
number of total samples M > 0
output:approximate difference between Shapley value for
eachclienti (1 <i < |N|)and k
1 A8V, < 0(1<i<|N);
ASVy;j < 0(1<i<|INLO<)<|N|-2);
for _=1to |M/(IN]|-1)] do

)

©w

4 fori=1tondo
5 for j=0to|N|-2do
6 let S be a random sample drawn from AkLI;

u—USU{z}) -US U {z});
ASVicij+ = TmpNFD T

7 for i=1to |[N| do

8 for j=0to |[N|-2 do

9 L AS(Vk’l'+ = #Asvk,i,ﬁ

=
5

return AS(Vk’I, A AS(Vk!|N|;

B REPRODUCIBILITY

B.1 Dataset description

The CIFAR-10 dataset consists of 60000 32x32 color images in 10
classes, with 50000 training images and 10000 test images. The
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Fashion-MNIST dataset is a 28x28 grayscale image dataset used
to replace the traditional handwriting dataset MNIST, which also
has ten labels and consists of a train set of 60000 images and a test
set of 10000 examples. We randomly split 2000 images(20%) of the
original test dataset as the global validation dataset and the rest
8000 images as the real test dataset.

The Fed-ISIC2019 dataset contains 23,247 dermoscopy images
with 2007200*3 input dimensions collected from different hospi-
tals. The training entails identifying images from eight distinct
melanoma classes. We follow [11] and re-split into train dataset
with 18597 images(80%) with 9930,3163,2691,1807,655,351 images
for the corresponding client and 4650 images(20%) for the valida-
tion dataset and test dataset. We also randomly split 20% of the
4650 images as the global validation dataset, and the rest be the test
dataset. We measure classification performance through balanced
accuracy, defined as the average recall in each class.

B.2 Non-IID setting

The performance of the FL central model in Non-IID FL settings has
been a well-known challenge due to the diversity of gradients. Con-
sequently, as in previous works, we focus on the inconsistency and
simulate the synthetic Non-IID partitions of Fashion-MNIST and
CIFAR-10 datasets. For illustration, the experiment in Section 6.2
set the total number of clients to 100 and the proportion of clients
participating in training in each communication round to 0.1. The
training data is sorted by label and then divided into 200 shards.
Consequently, each shard has 250 images for the CIFAR-10 dataset
and 300 images for the Fashion-MNIST dataset. Then, each client
is assigned two shards of data, which guarantees that each client
can only have 1 or 2 consecutive labels and further ensures the
non-identical distribution with each other.

B.3 Vulnerable scenario simulation

We consider the following popular vulnerable scenario based on
the Non-IID data setting.

Imbalanced data with the long-tailed distribution. To create

the imbalanced version of CIFAR-10, we reduce the number of train-
ing samples per class in the original datasets. Then we follow [4]
to obtain long-tail distribution with different imbalance ratios (IR),
which denote the ratio between the number of samples in the largest
and that in the smallest class. Long-tailed imbalance follows an
exponential decay in sample sizes across different classes.
Irrelevant data with open-set label noise. In this experiment, we
simulate irrelevant clients by injecting label noise. We follow [33]
and adopt the method of open-set noise[45], which assigns labels
of known categories to data of unknown categories. By way of illus-
tration, we assign the label aeroplane to an image of a truck in the
classification task that involves a truck, ship, and automobile. We
inject half of the training images with label noise in both CIFAR-10
and Fashion-MNIST.
Malicious clients with closed-set label noise. In this experiment,
we simulate malicious clients by injecting label noise. The mali-
cious clients flip the local sample labels during training to generate
faulty gradients. In particular, the label of each training sample in
Byzantine clients is flipped from L to (L + 1)%C, where C is the
total categories of labels and L € {0,1,---,C — 1}.
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Malicious clients with data noise. In this experiment, we simu-
late malicious clients by injecting random noise into real, raw data.
Dy = Dy, + N(, 0%I). In particular, we set = (0,---0) € RY and
o=1

Malicious client with gradient poisoning. In this experiment,
we simulate malicious clients by sending perturbed gradients. We
consider a typical scenario of gradient poisoning called a random
Byzantine Attack. Specifically, assuming the original value of a
gradient element is a, the value after adding noise is given by a *
(1 + b), where b is randomly sampled from a uniform distribution
[-0.5, 0.5].

B.4 Hyperparameter choosing

We first validate the impact of weights update rate f as shown
in Equation 3. The hyperparameter § limits the updates rate of
the adaptive weight of each client, thereby influencing FL global
accuracy. We implement AFedSV+ with varying § and explore the
averaged convergence global accuracy on CIFAR-10 with open-set
label noise. The experimental results in Table 2 reveal that too
large or too small weight update rate is not conducive to the model
training. Consequently, we set § = 0.3 for AFedSV/AFedSV+ in the
experiments afterwards.

Table 2: Impact of weights update rate.
B

Test Accuracy

0.1
0.5482

0.3
0.5822

0.5
0.5784

0.7
0.5660

0.9
0.5588

B.5 Effectiveness of SV Calculation

We adopt the universal benchmark algorithms, including Monte
Carlo algorithm (MC) [6] and Truncated Monte Carlo (TMC) al-
gorithm [14] for approximating Shapley value as baselines. We
compare DMC with MC and TMC in the scenario of gradient poi-
soning. We set the proportion of clients participating in each round
to 0.2, i.e,, 20 clients are selected in each round (|N| = 20). We
compute the average of the Mean Squared Errors (MSEs) to verify
the effectiveness of the proposed algorithms. Given benchmark nor-
malized Shapley value NSV; and estimated normalized Shapley
value NSV; (1 < i < |N|) computed by the proposed algorithms,

we compute MSE(NSV,NSV) = iz SX NSV, - NSV3)2.
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Computing the exact normalized Shapley value NSV; for evalua-
tion purposes is prohibitively expensive because it grows exponen-
tially with the number of players. Therefore, we use the estimated
Shapley value computed by the Monte Carlo algorithm with 2000
sampled permutations (sufficiently large) as the benchmark Shap-
ley value. We conduct the experiment for the first communication
round due to the enormous computation cost for the benchmark
Shapley value. In addition, we omit the experiment on Fed-ISIC2019
since it only has six clients, which is too few for evaluating Shapley
value computation.

Table 3 shows that DMC consistently outperforms baselines in
MSE where the first row in the table shows the number of sampled
permutations in each algorithm. We observe that the advantage of

DMC over baselines is more obvious when the number of samples
is small because the estimated normalized SV becomes closer to

the accurate normalized SV with increasing samples.

Table 3: MSEs for CIFAR-CNN and FMNIST-CNN (Sec-
tion B.5).

Dataset Method 80 160 240 320 400
MC 5.66e-2 3.23e-2 1.41e-2 9.04e-3 8.87e-3
CIFAR TMC 3.48e-2 3.38e-2 3.13e-2 3.08e-2 2.71e-2
DMC (ours) 1.52e-2 1.40e-2 1.36e-2 8.72e-3 7.81e-3
MC 1.05e-2 9.43-3 7.08e-3 5.25e-3 4.22e-3
FMNIST TMC 2.81e-2 2.94e-2 2.33e-2 2.19e-2 2.03e-2
DMC (ours) 7.14e-3 5.54e-3 5.16e-3 4.93e-3 3.76e-3

C PROOF

C.1 Proof of Theorem 5.1

ProOF. Itis easy to understand that if client i has a larger weight
than client j, then the selection probability of i should be larger
or equal to j, or we can switch the probabilities to get a better
solution. Thus, we can know there are no clients with a probability
of less than 1 that have larger weights than those with a selected
probability of 1. Then, we can enumerate all possible values of £*
and solve the simpler optimization problem

(Wit_l)z ¢ t
min Z ———st. Z p; =m—|L] (14)
igrt P gLt

Equation (14) can be solved using the Lagrange multipliers method.
At last, we can check which solution can minimize equation (8)
while the probability of each client is in the proper domain. O
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