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ABSTRACT

Matrix factorization (MF) is a fundamental model in data mining and
machine learning, which finds wide applications in diverse applica-
tion areas, including recommendation systems with user-item rat-
ing matrices, phenotype extraction from electronic health records,
and spatial-temporal data analysis for check-in records. The “right
to be forgotten” has become an indispensable privacy consideration
due to the widely enforced data protection regulations, which allow
personal users having contributed their data for model training to
revoke their data through a data deletion request. Consequently, it
gives rise to the emerging task of machine unlearning for the MF
model, which removes the influence of the matrix rows/columns
from the trained MF factors upon receiving the deletion requests
from the data owners of these rows/columns. The central goal is
to effectively remove the influence of the rows/columns to be for-
gotten, while avoiding the computationally prohibitive baseline
approach of retraining from scratch. Existing machine unlearning
methods are either designed for single-variable models and not com-
patible with MF that has two factors as coupled model variables,
or require alternative updates that are not efficient enough. In this
paper, we propose a closed-form machine unlearning method. In
particular, we explicitly capture the implicit dependency between
the two factors, which yields the total Hessian-based Newton step
as the closed-form unlearning update. In addition, we further intro-
duce a series of efficiency-enhancement strategies by exploiting the
structural properties of the total Hessian. Extensive experiments
on five real-world datasets from three application areas as well as
synthetic datasets validate the efficiency, effectiveness, and utility
of the proposed method.
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1 INTRODUCTION

Matrix Factorization (MF) is a fundamental model in machine learn-
ing and data mining. MF has been successfully applied to diverse
areas of applications, such as recommendation systems [20, 32, 39],
healthcare data analysis [13, 23-25, 33], and spatial-temporal data
analysis [17, 19, 21, 41, 47]. MF trains its model by decomposing a
data matrix M and generating two lower-dimensional factor matri-
ces A, B such that M ~ ABT. In many applications, the data matrix
M is collected from personal users, for example, product ratings in
recommendation systems, electronic health records in healthcare
data analysis, and location check-in records in spatial-temporal data
analysis. Recently, the worldwide enacted personal data protection
regulations enforce the “Right to be Forgotten”, including the Eu-
ropean Union’s GDPR [8], Canada’s proposed Consumer Privacy
Protection Act (CPPA), and the California Consumer Privacy Act
(CCPA). To comply with the regulations, machine unlearning [1, 3]
becomes an emerging problem for machine learning models that
rely on user data for training, including matrix factorization [22].
Machine unlearning research focuses on efficiently and effec-
tively removing or scrubbing the influence of the data that needs to
be forgotten. One baseline approach is the “retraining-from-scratch”
that retrains the entire model from scratch on the remaining train-
ing dataset (i.e., the original training dataset excluding the data to
be forgotten). Despite taking prohibitively high computations, it
is considered the golden standard in terms of the effectiveness of
removing the data influence. Current machine unlearning methods
can be roughly divided into two categories according to whether
dedicated to a specific type of model or broadly applicable to more
general models. The former approaches are tailored to the specific
properties of the target model, including unlearning from logis-
tic regression [37], random forest [2], quantized K-means [9], and
graph neural networks [5, 6]. The latter approaches are not limited
to a specific model, including influence function-based methods
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[10, 11, 14, 29, 35], reversing optimization path of the model train-
ing [36, 40], and SISA [1] and its variants [4, 42] that maintain a
series of small models on multiple shards of the training dataset
and retrain the small models only on the shard containing the data
to be forgotten.

Recently, AltEraser [22] proposes a dedicated machine unlearn-
ing method tailored to the two-factor structure of the MF model.
AltEraser proposes a two-stage iterative machine unlearning strat-
egy. First, it fine-tunes on the remaining dataset by the original
training algorithm for several iterations. Then, it further updates the
two factors by influence function-based machine unlearning steps,
again in an alternative fashion for several iterations. Although indi-
cating that developing an MF-tailored approach is more promising
than applying general machine unlearning methods, AltEraser still
comes with several limitations that prevent it from achieving better
efficiency and effectiveness. For example, the alternative influence
function-based updates are not efficient enough since each iter-
ation requires computing two Hessian matrices. In addition, the
alternative updates do not provide clear stopping criteria. In the
experiments of [22], the iteration number is heuristically set to 10,
which makes it difficult to decide whether the data influence has
been effectively removed at the given iteration.

1.1 Our Contributions

In this paper, we propose a Closed-form Machine Unlearning for
Matrix Factorization (CMUMF) approach to effectively and effi-
ciently remove data from trained MF factors. CMUMF builds on the
approximate machine unlearning criteria that is derived from the
optimality condition of the MF model retrained on the remaining
data. However, straightforwardly relying on these criteria leads
to a problem involving both factors, which seemingly again re-
quires alternative machine unlearning updates. To deduce it to a
single-factor problem, we introduce a set of auxiliary functions to
explicitly capture the interdependence between the two factors.
In particular, the derivative of the auxiliary function leads us to
the total Hessian-based influence function, rather than the con-
ventional Hessian-based influence function adopted in AltEraser,
which is capable to capture more holistic influence from the two
factors and grants sufficient data influence removal in a single
machine unlearning update, as illustrated by Figure 1. To further
enhance computational efficiency, we introduce a series of efficiency
enhancement techniques when dealing with the total Hessian, in-
cluding exploiting its sparsity, computing and storing in column-
wise and block-wise style, saving from duplicated computations by
making use of its symmetry. Extensive experiments on five real-
world datasets from three application areas (i.e., user ratings from
recommendation systems, check-in records from spatial-temporal
analysis, and electronic health records from healthcare analysis),
as well as synthetic datasets with three different sizes, validate the
superiority of CMUMEF over the state-of-the-art machine unlearn-
ing algorithms in terms of effectiveness, efficiency, and utility. To
summarize, our main contributions are

e We propose a closed-form machine unlearning for matrix factor-
ization approach, which suffices to remove the data influence by
a single update due to the holistic influence captured by the total
Hessian-based influence function.
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e We introduce a series of efficiency enhancement techniques to
further improve the computational and storage efficiency when
dealing with the total Hessian.

e We conduct extensive experiments on five real-world datasets
from three different application areas, as well as synthetic datasets
with three different sizes to validate the effectiveness, efficiency,
and utility of CMUMF.
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Figure 1: Comparison of AltEraser and CMUMF.

2 BACKGROUND AND PRELIMINARY

Table 1: Frequently used notations in this paper.

Symbol Definition
AB Factor matrices
W Weight matrix
M Data matrix
A" B* Factor matrices after unlearning
A* B* Factor matrices after retrain
A*, B* Factor matrices without data deletion
vec(-) Column-first vectorization operator
I Projection matrix selecting nonzero entries of vec(W)
Iy Identity matrix with size d X d
Vias Vab’ Vha Partial Hessian matrices
-0 I 2 Frobenius norm, £, norm

0,® Hadamard product, Kronecker product

AnBn, Wn, M, The n-th column of A,BT, W,M
a,b,w, m The column-first vectorizations of A, B, W,M
ap, by, Wy, my, The vectorizations of the n-th column of A, BT, W,M
I wp, © (Ab, — my)
w IIdiag(vec(W))
AB W(I®A),WBI)
Kpr The permutation matrix satifying Kpgvec(A) = vec(AT)
F The objective function
f The vectorizations of objective function
Ly The per-user objective function
In The vectorizations of per-user objective function
F\N The objective function without user N
f \N The vectorizations of objective function without user N
Bn The per-user Auxiliary functions
H The total hessian maxtix

The frequently used notations are summarized in Table 1.
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2.1 Matrix Factorization

MF decomposes the data matrix M € RFP*N into two factor matrices
A € RPXR and B € RN*R where R is the rank. As some entries of
M can be missing in practice, the weight matrix W € {0, 1}F>*N
indicates whether the entry is observed (i.e., W;; = 1) or missing
(i.e., W;j = 0). MF approximates M ~ AB” by solving the following
problem

[A*,B*] = argmin 7(A,B) = [W © (ABT - M)||% + A(||All% + [IBII%).
AB
1

where A is a regularization hyperparameter.

Since the data matrix is collected from personal users in many ap-
plications, without loss of generality, we assume different columns
of M correspond to different users and the rows correspond to, e.g.,
purchased products or the rated items. Then A is the product/item
factor and B is the user factor. Let My, ..., My be each column of
M and Bj,..., B}, be each row of B*. Eq.(1) can be equivalently
described by the following per-user problem formulation,

N
[A%B},....By] = argmin )’ L,(AB,)+AAl}, o)
ABy..BN 771

where L, (A, By,) is the per-user loss function,

Ln(ABy) = W, © (ABj — M) |7+ AlIBx 7 (&)

Vectorization Notations. In the following paper, we will work
with the vectorization notations of MF, which will be convenient
for the derivation of the machine unlearning algorithms. Then, the
vectorized MF formulation is

% N

[li*] = argmin f(a,b;m, w) = In(a,bp; my, wp) +/1||a||§
ab n=1

N (4)

= > (Ilwn © (Aby — my) 13 + AllbylI3) + Allall3.

n=1

2.2 Matrix Unlearning for Matrix Factorization

MF Problem Formulation after Data Forgotten. For represen-
tational simplicity, let the N-th column of M be the user data to
be forgotten, Denote the optimal vectorized factors after forget-
ting the N-th column by [a*,b*] = (a*,b}, ..., b},_)) (please note
that the by vector can be directly nullified after forgetting mpy
and we slightly abuse the notation of b), which corresponds to the
following MF problem,

. N-1
[“*] =argmin f'N (a,b;m,w) = )" L,(a,bp;mp, wp) + A2}
b a,b

n=1

®)

Z

-1
(Iwn © (Ab, — my)|I5 + Allbpll3) + Allall3.
1

3
Il

Approximate Machine Unlearning Criteria for MF. Before
describing the machine unlearning criteria for MF, we recall the
first-order optimality condition of eq.(4), where [a*,b*] are the
factors of the trained MF model satisfying:
Vaf(a*,b*) = Vo 50 In(a*,b%) + 202" =0, ©
Vi f(a*,b") = Vi T}, In(a”,b*) =0.
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Similar to eq.(6), the optimality condition after data forgotten
for a*,b* in eq.(5) is:

Vaf W (a*, b*) = Vo 5N 1, (2%, b%) +20a% =0, o

Vo'W (@*,b*) = Vi, T35 I (2%, b*) =0.

Machine unlearning for MF seeks to efficiently obtain the up-
dated factors a%, b* that approximately satisfy the optimality con-
dition in eq.(5):

{vaf\N(a“,bu> = Va 2N I (2%, b%) + 2224 %0,

8
Vi f\WN (@, b*) = Vi, S35 1 (¥, bY) ~ 0. ©

2.3 Unlearning Update for Matrix Unlearning
Considering the eq.(4), the AltEraser [22] do Taylor expansion on
the objective function f(a, b; m, w) about a and b respectively:
FIN@4BY) = F\WN (@, b) + Vo f\W(a%a") (¥ - b)+
%(au _ a*)Tvgaf\N (a*’ a*)(au _ a*)’
N @) = f\W(as,a") + V'V (a%a") (b* - b*)+
3% —b*)TVE F\WN (@*,b*) (b - b*).

©)

Ignoring the quadratic term and applying the eq.(8), then the eq.(9)
can be:

a = a* = [V2,FW(@", b)] " Vaf\W(a", b, (10)
b = b* — [VZ, FW(a",b")] " Vy f\N (2", b*).

Owing to a*, b* are the minimum point of the function f(a, b; m, w),

{vaf\N<a*,b*> + Valn (a*, b)) =0,

11
VbW (2%, b%) + Vply (a*,by,) = 0, -

we can obtain Theorem 2.1 of AltEraser’s algorithm below:

THEOREM 2.1. The approximate machine unlearning criteria in
eq.(8) will be satisfied, when the unlearning updated factor a* and
b" take the following forms,

a* =a* + [V2, W (2" b)] " Valy (", b), (12)
b = b + [V, f\N (a*,b%)] " Tyl (a®, by)- (13)

3 CLOSED-FORM MATRIX UNLEARNING FOR
MATRIX FACTORIZATION

In order to obtain a%,b* that satisfy the approximate machine
unlearning criteria in eq.(8) given the trained MF model factors
a*,b*, we take the first-order multi-variable Taylor expansion of
Vaf \N (2% b% around a*, b* and choose a%, b" to let the Taylor ex-
pansion be zero. That is, we take Vaf\N(a“, b%) ~ Vaf\N(a*, b*)+
Va.f\W(@",b") (@ - a*) + V2 f\W(a",b*)(b* - b*), which ap-
parently involves both factors a%, b“. To have a closed-form ma-
chine unlearning step, we explicitly model the interdependence
between a* and b* by introducing a set of auxiliary functions
b, = By (a) for ealch n € [N], based on which we can further have
b% — by, ~ %(a“ — a*) by the first-order Taylor expansion.
At this point, we arrive at a single factor representation (i.e., with
respect to a) of the approximate machine unlearning criteria, which
gives us the desired closed-form machine unlearning update for a*.
Finally, equipped with a%, we can easily get b* according to the
interdependence auxiliary functions, which is again a closed-form
update.
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3.1 Conceptual Machine Unlearning for MF

First, we derive the conceptual CMUMF algorithm without involv-
ing specific MF computations.

Conceptual Core Unlearning Update. Before deriving the core
unlearning update, we introduce a set of auxiliary functions to
model the interdependency between a and b, for all n € [N]:
Bn(a) = argminy ZQI:I In(a,by) + /1||a||§ = argminy, Iln(a,bp).
In particular, by substituting a% and a* in, we will respectively
have B, (a%) and B, (a*). The specific formulation of B, (a) and
its derivative % will be given in Sec.3.2.

The conceptual core unlearning update is summarized in Theo-
rem 3.1 below.

THEOREM 3.1. The approximate machine unlearning criteria in
eq.(8) will be satisfied, when the unlearning updated factors a* and
b take the following forms,

d8n(a")

a”:a*+AN, bz=b;+ d N>
a

(14)

where AN is the core unlearning update for forgetting the N-th col-
umn as follows AN =

ds, (a)

2/“+Z [v In(a",b}) + V2, Lo (a"b}) L Valn (2%, bYy).

ProOF. By the definition of V, f \N (a%,bY) in eq.(8), we have

N-1
Vaf\W(a¥ bY) = 21a% + V, Z In(a% bY)
n=1
N-1
~ 2+ [valn(a*,b:;)+
n=1

Vil (a',by) (" — ') + V2, bn(a’,b}) (bis - by, |

N-1

= 2)a% + Z [Valn(a bE)+
Galn(@®,by)(a% —a") + Vabn In(a",b},) (Bn(a") - Bn(a*))],

where the approximation is by multi-variable Taylor expansion and
omitting the higher-order terms, the equation is by introducing the
auxiliary functions By, (a) at a¥ and a*. Next, by first-order Taylor
expansion and omitting the high-order terms, we have

dBp(a*)

Bp(a") - Bp(a’) = d —a*
a la=a

(a“ —a"), (15)
i ; q u o d8n(@) (u

which we abbreviate by 8p(a") — Bp(a”) » === (a" —a") for

notational simplicity in the following. Thus, we further have

N-1
Vaf\W(at b ~ 242" + Y [valn(a*,b;)+

n=1 (16)
dBn(a )(au B a*)].

aaln(a’,b7) (@ = ") + V3 In(a" by) =

Shuijing Zhang, Jian Lou, Li Xiong, Xiaoyu Zhang, and Jing Liu

By the optimality condition of a* in eq.(6), we have 2Aa* +
Zn L1, (a% b%) = —V,in(a*, b* N) T 2A(a —a”), then

Vaf W(a¥, b¥) ~ —Valy(a*,by) +2A(a% —a*)+
N-1
> [Vgaln(a*,b;)wibnl (a*, by 22 )

n=1

dBn(a ) (a% —a%). 7

To satisfy the approximate unlearning criteria, we let the right-hand
side of the above eq.(17) be zero, which gives

N-1
at=a"+ (2214 ) [Vgaln(a*,b;)+
n=1 (18)
dB,(a PR *
V2, () 2 ) ot b =+

1], let b¥ = b, + d3"<a )AN, which
gives bl ~ By (a*) + %(a” —a"). By the deﬁmtlon of bk =
Bu(at) = argminy, | In(a%, by), we have b% ~ B, (a%), i.e., b4 is the
approximate optimum of argminy, In(a", by).

As a result, a% and b" satisfy the approximate machine unlearn-
ing criteria that Vaf\N(a”,b“) =V, ZnNz_ll I,(a%,b%) + 21a% ~ 0
and Y N1 Vpl,(a¥, b¥) % 0. o

In addition, for n € [N —

Remark 1. It is worth mentioning that the term [ Jn(a®, b)) +

Vibn In(a*,b}) %] takes the form of total Hessian in optimiza-
tion literature [46]. Also, AN can be regarded as a total Hessian-
based Full Newton step, which has been proven to have fast conver-
gence for MF model training due to the rich curvature information
provided by total Hessian [16]. On the contrary, [22] adopts the con-
ventional Hessian-based (i.e., V2,1, (a*, b%)) Newton step, which
by) 2@y and
has to run multiple alternative updates for machine unlearning.

misses the indirect Hessian part (i.e., Vib I,(a%,
n

Conceptual CMUMF Algorithm. According to Theorem 3.1, the
overall computational efficiency hinges on the core unlearning
update Apx. We reformulate it as follows,

z

-1

ds, (a)

[ VI (a", ) + V2 In(a”,b},)

N
I

1
N

- « 12, dBn(a") (19)

2

Z[ ln(a,b")+Vabnln(a,b")T]
- | Vain @by + V2, v @' b)) S,
where the first line of the right-hand-side is static, which can be
computed right after training and before unlearning, while the
second line is specified by the data forgotten request and needs to

be evaluated at the unlearning time.

e Before unlearning: i) For each n € [N], compute H,, = V2,1, (a*, b};)+
V:Zab,,l”( * )dB na), ; ii) keep H = Z 1Hy in storage.

e Upon Unlearning: 1) Upon receiving the data forgotten request
from the N-th user, compute Valy(a® by) and Hy; ii) Com-
pute the core unlearning update Ay iii) Obtaln the unlearning
updated factors a* and b“.
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3.2 Actual Machine Unlearning for MF

We present the actual CMUMF, which comes with a series of com-
putational efficiency-enhancing strategies, including memorizing
pre-computable Hessian, sparsity-aware computation, column-wise
and block-wise Hessian computation and storage, and avoiding du-
plicated computation by exploiting the symmetry of Hessian.
Exploiting Sparsity and Additional Notations. For MF with
missing observations, the Hessian-related matrices often have a
very large number of zero elements. Thus, it suffices to compute and
store only non-zero elements. To exploit such sparsity in Hessian,
we have W = Hdlag(w) W,, = II,diag(wy,), m = = Wm, m, =
W,my, Ay = WhA, B, = Wy (b ®1p), and Z, = 1, ® Ig. When
the terms are evaluated at A* and B*, we denote them by (-)*, e.g.,
rn, Zy.. Then, I, can be equivalently denoted by

In(a;b) = |[Mpdiag(wy) (Aby — mp) |13 + Allbnll;

_ - (20)
= |Anby — @2 + Allbn 2.

Column-wise Gradient and Hessian Computations. The gra-
dient and partial Hessian matrices Val,(a,by), Vals(a,by) and
Vgaln(a, by,) for the MF model can be easily derived, which are
summarized by Fact 3.1 below. In particular, Fact 3.1 shows that
these components can be computed column-by-column (i.e., user-
by-user).

FacT 3.1. The gradient and partial Hessian Va1, (a, by), V2, 1n@, by)
and Vib In(a,by,) for the MF model can be computed for each column

n € [N] as follows,

Valn(a, bn) = ZEI (Knbn - I’ﬁn)» (21)
V2 1,(ab,) = 2B]B,, (22)
V2, In(aby) = 2B Ay + 2KppZn. (23)

Auxiliary Function and Its Derivative. Next, we present the
explicit form of the auxiliary functions that capture the interdepen-
dency between a and b,, For each n, we have
N
Bn(a) = argminz (IAnbn = mplI3 + AlbylI3) + Allall3
n n=1
= argmin [|Anbn — @p (13 + Allbn 1} = (AyAn + A1)~ (A) Ti0,
bn

=AM, [Define A% = (ALA, +AD)1(A,) 7],

which indicates that the function B, (a) of a depends only on the
n-th user data of wp, m,. The next lemma provides the derivative
of B,(a) at a*.

LEMMA 3.2. The auxiliary function By (a) has derivative with

dB, TOTR S1 (R TR
respect toa ata®: === 48, (a) = —((AL)TAL + A 1((A;‘1)TBZ +

(ZZ)TKPR)~

a=a*

Exploiting Symmetry of Total Hessian. Equipped with Fact 3.1
and Lemma 3.2 that have prepared the prerequisite components,
each entry Hj, of the total Hessian H becomes,

(]-[” = Z[ﬁ:r (I - K;K;_A)E;]Terml
= 2[KprZ (AL A, + A) ' Z3 KpR | 1o 1
Z[B*T (A* A)TZ*TKPR +KT Z A* )LB ]

(29

Term III*
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The overall efficiency of the machine unlearning largely hinges
on the efficiency of the total Hessian computation. In addition to
exploiting the sparsity, we exploit the symmetry of total Hessian
to enhance efficiency.

For (KZT\H + AI)~! that is shared by Term I-III in eq.(24), we
introduce sparse Cholesky decomposition as follows

chol(ALTAY + AT) = L,LT, (25)

where Ly, is alower triangle matrix. Then, (A} Ap+AI) ' = (L, 1) TL, !
which entails the symmetric proposition below.

ProrosITION 3.3. Term I and Term II can be equivalently calcu-
lated as three Kronecker products between symmetric matrices. For
Term I, we have

BITBY = (b5b') ® (WIW,,):; (26)
B;TALA, B, = (bb") @ (WAL (L) L AT W,). (27)
For Term II, we have
KppZi (ARTAL + A1) 71 Z5 Kpr

=(LHLY) ® (wpor)) (w01, 9

Proposition 3.3 not only helps save duplicated computations of
repeated terms (e.g., bb} "), but more importantly also converts
the direct matrix products to Kronecker products between pairs of
symmetric matrices, which has been validated to have a speed up by
up to 4 times according to MF optimization literature [16]. Finally,
Term III contains two symmetric parts (i.e., E*T(K*_A)TZ*TKPR =
(KT Z;, A* B #)T), which also saves half the computation.
Actual CMUMF Algorithm. Equipped with Proposition 3.3 for
computing eq.(19), we summarize the actual unlearning algorithm
below.

e Before Unlearning: i) For each n € [N], compute Hj, by
Hp = 2[ (b b,) ® (W W)
— (bb}1) @ (WiAL (L") L, ATW) |

~ (L)L) ® (wn 0 1) (wa 015) 7] @)

z[ﬁff (AN TZTKpr + KppZio Al By

ii) keep H = Zfil Hp in storage.

e Upon Unlearning: i) Upon receiving the data forgotten request
from the N-th user, compute Valn@*,by)= 2B*T(A* by
—my), and Hy by eq.(29) with n = N ii) Compute the core
unlearning update An = (2A1+H —Hy) " Valn (a*, b*N), which
can be solved by Conjugate Gradient or Fixed-point method. iii)
Obtain the unlearning updated factors a# and b* by eq.(14) in
Theorem 3.1, correspondingly.

3.3 The Complete CMUMF Algorithm
Description

We provide the complete algorithm description in Algorithm 1.
The CMUMF algorithm consists of two stages: Before Unlearning
stage and Upon Unlearning stage. In particular, Option I corresponds
to single-column removal and Option II corresponds to batch-of-
columns removal. The proof of batch-of-columns removal can be
found in Appendix A.
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Algorithm 1 Closed-form Machine Unlearning for Matrix Factorization (CMUMF)

Input: Matrix factorization model (with data matrix M, weight matrix W, and regularization parameter A), trained factor a*, factor b*, delete request N or[S].

Stage I. Before Unlearning:
1: Compute the total Hessian of each user Hy, n € {1,2,..., N} by

Hy = 2[(b;b}7) ® (WW,) — (b)) ® (WA, (L") L, AT W,,) |

—2[(LHTLH @ (Wn O 1) (W O1;)T| - z[E;T (AN TZETKpR + KppZi AL By ;

2: Keep H = 30| H,, in storage;
Stage II. Upon Unlearning;:
3: Execute data forgotten requests:

e Option I: Single Column Removal

- Compute the gradient of the revoked sample N: V,Ix (a*, b’l‘v) = Zﬁ;\]T (K}‘Vbj\, -my);

- Compute the total Hessian of the revoked sample Hn:;

— Compute the core unlearning update: Ax = (2AI+ H — ‘HN)_IValN(a*, by,) by conjugate gradient;

- Update factor a: a* = a* + An;

— Calculate the derivative of b with respect to a: %

= (Y LN (R Ty + (Z) TKer);

- Update factor b: for each n € [N — 1], b% =bj, + dggiga*)AN;

e Option II: Batch Column Removal

- Compute the gradient of the batch revoked samples [S]: X,.c[s] Valn (2", b)) = 2pe[s) ZE;T (K*nb’;l —-my);
- Compute the Hessian of the batch revoked samples ¥ ,,c[s] Hn;

- Compute the core unlearning update: Ajs} = (2AT1+ H — Ynels] ‘Hn)fl Ynels] Valn(a®,b},) by conjugate gradient;

- Update factor a: a* = a* + A[g3;

- Update factor b: for each n € [N] \ [S],b% =bj, + Ad‘(g',’;.f,a*)

4: Resize vectors a%, b¥ to matrices A¥, B¥.

Calculate the derivative of b,, with respect to a for n ¢ [S] : %
a:

=@ (R By + (Z) TKew);

“Aps)s

4 EXPERIMENTS
4.1 Experimental Setup

Datasets. We consider five real datasets from three different ap-
plication areas as well as synthetic datasets. The observation ratio
and size of the datasets are summarized in Table 2.

i). Synthetic data: Synthetic data is generated as follows: The
data matrix is generated by M = ABT + C, where the elements of
A € RP*R B € RP*R are sampled i.i.d. from the standard normal
distribution NV (0, 1), and elements of C are sampled from N (0,0.1).
The ground-truth matrix is G = ABT. We consider three different
sizes of M, including 1k X 1k, 2k X 2k, 3k X 3k.

ii). Recommendation systems data: We use two common
datasets in the field of recommendation systems: The first one is
Jester [12], which is a joke-rating dataset containing more than
20,000 users’ ratings of 36 or more jokes. The rating of the Jester
dataset continuously ranges from -10 to 10; The second one is
Movielens100k (ML100k) [15]. It contains 100,000 ratings from 1000
users on 1700 movies, in which users rate the movies they have
seen, with a score of 1 to 5.

iii). Check-in data: We use the Check-in dataset collected from
Foursquare by [43-45]. It includes 18,201 and 11,874 users’ check-
in records at different POIs (point of interest) in New York City
and Tokyo respectively. We choose the top 500 POIs and top 5000
users with the highest number of visiting records in New York City.
The Check-in dataset contains an interaction matrix representing
user-venue combination with size 5206X509.

iv). Electronic health record (EHR) data: We use the MIMIC-
IIT [18] dataset, which is a free and open Intensive Care Units (ICUs)

research database. It has important applications in phenotypic ex-
traction [26—28]. Following[13], we select the top 500 frequently
observed medications to form an interaction matrix representing
patient-medication combination with size is 5000x500.

Table 2: Dataset Properties

Name ‘ Synthetic Jester1 Jester2 ML100k Check-in MIMIC3
Observation ratio ‘ 0.1000 0.5780 0.5800 0.0504 0.0205 0.0797
1k x 1k,
Size 2k x 2k, 100X 24983 100 X 23500 1682 X 943 509 X 5206 500 X 5000
3k x 3k

Training Algorithms. For each of the datasets, we obtain the
trained MF model by six different training algorithms of matrix
factorization , including ALS[30], PF[30, 38], BALM[7], SGD with
Momentum (Mom-SGD)[31, 34], RMSProp[34], and CGD.

It should also be noted that, real-world data do not have as good
properties as synthetic datasets, so it is difficult for some MF training
algorithms to find the optimal solution. For example, the alternation
approaches (i.e., ALS, PF, BALM) are used for matrix factorization on
Jester1 and Jester2 datasets and perform well. However, they have
poor performance on more sparse datasets. So we use the gradient
descent training algorithms to perform matrix factorization on
Movielens100k, Check-in, and MIMIC-III datasets. At last, each
experiment runs five times, and then the results are averaged.

Compared Machine Unlearning Methods. The four compared
machine unlearning methods include:

o Retraining-from-scratch: The most straightforward machine un-
learning method, which retrains the model from scratch on the
remaining data. It is computationally expensive but provides
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Figure 2: Effectiveness results: Normalized norm differences between factors obtained by the compared machine unlearning
algorithms and the factors obtained by Retrain. Row 1, 2 for data removal percentage=5% and row 3, 4 for percentage=10%.

a golden standard for evaluating the effectiveness of the more
efficient unlearning algorithms.

o SISA [1]: It randomly splits the training data into shards, then
aggregate the results of all submodels.

e Fine-Tuning (FT): The model is initially trained on dataset D,
and then continues to be trained (fine-tuned) on the updated
dataset O with the revoked sample removed.

o AltEraser [22]: A dedicated machine unlearning method for MF,
which initializes model parameters with warm-start (i.e., Fine-
Tuning) and then uses alternative unlearning updates based on
the conventional Hessian-based influence function.

Evaluation Methodology. For real-world datasets that already
come with a large ratio of missing entries, we select 80% as the
training set and the remaining 20% as the test. For synthetic datasets
that have all entries available, we randomly select 10% of the data
to train and 90% to test (i.e., mimic the missing entries in practice).
We consider three types of evaluation metrics. 1) Effectiveness:
we compare the normalized norm difference between the factors
obtained by compared machine unlearning algorithms (A%, B¥) and
the factors obtained by the retraining-from-scratch model (A*, B*)
which is considered as the golden standard: ||A” - A*|| F/size(AY)
and HB“ - B*”F /size(B"). 2) Efficiency: we compare the CPU
time of the compared machine unlearning algorithms; 3) Utility:
we compare the utility based on Mean Square Error (MSE)-based
metrics: RMSE for real datasets and NMSE for synthetic dataset.

4.2 Experiment Results

4.2.1 Effectiveness Comparison of Machine Unlearning.
The effectiveness comparison results are shown in Figure 2.

Synthetic Data. The performances of CMUMF and FT are the
same and outperform other methods. In addition, we can see that
the norm difference values of SISA-Retrain on the six MF training
algorithms gradually decrease as the size of the synthetic dataset

increases, which indicates that the SISA model may work better on
larger datasets.

Real-world Data. Our method is comparable to or slightly outper-
forms FT. Meanwhile, AltEraser does not consider the correlation
between factor matrices, so it has a relatively large norm difference
with Retrain, which is particularly obvious on real-world datasets.
SISA has significantly poor performances.

From the case of 5% deletion and 10% deletion, we can see that the
larger the number of deletions, the larger the norm value between
all unlearning algorithms and Retrain models. This is expected, as
the approximation of the efficient unlearning algorithms deterio-
rates as the number of deletions increases. However, this situation
is more obvious on AltEraser, especially on datasets Check-in and
MIMIC-III.

4.2.2 Efficiency Comparison of Machine Unlearning.
The efficiency comparison results are shown in Figure 3.

Synthetic Data. Our algorithm does not always consume the least
time on the three datasets. It can be seen that on the three MF
training algorithms, such as CGD, ALS and PF, the time spent by
CMUMF increases gradually with the increase of the dataset, which
is due to the fact that the time complexity of CMUMF depends
only on the size of the factors and not on the type of MF training
algorithm. In addition, it also can be seen that SISA training time
is not always less than Retrain. As for AltEraser, the running time
is less in most cases, but when the number of deletions is 10%, the
running time on RMSProp is much longer than that on Retrain.
The algorithm iteration time depends on whether it is easy to use
the factor matrix obtained by the original MF algorithm to find the
optimal solution after deleting some data.

Real-world Data. The experimental results show that CMUMF
takes the least time among all algorithms except on the Movie-
lens100k dataset. In addition, it can be found that due to different
algorithms used in matrix factorization and different datasets, the
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Figure 3: Efficiency results: CPU time (seconds) of the compared machine unlearning algorithms. Row 1, 2 for data removal

percentage=5% and row 3, 4 for data removal percentage=10%.
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Figure 4: Utility results: MSE of the compared machine unlearning algorithms. Row 1, 2 for data removal percentage=5% and

row 3, 4 for data removal percentage=10%.

time taken by the algorithm to find the optimal solution will be
affected, which contributes to the fact that Retrain, FT and SISA
algorithms are not stable in time. Compared with these algorithms,
CMUMF always remains stable in time on the same dataset. As
with the synthetic dataset, the SISA model is not always effective
in terms of time overhead reduction on the five datasets. Because
AltEraser is an iterative algorithm, it takes more time than FT in
some cases on real-world datasets.

4.2.3 Utility Comparison of Machine Unlearning.
The utility comparison results are shown in Figure 4.

Synthetic Data. On the three synthetic data, the SISA model has a
much larger MSE on all the six MF training algorithms, so we did
not present its MSE. It can be seen that, except for SISA, other un-
learning algorithms will not reduce the performance of the original
model in most cases. It is worth noting that SISA not only has a
large time overhead, but also greatly reduces the accuracy of the
original matrix factorization model, which necessitates the need to
develop a dedicated machine unlearning approach when the target
model has unique properties.

Real-world Data. The MSE of our unlearning algorithm is similar
to the original model and also retrain and FT algorithms. Unlike
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synthetic datasets, SISA does not perform poorly in all MF algo-
rithms. For example, the performance of SISA is comparable to that
of retrain for the CGD algorithm on the Check-in dataset and the
BALM algorithm on Jester2 dataset. Another striking observation
that emerges from the comparison is that SISA performs partic-
ularly poorly on the ML100k dataset. By looking at Table 2 we
can find that the ML100k and synthetic datasets are similar in size,
while the other four datasets are larger, which indirectly indicates
that SISA is not suitable for small datasets. Nevertheless, SISA still
performs less well than CMUMF on the other four larger datasets.

When the number of deletions is 5% and 10%, except SISA and
AltEraser, other unlearning algorithms do not damage the perfor-
mance of the original model. We obviously noticed that AltEraser
seriously damaged the performance of the original model when
the MF algorithm was not convergent enough and the number of
deletions was 10% (i.e., the RMSProp algorithm on synthetic data).

4.2.4  Effect of data removal percentage.

We study the effect of data removal percentage on CMUMEF al-
gorithm. Figure 5 is the time cost of CMUMF on three synthetic
datasets when different numbers of data are deleted. On the three
datasets, the time overhead increases with the number of deletions
because the number of nonzeros in the Hessian matrix to be com-
puted increases. Also, the time overhead is related to the size of the
dataset, the larger the dataset, the higher the time overhead.
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Figure 5: Time curve of CMUMF with the percentage of dele-
tions with different MF training algorithms.

5 CONCLUSION

We proposed CMUMF which obtained a closed-form solution for
matrix factorization machine unlearning problem for the first time.
More importantly, we focus on the correlation between factor matri-
ces in matrix factorization, so that user information can be deleted
more thoroughly. In order to reduce the amount of computation, we
introduced a series of efficiency enhancement strategies. Empirical
results evaluated on five real-world datasets from three application
areas validates the efficiency, effectiveness, and utility of CMUMF.
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A APPENDICES: RANDOM BATCH REMOVAL

In this part, we show that the single-column removal setting can be
easily generalized to the random batch removal setting. Let the set
of indices of the columns to be forgotten by [S]. The approximate
machine unlearning criteria after removing [S]:

VafUS) (@ b) = ¥, Sy In () + 20 0,
be\[S] (au,bu) :Vb Zn¢[$] ln(au,bu) ~ 0,

Theorem A.1 summarizes the core update of the batch unlearning.

(30)

THEOREM A.1. The approximate machine unlearning criteria in
eq.(??) will be satisfied, when the unlearning updated factors a* and
b" take the following forms,

d
a“:a*+AlSJ, bz:b’;l 7Bd(a )A[SJ, (31)
where Ay is the core unlearning update: ANy =
s
221+ Y |v§azn(a*,b;;)+v§ Ip(a%, b)) 22 ) "(a M) TS Valn(a',by).
ng[S] nels]

Proor. Similar to the single-column removal case, we have

VoIS @, b) = 2224 + ¥, )" In(a",bih)

ng¢[S]
~ 2kt s Y [vz (a*,b%) + V2,1, (a%, b)) (a¥ — a*)
n¢[S]
+ V3, LG’ b,) (b4 ~ by, | (32)

=22+ ) [Valn(a*,b:l) + V21, (a%, b)) (% — a*)
ng[S]

+ V2, In(a',6}) (Ba(a®) - Bn(a"))]

where the approximation is by multi-variable Taylor expansion
and omitting the higher-order terms, the equation is by introducing
the auxiliary functions B,(a) at a* and a*. By first-order Taylor
expansion and the optimality condition of a* in eq.(6), we have

Va1 @, b%) x = 3 Valy(a',by,) + 24 (a" —a")
nelS]

A8, (a") |(a“ (33)
da

Vialn(a",by,) + V3 1 (a",b},) —a").
ng(S]
To satisfy the approximate unlearning criteria, we let the right-

hand side of the above eq.(33) be zero, which gives
at =at+ (z/u+ > [vgazn(a*,b;;)+
n¢[S]
dBp(a")
da

(34)

-1
Z Valn(a*,bly) =a* + Afg).
nels]

ng" I,(a*,b})

In addition, for n € [N] \ [S], let b¥ = b}, + d8n (a )A[SJ which

gives b ~ B (a*) + dBdia ) (a* — a*). By the deﬁn1t1on of b¥ =
Bn(a¥) = argminy, I,(a" bn), we have by ~ B (a"), ie, b} is the
approximate optimum of argminy, In(a", bn).

As aresult, a# and b" satisfy the approximate machine unlearn-
ing criteria that Vaf\ Sl(a¥, b”) = Va Yng[s] In(a%, b") +24a" ~ 0
and Znﬂs Vbln(a b¥) ~ m}



CIKM °23, October 21-25, 2023, Birmingham, United Kingdom

REFERENCES

[1] Lucas Bourtoule, Varun Chandrasekaran, Christopher A Choquette-Choo, Hen-

[11

[12

[13

[18

[19

[20
[21

[22

[23

[24

]

]

]

]

]

grui Jia, Adelin Travers, Baiwu Zhang, David Lie, and Nicolas Papernot. 2021.
Machine unlearning. In 2021 IEEE Symposium on Security and Privacy (SP). IEEE,
141-159.

Jonathan Brophy and Daniel Lowd. 2021. Machine unlearning for random forests.
In International Conference on Machine Learning. PMLR, 1092-1104.

Yinzhi Cao and Junfeng Yang. 2015. Towards making systems forget with machine
unlearning. In 2015 IEEE Symposium on Security and Privacy (SP). IEEE, 463-480.
Chong Chen, Fei Sun, Min Zhang, and Bolin Ding. 2022. Recommendation
unlearning. In Proceedings of the ACM Web Conference 2022. 2768-2777.

Min Chen, Zhikun Zhang, Tianhao Wang, Michael Backes, Mathias Humbert,
and Yang Zhang. 2022. Graph unlearning. In Proceedings of the 2022 ACM SIGSAC
Conference on Computer and Communications Security. 499-513.

Eli Chien, Chao Pan, and Olgica Milenkovic. 2022. Certified graph unlearning.
arXiv preprint arXiv:2206.09140 (2022).

Alessio Del Bue, Joao Xavier, Lourdes Agapito, and Marco Paladini. 2012. Bilinear
Modeling via Augmented Lagrange Multipliers (BALM). IEEE Transactions on
Pattern Analysis and Machine Intelligence 34, 8 (2012), 1496—1508. https://doi.
org/10.1109/TPAMI.2011.238

General Data Protection Regulation 2016. Regulation (EU) 2016/679 of the Euro-
pean Parliament and of the Council of 27 April 2016.

Antonio Ginart, Melody Guan, Gregory Valiant, and James Y Zou. 2019. Making
ai forget you: Data deletion in machine learning. Advances in neural information
processing systems 32 (2019).

Aditya Golatkar, Alessandro Achille, Avinash Ravichandran, Marzia Polito, and
Stefano Soatto. 2021. Mixed-privacy forgetting in deep networks. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 792-801.
Aditya Golatkar, Alessandro Achille, and Stefano Soatto. 2020. Forgetting outside
the box: Scrubbing deep networks of information accessible from input-output
observations. In European Conference on Computer Vision. Springer, 383-398.
Ken Goldberg, Theresa Roeder, Dhruv Gupta, and Chris Perkins. 2001. Eigentaste:
A constant time collaborative filtering algorithm. information retrieval 4, 2 (2001),
133-151.

Suriya Gunasekar, Joyce C Ho, Joydeep Ghosh, Stephanie Kreml, Abel N Kho,
Joshua C Denny, Bradley A Malin, and Jimeng Sun. 2016. Phenotyping using
Structured Collective Matrix Factorization of Multi-source EHR Data. arXiv
preprint arXiv:1609.04466 (2016).

Chuan Guo, Tom Goldstein, Awni Hannun, and Laurens Van Der Maaten.
2019. Certified data removal from machine learning models. arXiv preprint
arXiv:1911.03030 (2019).

F Maxwell Harper and Joseph A Konstan. 2015. The movielens datasets: History
and context. Acm transactions on interactive intelligent systems (tiis) 5, 4 (2015),
1-19.

Je Hyeong Hong and Andrew Fitzgibbon. 2015. Secrets of matrix factoriza-
tion: Approximations, numerics, manifold optimization and random restarts. In
Proceedings of the IEEE International Conference on Computer Vision. 4130-4138.
Haoji Hu, Haowen Lin, and Yao-Yi Chiang. 2022. Clustering Human Mobility
with Multiple Spaces. In IEEE International Conference on Big Data, Big Data 2022,
Osaka, Japan, December 17-20, 2022, Shusaku Tsumoto, Yukio Ohsawa, Lei Chen,
Dirk Van den Poel, Xiaohua Hu, Yoichi Motomura, Takuya Takagi, Lingfei Wu,
Ying Xie, Akihiro Abe, and Vijay Raghavan (Eds.). IEEE, 575-584.

Alistair EW Johnson, Tom J Pollard, Lu Shen, Li-wei H Lehman, Mengling Feng,
Mohammad Ghassemi, Benjamin Moody, Peter Szolovits, Leo Anthony Celi, and
Roger G Mark. 2016. MIMIC-III, a freely accessible critical care database. Scientific
data 3,1 (2016), 1-9.

Antonios Karatzoglou, Stefan Christian Lamp, and Michael Beigl. 2017. Matrix
factorization on semantic trajectories for predicting future semantic locations.
In 2017 IEEE 13th international conference on wireless and mobile computing,
networking and communications (WiMob). IEEE, 1-7.

Yehuda Koren, Robert Bell, and Chris Volinsky. 2009. Matrix factorization tech-
niques for recommender systems. Computer 42, 8 (2009), 30-37.

Haowen Lin and Yao-Yi Chiang. 2017. SRC: automatic extraction of phrase-level
map labels from historical maps. ACM SIGSPATIAL Special 9, 3 (2017), 14-15.
Wenyan Liu, Juncheng Wan, Xiaoling Wang, Weinan Zhang, Dell Zhang, and
Hang Li. 2022. Forgetting Fast in Recommender Systems. arXiv preprint
arXiv:2208.06875 (2022).

Yuan Luo and Chengsheng Mao. 2020. ScanMap: supervised confounding aware
non-negative matrix factorization for polygenic risk modeling. In Machine learn-
ing for healthcare conference. PMLR, 27-45.

Yuan Luo, Chengsheng Mao, Yiben Yang, Fei Wang, Faraz S Ahmad, Donna Arnett,
Marguerite R Irvin, and Sanjiv J Shah. 2018. Integrating hypertension phenotype
and genotype with hybrid non-negative matrix factorization. In Machine Learning
for Healthcare Conference. PMLR, 102-118.

[25]

[26]

[27]

[28

™~
2,

[30

(31]

[32

[33

&
=

[35

[36

(37]

[38

%
0,

[40

(41

[42

[43

[44

[45

[46

N
)

Shuijing Zhang, Jian Lou, Li Xiong, Xiaoyu Zhang, and Jing Liu

Jing Ma, Qiuchen Zhang, Jian Lou, Joyce C Ho, Li Xiong, and Xiaoqian Jiang. 2019.
Privacy-preserving tensor factorization for collaborative health data analysis.

In Proceedings of the 28th ACM International Conference on Information and
Knowledge Management. 1291-1300.

Jing Ma, Qiuchen Zhang, Jian Lou, Joyce C Ho, Li Xiong, and Xiaogian Jiang. 2019.
Privacy-preserving tensor factorization for collaborative health data analysis.
In Proceedings of the 28th ACM International Conference on Information and
Knowledge Management. 1291-1300.

Jing Ma, Qiuchen Zhang, Jian Lou, Li Xiong, Sivasubramanium Bhavani, and
Joyce C Ho. 2021. Communication efficient tensor factorization for decentralized
healthcare networks. In 2021 IEEE International Conference on Data Mining (ICDM).
IEEE, 1216-1221.

Jing Ma, Qiuchen Zhang, Jian Lou, Li Xiong, and Joyce C Ho. 2021. Communica-
tion efficient federated generalized tensor factorization for collaborative health
data analytics. In Proceedings of the Web Conference 2021. 171-182.

Ronak Mehta, Sourav Pal, Vikas Singh, and Sathya N Ravi. 2022. Deep Unlearn-
ing via Randomized Conditionally Independent Hessians. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. 10422-10431.
Aeron Buchanan Morgan. 2004. Investigation into matrix factorization when
elements are unknown. Vis. Geometry Group, Dept. Eng. Sci., Univ. Oxford, Oxford,
UK, Tech. Rep (2004).

Ning Qian. 1999. On the momentum term in gradient descent learning algorithms.
Neural networks 12, 1 (1999), 145-151.

Xun Ran, Yong Wang, Leo Yu Zhang, and Jun Ma. 2022. A differentially private
nonnegative matrix factorization for recommender system. Information Sciences
592 (2022), 21-35.

Yifei Ren, Jian Lou, Li Xiong, and Joyce C Ho. 2020. Robust irregular tensor
factorization and completion for temporal health data analysis. In Proceedings of
the 29th ACM International Conference on Information & Knowledge Management.
1295-1304.

Sebastian Ruder. 2016. An overview of gradient descent optimization algorithms.
arXiv preprint arXiv:1609.04747 (2016).

Ayush Sekhari, Jayadev Acharya, Gautam Kamath, and Ananda Theertha Suresh.
2021. Remember what you want to forget: Algorithms for machine unlearning.
Advances in Neural Information Processing Systems 34 (2021), 18075-18086.
Anvith Thudi, Gabriel Deza, Varun Chandrasekaran, and Nicolas Papernot. 2022.
Unrolling sgd: Understanding factors influencing machine unlearning. In 2022
IEEE 7th European Symposium on Security and Privacy (EuroS&P). IEEE, 303-319.
Cheng-Hao Tsai, Chieh-Yen Lin, and Chih-Jen Lin. 2014. Incremental and decre-
mental training for linear classification. In Proceedings of the 20th ACM SIGKDD
international conference on Knowledge discovery and data mining. 343-352.
René Vidal and Richard Hartley. 2004. Motion segmentation with missing data
using powerfactorization and gpca. In Proceedings of the 2004 IEEE Computer
Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004.,
Vol. 2. IEEE, II-IL

Yaging Wang, Quanming Yao, and James Kwok. 2021. A Scalable, Adaptive and
Sound Nonconvex Regularizer for Low-rank Matrix Learning. In Proceedings of
the Web Conference 2021. 1798-1808.

Yinjun Wu, Edgar Dobriban, and Susan Davidson. 2020. Deltagrad: Rapid retrain-
ing of machine learning models. In International Conference on Machine Learning.
PMLR, 10355-10366.

Kun Xie, Lele Wang, Xin Wang, Gaogang Xie, Guangxing Zhang, Dongliang
Xie, and Jigang Wen. 2015. Sequential and adaptive sampling for matrix com-
pletion in network monitoring systems. In 2015 IEEE Conference on Computer
Communications (INFOCOM). IEEE, 2443-2451.

Haonan Yan, Xiaoguang Li, Ziyao Guo, Hui Li, Fenghua Li, and Xiaodong Lin.
2022. ARCANE: An Efficient Architecture for Exact Machine Unlearning. In
Proceedings of the Thirty-First International Joint Conference on Artificial Intelli-
gence, IJCAI-22, Lud De Raedt (Ed.). International Joint Conferences on Artificial
Intelligence Organization, 4006-4013. https://doi.org/10.24963/ijcai.2022/556
Main Track.

Dinggi Yang, Daqing Zhang, Longbiao Chen, and Bingqing Qu. 2015. Nation-
Telescope: Monitoring and visualizing large-scale collective behavior in LBSNs.
Journal of Network and Computer Applications 55 (2015), 170-180.

Dingqi Yang, Daqing Zhang, and Bingqing Qu. 2016. Participatory cultural
mapping based on collective behavior data in location-based social networks.
ACM Transactions on Intelligent Systems and Technology (TIST) 7, 3 (2016), 1-23.
Dinggi Yang, Daqing Zhang, Bingging Qu, and Philippe Cudré-Mauroux. 2016.
PrivCheck: Privacy-preserving check-in data publishing for personalized location
based services. In Proceedings of the 2016 ACM International Joint Conference on
Pervasive and Ubiquitous Computing. 545-556.

Guojun Zhang, Kaiwen Wu, Pascal Poupart, and Yaoliang Yu. 2020. Newton-type
methods for minimax optimization. arXiv preprint arXiv:2006.14592 (2020).

Yin Zhang, Matthew Roughan, Walter Willinger, and Lili Qiu. 2009. Spatio-
temporal compressive sensing and internet traffic matrices. In Proceedings of the
ACM SIGCOMM 2009 conference on Data communication. 267-278.



	Abstract
	1 Introduction
	1.1 Our Contributions

	2 Background and Preliminary
	2.1 Matrix Factorization
	2.2 Matrix Unlearning for Matrix Factorization
	2.3 Unlearning Update for Matrix Unlearning

	3 Closed-Form Matrix Unlearning for Matrix Factorization
	3.1 Conceptual Machine Unlearning for MF
	3.2 Actual Machine Unlearning for MF
	3.3 The Complete CMUMF Algorithm Description

	4 Experiments
	4.1 Experimental Setup
	4.2 Experiment Results

	5 Conclusion
	6 Acknowledgement
	A Appendices: Random Batch Removal
	References

