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Cyber manufacturing service, which connects end users with manufacturers over the internet, is significantly hampered by the lack of an automated part 
retrieval method. The state-of-the-art is focused on automatic shape retrieval, which does not consider manufacturing process requirements, such as 
material properties. This paper proposes a manufacturing process-aware part retrieval method using deep unsupervised learning that considers both part 
shape and material properties. Part retrieval results show that the proposed method yields 93.0% process and function class label matching precision, 
which outperforms the shape-only part retrieval model and supervised learning models trained with process, function, or both labels.  
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1. Introduction 

Cyber manufacturing services, as envisioned, seek to connect 
designers with manufacturers via an internet marketplace [1]. This 
vision has not been realized partly due to the lack of an efficient 
manufacturing service search engine that identifies and ranks 
manufacturers capable of producing a query part design. A 
possible solution is to compare the similarity between the query 
part and previously manufactured parts in an existing database. By 
retrieving the most similar parts, candidate manufacturers for the 
query part can be identified. Group Technology (GT) was an early 
attempt to group various parts and products with similar design 
and/or production process requirements in an existing database 
based on standard part encoding and classification rules [2, 3]. 
Although GT is still used in practice, it is not fully automated and 
requires manual preparation of data utilizing selected encoding 
rules, which is prone to errors and is laborious to maintain. 
Furthermore, because different suppliers may choose different 
encoding rules, GT is also difficult to scale across different 
encoding systems [4].  

Developed as a computationally efficient alternative to manual 
grouping of 3D objects, shape descriptors have been studied 
extensively [4]. Shape descriptors are used to convert a 3D shape 
into vectorial representations, from which pairwise similarity of 
3D shapes can be assessed. Shape descriptors such as D2 shape 
distribution, spherical harmonics (SH), and heat kernel signature 
have shown varying levels of efficacy in automated 3D shape 
retrieval [5]. Recent advances in deep learning and 3D data 
acquisition have led to growing interest in 3D shape retrieval using 
deep learning methods. Deep learning methods using different 3D 
representations such as point cloud, multi-views, and spatial 
occupancy grids have also been evaluated for shape retrieval [6].  

It is evident from the above survey that several methodologies 
and data representations have been used to represent and 
automatically retrieve 3D shapes. Such advances have useful 
applications in 3D data-rich domains such as design and medical 
scanning [7]. In the context of manufacturing, however, pure shape 
similarity assessment of 3D CAD models is insufficient for 

identifying candidate manufacturers, whose production 
capabilities depend on other manufacturing capability information 
such as material properties and achievable part quality. Therefore, 
this paper seeks to answer the following questions: (1) how 
important is including non-shape manufacturing capability 
information (e.g., input material properties) in part retrieval for 
cyber manufacturing applications? and (2) how can we effectively 
embed both non-shape manufacturing capability information and 
shape information using a unified vectorial representation? These 
questions are answered by developing a deep unsupervised 
learning-based part retrieval (DUPR) model shown schematically 
in Figure 1, where both 3D part shape and material properties are 
embedded in the latent vector representation. Here, we assume 
that the query part function and the required process can be 
inferred from shape and material property information, and 
therefore the process and function labels are assigned to both the 
query and existing parts only for performance evaluation. We 
consider process-aware part retrieval to be effective if both 
manufacturing process and function class labels of retrieved parts 
match those of the query part. The rationale is that a candidate 
manufacturer should nominally have produced parts with similar 
function and manufacturing process requirements. The 
performance of the proposed methodology is compared with a 
baseline supervised deep learning-based part retrieval model. 

 
Figure 1. Deep unsupervised learning-based part retrieval (DUPR) 
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2. Dataset with 3D shapes and material properties 

To develop a deep learning-based part retrieval model, a dataset 
consisting of 3D parts with both function (e.g., bearings, bushings) 
and manufacturing process class labels (e.g., milling, injection 
moulding) must be created. In addition, other manufacturing 
capability information (e.g., material properties) must be 
associated with shape data. 

We curated and processed a subset of publicly available 3D parts 
data from the FabWave CAD repository [6], which was categorized 
by researchers at North Carolina State University into part 
function classes, as shown in Figure 2. In total, 1,354 parts 
consisting of 9 part function classes (see Table 1) were selected 
from the repository. Of these, 800 parts were randomly selected 
for training, while the remaining 554 parts were used for 
validation. 

 
Figure 2. Example 3D CAD models and part function classes 

A total of 45 distinct materials associated with the 9 function 
classes were collected. Of these, 16 selected material examples are 
shown in Table 1 with their respective function class associations. 
These materials were manually extracted from part catalogues of 
McMaster-Carr. The corresponding material properties (density, 
ultimate tensile strength, and melting point) were obtained from 
MatWeb and used for training the deep learning part retrieval 
models. Each part in the function class was randomly assigned a 
material and its properties based on the associations indicated in 
Table 1.  

Based on the function class and material properties, each part 
was assigned a manufacturing process label (e.g., turning, milling, 
injection moulding). Note that some parts may require additional 
process(es) to produce them. Here, the process class label only 
indicates the process that creates the primary functional feature(s) 
of the part. While these parts can potentially be made using other 
processes, we consider each part is made by either milling, turning, 
or injection moulding. Additional assumptions are made to 
simplify the manufacturing process label assignment: (1) metal 

parts are not injection moulded, and (2) the primary production 
process for axis-symmetric parts is turning. 

In this work, a voxel representation was used to train the deep 
learning-based part retrieval models. 3D CAD models were 
voxelized with resolution of 128 × 128 × 128. 

3. Deep unsupervised part retrieval (DUPR) model 

3.1. Model architecture and training 
The architecture of the DUPR model is based on the 3D 

Autoencoder model [8], and is shown in Figure 3. In addition to the 
shape encoder-decoder pair, the DUPR model also has a property 
encoder-decoder pair that is used to encode material property 
information shown in Table 1. The objective function of the DUPR 
model consists of the shape reconstruction loss and the property 
prediction loss, as follows: 

𝐿 =  ‖𝑥 − 𝑥‖2 + 𝜆‖𝑝̂ − 𝑝‖2 (1) 
where 𝑥 is the input to the shape encoder, 𝑥 is the output of the 
shape decoder, 𝑝 is the input to the property encoder, 𝑝̂ is the 
output of the property decoder, and 𝜆 is a weight tuning parameter, 
which is set to 1. Both encoders and decoders are trained with the 
objective to minimize loss L.  The models were constructed and 
trained using PyTorch, a python-based deep learning library, on a 
high-performance computing node (PACE Phoenix Cluster with 1 
NVIDIA Tesla V100 16GB GPU).  All components of the DUPR 
model were trained simultaneously on the training dataset for 20 
epochs. The batch size was set to 1 for training with Adaptive 
moment estimation (Adam) as the optimizer. The learning rates 
were set to 6 × 10−5.  

3.2. Models for comparison 
To evaluate the importance of the material property information 

in part retrieval, a shape-only autoencoder model was constructed 
and trained to compare with the DUPR model. The architecture of 
the shape-only autoencoder follows exactly the shape encoder-
decoder pair of the DUPR model. The only difference between the 
two models is the exclusion of material properties in the shape-
only autoencoder model. The model was trained on the same 
dataset for 20 epochs. The loss function in Eq. (1) was modified to 
exclude material property loss (second term). In addition, we also 
evaluate the performance of directly concatenating material 
properties to the latent shape vector as an alternative strategy to 
combine both types of information.  

To determine the most effective method to embed material 
property information with shape information, a manufacturing 
process classifier and a function classifier were trained using the 
supervised deep-learning models shown in Figure 4. In addition, a 
multilabel model is trained with respect to both function and 
process labels.  

Table 1. Representative part materials, their properties, and function classes 
Materials Density 

(𝒈/𝒄𝒎𝟑) 
Tensile 

Strength 
(𝑴𝑷𝒂) 

Melting 
Point 
(℃) 

Bearing Bushing Miter 
Gear 

Shaft 
Collar 

Socket 
Head 
Screw 

Rect. 
Gear 
Rack 

Headless 
Screw 

Rotary 
Shaft 

Machine 
Key 

1018 Carbon Steel 7.87 440.0 1205    X X X   X 
2024 Aluminium 2.78 186.0 502    X X   X  

303 Stainless Steel 8.00 690.0 1400   X X   X X  

360 Brass 8.49 338.0 885    X X X X   

400 Nickel 8.86 517.0 1300     X  X   

6061 Aluminium 2.70 310.0 582    X   X   

660 Leaded Bronze 8.93 240.0 977 X X        

Acetal 1.41 66.0 176 X  X X  X X   

Buna-N Rubber 1.00 6.9 120 X         

EPDM 0.86 17.0 150  X        

Grade 2 Titanium 4.51 344.0 1665     X  X   

Nylon 1.15 75.3 220 X X X X X X X   

PEEK 1.45 160.0 343 X X   X     

PTFE 2.17 25.6 331 X X     X   

PVC 1.39 23.9 114 X X     X   

PVDF 1.77 115.0 164 X         

 



  

 
Figure 3. DUPR Architecture 

 

 
Figure 4. Models built for comparison  

Supervised learning-based classifiers have been shown to 
effectively retrieve parts with manufacturing metadata (e.g., 
dimensions) [6]. The architecture of the supervised learning-based 
classifiers follows that of the shape and material property 
encoders in the DUPR model. However, instead of a full decoding 
network, a single fully connected linear layer is applied to the 

encoding networks, which reduces the vectorial representation to 
the number of classes (3×1 for the process classifier and 9×1 for 
the function classifier). A SoftMax layer follows the linear layer to 
assign a probability to each class. All three classifier models were 
trained on the same training dataset for 20 epochs using a batch 
size of 1 with the cross-entropy loss as the objective function. For 
the multilabel classifier, the combined loss function is the sum of 
function label cross-entropy loss and process label cross-entropy 
loss. 

3.4. Model evaluation 
The unsupervised and supervised learning models were 

evaluated by observing the training losses (Figure 5). In addition, 
the supervised learning models were evaluated using the 
classification accuracy on the validation dataset, which consisted 
of 554 unseen test parts. It is evident from Figure 5 that all models 
converged to a low loss at 20 epochs. The DUPR model has a higher 
loss compared to the shape-only autoencoder, which can be 
attributed to the inclusion of material properties in the loss 
function. The process classifier converged slower than the function 
classifier, which is due to differences in classification objectives. It 
is evident that both the function classifier and the process classifier 
reached a high level of validation accuracy as seen in Figures 5(c) 
and 5(d). The average class validation accuracy of the process 
classifier was 94.6%, and the average class validation accuracy for 
the function classifier was 97.2%. These results indicate that the 
models are well-trained for the part retrieval experiment.  

 
Figure 5. (a) Training losses of DUPR model vs. Shape-only Autoencoder, 
(b) training losses of function classifier vs. manufacturing process classifier 
vs. multilabel classifier, (c) validation confusion matrix of manufacturing 
process classifier, and (d) validation confusion matrix of function classifier 

4. Part retrieval experiment 

4.1 Part retrieval workflow and metric 
The previous section presented six models that differed in their 

training objectives (i.e., shape and material vs. shape-only, 
supervised vs. unsupervised learning). In this work, each part has 
32×1 latent vectors derived from each trained model, with the 
exception of shape-material concatenation, which outputs 35×1 
latent vector by directly concatenating the material properties. All 
parts in the manufacturable parts database are embedded as latent 
vectors using each of the six models. As shown in Figure 6, the 
query part input to the models is converted to a latent vector from 
which pairwise similarities between the latent vector of the query 
part and all latent vectors in the manufacturable parts database are 
computed. The vectorial cosine distance is used as the similarity 



  

metric to retrieve the closest matching parts.  

 
Figure 6. Example part retrieval workflow and results 

4.2. Model performance evaluation in part retrieval 
To evaluate the performance of the part retrieval models, we 

compared the function and process class labels of the retrieved 
parts with those of the query part. In this work, Precision at K is 
used as the performance metric, which computes the ratio 
between the number of relevant items to the total number of 
retrieved items, K [6]. For each of the 554 test query parts, the top 
20 best matching parts from the training dataset were retrieved. 
Table 2 summarizes the part retrieval performance based on the 
precision at K of process class label, function class label, and 
combined process and function class labels.  
Table 2. Part retrieval performance by model 

K 1  5  10  15  20  
Process Class Precision at K 
DUPR 95.7% 91.8% 88.2% 85.8% 83.8% 
Shape-only Autoencoder 72.2% 70.0% 67.8% 66.6% 65.5% 
Function Classifier 78.2% 72.2% 71.7% 72.3% 71.6% 
Process Classifier 95.8% 94.4% 93.6% 93.2% 92.4% 
Shape-material 
Concatenation 

75.5% 71.2% 69.2% 67.3% 66.1% 

Multilabel Function and 
Process Classifier 

76.5% 75.0% 74.3% 74.7% 74.5% 

Function Class Precision at K 
DUPR 95.7% 91.6% 87.6% 83.7% 80.3% 
Shape-only Autoencoder 96.8% 93.1% 88.2% 84.0% 80.2% 
Function Classifier 98.9% 98.3% 98.1% 97.5% 97.0% 
Process Classifier 91.0% 84.9% 79.8% 76.1% 73.2% 
Shape-material 
Concatenation 

95.5% 93.0% 88.7% 84.3% 80.4% 

Multilabel Function and 
Process Classifier 

98.6% 97.8% 97.2% 96.5% 96.0% 

Process and Function Class Precision at K 
DUPR 93.0% 86.4% 80.2% 75.1% 71.2% 
Shape-only Autoencoder 70.6% 67.5% 63.3% 59.9% 57.0% 
Function Classifier 77.3% 71.6% 71.1% 71.6% 70.9% 
Process Classifier 88.1% 81.8% 76.1% 72.3% 69.0% 
Shape-material 
Concatenation 73.6% 68.6% 64.5% 60.5% 57.5% 
Multilabel Function and 
Process Classifier 76.0% 74.1% 73.2% 73.2% 72.7% 

It is evident that the DUPR model outperforms the shape-only 
autoencoder model in terms of both process and function class 
label precision at 1 (93.0%). The shape-only autoencoder 
performs slightly better than the DUPR model in only function 
label precision at 1 (96.8%). However, the much worse 
performance of the shape-only autoencoder in process class label 
precision at 1 (72.2%) and the combined process and function 
class labels precision at 1 (70.6%) indicates that shape alone is 
insufficient for part retrieval in the context of cyber manufacturing 

search, where process class matching is essential to identify a 
suitable manufacturer with the necessary capabilities.  

The supervised learning models can result in high precision of 
process or function class label at the cost of induced bias. For 
example, the part function classifier reaches 98.9% precision at 1, 
but only 78.2% of the retrieved parts satisfy the process class label 
matching requirement. Such bias toward the training objective is 
also observed in parts retrieved by the process classifier. 
Importantly, the DUPR model still performed well at 95.7% for 
process class precision at 1, which suggests that shape and 
material similarities are significant factors in determining process 
similarity. When considering the combined class labels precision, 
the DUPR model clearly performs the best, surpassing all 
supervised models. Note that the process and function labels are 
only available for the experiment presented here. The availability 
of class labels is a prerequisite for supervised learning. In practice, 
however, it can be laborious and challenging to label parts based 
on process or function. It is observed that a change in the training 
objective from process to function can alter the part retrieval 
results significantly, which highlights the need for unsupervised 
learning methods that reduce the impact of training bias. 

5. Conclusions 

In this paper we proposed a deep unsupervised learning-based 
part retrieval (DUPR) model, which considers both shape and 
material properties of query parts as inputs to retrieve the closest 
matching parts from a previously manufactured parts database. 
Through a comparative parts retrieval experiment, it was shown 
that (1) including manufacturing capability information (e.g., 
material properties) in the part retrieval model significantly 
improves the retrieval precision when both part function and 
process class labels are considered, and (2) the proposed DUPR 
model reduces bias in training and outperforms the supervised 
learning models yielding a combined process and function class 
precision at 1 of 93.0%. Future research will consider other 
manufacturing capability information such as part quality and 
production quantity. In addition, most data presented in the 
experiment are axisymmetric. While the presented method is also 
applicable to prismatic parts, additional pre-processing such as 
part orientation alignment and fixture placement should be 
further studied. An immediate application of the proposed method 
is to combine it with an instant quoting system for cyber 
manufacturing services, which requires incorporating pricing data 
in the part retrieval method presented here.  
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