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Cyber manufacturing service, which connects end users with manufacturers over the internet, is significantly hampered by the lack of an automated part
retrieval method. The state-of-the-art is focused on automatic shape retrieval, which does not consider manufacturing process requirements, such as
material properties. This paper proposes a manufacturing process-aware part retrieval method using deep unsupervised learning that considers both part
shape and material properties. Part retrieval results show that the proposed method yields 93.0% process and function class label matching precision,
which outperforms the shape-only part retrieval model and supervised learning models trained with process, function, or both labels.
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1. Introduction

Cyber manufacturing services, as envisioned, seek to connect
designers with manufacturers via an internet marketplace [1]. This
vision has not been realized partly due to the lack of an efficient
manufacturing service search engine that identifies and ranks
manufacturers capable of producing a query part design. A
possible solution is to compare the similarity between the query
partand previously manufactured parts in an existing database. By
retrieving the most similar parts, candidate manufacturers for the
query part can be identified. Group Technology (GT) was an early
attempt to group various parts and products with similar design
and/or production process requirements in an existing database
based on standard part encoding and classification rules [2, 3].
Although GT is still used in practice, it is not fully automated and
requires manual preparation of data utilizing selected encoding
rules, which is prone to errors and is laborious to maintain.
Furthermore, because different suppliers may choose different
encoding rules, GT is also difficult to scale across different
encoding systems [4].

Developed as a computationally efficient alternative to manual
grouping of 3D objects, shape descriptors have been studied
extensively [4]. Shape descriptors are used to convert a 3D shape
into vectorial representations, from which pairwise similarity of
3D shapes can be assessed. Shape descriptors such as D2 shape
distribution, spherical harmonics (SH), and heat kernel signature
have shown varying levels of efficacy in automated 3D shape
retrieval [5]. Recent advances in deep learning and 3D data
acquisition have led to growing interest in 3D shape retrieval using
deep learning methods. Deep learning methods using different 3D
representations such as point cloud, multi-views, and spatial
occupancy grids have also been evaluated for shape retrieval [6].

It is evident from the above survey that several methodologies
and data representations have been used to represent and
automatically retrieve 3D shapes. Such advances have useful
applications in 3D data-rich domains such as design and medical
scanning [7]. In the context of manufacturing, however, pure shape
similarity assessment of 3D CAD models is insufficient for

identifying candidate manufacturers, whose production
capabilities depend on other manufacturing capability information
such as material properties and achievable part quality. Therefore,
this paper seeks to answer the following questions: (1) how
important is including non-shape manufacturing capability
information (e.g., input material properties) in part retrieval for
cyber manufacturing applications? and (2) how can we effectively
embed both non-shape manufacturing capability information and
shape information using a unified vectorial representation? These
questions are answered by developing a deep unsupervised
learning-based part retrieval (DUPR) model shown schematically
in Figure 1, where both 3D part shape and material properties are
embedded in the latent vector representation. Here, we assume
that the query part function and the required process can be
inferred from shape and material property information, and
therefore the process and function labels are assigned to both the
query and existing parts only for performance evaluation. We
consider process-aware part retrieval to be effective if both
manufacturing process and function class labels of retrieved parts
match those of the query part. The rationale is that a candidate
manufacturer should nominally have produced parts with similar
function and manufacturing process requirements. The
performance of the proposed methodology is compared with a
baseline supervised deep learning-based part retrieval model.
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Figure 1. Deep unsupervised learning-based part retrieval (DUPR)
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2. Dataset with 3D shapes and material properties

To develop a deep learning-based part retrieval model, a dataset
consisting of 3D parts with both function (e.g., bearings, bushings)
and manufacturing process class labels (e.g., milling, injection
moulding) must be created. In addition, other manufacturing
capability information (e.g, material properties) must be
associated with shape data.

We curated and processed a subset of publicly available 3D parts
data from the FabWave CAD repository [6], which was categorized
by researchers at North Carolina State University into part
function classes, as shown in Figure 2. In total, 1,354 parts
consisting of 9 part function classes (see Table 1) were selected
from the repository. Of these, 800 parts were randomly selected
for training, while the remaining 554 parts were used for

validation.
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Figure 2. Example 3D CAD models and part function classes

A total of 45 distinct materials associated with the 9 function
classes were collected. Of these, 16 selected material examples are
shown in Table 1 with their respective function class associations.
These materials were manually extracted from part catalogues of
McMaster-Carr. The corresponding material properties (density,
ultimate tensile strength, and melting point) were obtained from
MatWeb and used for training the deep learning part retrieval
models. Each part in the function class was randomly assigned a
material and its properties based on the associations indicated in
Table 1.

Based on the function class and material properties, each part
was assigned a manufacturing process label (e.g., turning, milling,
injection moulding). Note that some parts may require additional
process(es) to produce them. Here, the process class label only
indicates the process that creates the primary functional feature(s)
of the part. While these parts can potentially be made using other
processes, we consider each part is made by either milling, turning,
or injection moulding. Additional assumptions are made to
simplify the manufacturing process label assignment: (1) metal

Table 1. Representative part materials, their properties, and function classes

parts are not injection moulded, and (2) the primary production
process for axis-symmetric parts is turning.

In this work, a voxel representation was used to train the deep
learning-based part retrieval models. 3D CAD models were
voxelized with resolution of 128 x 128 x 128.

3. Deep unsupervised part retrieval (DUPR) model

3.1. Model architecture and training

The architecture of the DUPR model is based on the 3D
Autoencoder model [8], and is shown in Figure 3. In addition to the
shape encoder-decoder pair, the DUPR model also has a property
encoder-decoder pair that is used to encode material property
information shown in Table 1. The objective function of the DUPR
model consists of the shape reconstruction loss and the property
prediction loss, as follows:

L= % —=xll; +2llp —pll. (1)
where x is the input to the shape encoder, X is the output of the
shape decoder, p is the input to the property encoder, p is the
output of the property decoder, and 1 is a weight tuning parameter,
which is set to 1. Both encoders and decoders are trained with the
objective to minimize loss L. The models were constructed and
trained using PyTorch, a python-based deep learning library, on a
high-performance computing node (PACE Phoenix Cluster with 1
NVIDIA Tesla V100 16GB GPU). All components of the DUPR
model were trained simultaneously on the training dataset for 20
epochs. The batch size was set to 1 for training with Adaptive
moment estimation (Adam) as the optimizer. The learning rates
were setto 6 X 1075,

3.2. Models for comparison

To evaluate the importance of the material property information
in partretrieval, a shape-only autoencoder model was constructed
and trained to compare with the DUPR model. The architecture of
the shape-only autoencoder follows exactly the shape encoder-
decoder pair of the DUPR model. The only difference between the
two models is the exclusion of material properties in the shape-
only autoencoder model. The model was trained on the same
dataset for 20 epochs. The loss function in Eq. (1) was modified to
exclude material property loss (second term). In addition, we also
evaluate the performance of directly concatenating material
properties to the latent shape vector as an alternative strategy to
combine both types of information.

To determine the most effective method to embed material
property information with shape information, a manufacturing
process classifier and a function classifier were trained using the
supervised deep-learning models shown in Figure 4. In addition, a
multilabel model is trained with respect to both function and
process labels.

Materials Density Tensile Melting  Bearing Bushing  Miter Shaft Socket Rect. Headless Rotary Machine

(g/cm3®)  Strength Point Gear Collar Head Gear Screw Shaft Key
(MPa) (°Q) Screw Rack

1018 Carbon Steel 7.87 440.0 1205 X X X X

2024 Aluminium 2.78 186.0 502 X X X

303 Stainless Steel 8.00 690.0 1400 X X X X

360 Brass 8.49 338.0 885 X X X X

400 Nickel 8.86 517.0 1300 X X

6061 Aluminium 2.70 310.0 582 X X

660 Leaded Bronze 8.93 240.0 977 X X

Acetal 1.41 66.0 176 X X X X X

Buna-N Rubber 1.00 6.9 120 X

EPDM 0.86 17.0 150 X

Grade 2 Titanium 4.51 344.0 1665 X X

Nylon 1.15 75.3 220 X X X X X X X

PEEK 1.45 160.0 343 X X X

PTFE 2.17 25.6 331 X X X

PVC 1.39 239 114 X X X

PVDF 1.77 115.0 164 X
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Figure 3. DUPR Architecture
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Figure 4. Models built for comparison

Supervised learning-based classifiers have been shown to
effectively retrieve parts with manufacturing metadata (e.g,
dimensions) [6]. The architecture of the supervised learning-based
classifiers follows that of the shape and material property
encoders in the DUPR model. However, instead of a full decoding
network, a single fully connected linear layer is applied to the

encoding networks, which reduces the vectorial representation to
the number of classes (3x1 for the process classifier and 9x1 for
the function classifier). A SoftMax layer follows the linear layer to
assign a probability to each class. All three classifier models were
trained on the same training dataset for 20 epochs using a batch
size of 1 with the cross-entropy loss as the objective function. For
the multilabel classifier, the combined loss function is the sum of
function label cross-entropy loss and process label cross-entropy
loss.

3.4. Model evaluation

The unsupervised and supervised learning models were
evaluated by observing the training losses (Figure 5). In addition,
the supervised learning models were evaluated using the
classification accuracy on the validation dataset, which consisted
of 554 unseen test parts. It is evident from Figure 5 that all models
converged to alow loss at 20 epochs. The DUPR model has a higher
loss compared to the shape-only autoencoder, which can be
attributed to the inclusion of material properties in the loss
function. The process classifier converged slower than the function
classifier, which is due to differences in classification objectives. It
is evident that both the function classifier and the process classifier
reached a high level of validation accuracy as seen in Figures 5(c)
and 5(d). The average class validation accuracy of the process
classifier was 94.6%, and the average class validation accuracy for
the function classifier was 97.2%. These results indicate that the
models are well-trained for the part retrieval experiment.
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Figure 5. (a) Training losses of DUPR model vs. Shape-only Autoencoder,
(b) training losses of function classifier vs. manufacturing process classifier
vs. multilabel classifier, (c) validation confusion matrix of manufacturing
process classifier, and (d) validation confusion matrix of function classifier

4. Part retrieval experiment

4.1 Part retrieval workflow and metric

The previous section presented six models that differed in their
training objectives (i.e, shape and material vs. shape-only,
supervised vs. unsupervised learning). In this work, each part has
32x1 latent vectors derived from each trained model, with the
exception of shape-material concatenation, which outputs 35x1
latent vector by directly concatenating the material properties. All
parts in the manufacturable parts database are embedded as latent
vectors using each of the six models. As shown in Figure 6, the
query part input to the models is converted to a latent vector from
which pairwise similarities between the latent vector of the query
part and all latent vectors in the manufacturable parts database are
computed. The vectorial cosine distance is used as the similarity



metric to retrieve the closest matching parts.
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Figure 6. Example part retrieval workflow and results

4.2. Model performance evaluation in part retrieval

To evaluate the performance of the part retrieval models, we
compared the function and process class labels of the retrieved
parts with those of the query part. In this work, Precision at K is
used as the performance metric, which computes the ratio
between the number of relevant items to the total number of
retrieved items, K [6]. For each of the 554 test query parts, the top
20 best matching parts from the training dataset were retrieved.
Table 2 summarizes the part retrieval performance based on the
precision at K of process class label, function class label, and
combined process and function class labels.
Table 2. Part retrieval performance by model

K 1 5 10 15 20
Process Class Precision at K

DUPR 95.7% 91.8% 882% 858% 83.8%
Shape-only Autoencoder 722%  70.0% 67.8% 66.6%  655%
Function Classifier 78.2% 72.2% 71.7% 72.3% 71.6%
Process Classifier 95.8%  94.4% 93.6% 93.2% 92.4%
Shape-material 755%  712%  692%  673%  66.1%
Concatenation

Multilabel F'ulnctlon and 765%  75.0%  743%  747%  74.5%
Process Classifier

Function Class Precision at K

DUPR 95.7% 91.6% 87.6% 83.7% 80.3%
Shape-only Autoencoder 96.8% 93.1% 882% 84.0% 80.2%
Function Classifier 98.9%  98.3% 98.1% 97.5% 97.0%
Process Classifier 91.0% 84.9% 79.8% 76.1% 73.2%
Shape-material 95.5%  93.0% 88.7%  84.3%  80.4%
Concatenation

Multilabel Function and  ggc0. 97805 9720 965%  96.0%
Process Classifier

Process and Function Class Precision at K

DUPR 93.0% 86.4% 80.2% 75.1% 71.2%
Shape-only Autoencoder 70.6%  67.5% 633% 599% 57.0%
Function Classifier 77.3% 71.6% 71.1% 71.6% 70.9%
Process Classifier 88.1% 81.8% 76.1% 72.3% 69.0%
Shape-material

Concatenation 73.6% 68.6% 64.5% 60.5% 57.5%
Multilabel Function and

Process Classifier 76.0% 74.1% 73.2% 73.2% 72.7%

It is evident that the DUPR model outperforms the shape-only
autoencoder model in terms of both process and function class
label precision at 1 (93.0%). The shape-only autoencoder
performs slightly better than the DUPR model in only function
label precision at 1 (96.8%). However, the much worse
performance of the shape-only autoencoder in process class label
precision at 1 (72.2%) and the combined process and function
class labels precision at 1 (70.6%) indicates that shape alone is
insufficient for part retrieval in the context of cyber manufacturing

search, where process class matching is essential to identify a
suitable manufacturer with the necessary capabilities.

The supervised learning models can result in high precision of
process or function class label at the cost of induced bias. For
example, the part function classifier reaches 98.9% precision at 1,
but only 78.2% of the retrieved parts satisfy the process class label
matching requirement. Such bias toward the training objective is
also observed in parts retrieved by the process classifier.
Importantly, the DUPR model still performed well at 95.7% for
process class precision at 1, which suggests that shape and
material similarities are significant factors in determining process
similarity. When considering the combined class labels precision,
the DUPR model clearly performs the best, surpassing all
supervised models. Note that the process and function labels are
only available for the experiment presented here. The availability
of class labels is a prerequisite for supervised learning. In practice,
however, it can be laborious and challenging to label parts based
on process or function. It is observed that a change in the training
objective from process to function can alter the part retrieval
results significantly, which highlights the need for unsupervised
learning methods that reduce the impact of training bias.

5. Conclusions

In this paper we proposed a deep unsupervised learning-based
part retrieval (DUPR) model, which considers both shape and
material properties of query parts as inputs to retrieve the closest
matching parts from a previously manufactured parts database.
Through a comparative parts retrieval experiment, it was shown
that (1) including manufacturing capability information (e.g.,
material properties) in the part retrieval model significantly
improves the retrieval precision when both part function and
process class labels are considered, and (2) the proposed DUPR
model reduces bias in training and outperforms the supervised
learning models yielding a combined process and function class
precision at 1 of 93.0%. Future research will consider other
manufacturing capability information such as part quality and
production quantity. In addition, most data presented in the
experiment are axisymmetric. While the presented method is also
applicable to prismatic parts, additional pre-processing such as
part orientation alignment and fixture placement should be
further studied. An immediate application of the proposed method
is to combine it with an instant quoting system for cyber
manufacturing services, which requires incorporating pricing data
in the part retrieval method presented here.
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