Griddle: Effective Query Support over
Voluminous Gridded Spatial Datasets

Pierce Smith
Department of Computer Science
Colorado State University
psmith36 @rams.colostate.edu

Abstract—Gridded datasets occur in several domains. These
datasets comprise (un)structured grid points, where each grid
point is characterized by XY(Z) coordinates in a spatial ref-
erencing system. The data available at individual grid points
are high-dimensional encapsulating multiple variables of interest.
This study has two thrusts. The first targets supporting effective
management of voluminous gridded datasets while reconciling
challenges relating to colocation and dispersion. The second
thrust is to support sliding (temporal) window queries over the
gridded dataset. Such queries involve sliding a temporal window
over the data to identify spatial locations and chronological
time points where the specified predicate evaluates to true.
Our methodology includes support for a space-efficient data
structure for organizing information within the data, query
decomposition based on dyadic intervals, support for temporal
anchoring, query transformations, and effective evaluation of
query predicates. Our empirical benchmarks are conducted on
representative voluminous high dimensional datasets such as
gridMET (historical meteorological data) and MACA (future
climate datasets based on the RCP 8.5 greenhouse gas trajectory).
These datasets represent excellent proving grounds to validate
several aspects of our methodology. We show that in a clustered
environment, our system can handle throughputs of over 3000
mutli-predicate sliding window queries per second, summarizing
over 1 TB of data in well under 10 GB of memory on each
individual machine.

Index Terms—gridded high-dimensional datasets, multi-
predicate spatiotemporal queries, voluminous data collections,
distributed indexing structures

I. INTRODUCTION

Gridded datasets are made available in several domains
and play a key role in modeling spatial phenomena. The
grid points in these datasets represent (latitude, longitude)
coordinates that uniquely identify a spatial location. At each
grid point a vector of variables representing features of interest
are made available. Gridded datasets are characterized by their
resolutions, spatial extent under consideration, the chronolog-
ical time range, and the recorded variables. The resolution
corresponds to the spatial increments at which data are made
available e.g., 1 km, 4 km, etc. The spatiotemporal scope
represents the spatial extent and the chronological time range
of the data. The frequency corresponds to the timesteps at
which the data are available for each grid point.

Gridded datasets represent outputs from modeling and sim-
ulations. In several cases, these modelling and simulations typ-
ically also take observational data from targeted locations. In

Sangmi Lee Pallickara
Department of Computer Science
Colorado State University
sangmi@colostate.edu

Shrideep Pallickara
Department of Computer Science
Colorado State University
shrideep @cs.colostate.edu

some cases, actual historical observations are combined with
statistical smoothing and interpolation techniques to produce
gridded datasets that are amenable to fine-scale analysis. An
exemplar of such a dataset is the gridMET dataset which
provides historical meteorological datasets. These datasets
provide a wealth of information and offer opportunities to
combine analysis with disparate datasets to inform decision-
making.

Gridded datasets are important because they support explo-
ration, hypothesis formulation, and analysis at diverse spa-
tiotemporal scales. They are often supplemented with other
datasets (gridded, point clouds, or shape files) from other
domains to explore/understand domain-specific phenomena.
For example, an urban planning researcher may combine
analysis that incorporates data from Census surveys, future
climate gridded datasets, and infrastructure data from HIFLD
to identify vulnerabilities to heat exposure. Another example
involves combining gridded climate datasets with soils and
evaluation information to identify locations that are vulnerable
to pooling and flooding.

Our objective is to effectively support sliding window
queries over voluminous gridded datasets. A sliding win-
dow query is characterized by the temporal bookends, the
spatial constraint, the query predicate, and the timesteps. The
objective is to evaluate the query predicate by sliding the
window across time. Results from the query identify spatial
locations (or administrative boundaries) that satisfy the query
predicate for every time step encapsulated within the sliding
window. This entails sliding a temporal window over the
spatially constrained dataset and testing to see if the constraints
are satisfied within that window. Across different, concurrent
queries that are evaluated, the size of the temporal window, the
spatiotemporal scope, the variables involved, and the specified
query predicates could all be different.

Our sliding window queries identify spatial extents and
the time-periods where the query predicates evaluate to true.
Traditional indexing schemes may not work well for such
queries. The deficiency stems from the spatiotemporal com-
ponents associated with the multivariate data alongside the
data volumes. The nature of query evaluations in gridded
datasets involves maintaining cumulative density functions
over multivariate data; indexing stores that are optimized for
point query evaluations struggle to support this out of the box.

While SQL or NoSQL stores could be used to construct these
queries, the number of data sweeps and the disk I/O that will
likely be incurred can result in prolonged query evaluation
latencies.

A. Challenges

Supporting sliding window queries over spatiotemporal
gridded datasets introduces several challenges:

1) Volume: The datasets we consider are voluminous (Peta-
scale) and individual observations comprising the data col-
lections are high dimensional. The billions of observations
comprising the dataset are encoded as vectors.

2) Spatiotemporal scopes: The observations are dispersed over
large spatiotemporal scopes. For example, the datasets we
consider cover the entire contiguous United States and
include multidecadal data. Further, the data often needs to
be collated across administrative or political boundaries.

3) Disk I/0O: The speed differential across the memory hier-
archy exacerbates challenges. The disk I/O subsystem is
about six orders of magnitude slower than main memory,
but the dataset sizes far exceed the memory capacity
available within distributed clusters.

4) Query semantics: Spatiotemporal queries incorporate spa-
tial (geometry) and chronological (time) constraints in
addition to the typical predicate logic. Given the parameter
space evolution and multivariate relationships across differ-
ent spatiotemporal scopes, care must be taken to ensure ef-
ficiency of queries. Methods that rely on spatiotemporally-
agnostic indexing schemes may end up necessitating multi-
ple, repeated sweeps of the data that adversely impact both
the latency and throughput of query evaluations.

5) Sliding window queries: Queries may specify an arbitrary
sized temporal window over which the query predicates
must hold true. The results of such a query evaluation
represents a “sliding” of the window over the entire
chronological extent encapsulated by that dataset. Window-
agnostic indexing schemes may trigger a sweep of the
entire dataset for every query. The system should be able
to support multiple concurrent query evaluations each of
which may encapsulate diverse spatial extents, temporal
window sizes, and query predicates.

B. Research Questions

Research questions that we explore include:

RQ-1: How can we effectively stage and manage volumi-
nous datasets? In particular, we wish to support data colo-
cations based on spatial extents while supporting aggregation
along administrative boundaries.

RQ-2: How can we design data structures to effectively
index such data? These data structures must be amenable to
both incremental and batched updates.

RQ-3: How can we incorporate support for queries and re-
finements to facilitate timely evaluations at scale? Concurrent
query evaluations must be supported to ensure that diverse
sliding window queries may be evaluated at high throughput.

C. Approach Summary

To support low-latency sliding window queries, we con-
struct compact representations of the data. These represent an
index in the traditional sense of data stores, i.e., they sit on
top of the data and are used to speed up queries. Another
way to view this representation is as a sketch that serves as a
surrogate for the underlying data when answering queries.

GeoSieve Data Structure and Construction Our data struc-
ture, GeoSieve, collects information from individual observa-
tions and maintains a space—efficient summary of the dataset
as viewed through a fixed-size sliding window.

Construction of a GeoSieve instance is flexible. GeoSieve
instances are created per-dataset and can be constructed for any
number of variables or sliding window intervals. Instances can
be built from any dataset where sliding-window queries over
the variables of interest are possible, as initialization requires
only a list of observations for each variable that slide over the
chronological scope and with the desired temporal granularity.

The structure itself summarizes the data through temporal
CDF (Cumulative Density Functions) stored as run-length
encoded bit vectors. For each variable and administrative
region in the dataset, a set of bit vectors summarize the
temporal distribution of the variable, which are organized in
a tree-like structure for efficient lookup and traversal during
query evaluations.

Dyadic Intervals A single GeoSieve instance summarizes
the dataset as viewed through a fixed sliding window size.
To support queries of arbitrary sliding window sizes without
needing to construct a unique instance for every conceivable
size, we maintain indices at dyadic intervals; we split and chain
queries among multiple dyadic intervals to support arbitrarily
long windows.

GeoSieve(2T) represents the sketch constructed over a
temporal window of size 27. For example, GeoSieve(2?) can
answer queries about what happened over a 8-day period
(and only an 8-day period). Every GeoSieve(2”) instance
supports two query modes: an anchorless mode that retrieves
all time windows where the predicate evaluates to true, and
an anchored mode where the query includes an anchor (or
“starting point”) that allows evaluations to be constrained
for a 27-day window starting at the specified anchor point.
The anchored mode allows for multiple queries over different
window sizes to be effectively chained together.

Queries are broken down into sub-queries based on dyadic
intervals. The query is evaluated first over the largest dyadic
interval, and whatever matches are found are used as the
anchor for a query over the next largest interval, until all
intervals are queried. For example, consider the case where
the query window is specified to be 13 days. This is broken up
into dyadic intervals of 8,4, and 1. The query is first evaluated
against a GeoSieve(23) instance to identify spatiotemporal
scopes where the query predicate evaluates to t rue for a win-
dow of 8 days. Next, the query is presented to a GeoSieve(22)
instance, with spatial and temporal anchors at the results of
the previous query, providing spatiotemporal scopes where the

query predicates are true for a temporal window of 8 + 4
days. Finally, it is presented to a GeoSieve(2°) instance, again
with spatial and temporal anchors at the results of the previous
query, providing spatiotemporal scopes where the predicates
are t rue for a full 13 day interval. To support queries of up to
size w, we need only construct [log,(w)] GeoSieve instances.

The data structure also supports entirely concurrent eval-
vation, where the query is raised against each GeoSieve
instance in parallel and resulting spatiotemporal scopes are
intersected together to calculate the result set. This, however,
results in a large amount of discarded information and a less
efficient execution, as many spatiotemporal locations that have
no chance of being relevant to the original query will be
examined.

Ensuring High Throughput The data structure is space—
efficient since we maintain the temporal CDFs in a tree
comprising run length encoded bit vectors. This allows the
entire data structure to be entirely memory resident, even when
built over datasets on the order of several terabytes large.
This memory residency avoids costly disk and network access
that would be required of traditional sliding window queries
to most databases, while ensuring high throughput and low
latency.

The GeoSieve data structure is thread-safe, allowing for
concurrent reading. No shared, mutable state is involved
in traversing the data structure; thus, multiple threads may
evaluate concurrent, unrelated queries over the same data. For
queries that comprise multiple predicates, several threads may
also work on the same query at the same time. Queries only
need to be blocked during updates to the structure, which
occurs during the data ingestion phase.

D. Paper Contributions and Translational Impact

This study describes our methodology to support spatiotem-
poral sliding window queries at scale over voluminous, spa-
tiotemporal gridded datasets. We place no constraints on the
spatial resolution of these datasets nor the rate at which data
are generated at each time step. Further, our query evaluations
are amenable to supporting spatiotemporal intersections based
on shapefiles from other data collections. Our contributions
include:

1) A novel algorithm to support spatiotemporal sliding
window queries over voluminous gridded datasets. Our
methodology places no restrictions on the spatiotemporal
resolutions associated with the gridded datasets nor the spa-
tiotemporal scope associated with sliding window queries.
Together, our data structure and algorithm for query eval-
uations reduce latencies and preserve throughputs. [RQ-2]

2) Our methodology includes a multi-pronged approach to
scaling that encompasses memory residency, building
sketches for dyadic intervals, and targeted replication
schemes that account for query evaluation loads over par-
ticular dyadic intervals. [RQ-2, RQ-3]

3) Elimination of duplicate processing when aggregating ob-
servations into spatial extents — defined using N-sided

polygons with each vertex encoded as a (latitude, longitude)
pairs. Crucially, we support aggregation and disaggregation
along administrative boundaries. [RQ-1]

Translational Impact: Our proposed methodology scales
and is applicable to other gridded datasets. Gridded datasets
continue to be made available in several domains. In particular,
our algorithms and data structures could be used in settings
where distances are based on traditional Cartesian coordinates
and time is, unlike the spherical coordinates in the spatial
referencing system we consider here, a lot more fine-grained —
for example, gridded simulations of phenomena such as fluid
dynamics.

More broadly, because it allows interactions between data
represented in other formats such as shape files, point ob-
servations, etc. our methodology allows analyses to be per-
formed over diverse data formats. Several domains such as
ecology, environmental modeling, disaster and infrastructure
planning rely on atmospheric and meteorological data (histor-
ical, current, and future) that are encoded in gridded formats
to inform decision making. By allowing (dis)aggregation if
matching spatial extents along administrative boundaries down
to the census-tract level our methodology can interoperate with
schemes that rely on such agglomeration schemes.

E. Paper Organization

The remainder of this paper is organized as follows. In
Section 2, we provide an overview of the related work in the
area. Our methodology is outlined in Section 3. Performance
benchmarks alongside a description of datasets and discussion
of results is outlined in Section 4. Finally, our conclusions and
future work are described in section 5.

II. RELATED WORK

Probabilistic algorithms and data structures enable space
efficient data processing and generally require only a single
pass over the data as it arrives. Count-min (CM) provides
event frequencies using sublinear memory space, where an
event could be a particular feature value or observation [1]
[2]. CM is closely related to Bloom filters, which employ
hash functions over a fixed-size bit array to determine set
membership. With Bloom filters, false positives are possible
but false negatives are not [3]. Several streaming algorithms
have been developed to determine the number of distinct
(unique) elements in a multiset, such as HyperLogLog++ [4],
HyperLoglLog [5], LogLog [6], and Linear Counting [7]. These
probabilistic structures answer custom queries such as set
membership, cardinality, etc. but are not suited for general
processing. Wavelets create high-fidelity approximations of
underlying observations but require problem-specific tuning
[8] [9]. This effort supports expressive queries aligned with
researcher needs.

Data storage systems leverage indexing as a key construct
to assist in effective data retrievals and alleviate overheads
involved in join operations. Each index consumes disk space
and depending on the column being indexed the index may
end up being very large. R-Trees [10], geohashes [11], and

quad-tiles [12] have been used to partition and organize
spatial datasets. These structures are typically used to inform
data dispersion schemes and not to evaluate complex query
predicates over sliding temporal windows.

Scientific Data Management SciDB [13] [14] is a science-
oriented database that supports multidimensional arrays in a
shared-nothing architecture. The Data Capacitor [15] project
relies on using the Lustre file system [16] and WAN to provide
access to voluminous datasets. These systems are primarily
geared towards data access and not towards real-time discov-
ery and transformations or analytics over high-dimensional
datasets. Time-series databases such as Prometheus [17], In-
fluxDB [18], KairosDB [19], OpenTSDB [20], and others [21]
support storing time-series data. These efforts include mech-
anisms for horizontal scalability, time-based indexing of con-
tent, and support for custom query languages. Other commonly
used storage systems typically used by researchers include
distributed file systems with support for traditional directory
structures and file layouts, such as HDFS [22] or NFS [23], and
distributed hash tables (DHTs) that are organized as an overlay
network and implement key-value storage including Pastry
[24], PAST [24], and problem-specific frameworks such as
Galileo [25]. Document-oriented databases such as MongoDB
[26], CouchDB [27], and OrientDB [28] provide storage for
objects including JSON documents or XML. The Griddle
framework, and the encompassing GeoSieve data structure,
that we describe here are focused on highly space-efficient
(memory-resident) data structures with at least one instance
per dyadic interval alongside support for temporal anchoring
of query predicates to allow chaining of queries over GeoSieve
instances to support arbitrarily sized temporal windows.

III. METHODOLOGY

Our methodology includes a set of phases that work in con-
cert with each other to support query evaluations at scale. In
particular, this includes: (1) Support for ingestion and data pre-
processing, (2) an indexing data structure, or sketch, GeoSieve
that is constructed from the voluminous data for different
dyadic intervals, (3) an algorithm for query decomposition and
distributed evaluation of queries, and (4) support for targeted
replication of GeoSieve data structure instances.

A. Ingestion and Data Preprocessing [RQ-1]

Our framework can interface(?) with diverse distributed
storage management frameworks such as HBase, Druid, Mon-
goDB, etc. We chose to use the Apache Druid distributed
database on top of HDFS to stage data for our experiments,
as it appeared well-suited for handling highly voluminous data
[29].

Most gridded datasets are provided in netCDF format, which
is a compressed binary format that cannot be directly ingested
into most databases, including Druid. We designed a custom
netCDF to CSV converter to handle this conversion, then
ingested the resulting CSVs into Druid.

To perform a mapping from the raw (latitude, longitude)
points of each observation in the dataset to discretized spatial

(lat, lon) point

truncate | In-Memory Key-Value Database
| truncated H set of
point GISJOINs

b'°°"‘.ﬁ"T_'H GISJOIN ‘4—” for each ||
of points

set of ‘
GISJOINs

bloom filter |—>| match? l—no

T

I ves
v

mapping

sucessful

Fig. 1: The data structure and process used to speed up adminis-
trative boundary lookups during ingestion. An in-memory key-value
database stores bloom filters keyed by administrative boundaries
(GISJOINs) as well as sets of administrative boundaries keyed by
a truncated version of the point they are in. A point is truncated and
looked up to see what potential boundaries it lies in, then each of
those boundaries is tested against the bloom filter. The database itself
is populated by polygon intersection queries beforehand.

regions, we pre—compute expensive polygon lookups and store
the results using an efficient Bloom Filter based in—memory
scheme. Bloom Filters are probablisitc set membership data
structures; instances may have occassional false positives, but
are guaranteed to never have a false negative. In the pre—
computation phase, we extract each of the unique (latitude,
longitude) points from a given dataset then perform a polyg-
onal query against a collection of shapefiles to determine
which administrative boundary it lies within. After mapping
each point to a region, Bloom Filters are created for each
region containing a list of (latitude, longitude) points which
are known to be in the region. These filters are then stored in
an in-memory key—value database, such that truncated points
are mapped to sets of regions that might contain those points
and regions are mapped to Bloom Filters containing all of the
full-resolution (latitude, longitude) points which are in that
region.

Method Average lookups / sec Standard deviation
Redis bloom filter lookups 39983.140 7388.363
MongoDB polygon lookups 283.364 107.535

TABLE I: The throughput observed from performing 1 minute of
single-threaded lookup operations with our Bloom Filter strategy on
a Redis cluster of 15 machines vs the same lookup operations using
simple polygon lookups on a MongoDB cluster of 40 machines.

The process of mapping (latitude, longitude) points to
administrative regions at ingestion time is illustrated in Figure
1. First, we truncate the point’s coordinates and look up this
truncated point in our in—-memory collections. This will return
a set of administrative regions (GISJOINs) in which the point
might exist. Then, for each region R, we look up R in our
collections, giving us a Bloom Filter containing the set of full-
precision (latitude, longitude) points that exist in R. We search

Dyadic Intervals

Variables

v v v

| prefix tree | prefix tree | prefix tree |

Spatial regions

Data |Tempora| CDF| |Tempora| CDFI»...«ITemporaI CDF

Fig. 2: A high-level view of the GeoSieve data structure. Each level of
the tree is a set of index nodes . The middle level is a map of variables
(v1, v2, ... vn) to prefix trees whose leaves are temporal CDFs of
the parent variable. The prefix trees resolve the spatial component of
the data (the administrative region) and have one leaf per region (rl,
r2, ... rn) in the dataset.

the bloom filter for a match with our original point. If there is
a match, we know the point is in R; otherwise, move on to the
next region. If every point in the dataset is in some R, then
this mapping will never fail, since Bloom Filters will never
report a false negative as to whether an item exists or not.

We used a Redis cluster of 15 machines as our in-memory
store for this mapping process. To evaluate its performance, we
compared the amount of mappings per second achievable by
our system vs. those achievable by performing simple polygon
lookups in a traditional database. As can be seen from the
results depicted in Table I, our lookup process has significantly
higher throughput in contrast with the standard within-polygon
query (SgeoIntersects) in MongoDB.

B. GeoSieve Data Structure [RQ-3]

Conceptually, the GeoSieve data structure is a collection of
maps that associate values of a variable to sets of timestamps.
For each variable in the dataset, we choose a set of valid
values for that variable, and for each of these values, we build
a set of timestamps containing each time at which the value
was contained between the minimum and maximum values
of a window which starts at that time. Each of these maps
is specific for one variable, spatial region, and window size.
These maps are placed at the leaves of the GeoSieve tree, and
the index nodes help locate them for a given window size,
variable, and spatial region. There are 3 levels of indexing
within the GeoSieve tree: the top level resolves the window
size, the second level resolves the variable, and the third level
resolves the spatial region. Figure 2 illustrates this structure.

To store the timestamp sets, timestamps are mapped to in-
tegers in a dataset-specific process. We choose some temporal
granularity that the dataset can support, such as days or hours,
and map the first of these units in the dataset to 0, the next
to 1, and so on. The set of timestamps for each variable value
then becomes a set of integers. We can represent this set of
integers as a bitset, where the presence of a 1 in position n
represents the timestamp for time unit n being included. These

"G " —»root
_____ : T RRREE
480 490 500
_____ I .
v v v
10 20 30
N |
v v v
60 70 80
Temporal CDF Temporal CDF Temporal CDF

Fig. 3: The structure of the spatial resolving prefix tree. Our repre-
sentation of administrative regions is a 7-digit number, which is split
into 3 groups of digits, one for each level of the tree. The next node
to follow on each individual level is resolved via a hash table.

bitsets are often highly sparse and amenable to compression;
we compress them with run—length encoding to significantly
reduce their memory footprint.

For each variable, we must discretize the space of values
to act as keys for the timestamp sets. Our implementation
chooses 100 values spaced evenly between the minimum and
maximum values of the variable observed in the dataset.

One such timestamp set is created for every variable and
spatial region in the dataset. We use a hierarchical representa-
tion of administrative boundaries to store these spatial regions.
To support efficient but generic spatial lookups, we store them
as leaves of a prefix tree, as shown in Figure 3.

Query Structure and Process Queries to the GeoSieve
structure are represented by one or more predicates and a
sliding temporal window size. Each predicate is a tuple of
a variable name, a value of interest (called the pivot), and
a ‘P’ or ‘|’ identifier. If 1" is used, the predicate will be
true for times and locations where windows of the requested
size saw all observations above the given pivot; if ‘]’ is used,
all observations must be below the pivot. Optionally, queries
are also permitted to limit their spatial or temporal scope by
accepting a list of regions and/or timestamps by which to filter
results. Algorithm 1 details the process of evaluating a single—
predicate query against a GeoSieve instance.

The result of a query is a set of pairs containing a region
and a single timestamp where, given a sliding window of the
requested size starting at this time, every observation in the
window satisfied the predicates.

A query may have multiple predicates. Each of these
predicates can be evaluated as entirely independent sub-queries
over the same GeoSieve instance, allowing them to execute
concurrently. The query must specify whether it is interested in
seeing the intersection or union of the results of the subqueries.

Thread Safety During queries, the GeoSieve data structure is
thread safe. Since traversing the tree does not mutate any of its
state, nor require any external shared, mutable state, queries

Algorithm 1 Single-predicate query evaluation algorithm

Algorithm 2 Dyadic interval distribution algorithm

Ty : Root of GeoSieve tree

ps : Dyadic interval size

P, : Variable being queried over

pr : Set of regions to evaluate over

p: : Predicate type ({ or 1)

pp : Predicate pivot

function EXECUTEQUERY (10, s, Dv, Pr, Pes Pt Pp)

results « ()
Ty < To [ps) > resolve interval size
Ty < T4 [po] > resolve variable
for r in p, do

leaf < Th[r] > resolve region

if p; is | then
V' < the set of discretized values lower than p,
else
V' < the set of discretized values higher than p,
end if
R+
for v in V do
T < leaf.get_timestamp_set_for(v)
R+~ RUT
end for
results < results U R
end for
return results
end function

require only the lightweight acquisition of a shared lock. This
allows for highly concurrent evaluation of queries over single
GeoSieve instances.

New data may be added at any time to an existing GeoSieve
instance. However, during such updating, the tree’s state is
mutated and synchronization is therefore required. We use
a Reader—Writer lock to ensure thread—safety in the face of
possible updates: querying threads acquire a read lock and
updating threads acquire a write lock, thus guaranteeing that
queries only block if an update is being performed. If updates
are relatively infrequent, query evaluations will remain highly
concurrent.

C. Decomposition and Distributed Evaluation of Queries

Queries may specify temporal sliding windows of any size,
but each GeoSieve instance summarizes the dataset for one
window size only and can therefore only handle queries of
their exact size. To avoid instantiating a unique GeoSieve
structure for every conceivable sliding window size, we instead
instantiate at dyadic intervals and decompose queries to access
multiple intervals.

A GeoSieve instance is constructed for each power of 2 up
to a certain size. When a query is made, the provided window
size is broken into its dyadic intervals. For instance, a window
size of 13 is made of the dyadic intervals 8, 4, and 1. Then,
for each interval ¢ in descending order, we send the query to
GeoSieve(2?), gather the spatiotemporal scopes returned by

qs - Size of sliding window query
gp : Predicates of sliding window query
function DISTRIBUTEQUERY(gs, gp)
results < ()
for b in the bits of g5 in descending order do
if b is 1 then
if results is not () then
scopes <— spatial_scopes_in(results)
constrain_next_query_to(scopes)
end if
i < the index of the bit b
node + get_cluster_node_for_interval(2°)
results < results N node.query(qp, regions)
end if
end for
return results
end function

the query, and then use those spatiotemporal scopes as anchor
points for the next query. In our example of 13, we would
first raise a query against GeoSieve(2?), then, if any results
were returned, use them as the anchor for a query of the same
predicates to GeoSieve(22), and finally if any results were
returned, use them as the anchor for a query to GeoSieve(2).
This is illustrated by part A of Figure 4. This method allows
us to perform a query for any sliding window size smaller
than 2", where n is the number of GeoSieve instances we
construct. Therefore, to support queries of up to size w, we
need only construct [log,(w)] GeoSieve instances.

In this way, we can also support distributed evaluation
of queries by splitting the GeoSieve instances over multiple
machines. In the previous example, it may be the case that
GeoSieve(2?), GeoSieve(22), and GeoSieve(2°) are each on
separate machines. Any such machine may accept a query and
act as a coordinator by deconstructing the query, sending the
pieces to each appropriate machine, and collecting the results,
as illustrated in Figure 5 and detailed in Algorithm 2.

D. Targeted Replication of GeoSieve Instances [RQ-3]

We include support for targeted replication schemes al-
lowing GeoSieve instances to be scaled commensurate with
the observed access patterns. Upscaling and downscaling of
replica instances is informed by our ingress matrix which
tracks the number of accesses to GeoSieve instances as queries
are evaluated. Time is partitioned into slices and represented
as rows within our matrix. We allow users to configure the
number and duration of time slices. The default configuration
of the ingress matrix captures accesses for the last 60 time-
slices where each time-slice is roughly 1 minute. The matrix
is complemented with a row pointer representing the start
of a new slice and the row that represents the current time
slice. The row pointer is incremented at the end of every time
slice to indicate the current time slice i.e. row_pointer =
(row_pointer+1)mod(N —1). This allows us to represent

A. Pipelined query execution

Query (size 14)

| GeoSeive<8> |—>| GeoSieve<4> |—>| GeoSieve<2>
Result set

B. Concurrent query execution

Query (size 14)

| GeoSieve<4> | GeoSieve<2>

Intersect

Result set

Fig. 4: The two methods by which a query requiring multiple dyadic
intervals may be presented to instances of the GeoSieve data structure.
This example query has a sliding window size of 14, meaning it
requires three intervals to be traversed (2, 4, and 8). In pipelined query
execution, the query is presented to each instance in sequence, from
largest interval to smallest, with the results from the previous instance
anchoring the queries on the next. In concurrent query execution, we
run the query on each instance concurrently, intersecting each result
set together to get the total result set.

| GeoSeive<8>

GeoSieve Cluster

] N\
DGeoSieve<32> GeoSieve<16> .
D GeoSieve<4>

DGeoSieve<2> > | Geosieve<1> —’{Res‘"‘se‘

Fig. 5: An example of evaluating a query across a GeoSieve cluster.
Each machine contains one or more instances of the GeoSieve
structure over different dyadic intervals. Any arbitrary machine in the
cluster may accept a query and act as a coordinator for it, routing it to
the correct sequence of machines. The coordinator will break down
the query by its dyadic intervals and send it to each of the necessary
machines in a pipelined fashion, until all GeoSieve instances required
by the query have been processed; then the results return to the
coordinator and are reported.

Query
(size 50)

the matrix as a circular buffer, where the row representing
oldest time slice (60 time slices prior) is overwritten by data
representing access counts that are occurring during the current
time slice.

The matrix contains M columns with each column repre-
senting dyadic intervals: 2°,2',22 ... 2M~1 Each column
tracks the number of accesses to the GeoSieve for a dyadic
interval. A cell (i, j) within this matrix represents the number
of accesses for a particular time-slice i for dyadic interval 2¢.
Row; can be used to estimate the total number of accesses
to all dyadic intervals for a time-slice. The sum of the
entries within a column can be used to estimate accesses to
a particular dyadic instance for the time-frame (default 60
minutes) representing the most recent N time-slices (each 1
minute).

We use the matrix to estimate the total number of accesses
per-dyadic interval for the last N (default, 60) time slices.
We use these estimates to inform proportional allocation of
replica instances of the GeoSieve data structure for particular
dyadic intervals, as detailed in Algorithm 3. The re-replication
maneuvers are performed at a user-specified duration in incre-
ments of 15 time-slices: a larger time scale is chosen to avoid
oscillatory behavior in the system.

Algorithm 3 Targeted replication algorithm

Require: |N| is divisible by (n, — ns)
N : List of nodes in cluster
n, : Maximum desired dyadic interval size
ns : Minimum desired dyadic interval size
M : Dyadic interval usage matrix
function GETREPLICATIONSCHEME(N, ng, ng, M)
n 4 Ny — Ng
R < array of n empty lists
for i =ng ton, — 1 do
Add N [i] to RJi]
end for
U < array of normalized sums of M’s columns
fori=0ton—1do
Add next |U [i] x (|[N| —n)| items of N to R [i]
end for
if IV is not empty then
Add remaining elements of N to R [n]
end if
return R
end function

IV. PERFORMANCE EVALUATION AND DISCUSSION

In this section, we evaluate the latency, throughput, and
memory pressure of querying the GeoSieve structure, both in
single—machine and distributed environments.

A. Experimental Setup and Datasets

Our empirical benchmarks were conducted on HPE Pro-
Liant DL60 Gen9 machines with 6-core 2.4 GHz CPUs and
64 GB of memory, running AlmaLinux 8.6 with kernel version
4.18.0. All software was implemented in Java using OpenJDK
11.

Two multidecade, widely—used gridded climate datasets
were used to profile our methodology: gridMET and MACA.

a) gridMET is dataset of historical meteorological observa-
tions collected at regular points over the contiguous US. It
includes daily readings of 15 variables such as air tempera-
ture, specific humidity, evapotranspiration, and wind speed,
for roughly 500,000 geolocations across the contiguous
US over a period of 43 years (1979-yesterday) at a daily
temporal resolution.

For performance evaluations, we ingested gridMET con-
taining all data from years 1979-2020. Uncompressed, the
dataset is approximately 1.1 TB large.

b) The Multivariate Adaptive Constructed Analogs (MACA)
datasets are sets of gridded data that represent possible
future projections of Earth’s climate. The datasets include
10 variables such as air temperature, specific humidity,
wind speed/direction, and surface radiation for roughly
500,000 points across the US projected up to 80 years in the
future (2100) at a daily temporal resolution. The data model
two future scenarios, or Representative Concentration Path-
ways; one where an additional 4.5 W/m?2 is trapped in the
earth-atmosphere system by 2100 compared to preindustrial
predicates (known as RCP4.5), and a more pessimistic sce-
nario where an additional 8.5 W/m2 is trapped (known as
RCPS8.5). RCP4.5 roughly represents a future with moderate
climate mitigation action and decreased emissions, while
RCP8.5 represents a future with business as usual and high
emissions. For our benchmarks, we ingested a subset of the
GFDL-ESM2M model at the 8.5 scenario, ranging 30 years
(2021-2050). Uncompressed, the dataset is approximately
530 GB large.

B. Systems Benchmarks

Our systems benchmarks profile several key aspects of our
methodology. In particular, these include: (1) How well does
the system cope with constructing and updating the GeoSieve
data structure? A key measure here is the rate (or throughput)
at which the data structure is able to ingest new, multivariate
observations. (2) The GeoSieve data structure serves as sur-
rogate (or sketch) for the on-disk data. The structure includes
lightweight concurrency control and locking mechanisms, and
support for traversals as queries are evaluated. We profile
the memory footprint of the data structure over billions of
multivariate observations encompassing the continental United
States over multidecadal datasets. (3) How well does the
methodology support queries that include multiple predicates
over arbitrarily sized temporal windows over the entire spatial
extent encapsulated by the dataset? We are interested in both
the latency and throughput of the query evaluations.

Throughput of Building & Updating GeoSieve We evaluated
performance, in terms of the number of pre—computed sliding
window observations that can be ingested per second, of con-
structing a single GeoSieve instance for one dyadic interval.
The construction process ran over nine simultaneous threads,
and the throughputs observed for each thread were aggregated
into Table II. We captured only the time it took for the data
structure itself to ingest and process each observation, exclud-
ing the network I/O associated with transmitting observations
to the data structure. These results reflect the performance
of updating the data structure with new observations, as the
process of constructing and updating are identical.

As depicted in Table II, GeoSieve construction and updating
is efficient: gridMET observations have 15 variables, while
MACA observations have 10. With nine threads operating
concurrently, it is possible to achieve construction / update
rates of over 40,000 observations per second. [RQ-3]

Memory Pressure We evaluated the resource overhead of

Dataset Average observations / sec ~ Standard deviation
gridMET ~ 4558.669 821.044
MACA 8385.071 1272.269

TABLE II: The average single-threaded throughput observed from
building a single instance of GeoSieve for both of our test datasets,
in terms of the number of observations ingested per second.

Dataset Dyadic interval size ~ Memory usage
gridMET 2! 8.723 GB
gridMET 22 5.363 GB
eridMET 23 2735 GB
eridMET 24 1.518 GB
gridMET ~ 2° 1.082 GB
MACA 21 3.435 GB
MACA 22 2.200 GB
MACA 23 1.314 GB
MACA 24 0.883 GB
MACA 25 0.694 GB

TABLE III: The amount of resources consumed by loading
differently-sized GeoSieve instances into memory for both of our
test datasets.

loading GeoSieve instances built from our test datasets into
memory. Table III shows these results.

We observe a memory footprint squarely under 10 GB for
both of our datasets for each of the tested dyadic interval
sizes (2!,22,23,24,25). The smaller of our two test datasets,
MACA, is also accordingly significantly smaller in memory.
These results illustrate that it is entirely possible to load one
or multiple GeoSieve instances into the memory on a single
machine, demonstrating that we are able to avoid costly disk
and/or network I/O when traversing the structure, especially
when dyadic intervals are split among multiple machines.
[RQ-2, RQ-3]

Query Throughput and Latency We evaluated the through-
put and latency of the data structure by running queries on
a cluster of GeoSieve instances containing dyadic intervals
21,22 923 24 and 2° for both of our test datasets. To build
a suite of test queries, we enumerated over the Cartesian
product of 3 factors: the number of dyadic intervals (1-5), the
number of predicates in the query (1-5), and the method of
composing the predicates in the query (either AND or OR).
Predicates were constructed by examining extreme cases of
the variables of interest; for example, predicates involving
precipitation looked for regions where rainfall was less than
0.01 mm. The result sets of our queries contained around
4000-5000 spatiotemporal points on average. The throughput
measurements for both of our test datasets are shown in
Figures 6 (gridMET) and 7 (MACA). Maximum throughput
for each cluster size was measured by steadily raising the
query submission rate until the amount of queued queries
exceeded the submission rate per second over a 1 minute

3500

maximum queries / second
= = N N w
o [0, o (6] o
o o o o o
o o o o o

500

10 20 30 40
number of machines in cluster

Fig. 6: The number of machines in our GeoSieve cluster vs. the
maximum throughput we observed the cluster could support. Cluster
sizes of 5 machines, 20 machines, and 40 machines were tested.
Maximum queries per second for each cluster were measured by
steadily raising the query submission rate until the amount of queued
queries exceeded the submission rate per second at the end of a 1
minute period of continuous queries.

3500

maximum queries / second
= [N N w
o (6] o w o
o o o o o
o o o o o

500

10 20 30 40
number of machines in cluster

Fig. 7: Figure 6, but considering MACA data instead of gridMET
data. Note the significant similarity in scaling performance.

period. The latency measurements for both of our test datasets
are shown in Tables IV and V.

The throughput of our system scales linearly with the
number of machines in the cluster. There also appears to be no
significant difference between our two test datasets in terms of
query throughput, despite the difference in size between them.
These results show that highly concurrent query evaluations at
arbitrary scales are possible with the GeoSieve system [RQ-3].

Tables IV and V show that querying the GeoSieve structure
is extremely fast. Sliding window queries over the entirety of
the summarized dataset take less than 15 ms to complete, even
with up to five query predicates. In addition, querying multiple
dyadic intervals does not appear to result in a performance
degradation, suggesting the overhead of switching between
multiple GeoSieve instances to complete a query is not large
enough to overcome other factors, such as the number of
predicates or number of results produced by the query. This

Dataset Predicates in query Average query time (ms)

gridMET 1 2.558
gridMET 2 4.846
gridMET 3 7.292
gridMET 4 9.456
gridMET 5 11.251
MACA 1 2278
MACA 2 4.136
MACA 3 6.015
MACA 4 8.058
MACA 5 10.249

TABLE IV: The average latency observed from querying our test
datasets in a single-machine environment, aggregating the results by
the number of predicates in the query. On average, even queries with
up to 5 predicates have under 15 ms of latency. MACA is slightly
faster than gridMET for all predicate counts.

Dataset Dyadic intervals hit Average query time (ms)
gridMET 1 7.155
gridMET 2 5.342
gridMET 3 3.796
gridMET 4 4.764
gridMET 5 5.326
MACA 1 5.586
MACA 2 4.570
MACA 3 3.527
MACA 4 4.483
MACA 5 4917

TABLE V: The average latency observed from querying our test
datasets in a single-machine environment, aggregating the results by
the number of predicates in the query. On average, even queries with
up to 5 predicates have under 15 ms of latency. MACA is slightly
faster than gridMET for all predicate counts.

shows query evaluations over the GeoSieve structure are timely
enough to support real-time analysis even in a non-clustered
environment. [RQ-2, RQ-3]

V. CONCLUSIONS & FUTURE WORK

Here, we described our methodology to support effective
management of voluminous gridded datasets alongside effec-
tive evaluation of queries of arbitrary temporal lengths.

RQ-1: We map lat-long grid points to spatial extents based
on hierarchical prefixes that are amenable to deterministic
and decentralized prefix-based aggregation. A shorter-prefix
corresponds to a large spatial extent encompassing multiple,
contiguous spatial extents with shared prefixes, but a longer
length. For example, this prefix-based scheme allows all data
from multiple encompassing census tracks within a county to
be colocated on the same machine if prefix lengths associated
with counties is chosen as the unit of dispersion. The use of
Bloom Filters allows us to quickly assess set memberships
without incurring duplicate evaluation costs associated with

testing for inclusion of grid points within N-sided shapes. Our
scheme performs over 100x faster than such polygon lookups
in a single-threaded environment.

RQ-2: The GeoSieve data structure design is aligned with
the nature of sliding—window query evaluations. The data
structure is designed as a tree with each level providing
feature-specific evaluation of query predicates. Rather than
support arbitrary window sizes, we create GeoSieve instances
that evaluate over dyadic intervals with at least one instance
of GeoSieve per dyadic interval. GeoSieve includes sup-
port for anchoring queries with chronological starting points.
Queries are transformed so that predicate evaluations represent
traversals of the tree structure. A query is decomposed into
dyadic intervals and our runtime accounts for daisy-chaining
queries over appropriate dyadic instances and anchoring query
evaluations with the correct spatiotemporal bookends retrieved
upstream from the chain. Crucially, the tree traversals and
dyadic intervals allow us to identify early-stopping criteria for
queries whose predicates evaluate to false. Finally, GeoSieve
instances are highly memory efficient and incorporate support
for run length encoding to further reduce memory footprints
associated with the storing temporal information in the leaves.
Datasets up to 1 TB in uncompressed size can be represented
as a GeoSieve sketch in under 10 GB of memory, and under
2 GB of memory for larger dyadic interval sizes.

RQ-3: The GeoSieve data structure includes a novel mix
of data structure design, targeted replications, temporal an-
choring, query transformations, and locking and concurrency
schemes. There is one GeoSieve instance per dyadic interval
and each instance can be replicated independently of the
other. Each instance returns the set of spatial extents (and the
temporal bounds) over which the query predicates evaluated
to true — this allows us to chain queries across different
dyadic intervals. This is backed by a scheme that allows to
compute intersections of spatiotemporal scopes returned by
query evaluations. Our methodology allows multiple, concur-
rent query evaluations to be performed. Updates to the data
structure involve exclusive locking and these are performed
periodically or in batches. This reduces lock contention and
allows the query evaluations to scale. The throughput of
query evaluations scales linearly with the number of GeoSieve
instances in a machine cluster.

Our future work will explore support for interactive visu-
alization of gridded datasets. This will necessitate support for
distributed caching schemes that include support for specula-
tive prefetching, and evictions, based on visualization patterns
and exploration trajectories. A key goal is to ensure that disk
I/O is not in the critical path of data visualizations.

ACKNOWLEDGMENT

This research was supported by the National Science Foun-
dation [OAC-1931363, ACI-1553685] and the National Insti-
tute of Food & Agriculture [COLO-FACT-2019].

REFERENCES
[1] G. Cormode, “Count-min sketch.” 2009.

10

[5]

[6]
[7]

[8]

[9]
[10]

[11]
[12]

[13]

[14]

[15]

[16]

[17]
(18]
[19]
[20]

(21]

[22]

(23]

[24]

[25]

[26]
[27]
(28]

[29]

G. Cormode and S. Muthukrishnan, “An improved data stream summary:
the count-min sketch and its applications,” Journal of Algorithms,
vol. 55, no. 1, pp. 58-75, 2005.

B. H. Bloom, “Space/time trade-offs in hash coding with allowable
errors,” Communications of the ACM, vol. 13, no. 7, pp. 422-426, 1970.
S. Heule, M. Nunkesser, and A. Hall, “Hyperloglog in practice: Algo-
rithmic engineering of a state of the art cardinality estimation algorithm,”
in Proceedings of the 16th International Conference on Extending
Database Technology, 2013, pp. 683—-692.

P. Flajolet, E. Fusy, O. Gandouet, and F. Meunier, “Hyperloglog: the
analysis of a near-optimal cardinality estimation algorithm,” in Discrete
Mathematics and Theoretical Computer Science. Discrete Mathematics
and Theoretical Computer Science, 2007, pp. 137-156.

M. Durand and P. Flajolet, “Loglog counting of large cardinalities,” in
European Symposium on Algorithms. Springer, 2003, pp. 605-617.
K.-Y. Whang, B. T. Vander-Zanden, and H. M. Taylor, “A linear-
time probabilistic counting algorithm for database applications,” ACM
Transactions on Database Systems (TODS), vol. 15, no. 2, 1990.

G. Cormode, M. Garofalakis, P. J. Haas, C. Jermaine et al., “Synopses
for massive data: Samples, histograms, wavelets, sketches,” Foundations
and Trends® in Databases, vol. 4, no. 1-3, pp. 1-294, 2011.

S. Yousefi, I. Weinreich, and D. Reinarz, “Wavelet-based prediction of
oil prices,” Chaos, Solitons & Fractals, vol. 25, no. 2, 2005.

N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger, “The r*-tree:
An efficient and robust access method for points and rectangles,” in
Proceedings of the 1990 ACM SIGMOD international conference on
Management of data, 1990, pp. 322-331.

G. Niemeyer, “Geohash: wikipedia.org/wiki/geohash,” 2008.

OSM, “Quadtiles: Geodata storage and indexing,” 2022. [Online].
Available: https://wiki.openstreetmap.org/wiki/QuadTiles

P. Cudré-Mauroux, H. Kimura, K.-T. Lim, J. Rogers, R. Simakov,
E. Soroush, P. Velikhov, D. L. Wang, M. Balazinska, J. Becla et al.,
“A demonstration of scidb: a science-oriented dbms,” Proceedings of
the VLDB Endowment, vol. 2, no. 2, pp. 1534-1537, 2009.

M. Stonebraker, P. Brown, A. Poliakov, and S. Raman, “The architecture
of scidb,” in International Conference on Scientific and Statistical
Database Management. Springer, 2011, pp. 1-16.

S. C. Simms, G. G. Pike, and D. Balog, “Wide area filesystem perfor-
mance using lustre on the teragrid,” Tech. Rep., 2007.

W. Yu, R. Noronha, S. Liang, and D. K. Panda, “Benefits of high speed
interconnects to cluster file systems: a case study with lustre,” in /JEEE
International Parallel & Distributed Processing Symposium, 2006.
“Prometheus - monitoring system and time series database,” 2019.
[Online]. Available: https://prometheus.io

“Influxdb: Time series database. real-time visibility into stacks, sensors
and systems.” 2018. [Online]. Available: https://influxdata.com
“Kairosdb: Fast time series database on cassandra.” 2018. [Online].
Available: https://kairosdb.github.io

“Opentsdb - a distributed, scalable monitoring system,” 2019. [Online].
Available: http://opentsdb.net

R. Stephens, “The state of the time series database market,” 2018.
[Online]. Available: https://redmonk.com/rstephens/2018/04/03/the-
state-of-the-time-series-database-market/

K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The hadoop
distributed file system,” in 2010 IEEE 26th symposium on mass storage
systems and technologies (MSST). leee, 2010, pp. 1-10.

B. Nowicki, “Transport issues in the network file system,” ACM SIG-
COMM Computer Communication Review, vol. 19, no. 2, 1989.

A. Rowstron and P. Druschel, “Pastry: Scalable, decentralized object
location, and routing for large-scale peer-to-peer systems,” in IFIP/ACM
International Conference on Distributed Systems Platforms and Open
Distributed Processing. Springer, 2001, pp. 329-350.

M. Malensek, S. Pallickara, and S. Pallickara, “Analytic queries over
geospatial time-series data using distributed hash tables,” IEEE Trans-
actions on Knowledge and Data Engineering, vol. 28, no. 6, 2016.

K. Banker, D. Garrett, P. Bakkum, and S. Verch, MongoDB in action:
covers MongoDB version 3.0. Simon and Schuster, 2016.

J. C. Anderson, J. Lehnardt, and N. Slater, CouchDB: the definitive
guide: time to relax. O’Reilly Media, Inc.”, 2010.

C. Tesoriero, Getting started with OrientDB. Packt Publishing Birm-
ingham, England, 2013.

F. Yang, E. Tschetter, X. Léauté, N. Ray, G. Merlino, and D. Ganguli,
“Druid: A real-time analytical data store,” in ACM SIGMOD interna-
tional conference on Management of data, 2014, pp. 157-168.

