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Abstract—Scientists design models to understand phenomena,
make predictions, and/or inform decision-making. This study
targets models that encapsulate spatially evolving phenomena.
Given a model, our objective is to identify the accuracy of the
model across all geospatial extents. A scientist may expect these
validations to occur at varying spatial resolutions (e.g., states,
counties, towns, and census tracts). Assessing a model with all
available ground-truth data is infeasible due to the data volumes
involved. We propose a framework to assess the performance
of models at scale over diverse spatial data collections. OQur
methodology ensures orchestration of validation workloads while
reducing memory strain, alleviating contention, enabling concur-
rency, and ensuring high throughput. We introduce the notion of
a validation budget that represents an upper-bound on the total
number of observations that are used to assess the performance
of models across spatial extents. The validation budget attempts
to capture the distribution characteristics of observations and
is informed by multiple sampling strategies. Our design allows
us to decouple the validation from the underlying model-fitting
libraries to interoperate with models constructed using different
libraries and analytical engines; our advanced research prototype
currently supports Scikit-learn, PyTorch, and TensorFlow.

Index Terms—model validations, spatial data, regression

I. INTRODUCTION

Scientists construct models to understand phenomena and
inform decision-making. These models may be analytical
models where a model is fit to the data, or they may be domain
theoretic models. We consider spatial models, i.e., models
that attempt to capture spatiotemporally evolving phenomena.
The class of models that we focus on are regression models
that operate on spatiotemporal datasets. In spatiotemporal
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datasets, the data are geocoded with latitude/longitude in-
formation and observations have timestamps associated with
them. Spatiotemporal datasets encapsulate observational data
at diverse timescales and allow scientists to explore interrelated
phenomena. A model designer may decide to leverage features
(or variables) from diverse collections as the independent vari-
ables while choosing a dependent variable (also referred to as
the response variable or target). Once a model is constructed,
a question that arises is, “How is the model performing?”
Model validation is the process of assessing the performance
of a model by evaluating its accuracy with ground truth.
Validation allows us to understand, compare, and interpret
the performance of models. Model validations are a precursor
to informing model refinements and targeting specific spatial
extents to further scrutiny. For example, if a model predicting
the direction of a forest fire works well in Oregon but under-
performs in Colorado, the scientist may choose to consider
topographical characteristics such as elevation or terrain.

The crux of this paper is to effectively evaluate the perfor-
mance of spatial models at scale. The performance measures
used to assess a model depend on the model type and evalua-
tion metric deemed most suitable by the model designer. For
example, for a regression model, a scientist modele may use
RMSE, MAE, MSE, SSIM, or PSNR to assess the model’s
performance [1]. These performance measures are predicated
on access to ground truth. Further, these assessments must
utilize resources frugally, minimize network and disk I/O,
and interoperate with diverse analytical engines. Ultimately,
effective model validations inform targeted model redesign,



refinements, and calibration at scale by identifying spatial
extents where a model performs well and where it does not.

A. Challenges

Performing model validations at scale introduces challenges
stemming from the nature of datasets and model evaluations.

1) Data volumes: The datasets we consider are voluminous
comprising a large number of observations that are high-
dimensional encapsulating multiple features.

2) Model inferences can be resource-intensive: Model in-
ferences trigger disk I/O, have computational overheads asso-
ciated with them, and can have large memory footprints. In
some cases, model inferences may trigger network I/O during
data accesses. As such, the evaluations must balance validation
coverage (spatial reach and resolution of the inference) with
the resource-intensive nature of these evaluations.

3) Interoperate with diverse analytical engines: Re-
searchers develop models using diverse analytical engines such
as Scikit-Learn, TensorFlow, PyTorch, and Apache Spark. Dif-
ferent analytical engines have different model storage formats,
encoding formats, invocation, mechanisms, and pipelining
schemes that should be reconciled.

4) Parametrization of models: The parameters that serve as
inputs and the output of these models may be drawn from
different collections. Furthermore, the inputs may have differ-
ent preprocessing operations such as normalization, encoding
format reconciliations, etc. that need to be performed.

B. Research Questions

The overarching theme of this study is: How can we perform
model validations at scale over voluminous spatiotemporal
datasets? Within this broader theme we explore the following:
RQ-1: How can we strike a balance between validation
coverage and the resource-intensive nature of validations?
RQ-2: How can we ensure that model validations scale?
RQ-3: How can we effectively interoperate with diverse ana-
Iytical engines?

RQ-4: How can we effectively characterize model perfor-
mance over large spatial extents?

C. Approach Summary

Our methodology encompasses staging of datasets, appor-
tioning of observations for validation, creation and dispersion
of model instances, parameterization of models alongside any
expected wrangling of features, and visualizing model per-
formance and uncertainty measures. These are accomplished
while ensuring effective resource utilization, reconciling con-
tention, alleviating disk and network I/O, and ensuring time-
liness. We allow users to specify the granularities at which
model validations should be performed.

Our methodology collates disparate observations into
smaller spatial extents based on administrative boundaries,
such as states, counties, or census tracts from the U.S. Census
Survey Bureau based on shapefiles that encapsulate N-sided
polygons similar shapefiles exist internationally for boundaries
like provinces and cantons. Each observation is tested for

whether it is encapsulated within a shapefile for the smallest,
indivisible aggregation unit (which is a census tract in our
study) and assigned a single-dimensional prefix. This prefix
assignment is hierarchical allowing aggregation along admin-
istrative boundaries. This partitioning of model performance
based on spatial extents allows us to have a finer-grained
view of model performance. To profile model performance,
we create (or reuse) a model instance for the spatial extent
under consideration.

To reduce disk I/O and computational overheads involved
in assessing model performance, we introduce the notion of
a validation budget. This represents the upper bound for
the total number of observations that are expended. Within
this broader concept, we explore three different schemes to
apportion the validation budget across model instances: equal,
proportional, and uncertainty reduction. To reduce the number
of repeated I/O operations that are triggered when observations
are retrieved in a piecemeal fashion, we perform batched
retrievals of observations per spatial extent.

To maximize interoperability with diverse analytical en-
gines, we treat models as black boxes and consider only
their parameterization, data preprocessing, and performance
characteristics. Because we treat models as black boxes, we
do not inspect the internal structural properties of the models.
For instance, the models we consider could be based on partial
differential equations, decision trees, matrix multiplications,
and convolutions among others. Data preprocessing involves
normalizing features based on the schemes specified by the
modeler. Finally, we contrast model outputs with ground truth
available from observational data and use that to compute a
model performance metric based on the user-specified mea-
sure. We reconcile multiple model representation formats and
marshalling schemes.

Model performance metrics are collated at a coordinator
node, which may decide to allocate an additional budget to
reduce uncertainty. Once the results satisfy a stopping criteria,
they are streamed to a dashboard to be visualized as a choro-
pleth map. Visualization results are streamed incrementally,
and the graphs refined as the data become available. The
choropleth map is shaded by model variability and loss, and
can be used to inform targeted model refinements.

D. Paper Contributions

Our specific contributions include the following:

1) Our validation budgets can be apportioned using different
schemes. In particular, our scheme allows preferentially tar-
geting spatial extents where the model has high variability
in performance. Further, these validations are performed by
preserving data locality. [RQ-1, RQ-2]

2) Our methodology supports interoperation with diverse an-
alytical engines. Our advanced research prototype supports
PyTorch, TensorFlow, and Scikit-Learn. [RQ-3]

3) Our methodology supports effective surveillance of regres-
sion model performance (though we assert that our method-
ology should be just as applicable to classification models as
well). Our methodology allows continual validation of model



performance, by periodically assessing model performance at
different spatial extents. Furthermore, validation budgets for
surveillance can be smaller and expended on spatial extents
where there is greater uncertainty. This allows effective iden-
tification of spatiotemporal extents where a model performs
well and where it does not. [RQ-4]

II. METHODOLOGY

Our methodology encompasses a set of phases that in-
cludes: (1) dataset staging and sharding, (2) validation budgets
encompassing observations, (3) performing validations while
treating the models as block boxes, (4) ensuring scalability and
avoiding performance bottlenecks, (5) ensuring extensibility
of the framework, (6) supporting incremental validations in
support of continuous model performance surveillance, and
(7) ensuring responsiveness at the client side with support for
streaming and incremental rendering operations.

A. Dataset Staging and Sharding

In order to assess the performance of a model efficiently,
it is critical to achieve data locality to minimize or elim-
inate network I/O. Voluminous geospatial datasets must be
partitioned and distributed across multiple machines and their
disks. We leverage data locality by pushing the computation
(model) to the data, where it is evaluated directly either in
memory or on disk. Our approach is to group records within
(hierarchical) spatial boundaries together, then distribute these
groups evenly across a cluster. For administrative boundaries
such as counties, this would mean grouping records together
by county and balancing the data across the storage machines.

Records that come in a gridded format with just a lati-
tude/longitude must be associated or tagged with the adminis-
trative boundary in which it lies. We accomplish this by using
the shapes of the administrative boundaries to determine the
record’s coordinates. Once the records have been tagged with
their associated boundary, they are grouped together as a single
data shard and dispersed within the cluster. Additionally, we
maintain metadata about where that data were placed in order
to assist with subsequent spatial computations.

B. Validation Budgets [RQ-1, RQ-2]

A key goal of the model validation service is to understand
the true error structure of a model, as given. A choropleth
map displays spatial variation in colored gradients for a nu-
meric variable (see Fig. 1). Visualizing the error structure via
choropleth maps gives a user the ability to quickly spot where
their model performs poorly, as seen by both the variance and
loss maps in Fig. 1. Unfortunately, with voluminous data, this
can be an infeasible task, especially when under time or cost
constraints. We attempt instead to estimate the error structure
of a model by using only a sample, or subset, of the entire
ground truth dataset. The sample size, called the validation
budget (denoted n), is the total number of records that a
model is allowed to be evaluated on. This validation budget
is allocated in such a way that maximizes our understanding
of the model’s true performance across all geospatial extents,
while minimizing the cost of achieving these estimates.

Fig. 1. County choropleth maps for true model loss. Cooler colors are lower
loss values, and hotter colors are higher values.

We explain this in terms of stratified sampling. Let D =
{1,2,..., N} denote a database of N units, g5 denote ground
truth for unit k, and mj; denote a model prediction that
could be computed for unit k. Suppose that the database
is divided into H mutually exclusive and exhaustive strata,
D = Uthth where the size of Dy is N and N =
ZhH:1 Nj,. In our example above, counties would be the strata.
We wish to compare model output to ground truth using
a total validation budget of n = ZhH:1 ny, units, with a
sample d;, C Djp of n units randomly selected from the
Ny, units in stratum h. If the goal is to understand the
mean squared error (MSE) over the entire database, then we
use MSE = N-'30 57, 1 (gr — mx)?. An unbiased
estimator of M SFE based on the stratified random sample is

—1 H 2 -1

mse = N""3 1 > rep, (95 — my)*(nn,;, ). Furthermore,
an optimal allocation would make the variance of mse as small
as possible subject to the validation budget, n. In some cases,
it might make sense to consider unequal costs c; of model
evaluation in different strata, so that the validation budget
would be replaced by the total cost Zthl cpnp, which reduces
to the validation budget n if all costs equal one.

A naive approach of equal allocation would assign n;, =
nH 1, which effectively breaks the total budget into equal size
chunks for every stratum. We call this the equal allocation
budget. A slightly better approach would be proportional
allocation, which would assign np = nNpN -1 rounding
to integers if necessary, which we call the proportional
allocation budget. This is implemented as a sampling rate
of the underlying strata. Various compromises between equal
and proportional allocations begin with a minimum alloca-
tion in every stratum, say ng, then allocates the remaining
sample n — Hng in proportion to a power of the stratum
size: np, = ng + ¢N where a = 1/2 or 1/3 are typical
choices. These allocations have the advantage of “protecting”
the smaller strata by not making large strata overly precise.
While both of these allocations are simple, they do not yield
optimal information about overall M SE if either the costs
are unequal across strata or the prediction errors have different
behavior in different strata. In the case of our county example,
many may have wildly different sizes, and the model will
likely perform differently based on the data within.

An improvement over the simple allocation schemes would
be to proportionally allocate the budget based on the model’s



empirical variance. This tells us where the model is pre-
dictable, and where it varies based on the input data. We
write the empirical variance of the squared prediction errors

2

in stratum h as S} = {> ..y €r — %}/(Nh -1),
where e, = (gr — my)?2. Obviously, e, must reflect the loss
function used, so if we were using the M AFE to validate the
model, then e, = |gr — my|. The optimal allocation subject
to the cost constraint is then shown to be nj o % When
costs are constant across strata, this is known as the Neyman
allocation. The optimal allocation reduces to proportional
allocation if costs and variances are constant across strata,
and reduces to equal allocation if costs, variances, and stratum
sizes are all identical. Overall, the optimal allocation assigns
more samples to larger, more variable, and cheaper strata.

We next introduce a simple model to illustrate the behavior
of the optimal allocation. Suppose that the model prediction
errors satisfy gx—my = pp+7hey for k € Dy, all, where py, is
the model bias in stratum h, T}% is the prediction error variance
in stratum h, and the ¢ are independent and identically
distributed normal random variables with mean zero and
variance one, across all strata. Then assuming N} values are
large in every stratum, S7 ~ Var((gx — mx)?) = Var((us +
TheR)?) = Var(ui + 2upmher + 77€3) = 4pi i + 27}, using
properties of the normal distribution. The optimal allocation
would then assign more samples to strata with high model
bias, high prediction error variance, or both.

In practice, S,QL is unknown, since that would require evalu-
ating the model on the full dataset. In this case, we first assign
some of the budget to obtain initial estimates s7 of S7 in every
stratum, using a simple allocation such as equal allocation of
no units in every stratum £, then use the approximately optimal
allocation of the remaining sample n — Hng, plugging in the
estimated s, in place of the unknown Sj,. This gives us some
idea of how close we are to understanding its true error struc-
ture had it been evaluated on the full dataset (i.e., population,
instead of the sample). The proportional allocation equation
used for a given stratum h is ny = (n—Hno)sp (D e, si) L
Using this strategy, we are able to proportionally hand out
the remaining samples of the budget, based on the estimated
variances, for a final evaluation round. We call this allocation
strategy the incremental variance budget. When using this
budget, it’s important to capture both the variance for the initial
allocation and the variance for the new allocation together.

For example, let’s say a stratum h is evaluated with
ng = 200, resulting in some variance s; then is allocated
an additional n, = 500 records for re-evaluation. After the
new evaluation, it wouldn’t be sensible to throw away the
variance resulting from the initial run in favor of the final
evaluation variance; the first probably had a better estimate
of the population variance for h. This leaves us with two
options. The first option is to re-evaluate the original 200
records plus the additional 500, giving us a sample variance for
the fully allocated 700. However, stratum h was not allocated
700 records for the second go-around; it was only allocated
500. This would be exceeding the total budget, and incurring

more resource usage than originally assigned. A second and
better approach that we have implemented is to use Welford’s
method, derived as (N — 1)s% — (N —2)s%,_; for calculating
the online variance across allocation iterations. Not only does
it eliminate the need for re-evaluating the initial variances
(or storing them), it’s also more numerically stable and only
requires each stratum to save three variables throughout all
iterations: T, si, and N throughout all iterations [2].

After evaluating global performance with this approach, we
noticed that this helps us better understand the model as a
whole given the total validation budget, but a drawback is that
strata with high variability do not get a large enough share
of the remaining budget in order to effectively improve their
local estimate of the model’s variance (S}) and error (M SE}p,).
Intuitively, when s;, is low after the initial allocation round,
that means we already have a good idea of how that model
behaves for that stratum, and do not need to further allocate
any more observations for a final round from the remaining
budget. Sorting the variance estimates s returned from the
initial round, we see they follow a normal distribution. Thus,
we place a threshold such that only variance estimates greater-
than-or-equal-to two standard deviations above the mean of the
variance estimates are considered for the Neyman proportional
allocation, otherwise that stratum’s evaluation is considered
complete. This threshold parameter can be tuned or removed
altogether. In the example shown by Fig. 2, only the counties
with variance estimates above the red threshold would be
proportionally allocated the rest of the budget. This has the
benefit of reserving the entire remaining validation budget for
the strata with high variance estimates, greatly improving their
estimate of the true model variance and loss after the final
evaluation round. This also reduces the computational load,
since only a fraction of the strata is re-evaluated.
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Fig. 2. Variance estimate allocation threshold. Only counties above 2 std.
dev. from mean, shown in orange, are chosen for further examination. The
other counties, depicted in gray, are considered complete.

C. Scalability and Avoiding Bottlenecks [RQ-2]

We include several mechanisms in place to ensure that the
validations scale. This includes (1) the use of validation budget
alongside our schemes to estimate the error structure of the
model, (2) alleviating orchestration costs at the coordinator,
and (3) ensuring effective utilization of resources at the worker
nodes. These strategies are complemented with schemes
such as data replication, asynchronous I/O, thread-pooling,



multiprocessing, efficient (un)marshalling, space-efficient data
structures for storing both metadata and computational values.

Coordinator: The coordinator node preserves data locality
during validations and apportions the validation budgets based
on different schemes. It also encapsulates state relating to
the model evaluations across spatial extents and uses this to
inform apportioning schemes. We also separate the control
plane traffic from the data plane to ensure that the coordinator
is not swamped with traffic that should not be traversing
through it. Control traffic initiated by the coordinator includes
launching validation tasks while preserving data locality and
apportioning additional observations based on the variance in
the model errors.

The coordinator is also lightweight. The entirety of a
coordinator’s state resides in-memory. Additionally, Workers
are responsible for registering themselves with the coordina-
tor, and providing all metadata through self-discovery such
as the data/spatial extents they have stored on disks, and
the size/counts of them. This relieves the coordinator from
having to initiate any data or Worker discovery procedures. To
improve scalability, more workers can be dynamically added
or removed. The coordinators are replicated using Zookeeper
and include replicas in active standby node that can take over
as the primary during failures.

For load-balancing requests, the coordinator organizes in-
formation about spatial extents in a prefix tree. Each spatial
extent is represented using a string; hierarchical spatial extents
(e.g., census tracks, cities, counties, states) share a prefix.
The greater the string length, the more finer-grained the
spatial extent. We leverage the radix tree (a space optimized
representation of the prefix tree) to manage and organize data
relating the spatial extents. The node values in the prefix tree
maintain information about where the data for that spatial
extent is located. For spatial identifiers of length &, the choice
of the radix tree data structure allows all search operations to
be performed in O(k). Metadata about the workers are stored
in an inverted fashion using a hashmap from the registered
worker to an array of spatial extent IDs stored at the worker.

When a request comes in to validate a model for all spatial
extents at a given resolution, the coordinator creates a set of
worker jobs, each containing the subset of spatial IDs that
a worker w has data for locally. In the case where each
spatial extent is replicated over multiple locations, in hash-
based replication schemes similar to MongoDB and Cassandra,
the coordinator uses a round-robin policy to assign each ID to
the replica set member with the lowest number of IDs.

Finally, the constructed jobs are concurrently submitted
to their respective workers using asynchronous I/O, so no
blocking occurs waiting for a submitted job to return. We
also note that only one copy of the submitted model is held
in memory for the coordinator while transmitting; since no
writes are happening here, it can be simultaneously read by
multiple send() threads which include it as a byte stream in
the job requests to the workers.

Workers: On startup, workers discover the spatial extent
IDs of the data available to them locally, storing this metadata

in a radix tree similar to the coordinator, and report this to
the coordinator in a registration request. In addition to spatial
metadata, a worker maintains a shared thread- and process-
pool executor for handling incoming jobs. Multiple incoming
jobs can be processed concurrently using multiple threads, and
within a job, multiple child processes are forked to validate
the model on each of the spatial extents in the request.

D. Models as Black Boxes [RQ-3]

Our goal is for the validation service to be agnostic of the
internal structure of the model. The model could be based on
decision trees, ensembles, partial differential equations, and
matrices. By treating them as black-boxes, we focus on how
inputs are fed into the model, how outputs are retrieved, and
how to evaluate the results against the spatial extent’s ground
truth. The format or type of the model does matter, as it
determines how the model is loaded and executed, but beyond
this, a user may provide an arbitrarily complex model so long
as they specify how to use it (for example, a model saved
using TensorFlow is loaded/executed in a completely different
way than a model saved from PyTorch).

A recent survey which scraped all the papers (and their
respective GitHub repositories) published at the top computer
vision, NLP, and general ML conferences from 2017 to the
end of 2019 shows that TensorFlow/Keras and PyTorch make
up for the vast majority of ML projects [3]-[5]. Another
survey showed Scikit-learn/SciPy being used in over half of
the scraped ML projects in 2019, totaling 110,000 open-source
projects [6], [7]. These three model frameworks, PyTorch [8],
TensorFlow [9], and Scikit-learn [10] are the first we have
implemented support for black-box model inference on.

Submitting a model for validation is simplified through
model request parameterization. Everything from the input that
is retrieved and fed into the model, to how to evaluate the
model’s performance can be specified through the request’s
JSON parameters. In a request, a user must minimally specify
the data source, spatial resolution, input features, output la-
bels, and type of model. The back-end framework infers any
other needed information, and performs end-to-end the model
evaluation job.

E. Software Extensibility [RQ-3]

Supported model inference frameworks (i.e., PyTorch, Ten-
sorFlow, Scikit-learn) and data retrieval frameworks (i.e.,
MongoDB) were implemented as validator and querier ob-
jects in their own respective Python modules. These objects
follow the “Strategy” design pattern [11] and inherit common
functions, helper methods, and member fields from an abstract
superclass. Implementing common construction and execution
function signatures maintains a consistent use pattern from
the worker’s perspective. A concrete example of this with
the querier object is the spatialQuery function, which
takes as arguments the spatial ID that we query for, the
feature fields and label field we wish to project out of the
results, and an optional limit and sample rate. With different
querier implementations, the way data are retrieved can be



modified to use different connectors or sampling strategies all
while staying transparent to the user of the interface. With
this approach, a new framework can easily be added and
supported via a new Python module with minimal changes to
the worker request routing. For example, one could easily plug
in a supporting module for Apache HDFS as an underlying
data store, or MATLAB as a new model inference framework.

FE. Incremental Evaluation [RQ-4]

In most cases, datasets are dynamic as observations are
added over time. When this is the case, models that have
already been evaluated on previous data may become “stale”,
where their error structure as understood before is not repre-
sentative of how it performs over newer data. We address this
by incrementally allocating some additional budget for each of
the spatial extents receiving new data to re-evaluate the model
on. By persisting the variance, count, and mean of the values
the model has been evaluated on so far, we capture a new,
up-to-date variance that accurately estimates performance for
both the old and new records together. This is a classic online
strategy, and we leveraged Welford’s method for calculating a
running variance [2]. Since only a couple of parameters have
to be stored for each spatial extent, instead of the entire set of
residuals calculated thus far, it is a computationally inexpen-
sive operation to keep model validation estimates current.

III. PERFORMANCE BENCHMARKS AND DISCUSSION
A. Experimental Setup

Our experiments were performed over a cluster of 25
machines, each with an 8-core CPU running at 2.10GHz,
64GiB of DDR3 RAM, and 5400RPM hard disks. Three of
the 25 machines were set aside as a replica set to manage
the sharded/replicated database configuration, and one of the
machines was dedicated as the coordinator node. The remain-
ing 21 machines all housed the data shards locally and ran
worker processes, responsible for model validation workloads.
A sharded, replicated MongoDB cluster was set up across
these machines with WiredTiger as the storage engine; we
note that any other distributed storage frameworks could have
easily been used in its place like Apache Cassandra or HBase.
Local mongod processes which had direct access to the shard
data on disk were connected to by the worker processes.

B. Models

We trained both deep neural network (DNN) regression
models for each of the supported analytical engines (Tensor-
Flow, PyTorch, Scikit-learn), using soil temperature 0.1 meters
below surface as the label, and 10 features related to wind,
pressure, dewpoint, and temperature above the surface, and
a loose hyperparameter grid-search to achieve optimal model
performance for the entire experiment dataset.

C. Datasets

We use a subset (the year 2021) of NOAA’s [12] North
American Mesoscale Forecast System (NAM) dataset, down-
loaded as gridded-binary (.grb2) files, containing a lati-
tude/longitude record for 12km grids in the observed North

America range, and snapshotted at a 6-hour interval. Using
only 36 of the 400 variables per 12km grid, we gathered just
over 56,000 records for each of the 1,460 files. We tag each
record with the shapefile’s county ID, and ingest it into our
sharded, replicated MongoDB cluster in BSON format. This
resulted in just over 122GB of records in MongoDB before
replication. Finally, we indexed and evenly distributed the
county shards across our cluster’s 21 worker machines. With
3,088 counties, this results in around 150 counties’ data being
located on each machine.

D. Metrics

We first began by running validation jobs with an unlimited
budget, which defaulted to using all available observations for
every county. Three separate modes were used at the worker
for processing these jobs: (1) synchronous, (2) multithreaded,
and (3) multiprocessing. Both the total job duration and
individual worker duration results can be seen in the first three
groups of Fig. 3. As our baseline, some of the serially-executed
jobs on the workers took almost 4 minutes. Furthermore,
we can see that the total job durations are dictated by the
longest running workers, seen as outliers for the boxplots. This
suggests that even though the number of counties were evenly
distributed across the workers, a better approach would be
to distribute the data based on the counties’ data sizes, since
larger counties consume more resources.

In addition to the different job processing modes, we
executed three validation jobs using multiprocessing as the job
processing mode: (1) A proportional sampling budget job that
used a sample rate of 1 percent; (2) An equal allocation job
that had 1M total records equally allocated to 3,088 counties;
(3) An incremental variance job that had an initial allocation
of 200 records to all counties, a total budget of 1M, using the
allocation threshold of 2 standard deviations above the mean
for initial variance estimates.

We can also see in Fig. 3 that the validation budgets further
reduce the total amount of time it takes to complete a job.
Variance budgeting takes slightly longer than equal allocation
or proportional sampling due to its second pass of the model
on counties with high variability, but the second variance pass
provides much better estimates of both the population loss
and variances in the cases where the initial estimates have a
high variance. This can be seen in Fig. 6 where we compare
population loss and variance to estimates provided by all three
of the budgeting schemes. The final estimates provided by the
incremental variance budget are much more aligned with the
population values than the estimates generated by the equal
allocation strategy or the proportional sample rate strategy.
With this said, however, we did note that over all 3,088
counties, some of the initial estimates that did not receive
a second allocation from the remaining budget did not do as
well as the equal allocation sampling, which was effective at
gaining a decent overall picture of the model’s error structure.

Fig. 4 shows average worker CPU usage across these four
jobs. We can see around 50 percent of the CPU being used on
average, due to some of the parallel child processes being in
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Fig. 3. Total and worker job durations by processing modes and budget types.

their data retrieval stage (I/O intensive), and others being in
their model validation stage (CPU intensive). The incremental
variance budget job finishes its first validation round quicker
than the other schemes, but has to complete a second pass
using the remaining budget, hence the spike we see at around
20 seconds into the job. The memory usage across experi-
ments were roughly equivalent due to MongoDB’s in-memory
caching mechanism, but when using a cold-start scenario with
cleared caches, disk I/0O becomes a bottleneck for unlimited
budgets (see Fig. 5).
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Fig. 4. Cluster average worker CPU usage by budget type. Incremental
variance budget incurs a second spike in CPU usage due to its second phase.
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Fig. 5. Average worker disk reads by budget type, cold-start with no caching.

As shown in Fig. 7, the equal allocation (bottom) and pro-
portional sample rate (second from bottom) budgets estimate
the error structure of the model generally well, but have many
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Fig. 6. Loss and variance estimate accuracy against true population loss
and accuracy. Only counties with high variances considered. Our incremental
variance budget clearly outperforms other allocation schemes.

outliers counties which do not capture the population variance
at all. The incremental variance budget updates counties with
abnormally high variances to be closer to the population
variance, removing outliers, and maintaining a cleaner overall
view of the true model variances. A choropleth map of the
estimated loss using the middle strategy is provided in Fig. 8§,
which can be compared against the true population loss values
for the experiment model in Fig. 1.
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Fig. 7. Variance estimates by budget type. For Variance Budgets: 3 numbers
A/B/C denote total allocation/initial allocation/threshold in standard deviations
from mean. Incremental variance budget gives the best estimate of true model
variance structure without outliers.

IV. RELATED WORK

There is a growing demand to build and deploy predictive
models over spatiotemporal data to discover interesting, and
previously unknown, patterns to extract actionable insights
[13]. Doing so requires efficient storing, querying, and object
modeling of geospatial data using system architectures that are
capable of supporting specific user requirements [14].

Model performance, in terms of its accuracy, is governed by
a range of factors and models built over a set of labels with



MSEloss 3362

l< 21

Fig. 8. County choropleth maps for estimated model loss. Cooler colors are
lower loss values, and hotter colors are higher values. MSE loss values appear
similar to what we see from using all available ground truth.

complex relationships often have significantly differing perfor-
mance over different portions of the overall multidimensional
data domain [15]. Overall model performance computed using
typical validation techniques in such cases will not reflect the
true performance over smaller sub-regions [16].

Identification of portions of the data space showing low
prediction accuracy, i.e., sub-domains where the average loss
is higher than a defined threshold, has been explored in various
works through the application of statistical techniques [17],
[18]. They facilitate analysis of the model performance at a
more granular level. Additionally, they help provide a measure
of confidence in a model based on the region over which
it is applied so that they can be applied with a more trust
[19] and help interpret and explain the model decision. These
techniques, however, either require domain expertise and/or
are not designed to handle voluminous datasets.

As stated by Matthias Schnaubelt’s survey on using machine
learning model validation [20], special methodologies such as
forward validation schemes are needed for time-series models.

High dimensional datasets with a small number of samples
are used in neuroimaging, genomic, eye-tracking and other
biomedical studies. Andrius Vabalas et al. have demonstrated
that when training classification models using these datasets,
the type of validation scheme used could introduce a bias
which would lead to inaccurate assessment of the model [21].

V. CONCLUSIONS AND FUTURE WORK

Our benchmarks demonstrate the suitability of our method-
ology to facilitate resource efficient and timely validations.
RQ-1: Using a validation budget allows us to ensure spatial
coverage while conserving resources (both computing and I/O)
that are expended during model validations. We estimate the
error structure of the model M without having to rely on
validations involving a large number of observations.

RQ-2: To ensure scaling we complement our validation budget
with several mechanisms such as data locality, data dispersions
based sharding schemes, and conserving memory by reducing
the number of model instances that are memory resident.
RQ-3: To ensure broader applicability, we treat models as
black boxes without inspecting the internal structural prop-
erties of the models. For instance, the models we consider
could be based on partial differential equations, decision trees,
matrix multiplications and convolutions.

RQ-4: To characterize model performance we render visual-
izations of results as choropleth maps allowing users to explore
spatial variations in model performance.

As part of future work, we propose to incorporate support
for models based on classification and clustering.
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