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Abstract

The data available for reconstructing molecular phylogenies have become wildly disparate. Phylogenomic studies can
generate data for thousands of genetic markers for dozens of species, but for hundreds of other taxa, data may be
available from only a few genes. Can these two types of data be integrated to combine the advantages of both, ad-
dressing the relationships of hundreds of species with thousands of genes? Here, we show that this is possible, using
data from frogs. We generated a phylogenomic data set for 138 ingroup species and 3,784 nuclear markers (ultra-
conserved elements [UCEs]), including new UCE data from 70 species. We also assembled a supermatrix data set,
including data from 97% of frog genera (441 total), with 1-307 genes per taxon. We then produced a combined phy-
logenomic-supermatrix data set (a “gigamatrix”) containing 441 ingroup taxa and 4,091 markers but with 86% miss-
ing data overall. Likelihood analysis of the gigamatrix yielded a generally well-supported tree among families, largely
consistent with trees from the phylogenomic data alone. All terminal taxa were placed in the expected families, even
though 42.5% of these taxa each had >99.5% missing data and 70.2% had >90% missing data. Our results show that
missing data need not be an impediment to successfully combining very large phylogenomic and supermatrix data
sets, and they open the door to new studies that simultaneously maximize sampling of genes and taxa.

Key words: amphibians, missing data, phylogenomics, phylogeny, supermatrix.

Introduction thousands of species by incorporating data from

GenBank (e.g, McMahon and Sanderson 2006; Pyron
and Wiens 2011; Jetz et al. 2012; Pyron et al. 2013;
Rainford et al. 2014; Jetz and Pyron 2018). These latter ana-
lyses are often referred to as “supermatrix” (Driskell et al.
2004; de Queiroz and Gatesy 2007) or “megaphylogeny”
analyses (Smith et al. 2009). These well-sampled trees are
crucial for large-scale evolutionary studies.

Is it possible to combine phylogenomic and superma-

Someday, we may have massive genome-scale data for
most extant, described species on Earth with which to infer
phylogenies (Lewin et al. 2018). But that day is clearly not
yet here. Instead, we now have many species with molecu-
lar data from thousands of genes, many more species with
data from a handful of genes (or none), and others with
various numbers in between (e.g, Hinchliff et al. 2015;
Lewin et al. 2018).

Given this situation, what is the best way to design mo-
lecular phylogenetic studies to deal with these gross dis-
parities in the number of genes currently available for
each species? At present, numerous studies use phyloge-
nomic data sets, which typically contain limited numbers
of species but hundreds of genes (e.g, Dunn et al. 2008;
Prum et al. 2015; Hime et al. 2021) or thousands (e.g,
Jarvis et al. 2014; Misof et al. 2014; Irisarri et al. 2017;
Longo et al. 2017; Streicher et al. 2018, 2020). Other studies
include fewer genes (often 20 or less) but can include

trix approaches? For example, can we make a single,
massive “gigamatrix” (fig. 1) that contains thousands
of markers and hundreds (or thousands) of species?
Should we? One can imagine pros and cons to such an
approach (table 1). On the positive side, the phyloge-
nomic data could allow for better resolution of higher-
level relationships (given the increased number of in-
formative sites), whereas the supermatrix data would al-
low for inclusion of hundreds of species (fig. 1).
Hypothetically, this combination should give a better
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Fic. 1. Cartoon examples illustrating the major types of analyses compared in this study. (A) The supermatrix approach includes many taxa and
few genes, with some taxa missing data from one or more genes. (B) The phylogenomic matrix includes few taxa but many genes, again with
some taxa missing data for one or more genes. (C) The gigamatrix combines the supermatrix and phylogenomic matrices and has many genes
and taxa, but extensive missing data for those taxa not in the phylogenomic data set. Note that the numbers of genes shown here for each data
set are much smaller than the actual numbers used in our study (i.e, ~300 for the supermatrix vs. ~4,000 for the phylogenomic and gigamatrix
data sets). A simplified hypothetical tree generated from each matrix is also shown, with bootstrap support values at each node. Here, the giga-
matrix tree is fully resolved and has higher mean support values than the supermatrix tree alone. Moreover, conflicts between the supermatrix
and phylogenomic trees (regarding the placement of taxon B) are resolved in favor of the phylogenomic tree in the gigamatrix tree. Many other
outcomes might be possible, however. For example, the gigamatrix tree might have weaker mean branch support than the trees from the sep-
arate analyses, and the conflict between the supermatrix and phylogenomic trees over the position of taxon B might be resolved in favor of the
supermatrix tree instead.

estimate of higher-level relationships than a pure super-
matrix approach (based on many fewer genes), whereas
estimates for species-level relationships might be no
worse.

Of course, this is an optimistic view. There are several
potential negatives (table 1). Most importantly, the data
matrix from the combined phylogenomic supermatrix
(gigamatrix) analysis would be dominated by missing
data (i.e, unknown or ambiguous data cells). For example,
each taxon in the supermatrix (represented by few genes)
would have missing data for the thousands of genes in the
phylogenomic data set (fig. 1). Presumably, these highly in-
complete taxa with few genes would greatly outnumber
those with phylogenomic data, leading to a new matrix
that is supersparse (i.e, most taxa with >90% missing

data). But whether this massive amount of missing data
would be problematic is less clear. The impact of missing
data on phylogenetic analysis has been an ongoing topic
of theoretical and empirical research and debate (e.g,
Wiens 2003; Philippe et al. 2004, Lemmon et al. 2009;
Cho et al. 2011; Sanderson et al. 2010, 2011, 2015; Wiens
and Morrill 2011; Roure et al. 2013; Jiang et al. 2014;
Hosner et al. 2016; Streicher et al. 2016; Xi et al. 2016;
Nute et al. 2018; Talavera et al. 2022). Although the specific
impacts of missing data may depend on the phylogenetic
method and other details, some studies suggest that miss-
ing data cells are not intrinsically problematic, and exclud-
ing taxa and/or characters to avoid missing data may be
problematic instead (e.g., Jiang et al. 2014; Streicher et al.
2016).

Table 1. Potential Advantages and Disadvantages of the Gigamatrix Approach, and Whether They Are Supported by Our Results or Not.

Potential Advantage

Supported Here?

Higher-level relationships resemble those from phylogenomic tree Yes
Many species can be accurately placed based on supermatrix data alone Yes
Stronger support for higher-level relationships than from supermatrix Yes
Potential disadvantage

Many highly incomplete taxa misplaced by extensive missing data No
Higher-level relationships resemble those from supermatrix tree No
Higher-level relationships identical to phylogenomic tree No
Weak support for higher-level tree because of highly incomplete taxa Usually no
Difficult to use species-tree methods on gigamatrix Yes
Difficult to assemble gigamatrix Mostly no
Computationally intensive (difficult to simultaneously analyze thousands of genes and thousands of taxa) Yes
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Moreover, there are many other unresolved questions
(table 1). First, would the higher-level relationships from
the gigamatrix tree reflect those from the phylogenomic
analysis (making the combined analysis worthwhile),
or would they have a greater resemblance to those
from the supermatrix (making the phylogenomic data
superfluous)?

Second, would support values for higher-level relation-
ships in the gigamatrix tree reflect the phylogenomic ana-
lyses (fig. 1) or the supermatrix analysis? A terminal taxon
lacking phylogenomic data might be weakly resolved in its
placement simply because it has data for few genes. More
importantly, a highly incomplete taxon with little data to
resolve its placement might lead to weak support over
much of the tree, even with data for thousands of genes
in the other terminal taxa. On the positive side, including
phylogenomic data might help resolve the placement of
those taxa with data for only a few genes. Alternatively,
the support for placing highly incomplete taxa might be
limited by their overall lack of data.

Third, the combination of phylogenomic and superma-
trix data sets might preclude the use of species-tree meth-
ods to estimate relationships. Thus, gigamatrix analysis
may require use of concatenated analyses. Yet, it remains
unclear whether species-tree methods presently give bet-
ter estimates than concatenated analyses. For example,
Portik and Wiens (2021) found that concatenated analyses
recovered a higher proportion of well-established relation-
ships (i.e., corroborated by both molecular and morpho-
logical data) than did species-tree analyses.

Finally, the combination of supermatrix and phyloge-
nomic data sets by itself presents major bioinformatic
challenges. Obtaining sequences for thousands of species
and markers from public databases (e.g, NCBI and
GenBank) is not trivial. Bioinformatic methods for creating
supermatrices fall into two general categories. First, some
methods perform automated sequence clustering to find
usable markers. These include PhyLoTA (Sanderson et al.
2008), SUPERSMART (Antonelli et al. 2017), phylotaR
(Bennett et al. 2018), and PyPHLAWD (Smith and
Walker 2018). Second, some methods perform targeted
searches for specific markers, including phyloGenerator
(Pearse and Purvis 2013) and SuperCRUNCH (Portik and
Wiens 2020). Targeted searches may be especially useful
for building customized matrices (e.g, combining super-
matrix and phylogenomic data sets). Furthermore, many
phylogenomic data sets are not on NCBI but instead are
only available as Supplementary Materials online or in
other repositories (e.g, Dryad and FigShare). Therefore,
phylogenomic data can be incompatible with methods
that rely exclusively on GenBank (e.g, phyloGenerator,
PhyLoTA, phylotaR, PyPHLAWD, and SUPERSMART).
This incompatibility issue also applies to newly generated
sequences, making inclusion of unpublished sequences
difficult.

Given these issues, what is known about the combin-
ation of phylogenomic and supermatrix data sets? Few
studies have addressed this topic. For example, one study

(Zheng and Wiens 2016) performed such a combined ana-
lysis in squamate reptiles (lizards and snakes). However,
their “phylogenomic” data set was very limited: only 44
genes for 161 species. These data were combined with a
supermatrix of 12 genes for 4,161 species. The higher-level
relationships from the combined analysis generally re-
flected those from the 44-gene data set more than those
from the 12-gene data set. Mean bootstrap support for
higher-level nodes in the combined data tree was margin-
ally higher than in the analyses of the 12-gene data set.
Similarly, a study in butterflies by Talavera et al. (2022)
showed that adding a backbone data set of nine genes
(in 8% of the taxa) to a single-gene DNA-barcoding data
set (92% of taxa) yielded combined trees in which higher-
level relationships more closely matched the backbone
data set than the barcoding data alone. Those authors
also used simulations to show that trees from combined
data sets were more accurate than trees from barcodes
alone and could be highly accurate when the added back-
bone data set included only 5-50% of the taxa. Although
these results are promising, it is unclear what would hap-
pen if the phylogenomic data set contained thousands of
markers instead of dozens.

Here, we test the effects of combining phylogenomic
and supermatrix approaches in frogs. First, we assembled
a phylogenomic data set of 155 species (138 frogs and 17
outgroups), including new data from 70 species. This
data set consisted of sequences from UCEs (Bejerano
et al. 2004; Faircloth et al. 2012) and contained 3,784 nu-
clear markers. Second, we assembled a supermatrix of
307 markers representing most frog genera, including
441 ingroup taxa (of 456 genera; AmphibiaWeb 2020).
These included markers used in large-scale supermatrices
(Pyron and Wiens 2011; Jetz and Pyron 2018) and
large-scale multilocus data sets (Feng et al. 2017; Hime
et al. 2021). We focused on including most genera, given
that initial matrices containing all these markers and
~5,000 species proved to be computationally intractable.
Third, we combined the UCE data set and supermatrix
into a single gigamatrix, with 4,091 markers and 441 in-
group taxa. We used SuperCRUNCH (Portik and Wiens
2020) to address the bioinformatic challenges of generat-
ing a new supermatrix and combining this matrix with
published (and unpublished) phylogenomic data sets.

We used the trees from these three matrices to address
three key questions about the gigamatrix approach. First,
does the large amount of missing data in the combined
phylogenomic-supermatrix analysis cause problematic re-
sults, given that 86% of the 1.5 billion cells in this gigama-
trix are empty and >40% of the taxa each have >99.5%
missing data cells? The most obvious problem would be
that some taxa are clearly misplaced on the tree, relative
to their placement in previous molecular and morpho-
logical studies. Second, do higher-level relationships from
the gigamatrix analysis (441 taxa) share more higher-level
nodes with the phylogenomic (UCE) analysis or with the
supermatrix analysis? If relationships are most similar to
those in the supermatrix analysis, it would suggest that
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the potential power of the phylogenomic data to help re-
solve those nodes is overwhelmed by the many super-
sparse taxa in the supermatrix data set. Third, do the
phylogenomic (UCE) data increase support for higher-level
relationships in the gigamatrix tree, relative to the super-
matrix alone? Or is branch support limited by the instabil-
ity of the most incomplete terminal taxa? In addition to
our analyses of frogs, we also compare the answers to these
questions to those from a gigamatrix study in squamates
with fewer markers (Zheng and Wiens 2016). Overall, we
find that the gigamatrix approach yields reasonable place-
ments of highly incomplete taxa (i.e, consistent with pre-
vious studies), higher-level relationships that are similar to
the phylogenomic tree, and increased branch support rela-
tive to the supermatrix approach alone.

Finally, we note that despite recent studies on frog phyl-
ogeny, many aspects of anuran relationships remain uncer-
tain. Recent studies have generally agreed regarding the
base of frog phylogeny, but there has been conflict over re-
lationships within Neobatrachia. Neobatrachia contains
most frog species and families (~95% of species and
>80% of families; AmphibiaWeb 2020). Results are most
disparate between a supermatrix study based on 15 mito-
chondrial (mt) and nuclear genes (Jetz and Pyron 2018)
and phylogenomic studies using many nuclear markers
(Feng et al. 2017; Streicher et al. 2018; Hime et al. 2021).
Furthermore, these phylogenomic studies used a limited
number of markers (<250; Feng et al. 2017; Hime et al.
2021) or used many markers (>2,000) but focused on
only one clade (Hyloidea; Streicher et al. 2018). Here, we
present the first large-scale phylogenomic analysis that
spans most frog families and includes thousands of mar-
kers, along with a gigamatrix analysis that includes all fam-
ilies and most genera. We also include a time-calibrated
version of the gigamatrix tree for use in comparative
studies.

Results

Data Matrices

Basic properties of the data sets are given in table 2 and
supplementary  material ST and figure S1,
Supplementary Material online. The UCE data set (table
2) contained 3,784 markers and 155 species (138 in-
group and 17 outgroup; supplementary material S2,
Supplementary Material online). The concatenated
alignment was 2,935,116 base pairs (bp) in length,
with 63.2% missing data cells. The average number of
UCEs per frog species was 1,887 (SD [standard devi-
ation] = 675; range = 42-2,880; supplementary
material S2, Supplementary Material online). For new
UCE data generated here, the mean was 2,157 UCEs
(n=70 species; range =460-2,880; supplementary
material S2, Supplementary Material online). UCE se-
quences and alignments are provided on an Open
Science Framework project page: https://osf.io/fzw3x/.
The supermatrix contained 452 taxa, 307 markers and
was 27,611 bp in length (with 70.4% missing data; details

4

in supplementary materials S3 and S4, Supplementary
Material online).

The gigamatrix (combined UCE + supermatrix; table 2)
contained 4,091 markers and 458 taxa (441 ingroup gen-
era, 17 outgroup species). The alignment was
3,298,631 bp long and contained 1,510,772,998 cells and
86.0% missing data (tables 2 and 3). We note that most
of the missing data were from markers being entirely ab-
sent in some taxa, but there were also some missing
data that came from within some markers (e.g, due to
gaps in alignment).

Phylogenetic Results

We first analyzed the UCE data alone, with concatenated
maximum likelihood (ML) analysis (RAXML) and species-
tree analysis (ASTRAL-III). The ML analysis used 128 threads
on CIPRES, required ~40-Gb memory and an average of
~30 min per tree optimization, and ran for 5h (~650
CIPRES hours; note we provide these values for all ML ana-
lyses for comparison). The log-likelihood of the best ML
tree was —42,126,237. The estimated ML and species trees
were broadly similar to each other (fig. 1; supplementary
material S1 and fig. S2 and supplementary material S5 and
figs. S1 and S2, Supplementary Material online) and to pre-
vious estimates. However, we found alarming patterns in the
ASTRAL-IIl tree for certain taxa (supplementary material S1,
Supplementary Material online, support in supplementary
fig. S2, Supplementary Material online; gene concordance
in supplementary fig. S3, Supplementary Material online).
Specifically, Spea bombifrons was placed near the base of
Hyloidea, rather than with other Spea in Scaphiopodidae.
Similarly, Litoria caerulea was placed near the base of
Hyloidea, rather than with other Hylidae. Finally, two genera
of Leptodactylidae (Edalorhina and Physalaemus) were to-
gether placed as the sister to Bufonidae, rather than with
the confamilial genus Leptodactylus (which was sister to
Terrarana + Bufonidae). These unusual placements were all
strongly supported by ASTRAL-IIL. In contrast, in the conca-
tenated analysis (fig. 2), these taxa were placed where ex-
pected with strong support (ie, in Spea, Hylidae, and
Leptodactylidae). Given these problematic results from
ASTRAL-IIl, we focus primarily on the concatenated ML re-
sults. Given the large number of taxa and closely spaced
nodes, for all trees we present the full tree with detailed sup-
port values in supplementary material S5, Supplementary
Material online and use summary trees and support values
in the main text and elsewhere. Note that the quartet
analysis of gene tree congruence shows that there are
conflicts between gene trees over many relationships, espe-
cially those with shorter branch lengths in the UCE
tree, but most relationships are strongly supported nonethe-
less (supplementary material S5 and figs. S1-S3,
Supplementary Material online).

We next analyzed the gigamatrix data set (combined
UCE + supermatrix) of 441 ingroup taxa. Among these in-
group taxa, 312 (70.7%) had >90% missing data, and 187 of
these 312 (42.5%) had >99.5% missing data. We conducted
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Table 2. Characteristics of the Concatenated Data Matrices Analyzed Here.

Marker Sets Rank Taxa Markers Sequences Length (bp) Info. sites (%) Missing Data (%)

UCEs Species 155 3,784 302,047 2,935,116 1,449,947 63.2
(49.4)

UCEs Genus 137 3,784 275,290 2,935,116 1,411,791 62.3
(48.1)

Supermatrix Genus 452 307 51,798 27,611 13,198 70.4
(47.8)

Gigamatrix Genus 458 4,091 327,088 3,298,631 1,606,433 86.0
(48.7)

Length is the number of base pairs (bp) in each concatenated alignment. The percentage of sites that are parsimony-informative is given in “Info. Sites.” See also

supplementary material S1 and figure S1, Supplementary Material online.

a preliminary ML analysis of the gigamatrix using unparti-
tioned data, the GTR + CAT setting, and ten alternate runs
on distinct starting trees. The unpartitioned analysis used
128 threads on CIPRES, required ~33-Gb memory and an
average of ~5 h per tree optimization, and ran for 40 h
(~5,000 CIPRES hours). The log-likelihood of the best
tree was —52,609,008. The topology and support values
of this tree (supplementary material S1 and fig. S3 and
supplementary material S5 and fig. S4, Supplementary
Material online) were similar to those based on the parti-
tioned analysis (fig. 3). These results suggest that choices
about partitioning do not strongly impact our conclusions.

We then conducted a partitioned analysis of the giga-
matrix using the GTR + gamma model and ten alternate
runs on distinct starting trees. These partitioned analyses
of the gigamatrix used 128 threads on CIPRES, required
~132-Gb memory, required an average of ~42 h per tree
optimization, and ran for ~350 h (~45,000 CIPRES hours).
The log-likelihood of the best tree found was —52,497,828.
Although our best tree search was limited in scope, the ten
trees were similar. The average normalized Robinson-
Foulds distance (Robinson and Foulds 1981) among the
ten trees was 0.06 (+0.03 SD). The average absolute
Robinson—-Foulds distance was 56 (+17 SD), indicating
that an average of 56 nodes differed between the trees
(among the 457 nodes present per tree). Differing nodes
were within families and were associated with low boot-
strap support (supplementary material S5 and fig. S5,
Supplementary Material online).

In the concatenated ML analysis of the gigamatrix, al-
most all taxa were placed in the expected higher-level
clades and families (fig. 3A-D). One family was

Table 3. Characteristics of Different Marker Types in the Gigamatrix.

Marker Set  Markers Taxa Length (bp) Info. Sites (%) Missing Data (%)

AHE 194 189 1,290 54.8 2.9
NPCL 89 116 961 48.9 3.2
Legacy 24 194 1,150 47.0 24.8
UCE 3,784 72 775 48.4 29.3

Number of taxa, length, informative (info.) sites, and missing data are all means per
marker in each marker set. AHE refers to anchored hybrid enrichment markers of
Hime et al. (2021). NPCL refers to PCR-based nuclear protein-coding loci of Feng
et al. (2017). Legacy refers to 16 nuclear markers (BDNF, BMP2, CMYC, CXCR4, H3A,
NCX1, NT3, POMC, RAG1 regions 1and 2, RAG2, RHO, SIA, SLC8A3, TNS3, and TYR)
and 8 mt markers (125, 16S, CO1 regions 1 and 2, CYTB, ND1, ND2, and ND4) fre-
quently used in frog phylogenetic studies and supermatrices.

nonmonophyletic (Strabomantidae), but monophyly of
this family was rejected previously with supermatrix (e.g.,
Pyron and Wiens 2011) and phylogenomic analyses
(Barrientos et al. 2021). Thus, taxa were not misplaced
among families simply because they had extensive missing
data. Results were similar for subfamilies within families
(see supplementary material S1, Supplementary Results,
Supplementary Material online). Among the 35 subfam-
ilies represented by two or more genera, 31 (88.6%) were
monophyletic. Among the four that were not, three
were also nonmonophyletic in the supermatrix tree
(Leiuperinae, Mantellinae, and Pristimantinae). Thus, their
nonmonophyly is not explained by the gigamatrix ap-
proach. The one exception (Dendrobatinae) was nonmo-
nophyletic in the gigamatrix tree because of a difference
in the placement of a strongly supported clade of three
genera (not a single taxon of uncertain placement).

Relationships among families were generally strongly
supported in the gigamatrix tree (mean bootstrap =
88.5%; 53 nodes), but some relationships were weakly sup-
ported (fig. 3; supplementary material S5 and fig. S6,
Supplementary Material online). Among families, we
found especially weak support within Ranoidea (fig. 3B).
Therefore, we performed an analysis to identify rogue
taxa (i.e, with highly unstable placement). RogueNaRok
(Aberer et al. 2013) identified 29 rogue taxa in the super-
matrix phylogeny (supplementary material S1 and table
S2, Supplementary Material online). Removal of the rogue
taxa greatly improved branch support in some parts of
the tree, especially relationships among families within
Natatanura and Hyloidea and within some portions of
Bufonidae and Microhylidae (supplementary material S1
and fig. S5 and supplementary material S5 and fig. S7,
Supplementary Material online). The 29 rogue taxa had sig-
nificantly more missing data than the other 412 taxa
(mean for rogues = 97.96% missing data, nonrogue mean =
86.13%; P < 00001, W=22665 from nonparametric
Wilcoxon test in R). Yet, one rogue taxon (Duttaphrynus)
had 2,529 UCEs.

The concordance among genes and sites on each branch
of the gigamatrix tree are visualized in supplementary
materials S7 and S8, Supplementary Material online, re-
spectively. The numbers of genes and sites that are decisive
(informative) for each branch are shown in supplementary
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Fic. 2. Phylogenetic estimate of anurans based on the concatenated ML analysis of 3,784 UCEs using RAXML. Scale bar represents substitutions
per site. The bootstrap support value for each node is given in supplementary material S5 and figure S1, Supplementary Material online.

materials S9 and S10, Supplementary Material online. The
latter are especially useful for visualizing how the amount
of nonmissing data varies among branches, with among-
family relationships often based on thousands of genes,
and relationships within families often based on less
than 10 genes (given that many genera are included based
on few markers). Some of the weakly supported relation-
ships among families are also based on very few genes, given
the limited number of genes in certain taxa (eg,
Micrixalidae).

There was also considerable heterogeneity in branch
lengths among terminal taxa in this tree (fig. 3). We ad-
dress this in supplementary material S1, Supplementary
Results, Supplementary Material online. The heterogeneity
seemed to be related to heterogeneity in the type of data
present in each terminal taxon, not the amount of missing
data alone. Specifically, longer branches seemed to be

6

associated with faster evolutionary rates in the mt markers
for taxa with only mt markers or a similar number of mt
and nuclear markers (i.e, those with legacy data alone),
whereas branch lengths were shorter in taxa having a pre-
ponderance of nuclear markers (e.g., those with UCE data).

We then conducted a partitioned analysis of the super-
matrix using the GTR + gamma model and 50 alternate
runs on distinct starting trees. This tree is summarized in
supplementary material S1 and figure S4, Supplementary
Material online. The supermatrix analyses used 24 threads
on CIPRES, required ~1-Gb memory and an average of
~1 h per tree optimization, and ran for a total of ~70 h
(~1,600 CIPRES hours). The log-likelihood of the best
supermatrix tree was —1,287,346.

We compared the percentage of shared nodes and
mean bootstrap values among families for the concate-
nated ML trees from the UCE-only data (fig. 2;
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Fic. 3. Concatenated ML analysis of the gigamatrix (combined UCE-supermatrix) with 4,091 markers. Scale bar represents substitutions per site.
The analysis was partitioned. The phylogenetic tree is shown across four panels (A-D), with letters on branches representing connection points
to the indicated panel. The exact bootstrap support value for each node is given in supplementary material S5 and figure S6, Supplementary
Material online. White bars above genera indicate subfamilies (following the taxonomy of AmphibiaWeb 2020 used elsewhere in the paper).
Asterisked subfamilies are nonmonophyletic. Note that many families lack subfamilies.

supplementary material S5 and fig. S1, Supplementary
Material online), gigamatrix (combined UCE + superma-
trix) data set (fig. 3; supplementary material S5 and fig.
S6, Supplementary Material online), and supermatrix
(supplementary material S5 and fig. S8, Supplementary
Material online). When comparing the UCE tree to the
gigamatrix tree, we found that 93.5% of comparable nodes
among families were shared (43/46), with only three nodes
in conflict (supplementary material S1 and table S3,
Supplementary Material online). The UCE data set has
only 47 families, reducing comparable nodes. When com-
paring the gigamatrix and supermatrix trees, only 62.3% of
nodes among families were shared (33/53). This difference

in proportions (0.935 vs. 0.623) was significant using a
chi-squared test in R (P =0.0002). Only 56.5% of nodes
among families were shared between the UCE and super-
matrix trees (26/46). Mean bootstrap support for among-
family relationships (supplementary material S1 and table
S3, Supplementary Material online) was highest for the
UCE tree (mean = 99.3%; 46 nodes), lower for the gigama-
trix tree (mean = 88.5%; 53 nodes), and lowest for the
supermatrix tree (mean = 67.1%; 53 nodes). These differ-
ences were significant using a nonparametric Wilcoxon
test in R (UCE vs. gigamatrix: P = 0.0003, W = 757.5; giga-
matrix vs. supermatrix: P=0.0018, W =1875). In sum-
mary, our results suggest that adding the UCE data to

7
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Fic. 3. Continued

the supermatrix yields a tree that is far more similar to the
UCE tree and has higher bootstrap support than the tree
based on the supermatrix data alone (for relationships
among families). Furthermore, taxa were generally placed
in the expected families and subfamilies (supplementary
material S1, Supplementary Results, Supplementary
Material online), regardless of their missing data.

We compare our phylogenetic results to those of other re-
cent studies in supplementary material S1, Supplementary
Results, Supplementary Material online. In short, we found
that our gigamatrix tree was similar to those from other phy-
logenomic studies and not previous supermatrix trees.

We also estimated time-calibrated versions of the gigama-
trix tree, both with and without rogue taxa (supplementary
materials S11 and S12, Supplementary Material online). The
estimated divergence dates from these trees are broadly
similar to those from other recent studies, with some excep-
tions (supplementary materials S1 and tables S4 and S5,
Supplementary Material online).

The treefiles from these analyses are available as
supplementary  materials  $S13-521,  Supplementary
Material online. These include trees from UCE data alone
(likelihood, supplementary material S13, Supplementary
Material online; ASTRAL, supplementary material S14,
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Supplementary Material online), the supermatrix
(supplementary material S15, Supplementary Material on-
line), and the gigamatrix with and without rogue taxa
(supplementary materials S16 and S17, Supplementary
Material online), with time calibration (supplementary
materials S18 and S19, Supplementary Material online),
and with gene and site concordance factors for each
node (supplementary material S20 and  S21,
Supplementary Material online).

Discussion

The sequence data currently available for molecular phylo-
genetics are wildly heterogeneous, with data from

—— Fritziana
Lg R —
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thousands of genes for some species and only one or
two genes for most others (and everything in between).
Can we perform combined analyses that include species
with these disparate amounts of data? And regardless of
whether we can, should we?

Here, we show that such combined (gigamatrix) ana-
lyses are possible and potentially advantageous. We were
able to include most anuran genera (97%) in our gigama-
trix tree (combined UCE + supermatrix), even though
42.5% of the terminal taxa had >99.5% missing data and
many taxa had data from only one or two genes. Almost
every genus was placed in the expected family and subfam-
ily. Overall, we found little evidence that highly incomplete
taxa were misplaced in the gigamatrix tree.
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Fic. 3. Continued

We also found that higher-level relationships in the giga-
matrix (supermatrix + UCE) tree generally reflected those
from the phylogenomic (UCE) data set. For comparable
among-family nodes, 93.5% of the nodes in the gigamatrix
tree were shared with the UCE-only tree, whereas only
62.3% were shared with the supermatrix tree. Moreover,
the mean bootstrap support for these among-family nodes
was higher in the gigamatrix tree than the supermatrix tree
(88.5% vs. 67.1%), but not as high as in the UCE-only tree
(99.3%). Importantly, many family-level relationships in
the gigamatrix tree were very different from a supermatrix
study based on 15 genes (Jetz and Pyron 2018). For ex-
ample, many major clades found in the UCE-only tree

10

phrynoides

were not monophyletic in that supermatrix tree, including
the major hyloid clades Amazorana and Commutabirana
and the clade in Ranoidea uniting Afrobatrachia and
Natatanura. These clades were also supported in a phyloge-
nomic study based on hundreds of nuclear markers (Hime
et al. 2021). Our results suggest that the higher-level rela-
tionships and their support values in the gigamatrix tree
are generally determined by the data set with the most
markers (phylogenomic), even though most taxa are in-
cluded based on a much smaller number of markers.
Readers may have two main questions about our study.
First, do we know that the gigamatrix approach recovers
accurate phylogenies? Second, do these findings apply to
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other clades besides frogs? First, there are many simulation
and empirical studies showing that highly incomplete taxa
can be accurately placed in phylogenies (review in Wiens
and Morrill 2011). Thus, we found here that 187 taxa,
each with >99.5% missing data, were all placed in their ex-
pected families, often with strong support. Although this
result might sound unbelievable, the extensive missing
data in these taxa is a function of the large numbers of
genes in the other taxa. Thus, our results are consistent
with theory suggesting that the accuracy with which
taxa are placed depends on the data that they have, not
the amount that they lack (Wiens 2003). Moreover, previ-
ous simulation and empirical studies suggest that adding
data sets with missing data in many taxa (e.g, the phyloge-
nomic data set added to the supermatrix) can be beneficial
for recovering known clades (simulations) and well-
established clades (empirical studies), relative to analyzing
a smaller set of characters with more complete data in all
taxa (e.g, simulations: Gouveia-Oliveira et al. 2007; Wiens
2009; Wiens and Morrill 2011; Talavera et al. 2022; empir-
ical: Wiens et al. 2005; Cho et al. 2011; Jiang et al. 2014;
Streicher et al. 2016; Talavera et al. 2022). This combin-
ation is beneficial because of the improved accuracy asso-
ciated with the data sets with more characters but fewer
taxa. Note that we did not conduct new simulations based
on our empirical data sets, since the large size of these data
sets makes them impractical for simulations. Overall, our
results here uniquely support and extend these previous
studies by showing that their theoretical conclusions
seem to apply to very large-scale data sets with thousands
of markers, millions of characters, and extreme amounts
and proportions of missing data.

The second question is whether our results apply to
other clades. In some ways, the concordance between
our results and the previous simulation and empirical
studies cited above already answers that question. The
generality of our conclusions is supported by many studies
showing that highly incomplete taxa can be accurately
placed in phylogenies and that adding data sets having
data for only some taxa can be beneficial. Furthermore, fo-
cusing more specifically on the gigamatrix approach, our
results are concordant with a previous study that com-
bined phylogenomic (44 genes and 161 species) and super-
matrix data sets (12 genes and 4,161 species) in squamate
reptiles, albeit with a smaller phylogenomic data set
(Zheng and Wiens 2016). Those authors addressed the
same three questions that we did here. First, our study
found no cases in which highly incomplete taxa were
placed in the “wrong” family (i.e., based on previous tax-
onomy and previous molecular and morphological stud-
ies). This was also generally true for the squamate study.
Zheng and Wiens (2016) did find a few nonmonophyletic
families (i.e, Cylindrophiidae and Lamprophiidae), but
their nonmonophyly was also found in supermatrix studies
(e.g, Figueroa et al. 2016), and so these cases do not appear
to be caused by the gigamatrix approach. Second, higher-
level relationships in the squamate gigamatrix tree more
strongly resembled those from the phylogenomic data

set (90% of higher-level nodes shared) than the superma-
trix data set (77% shared). Similarly, we found here that for
among-family nodes, 93.5% of the nodes in the gigamatrix
tree were shared with the phylogenomic tree, whereas only
62.3% were shared with the supermatrix tree. Thus, in both
cases, the gigamatrix tree generally reflected the phyloge-
nomic data for higher-level relationships, as intended.
Third, Zheng and Wiens (2016) found that mean boot-
strap support for higher-level nodes in the gigamatrix
tree was higher than the supermatrix tree, but not signifi-
cantly (74.1% vs. 71.2%). These gigamatrix bootstrap values
were also significantly lower than in the 44-gene data set
(74.1% vs. 88.9%). Here, we found that the mean bootstrap
support for these among-family nodes in the gigamatrix
tree was significantly higher than in the supermatrix tree
(88.5% vs. 67.1%) but significantly lower than the
UCE-only tree (99.3%). Thus, mean support for the higher-
level relationships was consistently higher in the gigama-
trix tree relative to the supermatrix tree, as intended.
Overall, the results are broadly concordant between the
two studies, but we suggest that the much larger number
of markers in our phylogenomic data set here help explain
why the phylogenomic data set in frogs more strongly in-
fluenced the gigamatrix tree than in squamates (both in
determining higher-level relationships and increasing
bootstrap support for those relationships). Thus, in the
context of a gigamatrix analysis, incorporating a larger phy-
logenomic data set (i.e., more markers) seems to be more
beneficial, despite increasing the overall amount and pro-
portion of missing data in the matrix.

Empirical analyses in butterflies by Talavera et al. (2022)
also showed that combining multilocus data sets contain-
ing few taxa with single-gene DNA-barcoding data sets
with many taxa yielded higher-level phylogenies more
similar to the multilocus data sets (similar to frogs and
squamates). They also performed simulations and found
that this combined approach improved accuracy relative
to analyzing DNA-barcoding data alone. These results fur-
ther support the generality of our conclusions about the
gigamatrix approach. Furthermore, considering both our
study and that of Talavera et al. (2022) suggests that it
should be possible to combine DNA-barcoding data sets
(with a single gene for many taxa) with phylogenomic
data sets (containing hundreds or thousands of markers
for a more limited set of taxa). Most importantly, our re-
sults suggest that the extreme levels of missing data in
taxa with DNA-barcoding data alone should not be an im-
pediment to their correct placement in a gigamatrix tree.

Our results also suggest that a gigamatrix approach
might have advantages relative to simply constraining
the supermatrix analysis to match the phylogenomic
tree. For example, our concatenated UCE-only tree
showed the grouping of Calyptocephalellidae +
Myobatrachidae to be paraphyletic with strong support.
However, the placement of these two families as sister
taxa has been supported in most recent phylogenetic ana-
lyses of anurans (Feng et al. 2017; Jetz and Pyron 2018;
Hime et al. 2021). Intriguingly, the gigamatrix tree strongly

11

€20z AINf 2| uo Jasn sjelag - s90IAI9G [BoIUY2a ] AQ 6ES LS /60 L PESW/S/0t/a0e/aqw/woo dnooliwepese//:sdiy woll papeojumod


https://doi.org/10.1093/molbev/msad109

Portik et al. - https://doi.org/10.1093/molbev/msad109

MBE

supported Myobatrachidae + Calyptocephalellidae. This
shows that these much smaller data sets (i.e., fewer genes)
were together able to overturn some relationships from
the much larger data set, even though they differed in
size by more than 10-fold (307 vs. 3,784 genes). This pat-
tern would have been missed if we had simply assumed
that the UCE tree was correct. We found other cases in
which the gigamatrix tree differed from the UCE tree alone
(e.g., within Neoaustrarana), although in these other cases,
the relationships are not as well established. The ability of
the data set with fewer genes to overturn relationships
from the data set with many more genes almost certainly
results (at least in part) from there being some support in
the larger data set for the alternative relationship (e.g,
many UCEs support monophyly of Myobatrachidae +
Calyptocephalellidae; Streicher et al. 2018). Therefore, a
constrained approach may not be optimal, although it
may be more computationally efficient.

Along these lines, a recent study combined phyloge-
nomic data with GenBank data to estimate a large-scale
phylogeny of 4,705 mammal species (Alvarez-Carretero
et al. 2021). In that study, higher-level relationships (and
associated divergence dates) were estimated and fixed
based on phylogenomic data (15,268 genes for 72 species),
and species-level relationships and divergence times were
estimated separately within 13 clades using a data set of
182 genes. These species-level trees were then combined
to make the overall phylogeny. This approach seems rea-
sonable, although those authors had to “manually adjust”
aspects of their tree to match expected relationships.
However, we found that the addition of smaller numbers of
markers can help resolve higher-level relationships, rather
than simply assuming that the phylogenomic data set is al-
ways correct. Furthermore, there can be a continuum in the
sizes of the phylogenomic and species-level data sets. For ex-
ample, our supermatrix data set includes data from a study
based on next-generation sequencing and hundreds of mar-
kers (Hime et al. 2021), and one taxon in the phylogenomic
data set had data from only 42 UCEs. The gigamatrix ap-
proach does not require making a distinction between phylo-
genomic and supermatrix data sets.

We do acknowledge several potential disadvantages of the
gigamatrix approach (table 1). The most important disadvan-
tage may be that it is computationally intensive. Our initial
goal was to include ~5,000 anuran species in the gigamatrix.
After much time and effort, we found that this was simply not
computationally tractable at present (neither on CIPRES nor
the UK Crop Diversity Bioinformatics High Performance
Computing Resource, nor with the help of A. Stamatakis
and his considerable expertise and resources). For example,
all analyses crashed before completing a single likelihood op-
timization. Our genus-level sampling represented a com-
promise. However, our results show that analyses of
gigamatrix data sets are feasible for hundreds of taxa and
thousands of markers and are not misled by the extensive
missing data in most taxa. We suspect that analyses combin-
ing thousands of taxa and markers (in at least some taxa) will
become computationally tractable in the near future.
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Another disadvantage of the gigamatrix approach is that
the placement of many taxa can depend on only a few mar-
kers and may be correspondingly uncertain. For example, we
found that relationships among families of Natatanura were
strongly supported by UCE data (fig. 2) but weakly sup-
ported when supermatrix taxa were added (fig. 3). The un-
certain placement of Micrixalidae (lacking UCE data)
seemed to contribute greatly to the low support. We used
RogueNaRok (Aberer et al. 2013) to identify rogue taxa,
and deleting rogue taxa improved support in several parts
of the tree (supplementary material S1 and fig. S5 and
supplementary material S5 and fig. S6, Supplementary
Material online). Most rogue taxa had data for only a few
genes (but one had UCE data; supplementary material S1
and table S2, Supplementary Material online). Overall, we
caution that the gigamatrix approach can yield disappoint-
ing support values in some parts of the tree. We assume
that this occurs primarily because relationships among
many taxa are only addressed by a limited number of genes.
Nevertheless, bootstrap support for higher-level relation-
ships was substantially higher in the gigamatrix tree than
the supermatrix tree, but not as high as in the UCE-only tree.

We also found considerable heterogeneity in the branch
lengths among terminal taxa in the gigamatrix tree
(supplementary material S1, Supplementary Results,
Supplementary Material online). Our analyses suggest
that this heterogeneity is related to some taxa having
mostly fast-evolving mt genes, whereas branch lengths
were more homogeneous among taxa with many nuclear
genes. These results, as well as previous analyses (e.g,
Pyron et al. 2011; Wiens and Morrill 2011; Jiang et al.
2014), suggest that branch length variation is not simply
related to the amount of missing data alone.
Importantly, we did not find clear evidence here that
this heterogeneity has other negative consequences (e.g.,
causing long-branch taxa to be placed in the wrong fam-
ily). Further, previous analyses suggest that the presence
of extensive missing data in most genes may have limited
impact on widely used tree-dating methods (e.g, Zheng
and Wiens 2015; Talavera et al. 2022). Indeed, we found
that the divergence dates estimated from our gigamatrix
tree were broadly similar to other recent estimates
(supplementary material S1 and table S4, Supplementary
Material online).

Another potential disadvantage of the gigamatrix ap-
proach is that it may disallow use of species-tree analyses.
These species-tree approaches can perform well if taxa
with missing data are randomly distributed across markers
but may be unreliable if missing data are nonrandomly dis-
tributed (Xi et al. 2016). In our gigamatrix, missing data are
not randomly distributed but instead are concentrated in
ingroup taxa lacking UCE data (68.7% of taxa). A potential
solution would be to estimate higher-level relationships
using a species-tree analysis of the phylogenomic data
and then perform a supermatrix analysis that constrained
higher-level relationships to the species-tree estimate.
However, we found that the species-tree analysis of the
UCE data gave some problematic but strongly supported
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results (e.g, nonmonophyly of Hylidae, Leptodactylidae,
and Scaphiopodidae). We have also found other cases where
species-tree analyses give problematic results that conflict
with concordant evidence from concatenated molecular
markers and from morphology (Streicher et al. 2018; Portik
and Wiens 2021). Species-tree analyses have important ad-
vantages relative to concatenated analyses in theory (e.g,
Kubatko and Degnan 2007; Edwards 2009; Leaché and
Rannala 2011). Yet our comparisons involving empirical
data sets suggest that additional work may be needed to over-
come the problems observed in practice. Whether these pro-
blems are specific to UCE data or apply broadly to
phylogenomic data is a question of urgent importance,
both for those who use UCE data and those who do not.

We also caution that the promising results from frogs (and
squamates; Zheng and Wiens 2016) are not a guarantee that
the gigamatrix approach will perform well in every case. We
suspect that an important key to its success in frogs is that nu-
merous researchers have used the mt 12S and 16S genes in
systematic studies in frogs, such that almost all taxa had
data for one or more of these genes here (supplementary
material S4, Supplementary Material online). This allowed
fine-scale placement of many sampled frog species.
DNA-barcoding data from the same fast-evolving mt gene
(cytochrome oxidase 1) from large numbers of taxa may
have similar benefits (Talavera et al. 2022). A lack of overlap
among genes sampled for different taxa may be especially
problematic (Sanderson et al. 2010) and is a somewhat dis-
tinct problem from the amount of missing data per se. This
lack of overlap can also make a supermatrix approach prob-
lematic. Overall, we predict that the gigamatrix approach
will be most successful when combining a supermatrix that
can fully resolve species-level relationships with a phyloge-
nomic data set that can strongly resolve higher-level
relationships.

Finally, we acknowledge that additional work is still needed
on frog phylogeny. The gigamatrix tree estimated here should
generally be an improvement relative to previous estimates.
However, estimation will continue to improve as more genes
are added for more taxa. We also note that UCEs are only one
approach for sampling thousands of markers from a genome.
For example, all species lacked data for at least some of the
3,784 UCEs (the maximum number in any species was
2,880). Perhaps the biggest drawback of phylogenomic data
is that the number of species sequenced is often limited, as
broad sampling remains expensive and labor-intensive.
Including more markers with some missing data appears to
be preferable to sampling a smaller number of more complete
markers (Streicher et al. 2016). Future studies will doubtlessly
increase taxon sampling, sampling of markers, and complete-
ness per marker. New approaches might also greatly increase
the number of markers per species (e.g, to 13,500 per species;
Hutter et al. 2022). In the short term, such extensive gene sam-
pling for a limited number of species will only exacerbate the
disparities in markers available for each taxon. Fortunately,
our results here suggest that combining such expanded phy-
logenomic data sets with existing phylogenomic and super-
matrix data sets should not be problematic.

Conclusions

Our study shows that it is possible to combine phyloge-
nomic data sets containing thousands of genes with super-
matrix data sets consisting of hundreds of taxa (some with
data from only one or two genes). We refer to this combin-
ation as the gigamatrix approach. We found that the
higher-level relationships from the gigamatrix tree are gen-
erally strongly supported and resemble those from the
phylogenomic analysis, rather than from the supermatrix
analysis. We also found that all taxa were placed in the ex-
pected families, even though 42.5% of the taxa had >99.5%
missing data. We showed that missing data were not an
impediment to combining data sets with wildly disparate
numbers of taxa and genes, opening the door to new types
of analyses. Most importantly, these new types of analyses
can potentially replace supermatrix analyses based on lim-
ited numbers of genes for large numbers of taxa.

Materials and Methods

Overview

Given the length restrictions of the journal, we give a brief
sketch of the methods used here and give full details in
supplementary material S1, Supplementary Methods,
Supplementary Material online.

Taxon Sampling for UCE Data

We assembled UCE data from 138 species, representing 47
of 54 anuran families (87%; supplementary material S2,
Supplementary Material online), using published and
new data. Streicher et al. (2018) sampled extensively within
Hyloidea (and outgroups), including data for 54 species for
up to 2,214 UCEs. We used these data and UCE data from
seven species from Hutter et al. (2022), who sampled
broadly across Anura and targeted 2,085 UCEs.

We obtained new data for species of Ranoidea (n = 42)
and Archaeobatrachia (n = 11). We sampled 17 of 18 ranoid
families (all but Micrixalidae). Within Archaeobatrachia, we
sampled all families but Leiopelmatidae. We also sampled
additional species (n =17) from several diverse families in
Hyloidea.

Finally, we used published genomes to extract UCE data
from 24 species, including 7 frog species, various amphib-
ian outgroups (Caudata and Gymnophiona), and more dis-
tant nonamphibian outgroups. Details of taxon sampling
are in supplementary material S2, Supplementary
Material online. The details for collecting new UCE data,
processing these data, and combining them with pub-
lished data are in supplementary material S1,
Supplementary Methods, Supplementary Material online.

Genus-Level Supermatrix with GenBank Data

We generated a supermatrix to include as many genera as
possible. We identified 22 molecular markers that are
widely used in anuran phylogenetics. These included 15
nuclear genes (BDNF, BMP2, CMYC, CXCR4, H3A, NCX1,
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NT3, POMC, RAG1, RAG2, RHO, SIA, SLC8A3, TNS3, and
TYR) and seven mt genes (12S, 16S, CO1, CYTB, ND1,
ND2, and ND4). For both RAGT and CO1, multiple primer
designs have led to two nonoverlapping regions being se-
quenced, and we therefore treated them as distinct mar-
kers. We refer to these 24 markers as “legacy” markers.

We also included two nuclear data sets having fewer
taxa. The first data set included 92 markers and 156 species
(Feng et al. 2017; Tu et al. 2018). Three of these markers
overlapped with the legacy markers. The second data set
included 230 taxa with 220 nuclear markers (Hime et al.
2021). Twenty-six markers were shared between these
data sets (283 combined). In total, the supermatrix data
set included 307 non-UCE markers.

Phylogenetic Analyses

The UCE data were analyzed using both concatenated ML
using RAXML (Stamatakis 2014) and a gene-tree summary
method (ASTRAL-III; Zhang et al. 2017). All other data sets
(i.e., supermatrix and gigamatrix) were analyzed with con-
catenated ML. Details are in supplementary material S1,
Supplementary Methods, Supplementary Material online,
including computational resources used and final
likelihoods.

Supplementary Material

Supplementary data are available at Molecular Biology and
Evolution online.
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