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Hybrid Physics and Data-driven Contingency
Filtering for Security Operation of Micro

Energy-water Nexus
Mostafa Goodarzi and Qifeng Li, Senior Member IEEE

AbstractÐThis paper investigates a novel engineering problem,
i.e., security-constrained multi-period operation of micro energy-
water nexuses. This problem is computationally challenging be-
cause of its high nonlinearity, nonconvexity, and large dimension.
We propose a two-stage iterative algorithm employing a hybrid
physics and data-driven contingency filtering (CF) method and
convexification to solve it. The convexified master problem is
solved in the first stage by considering the base case operation and
binding contingencies set (BCS). The second stage updates BCS
using physics-based data-driven methods, which include dynamic
and filtered data sets. This method is faster than existing CF
methods because it relies on offline optimization problems and
contains a limited number of online optimization problems. We
validate effectiveness of the proposed method using two different
case studies: the IEEE 13-bus power system with the EPANET
8-node water system and the IEEE 33-bus power system with
the Otsfeld 13-node water system.

Index TermsÐContingency filtering, micro energy-water
nexus, multi-period secure operation, optimal power and water
flow, physics-guided data-driven.

NOMENCLATURE

A. Parameters

η Constant efficiency of the pump.

Γ Data sets.

ξ Boundary values for contingency classification.

ρ Cost constants for power generators.

ρGt Electricity price.

ϑ Weight factor for physical information.

AT
n Water tank area at node n.

c,NB Contingency number, total number of buses.

Dnm, Lnm Diameter and length of pipe.

dn,t Water demand of node n.

fs Darcy±Weisbach friction factor for water pipe.

g Gravitational acceleration.

hnm Elevation difference among of node n and m.

Nds Number of data in the data set.
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PRE
i,t , Q

RE
i,t Active/reactive power output of renewable en-

ergy.

PR Maximum reduced pressure value.

rij Resistance of the line between bus i and bus j.

Rw
nm Head loss coefficient of pipe nm.

Sij Apparent power of the line between bus i and j.

xij Reactance of the line between bus i and bus j.

zij Impedance of the line between bus i and bus j.

B. Variables

αP
nm Binary variable shows the pump status.

µc
ij Binary variable of the network reconfiguration.

γc Violation value of contingency c.

ω Weight factors.

d̃p,cn , d̃n,cn Positive and negative water mismatch at node n.

f cnm Water flow in the pipe between node n and m.

FR
n Water flow inject of the water source at node n.

F̃R,c
n Change in water production at node n.

FT,c
n Net water flow of tank at node n.

Ic
ij Square of the current magnitude.

PES
i , QES

i Active and reactive power of energy storage.

PL
i , Q

L
i Active and reactive power load.

P c
ij , Q

c
ij Active and reactive power flow.

P
g
i , Q

g
i Active and reactive grid/DG power.

P̃
g,c
i , Q̃

g,c
i Changes in grid/DG power generation.

P̃
p,c
i , P̃

n,c
i Positive and negative power mismatch.

P
pump
i Power demand of pump.

Vc
i Square voltage.

V T,c
n Water tank volume at node n.

yG,c
nm Head gains imposed by the pump in the pipe.

ycn Water head of the node n.

yT,c
n Water head of the tank in the node n.

I. INTRODUCTION

P
OWER distribution networks (PDNs) must be secured

by considering contingencies and taking corrective action

(CA) and preventive action. Most power contingency research

focuses on transmission, due to longer recovery times and

potential cascading failures associated with transmission inci-

dents. PDN is often vulnerable to severe weather, and it is esti-

mated that up to 80% of all outages originate at the distribution

level [1]. Moreover, as distributed generation increases and

more microgrids are utilized, contingencies in a distribution
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system may result in unexpected load shedding. Hence, it is

necessary to study secure operations at the distribution level.

Modern-day water and power distribution systems are

closely coupled, especially in small communities such as cam-

puses of industrial parks, universities and labs, small islands,

and remote villages. Their interdependence is increasing due

to proliferation of electricity-driven water facilities (EDWFs).

During a PDN contingency, such as loss of a power line, the

water distribution system (WDS) may not function properly

due to a lack of power feeding the EDWFs. The WDS will

have to adjust its schedule, such as pump scheduling. WDS

contingencies, like a water pump failure, could also impact

EDWF operations and power consumption, affecting PDN

security. This paper develops an optimization model of an

N−1 security-constrained operation with corrective actions of

the micro energy-water nexus (SOC-MEWN) to address such

security problems.

Three control measures ensure MEWN’s secure operation.

Distribution network reconfiguration is adopted as the primary

CA, due to the radial structure of the PDN. Although line

switching may cause instability issues in transmission sys-

tems, it is reasonable to assume the grid-connected PDN has

sufficient stability during line switching. Modification of grid

power/controllable distributed generation (DG) power, as well

as changes in water production, can be viewed as a secondary

CA to control contingencies not covered by the primary CA.

Changes in water production will change power consumption

of WDS, making the PDN more resilient to address contin-

gencies. Preventive action should be considered in the event of

uncontrollable contingencies (UCs), which are contingencies

that cannot be controlled by CAs. Preventive action may

include 24-hour modification of grid power/controllable DG

power and water production.

The SOC-MEWN problem is a multi-period security-

constrained optimization problem for two complex networks,

namely PDN and WDS. Therefore, this is a large-scale, mixed-

integer, nonlinear, and nonconvex optimization problem that

is computationally intractable and difficult to solve. Network

reconfiguration should also be considered to reconnect isolated

downstream customers in a contingency situation [2] due to

PDN’s radial structure [3]. These make SOC-MEWN a more

challenging problem than security-constrained optimization

problems of a single network. Although there exists limited

research on the SOC-MEWN problem, security-constrained

optimization problems of power systems have been studied for

decades [4]±[6]. A comprehensive review of the power system

security-constrained optimization problem can be found in [4].

Even though [5] proposes N − 1 security-constrained optimal

power and gas flow by considering two different systems, they

did not account for multi-periodic operations. [6] suggests an

N −1 security-constrained optimal power flow within a radial

network, but it does not consider reconfiguration during a line

failure, so its solution method may not fit all SOC-MEWN

problems.

Many studies have proposed various methods for solving

security-constrained optimization problems. A well-known

approach involves an iterative algorithm with contingency

filtering (CF). As most of the contingencies, at least 95% [7],

are redundant for security operations in real-world systems,

only a limited subset of contingencies needs to be considered,

leading to significant reduction in computation time. The

challenge resides in identifying these contingencies. Existing

CF methods, such as ranking of CAs [8], binding contingen-

cies [9], key contingencies [10], umbrella contingencies [11],

and risk of failure of CAs [12], must solve an online optimiza-

tion problem for each contingency in every iteration, which

is time-consuming. Besides, these methods rely solely on

physics-based models and may lead to nonconvex optimization

problems that are computationally expensive [13]. We propose

a two-level physics-guided data-driven (PGDD) method to

avoid such problems and identify UCs quickly without solving

any online optimization problems.
Machine learning (ML) techniques have been widely ap-

plied in power systems, as discussed in [14]. However, there

exists limited research on using ML for CF. For contingency

classifications in a MEWN, supervised ML methods such as

decision trees (DT), support vector machines (SVM), naive

Bayes (NB), and k-nearest neighbors (KNN) can be used.

This paper evaluates performance of these supervised ML

classification methods to find the best one for determining the

UCs. The proposed PGDD model combines physics and data

to increase accuracy and prevent overfitting that occurs with

pure machine learning. We also develop dynamic and filtered

data sets by adjusting weight factors for the conventional data

set according to physical information such as environmental

data.
In this study, we develop a two-stage iterative approach,

employing both the proposed PGDD-CF method and a novel

convexification technique to solve the SOC-MEWN problem,

as shown in Fig. 1. The first stage (blue box) finds the solution

of the convexified multi-period optimal power and water flow

in the MEWN subject to the base-case operation constraints

and binding contingencies set (BCS). In the second stage (light

green box), the PGDD module classifies contingencies into

three classes and finds the set of UCs. Then, the binding

contingency filtering module (BCFM) specifies worst-case

contingency from the UCs and adds it to the BCS for the next

iteration. The updated BCS will change scheduled operation

to obtain optimal secure operation in the upcoming iteration.

Therefore, the PGDD and the BCFM will identify a new set

of UCs and worst-case contingency. Iteration stops when no

UC is found. The main contributions of this paper are:

• We have built a mathematical model for SOC-MEWN

to improve security of MEWNs by considering power

and water as one integrated system. The SOC-MEWN

guarantees N − 1 secure operation at a lower cost than

if each system had a separate secure optimal operation.

• In contrast to the existing CF method, the proposed

PGDD approach employs both data-driven and physics

to classify contingencies, making it possible to identify

UCs quickly by solving a limited number of online

optimization problems.

• A novel convexification technique, i.e., the convex hull

relaxation, is adopted to further improve computational

efficiency of PGDD-CF-based SOC-MEWN without im-

pacting analysis outcome.
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The rest of this paper is organized as follows. Section II

presents details of problem formulation. Section III introduces

the solution method, including relaxation of the non-convex

constraints and the proposed PGDD-CF approach. Section IV

presents two case studies to validate this method. Finally,

conclusions are drawn in Section V.

II. PROBLEM FORMULATION

MEWN, which refers to energy and water systems in small

communities, such as industrial parks, university campuses,

small islands, and remote villages, can be controlled by a

single entity. In these small communities, grid power meets

most power demand, and DGs meet the rest. In this section,

we develop an optimization formulation for the SOC-MEWN

problem to minimize cost of secure operation. The MEWN

model consists of two elements: the PDN and the WDS.

Besides, EDWFs in both systems serve as a link between them.

Fig. 2 illustrates a schematic of a typical MEWN [15]. WDS

is shown in blue, PDN is in green, and the connection between

them is shown with green dashed lines are EDWF, which

will vary for different small communities. We will discuss the

detailed model of this system in the following subsections.

We consider the pump as EDWF in this paper, whereas other

EDWF models can be found at [15].

A. Power Distribution Network

The well-known Distflow model is adopted to formulate

power flow in the distribution system [16], [17]. A contingency

will isolate all downstream customers of the on-contingency

line in a radial structure. This paper uses reconfiguration

as a primary CA to avoid loss of loads under contingency

conditions. Besides, we consider an acceptable change in grid

power/controllable DG power as a secondary CA in our model.

Formulations are expressed by:

P
g
i,t + PRE

i,t + PES
i,t + P̃

g,c
i,t − PL

i,t

= rijIc
ij,t − P c

ji,t +
∑

k

P c
ki,t (1a)

Q
g
i,t +QRE

i,t +QES
i,t + Q̃

g,c
i,t −QL

i,t

= xijIc
ij,t −Qc

ji,t +
∑

k

Qc
ki,t (1b)

V̂ = 2(rijP
c
ij,t + xijQ

c
ij,t)− z2ijIc

ij,t (1c)

(P c
ij,t)

2 + (Qc
ij,t)

2 = Vc
i,tIc

ij,t (1d)

(P c
ij,t)

2 + (Qc
ij,t)

2 ≤ Sij
2

(1e)

0,Vi, P
g
i , Q

g
i ≤ Ic

ij,t,Vc
i,t, P

g
i,t, Q

g
i,t ≤ Iij ,Vi, P

g
i , Q

g
i (1f)

P̃
g
i , Q̃

g
i ≤ P̃

g,c
i,t , Q̃

g,c
i,t ≤ P̃

g
i , Q̃

g
i (1g)

Define the set of contingencies and BCS = 

Apply the optimization solver to find the optimal value by considering the BCS

1St level of PGDD CF 2nd level of PGDD CF Determine the UCs

Any UCs?
BCFM finds the worst-

case contingency
Update BCSt

SOC of MEWN

Yes

No

φ

Fig. 1. Procedure to obtain the SOC-MEWN.

Water
Distribution

System

Power
Distribution

Network
Farm

Waste Water
Treatment Plant

Water Treatment
Plant Desalination Plant

Surface Water Ground or Transfer
Water

Sea Water Power Grid

Electrical
Loads BESS

Distributed
Generation
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Fig. 2. Schematic of a typical MEWN.
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{
V̂ + z2ijIc

ij,t = 2(rijP
c
ij,t + xijQ

c
ij,t), if µc

ij = 1

Ic
ij,t, P

c
ij,t, Q

c
ij,t = 0 if µc

ij = 0
(1h)

∑

(i,j)

µc
ij + 1 = NB (1i)

where V̂ = Vc
i,t − Vc

j,t. Constraints (1a) and (1b) denote the

nodal balance of active and reactive power, respectively. P
g
i,t

and Q
g
i,t include the grid power at the substation bus and

controllable DG power. Without controllable DGs, we only

have P
g
1,t and Q

g
1,t, which represent power from the grid

via PCC. The secondary CAs P̃
g,c
i,t and Q̃

g,c
i,t are permissible

changes in the active and reactive grid/controllable DG power,

respectively. Constraints (1c) to (1e) are related to Ohm’s law;

and (1f) to (1g) describe upper and lower bounds of variables.

Constraints (1h) to (1i) are related to distribution network

reconfiguration. The value of the binary variable µc
ij is 1 if

the switch status of the reserve line between bus i and bus j

is closed.

B. Water Distribution System

This section describes the WDS model which consists

of mass flow conservation law, pipe network, water tank,

pressure-reducing valve, and water pump model.

1) Mass Flow Conservation Law

WDS must conserve total mass flow rate at every node. This

law is modeled by (2a) to (2b):
∑

m

f cnm,t = FR + F̃
R,c
n,t − dn,t + F

T,c
n,t (2a)

FR
n , F

T
n , fnm ≤ FR

n,t, F
T,c
n,t , f

c
nm,t ≤ FR

n , F
T
n , fnm (2b)

where (2a) guarantees the node’s total water injection equals

its total water output.

2) Pipe Network

There are several formulas to model the water pipe network.

In this paper, we use the Darcy-Weisbach formula which is the

most theoretically accurate one [18]:

Ŷ = Rw
nm sgn(f cnm,t)(f

c
nm,t)

2 (3a){
Ŷ + y

G,c
nm,t = Rw

nm(f cnm,t)
2 if pump is ON

f cnm,t = 0 if pump is OFF
(3b)

ycn ≤ ycn,t ≤ ycn (3c)

Rw
nm × π2gD5

nm = 8fsLnm (3d)

where Ŷ = ycn,t−ycm,t+hnm. Constraints (3a) and (3b) show

the head lost along a regular pipe and a pump, respectively.

3) Water Tank

To model water tanks, we consider each tank as a node and

use the following formulas [19]:

y
T,c
n,t+1 = y

T,c
n,t +

F
T,c
n,t

AT
n

(4a)

V
T,c
n,t+1 = V

T,c
n,t + F

T,c
n,t (4b)

V
T,c
n,0 = V

T,c
n,24 (4c)

V T
n ≤ V

T,c
n,t ≤ V T

n (4d)

Constraint (4a) describes head pressure change at the node of

the water tank; (4b) shows stored water in the water tank at

each time slot; and (4c) represents the daily water input to the

tank should be equal to daily water output from it.

4) Pressure-Reducing Valve

There are several types of controllable valves that can help

operators control water flows in WDSs [20]. In this paper, we

assume the system operators use pressure-reducing valves to

control water head pressure, and the mathematical model is

given by:

−PR ≤ ycn,t − ycm,t + hnm ≤ PR (5)

C. Electricity-driven Water Facilities

We consider fixed-speed pumps as an EDWF which can be

modeled by a quadratic function of water flow [21]:

ηP
pump,c
i,t = 2.725× (a1(f

c
nm,t)

2 + a0f
c
nm,t) (6)

D. Objective Function

This subsection introduces an optimization framework for

secure operation of MEWN based on the mathematical model.

The objective of this problem is to minimize total energy cost

of meeting electricity and water demands.

Cost =
∑

t

(
ρGt P

g
1,t +

∑

i∈B\Bs

ρ1,iP
g
i,t + ρ2,iP

g
i,t

2

)
(7)

where the first term relates to grid power costs, and second

relates to controllable DGs power costs. ρGt is obtained by

solving economic dispatch. The SOC-MEWN model is:

min (7)

s.t. (1)±(6). (8)

We have proposed the required energy is supplied by the

power grid, controllable DGs, and renewable energy resources.

III. SOLUTION METHOD

This section introduces the proposed solution method for

solving the SOC-MEWN problem. First, we discuss convex

relaxation for the nonconvex MEWN model. Then, we explain

the proposed PGDD-CF method for reducing computational

burden of the SOC-MEWN problem.

A. Convex-Hull Relaxation of Nonlinear Components

In this subsection, we convexify formulation of the MEWN

to mitigate computational burden. We relax constraint (1d) by

using the convex hull relaxation model represented in [22]:

(P c
ij,t)

2 + (Qc
ij,t)

2 ≤ Vc
i,tIc

ij,t (9a)

ViViIc
ij,t + Sij

2Vc
i,t ≤ Sij

2
(Vi + Vi) (9b)

The big-M technique is applied to eliminate the logic

proposition. Constraint (1h) is replaced by (10a) to (10b), and

(10d) to (10f) show the convex model of (3b).

V̂ + z2ijIc
ij,t − 2(rijP

c
ij,t + xijQ

c
ij,t) ≥M(µc

ij − 1) (10a)

V̂ + z2ijIc
ij,t − 2(rijP

c
ij,t + xijQ

c
ij,t) ≤M(1− µc

ij) (10b)
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0 ≤ P c
ij,t, Q

c
ij,t, Ic

ij,t ≤ µc
ijPij , µ

c
ijQij , µ

c
ijIij (10c)

Ŷ + y
G,c
nm,t −Rw

nm(f cnm,t)
2 ≥M(αp

nm,t − 1) (10d)

Ŷ + y
G,c
nm,t −Rw

nmfnmf
c
nm,t ≤M(1− α

p
nm,t) (10e)

0 ≤ fnm ≤ α
p
nm,tfnm (10f)

Constraint (11) shows a quasi-convex hull of (3a) [23]:

Ŷ





≤ (
√
8− 2)Rw

nmfnmf
c
mn,t + (3−

√
8)Rw

nmf
2

nm

≥ (
√
8− 2)Rw

nmfnmf
c
nm,t − (3−

√
8)Rw

nmf
2

nm

≥ 2Rw
nmfnmf

c
nm,t −Rw

nmf
2

nm

≤ 2Rw
nmfnmf

c
nm,t +Rw

nmf
2

nm

(11)

A quadratic equation like (6) can be relaxed as the intersec-

tion of a concave inequality and a convex inequality. Equation

(12) represents the convex model of (6).

ηP
pump
i,t ≥ 2.725× (a1(fnm,t)

2 + a0fnm,t) (12a)

ηP
pump
i,t ≤ 2.725× (a1fnm + a0)fnm,t (12b)

B. Physic-Guided Data-Driven Contingency Filtering

This section introduces the proposed PGDD-CF method

which is used to find worst-case contingencies. Most con-

tingencies are redundant for security operations in real-world

systems, so only a subset of contingencies must be taken into

account. As this set of contingencies covers approximately the

entire contingencies, optimal value for the base-case operation

subject to this subset of contingencies will also be the optimal

value for the original problem. To determine this subset of

contingencies, we have developed a hybrid physics and data-

driven CF method, consisting of two modules. Historical

contingencies resulting from offline optimization problems are

trained using the PGDD approach. Contingencies are classified

into three categories based on the trained hypothesis function:

low violation contingencies (LVCs), medium violation contin-

gencies (MVCs), and high violation contingencies (HVCs).

Primary CAs can eliminate violations of LVCs. While the

secondary CA can address some MVCs, other MVCs may

need preventive action to avoid any violation. By checking

feasibility of MVCs with (1)±(6), UCs can be found. A feasi-

bility check for LVCs is not required because LVC violation

is low and can be simply mitigated by primary CAs. A

feasibility check is also unnecessary for HVCs as they cannot

be addressed through corrective and preventative actions, and

hardening is necessary to avoid this type of contingency. In

the second module, the highest violation in the group of

UCs is identified as the worst-case contingency. The worst-

case contingency is added to the BCS, and the next iteration

begins. The procedure will continue until there are no UCs.

Algorithm 1 illustrates the proposed CF method. The following

subsections provide more details about the proposed hybrid

physics and data-driven CF method.

1) Physic-guided data-driven module

We propose a two-level learning approach involving data-

driven and physics-based methods to find UCs. An appropriate

training data set is required for any learning approach. How-

ever, historical measurements of optimal values of power gen-

eration and water production under different power and water

Algorithm 1: ML-Enhanced Online Mixed-Integer Opti-
mization

1 Define the initial binding contingencies set (BCS = ∅);
2 Apply the optimization solver to obtain the SOC-MEWN

and find the optimal value of P
g∗

i,t , Q
g∗

i,t, F
R∗

n,t and αP∗

nm,t

subject to the network constraints in the base-case
operation and BCS

3 Build the dynamic data set based on the physical information
4 PGDD predicts the network configuration utilizing input data

and the first-level hypothesis functions
5 Build the filtered data set
6 Define the initial sets (LVC = ∅, MVC = ∅, HVC = ∅);
7 PGDD categorizes all contingencies as HVC, MVC, and

LVC by applying the hybrid physics and data-driven
method;

8 Check the feasibility of MVC set by using (1)±(6).
9 if there are any UCs in the set of MVCs then

10 BCFM finds the worst-case contingency among UCs by
using (1c), (1e)±(1g), (2b), (3c), (4), (5), (9)±(12), and
(25)

11 BCS← BCS+ worst-case contingency
12 goto step 2
13 else
14 Optimal solution
15 end

demands in real-world applications are generally not available.

Moreover, data on which contingencies lead to system failure

and which one is controllable in terms of power demand,

water demand, power generation, and water production may

not be available either. Therefore, we utilize historical 24-hour

load profiles and solve related offline optimization problems

to build the training static data set. The proposed method

may need more iterations to find UCs if the training data set

lacks sufficient reliability. Therefore, there should be sufficient

offline optimization problems to obtain a reliable training data

set with high accuracy in the hypothesis function. In the future,

such data sets can be obtained by data acquisition systems

without solving any offline optimization problems. To find

violation of each contingency, we add new variables P̃
p,c
i,t ,

P̃
n,c
i,t and d̃

p,c
n,t, d̃

n,c
n,t to (1a), (1b), and (2a), and write them as

(13), (14), and (15), respectively.

P
g
i,t − PL

i,t + P̃
p,c
i,t − P̃

n,c
i,t = rijIc

ij,t − P c
ji,t +

∑

k

P c
ki,t

(13)

Q
g
i,t −QL

i,t + Q̃
p,c
i,t − Q̃

n,c
i,t = xijIc

ij,t −Qc
ji,t +

∑

k

Qc
ki,t

(14)
∑

l

f cnl,t = FR
n,t − dn,t + d̃

p,c
n,t − d̃

n,c
n,t + F

T,c
n,t (15)

The objective function of the optimization problem is to

minimize violation of each contingency [6], [12]:

γc =
∑

i,n,t

(
ωi

P̃
p,c
i,t + P̃

n,c
i,t

P l
+ ωn

d̃
p,c
n,t + d̃

n,c
n,t

d

)
(16)

Some loads, such as hospitals, have higher importance than

other loads, meeting which is a top priority. We can attribute

a weight to each bus and node to account for importance of

loads. Constraints of this objective function are (1c), (1e)±(1g),
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(2b), (3c), (4), (5), and (9)±(15). Now, the training static data

set is created as follows:

ΓS =
{
(κS1 , ψ

S
1 ), (κ

S
2 , ψ

S
2 ), · · · , (κSNds

, ψS
Nds

)
}

(17)

where ψS
k = {γSk , µS

k } represents output including the vi-

olation and network configuration, and κSk = {P l,k
i,t , Q

l,k
i,t ,

dkn,t, P
g∗,k
i,t , Q

g∗,k
i,t , F

R∗,k
n,t , α

P∗,k
nm,t, c

k} shows input data, where

P
g∗,k
i,t , Q

g∗,k
i,t , F

R∗,k
n,t and α

P∗,k
nm,t are optimal values of decision

variables for kth data. To make the training data set more

efficient, we modify historical data with physical information

to create a dynamic data set. On days with similar environ-

mental data, such as temperature, wind speed, and weather,

the power system may operate similarly. For example, the

allowed power flow will be lower on a hot day with low wind

speed than on a cold day with high wind speed. In addition,

on sunny days, there is a significant potential for generating

power from photovoltaic cells. In sunny weather, we can use

this power to mitigate some contingencies and decrease value

of the violation, but in cloudy weather, we are limited in our

options. Therefore, the physical situation, such as wind speed,

temperature, and weather conditions, can change the violation

of one specific contingency. We propose building a dynamic

data set by considering physics information. A specific weather

condition is given to the weighting function to account for

wind speed (low, moderate, and high), temperature (hot, mild,

and cold), and weather conditions (sunny, cloudy, and snowy).

The dynamic data set will be created by weighting the static

data set.

ΓD =
{
ωPh
1 (κS1 , ψ

S
1 ), ω

Ph
2 (κS2 , ψ

S
2 ), · · · , ωPh

Nds
(κSNds

, ψS
Nds

)
}

=
{(
κDk , ψ

D
k

)}
, k = 1, · · · , Nds (18a)

ωPh
k = ω

temp
k + ωwind

k + ωweather
k (18b)

where ω
temp
k , ωwind

k , and ωweather
k can be three different values

based on physical information. For example, there are three

categories of wind speed: high wind speed, moderate wind

speed, and low wind speed.

ωwind
k =





ϑwind
1 , if same class,

ϑwind
2 , if adjacent classes,

ϑwind
3 , if non-adjacent classes

(19)

where, for a specific case, exact values of ϑwind
1 , ϑwind

2 ,

and ϑwind
3 can be determined by experience of the system

operators. ωwind
k is equal to ϑwind

1 if the wind speed class

of inputted physical information and kth data point match. If

their classes are adjacent, it will be ϑwind
2 , and if they are not

adjacent, it will be ϑwind
3 . The situation is the same for ω

temp
k

and ωweather
k . Accordingly, the maximum value of ωPh

k occurs

when classes of wind speed, temperature, and weather are

the same as classes of physical information. Using supervised

ML, we have explored the relationship between input data and

output data:

Ffirstlevel(κ
D
k ) = ψD

k , ∀k ∈ {1, 2, · · · , Nds}, (20)

where ψD
k = {γDk , µD

k } shows output data, and κDk = κSk
represents input data in the dynamic training data set. The

first level of the PGDD-CF method will map input data to the

network configuration (µFirst) and violation (γFirst). A filter

function is applied following the first level, which uses the

obtained configuration of the network and dynamic data set

to produce a filtered data set. This function filters data with

similar configuration to provide the filtered data set:

ΓF =
{
ωF
1 (κ

S
1 , ψ

S
1 ), ω

F
2 (κ

S
2 , ψ

S
2 ), · · · , ωF

Nds
(κSNds

, ψS
Nds

)
}

=
{
(κFk , ψ

F
k )
}
, k = 1, · · · , Nds (21a)

ωF
k =

{
0, if µD

k ̸= µFirst

1, if µD
k = µFirst

(21b)

where ψF
k = γFk and κFk = κSk represent output and input data

of the filtered training data set, respectively. In the second

level, the hypothesis function maps input data to the second

level violation (γSecond) based on the filtered data set.

Fsecondlevel(κ
F
k ) = ψF

k . (22)

When violations of both levels are found, the final violation

is calculated by weighting the predicted violations:

γPh = ωFirst × γFirst + ωSecond × γSecond (23)

A high value of ωFirst encourages the PGDD to learn

from empirical knowledge, while a high value of ωSecond

encourages the PGDD to respect physical knowledge. The

architecture of the PGDD method, which is related to steps

3 to 8 of Algorithm 1, is illustrated in Fig. 3. In the first level,

the dynamic data set guides the hypothesis function to map

input data to network configuration and first-level violation.

The second level uses network configuration obtained in the

first level to refine the dynamic data set and create the filtered

data set. The filtered data set guides the hypothesis function

of the second level and maps input data to the second-

level violation. Lastly, first- and second-level violations are

combined to determine the final violation for contingency

classification. The PGDD classifies contingencies into three

categories based on their violations:

Contingency Class =





LVC, if γP ≤ ξLM

MVC, if ξLM ≤ γP ≤ ξMH

HVC, if ξMH ≤ γP
(24)

The flowchart in Fig. 4 illustrates the logic of contingency

classification based on the proposed method. The first level is

shown in red, second level is shown in blue, and input data is

shown in green. The first five steps of the proposed method,

which relate to the first level, consider the optimal values

of decision variables of the master problem to obtain first-

level violation and network configuration in step 4. Using the

dynamic data set created in step 2 and network configuration,

step 6 constructs the filtered data set. Step 8 finds the second

violation based on input data. Finally, the contingency class is

determined after considering both violations in step 10.

We apply DT, SVM, NB, and KNN to train ΓD and ΓF,

and examine their accuracy to find the most efficient one

for determining the UCs. The PGDD evaluates feasibility

using the optimal solution provided in the second step of the

algorithm for different contingencies following contingency

classification. The LVC can be addressed with primary CA so

the optimal solution of the second step is feasible for any LVC.
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Fig. 4. Logic explanation for contingency classification based on the proposed method

HVCs cannot be controlled with preventive and corrective

action, so hardening is proposed to prevent occurrence of this

type of contingencies. Thus, to determine UCs, only MVCs

need to be checked. Optimal values of the second step in

Algorithm 1 are used to check feasibility of constraints (1)±(6).

As long as optimal values satisfy all constraints, the operator

can eliminate the violation by applying CAs. Consequently,

the PGDD first classifies contingencies into three classes and

then finds the UCs among MVCs.

2) Binding Contingency Filtering Module

BCFM solves the optimization problem for all UCs and

finds the worst-case contingency which will be added to the

master problem. This optimization problem includes violation,

and CAs at the same time, where (1a), (1b), and (2a) are

replaced by (25a), (25b), and (25c), respectively.

P
g
i,t + P̃

g,c
i,t − PL

i,t + P̃
p,c
i,t − P̃

n,c
i,t

= rijIc
ij,t − P c

ji,t +
∑

k

P c
ki,t (25a)

Q
g
i,t + Q̃

g,c
i,t −QL

i,t + Q̃
p,c
i,t − Q̃

n,c
i,t

= xijIc
ij,t −Qc

ji,t +
∑

k

Qc
ki,t (25b)

∑

m

f cnm,t = FR
n,t + F̃

R,c
n,t − dn,t + d̃

p,c
n,t − d̃

n,c
n,t + F

T,c
n,t (25c)

The objective function of BCFM is (16), and constraints

are (1c), (1e)±(1g), (2b), (3c), (4), (5), (9)±(12), and (25). The

worst-case contingency is the contingency with the highest

violation. This contingency is added to the BCS, and then the

algorithm returns to its second step to start the next iteration.

Algorithm 1 reaches the optimal solution when there is no UC.
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IV. CASE STUDIES

Based upon the different characterizations of the PDN and

WDS in different areas [15], [24], we demonstrate robustness

of the proposed method by examining it on two test systems.

The first test case is the modified IEEE 13-bus system with

8-node EPANET WDS which represents the MEWN of small

communities, such as industrial parks. The second one is the

IEEE 33-bus system with 13-node Otsfeld WDS, which is

a bigger system and represents the MEWN of city scale. A

large-scale energy and water system operates as two separate

entities, and conflicts appear between them. Consequently,

our method, even though mathematically applicable to larger

systems, cannot be used to get optimal operation for both

systems due to existing conflicts. A 24-hour nodal price and a

load curve of power demand [25], [26], excluding water pumps

demand, are used to find the solution to the SOC-MEWN

problem. Fig. 5(a) shows nodal price and two typical load

curves for two different case studies. Training data sets are

built based on load curves from PJM [26] shown in Fig. 5(b).

For each case study, we have used these load curves and solved

related offline optimization problems to build the training

data set. The same priority is given to all buses and nodes

by applying equal weight factors. Since real environmental

data are not available, we did not consider them and related

weight factors are considered the same. The training data set

is used to fit parameters of four different supervised methods,

namely DT, KNN, SVM, and NB. A test data set related to the

first case study with 96 contingencies is employed for testing

these supervised learning methods for the first level of our

PGDD method. Fig. 6 and Table I show accuracy of these

methods for contingency classification at the first level. The

DT method has a 95.83% accuracy rate which is higher than

other methods, and therefore it is chosen as the supervised

learning approach for contingency classification. In case of an

inaccurate hypothesis function, more iterations will be required

to reach all UCs. The proposed method guarantees MEWN’s

security even when it is highly computational. Another test

data set including 256 contingencies from the second case

study is used to compare the pure ML classification with our

proposed PGDD method. Fig. 7 illustrates the PGDD method

improves classification accuracy from 91.8% to 99.2%. There

are 21 wrong predictions in the first level (Fig. 7(a)). In

TABLE I
ACCURACY OF DIFFERENT SUPERVISED LEARNING METHODS IN CF

Supervised learning method
Wrong Prediction Accuracy

(%)LVC MVC
DT 1 3 95.83

KNN 21 ± 78.12
SVM 12 9 78.12
NB 77 ± 19.79

the second level, wrong predictions are reduced to two after

adding network configuration and using hybrid physics and

data-driven methods (Fig. 7(b)).
We examine the case studies, explain numerical results (all

simulations are run on Intel (R) Core (TM) i7-9700 CPU

3 GHz with 16 GB RAM), and compare our CF method to

other existing CF methods in the following subsections.

A. IEEE 13-bus ADN with 8-node EPANET WDS

We have executed the proposed method on a MEWN, as

shown in Fig. 8, which consists of a modified IEEE 13-

bus system with an 8-node EPANET water system [27] that

can be used for a MEWN in a small community such as

industrial parks. The PGDD module needs optimal values

of normal operation to classify contingencies and determine

the UCs. According to the PGDD, 12 contingencies fit into

three categories: 0 HVC, 1 MVC, and 11 LVCs. The only

MVC can not be addressed with the CAs and needs preventive

action. Fig. 9 shows results of PGDD for a single contingency

in the first case study. For the next iteration, contingency 3

should be added to the master problem as worst-case contin-

gency. The proposed method achieves SOC-MEWN after two

iterations when contingency 3 is added to the BCS. Fig. 10

represents optimal values of grid/controllable DG power and

water production for two iterations. MEWN secure operation

costs $1751.4 per day, whereas independent secure operations

of WDS and PDN would cost $1983.8 per day.

B. IEEE 33-bus ADN with the 13-node Otsfeld WDS

The IEEE 33-bus system and the 13-node Otsfeld regional

WDS are considered for the second case study. The topology

of the IEEE-33 bus distribution test system and the Otsfeld

WDS are shown in Fig. 11. The IEEE 33-bus system can be

used for an area of a city [28]. On the other hand, Wim-

mera Mallee Pipeline and Northern Mallee Pipeline are real
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Fig. 5. Load curve and prices. (a) Different load curves from PJM to build the data set. (b) Load curves. ±.±1st case study, ± ± 2nd case study, ± hourly
price.
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Fig. 7. Comparison between pure ML classification and PGDD classification. (a) Pure ML classification. (b) PGDD classification.

WDSs with Otsfeld network characteristics [29]. Therefore,

these two systems can be considered for the same area.

Three pumps acting as connectors between the WDS and

the PDN are connected to buses 18, 25, and 33. The WDS

consists of three water resources with three pump stations,

two pressure-reducing valves (on pipes 6 and 10), and one

water tank. Training data set ΓD is built based on load curves

shown in Fig. 5(b) for 32 contingencies. Optimal values

for grid/controllable DG power and water production under

normal operations are entered into the PGDD-CF method

to find the worst-case contingency. The PGDD divides 32

contingencies into three categories: 5 HVCs, 3 MVCs, and

24 LVCs. Three MVCs are UC and need preventive action to

address. PGDD results for a single contingency in the second

case study are shown in Fig. 12. We suggest hardening lines 1,

2, 3, 4, and 26 to make sure HVC contingencies do not occur.

BCFM finds contingency 5 as the worst-case contingency and

adds it to the BCS to be considered in the master problem.

There are no more UCs after applying contingency 5 to

the master problem in the second iteration. Therefore, the
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proposed method achieves SOC-MEWN after two iterations.

Fig. 13 shows optimal values of grid/controllable DG power

and water production for the first and second iterations. The

secure operation cost will be decreased from $886.1 per day

to $785.7 per day when the water and power systems work as

a single integrated system.

C. Comparing with Other Contingency Filtering Methods

This section compares the PGDD-CF method with other

existing CF methods. Existing CF methods, such as key
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Fig. 11. Second test bed. (a) IEEE 33-bus system. (b) Otsfeld regional WDS.
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Fig. 12. 2
nd case study. (a) Network configurations. (b) Contingencies class.

contingencies, require online optimization problems to be

solved separately for each contingency in each iteration.

The process is time-consuming, even when parallelized. The

PGDD approach reduces the number of online optimization

problems in the CF process. Data sets are built via offline
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Fig. 13. The optimal value of power generation (red) and water production
(blue) for the second case study: ± ± 1

st iteration, ± o ±2nd iteration.

optimization, then DT parameters are fitted to the data to

classify contingencies without requiring online optimization.

A limited number of online optimization problems are then

solved to find binding contingencies. Thus, each iteration is

faster, resulting in quicker reach to the optimal solution. We

apply the existing CF approach to our case studies to compare

them with our proposed CF method, as shown in Table II. In

the first case study, CF takes 10.52 seconds using the non-

parallel manner and 3.202 seconds using the parallel manner.

The proposed PGDD-CF method reduces this time to less

than one second. Results of the second case study indicate CF

time for the non-parallel manner, the parallel manner, and our

method are 171.85 seconds, 15.43 seconds, and 1.12 seconds,

respectively. As a result, our method speeds up the CF process.

TABLE II
SOLVER TIME FOR THE PGDD METHOD AND OTHER METHODS

Description Case Study Case 1 Case 2

First Iteration Exiting Method
Non-Parallel 5.441 90.12
Parallel 1.615 8.26

(s) Our Method 0.689 0.746

Second Iteration Exiting Method
Non-Parallel 5.075 81.73
Parallel 1.578 7.17

(s) Our Method 0.302 0.371

Total Exiting Method
Non-Parallel 10.52 171.85
Parallel 3.202 15.43

(s) Our Method 0.991 1.117

V. CONCLUSION

We have developed a two-stage iterative algorithm, employ-

ing a hybrid physics and data-driven CF method, as well

as the convexification technique to solve the SOC-MEWN

problem. The CF method consists of two modules. The first

module divides contingencies into three classes by applying

PGDD to dynamic and filtered data sets resulting from offline

optimization problems. Four supervised learning methods are

examined, and DT is chosen as the most effective method for

contingency classification. Once the contingencies have been

classified, a feasibility check is conducted to identify UCs.

The second module determines which UC is the worst-case

contingency to add to the BCS for the next iteration. Once CAs

can lead all contingencies to a feasible solution, iteration will

end. Two case studies are used to validate effectiveness of our

method. A comparison between our method and other existing

CF methods shows our approach is faster than other methods.

For two case studies, we achieve UCs in 0.99 seconds and

1.12 seconds, respectively. In contrast, it takes 10.52 seconds

and 171.85 seconds for other existing CF methods.
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