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Hybrid Physics and Data-driven Contingency
Filtering for Security Operation of Micro
Energy-water Nexus

Mostafa Goodarzi and Qifeng Li, Senior Member IEEE

Abstract—This paper investigates a novel engineering problem,
i.e., security-constrained multi-period operation of micro energy-
water nexuses. This problem is computationally challenging be-
cause of its high nonlinearity, nonconvexity, and large dimension.
We propose a two-stage iterative algorithm employing a hybrid
physics and data-driven contingency filtering (CF) method and
convexification to solve it. The convexified master problem is
solved in the first stage by considering the base case operation and
binding contingencies set (BCS). The second stage updates BCS
using physics-based data-driven methods, which include dynamic
and filtered data sets. This method is faster than existing CF
methods because it relies on offline optimization problems and
contains a limited number of online optimization problems. We
validate effectiveness of the proposed method using two different
case studies: the IEEE 13-bus power system with the EPANET
8-node water system and the IEEE 33-bus power system with
the Otsfeld 13-node water system.

Index Terms—Contingency filtering, micro energy-water
nexus, multi-period secure operation, optimal power and water
flow, physics-guided data-driven.

NOMENCLATURE
A. Parameters
n Constant efficiency of the pump.
r Data sets.
13 Boundary values for contingency classification.
p Cost constants for power generators.
oS Electricity price.
) Weight factor for physical information.
AT Water tank area at node n.
¢, N Contingency number, total number of buses.
Dy, Ly Diameter and length of pipe.
At Water demand of node n.
fs Darcy—Weisbach friction factor for water pipe.
g Gravitational acceleration.
hom Elevation difference among of node n and m.
Ngg Number of data in the data set.
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RE QRE Active/reactive power output of renewable en-
ergy.

PR Maximum reduced pressure value.
T4 Resistance of the line between bus ¢ and bus j.
Ry Head loss coefficient of pipe nm.
Sij Apparent power of the line between bus ¢ and j.
Tij Reactance of the line between bus ¢ and bus j.
Zij Impedance of the line between bus 4 and bus j.

B. Variables

ab Binary variable shows the pump status.

15 Binary variable of the network reconfiguration.

¢ Violation value of contingency c.

w Weight factors.

JE;”, J;;vc Positive and negative water mismatch at node n.
o Water flow in the pipe between node n and m.

FR Water flow inject of the water source at node n.
~,1}7C Change in water production at node n.

Fle Net water flow of tank at node n.

T;; Square of the current magnitude.

PFS QFS  Active and reactive power of energy storage.

PL QY Active and reactive power load.

Pfj, fj Active and reactive power flow.

PE.Q% Active and reactive grid/DG power.

P&°.Q%° Changes in grid/DG power generation.

PP¢ P™° Positive and negative power mismatch.

preme Power demand of pump.

Ve Square voltage.

V T.e Water tank volume at node n.

ySoc Head gains imposed by the pump in the pipe.

ye Water head of the node n.

yLe Water head of the tank in the node n.

I. INTRODUCTION

OWER distribution networks (PDNs) must be secured

by considering contingencies and taking corrective action
(CA) and preventive action. Most power contingency research
focuses on transmission, due to longer recovery times and
potential cascading failures associated with transmission inci-
dents. PDN is often vulnerable to severe weather, and it is esti-
mated that up to 80% of all outages originate at the distribution
level [1]. Moreover, as distributed generation increases and
more microgrids are utilized, contingencies in a distribution
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system may result in unexpected load shedding. Hence, it is
necessary to study secure operations at the distribution level.

Modern-day water and power distribution systems are
closely coupled, especially in small communities such as cam-
puses of industrial parks, universities and labs, small islands,
and remote villages. Their interdependence is increasing due
to proliferation of electricity-driven water facilities (EDWFs).
During a PDN contingency, such as loss of a power line, the
water distribution system (WDS) may not function properly
due to a lack of power feeding the EDWFs. The WDS will
have to adjust its schedule, such as pump scheduling. WDS
contingencies, like a water pump failure, could also impact
EDWF operations and power consumption, affecting PDN
security. This paper develops an optimization model of an
N —1 security-constrained operation with corrective actions of
the micro energy-water nexus (SOC-MEWN) to address such
security problems.

Three control measures ensure MEWN’s secure operation.
Distribution network reconfiguration is adopted as the primary
CA, due to the radial structure of the PDN. Although line
switching may cause instability issues in transmission sys-
tems, it is reasonable to assume the grid-connected PDN has
sufficient stability during line switching. Modification of grid
power/controllable distributed generation (DG) power, as well
as changes in water production, can be viewed as a secondary
CA to control contingencies not covered by the primary CA.
Changes in water production will change power consumption
of WDS, making the PDN more resilient to address contin-
gencies. Preventive action should be considered in the event of
uncontrollable contingencies (UCs), which are contingencies
that cannot be controlled by CAs. Preventive action may
include 24-hour modification of grid power/controllable DG
power and water production.

The SOC-MEWN problem is a multi-period security-
constrained optimization problem for two complex networks,
namely PDN and WDS. Therefore, this is a large-scale, mixed-
integer, nonlinear, and nonconvex optimization problem that
is computationally intractable and difficult to solve. Network
reconfiguration should also be considered to reconnect isolated
downstream customers in a contingency situation [2] due to
PDN’s radial structure [3]. These make SOC-MEWN a more
challenging problem than security-constrained optimization
problems of a single network. Although there exists limited
research on the SOC-MEWN problem, security-constrained
optimization problems of power systems have been studied for
decades [4]-[6]. A comprehensive review of the power system
security-constrained optimization problem can be found in [4].
Even though [5] proposes N — 1 security-constrained optimal
power and gas flow by considering two different systems, they
did not account for multi-periodic operations. [6] suggests an
N —1 security-constrained optimal power flow within a radial
network, but it does not consider reconfiguration during a line
failure, so its solution method may not fit all SOC-MEWN
problems.

Many studies have proposed various methods for solving
security-constrained optimization problems. A well-known
approach involves an iterative algorithm with contingency
filtering (CF). As most of the contingencies, at least 95% [7],
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are redundant for security operations in real-world systems,
only a limited subset of contingencies needs to be considered,
leading to significant reduction in computation time. The
challenge resides in identifying these contingencies. Existing
CF methods, such as ranking of CAs [8], binding contingen-
cies [9], key contingencies [10], umbrella contingencies [11],
and risk of failure of CAs [12], must solve an online optimiza-
tion problem for each contingency in every iteration, which
is time-consuming. Besides, these methods rely solely on
physics-based models and may lead to nonconvex optimization
problems that are computationally expensive [13]. We propose
a two-level physics-guided data-driven (PGDD) method to
avoid such problems and identify UCs quickly without solving
any online optimization problems.

Machine learning (ML) techniques have been widely ap-
plied in power systems, as discussed in [14]. However, there
exists limited research on using ML for CF. For contingency
classifications in a MEWN, supervised ML methods such as
decision trees (DT), support vector machines (SVM), naive
Bayes (NB), and k-nearest neighbors (KNN) can be used.
This paper evaluates performance of these supervised ML
classification methods to find the best one for determining the
UCs. The proposed PGDD model combines physics and data
to increase accuracy and prevent overfitting that occurs with
pure machine learning. We also develop dynamic and filtered
data sets by adjusting weight factors for the conventional data
set according to physical information such as environmental
data.

In this study, we develop a two-stage iterative approach,
employing both the proposed PGDD-CF method and a novel
convexification technique to solve the SOC-MEWN problem,
as shown in Fig. 1. The first stage (blue box) finds the solution
of the convexified multi-period optimal power and water flow
in the MEWN subject to the base-case operation constraints
and binding contingencies set (BCS). In the second stage (light
green box), the PGDD module classifies contingencies into
three classes and finds the set of UCs. Then, the binding
contingency filtering module (BCFM) specifies worst-case
contingency from the UCs and adds it to the BCS for the next
iteration. The updated BCS will change scheduled operation
to obtain optimal secure operation in the upcoming iteration.
Therefore, the PGDD and the BCFM will identify a new set
of UCs and worst-case contingency. Iteration stops when no
UC is found. The main contributions of this paper are:

e We have built a mathematical model for SOC-MEWN
to improve security of MEWNs by considering power
and water as one integrated system. The SOC-MEWN
guarantees N — 1 secure operation at a lower cost than
if each system had a separate secure optimal operation.

e In contrast to the existing CF method, the proposed
PGDD approach employs both data-driven and physics
to classify contingencies, making it possible to identify
UCs quickly by solving a limited number of online
optimization problems.

¢ A novel convexification technique, i.e., the convex hull
relaxation, is adopted to further improve computational
efficiency of PGDD-CF-based SOC-MEWN without im-
pacting analysis outcome.
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The rest of this paper is organized as follows. Section II
presents details of problem formulation. Section III introduces
the solution method, including relaxation of the non-convex
constraints and the proposed PGDD-CF approach. Section IV
presents two case studies to validate this method. Finally,
conclusions are drawn in Section V.

II. PROBLEM FORMULATION

MEWN, which refers to energy and water systems in small
communities, such as industrial parks, university campuses,
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A. Power Distribution Network

The well-known Distflow model is adopted to formulate
power flow in the distribution system [16], [17]. A contingency
will isolate all downstream customers of the on-contingency
line in a radial structure. This paper uses reconfiguration
as a primary CA to avoid loss of loads under contingency
conditions. Besides, we consider an acceptable change in grid
power/controllable DG power as a secondary CA in our model.
Formulations are expressed by:

small islands, and remote villages, can be controlled by a PE+ PRE 4+ PP + I—:’ff P,
single entity. In these small communities, grid power meets c c
. ) =ri;L, — P+ PG la
most power demand, and DGs meet the rest. In this section, gt Tt ; ki ¢ (1)
we develop an optimization formulation for the SOC-MEWN & L ORE | OFS | OBc L
problem to minimize cost of secure operation. The MEWN it it bt & bt
model consists of two elements: the PDN and the WDS. =L — Qe + Z Qi (1b)
Besides, EDWFs in both systems serve as a link between them.
Flg. 2 1lhllstrates a schejm-atlc of a typical MEWN. [15]. WDS V=2(ri; P, + xi; Q” L) — ZUIfJ . (1c)
is shown in blue, PDN is in green, and the connection between (P¢ )2 QS ) _ e IC (1d)
them is shown with green dashed lines are EDWF, which ig:t CAZEE ij;t
will vary for different small communities. We will discuss the ( Z-cj’t)2 +(QF, )2 < S” (1e)
detailed model of this system in the following subsections. 7 Y. pg e
. y . . g 0 V“Pg Qg <7z zg tr i,tv t?ta = ljvv 1g (lf)
We consider the pump as EDWF in this paper, whereas other
EDWF models can be found at [15]. P_ig , Q_f < Pf;tc, i’t < Pig, Q‘f (1g)
Define the set of contingencies and BCS = ¢
Fig. 1. Procedure to obtain the SOC-MEWN.
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Fig. 2. Schematic of a typical MEWN.
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V23T, = (”J'P{}:t Q) G =10
L]t> ]t’QL]t lflu'ch -
> uf+1=Ng (1i)

where V = Vi — VC Constraints (1a) and (1b) denote the
nodal balance of act1ve and reactive power, respectively. P?,
and Qf’)t include the grid power at the substation bus and
controllable DG power. Without controllable DGs, we only
have Plt and Q% +» Which represent power from the grid
via PCC. The secondary CAs Pg ¢ and “ are permissible
changes in the active and reactive grld/controllable DG power,
respectively. Constraints (1c) to (1le) are related to Ohm’s law;
and (1f) to (1g) describe upper and lower bounds of variables.
Constraints (1h) to (1i) are related to distribution network
reconfiguration. The value of the binary variable yf; is 1 if
the switch status of the reserve line between bus ¢ and bus j
is closed.

B. Water Distribution System

This section describes the WDS model which consists
of mass flow conservation law, pipe network, water tank,
pressure-reducing valve, and water pump model.
1) Mass Flow Conservation Law

WDS must conserve total mass flow rate at every node. This
law is modeled by (2a) to (2b):

S fomi=FR 4 EY —dny+ Fyf (2a)
FR Y fum < FRGFLE f2 o S FRFY, fam  (2)

where (2a) guarantees the node’s total water injection equals
its total water output.
2) Pipe Network

There are several formulas to model the water pipe network.
In this paper, we use the Darcy-Weisbach formula which is the
most theoretically accurate one [18]:

Y = Ry sen( ) (i)’ (3a)

{ Y + ynm =Ry 5m7t)2 if pump is ON 3b)
nmt =0 if pump is OFF

y'rCL S Yne SYn (30)

Ry X7 gD = 8fsLnm (3d)

where Y = Yt — Ym,t T hnm. Constraints (3a) and (3b) show
the head lost along a regular pipe and a pump, respectively.
3) Water Tank

To model water tanks, we consider each tank as a node and
use the following formulas [19]:

T,c
Yniir = Yni (4a)
Vo =Vt B (4b)
Voo =Vl5 (4¢)
V<V e<vr (4d)

1823

Constraint (4a) describes head pressure change at the node of
the water tank; (4b) shows stored water in the water tank at
each time slot; and (4c) represents the daily water input to the
tank should be equal to daily water output from it.
4) Pressure-Reducing Valve

There are several types of controllable valves that can help
operators control water flows in WDSs [20]. In this paper, we
assume the system operators use pressure-reducing valves to
control water head pressure, and the mathematical model is
given by:

C. Electricity-driven Water Facilities

We consider fixed-speed pumps as an EDWF which can be
modeled by a quadratic function of water flow [21]:

1(f7?,m,t)2 +a0fr(;m,t) (6)

PP = 2,725 x (a

D. Objective Function

This subsection introduces an optimization framework for
secure operation of MEWN based on the mathematical model.
The objective of this problem is to minimize total energy cost
of meeting electricity and water demands.

Cost=Y <pSPﬁt + > puiPE + pg,iP,%'f> (7)

t i€B\ B,
where the first term relates to grid power costs, and second
relates to controllable DGs power costs. p& is obtained by
solving economic dispatch. The SOC-MEWN model is:
min (7)
s.t.  (1)—(6). (®)

We have proposed the required energy is supplied by the
power grid, controllable DGs, and renewable energy resources.

III. SOLUTION METHOD

This section introduces the proposed solution method for
solving the SOC-MEWN problem. First, we discuss convex
relaxation for the nonconvex MEWN model. Then, we explain
the proposed PGDD-CF method for reducing computational
burden of the SOC-MEWN problem.

A. Convex-Hull Relaxation of Nonlinear Components

In this subsection, we convexify formulation of the MEWN
to mitigate computational burden. We relax constraint (1d) by
using the convex hull relaxation model represented in [22]:

(ch]t) ( ’Lj t) < Vz tICZJt
ViVl + 55 Ve, < 8 (Vi + V)

(%a)
(Ob)

The big-M technique is applied to eliminate the logic
proposition. Constraint (1h) is replaced by (10a) to (10b), and
(10d) to (10f) show the convex model of (3b).

V + 22] 1] t (TZJPW t + wijquj,t) Z M(ij - 1) (loa)
V+22] ij,t (rZJPz]t +xijQz?j,t) < M(]' _:U’;';j) (10b)
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0< P4, Qe L < Hfjpiﬁ/ﬁijiijv ijf‘j (10¢)
Y+ynmt Ry (frm, +)° > M(a, Wt — 1) (10d)
Y+yn7nt Ry Frim f: m,t < M (1 *O‘nm ¢) (10e)
0 < fam < O 1S (10f)

Constraint (11) shows a quasi-convex hull of (3a) [23]:

—2
= (\/g - Q)RW fnm rfln,t + (3 - I)R%Vm nm
2 QR;Ym nm nmt R:;Im nm
S 2 nmf frim ,t + anf

—nm —nm

A quadratic equation like (6) can be relaxed as the intersec-
tion of a concave inequality and a convex inequality. Equation
(12) represents the convex model of (6).

7]}31}?;111113 2 2.725 X (al(fnm,t)2 + aOfnm,t)
n‘P’Lp;glmp S 2.725 x (G‘l?nm + aO)fnm,t

(12a)
(12b)

B. Physic-Guided Data-Driven Contingency Filtering

This section introduces the proposed PGDD-CF method
which is used to find worst-case contingencies. Most con-
tingencies are redundant for security operations in real-world
systems, so only a subset of contingencies must be taken into
account. As this set of contingencies covers approximately the
entire contingencies, optimal value for the base-case operation
subject to this subset of contingencies will also be the optimal
value for the original problem. To determine this subset of
contingencies, we have developed a hybrid physics and data-
driven CF method, consisting of two modules. Historical
contingencies resulting from offline optimization problems are
trained using the PGDD approach. Contingencies are classified
into three categories based on the trained hypothesis function:
low violation contingencies (LVCs), medium violation contin-
gencies (MVCs), and high violation contingencies (HVCs).
Primary CAs can eliminate violations of LVCs. While the
secondary CA can address some MVCs, other MVCs may
need preventive action to avoid any violation. By checking
feasibility of MVCs with (1)—(6), UCs can be found. A feasi-
bility check for LVCs is not required because LVC violation
is low and can be simply mitigated by primary CAs. A
feasibility check is also unnecessary for HVCs as they cannot
be addressed through corrective and preventative actions, and
hardening is necessary to avoid this type of contingency. In
the second module, the highest violation in the group of
UCs is identified as the worst-case contingency. The worst-
case contingency is added to the BCS, and the next iteration
begins. The procedure will continue until there are no UCs.
Algorithm 1 illustrates the proposed CF method. The following
subsections provide more details about the proposed hybrid
physics and data-driven CF method.

1) Physic-guided data-driven module

We propose a two-level learning approach involving data-
driven and physics-based methods to find UCs. An appropriate
training data set is required for any learning approach. How-
ever, historical measurements of optimal values of power gen-
eration and water production under different power and water
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Algorithm 1: ML-Enhanced Online Mixed-Integer Opti-
mization

1 Define the initial binding contingencies set (BCS = ©);

2 Apply the optimization solver to obtain the SOC- MEWN
and find the optimal value of P/, Q77, FF; and oy, ,
subject to the network constraints in the base-case
operation and BCS

3 Build the dynamic data set based on the physical information

4 PGDD predicts the network configuration utilizing input data
and the first-level hypothesis functions

5 Build the filtered data set

6 Define the initial sets (LVC = @, MVC = @, HVC = ©9);

7 PGDD categorizes all contingencies as HVC, MVC, and
LVC by applying the hybrid physics and data-driven
method;

8 Check the feasibility of MVC set by using (1)—(6).

9 if there are any UCs in the set of MVCs then

10 BCFM finds the worst-case contingency among UCs by

using (1c), (le)—(1g), (2b), (3c), (4), (5), (9)-(12), and
(25)

11 BCS <« BCS + worst-case contingency

12 goto step 2

13 else

14 Optimal solution

15 end

demands in real-world applications are generally not available.
Moreover, data on which contingencies lead to system failure
and which one is controllable in terms of power demand,
water demand, power generation, and water production may
not be available either. Therefore, we utilize historical 24-hour
load profiles and solve related offline optimization problems
to build the training static data set. The proposed method
may need more iterations to find UCs if the training data set
lacks sufficient reliability. Therefore, there should be sufficient
offline optimization problems to obtain a reliable training data
set with high accuracy in the hypothesis function. In the future,
such data sets can be obtained by data acquisition systems
without solving any offline optimization problems. To find
violation of each contingency, we add new variables Pf’tc,

pr ;¢ and dn 5 dn to (1a), (1b), and (2a), and write them as
(13) (14), and (15) respectively.

P, Psz Pp ‘ pil?ic rijLi; e — Py + Zpkc,i,t
’ (13)
$i— Q%,t + ~zp,’tc - Qaf =z45L5 — Qe + Z Qkit
(14)
Z e = Fay = dng+ a0 —dys + Ff (15)

The objective function of the optimization problem is to
minimize violation of each contingency [6], [12]:
) (16)

. PR+ P dii v dy
v = Z%; <wz 2 + wn, d

Some loads, such as hospitals, have higher importance than
other loads, meeting which is a top priority. We can attribute
a weight to each bus and node to account for importance of
loads. Constraints of this objective function are (1c), (1e)—(1g),
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(2b), (3¢), (4), (5), and (9)—(15). Now, the training static data
set is created as follows:

FS = {(Hfa¢f) ("{ngﬁg)

where ¥y = {y¢,u
olation and network conﬁguratlon, and Ky

k g* k g*,k R* k Px,k
dn ty P Q F anm,tv

(K/%ds ’ w}s\’[ds ) }

} represents output 1nclud1ng the vi-
— P Lk

2,t7

ck} shows input data, where

a7

PIE", * Qg ok F R* b and ozf,:ﬁ are optimal values of decision
variables for kth data. To make the training data set more
efficient, we modify historical data with physical information
to create a dynamic data set. On days with similar environ-
mental data, such as temperature, wind speed, and weather,
the power system may operate similarly. For example, the
allowed power flow will be lower on a hot day with low wind
speed than on a cold day with high wind speed. In addition,
on sunny days, there is a significant potential for generating
power from photovoltaic cells. In sunny weather, we can use
this power to mitigate some contingencies and decrease value
of the violation, but in cloudy weather, we are limited in our
options. Therefore, the physical situation, such as wind speed,
temperature, and weather conditions, can change the violation
of one specific contingency. We propose building a dynamic
data set by considering physics information. A specific weather
condition is given to the weighting function to account for
wind speed (low, moderate, and high), temperature (hot, mild,
and cold), and weather conditions (sunny, cloudy, and snowy).
The dynamic data set will be created by weighting the static
data set.

{w "{111/}1 (5“2971/)5), T wz{;s( %dqul)]%ds)}
:{(Hkaqj}k,)}ak‘:la"'aNds (183)
wlljh _ Wtkemp + wwind + wweather (18b)
where w; P, wind and wreather can be three different values

based on physical 1nformat10n. For example, there are three
categories of wind speed: high wind speed, moderate wind
speed, and low wind speed.

Iyind - if same class,
wind __ wind
Wik - 192 )
wind

U3

if adjacent classes, (19)

, if non-adjacent classes

where, for a specific case, exact values of ﬁ{vmd, ﬁ;”ind,
and ¥} can be determined by experience of the system
operators. w4 s equal to ¥} if the wind speed class
of inputted physical information and k*" data point match. If
their classes are adjacent, it will be ﬁ;vind, and if they are not
adjacent, it will be 93", The situation is the same for wp™P
and wWCath“ Accordingly, the maximum value of wk occurs
when classes of wind speed, temperature, and weather are
the same as classes of physical information. Using supervised
ML, we have explored the relationship between input data and
output data:

</i'urstlevel("ik) ql)k 9 vk € {1 2 aNds}; (20)
where 2 = {72, uP} shows output data, and k7 = kP

represents input data in the dynamic training data set. The
first level of the PGDD-CF method will map input data to the
network configuration (pF"%) and violation (yFirs%). A filter
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function is applied following the first level, which uses the
obtained configuration of the network and dynamic data set
to produce a filtered data set. This function filters data with
similar configuration to provide the filtered data set:

S .S S .1.S S S
FF = {wf(ﬁl 71111 )7w2F(H23¢2 )a e aw]}\?/ds(’{NdSaqu)Nds)}

:{(“an}:)}v k:177Nds (218.)
0 if D First
w]f = 7 1 ‘LLIIC) 7& /JlFirst (2]b)
1, ifp =p

where 1/1,1”; = 'y,l: and 111;; = nf represent output and input data
of the filtered training data set, respectively. In the second
level, the hypothesis function maps input data to the second
level violation (fysecond) based on the filtered data set.

</’sccondlcvcl ("{k) wk (22)

When violations of both levels are found, the final violation
is calculated by weighting the predicted violations:

’YPh _ wFlrst X 7y

Second

First T wSecond X 7y

(23)

A high value of w¥™' encourages the PGDD to learn

from empirical knowledge, while a high value of wSecond
encourages the PGDD to respect physical knowledge. The
architecture of the PGDD method, which is related to steps
3 to 8 of Algorithm 1, is illustrated in Fig. 3. In the first level,
the dynamic data set guides the hypothesis function to map
input data to network configuration and first-level violation.
The second level uses network configuration obtained in the
first level to refine the dynamic data set and create the filtered
data set. The filtered data set guides the hypothesis function
of the second level and maps input data to the second-
level violation. Lastly, first- and second-level violations are
combined to determine the final violation for contingency
classification. The PGDD classifies contingencies into three
categories based on their violations:

LVC, if 4P <M
Contingency Class = ¢ MVC, if (&M < AP < ¢MH (24
HVC, if ¢MH < AP

The flowchart in Fig. 4 illustrates the logic of contingency
classification based on the proposed method. The first level is
shown in red, second level is shown in blue, and input data is
shown in green. The first five steps of the proposed method,
which relate to the first level, consider the optimal values
of decision variables of the master problem to obtain first-
level violation and network configuration in step 4. Using the
dynamic data set created in step 2 and network configuration,
step 6 constructs the filtered data set. Step 8 finds the second
violation based on input data. Finally, the contingency class is
determined after considering both violations in step 10.

We apply DT, SVM, NB, and KNN to train I'° and TF,
and examine their accuracy to find the most efficient one
for determining the UCs. The PGDD evaluates feasibility
using the optimal solution provided in the second step of the
algorithm for different contingencies following contingency
classification. The LVC can be addressed with primary CA so
the optimal solution of the second step is feasible for any LVC.
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Fig. 3. PGDD-CF method: — first level, — second level, — data sets: the environment data includes temperature, wind speed, and weather conditions.
1 | Enter static data set and physical information |
v
2 | Build dynamic data set using (18) |
v
3 | Determine hypothesis function using (20) |
v
4 | First hypothesis function |<—< Input data (optimal values of decision variables) >—
|
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10 | Contingency class based on (24) |

Fig. 4. Logic explanation for contingency classification based on the proposed method

HVCs cannot be controlled with preventive and corrective
action, so hardening is proposed to prevent occurrence of this
type of contingencies. Thus, to determine UCs, only MVCs
need to be checked. Optimal values of the second step in
Algorithm 1 are used to check feasibility of constraints (1)—(6).
As long as optimal values satisfy all constraints, the operator
can eliminate the violation by applying CAs. Consequently,
the PGDD first classifies contingencies into three classes and
then finds the UCs among MVCs.

2) Binding Contingency Filtering Module

BCFM solves the optimization problem for all UCs and
finds the worst-case contingency which will be added to the
master problem. This optimization problem includes violation,
and CAs at the same time, where (la), (1b), and (2a) are
replaced by (25a), (25b), and (25c), respectively.

g pg.¢ _ pL pP,C _ pn,c
P+ P =P+ Py — P

=riT5.— P+ Y Py (252)
k

QF, + ng’,tc - I'J,t + Q?ftc - Q?,’tc

= 2T, — Q5+ Y Qhs (25b)
k

S o =FR A BN —dpy +d = dyt + F i (250)

The objective function of BCFM is (16), and constraints
are (1c), (1e)—(1g), (2b), (3¢c), (4), (5), (9)—(12), and (25). The
worst-case contingency is the contingency with the highest
violation. This contingency is added to the BCS, and then the
algorithm returns to its second step to start the next iteration.
Algorithm 1 reaches the optimal solution when there is no UC.
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IV. CASE STUDIES

Based upon the different characterizations of the PDN and
WDS in different areas [15], [24], we demonstrate robustness
of the proposed method by examining it on two test systems.
The first test case is the modified IEEE 13-bus system with
8-node EPANET WDS which represents the MEWN of small
communities, such as industrial parks. The second one is the
IEEE 33-bus system with 13-node Otsfeld WDS, which is
a bigger system and represents the MEWN of city scale. A
large-scale energy and water system operates as two separate
entities, and conflicts appear between them. Consequently,
our method, even though mathematically applicable to larger
systems, cannot be used to get optimal operation for both
systems due to existing conflicts. A 24-hour nodal price and a
load curve of power demand [25], [26], excluding water pumps
demand, are used to find the solution to the SOC-MEWN
problem. Fig. 5(a) shows nodal price and two typical load
curves for two different case studies. Training data sets are
built based on load curves from PJM [26] shown in Fig. 5(b).
For each case study, we have used these load curves and solved
related offline optimization problems to build the training
data set. The same priority is given to all buses and nodes
by applying equal weight factors. Since real environmental
data are not available, we did not consider them and related
weight factors are considered the same. The training data set
is used to fit parameters of four different supervised methods,
namely DT, KNN, SVM, and NB. A test data set related to the
first case study with 96 contingencies is employed for testing
these supervised learning methods for the first level of our
PGDD method. Fig. 6 and Table I show accuracy of these
methods for contingency classification at the first level. The
DT method has a 95.83% accuracy rate which is higher than
other methods, and therefore it is chosen as the supervised
learning approach for contingency classification. In case of an
inaccurate hypothesis function, more iterations will be required
to reach all UCs. The proposed method guarantees MEWN’s
security even when it is highly computational. Another test
data set including 256 contingencies from the second case
study is used to compare the pure ML classification with our
proposed PGDD method. Fig. 7 illustrates the PGDD method
improves classification accuracy from 91.8% to 99.2%. There
are 21 wrong predictions in the first level (Fig. 7(a)). In

1827

TABLE I
ACCURACY OF DIFFERENT SUPERVISED LEARNING METHODS IN CF

Supervised learning method Wrong Prediction Acc}]lracy
LVC  MVC %)
DT 1 3 95.83
KNN 21 - 78.12
SVM 12 9 78.12
NB 71 - 19.79

the second level, wrong predictions are reduced to two after
adding network configuration and using hybrid physics and
data-driven methods (Fig. 7(b)).

We examine the case studies, explain numerical results (all
simulations are run on Intel (R) Core (TM) i7-9700 CPU
3 GHz with 16 GB RAM), and compare our CF method to
other existing CF methods in the following subsections.

A. IEEE 13-bus ADN with 8-node EPANET WDS

We have executed the proposed method on a MEWN, as
shown in Fig. 8, which consists of a modified IEEE 13-
bus system with an 8-node EPANET water system [27] that
can be used for a MEWN in a small community such as
industrial parks. The PGDD module needs optimal values
of normal operation to classify contingencies and determine
the UCs. According to the PGDD, 12 contingencies fit into
three categories: 0 HVC, 1 MVC, and 11 LVCs. The only
MVC can not be addressed with the CAs and needs preventive
action. Fig. 9 shows results of PGDD for a single contingency
in the first case study. For the next iteration, contingency 3
should be added to the master problem as worst-case contin-
gency. The proposed method achieves SOC-MEWN after two
iterations when contingency 3 is added to the BCS. Fig. 10
represents optimal values of grid/controllable DG power and
water production for two iterations. MEWN secure operation
costs $1751.4 per day, whereas independent secure operations
of WDS and PDN would cost $1983.8 per day.

B. IEEE 33-bus ADN with the 13-node Otsfeld WDS

The IEEE 33-bus system and the 13-node Otsfeld regional
WDS are considered for the second case study. The topology
of the IEEE-33 bus distribution test system and the Otsfeld
WDS are shown in Fig. 11. The IEEE 33-bus system can be
used for an area of a city [28]. On the other hand, Wim-
mera Mallee Pipeline and Northern Mallee Pipeline are real
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o g 80 25 2
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Fig. 5. Load curve and prices. (a) Different load curves from PJM to build the data set. (b) Load curves. —.—15* case study, — —2"9 case study, — hourly

price.
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WDSs with Otsfeld network characteristics [29]. Therefore,
these two systems can be considered for the same area.
Three pumps acting as connectors between the WDS and
the PDN are connected to buses 18, 25, and 33. The WDS
consists of three water resources with three pump stations,
two pressure-reducing valves (on pipes 6 and 10), and one
water tank. Training data set I' is built based on load curves
shown in Fig. 5(b) for 32 contingencies. Optimal values
for grid/controllable DG power and water production under
normal operations are entered into the PGDD-CF method
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Comparison between pure ML classification and PGDD classification. (a) Pure ML classification. (b) PGDD classification.

to find the worst-case contingency. The PGDD divides 32
contingencies into three categories: 5 HVCs, 3 MVCs, and
24 LVCs. Three MVCs are UC and need preventive action to
address. PGDD results for a single contingency in the second
case study are shown in Fig. 12. We suggest hardening lines 1,
2, 3, 4, and 26 to make sure HVC contingencies do not occur.
BCFM finds contingency 5 as the worst-case contingency and
adds it to the BCS to be considered in the master problem.
There are no more UCs after applying contingency 5 to
the master problem in the second iteration. Therefore, the
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Fig. 8. IEEE 13-bus with EPANET 8-node.
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Fig. 10. The optimal value of power generation (red) and water production
(blue) for the first case study: — — 15¢ iteration, — o —2nd jeeration.

proposed method achieves SOC-MEWN after two iterations.
Fig. 13 shows optimal values of grid/controllable DG power
and water production for the first and second iterations. The
secure operation cost will be decreased from $886.1 per day
to $785.7 per day when the water and power systems work as
a single integrated system.

C. Comparing with Other Contingency Filtering Methods

This section compares the PGDD-CF method with other
existing CF methods. Existing CF methods, such as key
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contingencies, require online optimization problems to be
solved separately for each contingency in each iteration.
The process is time-consuming, even when parallelized. The
PGDD approach reduces the number of online optimization
problems in the CF process. Data sets are built via offline
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optimization, then DT parameters are fitted to the data to
classify contingencies without requiring online optimization.
A limited number of online optimization problems are then
solved to find binding contingencies. Thus, each iteration is
faster, resulting in quicker reach to the optimal solution. We
apply the existing CF approach to our case studies to compare
them with our proposed CF method, as shown in Table II. In
the first case study, CF takes 10.52 seconds using the non-
parallel manner and 3.202 seconds using the parallel manner.
The proposed PGDD-CF method reduces this time to less
than one second. Results of the second case study indicate CF
time for the non-parallel manner, the parallel manner, and our
method are 171.85 seconds, 15.43 seconds, and 1.12 seconds,
respectively. As a result, our method speeds up the CF process.

TABLE II
SOLVER TIME FOR THE PGDD METHOD AND OTHER METHODS

Description Case Study Case 1 Case 2
. . . Non-Parallel 5.441 90.12
First Iteration Exiting Method Parallel 1615 8.26
(s) Our Method 0.689 0.746
. . Non-Parallel  5.075 81.73
Second Iteration  Exiting Method Parallel 1578 717
(s) Our Method 0302  0.371
. Non-Parallel  10.52 171.85
Total Exiting Method Parallel 3900 15.43
(s) Our Method 0.991 1.117

V. CONCLUSION

We have developed a two-stage iterative algorithm, employ-
ing a hybrid physics and data-driven CF method, as well
as the convexification technique to solve the SOC-MEWN
problem. The CF method consists of two modules. The first
module divides contingencies into three classes by applying
PGDD to dynamic and filtered data sets resulting from offline
optimization problems. Four supervised learning methods are
examined, and DT is chosen as the most effective method for
contingency classification. Once the contingencies have been
classified, a feasibility check is conducted to identify UCs.
The second module determines which UC is the worst-case
contingency to add to the BCS for the next iteration. Once CAs
can lead all contingencies to a feasible solution, iteration will
end. Two case studies are used to validate effectiveness of our
method. A comparison between our method and other existing
CF methods shows our approach is faster than other methods.

CSEE JOURNAL OF POWER AND ENERGY SYSTEMS, VOL. 9, NO. 5, SEPTEMBER 2023

For two case studies, we achieve UCs in 0.99 seconds and
1.12 seconds, respectively. In contrast, it takes 10.52 seconds
and 171.85 seconds for other existing CF methods.
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