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Abstract—Measuring importance of nodes in a graph is one
of the key aspects in graph analysis. Betweenness centrality
(BC) measures the amount of influence that a node has over
the flow of information in a graph. However, the computation
complexity of calculating BC is extremely high with large-scale
graphs. This is especially true when analyzing the road networks
with millions of nodes and edges. In this study, we propose a
deep learning architecture RoadCaps to estimate BC with sub-
second latencies. RoadCaps aggregates features from neighbor
nodes using Graph Convolutional Networks and estimates the
node level BC by mapping low-level concept to high-level in-
formation using Capsule Networks. Our empirical benchmarks
demonstrates that RoadCaps outperforms base models such as
GCN and GCNFCL in both accuracy and robustness. On average,
RoadCaps generates a node’s BC value in 7.5 milliseconds.

Index Terms—Betweeness Centrality, Machine learning, GCN,
Capsule Network, Road Network Analysis

I. INTRODUCTION

Natural disasters cause substantial disruptions to a commu-
nity’s transportation network, and natural phenomena extremes
are predicted to increase both in their frequency and intensity
[1]. When sections of roads are flooded, covered by debris,
or suffer structural damage, the number of accessible roads
and intersections are reduced, which contributed to a further
reduction in the number of available routes. Temporary or
permanent changes to road networks lead to unexpected traffic
spikes over the remainder of the network. The consequences
are even more severe for areas with limited number of routes
(such as rural areas). An immediate and comprehensive un-
derstanding of the impact of infrastructure loss is critical for
planning timely responses and evacuation strategies.

Traditionally, the impact of fast-evolving disrupted road
networks and its complex influences have been analyzed
with diverse methodologies such as stochastic optimization
processes [2], demand, supply models and traffic analysis [3].
Recently, network analysis has been applied to road networks
to analyze the influence of various natural disasters such as
earthquakes and flooding [4].

Road networks can be represented as a planar graph that is
a graph embedded in the plane with the graph’s constituent
edges representing physical road connections [5]. Road net-
works are distinguished from other networks, such as social
networks. Since each vertex and edges are physically anchored
to their geospatial locations and their network topology is
relatively limited in terms of the number of long-range edges

and number of edges associated with a single node [6].
Therefore, instead of degree-based metrics, metrics that can
provide non-local, higher-level information such as network
centralities have been widely adopted in road network analysis
[7]. Betweenness centrality (BC) is one of the well-studied
centrality measures, and has been used by several road network
topography analyses based on betweenness centrality [8]. Be-
tweenness centrality measures the importance of a link based
on the amount of flow at a location. Betweenness centrality is a
path-based measure calculated based on the number of shortest
paths within a planar graph that passes through the vertex (e.g.,
intersection) [9]. However, the calculation of betweenness
centrality measures over large-scale complex road systems
in real-time poses critical computational challenges. First,
computing betweenness centrality over highly complex large
road networks is prohibitively expensive. Brandes’ algorithm
[10] for computating the betweenness centrality has a time
complexity of O(nm + n2logn) and the space complexity
is O(n + m), where n and m are the number of vertices
and edges in a graph, respectively. With the complexity and
abundant data of modern road networks (for e.g., the road
system of in the state of California comprises more than 2.67
million intersections) computing the betweenness centrality
measures in real-time is infeasible. Second, since betweenness
centrality measures depend on the number of shortest paths
flowing through the target location, they are easily influenced
by the partial changes within the networks. Removing one
edge may require recalculation of for a substantial area around
the removed edge. Finally, for a large road network, the
computation over a subarea may cause significant inaccuracies
for nodes close to the boundary of an area. This boundary
effect, in particular, introduces challenges for distributed ap-
proaches to calculation of betweenness centrality over a large
spatial extent. In this study, we propose a deep learning-based
approach, RoadCaps for road-vulnerability analysis calculating
weighted BC measures with sub-second latencies over large
and complex transportation networks. We combine aspects
of Graph Neural Networks [11] and Capsule Networks to
accomplish this. Topological characteristics and geospatial
features of the surrounding area are extracted and factored into
the model to achieve higher model generalization to support
varying levels of complexity over the road network and loca-
tions of the target intersections. Sub-second inference latencies
supported by our network are suitable for applications that



need faster turnaround times.

A. Research Questions
In this paper, we explore the following research questions.
RQ-1: How can we estimate betweenness centrality ac-

curately and rapidly at scale to support applications with
interactive explorations of road importance while providing
reliable accuracy? Achieving robust accuracy across topolog-
ical locations is important to avoid boundary effects.

RQ-2: How can we incorporate geospatial characteristics
at a given location with topological information to improve
accuracy of the estimations?

RQ-3: How can a system estimate the betweenness cen-
trality of a node with limited computing resources? Esti-
mating betweenness centrality should not trigger calculating
betweenness centrality for the entire road network. Also, each
computation must be lightweight enough to be portable.

B. Approach Summary
In this study, we propose a deep network, RoadCaps,

that estimates accurate betweenness centrality measures over
complex road networks at sub-second latencies. RoadCaps
captures nonlinear relationships between the weighted BC
values and topological characteristics of the surrounding area
combined with area-specific structural road characteristics.
RoadCaps leverages capsules to capture hierarchical structural
relationships between target intersection(s) and their proximate
intersections. Capsule Neural Networks (CapsNets) have been
successfully applied in computer vision and graph theory and
demonstrably outperform traditional convolutional layers. To
generate inputs to capsule layers that effectively snapshot
topological and geospatial features, RoadCaps comprises mul-
tiple convolutional graph layers. Compared to existing GNNs
that primarily target graph classification tasks [12], RoadCaps
provides a novel regression capability that estimates 1 or
more BC estimates for intersections. As part of this research,
we constructed a topological graph representation of road
networks and extracted highly relevant features. We introduced
a feature for intersections, traffic tendency that encapsulates
traffic capacity for a road segment. We have also designed
a novel space-efficient data structure, GeoDensityMap, that
tracks the complexity of a large road system. We have
evaluated our methodology with a road network dataset for
the state of California in the U.S. RoadCaps demonstrates a
HUBER error of 2.054 on average, which represents a 31.08%
improvement in accuracy compared to both model GCN
and model GCNFCL. We performed a variogram analysis to
evaluate RoadCaps’s capability to address boundary effects
that arise. RoadCaps demonstrated a consistently stable model
performance across the state of California. On average, our
model estimates single point BC in 7.5 milliseconds and 500
points BC in 24.26 milliseconds.

C. Paper Contributions
We have designed a scalable model that estimates the

weighted betweenness centrality of intersections in a large
road network. Our contributions include the following:

• Fast and accurate estimations of the weighted between-
ness centrality of nodes in a large road network: Our
model generates BC measures while accounting for the
topological characteristics of proximate nodes and road
network-specific features; crucially, this is performed at
sub-second latencies.

• Highly generalizable estimations: Our model perfor-
mance is robust to the topological variations of the road
network.

• Wide applicability for other network centrality metrics:
The proposed methodology is applicable for other net-
work centrality metrics such as percolation centrality and
eigenvector centrality.

• Light weight computing to accurately estimate between-
ness centrality: Our system allows the users to estimate
accurate BC without performing expensive computing
tasks required in traditional BC calculations.

D. Paper Organization

Section 2 describes the background and related work. Our
methodology is described in Section 3. Section 4 describes our
empirical benchmarks alongside a discussion of the results.
Section 5 describes related work. Finally, our conclusions and
future work are described in Section 6.

II. BACKGROUND AND DATASET

A. Betweenness Centrality Analysis for Road Networks

Centrality analysis is widely used to measure node impor-
tance at local and global spatial scales. Local centrality is
measured between nodes within a given radius while global
centrality calculates the distance between nodes within a whole
system. The centrality index is useful to understand the oper-
ational impact in terms of the network flow tendencies based
on topological characteristics, e.g., airline networks, road net-
works, power networks, and canal networks. Frequently used
metrics to estimate network centrality include: betweenness,
closeness, straightness, and degree. Closeness centrality is a
way of detecting the capability of nodes to spread information
efficiently by means of measuring the inverse distance to all
other nodes [13]. The straightness index considers the degree
of straightness of the path to determine the effectiveness of
the connectivity [14]. The degree of centrality is based on the
count of the total number of connecting edges to a node [15].

In road network analysis, betweenness centrality analysis
has been widely used due to its close correlation to global
traffic flows within the network [16]. If two areas are con-
nected by a small number of links, the removal of these links
will disable the high volume of traffic flowing between the
two areas. Therefore, measuring BC is one of the primary
interests of road network resilience to natural disasters. As
seen in (1),the betweenness centrality of a node (k) is the
total number of shortest paths at node (k) divided by the total
number of shortest paths that exist between two nodes (i and
j) of a given radius (r).



Betweenness[k]r =
n∑

i̸=j ̸=kϵd[i,j]≤ri

Nd[i,j][K]

Nd[i,j]
(1)

Betweenness analysis has been applied to weighted graphs
effectively. The first step of the estimation of betwenness cen-
trality is the shortest path calculation. Shortest path between
source and destination points is determined as the path with
smallest total weight. The weight of the edge is inversely
related to the travel time and the number of lanes of a road. So,
any intersection points will have high betweenness centrality
if more paths with smaller weights pass through it.

B. Dataset and Study Areas

In this study, we have used transportation datasets provided
by OpenStreetMaps [17] for the state of California, U.S.
California is the third largest state in the U.S. by area (163,696
square miles) with diverse geographical landscapes, moun-
tains, beaches, lakes, and large city areas. The road network in
California contains more than 2.67 million intersections with
more than 4.45 million miles of state and county highways.
Other types of roads are primary, secondary, tertiary, trunk,
service, pedestrian, bike, race, residential, and so on. We
selected highways, primary, secondary, tertiary, and trunk
roads to focus on land transportation, particularly for major
roads that are used by auto vehicles.

The dataset also provides the latitude and longitude infor-
mation of each intersection point, length, maximum speed,
number of lanes, and direction of the road. A graph was
made from the extracted road network: each intersection point
becomes a vertex, and each road becomes an edge. To reduce
the complexity of graph all the intermediate points between
two intersections were discarded. After the preprocessing, the
graph becomes significantly smaller in size where the total
nodes are 129289 and the edges are 281085.

III. METHODOLOGY

We have utilized weighted directional graph networks to
model a large-scale road network. In section 3.1, we discuss
our graph model that captures topological and geographical
attributes effectively. We also describe how we measure the
corresponding edge weights of graph. Based on this graph-
based model, we propose a novel deep learning architecture,
RoadCaps consolidating GCN and Capsule Networks that esti-
mates the betweenness score of a single/multiple intersections.

A. Modeling Road Networks using Graph Networks [RQ1,2]
Our graph networks reflect the unique set of attributes that

comprises topological, physical, and regional characteristics of
road networks.

1) Topological Characteristics: We represent the topolog-
ical attributes of graph components using vertices and edges.
The intersections and end points of roads are represented as
vertices and the physical roads that connect a pair of vertices
are represented as edges.

Topological Characteristics In our model, road networks
are represented as a weighted directed graph, G = (V,E) ,

Fig. 1. (a): The 20th Street with One-way and Two-way portions (b): Graph
representation of the streets depicted in (a)

where the set of vertices, V , represents intersections and end
points of the roads, and the set of edges, E represents the
physical road between two vertices u and v, where u, v ∈ V .
A vertex contains a unique identifier, vertex ID, properties
such as geospatial coordinates, connected street count, and
road type. An edge is composed of source and destination
vertex IDs, and properties including the type of road, weights,
length, maximum speed, number of lanes, and road direction.
As depicted in fig. 1, the direction of an edge is determined
based on the actual traffic flows in the road system. Therefore,
if there is a one-way street connecting two intersections (fig.
1-(a)), it will be depicted as a single edge following the di-
rection of the road (fig. 1-(b)). Our graph model considers the
geospatial coordinates of the source and destination vertices
only.

Weights with Physical Characteristics Our graph repre-
sentation maintains a vector of features for each vertex. To
reflect the tendency of the traffic flow within a road segment,
we measure the traffic tendency for each edge e ∈ E. We
calculate the traffic tendency etraffic tendency as follows.

etraffic tendency =
enumber of lanes × emax speed

elength
(2)

,where enumber of lanes is the number of lanes, emax speed is
the speed limit, and elength is the length of the edge.

A high traffic tendency indicates that the road is designed for
high traffic flows. Meanwhile, a low traffic tendency represents
that low traffic flow has been expected. Since the shortest path
calculation as a part of betweenness estimation gives priority
to the path with smaller weight, we have used the inverse of
etraffic tendency inversely for the edge weight. Besides the
traffic tendency, non-numeric properties such as the type of
the road (one way or bidirectional), number of incoming roads
as indegree, and number of outgoing roads as outdegree from
any intersection point are also maintained.

2) Regional Characteristics: Unlike other networks such
as social networks, road networks have limited in-degrees
and out-degrees of vertices due to physical and topological
constraints. This results in well-defined topological patterns
across the networks. Therefore, a model cannot factor in the
complexity of the regional road system effectively if it targets
a smaller radius in the networks. However, inputting entire
networks for each estimation would not be a computationally
feasible solution for the real-time BC analysis.

To strike a balance between the detecting regional complex-
ity and computational effectiveness, we introduce a complexity



Fig. 2. (a): GeoDensity map of road network and (b): intersection count for
each Geo-Hash

measure based on the density of streets within a geospatial
scope. GeoDensity Map is a gridded map with density of in-
tersections within a geohash bounding box. Since the possible
number of roads that can share the intersection is not highly
variable (only 0.17% of our intersections are shared by 6-8
edges), we define the GeoDensity of a vertex as the density
of intersections without considering the number of edges.

A geohash is a geospatial encoding system that generates
a bounding box identified by a 5-bit character string [18].
The precision of the spatial bounding box is determined by
the length of the string identifier. As a greater number of
letters are used, the size of the bonding box is reduced.
The geohash algorithm provides a hierarchical spatial data
structure that preserves the proximity of spatial bounding
boxes. We generate a geohash based map with the length of 5
that encompasses approximately 4.9 km2 in our study areas.
All the vertices in the same geohash bounding box share a
GeoDensity value. A high GeoDensity value indicates that the
given geohash box might be a part of complex road system,
therefore more routes are to be expected. On the other hand,
a low value signifies a sparse road system. fig. 2 depicts an
example of the GeoDensity map with different density of the
intersections.

B. Network Architecture [RQ1,2]

Estimating weighted BC values involves multiple factors
especially the neighbor road connectivity around the target
intersection(s). RoadCaps captures network connectivity and
their features by incorporating graph embedding using three
layer of Graph Convolutional Network(GCN). The output from
GCN is inputted to a Capsule Network layer to capture the
hierarchical conceptual structure between the target node(s)
and neighboring nodes. fig. 3 depicts the overview of the
network architecture. To form the network architecture the first
step is to form the graph structure which is described in the
following sections.

1) Aggregating Road System Properties with the Graph
Structure [RQ1,3]: First block of our model leverages graph
embedding methods using Graph Convolutional Neural Net-
work (GCN) to incorporate topological connectivity of graphs
[19]. Our approach stacks 3 layers to generate graph embed-
dings. fig. 4 (a) contrasts the model performances with differ-
ent number of layers, and with 3 layers of GCN, our model
shows the better accuracy with less computation complexity.

Fig. 3. Proposed Model Architecture (RoadCaps)

Fig. 4. (a): Model Performance with different number GCN layer (a) and
(b): with different loss functions

The first layer of GCN works as the input layer, where
the number of neurons equals the number of nodes in the
input sample. In this study, we define the maximum number of
neurons as 500. The number of neurons indicates the number
of neighboring intersections considered within a single input
dataset. Since the computing complexity of the BC analysis
is closely related to the number of vertices considered for the
computation, we have generated small scope of sub-networks
to reduce the computing cost. The neighboring intersections
are selected based on the distance to the intersection points.
Our original dataset from OSM. We have reduced the number
of nodes involved by modifying the dataset to include only
intersections.

So each input sample has an adjacency matrix of size 500
× 500.Each node has five different features which makes the
size of the input features matrix 500 × 5. Then, the very first
layer will perform graph convolutions on the feature matrix
following the adjacency matrix. Next GCN layers perform the
same operation taking the aggregated information in previous
layer. Since adding more layers increases the computational
complexity, we choose three GCN layers which provides
reasonable accuracy for our task.

The dimension of the output of the third layer of GCN
maintains the same graph structure as the input sample,
C × 500, where C is the number of output channels or
filters. Performing efficient feature engineering and selecting
effective features is one of the most challenging tasks for road
network analysis. To maintain both topological and regional
characteristics of the road network along with the road weight,



we have also performed feature engineering for our model.
The names of the features are traffic tendency computed using
eq. 2, GeoDensity, in-degree, and out-degree. Geo density is
calculated from the density of connected nodes whose location
share the same geohash prefix of five of characters.

2) High Level Features Mapping and BC Estimation with
Capsules [RQ3]: We use Capsule Networks (CapsNet) to ef-
ficiently map these low-level features to high-level features to
accurately estimate BC. CapsNets are a neural network archi-
tecture that efficiently captures spatial relationships between
objects and organizes them in a hierarchical fashion. These
objects can represent any spatial pattern (e.g. intersections or
a busy highway) and are represented in a vector format known
as a capsule. Each value in the capsule represents a different
attribute of that object. For example a capsule representing an
intersection might have one value representing the direction of
an adjacent road and another value representing the number
of nearby lanes. Which attributes are stored in a capsule is
based purely on what increases the model’s accuracy and can
be virtually any object attribute. Each layer of a CapsNet
stores a set number of capsules, which are then routed to
the next Capsule Network layer with its own set of capsules.
This dynamic routing process essentially predicts what low-
level capsules (e.g. an intersection) from the first CapsNet
layer make up the high-level capsules (e.g. a grouping of
intersections) in the next CapsNet layer.

CapsNets have been widely applied due to its dynamic
routing process being more efficient at capturing information.
Also, CapsNets combine the adjacent node values in a non-
linear fashion (unlike pooling processes) preserving more spa-
tial information and increasing the model’s overall accuracy.

A CapsNet is placed directly after a few GCN layers.
This may seem counterintuitive at first, but using only a few
convolutional layers to initially encode the data is an efficient
way to encode the lowest-level of data and is very much the
norm for Capsule Networks.

C. Loss Functions and Hyper Parameters

Our proposed architecture is a single and multi-point regres-
sion model. We experimented with the three well-known loss
functions for the regression model. These are Mean Squared
Error (MSE), Mean Absolute Error (MAE), and Huber loss
function. Due to the extensive range and irregularity of target
values, MSE does not work well for our model. Both MAE
and Huber loss functions fit well into our model. The loss plots
of model training for different loss functions are shown in fig.
4 (b) We use the PyTorch L1-loss function that estimates the
MAE between each element in the input x and target y. The
loss can be described as:

ℓ(x, y) = L = {l1, . . . , lN}⊤, ln = |xn − yn| (3)

ℓ(x, y) =

{
mean(L), if reduction = ‘mean’;
sum(L), if reduction = ’sum’.

For most of the analysis, we use Pytorch HUBER Loss
which utilizes a squared term if the absolute element-wise

error drops below delta and a delta-scaled L1 term otherwise.
This loss unites the benefits of both L1-Loss and MSE-Loss;
the delta-scaled L1 region makes the loss less susceptible to
outliers than MSELoss, while the L2 part does smoothness
over L1Loss near 0. The loss can be described as:

ℓ(x, y) = L = {l1, ..., lN}T (4)

with

ln =

{
0.5(xn − yn)

2, if |xn − yn| < delta

delta ∗ (|xn − yn| − 0.5 ∗ delta), otherwise

Adam is used as the optimizer with an initial learning rate
10−4 and a weight decay factor of 10−6. Total GCN layers
are 3, and 50 parallel filters are used for GCN layers. RELU
is used as the activation function. The number of neurons in
each GCN layer and capsules in the primary capsule layer
equals the number of total nodes in each sample which is 500
for most experiments. The higher-level capsule layer contains
500 capsules if the target points are 500; otherwise, it equals
the number of prediction points. The capsule dimension is set
5 empirically for both capsule layers.

D. Feature Extraction and Selection [RQ2]

The road network can be represented as a large graph where
each intersection point of streets is a node, and each road is
an edge. Other information is also important to traffic systems
like maximum road speed, road direction, street count, and
the number of lanes, and geospatial attributes. From the raw
information provided, we extract road length, maximum speed,
and the number of lanes to construct the feature named traffic
tendency. From the topological information, we calculate the
degree of incoming and outgoing connections of each node,
boundary and non-boundary labeling for each node based
on the edge cut in graph samples. We create the geospatial
feature, GeoDensity from the geohashes. We consider the first
five prefixes of the geohash value to form a group and then
count the total number of the intersection points that fall in
the same prefix group. The total count of a group is treated
as the GeoDensity for all the nodes of that group. After
empirical analysis, we select in-degree and out-degree, the
traffic tendency, and GeoDensity as the features for each node
to train our model. The performance and the time of the model
training vary with each feature.

IV. EMPIRICAL BENCHMARKS AND PERFORMANCE
EVALUATION

A. Experimental Setup

To extract the road network, OSM API v1.1.2 was used.
Networkx 2.7.1 was used for preprocessing and graph sam-
pling. Pytorch package 1.10.2 with Python 3.9.10 was used as
the machine learning framework.



B. Model Training [RQ3]
The preprocessed road network is converted to a directed

graph structure that has 129289 nodes and 281085 edges. The
inverted traffic tendency calculated using (2) is used as the
edge weight. Since the complexity of exact BC estimation
formula is very high (O(n3)), we have used Brandes BC
approximation formula to generate the ground truth for this
extensive weighted graph [10]. Based on the number path
length considered to calculate shortest paths during BC ap-
proximation, it takes hours to days. The value range of the
ground truth is 1012, as some nodes, mainly in the boundary
region, have BC close to zero. We normalized the BC values
to 0 and 1000 before feeding the input into the model.
After calculating the ground truth, We have generated more
than 4000 sub-graphs randomly using the single pivot-based
snowball graph sampling technique [20]. , each of which
represents a small region of the California road network.
From the randomly generated sample graphs, we discarded
some very similar samples, and then normalized features were
extracted for these sample graphs. We have divided the dataset
as 70% for training and 30% for testing after random shuffling.
Our models takes few epochs to converge to an optimum point
shown in fig. 4 and fig. 7. Each epoch takes around 25 seconds
for single target point and 2.26 minutes for 500 target points.

C. Model Performance Analysis

1) Comparisons between models: Model accuracy per
model: The range of the ground truth values of the dataset is
large enough and the values are not properly distributed from
low to high range. The HUBER loss function is found less
sensitive to the irregularity of such kind of dataset [21] and so
for getting good model performance, we use this loss function
for our experiments. We have compared the performance of
our model with two other models. One is the base graph
convolutional network (GCN) model, and the other model is
the GCN with a fully connected layer.

The GCN model is used as the base machine learning
model to estimate the improvements we found from our
proposed dynamic routing-based learning and capsule-based
computation model. To compare the robustness and model
strength for multi-point prediction, we have used another
model, GCNFCL by adding a linear layer on top of the
GCN layer. Comparing the RoadCaps model to GCN model
provides a good contrast of the changes in both performance
and computational cost when we use capsule layers with GCN.
Comparing the performance of GCNFCL and GCN model to
RoadCaps gives the effectiveness of the capsules with GCN to
the diverse road system. For any size, n, of sample graph, only
two distinct types of prediction are possible by the base model
GCN, target one, or target n. Keeping the same sample size,
n if it is needed to predict centrality for any number of points
between one and n, the only way is to add any layer on top
of the outer GCN layer that reduces the dimensionality in the
output layer. The fully connected layer (FCL) in GCNFCL
model and the higher level capsule layer in our proposed
RoadCaps model can do this. The fig. 5 (a) shows that our

Fig. 5. (a): Model accuracy with different targets and (b): single target

Fig. 6. (a): Model accuracy and (b): variogram of RoadCaps

proposed model performs better than the other two models for
all the distinct levels of target points. Our model is robust to
work with any number of target points. RoadCaps leverages
the information-capturing capability of the capsule network.
The two layers of capsules following the GCN layers helps
the model converge quickly to the optimal point. As depicted
in fig. 5 and 7, RoadCaps converges faster with better accuracy
than the other two models. The fig. 6 (a) and 6 (b) show that
RoadCaps has very stable performance regardless of location
and does not very sensitive to boundary effects.

2) Analysis of the importance of features: GCN is well
known for its impressive performance in embedding the topo-
logical characteristics and aggregation of node features from

Fig. 7. First epoch of model training

Fig. 8. Model performance for different features



TABLE I
MODEL PERFORMANCE FOR DIFFERENT FEATURES AFTER FIVE EPOCHS

Target Nodes Without Feature-1 and 2 With Feature-1 With Feature-2 With Feature-1 and 2
Train Test Train Test Train Test Train Test

1 1.145309 2.076185 1.122853 2.054372 1.122862 2.054366 1.124064 2.055077
5 2.962506 3.741867 2.961281 3.740422 2.960803 3.740068 2.960525 3.739724
50 4.256724 4.27026 4.252890 4.270248 4.252888 4.270246 4.252885 4.270243

Fig. 9. (a): Model Performance with different BC range and (b) GeoDensity

neighbor nodes of a graph. We also leverage this advantage us-
ing GCN block prior to the Capsule layers. Also, we use road
network specific features to enhance the model accurcy.fig.
8 and table I show that the GeoDensity and traffic tendency
features contribute to model accuracy and faster convergence.

3) Scalability Analysis: The motivation behind using a ma-
chine learning model is to estimate the road importance in real-
time. At the same time, the model needs to be scalable. Our
model performs well for multi-point regression. we observe the
performance of the model by changing the number of target
points and neighbor nodes. fig. 5 and 10 show that our model
is highly robust to the changes in sample size and target points
and can maintain better accuracy.

4) Model Performance per BC range: For the road network,
it is quite common that the centrality distribution may not be
normal or standard as it depends on the road connectivity.
The road network dataset of California state also reflects
that. Therefore, we have evaluated our model performance for
different ranges of BC values. As depicted in fig. 9 (a), we
grouped samples for 5 ranges. Most of samples have small
BCs ( group 1 and 2), and the groups with larger BCs contain
higher number of outliers.

D. Geospatial Analysis

1) High density vs Low density area: To observe the model
performance with varying road connection density, we have
measured the model accuracy for diverse levels of road density.
The model performance for 50 samples from each group is
shown in fig. 9 (b). The loss values are sorted in ascending
order. Our model preserves the reasonable accuracy for both
types of road network, but it provides higher accuracy for
comparatively complex road network. The BC estimation is
closely related to the road connections. We varied the number
of neighboring nodes. First, the number of neighbor nodes
must be the same or more than the number of target nodes.
Secondly, if the sample size is increased, more computation
is needed to process all the features and thus the computation
complexity of the model is also increased. We did an exper-
iment for a single target node with five different neighbor

Fig. 10. Model accuracy with different number of neighbor nodes

nodes. fig. 10 shows that sample with at least 50 neighbor
nodes provides good accuracy.

V. RELATED WORKS

A. Graph Neural Networks

Recently, graph neural network models (GNNs), which
work on graph structured data and apply deep neural network
models , have drawn significant interests of the researchers.
GNNs capture the dependence of graphs by passing message
between the graph nodes [22]. Based on graph embedding
and convolutional neural network, the new variants of graph
neural networks were mainly proposed to aggregate infor-
mation collectively from the graph structure. Thus, the input
and/or output, consisting of elements and their dependency can
be modeled. Several comprehensive reviews on graph neural
networks are available. However, these works specifically
focus on convolution operators applied on graph structures.
The significant part of our proposed work is comprised of
graph convolution operation on road networks.

GNN has been used for two types of graph learning prob-
lems primarily, graph classification and node classification.
Graph classification predicts the class label of graphs. At past,
the most dominant graph classification technique were graph
kernels [23] but recently, deep learning techniques are getting
a big attention [24]. GNNs directly classify graphs depending
on the extracted graph representations and that is why GNNs
are much more efficient than graph kernel methods [12].

GNN has been applied for the road network analysis such
as traffic flow estimation or traffic forecasting [25]. GNN is
also used for city-wide parking availability prediction [26].
Our purpose is analysing road network to predict the road
importance which then can be used to model any emergency
evacuation plan during natural disasters.

One of the biggest challenge of applying GNN in road net-
work analysis is to work on a large graph structure encompass-
ing million to billion of nodes and edges. Researchers propose
different ways of using GNN for large scale training. In [27],
a method was proposed named DistGNN that optimizes the
Deep Graph Library (DGL) to use an efficient shared memory
implementation while training on CPU clusters. A minimum
vertex-cut graph partitioning algorithm with delayed update
has been introduced to reduce the communication latency.
Instead of whole-graph based training by Marco et al. [28]



did a case review and provide importance on sample-based
training for large scale network.

VI. CONCLUSION

We present our model, RoadCaps, that estimates BC ac-
curately and rapidly over an extensive road network. Road-
Caps addresses model performance challenges emanating from
topological complexity and geospatial variability with a cus-
tom deep network architecture that incorporates GCN and
Deep Capsule Network [RQ1, 2]. GCN captures topological
graph structure and features of regional road networks [RQ1],
and the Capsule network maps different levels of information
and extracts patterns from high-level information effectively
[RQ1]. Appropriately extracted topological and geospatial
features improve the model accuracy and convergence rate.
RoadCaps outperforms our base modeles such as GCN and
GCNFCL in terms of accuracy and robustness. Our analysis
shows that RoadCaps demonstrates stable performance regard-
less of the location of target intersection in the sample [RQ2].
RoadCaps trains and makes inferences with compact sized
samples that allows computational effectiveness [RQ3].
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