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1 | INTRODUCTION

Qiyue Luan®*® | Ian Papautsky®® |

Abstract

A simple, low-cost, three-dimensional (3D) lab-on-a-foil microfluidic device for
dielectrophoretic separation of circulating tumor cells (CTCs) is designed and
constructed. Disposable thin films are cut by xurography and microelectrode
array are made with rapid inkjet printing. The multilayer device design allows the
studying of spatial movements of CTCs and red blood cells (RBCs) under dielec-
trophoresis (DEP). A numerical simulation was performed to find the optimum
driving frequency of RBCs and the crossover frequency for CTCs. At the opti-
mum frequency, RBCs were lifted 120 pm in z-axis direction by DEP force, and
CTCs were not affected due to negligible DEP force. By utilizing the displacement
difference, the separation of CTCs (modeled with A549 lung carcinoma cells)
from RBCs in z-axis direction was achieved. With the nonuniform electric field
at optimized driving frequency, the RBCs were trapped in the cavities above the
microchannel, whereas the A549 cells were separated with a high capture rate of
86.3% + 0.2%. The device opens not only the possibility for 3D high-throughput
cell separation but also for future developments in 3D cell manipulation through
rapid and low-cost fabrication.
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tumor in organs or tissues [4, 5]. The cells that break away
and detach from the primary tumor, travel through vas-

Although the death rates from cancer declined by 27%
from 1999 to 2019, cancer was still the second leading
cause of death in the United States in 2019 [1, 2]. Metas-
tasis is responsible for around 90% of cancer deaths [3].
In metastasis, cancer cells spread from the original (pri-
mary) tumor to another part of the body forming a new

Abbreviations: CTCs, circulating tumor cells; RBCs, red blood cells;
ROI, region of interest.

culature or lymphatics, are called circulating tumor cells
(CTCs) [6]. CTCs can serve as a biomarker for the diagno-
sis and potential therapy of cancers or tumors by providing
real-time in vitro information [7]. Based on the number of
CTCs in the peripheral blood of patients, cancer progres-
sion can be monitored by evaluating cancer prognosis and
relapse [8]. In addition, the main treatment methods for
cancer/tumor patients are gradually shifting from conven-
tional standards to personalized techniques [9]. If CTCs
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can be sorted from blood cells without biochemical labels,
the clinical analysis of these cells can help with the devel-
opment of personalized cancer treatment [5]. Therefore,
there is a strong need for separating the CTCs from blood
cells to diagnose and assess early-stage cancer. Although
many macroscale isolation methods such as size-based fil-
tration, density-based centrifugation, and immunocapture
have been developed in recent years, these methods are
limited by low capture rate and lack of automation [10].
For this purpose, the rapid microscale separation technol-
ogy in miniaturized devices has attracted interest for CTCs
isolation and downstream analysis of CTCs.

Indeed, recent development of miniaturization tech-
nologies has enabled microfluidic devices to offer a unique
opportunity for manipulating cells at microscale due to
their low volume requirement, high controllability, and
biocompatibility. In addition, microfluidic devices can uti-
lize external energy in cell manipulation, such as electric,
acoustic, magnetic, and optic energies. In particular, the
effectiveness of electric field is often amplified at the
microscale, resulting in a wide range of applications for
electrokinetics in manipulating cells [11-15]. Electrokinet-
ics is the general term to describe the effect of electric
field on the movement of fluids and particles suspended
in fluids, including electrophoresis (EP), electroosmosis
(EO), and dielectrophoresis (DEP). Different from lin-
ear EP and EO originating from Debye screening cloud
of fixed counter ionic charge, DEP is a nonlinear elec-
trokinetic phenomenon where the electric field acts on
its own induced bipolar surface charge due to Maxwell-
Wagner interfacial polarization. In the nonuniform electric
field, DEP can produce effective dipole moment of cells
by inducing charges at the membrane-electrolyte inter-
face [2, 10, 16-19]. As the DEP force can rapidly control
the movement of cells in a microscale flow depending on
dielectric properties of cells relative to fluids, the cell viabil-
ity and capture rate are much higher than the conventional
methods. With these advantages, the dielectrophoretic
microfluidic device provides great potential to separate
CTCs from blood sample and monitor CTCs for early-stage
cancer diagnosis [20, 21].

To fabricate microfluidics with electrodes, lift-off thin-
film metal deposition is commonly used in microelectrode
array fabrication on glass substrate, and PDMS replica
techniques are used for constructing microfluidic chan-
nels. However, this process usually requires a cleanroom
environment that is expensive and time-consuming.
Moreover, the glasses are brittle, not self-sealing, and
relatively expensive for disposable devices in biological
and medical applications [22]. In addition, the PDMS
replica techniques [23, 24] are difficult to construct mul-
tilayered microfluidic channels [25, 26] for developing
three-dimensional (3D) channel network in applications,

such as cell spatial movement in electric field, 3D cell
manipulation, and high-throughput cells sorting. Hence,
rapid and low-cost multilayer dielectrophoretic microflu-
idic device manufacturing method is highly sought-after.
Recently, a novel concept has emerged in the microfluidics
field by using of lab-on-a-foil [27]. Unlike PDMS-based
microfluidic devices, a lab-on-a-foil system is constructed
by thin and flexible films, which not only allow for con-
structing different structures in each layer and observing
particles movements in 3D but also allow for integration
with the rapid fabrication method for microelectrode
array in microfluidic devices. Various fabrication meth-
ods for lab-on-a-foil devices have been studied, such as
micro-thermoforming, hot roller embossing, dry resist
technologies laser micromachining, and xurography
[28]. Among these methods, xurography is a simple and
versatile approach for fabricating microfluidic channels
on thin-film materials using a digital plotter on each
layer. To integrate the electrokinetics in a lab-on-a-foil
microfluidic chip, a novel approach is applied to combine
inkjet microelectrode array on thin-film system for rapid
prototyping multilayer dielectrophoretic microfluidic
devices.

Herein, we developed a dielectrophoretic multilayer lab-
on-a-foil device to study the spatial DEP movement of red
blood cells (RBCs) and CTCs (modeled with A549 lung
carcinoma cells) and conducted the continuous separation
of A549 cells from RBCs. Based on theoretical single-shell
model and numerical simulation, the crossover frequency
of A549 cells under an AC DEP was estimated. To validate
the configuration of nonuniform electric field, the motil-
ity of RBCs and A549 cells were tested based on region
of interest (ROI) grayscale intensity analysis. The z-axis
movements of RBCs and A549 cells were evaluated at var-
ious driving voltages. Finally, by applying the crossover
frequency of the AC signal with desired driving amplitude,
the A549 cells were continuously separated from RBCs
sample, and the capture rate was evaluated.

2 | MATERIAL AND METHODS

2.1 | Device design and working
mechanism

In this work, we designed a multilayer lab-on-a-foil device
to spatially control RBCs position along z-axis and sep-
arated out A549 cells based on DEP (Figure 1A). This
microfluidic device consists of four layers of thin-film
materials, including a substrate layer with inkjet micro-
electrode array, microchannel layer, cavity layer, and cover
layer. The substrate layer includes four straight paral-
lel microelectrodes to create AC DEP when the electric
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FIGURE 1

(A) Overview of the lab-on-a-foil multilayers microfluidic dielectrophoresis device for circulating tumor cells (CTCs)

separation from red blood cells (RBCs). (B) Schematic illustration of separating process. (C) Cross-sectional illustration of multilayers device

and separation process using nDEP.

signals with different phases are applied to the electrodes.
In the microchannel layer, a serpentine-shape channel
is designed for continuous large volume sample process-
ing. Above the microfluidic layer, five rectangular cavities
are designed the microchannel in the cavity layer to cre-
ate dead flow zones that can trap and concentrate the
RBCs cell inside the cavities. The cover layer is designed
to enclose the microchannel, electrodes, and cavities with
an inlet and an outlet, as shown in Figure 1A.

When the cell samples are injected from inlet with con-
tinuous flow, the AC driving signals are applied to this
device and create a nonuniform field to induce DEP force
on RBCs and A549 cells. By adjusting the applied fre-
quency and phase on the electrodes, the DEP force on
RBCs and A549 cells can be controlled based on their dif-
ference in the dielectric properties. The direction of nDEP
force is positive along z-axis, and the gravity force is neg-
ative along z-axis, which is shown in Figure 1B. When
electric signal is applied in the microchannel, both RBCs
and A549 cells experience the DEP force along z-axis. In
this device, at a specific range of frequencies, RBCs are
lifted to the cavity in the microchannel as they experience
strong DEP force, whereas the A549 cells are not lifted as
the DEP force is negligible. When the RBCs are lifted to the
cavity, they enter a dead flow zone and thus are trapped in
the cavities. On the contrary, A549 cells will not be trapped
and continue to flow to the outlet by the drag force. There-
fore, the continuous separation of the A549 cells from the
blood flow is realized in this device.

2.2 | Theory background

Based on the configuration of microelectrodes array, the
DEP force Fppp and twDEP force F,,pgrp are induced on
A549 cells and RBCs [16, 29-31]. The former force (Fpgp)
causes the motion of the particles in the nonuniform elec-
tric field which is induced by interaction between the
polarized particle and surrounding solution with spatial
gradient of the electric field. The time-averaged DEP force
can be defined as

Foop = 2trcuRelfeu @IV[E[ @)

where ¢,,represents the permittivity of the medium, r is

the radius of the particle, and Vlﬁlzis the gradient of the
squared magnitude of the electric field. The latter force
F,u.prp acts to move the particle against or along the
direction of the phase gradient, which can be calculated

by
402
Fupgp = 27r°epIm[fon @IZ[E| Vo (@)

and I|E |2V¢ is phase gradient factor. Re[fcy(w)] and
Im[fcy(w)] are real and imaginary part of the Clausius-
Mossotti (CM) factor (fcys), respectively. Depending on
whether Re[fcy(w)] is positive or negative, DEP force
drives cells toward either strong field regions or weak field
regions above the electrodes. Similarly, the twDEP force
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results of electric field distribution and the trajectory of red blood cells (RBCs) (red) and A549 cells (blue). The trajectory results are a

zoomed-in view of electric field distribution.

drives the particles along or against the direction of the
phase gradient, depending on the sign of Im|[ fy(w)] and
the phase gradient factor E*V¢ [16, 29, 30]. CM factor
(fcum) depends on the electrical properties (conductivity o
and permittivity ) of the particle and its surrounding fluid,
which can be calculated by

e — &
P m
fem = 5—= (3)
€y + 2¢,
where ¢, and ¢, indicate the complex permittivity of the

particle and the surrounding medium, respectively. If the
single-shell model is applied in calculating the complex
permittivity of cell, the complex permittivity of particles ¢},
is replaced by equivalent complex relative permittivity
based on the shell and interior properties of the cell:

(2) 2(2)
. . N eopt2em

€eq = €m 3 . 4)

(2) - (&2
r; z;"p+z;,

where r is the outer radius of cell, and r; is the inner radius
of cell (cytoplasm) (r; = r, — th,,); th,, is the thickness
of cell membrane; ¢ p and &, are complex permittivity of
cytoplasm and cell membrane, respectively. The complex
permittivity €* is dependent on electric frequency, rela-
tive permittivity, and conductivity, which can be defined
¢* = ¢ —i(o/w) [18, 32-34]. When CM factor is zero at the
specific driving frequency, this frequency called crossover
frequency and there is no DEP force applying on cells in
suspending medium liquid. It also worth noting that when
the levitation height of cells above electrodes is higher than
the half of sum of electrodes width and spacing distance of
two electrodes, the twDEP force is ignorable [16].

3 | RESULTS AND DISCUSSION

3.1 | Numerical simulation
The MyDEP [35], an open-source computational tool, was
used for calculating the CM-factors of two different types
of cells. The frequency-sweep-test and single-shell sphere
model of cells were applied in calculation. The carrier
medium properties were set based on the measurement
results. As to two types of cells, the dielectric properties
were referred to previous work [33, 36-38], including two
types of properties based on classical and electrical model
for describing cell membrane, and the detail can be found
in Table S1. After sweep-test of CM factor, we numeri-
cally simulated the electric field and particles (RBCs and
A549 cells) trajectory using COMSOL Multiphysics 5.4 to
verify the principles of the device. In this process, the
AC module and DEP in the particle tracing module were
applied to a 2D geometry model that has the device dimen-
sion. The time-dependent calculator was used to calculate
nonuniform electric field distribution and z-axis trajectory.
To find the crossover frequency for A549 cells and real-
ize the optimal DEP performance on separating of A549
cells from RBCs, the CM-factors of two types of cells are
calculated. The driving frequency ranges from 1 kHz to
1000 MHz, and a single-shell 2D sphere model was applied
in medium with conductivity from 1.4 to 1.6 S/m with an
increment of 0.1 S/m. We found that the frequency around
1 x 10° Hz is close to the crossover frequency of A549 cells
and has the largest DEP force difference between two types
of cells, allowing nDEP to lift RBCs and keep A549 cells at
the bottom, which is shown in Figure 2A. Moreover, to val-
idate the movement of cells under optimal frequency, the
same parameters of cell and medium were used to in the
simulation. Figure 2B shows the geometry dimension and
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Results of binary processing of RBCs and A549 cells.

electric field simulation results. After calculating the elec-
tric field, the single-shell model was used to describe A549
cells and RBCs. The initial position of cells was randomly
distributed in the channel layer (black rectangular frame
in simulation results), which is shown in Figure 2B. When
the electric field is applied in this domain, the RBCs (red
particles Figure 2B) start to move to the upper layer of the
channel, whereas A549 cells maintain a lower position.

3.2 | Evaluation of z-axis movement
based on grayscale microscope image
sequence

To investigate and characterize the movement and dis-
placement of cells along z-axis, we separately infused the
RBCs and A549 cells sample into the microfluidic device
and sedimented cells to microchannel substrate without
flow. Meanwhile, the focus plane was set on microchannel
substrate to capture z-axis displacement of cells under DEP
force. Once the cells start moving along the z-axis to the
top of channel, the grayscale intensity of each cell changed
because the position of the cells is different from the focal

plane, which is shown in Figure 3A. In this process, the
original image of the cells is converted to binary grayscale.
To quantify the change of grayscale intensity during the
cell movement, an ROI was defined between two elec-
trodes (dot line rectangular in Figure 3C,D). When cells
move away from the bottom electrodes and focal plane,
the cell membrane becomes darker than cytoplasm and
cytoplasm turns to white. At this moment, grayscale inten-
sity of ROI increases depending on distance between
cells and the focal plane. Therefore, the variation in the
grayscale intensity of ROI was suggested to quantitatively
analyze the cell position.

For the purpose of evaluation of z-axis moving, the loca-
tions of cells were captured by a high-speed camera and
converted to an image sequence. After that, the ROI with
the same area was defined for each image, and all sets of
images were converted to 8-bit grayscale using open-source
software ImagelJ/Fiji (NIH, USA). Figure 3C,D shows the
original images and processed images of RBCs and A549
cells between two electrodes with and without an electric
field. By quantitatively analyzing the average intensity
in the ROI, we compared the average intensity change
(Iror) for RBCs and A549 cells at 1 MHz, which is close to
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FIGURE 4 Trapping performance for
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red blood cells (RBCs) and A549 cells at 120 s,
160 s, and 8 min.

the theoretical crossover frequency. Figure 3B shows that
under the DEP electric field, Iyo; of blood cells increased
to maximum value (Alpo; = 18 in grascale intensity),
whereas Ipp; of CTCs kept constant (~2) within 320
frames (~13 s in 24 frames per second recording).

3.3 | Evaluation of trapping and
separation performance

To validate the spatial transport of cells in a continuous
flow, the samples of RBCs and A549 cells were separately
injected in this device with the same flow rate. Based on
the previous results, the AC electric field was conducted
with the driving signal of 900 mVpp and 1 MHz. To ensure
consistency in the experimental conditions, the observa-
tion window was set on the same cavity and electrode array.
By applying a frequency of 1 MHz, the image sequence
of the cavity was captured after turning the electric field
at 120 s, 160 s, and 8 min. The results indicate that RBCs
were trapped in the cavity and the number of trapped RBCs
increased with time as the cells were moving to the dead
zone of flow by DEP force (Figure 4). Moreover, the differ-
ent grayscale intensities in the microcavity were observed
before and after applying electric field due to concentra-
tion change of RBCs. On the contrary, the A549 cells were
not trapped in the cavities, and intensity of cavities was
not changed. This result is consistent with the results of
the z-axis moving test. At the crossover frequency (1 MHz),
the DEP force on A549 cells is too weak to make A549
cells move along z-axis, whereas RBCs experienced strong
DEP force, and thus, they were lifted by DEP force. With
the external fluid field, A549 cells experienced drag force
and flowed with bottom streaming to outlet, whereas RBCs
lifted to the cavities and trapped in the cavities where they
will not be influenced by the fluid flow. It is worth noting
that cells in the one single cavity, some RBCs went out of
cavities after 8 min due to the capacity of trapping blood.
The capacity of entire device can be enhanced by adding
more cavity unit along with the micro channel.

After separately testing on the trapping performance for
two types of cells, the mixture of two types of cells sam-
ple was applied in the device to demonstrate and evaluate
the separation efficiency of A549 cells. The sample was
first counted in hemocytometer and then was injected in
the microchannels through a syringe pump at flow rate
1 uL/min. When the flow of sample is stable, the 1 MHz
with 900 mVpp driving single was applied on five elec-
trode arrays. After passing all five cavities with DEP area
and moving to the outlet, the separated sample was pipet-
ted out and transferred to the hemocytometer to count
cell numbers. The cell distribution in channel before/after
applying the DEP field can be found in Figure S5. The
capture rate of A549 cells was then evaluated by cell count-
ing process. The results in Figure 5C show that the A549
cells percentage in sample with/without being processed
in the device. The A549 cells percentage is enhanced from
2.0% + 0.6% to 86.3% =+ 0.2%. As shown in Figure 5D, the
A549 cells capture rates were evaluated, and the results
show 80.0% =+ 10.0%, 82.7% =+ 1.3%, and 86.3% + 0.2% with
a total cell number of 10, 100, and 1000, respectively.

4 | CONCLUDING REMARKS

In summary, a novel low-cost dielectrophoretic microflu-
idic device was developed for separating CTCs (A549 cells)
from RBCs. The device was made of off-the-shelf PET
films and medicalgrade double-sided tapes with xurogra-
phy technique, and the microelectrode array was made by
inkjet technique using nanoparticle conductive ink. Com-
pared with regular lift-off and mode replica techniques,
our fabrication method for electrophoretic device provides
a rapid, low-cost way for prototyping microfluidic devices
without cleanroom requirement. The device allowed for
different designs of microchannel along z-axis to observe
spatial movements of cells.

The optimal operating frequency of the device was
determined to be 1 MHz through a numerical simula-
tion involving a frequency-sweep-test. At this frequency,
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FIGURE 5 (A)IIllustration of (A)
separation procedure including three steps:

(1) infuse mixture samples, (2) apply electric

field, and (3) collect separated samples. (B)

Image of sample before and after separation.

(C) Cell percentage of sample before and

after separation process. (D) A549 cells

capture rate in 10, 100, and 1000 cells.
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the A549 cells remained at the bottom of the microchan-
nel, whereas the RBCs entered the cavities above the
channel. The experimental investigation of the z-axis dis-
placement of A549 cells and RBCs was conducted based
on the grayscale intensity test in the ROI. The study found
that the intensity of the ROI changes with the movement of
cells when the focal plane is fixed, which makes it possible
to examine the movement of cells along the z-axis. Addi-
tionally, the intensity of the ROI was used to measure cell
displacement through adjusting focal plane. The results
show that under conditions of 1 MHz and 900 mVpp, RBCs
were lifted 120 um by nDEP force, whereas A549 cells did
not show significant displacement. These findings were
consistent with the numerical simulation results, indicat-
ing that the inkjet-based lab-on-a-foil microfluidic device
is effective in separating different types of cells. Based on
these findings, we optimized the device to separately inves-
tigate the trapping performance for A549 cells and RBCs
in a continuous flow at 1 uL/min. The results show that
RBCs are trapped in cavities, and the maximum capabil-
ity is achieved when operating time is 8 min, whereas no
A549 cells are trapped in the same conditions. Finally, the
mixture of A549 cells and RBCs was infused in the device
to demonstrate A549 cell separation, and the capture rate
achieves 86.37% + 0.2%.

To the best of our knowledge, this is the first demonstra-
tion of spatially separating A549 cells along depth direction
of a microfluidic channel in a multilayer microfluidic
device. This work not only provides a promising lab-on-
a-foil microfluidic platform for studying spatial movement
of cells in DEP through a rapid and low-cost fabrication
method but also for future development of cell and parti-
cle separation in multilayer dielectrophoretic microfluidic
devices. Additionally, the multilayer device used in this
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%77 recs
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29 l
T ©
8 x 60
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22 )
©
O 20
0
After 10 cells 100 cells 1000 cells

study offers versatility in design, allowing for different lay-
ers to be utilized, which offers a method to 3D manipulate
cells with DEP. The selective control of cell movement in
z-axis has great potential for various biomedical applica-
tions such as cell separation, 3D cell patterning for cancer
diagnosis, and screening.
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