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Abstract—Multi-spectral satellite images that remotely sense
the Earth’s surface at regular intervals are often contaminated
due to occlusion by clouds. Remote sensing imagery captured via
satellites, drones, and aircraft has successfully influenced a wide
range of fields such as monitoring vegetation health, tracking
droughts, and weather forecasting, among others. Researchers
studying the Earth’s surface are often hindered while gathering
reliable observations due to contaminated reflectance values that
are sensitive to thin, thick, and cirrus clouds, as well as their
shadows. In this study, we propose a deep learning network ar-
chitecture, CloudNet, to alleviate cloud-occluded remote sensing
imagery captured by Landsat-8 satellite for both visible and non-
visible spectral bands. We propose a deep neural network model
trained on a distributed storage cluster that leverages histori-
cal trends within Landsat-8 imagery while complementing this
analysis with high-resolution Sentinel-2 imagery. Our empirical
benchmarks profile the efficiency of the CloudNet model with a
range of cloud-occluded pixels in the input image. We further
compare our CloudNet’s performance with state-of-the-art deep
learning approaches such as SpAGAN and Resnet. We propose a
novel method, dynamic hierarchical transfer learning, to reduce
computational resource requirements while training the model
to achieve the desired accuracy. Our model regenerates features
of cloudy images with a high PSNR accuracy of 34.28 dB.

Index Terms—remote sensing, deep learning, cloud removal,
convolution network

I. INTRODUCTION

The proliferation of remote sensing technology has trans-
formed geosciences. Satellite-based remote sensing has ex-
panded the spatial extents, precision, resolutions, and frequen-
cies at which these remote sensing operations are performed.
These satellite systems may either be government-operated
or powered by commercial satellite providers. These satellite
systems acquire hyperspectral imagery in hundreds of narrow,
contiguous spectral bands. The wide frequency range over
which these measurements are performed facilitates analysis
not only over the visible spectrum but also of atmospheric and
terrestrial phenomena outside the visible spectrum.

However, while the number of bands and the resolutions
at which remote sensing is performed have improved sig-
nificantly, scientists still encounter a fundamental problem:
cloud occlusion. Regardless of their thickness, clouds corrupt
the reflectance signal across all optical frequency bands and
adversely impact sensing behind the clouds. At any given
moment, around 70% of the globe is covered with clouds [1].
We compare the number of non-cloudy images covering an
area of 4.9km2, which were collected over the year 2020 at
different sites across CONUS (Contiguous U.S) based on their

Fig. 1: Distribution of sites across CONUS with varying
climatic conditions. The area of 4.9km x 4.9km is analyzed
over a year to understand variations in cloud occlusions.

climate conditions. For the climatic conditions such as Dfb
(Humid Continental, Mild Summers, Wet Year-Round), Dwb
(Humid Continental, Mild Summers, Dry Winters), Dfa (Hu-
mid Continental, Hot Summers, Year-Round Precipitation),
we observed that more than half of the satellite imagery are
occluded with at least 40% cloud coverage.

Generating accurate imputation estimates of cloud-occluded
observations is critical to improving the quality of geospatial
applications such as precision agriculture. Locations where
climate conditions result in high amounts of rainfall account
for the majority of these cloud-occluded images, while the
climate conditions found in deserts and humid regions account
for most of the cloud-free images. Most regions are partially
contaminated due to clouds for more than half the year;
alleviating cloud occlusions in satellite imagery is crucial for
applications that process them.

Reconstruction of information loss has been widely studied
in the context of satellite imagery. Early approaches based
on interpolation and propagated diffusion methods were ham-
pered by the inability to judge recovery fidelity. More recent
approaches leverage spectral bands and temporal aspects [2]–
[4] to address this inability. However, these approaches face
efficiency challenges stemming from large-area reconstruction
and model performance sensitivity to cloud and land coverage
types [5]. The deep-learning frameworks explored for this
application involve image-to-image translation methods that
learn how to map images with partial cloud coverage to
cloud-free images. A common practice for these image-to-
image translation methods is to leverage time-series relations



to increase their accuracy. However, most methods do not
incorporate any trend changes over time and have poor ac-
curacy when applied over large spatial extents. Alongside the
temporal sparsity of satellite imagery, time-series modeling
is further challenged by the lack of a sufficient number of
cloud-free images, especially for the more rain-heavy climactic
regions. Models targeting areas over large spatial extents often
fail to generate realistic, cloud-free images. This is especially
true when areas have large amounts of variability in their
climatic conditions and topographical characteristics.

In this study, we present a novel deep learning-based
model capable of predicting hyperspectral imagery occluded
by clouds. Our model integrates data from different satellite
constellations as well as recent historical images to capture
seasonal and topographical characteristics. We also include
a novel scheme to dynamically orchestrate model training
over large spatial extents to improve our model’s accuracy,
while also efficiently utilizing computational resources. Our
dynamic training scheme supports parallel and preferential
training of model instances resulting in improved accuracy and
increased spatial coverage. Our CloudNet model’s training is
further improved by our underlying distributed storage system
to achieve data parallelism and high-throughput training over
a cluster of machines.

A. Research Questions
The overarching research question guiding this study is:

How can we accurately predict multi-spectral imagery over
an area obscured with clouds? Within this broader context,
we investigate the following research questions -
RQ-1: How can our predictions accurately capture topo-
graphical characteristics, while accounting for short-term
seasonal trends?
RQ-2: How can we provide high accuracy over large spatial
extents that have unique ambient conditions?
RQ-3: How can we orchestrate computationally expensive
model training over voluminous satellite datasets without
compromising model accuracy?

B. Approach Summary
The methodology we use to alleviate cloud occlusions at

scale encompasses two key components: designing a deep
neural network architecture and facilitating effective orches-
tration of model training workloads. We propose a deep
neural network architecture, CloudNet, that alleviates cloud
occlusions for a fixed-size reference spatial extent, SE . The
size of the spatial extent SE is calibrated to ensure residency
of the deep network — encompassing the layers and tensors
that flow inside the network — within the GPU’s memory.

CloudNet falls broadly in the class of image inpainting
efforts that reconstruct damaged or missing parts of an image.
Inpainting techniques have been used in both photo editing and
video compression. CloudNet extends this concept to Multi-
spectral satellite imagery with visible (RGB) and non-visible
bands (Near-Infrared, Thermal, etc) captured by Landsat-8
sensors. Two major impediments to training an inpainting
model over multi-spectral imagery include the scarcity of

cloud-free images and the low scanning frequencies of satellite
systems. These impediments adversely affect the model’s
ability to account for seasonal and weather changes. CloudNet
overcomes this by supplementing Landsat-8 imagery with
historical data (including those from another satellite system)
for the spatial extent under consideration. We complement the
CloudNet’s inputted Landsat-8 imagery with historical data
from both the Sentinel-2 [6] and Landsat-8 satellites. This
historical data corresponds to the inputted image’s temporal
and spatial location.

To preserve accuracy, while ensuring good generalization
properties, we leverage regularization schemes and curb-
overfitting. We also train multiple model instances over a dis-
tributed cluster of machines that are tuned to different regional
variations based on topological and climatic characteristics.
Training an all-encompassing, global model introduces not just
resource challenges (stemming from GPU memory and com-
putational requirements), but challenges in capturing subtle
variations in topology and weather across large spatial extents.
Instead, our approach trains an ensemble of model instances
over smaller spatial extents, which can be used together to
encompass a large spatial extent. To avoid cold-starts when
training model instances we have designed a dynamic hierar-
chical transfer learning scheme (Section IV-B) that identifies
effective initializations of model parameters, incrementally
refines these model parameters and preserves data locality. We
leverage an imbalanced hierarchical tree structure to track our
model refinements and their corresponding refinement priority.
The objective function used to launch refinement tasks is based
on increases in spatial coverage. Our methodology allows
preferential training and refinement of model instances while
reducing duplicate processes by warm-starting model instances
during training.

C. Paper Contributions and Translational Impacts

Our methodology alleviates cloud occlusions in Landsat-8
imagery by leveraging other satellite collections and historical
data. Our key contributions include:

• Utilizing diverse satellite collections to accurately extract
structural features of topological characteristics and fast-
evolving components that are subject to seasonal changes (e.g.
the texture and pigmentation of crops in vegetated areas as
shown in Fig. 2).
• Developing a novel dynamic hierarchical transfer learning
scheme to effectively utilize computational resources and
reduce model training times without compromising model
accuracy.
• Creating an occlusion mitigation system that can be used
to inform crucial insights into cropping systems such as soil
and moisture properties, predicted crop yield, future water
demands, and cross-band vegetative indices.
• Producing a model that alleviates cloud occlusions in both
visible and non-visible bands by regenerating pixels occluded
by clouds or cloud shadows. These bands play a crucial role
in calculating evapotranspiration, measuring various vegetative
indices, detecting snow cover, gauging water content, inferring
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Fig. 2: An example of a Landsat-8 image generated after cloud
removal by our model. 54% of the input image is covered by
clouds. The predicted image has a PSNR of 36.95 dB.

plant health, quantifying soil quality, and much more.
Translational Impacts. Remotely sensed satellite imagery

informs decision-making in several domains including land-
use/land-change, agriculture, and environmental tracking. Oc-
clusions caused by clouds adversely impact such decision-
making. The core ideas in this study are translatable across
other satellite collections and bands to address their occlusion
issues. For example, our work could be used to alleviate occlu-
sions in MODIS multi-spectral imagery by utilizing historical
data from the Sentinel-2 and MODIS satellites. We also posit
that our transfer learning scheme could be used to orchestrate
other spatially explicit deep learning workloads.

D. Paper Organization
This paper is organized into six sections. Related work is

outlined in Section II. In Section III we describe our exper-
imentation to understand the characteristics of our satellite
dataset. Section IV describes our methodology. Our empirical
benchmarks and comparison with other models are presented
in Section V. Finally, we outline conclusions and future
directions in Section VI.

II. RELATED WORK

Removal of contaminated pixels in remote sensing data
includes numerical equation-based models, and inpainting
methods for recovering missing or cloud-contaminated pixels;
more recent work includes deep learning frameworks such as
the UNet model, Pix2Pix and Generative Adversarial models,
etc. Numerical Methods. Among all these techniques [7]–
[11] multi-temporal and image pixel replacement approaches
were found more effective and widely implemented. In paper
[7], cloudy image pixels are reconstructed based on the other
cloud-free portion of the sample of the same image. On the
other hand, in paper [8], the authors considered multi-temporal
images to clone the information for cloudy parts and the shows
boast in performance than using a single reference.

Inpainting Methods. Inpainting techniques [12]–[15] fill
in pixels values covered by clouds using neighboring pixel
information. Maalouf et al. [16] capture the multi-scale struc-
ture of clear regions in the single input image using Ban-
delet transform and multi-scale grouping. This transformation
method facilitates a better understanding of the geometry of
non-contaminated regions and propagating structure details
to the contaminated region in the image. Inpainting methods

based on the neighborhood of the contaminated region have
been explored in [17]. First, using some statistical measures
cloudy pixels are detected. Next, regeneration of cloudy pixels
is performed by diffusing information from the nearby clear re-
gions using differential partial equations and nearest-neighbor
interpolation. A common problem faced while using inpainting
with spatial learning is the over-smoothing of reconstructed
regions. Such models are highly dependent on similarity in
structures and land cover types in the input cloudy image.
Increasing cloud coverage and variations in land cover in the
input image contribute to a drop in accuracy. Further, such
models often fail to scale with increases in the area-of-interest
or temporal coverage. Meng et al. [18] perform patch-by-patch
recovery, via a sparse feature dictionary learning from the clear
region and assigning priorities to selected patches.

Machine Learning. Another area of cloud removal models
includes convolution neural networks (CNN) and spatial atten-
tion models. Such ML-based architectures are highly robust
and encompass image-to-image translation methods [2]–[4],
[19]–[25] that often involve fusion of clean images from other
satellites for predictions. The most recent works are based on
Generative Adversarial Network (GAN) architectures which
involves two neural networks competing against each other.
Wang et al. [26] propose the U-net generator model, where
the encoder extracts high-level features using convolutional
layers from the input cloudy image while downsampling
the image size. The model is trained using SSIM index
as the loss function, where for thick and thin clouds the
discriminator generates a single loss value and loss for cloud-
covered patches respectively. Gao et al. [27] further fuse the
synthetic image generated by a CNN with SAR (Synthetic
Aperture Radar) imagery as input and cloud-free spectral
image as a target. Such models work well when input images
have low cloud occlusions. With increasing occlusions, the
model performance drops considerably. With thick clouds,
where no partial information can be extracted from under
the cloudy region, the generator model fills the region with
unrealistic and blurred patches, resulting in dropped accuracy.
Li et al. [28] used the GAN in a physical model for cloud
distortion which considers cloud absorption while regenerating
the image. Cloud-GAN [29] is adapted from the Least Square
GAN for stable training. The model consists of two generator
and discriminator models trained with cycle consistency loss.
One generator maps cloudy to cloud-free distribution and the
other one translates the generated cloud-free image back to the
input cloudy image. This model suffers from over-smoothing
in imputed images and highly distorted images with large
cloudy regions.

Uzkent et al. [30], leverage the temporal frequency of
satellite imagery and feed images captured on different times-
tamps as is (with clouds) to the Resnet and Encoder-Decoder
model separately. This helps in capturing cloud-covered re-
gion’s spectral features from the temporally proximate images
at the location that have different cloud distributions. The
architecture is computationally expensive and may require
considerable resource overheads when training for a large area
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Landsat-8 Sentinel-2
Band Name Resolution

(m)
Wavelength

(nm)
Resolution

(m)
Wavelength

(nm)
Coastal Aerosols 30 430-450 60 430-450

Blue 30 450-510 10 448-546
Red 30 530-590 10 538-583

Green 30 640-670 10 646-684
NIR 30 850-880 10 763-908

SWIR 1 30 1570-1650 20 1542-1685
SWIR 2 30 2110-2290 20 2081-2323
TIR 1 30 10600-11190 - -
TIR 2 30 11500-12510 - -

TABLE I: The spatial resolution and wavelength range for
each Landsat-8 and Sentinel-2 band.

of interest. The approach works when images are sensed at
high temporal frequencies. However, with satellites such as
Landsat-8 (which is freely available), with temporal frequen-
cies of 16 days, this poses challenges where large occlusions
mean data may not be available for a month. The model
outputs may not be a true representation of the crop life
cycle at that point in time. CloudNet provides highly-accurate
cloud-free satellite images for large spatial extents while cap-
turing fast-evolving temporal features. CloudNet incorporates
Sentinel-2 imagery to reconstruct cloud-occluded regions on
unseen data for better generalization and to accurately capture
temporal features.

Data management is a key consideration prior to training
models. These could be based on clouds [31], data sketches
[32], or distributed hash tables [33]. Our methodology lever-
ages geohash-based partitioning of spatiotemporal data.

III. DATASET

The CloudNet model is trained on images captured by
the widely used Landsat-8 satellite [34], which is equipped
with an Operational Land Imager and thermal sensors. The
Landsat-8’s sensors are a multispectral optical system orbiting
the Earth in a near-polar orbit at an elevation of 705km.
Landsat-8 satellite captures the earth’s land surface at 15m-
100m spatial resolution every 16 days. Because of this low-
temporal frequency and data corruption (caused by satellite
malfunctions and cloud occlusions), getting a clear image
every 16 days can be difficult.

To overcome this lack of images, we coalesce Landsat-
8 data with Sentinel-2 [6] data, which has a higher spatial
resolution (10m2) and orbits the Earth’s surface every 5-6
days. As shown in Table I, Sentinel-2 only captures bands
in the Coastal Aerosol, RGB, Near-Infrared, and Short-Wave
Infrared ranges. Both satellites have spatial resolutions that are
approximately the same and their spectral bands have identical
wavelength ranges. For our dataset, we use Landsat-8 images
captured between the years 2015 and 2019.

The Landsat-8’s visible and non-visible bands are accom-
panied by a 16-bit QA (Quality Image) band, which describes
atmospheric and surface conditions for each pixel. Clouds and
cloud shadows can be identified using the QA band. The
inputted cloudy images for model training are generated by
overlaying pixels identified as clouds from cloudy images onto
cloud-free images (Fig. 3). We do this instead of relying on
satellites to capture cloudy images and a temporally proximate

Fig. 3: Our process to generate the dataset corpus for model
training and validation.

cloud-free image as the input and target data. This results in
highly reliable input and target image pairs and increases the
number of training samples to the cartesian product of cloudy
and cloud-free images. Utilizing the cloudy image captured
by satellite as is requires using the cloud-free image captured
at least 15-30 days apart from the input timestamp as the
target image which can result in the model not capturing fast-
evolving features/trends as dynamics of a region can vary a
lot in few days such as land surface temperature changes on
an hourly basis.

IV. METHODOLOGY

A. CloudNet System Architecture [RQ-2]

We propose CloudNet to alleviate cloud occlusion in satel-
lite imagery while ensuring high fidelity. Due to cloud occlu-
sions, the temporal frequency of cloud-free Landsat-8 imagery
drops considerably; resulting in approximately one cloud-
free image per month. This can be quite burdensome for
research efforts. However, by recovering corrupted pixel values
from cloud-covered areas with inpainting, we can increase
the temporal frequency of usable satellite imagery back to
Landsat-8’s 16-day orbiting time.

CloudNet is a deep neural network that utilizes
convolutional-based computation to capture non-linear
relationships between pixels from adjacent areas and different
spectral bands to precisely regenerate corrupted pixels. To
reduce the computational requirements of the model we
train multiple model instances over small spatial extents and
reduce their training by utilizing the transfer learning method
of warm-starting.

Rural regions often have clearly observable variations in
their satellite imagery based on agricultural and meteorological
conditions. Urban settings, on the other hand, have very little
observable changes (except for seasonal changes), due to roads
and building structures changing little over time. Similarly,
satellite imagery of heavily-forested areas have little variation
due to growth in the canopies being quite slow. However, in the
case of agricultural farmlands, pixel values vary considerably
depending on their location, farming activities (e.g., sowing,
irrigation, harvesting), crop cycle, and weather conditions.
Training multiple localized models tuned to small spatial
extents ensures that the model learns the patterns and trends
specific to that particular region.

Fig. 4 provides a visual representation of our model. The
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Fig. 4: The architecture of our CloudNet model. During
training, the model is inputted a Sentinel-2 image (acquired
within 8 days of the target image’s timestamp), edge map, and
NDVI index map. The edge map and NDVI index map are
derived from Sentinel-2’s spectral bands. Also inputted into
the model is historical Landsat-8 data.

Fig. 5: A Pearson correlation matrix of our dataset’s visible
and non-visible spectral bands. Highly-correlated groups can
be found within the visible, thermal, and short-wave infrared
bands.

inputs to the model are a Sentinel-2 image and a temporally
proximate, cloud-occluded Landsat-8 image. Fast evolving
features of the agricultural area such as crop condition, plant
health, and density of the vegetation, can transform consider-
ably over a few weeks. By pairing the inputted Landsat-8 data
with the higher-temporal frequency Sentinel-2 data, we are
able to make CloudNet’s predictions more reliable. To enhance
the sharpness of edges in the satellite imagery, we first extract
edges or groups of pixels that have extreme changes in the
RGB bands between the Landsat-8 and Sentinel-2 imagery. We
then perform edge enhancement on these extracted features to
improve the visibility of roads and boundaries in the image.

The Sentinel-2’s sensors do not detect thermal bands and
the thermal bands can not be directly inferred from the other
Sentinel-2 bands. This is apparent in Fig. 5 where the thermal
bands lack a strong correlation with any of the other non-
thermal bands. However, studies have shown there is a strong
inverse correlation between the thermal bands and NDVI (Nor-
malized Difference Vegetation Index), especially during the
warmer months (May through October) [35]. We leverage this
inverse relationship to learn patterns in the thermal infrared
bands that are observed over time. We also incorporate changes
in the Landsat-8’s thermal bands captured during the same
time to better learn these patterns.

ModelComputation Parameters Resnet SpaGAN CloudNet
No. of training layers 34 61 33
GPU Memory Usage 3003 MiB 1069 MiB 996 MiB

Time per epoch 423.03 s 147.19 s 61.2 s
No. of model instances 33 96 29

TABLE II: Comparison of computational requirements for
Resnet, SpAGAN, and CloudNet model during model training.

Fig. 6: Errors while training the models using our dynamic
hierarchical transfer learning scheme.

The input cloud-occluded image is fed to six blocks of
convolutional layers with the ReLU activation followed by a
batch normalization layer and a dropout layer present in only
alternate blocks. At each block level, we double the number
of the output features to capture low-level features from the
input images. These extracted features are then concatenated
with the historical Landsat-8 image’s low-level features. The
merged features are then passed through six more blocks of
stacked Conv2D layer, BatchNorm, and dropout layers. At
each block, the high-level features of concatenated features
are extracted to capture the topological feature and texture of
cloud-occluded regions.

The ancillary information from Sentinel-2 sensors are then
passed to three such blocks and merged with input Landsat-
8 feature maps. The convolutional layers also assist to bring
both Sentinel-2 and Landsat-8 images to the same spatial res-
olution. The dropout layer is a regularization method applied
to prevent overfitting of the model on training samples via
sparse activation of output neurons. Using dropouts has shown
to allow the model in generalizing well over unseen testing
samples [36]. As the model becomes denser, we add a skip
connection between the 9th and 21st convolution block, to
mitigate the issue of vanishing gradients. We maintain the
image’s spatial extent at 128pixels2 and limit the number of
skip connections in the model for faster learning and low GPU
memory consumption. We train multiple model instances of
CloudNet each specializing over smaller spatial extents. We
have designed a dynamic hierarchical transfer learning scheme
(see Section IV-B), that lowers the computational footprint
involved in training CloudNet instances simultaneously across
multiple cores and machines.

CloudNet is trained and tuned across spatial extents based
on our hierarchical transfer learning scheme (Section IV-B) to
avoid cold starts during training while refining multiple model
instances for different spatial extents. In Fig. 6, we report
the training errors while specializing from a global model to
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the regional model for a refinement depth of 3 as the model
converges at each level. Storing multiple training weights, each
focused on predicting spectral values in a certain area, helps
in generating high-accuracy, cloud-free images even when
clouds are present in 80-100% of the input image. Table II
summarizes the overall training computation requirements to
achieve target accuracy for CloudNet and other state-of-the-art
models.

Multiple CloudNet and SpAGAN model instances can be
fitted into the GPU memory simultaneously. We train the
model instances at each hierarchical level until they coverage
and show no further accuracy improvements. The next level
of training begins at a reduced learning rate (by a factor of
0.1) while specializing in the smaller spatial extent. CloudNet
requires 29 model instances for training approximately 60K
images to achieve the desired accuracy. Each SpAGAN model
instance is trained on 700 images, as suggested by the authors,
however, resulting in a high model instance count. On other
hand, we locally train model instances on each machine for
Resnet resulting in 33 models in total.

Loss Method. The cloud removal training is focused to-
wards regions that are occluded by clouds and cloud shadows.
Currently, the majority of optical satellite sensors are coupled
with additional quality assessments (QA) bands, or cloud
masks to identify the pixels as cloud or cloud-free with
the confidence percentage. Therefore, identifying clouds and
generating cloud masks, allows us to leave the clear spatial
region as is and focus on cloud-occluded parts in an image.
This is achieved through the loss method based on the Cloud-
Adaptive Regularized Loss [21]. The training loss function
is applied to the model-generated image and target image
coupled with a 2D cloud mask map. The loss function is
a weighted score of MAE between the cloudy pixels and
MSE between clean pixels across all bands identified using
the cloud mask. The following equation sums up our training
loss function:

Loss =
∑

(|Predicted − Target| ∗ scale factor ∗
cloud mask) +

∑
|Predicted− Target|2

Here, the cloud mask is represented by the value of 1 and 0
for cloudy and non-cloudy pixels respectively. We penalize
the absolute errors between the actual occluded pixels by
scaling using a fixed scaling factor. The MAE (Mean Absolute
error) further helps in dealing with outliers and is widely used
because of its robustness. We combine this loss with MSE
between the complete predicted and target image, where larger
errors are penalized more. We let the gradient weights be
trained by learning patterns in the clean neighboring region
on the given input image while focusing on corrupted areas.

B. Dynamic Hierarchical Transfer Learning [RQ-3]
Our methodology targets reducing the computational re-

quirements for model training. Training a model from the
ground-up for every spatial extent, SE , introduces computation
tractability challenges. Once a model is trained (and meets

performance thresholds), that instance can be used to alleviate
cloud occlusion for all spatial extents, of size SE , within the
larger encompassing spatial extent. Our methodology identifies
when a model is applicable for larger spatial extents and when
they must be refined and targeted for smaller spatial extents.
Further, when creating and training new model instances, our
scheduling mechanism targets spatial coverage as the objective
function that should be maximized. Our transfer learning
algorithm can be leveraged for large-scale distributed training
of any spatially explicit machine learning model.

We start by partitioning the spatial extent under considera-
tion, the continental U.S. or CONUS, into a set of contiguous
and non-overlapping spatial extents, Si. The CloudNet model
is then trained for each spatial extent Si. We use the notation,
M(Si), to represent a model trained with data from region
Si; each data item used during model training and validation
is an image representing spatial extents of size SE . Note
that the input to our CloudNet model includes Landsat-8 and
Sentinel-2 images for spatial extent SE . If the model M(Si)
does not meet our performance thresholds, we hierarchically
partition the region into subregions and train models for each
subregion. A larger spatial extent Si is partitioned into N
non-overlapping, equal-sized spatial extents each of which is
represented as Sij . In particular, Si =

∑N−1
j=0 Sij as shown in

Fig. 7a and 7b.
Our hierarchical partitioning scheme preserves spatial con-

tiguousness. For each subregion Sij , we assess the suitability
of the parent model. We assess the performance of the model
using a validation set with data for Sij if the model M(Si)
satisfies the performance threshold; then model training is
skipped for those subregions. We assert that M(Sij) = M(Si)
if the model, M(Si), is deemed performant for the smaller
spatial extent Sij . This accounts for cases, where the model
may not generalize for the entire encompassing spatial extent,
but would be applicable for other smaller, spatial extents
within the larger spatial extent. Model refinements over the
smaller spatial extent are performed only when the model for
the larger, encompassing spatial extent M(Si) is deemed non-
performant for Sij . Further, these model refinements (retrain-
ing while avoiding cold starts) are targeted and performed only
for spatial extents where the model is underperforming.

Rather than perform model training using cold starts, subre-
gions where the parent model is not performant use the parent
model’s weight vectors as the starting condition. This has two
advantages. First, because the parent model was trained with
data from a much larger spatial extent it has seen data with
larger, more diverse variations. Second, the data that the parent
model was trained on also includes data from the subregion un-
der consideration. Ultimately, models refined using the parent
model’s weight vectors as the starting condition benefit from
generalization while accounting for subtle regional variations
that impact performance. Initial layers of the model are held
fixed, while the latter layers are deemed trainable. The models
for the subregions are trained using data from that subregion,
and the weight vectors in the final layers of the model instance
are trained to account for subtle regional variations.
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(a) (b) (c)

Fig. 7: An overview of the model refinement scheme is CloudNet. Models are incrementally refined to meet the performance
objectives. (a) The spatial extent is partitioned into a set of contiguous, non-overlapping spatial extents. Model for S39 represents
the case where the regional model is performant for the subregion (breaking tie randomly between S39 and S34) (b) Depth of
a node in the tree represents the degree of refinement for that spatial extent. (c) Within a hierarchically partitioned region, the
subregions are organized as a graph and the extent with the highest degree is selected for the model training.

To inform scheduling and refinement of model training
we organize spatial extents in an imbalanced, hierarchical
tree structure – the refinement tree. We consult the tree to
inform the launching of computational tasks to ensure spatial
coverage. The tree structure allows us to accurately estimate
the spatial extents for which CloudNet model instances are
available. Each node maintains the PSNR (Peak Signal-To-
Noise Ratio) for the trained models allowing us to identify
models that have met their performance threshold and those
that have not. The objective function for selecting a spatial
extent to construct/refine a model is to maximize the spatial
extent for which the model is being built. We consult the
refinement tree to perform model refinement for spatial extents
where the model is underperforming. These refinements are
targeted, hierarchical, and incremental. Our methodology pref-
erentially trains model instances over spatial extents and then
refines these models to create new instances for smaller spatial
extents. The process is performed recursively for increasingly
finer-grained spatial extents till the model is deemed perfor-
mant. When the model for a spatial extent underperforms, we
recursively split the region and repeat the model refinement
process. The recursive spatial splits stop once the desired
accuracy is reached. Further, the depth of the tree represents
the degree of refinements that a model has gone through for
a given spatial extent.

To identify the order of modeling tasks within a region,
we organize the subregions within a spatial extent as a
graph. Each subregion is represented as a vertex in this
graph; an edge between two vertices exists only if they have
a shared boundary. Once such a graph is constructed, the
spatial extent chosen for model refinement is the node with
the highest degree (i.e., the number of edges) as shown in
Fig. 7c. When a model is being trained for the vertex, its
adjacent vertices (representing neighboring subregions with
shared boundaries) are not considered for training. Once the
model is trained, we assess the performance of this sibling
model at neighboring subregions (adjacent vertices in the
graph). If the model is deemed performant, then that model
is used. If not, a check is made to see which of the two

models (parent or sibling) had better performance for the
particular subregion. We use the model that performed better
as the initial starting condition for subregions for refining the
model for that subregion. We improve our training cost by
isolating independent model instances to train simultaneously
on multiple cores and machines. All the models at the same
depth in the tree with different parent models or all the
underperforming siblings models with the same parent model
are trained simultaneously on different machines or separate
cores in the same machine while preserving data locality. The
model instances that meet our specified PSNR accuracy are
utilized to perform predictions on unseen data.

Our methodology allows us to: (1) preferentially train mod-
els that maximize spatial coverage while identifying spatial
extents where models underperform and must be refined. (2)
Leveraging parameters from trained models (either parents
or siblings) allows us to minimize duplicate processing to
converge faster with fewer epochs. Cumulatively, these allow
us to ensure spatial coverage for CloudNet while ensuring
frugal utilization of resources.

V. EVALUATION

We perform several experiments to assess the performance
of our proposed methodology. The experiments were per-
formed in a cluster of 33 machines (Xeon E5-2620, 64 GB
Memory); machines also had a Quadro P2200 GPU (5GB of
memory with 1280 cores). CloudNet was designed and imple-
mented using Tensorflow-GPU 2.4.1. The distributed training
of the model was performed using Horovod, which is based
upon the ring-all reduce strategy [37]. Horovod uses NVIDIA’s
NCCL library to perform optimized weights averaging across
machines. The strategy ensures that each node in the cluster
performs pairwise communications with only two other nodes
significantly reducing network communications in the cluster.

A. Study Region
The focus of this work is recovering the corrupted spectral

values over agricultural areas, by reconciling complex crop
patterns, plant lifecycle, and irrigation requirements over time.
We perform our experiments over a spatial extent encompass-
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Fig. 8: Breakdown of the study region IOWA for our model
training based on Landcover types. We target agricultural
farmlands for our study which covers roughly 60% of Iowa.

(a) (b)

Fig. 9: Distribution of input training dataset for Landsat-8 and
Sentinel-2 based on cloud coverage.

ing the state of Iowa with total spatial coverage of approxi-
mately 451.7km×332.8km. In Fig. 8, we break down our study
area based upon the topological features based on National
Land Cover Database (NLCD) which provides data on the
land cover at a 30m resolution [5]. The model is also exposed
to other varieties of land covers such as developed urban
regions and water bodies. Our model trains using Landsat-
8 images captured in the months when crops are grown and
harvested (May to November). The input dataset, comprising
cloudy Landsat-8 images, is approximately 50 GB in size.
This is supplemented with auxiliary datasets consisting of
the historical Landsat-8 imagery which is also 50 GB and
Sentinel-2 imagery with a total size of 125 GB. The model
instances are trained using 225 GB of the dataset with a
total of 62,788 input samples. Fig. 9a and 9b shows the
distribution of our input training dataset based on their cloud-
occlusion percentage. More than 40% of our input data is
occluded by clouds; the degree of occlusion is at least 20%
of the spatial region. We consider images with the degree of
cloud occlusions between 20-80% when training the CloudNet
model. Similarly, for fusing Sentinel-2 inputs, images with a
degree of cloud occlusions less than 30% are considered.

Landsat-8’s sensors capture the entire Earth in
185km×180km scenes. However, training machine learning
models using these tiles is infeasible due to the accompanying
memory size and residency requirements. To efficiently
manage this voluminous dataset, we utilize a data partitioning
scheme based on geohashes. Leveraging the distributed
hash table (DHT), the framework achieves a load-balanced
distribution for fast retrieval of the input samples. The
proposed data-storage system partitions satellite imagery by
breaking down input images along geohash boundaries [38].

The geohash algorithm is a hierarchical spatial indexing
scheme where regions are defined by character strings, and
the region is partitioned into subregions by reducing the
spatial extent of the tile and increasing the length of the
geohash string. Each spatial extent is distributed based on
their respective geohash key. This controls the number of
geohash characters to consider while distributing tiles. Data
distributing in this fashion ensures distribution based on the
spatial proximity of the image, i.e., geocodes spatially closer
to each other are co-located on the same machine. If we
were to use a 3-character geocode to inform distribution in
the DHT; for the area associated with geocode “9xp”, all
the encapsulated spatial regions such “9xpdw” or “9xpqm”
will reside on the same machine in the cluster. Because
the partitioning scheme is deterministic and independent of
the satellite system, the input files are co-located as well,
regardless of the satellite system, avoiding data movements
when co-processing imagery from Sentinel-2 and Landsat-8
sources.

B. Vegetative Indices
Vegetative indices are functions, expressed over combi-

nations of spectral bands that are formulated to accentuate
the vegetative properties of a spatial region. Indices that are
highly sensitive to plant biomass are commonly utilized in
scheduling crop irrigation, predicting crop evapotranspiration
rates, and monitoring droughts among others. These vegetative
indices primarily depend on high-resolution reflectance values
captured by sensors in the visible and infrared wavelengths.
However, due to occlusion by clouds, the vegetation index
value is significantly hampered. For example, the NDVI over
high-density vegetation areas generally ranges between 0.6 to
1, and small positive values close to 0 (typically indicating
dead plants or bare soils). However, in the presence of clouds
or water, the NDVI value of a pixel drops below 0.

GCI = (
NIR

Green
)− 1 (1)

NDMI =
NIR− SWIR

NIR+ SWIR
(2)

ARV I =
NIR− (2 ∗Red) +Blue

NIR+ (2 ∗Red) +Blue
(3)

NDSI =
Green− SWIR

Green+ SWIR
(4)

NDV I =
NIR−Red

NIR+Red
(5)

The scatter plot (in Fig. 9) depicts the different vegetative
indices calculated using model-generated reflectance values
and actual cloud-free pixels over 8,000+ different spatial
locations. We calculate (1) GCI - Green Chlorophyll Index
(eq.1) used to monitor plant health by calculating the chloro-
phyll content in leaves, (2) NDMI - Normalized Difference
Vegetation Index (eq.2) that is used to estimate moisture level
to monitor droughts and fuel-level in fire areas, (3) ARVI -
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(a) GCI (b) NDMI (c) ARVI

(d) NDSI (e) NDVI

Fig. 10: Scatter plot contrasting the model imputed cloud-free vegetative index value (average over input image) and the actual
cloud-free average vegetative index value. We utilize different spectral band combinations to capture the correlation between
the model generated and the remotely sensed reflectance values.

(a) (b)

Fig. 11: (a) CloudNet testing errors for each band. NIR,
SWIR1, and SWIR2 bands have the lowest PSNR of 31 dB.
Thermal band predictions are highly accurate with a PSNR of
45 dB. (b) Monthly accuracy of CloudNet.

Atmospherically resistant vegetation index (eq.3) for robust
monitoring of vegetation area which are prone to aerosols, (4)
NDSI - Normalized Difference Snow Index (eq.4) for snow
detection and, (5) NDVI - Normalized Difference Vegetation
Index (eq.5) vegetative index. The Pearson correlation coef-
ficient higher than 0.98 for all five indices shows a strong
linear relationship between the predicted and target values
and demonstrates that model imputed pixels (using CloudNet)
are highly reliable for real-life applications and can precisely
mitigate the clouds.

C. Analyzing CloudNet across spectral bands
Next, we benchmark model performance across different

spectral bands (Fig. 11a). Among the visible spectra, the red
band has the lowest PSNR (a measure of image quality)
accuracy of 34 dB, whereas the green and blue bands perform
well with a PSNR accuracy of more than 35 dB. To improve

model performance in thermal bands, we incorporate the
NDVI index map generated from Sentinel-2 images due to its
inverse relationship. CloudNet precisely captures this relation
and shows the highest PSNR of 45 dB for both thermal
bands. The drop in performance is accounted for primarily
by low accuracy in infrared bands, where accuracy drops
by 22.5% from other bands. The quality band in Landsat-8
images occasionally fails to identify the cloud-occluded pixels,
resulting in the misclassification of cloudy pixels as clean
pixels. Such pixels results in significantly low accuracy as the
model predicts cloud-free pixels and in the target image same
pixel is cloud-covered.

In Fig. 11b, we break down model performance on a
monthly basis. Across months, the crop life cycle evolves
from seeding to harvesting. In Iowa, the planting of corn and
soybean crops occurs during the late weeks of May and crops
start blooming by the end of August. This affects the change in
density of vegetation across months. We observe an improving
performance of the model in the early months after which the
accuracy becomes consistent from August to October.

D. Comparison with SpAGAN and Resnet architecture

We compare CloudNet’s performance with state-of-the-art
cloud removal models such as Resnet [21] and SpAGAN [39].
The aforementioned models are trained on the same input
samples with 20-80% cloud coverage.

Resnet, a deep residual neural network [21], was developed
to remove cloud occlusions from Sentinel-2 satellite images.
The network consists of skip connections between double or
triple layers. The Resnet model comprises residual blocks
containing a 2D convolution layer, followed by a ReLU acti-
vation function, a 2D convolution layer, and a residual scaling
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ModelImage Quality Index Resnet SpAGAN CloudNet (Ours)
PSNR (in dB) 31.885 39.8 34.28

PSNR-B (in dB) 31.803 16.219 34.59
RASE 183.59 390.62 144.83

TABLE III: Comparison of performance by Resnet, SpAGAN,
and CloudNet model using different image quality indices.

Fig. 12: Representative examples of a cloud-free image
generated by CloudNet, Resnet, and SpAGAN respectively.
Here, PSNR-B is calculated over all bands (i) Cloud Cover-
age:38.44% PSNR-B: 36.42 dB, 29.35 dB, 28.78 dB (ii) Cloud
Coverage:72% PSNR: 28.63 dB, 24.98 dB, 22.275 dB.

layer. The authors propose a custom loss function called
Cloud-Adaptive Regularized Loss to optimize prediction while
preserving the cloud-free region of the input image and making
the model learn only the cloud-covered mappings.

The Spatial Attention GAN (SpAGAN) [39] is an image-to-
image translation neural network composed of generator and
discriminator networks. The generator uses a Resnet archi-
tecture with skip connections between sequential layers with
17 Resnet blocks and four spatial attention mappers. These
spatial attention mappers convolutional layers and weighted
matrices to create an attention matrix that focuses on cloud-
occluded areas of the image. To focus on these cloudy areas
the SpAGAN loss function takes the MSE of the attention
matrix and a matrix where cloudy areas have a value of one
while leaving the cloud-free areas unchanged.

Table III, summarizes the average performance of the afore-
mentioned models on the Red, Blue, Green, NIR, SWIR1,
SWIR2, and thermal bands. We measure PSNR, PSNR-B
(Block Sensitive Peak Signal-to-Noise Ratio), and RASE
(Relative Average Squared Error). The SpAGAN model fails
to generate a high-quality cloud-free image on multiple bands
resulting in a PSNR-B accuracy of 16.21 dB. Using RASE
and PSNR-B, we can measure image similarity on the block
level, considering the blurriness and over-smoothness artifacts.
These artifacts have the most adverse impact on SpAGAN,
while CloudNet and Resnet show reasonable accuracy and
reduced errors. Our model, CloudNet, achieves an overall
PSNR-B accuracy of 34.59 dB.

E. Variation in the percentage of cloud-occluded region

To measure the sensitivity of the aforementioned models to
the degree of cloud-occlusion, we measure the performance on
input samples in RGB bands with 20-40%, 40-60%, and 60-
80% clouds (Fig. 12). To measure performance, we calculate

(a) (b)

Fig. 13: Comparing CloudNet performance with Resnet and
SpAGAN models with increasing cloud-occluded regions (a)
Accuracy is measured in terms of PSNR (b) Testing errors are
measured in terms of RASE.

PSNR which is commonly used image quality measure. How-
ever, PSNR metrics do not translate well with block artifacts
and blurriness in the image, therefore as a fair comparison,
we report RASE, which is sensitive towards artifacts.

Clouds can be classified based on their altitude [40]. Some
can be classified as cirrus clouds which are thin strands at
high altitudes, dense and cauliflower-shaped cumulus clouds
that are found in warmer regions at low altitudes, and altocu-
mulus clouds present in middle altitudes and characterized
by globular masses. We report model imputed images after
cloud removal in Fig. 12 on various cloud types and cloud
coverage. SpAGAN outperforms CloudNet on RGB bands
when clouds are scattered and sparsely spread out on RGB
bands. The cloud-free regions are well preserved by all the
models. However, we observe an over-smoothening in the
cloud-occluded area generated by Resnet. This is in Fig. 13a as
well, for 20-40% cloud coverage; Resnet has the lowest PSNR
of 35.2 dB. With increasing cloud coverage the accuracy of
SpAGAN, Resnet, and CloudNet drops by 14.5%, 16.981%
and, 11.66% respectively. This is expected due to the majority
of the area being covered by clouds; however, CloudNet is
able to preserve the underlying topological features in areas
with dense clouds with comparably lower blurriness in the
image. The accuracy is maintained at a PSNR of 33.2 dB,
while RASE errors in CloudNet are then the lowest compared
to other models.

VI. CONCLUSION

We described our methodology to mitigate cloud occlusions
in remotely sensed satellite imagery by leveraging historical
variations in Landsat-8 and Sentinel-2 satellite systems that
have different spatial and temporal resolutions. Our methodol-
ogy encompasses the deep network, hierarchical transfer learn-
ing, and scalable orchestration of model training workloads.

RQ-1 CloudNet captures the spatial characteristics from his-
torical imagery and also utilizes high-frequency scans from
Sentinel-2 for incorporating short-term seasonal trends. By
leveraging data from different satellite systems for the same
spatial extent, the model-generated images can capture the
topological features of the cloud-occluded spatial region.
RQ-2 Rather than build an all-encompassing model, Cloud-
Net is designed for smaller spatial extents. Having multiple
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model instances, each calibrated to smaller spatial extents,
allows the framework to account for subtle regional variations
and preserve accuracy.
RQ-3 Training deep learning models is computationally inten-
sive involving the tuning of a large number of parameters. Our
dynamic hierarchical transfer learning scheme prevents cold-
starts (and the associated computational costs) during model
training. Additionally, the scheme also reduces the number
of model instances that need to be trained. Our DHT-based
scheme facilitates data locality during model training.
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