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Abstract

Robust Markov decision processes (RMDPs)
provide a promising framework for computing
reliable policies in the face of model errors.
Many successful reinforcement learning algo-
rithms build on variations of policy-gradient meth-
ods, but adapting these methods to RMDPs has
been challenging. As a result, the applicability of
RMDPs to large, practical domains remains lim-
ited. This paper proposes a new Double-Loop Ro-
bust Policy Gradient (DRPG), the first generic pol-
icy gradient method for RMDPs. In contrast with
prior robust policy gradient algorithms, DRPG
monotonically reduces approximation errors to
guarantee convergence to a globally optimal pol-
icy in tabular RMDPs. We introduce a novel para-
metric transition kernel and solve the inner loop
robust policy via a gradient-based method. Fi-
nally, our numerical results demonstrate the util-
ity of our new algorithm and confirm its global
convergence properties.

1. Introduction

Markov decision process (MDP) is a standard model in
dynamic decision-making and reinforcement learning (Put-
erman, 2014; Sutton & Barto, 2018). However, a funda-
mental challenge with using MDPs in many applications
is that model parameters, such as the transition function,
are rarely known precisely. Robust Markov decision pro-
cesses (RMDPs) have emerged as an effective and promis-
ing approach for mitigating the impact of model ambiguity.
RMDPs assume that the transition function resides in a pre-
defined ambiguity set and seek a policy that performs best
for the worst-case transition function in the ambiguity set.
Compared to MDPs, the performance of RMDPs is less sen-
sitive to the parameter errors that arise when one estimates
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the transition function from empirical data, as is common in
reinforcement learning (Xu & Mannor, 2009; Petrik, 2012;
Petrik et al., 2016).

As is common in recent literature on RMDPs, we assume
that the RMDP’s ambiguity set satisfies certain rectan-
gularity assumptions (Wiesemann et al., 2013; Ho et al.,
2021; Panaganti & Kalathil, 2021). Albeit general RMDPs
are NP-hard to solve (Wiesemann et al., 2013), they be-
come tractable under rectangularity assumptions and can be
solved using dynamic programming (Iyengar, 2005; Nilim
& El Ghaoui, 2005; Kaufman & Schaefer, 2013; Ho et al.,
2021). The simplest rectangularity assumption is known
as (s, a)-rectangularity and allows the adversarial nature
to choose the worst transition probability for each state
and action independently. Because the (s, a)-rectangularity
assumption can be too restrictive, we assume the more-
general s-rectangular ambiguity set (Le Tallec, 2007; Wiese-
mann et al., 2013; Derman et al., 2021; Wang et al., 2022),
which restricts the adversarial nature to choose a transition
probability without observing the action. Our results also
readily extend to other notions of rectangularity, includ-
ing k-rectangular (Mannor et al., 2016), and r-rectangular
RMDPs (Goyal & Grand-Clément, 2022).

Policy gradient techniques have gained considerable pop-
ularity in reinforcement learning due to their remarkable
empirical performance and flexibility in large and complex
domains (Silver et al., 2014; Xu et al., 2014). By parameter-
izing policies, policy gradient methods easily scale to large
state and action spaces, and they also easily leverage generic
optimization techniques (Konda & Tsitsiklis, 1999; Bhatna-
gar et al., 2009; Petrik & Subramanian, 2014; Pirotta et al.,
2015; Schulman et al., 2015; 2017; Behzadian et al., 2021a).
In addition, recent work shows that many policy gradient
algorithms are guaranteed to find a globally-optimal policy
in tabular MDPs even though they optimize a non-convex
objective function (Agarwal et al., 2021; Bhandari & Russo,
2021).

As our first contribution, we propose a new policy gradi-
ent method for solving s-rectangular RMDPs. We call this
method the Double-Loop Robust Policy Gradient (DRPG),
because it is inspired by double-loop algorithms designed
for solving saddle point problems (Jin et al., 2020; Luo
et al., 2020; Razaviyayn et al., 2020; Zhang et al., 2020). In
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particular, DRPG solves RMDPs using two nested loops: an
outer loop updates policies, and an inner loop approximately
computes the worst-case transition probabilities. While
the outer loop resembles policy gradient updates in regular
MDPs, the inner loop must optimize over an infinite number
of transition probabilities in the ambiguity set. To effec-
tively optimize the continuous transition probabilities, we
use a projected gradient method with a finite but complete
parametrization in tabular MDPs. To scale the algorithm to
large problems, we propose to use a parametrization based
on KL-divergence ambiguity sets.

As our second contribution, we show that DRPG is guaran-
teed to converge to a globally optimal policy in s-rectangular
RMDPs. While this result mirrors similar known results
for ordinary MDPs, the robust setting involves several ad-
ditional non-trivial challenges. Unlike in ordinary MDPs,
the RMDP return is not differentiable in terms of the pol-
icy (Razaviyayn et al., 2020), which precludes us from
leveraging MDP results. Since the RMDP return is not
convex, it also does not admit subgradients. Instead, we
show that it is sufficient to approximate it by its Moreau
envelope, which is differentiable. An additional challenge is
that solving the inner loop optimally in every policy carries
an unacceptable computational policy, but solving it approx-
imately may cause oscillations. We address this problem
by proposing a schedule of decreasing approximation errors
that are sufficient to converge to the optimal solution. In fact,
the policy updates are guaranteed to converge to the optimal
policy as long as the inner loop can be solved with sufficient
precision, even when the RMDP is non-rectangular.

Despite the recent advances in robust reinforcement learning
(Roy et al., 2017; Badrinath & Kalathil, 2021; Wang & Zou,
2021; Panaganti & Kalathil, 2022), policy gradient meth-
ods for solving RMDPs have received only limited atten-
tion. A concurrent work proposes a policy gradient method
for solving RMDPs with a particular R-contamination am-
biguity sets (Wang & Zou, 2022). While this algorithm
is compellingly simple, the R-contamination set is very
limited in comparison with the general sets that we con-
sider. In fact, we show in Proposition F.1 that RMDPs
with R-contamination ambiguity sets simply equal to or-
dinary MDPs with a reduced discount factor; please see
Appendix F for more details. Another recent work develops
an extended mirror descent method for solving RMDPs (Li
et al., 2022); however, their results are limited to (s, a)-
rectangular MDPs only, and their algorithm requires the ex-
act robust Q function to update the policy at every iteration.
On the other hand, our proposed algorithm is compatible
with any compact ambiguity set, and we do not require an
exact optimal solution when solving the inner maximization
problem. Moreover, by parameterizing the inner problem,
the proposed algorithm is scalable to large problems.

While this paper exclusively focuses on RMDPs, it is worth
mentioning that there is an active line of research studying
a related model, called distributionally robust MDPs, which
assumes the transition kernel is random and governed by an
unknown probability distribution that lies in an ambiguity
set (Ruszczynski, 2010; Xu & Mannor, 2010; Shapiro, 2016;
Chen et al., 2019; Grand-Clément & Kroer, 2021a; Shapiro,
2021; Liu et al., 2022).

The remainder of the paper is organized as follows. Sec-
tion 2 outlines RMDP and optimization properties that are
needed for our results. Then, Section 3 describes the outer
loop of DRPG, our proposed algorithm, and shows its global
convergence guarantee. The algorithms for solving the inner
loop are then described in Section 4. Finally, in Section 5,
we present experimental results that illustrate the effective
empirical performance of DRPG.

Notation: We reserve lowercase letters for scalars, lower-
case bold characters for vectors, and uppercase bold charac-
ters for matrices. We denote A® as the probability simplex
in R . For vectors, we use || - || to denote the lo-norm. For a
differentiable function f(z,y), we use V, f(x, y) to denote
the partial gradient of f with respect to . The symbol e
denotes a vector of all ones of the size appropriate to the
context.

2. Notations and Settings

An ordinary MDP is specified by a tuple (S, A, p, ¢, 7, p),
where S = {1,2,--- ,S}and A = {1,2,--- , A} are the
finite state and action sets, respectively. The discount factor
is v € (0,1) and the distribution of the initial state is p €
A®. The probability distribution of transiting from a current
state s to a next state s’ after taking an action a is denoted as
avector ps, € A% andina part of the transition kernel p :=
(Psa)ses.aca € (AS)S*A The cost of the aforementioned
transition is denoted as ¢, ¢ for each (s, a,s’) € Sx A S.
It is well-known that translating the costs by a constant or
multiplying them by a positive scalar does not change the
set of optimal policies. Therefore, we can assume without
loss of generality that the cost function is bounded in [0, 1].

Assumption 2.1 (Bounded cost). For any (s,a,s’) € S X
A x 8, the cost ¢qq5 € [0, 1].

Given a stationary randomized policy 7 := (7rs)scs that
lies in the policy space IT = (A4)%, 7 maps from state
s € S to a distribution over action a € A, and the quality
of a policy 7 is evaluated by the value function v™P € RS,
defined as

oo
P _ t _
Vg - ]E‘ITJ’ § :’V *Cspaysiqn | S0 =S|,
t=0

where a; follows the distribution 7r,,, and E ;, denotes
expectation with respect to the distribution induced by
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and transition function p conditioned on the initial state
event {sgp = s}. Similarly, the value of taking action a at
state s is referred as the action value function as below

o0

TP __ t, _ _

9sa” = ]E‘IT,P E Y Csiarsii | S0 = S,a0 = a|,
t=0

where it is known that v7P = 3\ 7,,q7,P (Puterman,
2014; Sutton & Barto, 2018). The objective of an MDP is
to compute the optimal policy 7* that yields the minimum
expected cost, i.e.,

oo
o* = arginei%Eﬂ.’p [;) ’ytcSthSt+1|SO ~ p‘| .

In most domains, the exact transition kernel and cost func-
tion are not known precisely and must be estimated from
data. These estimation errors often result in policies that per-
form poorly when deployed. To compute reliable policies
with model errors, RMDPs, defined as (S, A, P, ¢,, p),
aim to optimize the worst-case performance with respect to
plausible errors (Iyengar, 2005; Nilim & El Ghaoui, 2005;
Wiesemann et al., 2013), i.e.

min max J, (7, p) 1= plv™P = E psv P, (2)
well peP cs
S

where P is known as the ambiguity set. By carefully cal-
ibrating P so that it contains the unknown true transition
kernel, the optimal policy in (2) can achieve reliable perfor-
mance in practice (Russell & Petrik, 2019; Behzadian et al.,
2021b; Panaganti et al., 2022).

Note that, at this point, there is no need to assume that the
RMDP in (2) is rectangular, such as (s, a)-rectangular or
s-rectangular (Iyengar, 2005; Nilim & EI Ghaoui, 2005;
Wiesemann et al., 2013; Ho et al., 2021). We do not need
these assumptions to describe or analyze DRPG and only
require P to be compact. Rectangularity assumptions will
be helpful, however, when developing algorithms for solving
the inner maximization problem.

Given a specific policy and transition kernel, the occupancy
measure represents the frequencies of visits to states (Puter-
man, 2014), which is defined as follow.

Definition 2.2 (Occupancy measure). The discounted state
occupancy measure d7P: & — [0, 1] for an initial distribu-
tion p, a policy 7 € II, and a transition kernel p is defined
as

o0
d3P(s) = (1= ) Applb). 3
seS t=0
Here, pT,, (t) is the probability of arriving in a state s’ after
transiting ¢ time steps from state s over the policy 7r and the
transition kernel p.

The non-convex minimax problem in (2) can be reformu-
lated as an equivalent problem of minimizing the worst-case
return:

min {«b(w) = max Jp(ﬂ',p)}. @
Then, it may seem natural to solve (4) by a gradient descent
on the function ®. This is, in general, not possible because
the function ® is not differentiable. In addition, since ® is
neither convex nor concave, its subgradient does not exist
either (Nouiehed et al., 2019; Lin et al., 2020). These com-
plications motivate the need for the double-loop iterative
scheme to solve RMDPs in Section 3.

Next, we introduce two crucial definitions on smoothness
and Lipschitz continuity, which we need to analyze DRPG.

Definition 2.3. A function h : X — R is L-Lipschitz if
for any @1, z2 € X, we have that |h(x1) — h(za)]| <
L||@1 — x2||, and £-smooth if for any a1, x5 € X, we have
[Vh(z1) — Vh(zs)| < L@ — z2|.

To discuss the global optimality of RMDPs, we introduce
the following definition of weak convexity officially.

Definition 2.4 (Weak Convexity). The function h : X — R
is ¢-weakly convex if for any g € Oh(z) and z, ' € X,

Here, Oh(x) represents the Fréchet sub-differential (See
Definition D.1 in the appendix) of h(-) at € X, which
generalizes the notion of gradient for the non-smooth func-
tion (Vial, 1983; Davis & Drusvyatskiy, 2019; Thekumpara-
mpil et al., 2019).

3. Solving the Outer Loop

In this section, we describe a policy gradient approach that
solves the minimization problem in (4). Surprisingly, we
show that a form of gradient descent applied to (4) converges
to a globally-optimal solution, even though the objective
function is neither convex nor concave. This result is in-
spired by the recent analysis of policy gradient methods for
ordinary MDPs (Agarwal et al., 2021; Bhandari & Russo,
2021). For now, we assume that there exists an oracle that
solves the inner maximization problem. We provide the
discussion and algorithms for solving the inner problem in
Section 4.

The remainder of the section is organized as follows. In
Section 3.1, we describe our new policy gradient scheme
and then, in Section 3.2, we show that our scheme is guar-
anteed to converge to the global solution. To the best of our
knowledge, this is the first generic robust policy gradient
algorithm with global convergence guarantees.
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Algorithm 1 Double-Loop Robust Policy Gradient (DRPG)
Input: initial policy 7, iteration time 7', tolerance se-
quence {e; }+>0 such that ;1 < e, step size sequence
{ai}i>o
fort=0,1,...,7 —1do

Find p; so that J, (7, p¢) > maxpep Jo(7:, ) — €.
Set Tl < PrOjH(ﬂt — Oétvﬂ-Jp(ﬂ't,pt)). (Eq 5)
end for
Output: 7 € {mo,...,wr_1} s.t. Jp(mwp,p) =
mint'e{o,...,T—l} Jp(ﬂt/7pt)

3.1. Double-Loop Robust Policy Gradient Method
(DRPG)

We now describe the proposed policy gradient scheme sum-
marized in Algorithm 1, named Double-Loop Robust Policy
Gradient (DRPG). We refer to DRPG as a “double loop”
method in order to be consistent with the terminology in
game theory literature (Nouiehed et al., 2019; Thekumpara-
mpil et al., 2019; Jin et al., 2020; Zhang et al., 2020).

The inner loop of DRPG updates the worst-case transition
probabilities p; while the outer loop updates the policies ;.
Specifically, DRPG iteratively takes steps along the policy
gradient to search for an optimal policy in (2). At each
iteration ¢, we first solve the inner maximization problem to
some specific precision €;; that is, for a policy 7r; at iteration
t, we seek for any transition kernel p; such that

JP(ﬂ-tapt) > maXJp(ﬂ-hp) — €t .
peEP

Once p, is computed, DRPG then takes a projected gradient
step to minimize J, (7, p;) subject to a constraint 7 € II.

When chosen appropriately, the sequence ¢, allows for quick
policy updates in the initial stages of the algorithm without
putting the global convergence in jeopardy. Similar algo-
rithms studied in the context of zero-sum games do not in-
clude this tolerance ¢; (Nouiehed et al., 2019; Thekumpara-
mpil et al., 2019). The adaptive tolerance sequence {€; };>0
is inspired by prior work on algorithms for RMDPs (Ho
et al., 2021). The convergence analysis below provides
further guidance on appropriate choices of ¢;.

DRPG updates policies using projected gradient descent.
The well-known proximal representation of projected gradi-
ent is (Bertsekas, 2016):

. 1
o1 € argmin (Voep(me, po). m = m0) 5 =l —

= Projy; (7 — at Vi Jp(m,pr)) ®)

where Projy; is the projection operator onto IT and a; > 0
is the step size. This projected gradient update on 7, :=
(m1s)ses € (A%)S can be further decoupled to multiple

projection updates that across states and take the form as
7Tt+l,s = ProjAA (ﬂ-t,s - atvﬂ's Jp(ﬂ-tapt)) ) VS S 87

which can also be seen as a gradient step followed by a
projection onto A# for each state s € S. Note that the
gradient VJ, (7, p;) used in DRPG is identical to the
the gradient in ordinary MDPs, e.g., (Agarwal et al., 2021;
Bhandari & Russo, 2021),

8Jp(7'r,p) _ 1 ™, P T, p
- 17,,}/ dp (S) Asq" - (6)

OTgq

Actor-critic RL algorithms are typically based on this form
of the policy gradient.

An alternative to double-loop algorithms is to use single-
loop algorithms. Single-loop algorithms interleave gra-
dient updates to the inner and outer optimization prob-
lems (Mokhtari et al., 2020; Zhang et al., 2020). Interleaving
gradient updates is fast but prone to instabilities and oscil-
lations. The most-common approach to preventing such in-
stabilities is to resort to two-scale step size updates (Heusel
et al., 2017; Daskalakis et al., 2020; Russel et al., 2020).
We focus in this work on double-loop algorithms because
of their conceptual simplicity and good empirical behavior.

3.2. Convergence Analysis

We now turn to analyzing the convergence behavior of
DRPG. First, recall that we assume that P is compact. Vir-
tually all ambiguity sets considered in prior work, such as
L,-ambiguity sets, L,,-ambiguity sets, Lo-ambiguity sets,
and KL-ambiguity sets, are compact.

Then, the following lemma helps us to derive the weak
convexity of this non-convex, non-differentiable (i.e., non-
smooth) objective function & (7).

Lemma 3.1. The objective function J,(m,p) in (2) is Ly-

Lipschitz and €-smooth in 7 with
I — VA 274

) N C ) b

Furthermore, the objective ®(7) is {r-weakly convex and
L -Lipschitz.

The proof of this lemma, as well as of all the remaining
auxiliary results, are provided in the appendix. Lemma 3.1
establishes some general continuity properties of ®(7r) and
serves as an important stepping stone for deriving the global
convergence of Algorithm 1; however, weak convexity alone
is insufficient to guarantee that gradient-based updates con-
verge to a global optimum.

Recent work (Agarwal et al., 2021) proved the global conver-
gence of policy gradient methods in ordinary MDP relying
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on a “gradient dominance condition”. Informally speaking,
a function h(x) is said to satisfy the gradient dominance
condition if h(x) — h(z*) = O(G(x)), where G(-) is a
suitable notion that measures the gradient of h. By having a
gradient dominance condition, one can prevent the gradient
from vanishing before reaching a globally optimal point.

Despite the non-smoothness of ®(7), weakly convex prob-
lems naturally admit an implicit smooth approximation
through the Moreau envelope (Davis & Drusvyatskiy, 2019;
Mai & Johansson, 2020). Inspired by the idea of gradient
dominance, we introduce the gradient of the Moreau enve-
lope and show that ®(7r) satisfies a particular variant of the
gradient dominance condition in the next theorem.

Theorem 3.2. Denote * as the global optimal policy for
RMDPs. Then, for any policy w, we have

DVSA Ly
1= + %) IV®_o ()l (1)

O(m) — () < (

where ® () is the Moreau envelope function of ®(7) (see
Definition D.3) and D := sup cr pep %7 /ol < 00
for every p with mingecs ps > 0.

Here, |[|95"/p|, is formally named as distribution
mismatch coefficient which is often assumed to be
bounded (Scherrer, 2014; Chen & Jiang, 2019; Mei et al.,
2020; Agarwal et al., 2021; Leonardos et al., 2021).

This gradient-dominance type property implies that any first-
order stationary point of the Moreau envelope results in an
approximately global optimal policy. We are now ready to
state our main result.

Theorem 3.3 (Global convergence for DRPG). Denote 7+
as the policy that Algorithm I outputs. Then, for a constant
step size o = % with any § > 0 and the initial tolerance

€0 < VT, we have

D(p) — {Tnel% O(r) <e, ®)

and T is chosen to be a large enough such that

4 2
DVSA | Lx S 2 | Ay
o (B ) (2 oors s )
> o
=0(e™). 9)

Compared to the ordinary MDPs, the convergence analysis
for solving RMDPs poses additional difficulties as objec-
tive function ®(7r) is not only non-convex but also non-
differentiable (Nouiehed et al., 2019; Lin et al., 2020). The-
orem 3.3 shows that the proposed Algorithm 1 converges to
the global optimal for RMDPs by the following strategy. We
first show the existence of an e-first order stationary point
(see Definition D.4) of ® (). More concretely, we prove

the gradient of the Moreau envelope is smaller than € on
the output policy. Then, by applying the derived gradient
dominance condition (Theorem 3.2), we finally complete
the proof as this stationary point is arbitrarily close to the
global optimal solution.

Theorem 3.3 shows that DRPG converges to an € global
optimum within O(e~*) steps, which has a slower rate com-
pared to standard policy gradient methods (Agarwal et al.,
2021). The additional complexity arises from this need to
control the approximation error in order to avoid looping.
In particular, computational errors at the inner loops could
break the convergence of the outer loop. Similar behaviors
are also observed in policy iteration for robust MDPs (Con-
don, 1990; Ho et al., 2021). Nevertheless, our analysis
matches and is consistent with the other minimax conver-
gence results obtained in non-convex non-concave minimax
optimization (Davis & Drusvyatskiy, 2019; Jin et al., 2020),
and provides a conservative convergence guarantee.

DRPG relies on an oracle that outputs at least one worst-case
transition kernel for any given 7. In fact, solving the inner
loop problem could still be NP-hard for non-rectangular
cases (Wiesemann et al., 2013). The following section pro-
poses an algorithm for solving the inner loop problem.

4. Solving the Inner Loop

So far, we have described the outline of DRPG and proved
its global convergence. In Algorithm 1, the transition kernel
p: is obtained by approximately solving the inner maximiza-
tion problem with a fixed outer policy 7 € II:

Jo(mr, p) = To™P, 10
max (T, D) maxp v (10)

Whereas assumptions of boundness and compactness
are used to ensure the inner maximum existing for the
maximization problem, solving this maximization prob-
lem is still computationally challenging due to its non-
convexity (Wiesemann et al., 2013). This section discusses
two solution methods for solving the inner maximization
problem, which we refer to as the robust policy evaluation
problem. Note that the convergence results in Section 3 are
independent of the method used to solve this robust policy
evaluation problem.

We now introduce two broad classes of ambiguity sets that
are considered in the rest of this section. An ambiguity set
P is (s, a)-rectangular (Iyengar, 2005; Nilim & EI Ghaoui,
2005; Le Tallec, 2007) if it is a Cartesian product of sets
Ps.a C A for each state s € S and action a € A, i.e.,

P={pec (A% | poy € Psa, Vs €S,a € A},

whereas an ambiguity set P is s-rectangular (Wiesemann
et al., 2013) if it is defined as a Cartesian product of sets
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P, C (A4, e,

P ={pec (A% (Psa)aca € Ps, Vs € S}.

4.1. Value-iteration Approach

The optimum of the inner problem (10) is attained by
solving v™* := minpep v™* P, which is commonly de-
fined as the robust value function (Iyengar, 2005; Nilim &
El Ghaoui, 2005; Wiesemann et al., 2013). The robust value
function v™ of a rectangular RMDP for a policy 7 € II
can be computed using the robust Bellman policy update
Tr : RS — RS (Ho et al., 2021). Specifically, for (s, a)-
rectangular RMDPs, the operator T is defined for each
state s € S

(Tav)s =Y (Wsa :

max psTa(csa + ’yv)) ,
acA

Psa€Psa

while for s-rectangular RMDPs, the the operator 7 is de-
fined as

(7;1-'0)3 = max {Z Tsa 'P;(Csa + 'Y’v)} .

s€Ps
P acA

For rectangular RMDPs, 7 is a contraction and the robust
value function is the unique solution to v™ = Tv™. To
solve the robust value function, the state-of-the-art method
is to compute the sequence v, ; = Trv{" with any initial
values v, which is similar to the policy evaluation for
ordinary MDPs.

Note that computing the value function update v{" to v{,
requires solving an optimization problem. For the common
ambiguity sets which are constrained by the support infor-
mation and one additional convex constraint (e.g. L-norm
ball), one has to solve A convex optimization problems with
O(S) variables and O(S) constraints for all s € S at each
iteration (Grand-Clément & Kroer, 2021b). Examples of
common ambiguity sets are provided in Appendix A.

4.2. Gradient-based Approach

Unlike the extensive study of efficient value-based meth-
ods (Iyengar, 2005; Nilim & EI Ghaoui, 2005; Wiesemann
et al., 2013; Petrik & Subramanian, 2014; Ho et al., 2018;
Behzadian et al., 2021a), there has been little work on de-
signing gradient-based algorithms to compute the robust
value function. In this subsection, a first gradient-based
algorithm is proposed in Algorithm 2 to solve the inner-loop
robust policy evaluation problem with a global convergence
guarantee, under the assumptions of having rectangular and
convex ambiguity set.

Note that the inner problem (10) could be regarded as a con-
strained non-concave maximization problem when the outer

Algorithm 2 Projected gradient descent for the inner prob-
lem
Input: Target fixed policy 7y, initial transition kernel pg,
iteration time T}, step size sequence {5; }:>0
fort=0,1,...,T; — 1 do
Set piy1 < Projp(pe + Bt VpJp(Tr, Pt)).
end for
Output: pi« € {po,...,Pr—1} s:t. Jp(7p,Ppr) =
mingeo,.... 7 -1} Jo(Tks Pt)

policy 7y, is fixed. Therefore, the most intuitive approach to
solve (10) is to iteratively update the variable by following
its ascent direction within the feasible set.

To maximize J, (7, p), Algorithm 2 iteratively computes
the projected gradient step on p; that is, at iteration ¢, we
compute

DPi+1 = Projp(py + BiVpJo(mi, pt)), (1D

which depends on the explicit form of P. Although (s, a)-
rectangular ambiguity sets can be viewed as a special case
of s-rectangular ambiguity sets in general (Wiesemann et al.,
2013; Ho et al., 2021), the implementations of the projected
gradient step for two rectangular ambiguity sets are differ-
ent.

For (s, a)-rectangular RMDPs, this projected gradient up-
date can be decoupled to multiple projection updates that
across state-action pairs such as

Pit+1,5a = Proj’Psya(pt,sa + Btvpsa Jp(ﬂ-kvpt))'

Similarly, for s-rectangular RMDPs, the projected gradient
update can be computed across states as

Piy1,s = Projp_ (Pr,s + BV, Jp(Tk, D).

If the ambiguity set is convex, the projected update can
be implemented by solving a convex optimization problem
with a quadratic objective.

4.3. Inner Loop Global Optimality

To establish some general convergence properties of Algo-
rithm 2, we first derive some continuity properties for the
inner objective (10). Then, we prove the global optimality of
Algorithm 2 by introducing a particular gradient dominance
condition for the inner problem.

The next lemma derives the gradient for the inner loop.
Lemma 4.1 (Differentiability). The partial derivative of
Jp (7, p) has the explicit form for any (s, a,s’) € SxAXS,

0Jp(m, p) 1 p
8psas’ - 1-— fydp,p(s)ﬂ.s”’ (CS‘"S/ + YV ) .

Moreover, J, (7, p) is Lp-Lipschitz in p with Ly, = (ff;;.
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If a function is smooth, then a gradient update with a suffi-
ciently small step size is guaranteed to improve the objective
value. As it turns out, inner problem is £,-smooth.

Lemma 4.2 (Smoothness). The function J,(7,p) is £p-

2
smooth in p with £y, = %

Due to the non-convexity of .J,, smoothness is not sufficient
to establish the global convergence guarantee. We notice
that the inner problem can be interpreted as having an adver-
sarial nature to maximize the total reward (decision maker’s
cost) by selecting a proper transition kernel from the ambigu-
ity set P (Lim et al., 2013; Goyal & Grand-Clément, 2022).
Hence we leverage the idea from the convergence analysis
of the classical policy gradient (Agarwal et al., 2021) and
derive our global convergence guarantee by first deriving the
following inner problem’s gradient dominance condition.

Lemma 4.3 (Gradient dominance). For any fixed 7 € I,
Jp(m, p) satisfies the following condition for any p € P
such that

D _
[ rpa%( (p —p, VpJp(ﬂ'vp» )

*)— <
Jp(m,p")=Jp(m,p) < T

where J, (7, p*) := maxpep Jp(m, p).
Using this notion of gradient dominance, we now give an
iteration complexity bound for Algorithm 2.

Theorem 4.4. Let p;+ be the point obtained by Algorithm 2
and €, > 0 be the desired precision. Algorithm 2 with

constant step si = (=) .
p size 3 552 satisfies
max Jp(ﬁk7p> - Jp(ﬁk’vpt*) S €k, (12)
peEP
whenever 5 )
32vS°AD 9
> —————— =0(¢.9). (13)
(1 —7)%;, g

4.4. Scalability of Parametric Transition

In standard policy-gradient methods, one considers a family
of policies parametrized by lower-dimensional parameter
vectors to limit the number of variables when scaling to
large problems. The projected gradient step in Algorithm 2
needs to update each ps,s/, which is difficult with large state
and action spaces. To overcome this problem, we provide a
new approach to transition probability parameterization. To
the best of our knowledge, comparable parameterizations
for the inner problem have not been studied previously.

We parameterize transition kernel with the following form
for any (s,a,s’) € S x A x S,

T ’
ﬁsas’ . exp(%v(f))

€ .
Psas - 67 6(h))’

= (14)
Zk psak : exp(T

where ¢(s) := [¢1(s), -+, dm($)] is @ m-dimensional fea-
ture vector corresponding to the state s € S, £ := (60, A) is
the collection of parameters, consisting of the strictly posi-
tive parameter X := {As, > 0| V(s,a) € S x A} and the
unconstrained parameter 6 := [y, - -, 6,,]. The symbol p
represents the nominal transition kernel, which is typically
estimated from the empirical sample of state transitions.

The parameterization in (14) is motivated by the form
of the worst-case transition probabilities in RMDPs with
KL-divergence constrained (s, a)-rectangular ambiguity
sets (Nilim & El Ghaoui, 2005). In fact, the worst-case
transitions has an identical form to (14) when linear approx-
imation @ " ¢(s) is applied.

Then, the RMDPs problem then becomes,

min max J, (7

wEll €€E p(m.8),
where = is the ambiguity set for the parameter £. In practice,
= could be constructed via distance-type constraint; that is,
we consider

E:={&| D(&ll&) < r}

where D(-||-) represents a distance function, such as L;-
norm and L..,-norm, &, is the user-specified empirical esti-
mation of &, and x € R is a given radius.

To apply the gradient-based update on parameterized tran-
sition, we introduce the following lemma to derive the gra-
dient of the inner problem, which is similar to the classical
policy gradient theorem (Sutton et al., 1999)

Lemma 4.5. Consider a map £ — pfas/ that is differ-
entiable for any (s,a,s’) . Then, the partial gradient of

Jo(m, &) on € is

0J,(m, &) 1 810gp5 ; -
_ E - sas < s’ & ) .
€ 1= Z:i/’s.g 735 c + yv,
slesa»

15)

Moreover, when parameterization (14) is applied, the score

. dlogpt .
function % has the analytical form:

dlogpS,,  #i(s) ¢ 0i(4)
sas’ __ _ . 1
891’ >\sa j psaJ )\Sa ’ ( 6)
Ologpluy _ -  0100) 07Ol
Osa — A A2,

5. Experiments

In this section, we demonstrate the global convergence of
DRPG and verify the robustness of the policies computed
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Figure 1. The error of value functions computed by DRPG for
three Garnet problems with different sizes.

by DRPG. All algorithms are implemented in Python 3.8.8,
and performed on a computer with an i7-11700 CPU with
16GB RAM. We use Gurobi 9.5.2 to solve any linear or
quadratic optimization problems involved. To facilitate
the reproducibility of the domains, the full source code,
which was used to generate them, is available at https:
//github.com/JerrisonWang/ICML-DRPG. The
repository also contains CSV files with the precise specifi-
cation of the RMDPs being solved.

5.1. Experimental Setup

To demonstrate the convergence behavior, we test our algo-
rithm on random GARNET MDPs, one of the widely-used
benchmarks for RL algorithms, with three different problem
sizes and two settings on the ambiguity sets: (s, a)- and
s-rectangular ambiguity sets. We then apply DRPG with in-
ner parameterization on the practical inventory management
problem to demonstrate its convergence and robustness.

Garnet MDPs are a class of abstract, but representative,
finite MDPs that can be generated randomly (Archibald
et al., 1995). A general GARNET G(|S|, |A|,b) is char-
acterized by three parameters, where |S| is the number of
states, |.A| is the number of actions, and b is a branching fac-
tor which determines the number of possible next states for
each state-action pair and controls the level of connectivity
of underlying Markov chains.

In our inventory management problem (Porteus, 2002; Ho
et al., 2018), a retailer orders, stores, and sells a single prod-
uct over an infinite time horizon. The states and actions of
the MDP represent the inventory levels and the order quan-
tities in any given time period, respectively. The stochastic
demands drive the stochastic state transitions. Any items
held in inventory incur deterministic per-period holding
costs. The retailer’s goal is to find a policy that minimizes
the total cost without knowing the exact transition kernel.

. DRPG Wlth a= 01
N —.— DRPG with ¢ = 0.01
Non-robust PG
60
E
e
55 1
I
|
501 '\\'\.
\ S
N T

0 25 50 75 100 125 150 175 200
Number of iterations

Figure 2. DRPG with parameterization v.s. Non-robust Policy Gra-
dient on the Inventory Management Problem

More details on the problem settings, parameter choice, and
feature selection are available in the Appendix H.

5.2. Results and Discussion

In each of our GARNET problems, we compare the objec-
tive values of DRPG at different iterations with the optimal
objective value J*, which is computed by robust value it-
eration. Robust value iteration solves the robust Bellman
equation by iteratively applying robust Bellman updates. For
each setup of our GARNET problems, we solve 50 sample
instances using both DRPG and robust value iteration. Fig-
ure 1 shows how the error (i.e., |J (7, p:) — J*|) decreases
when DRPG is performed. The upper and lower envelopes
of the curves correspond to the 95 and 5 percentiles of the
50 samples, respectively. As expected, the error decreases to
zero as the iteration step increases, which confirms the con-
vergence behavior of DRPG. Similar results are observed
for the s-rectangular case.

The results of our numerical study on the inventory manage-
ment problem are provided in Figure 2. We run DRPG with
inner parametrization and compare the performance with
the non-robust policy gradient. At each iteration ¢, we con-
sider the policy 7r; obtained by DRPG, and then we compute
its worst-case expected return ®(7;) := maxpep J(m,, P).
We do the same for the non-robust policy gradient method.
As we can see, DRPG obtains a policy that performs much
better than the non-robust policy gradient, which demon-
strates the robustness of our method. Different step sizes
are chosen for DRPG, and they lead to different conver-
gence behaviors; yet, in both cases, DRPGs outperform the
non-robust policy gradient method.

6. Conclusion

We proposed a new policy optimization algorithm DRPG
to solve RMDPs over general compact ambiguity sets. By
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selecting a suitable step size and an adaptive decreasing
tolerance sequence, our algorithm converges to the global
optimal policy under mild conditions. Moreover, we pro-
vide the first gradient-based solution method with a novel
parameterization for solving the inner maximization. In
our experiments, our results demonstrate the global conver-
gence of DRPG and its reliable performance against the
non-robust approach. Future work should address exten-
sions to related models (e.g., distributionally RMDP) and
scalable model-free algorithms.
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A. Examples of Common Ambiguity Sets

We discuss a particularly popular class of rectangular ambiguity sets which are defined by norm constraints bounding
the distance of any feasible transition probabilities from a nominal (average) state distribution. It is usually referred to
as an L -constrained ambiguity set (Petrik & Subramanian, 2014; Petrik et al., 2016; Ho et al., 2021) or L.-constrained
ambiguity set (Delgado et al., 2016; Behzadian et al., 2021a). For such rectangular ambiguity sets, problem (10) can be
solved efficiently by updating the value function with the robust Bellman operator 7, : RS — RS. Below, we show forms
of Bellman operator within different rectangular conditions.

Example B. Ly-constrained (s, a)-rectangular ambiguity sets generally assume the uncertain in transition probabilities is
independent for each state-action pair and are defined as

P= x Ps, where P;,:= {p e A° | lp — Psallr < nsa}.
s€S,ac A

For (s, a)-rectangular RMDPs constrained by the L;-norm, 7 is defined for each s € S as

(Tav™P)s = Z (Fsa .pmg% {p;ra(csa +70™P) | [[Psa — Psallr < Hm}) ’
aeA sa sa

Example C. L.,-constrained s-rectangular ambiguity sets generally assume the uncertain in transition probabilities is
independent for each state-action pair and are defined as

P= x P, where P,:= {(psl,...,pm € (AN D IPsa — Psalloo < n}
SES acA

For s-rectangular RMDPs constrained by the L.,-norm, 7 is defined for each s € S as

(ﬂvﬂ’p)s = max {Z Tsa * p;l(csa + V'Uﬂ-yp) | Z ||psa - f)saHoo < ’is} .
acA

sE€Ps
P acA

There exists an unique solution to the Bellman equation v™P = T v™P, which is called the robust value function (Iyengar,
2005; Wiesemann et al., 2013). Specially, both L;-constrained ambiguity sets and L ,-constrained ambiguity sets are in
fact polyhedral, which implies the worst-case transition probabilities in bellman updates can be computed as the solution of
linear programs (LPs). Instead, RMDPs with other distance-type ambiguity sets, such as Lo-constrained ambiguity sets can
compute an Bellman update 7 by solving convex optimization problems.

D. Technical Lemmas and Definitions

As promised, we first introduce the definition of the Fréchet sub-differential for general functions.

Definition D.1. The Fréchet sub-differential of a function & : X — R at point & € X is defined as the set Oh(x) =
{u|liminf, 5 h(x") — h(z) — (u, 2’ — x)/||x’ — z| > 0}.

Then, a common lemma is provided to illustrate a basic property that a smooth function satisfies.

Lemma D.2. Let h: X — R be {-smooth, then it is a £-weakly convex function.
Proof of Lemma D.2. Let r(t) := h(xz + t(2' — x)), for any x, 2’ € X. The following holds true
h(x) = r(0) and h(z') = r(1).

Then, we observe that )
h(z") — h(z) = r(1) — r(0) = / Vr(t)dt,
0

where
Vr(t) = Vh(z + t(z' — )" (2' — ).
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We complete the proof as

Ih(z") = h(z)=Vh(z)" (2" — )|

< ‘ /01 Vr(#)dt — Vh(z) (2 — )

! Ty
g/o IV (t) — Vh(z)T (@ — 2)|| dt

= /0 [Vh(z +t(z' —2)) " (2' — 2) — Vh(z) " (2’ — 2)|| dt
= /0 [Vh(z + (2" — x)) = Vi(2)|| - [|(2" — z)||dt
< [t i = Gl = ol
O

For smooth function h(x), a point x € X is defined as the first-order stationary point (FOSP) when 0 € 0h(z). However,
this notion of stationarity can be very restrictive when optimizing nonsmooth functions (Lin et al., 2020). In respond
to this issue, an alternative measure of the first-order stationarity is proposed based on the construction of the Moreau
envelope (Thekumparampil et al., 2019).

Definition D.3. For function h : X — R and A > 0, the Moreau envelope function of / is given by

z'eX

ha(z) := min {h(gc’)+21A ||m—x’||2}. (18)

Definition D.4. Given an /-weakly convex function h, we say that z* is an e-first order stationary point (e-FOSP) if,

[Vh s (z%)|| < €, where h 1 (2) is the Moreau envelope function of h with parameter A = %

The following lemma connects /-weakly convex function and its Moreau envelope function and will be useful in our proofs.

Lemma D.5. (Rockafellar & Wets, 2009, Proposition 13.37) Assume h: X — R is a £-weakly convex function. Then, for
A\ < {, the Moreau envelope function hy is C't-smooth with the gradient given by,

Vha(z) =271 (x — arg min <h(x’) + % |z — :c'||2>) :

Lemma D.6. Assume the function h : X C R™ — R is {-weakly convex and not differentiable at any point. Let A < % and
&) = argming cx h(z') + 55 || — @'||%. Then we have

1.
ylEx =2l = [IVha (@)

As a result, |Vhy(z)| < e implies||Zy — x|| < \e and I€ € Oh(& ) such that

—£ € Nx(@) + % (&) —x) C Nx(2)) + % |2 — || B(1),

where Nx (&) denotes the normal cone of X at & and B(r) := {x € R" : ||z|| < r}.

Proof. Here, we consider the function f(x) = h(x) 4 Ly (x) where I is the indicate function and here f(x) := R™ — R.
The Moreau envelope function of f(x) is defined as

fr(x) = min {h(m') +Ix(x") + !

112
- Ve € R
o e o 1=l } e

1 2
: / / n
wrpeu)l({h(a:)+2/\||mm||}, Ve € R".

14
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The gradient of the moreau envelope f)(x) is well defined (Lemma D.5) as

where

Then, we consider the optimality of the function ¢4 (y)

Vizx) = A7t (x — @),

& :=argmin | h(z) + Ix(z )+ - ||3’3*37||

ZEeRn
. 1
= argmin | A(x) —|— — Hm —z|
zEX

h(y) +Lx(y) + 5 ||z — y||*. Notice that, for any = € R", & is

the optimal solution of ¢ (y), then for some £ € Oh(x), we have

62(8(2)) = it 6a(y) > 6a(@(x)) = min h(y) + Le(w) + 55 o I

=00 (hy)+ 1) + g5 e -l |
<:>0€§+/\/'X(:f2)+§(:i—m)
<:>—£ENX(£)+§(§3—:B). (19)
The above equation (19) implies that, for any z € R",
€45 (@) 2 8) 204 (62— 2) < (5 (@ ),2 ), vz cE"
= (&z-8) < gl8 -2l -z - &, vz R"
= (=€ z—2) < %Hdc —z|, Vz e R", ||z — | = 1. (20)
O

The above Lemma D.6 implies that if ||[Vhy(x)|| is small enough, then x is an approximate stationary point of the original
constrained optimization miny h(x), by the definition of e-FOSP. This motivates us to consider the optimality of the Moreau
envelope function of ® () instead of the optimality of ®(7r) directly.

E. Proofs of Section 3

Proof of Lemma 3.1.

First, we first derive the form of partial derivative for 7, to obtain (6). While this form was known

(Agarwal et al., 2019), we included a proof for the sake of completeness. Notice that,

a7
Then, we discuss o

™,p
ovg

0Jp(m,p) _ Z v P

OTsq

™™,

" over two cases: 4 #*sand §=s

OTsq

)
ovg

st = 67? Zﬂ-sa Z Psas’ Csas’ + ’szl’p =7 Z Tsa Z pSGSl )
sa

s'eS s'eS Msa

OTsq

9] oy
= on Z Toa D Poast (Csas +7057) | = q5P +7 Z Toa D Pois' 5> — ",
sa

5= S'ES S'ES Tsa

™, p
9sa

15
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Condense the notation

Z TsaPsas’ = p:s/ (1) @D
p;’s’ (t - 1) ’ Zﬂ's/aps/as” = p:’;”(t) (22)

a

Then, combining these two equations, we can obtain,

aU;T,P P
awsa S#s -7 Z péé Bﬂ—sa
s'#s s'=s
81} r
= 72 Z pés Z’frs a Z Ps’as’
s'#s s""eS Tsa
+p5(1) (qsa”’ +7 Z Toa Patar )
s’eS Tsa
TP
= % (Da5P +7° Y pF(2) 52
= OT g
_ T (1)g™ P 2 ) 3 avf:,’p
—’ngs( )q$a +’Y pss qsa +Fy Zpse or
sa

oo
=Y AL = Zv PE()qZP-
t=1

The last equality is from the initial assumption § # s, i.e., pT,(0) = 0, and similarly for the case § = s we have,

™,p o0
ovg

Zv P (t)gZP.
t=

87Tsa S=s
Hence, the partial derivative is obtained
0Jp(m,p) TP ovy P 1 >
- ps + s | =—— | (1-7 V' pspTs(t) | @i
Or |\ O T ) T )2 2 Pk (0) | d
dpP(s)

After deriving the form of partial derivative, we next prove that J,, (7, p) is Lr-Lipschitz in 7 by showing the boundedness
of Vi Jp(m, p). The uniformly bounded cost ¢, implies that, the absolute value of the action value function is bounded
for any policy 7 and transition kernel p,

|q;rzip| = |Erp

[e%S)

§ t _ _
Y Cstat5t+1 | S0 = S,ap0 = a

t=0

Then, by vectorizing the 7 as a S A-dimensional vector, we have

= (5)

S,a

\/ZZ (d5P (s)ai"
PSS (“7‘)

oo
<D A=
t=0

IV p (7, D)

| /\

16
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where the last inequality holds since the discounted state occupancy measure satisfies

2
S (dp€(s)? < (Z(d::’ﬁ(s))) 1.

S S

About the smoothness of J, (7, p), it can be immediately proved by (Agarwal et al., 2021, Lemma 54). Finally, we turn to
derive the continuity of ® (7). 1. We first show ®(7r) is Lr-Lipschitz if J, (7, p) is Lr-Lipschitz in 7. For any 71, 7 € II,
we let py := arg maxpep Jp(m1, p) and py = argmaxpep J, (72, p), then

O(my) — B(m) = r;lea%( Jp(ﬂ'lap) - r;g;)( Jp(ﬂ'27p)

= Jp(m1,p1) — Jp(m2,P2)
< Jp(”lapl) - Jp(7r2ap1)
< Lyl — 2.

2. Then, (Thekumparampil et al., 2019, Lemma 3) shows that, ®(7) = maxpep J,(7, p) is £r-weakly convex if J, (7, p)
is £-smooth. Combining the results of these two parts, this lemma is proved. [

The following lemma is helpful throughout in the convergence analysis of policy optimization.

Lemma E.1. (The performance difference lemma) For any 7w, 7' € II, p € P and p € A, we have

1 ’ ’
/ _ 2 : T, T.p _ T,
Jp(ﬂ-7p> - Jp(ﬂ- ’p) - 1 _ ')/ — dp p(s)ﬂ-sa (qsa P vs P) . (23)

Generally, the term ¢7;P — vTP is defined as the advantage function.

Proof of Lemma E.1. By the definition of J, (7, p) in (2), we have

To(m,p) = Jp(w'p) = 3 py (TP — 0T ).

17
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We introduce the advantage function AT;P := ¢7:P — v P for convenience, and observe that, for any s € S,

= Zﬂ-sa Zpsas (Csas’ + YU ,p) + Zﬂ-sa Zpsas (csas’ + ’}/U ! ) - U
Z Tsa Zpsas’ csas’ + ’W) ’; Z Tsa Zpsas’ (Csas’ + ’YU:’ ,p)
+ Z Tsa Zpsas (csas’ + ’YU ’ ,p) ;r',

' p

dsa

! ! ’
_ P KLY 4 ™ ™
=7 E Tsa E Psas’ <’US/7 — Vg ’ ) + g Tsa <q8a,p — Vg 717)
a s’ a
!
b k.
=7 § Tsa E Psas’ ('Us/p — Vg ,p) + E T A
a s’ a

= Zp;’s (’V > T (1) (WP = oT7) + Z ws/afA;',;;?’> - Z Toa ATIP

s

Zma ”’+A/Zpss Zwsa/Astr’yQZpss ) (v v/’p)

= ivt > pT(1) (Z ws/a/A;',;i?) :
where p™, (¢) is defined in (21), and (a) uses the recursion. We then obtain
Jp(m,p) — Zps ( o7 vp)
- ZPSZWthSS <Z7T5 W AT )
el S
Z (ZZW PsPls ) (Zw o AT )

1 :
- dw,p( ) Tsa AT, P.
L—n

S,a

The last equality is obtained by the definition of state occupancy measure (See Definition 2.2). O

Then, we introduce the gradient dominance condition for non-RMDPs proposed in (Agarwal et al., 2021), which will be
used in the proof of Theorem 3.2.

Lemma E.2 (Gradient dominance). For any p € P and p € A®, we have

x D _
To(m.p) = Jp(m",p) < g max(m 7) ' Ve Jo(m,p), (24)

where 7* is one of optimal policies over p, i.e., 7" € arg mingcm Jo(7, p).

18
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Proof of Lemma E.2. From the Lemma E.1, we have

Jp(m*,p) — Jp(m,p) = —— > d= P(s)mt, (qFP — vTP)

dy P (s)mi, ALP

IV

43P (5)3, min AT

d” P(s) min ATP.
a

Then, we multiply —1 on both sides

0 S Jp(ﬂ'7p) - Jp(ﬂ-*7p)

| /\

d"*’p(s) — (min ATP)

1_ P

Zd’r P( max (—ATP)

d7r P( n
- Zdﬂ,p )2 () max( - AT

1 d;‘; 717(5) - ﬂ_
< 1 (s w0 3 5 - A7)
dz' P
= d,, Zd”’p max (—ATP)

j <1—"y ; dz’p(s) InélX(A:ép)> (25)
The last inequality (25) is due to the fact (Kakade & Langford, 2002)
d; P 1

o1 =
o0

D
_1_7'

p

™, P
dp
o0

Notice that, the term in (25) is equivalent to

1 1
P TP — P P
=2 dj (s)mgx( A7) = 213&(1_7 E dyP(s)Tsa(—ALP)

= max

mix Zd”’ (Foa = Toa) (—ATP)

= max
well 1 —

Z dﬂ-’p 773(1 - ﬁ‘ea)qz-ajp
= — J, .
max(m )V dp(m,p)
The first equality holds since the optimal 7 is a deterministic policy, i.e., for some a € A, T,z = 1. The second step is

supported by the property > 7., AT;P = 0. The third step follows as > (7sa — sq)vT'P = 0 and the last equation is
obtained from Lemma 3.1. Thus, we obtain that

D
- *p) < —— —m) " .
Jp(m,p) = Jp(7",p) < 7— 5 max(m — ) Ve Jp(m,p)

19
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Before providing the proof of Theorem 3.3, we introduce the below intermediate results which are helpful to our proof. We
first introduce a common property for strongly convex functions.

Lemma E.3. Ler h: X — R be a {-strongly convex function. Then for any ¢,y € X, h(x), we have

h(y) ~ hie) < Vhiy) (v~ 2) - 5z -~y 26)

Moreover, by taking y = x* := argminge x h(x) as the minimum point of h(x), we get

: ¢ 2
— > — *||°. ]

Proof of Lemma E.3. The inequality (26) is a basic property that the strongly convex function hold, whereas the second
inequality is obtained by the first-order optimality condition for the convex optimization problem, i.e., Vh(z*) T (x — z*) >
0. O

We also need to introduce the following Danskin’s Theorem, which helps prove our global convergence theorem.

Proposition E.4. (Bertsekas, 2016, Proposition B.25) Let Z C R™ be a compact set, and let ¢ : R™ x Z — R be
continuous function and such that ¢(-, z) : R™ — R is convex for each z € Z. If ¢(-, z) is differentiable for all z € Z and
Vé(x, ) is continuous on Z for each x, then for f(x) := max.cz ¢(x, z) and any x € R,

df(x) = conv {qu[)(a:,z) |z € argmaxqb(az,z)} :

z2€EZ
Notice that, Lemma 3.1 successfully proves that J,, (7, p) is £x-smooth and L,-Lipschitz in 7r. We want to emphasize that,
these results also leads to the fact that J, (7, p) is £r-weakly convex in 7 by applying the Lemma D.2.
Now, we are ready to prove Theorem 3.2 and Theorem 3.3.
Proof of Theorem 3.2. Since J, (7, p) is non-concave in p and the ambiguity set P is only assumed as a compact set, there

may exists multiple inner maxima. In particular, we denote p*) as the k-th element of the set arg maxpep Jp(m, p) for
fixed policy 7 € II. Then, we apply Lemma E.2 to obtain

®(m) — (x*) = J(w,p®) — J(n*, p*)

= J(w,p*) — mi J
(m,p*™*’) — min max (m.p)
< J(m,p™) — min J (m, p)
D
< ——max(w — 7)) Vo J (7, p*). (28)
l—v =

As we mentioned before this proof that, .J, (7, p) is £--weakly convex in 7, it implies that J,,(m, p) := J, (7, p) + || m|?
is convex in 7 and VJ,(m,p) = VeJ,(m,p) + Lrm, referring to (Kruger, 2003, Corollary 1.12.2). Let &(7) :=
maxpep Jp(, p). Due to the convexity of J, (7, p) and the compactness of P, we can apply Proposition E.4 to attain

0% (m) = conv {V.,,jp(ﬂ',p) | p € arg max j,,(ﬂ',p)}
PEP
= 0P(m) + L7 = conv {V,Jp(ﬂ',p) + lxm | p € arg max Jp(w,p)}
peEP
= 0®(7) = conv {V.,,Jp(ﬂ',p) | p € argmax Jp(ﬂ',p)} . (29)
pPEP

Assume the set arg maxpep J,,(ﬂ', p) contains N finite components, then, Proposition E.4 implies that, for any 7 € II,
there exists a sequence {3 }&_, with 3", 85 = 1 such that for any sub-gradient & € d® (), it can be represented by a
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convex combination, i.e.,

N
€ = Zﬁkvﬂ'Jp(ﬂ-ap(k)) p(k) € arg max Jp(ﬂ-7p)7 k=

k=1 pEP

1,2,

Let us define # = arg minzen ®(#) 4 Lx||w — #||* and Lemma D.6 implies that there exists £ € O () such that it
satisfies —& C Ny (%) + 20 ||& — «|| - B(1). Then by assuming arg maxpep J,(7, p) contains N finite components,

there exists a specific sequence {8 }~_, with ", B = 1 such that

iv: (7 ), p® € argmax J,(7,p), k=1,2,---
3 peP
Then, we have
N
O() = B(n*) = Y Br (B(F) — O(n¥))
k=1
<D jgi/§ x. )
< ﬁkzl k (21212[((77 —m) VgJ(7,p")
D X
<1 ;Bk<ggg(ﬂ —7), =V (75*))
D ]; -
< 7= 2Bl = 7).~V (7,57)),

(30)

€1V

where 7, := arg maxzen (7 —7), —VJ (7, p*))), and the second step is obtained by using (28). Since the cost function
is bounded, i.e., 0 < ¢gqs < 1 forany (s,a,s’) € S x A x S, it implies the action value function q;g’ and the partial
gradient V . J (7, p) are non-negative. Since ®(7) — ®(7*) and the partial gradient V .J (7, p) are both non-negative, we
can denote the maximum element of the vector sequence {7 — ﬁ'}]kvzl as T, Which satisfies 0 < 75, < 1. Then we get

N
(31)§ D Z 71-sae ~Vax J(~ ~(k))>
Rt
= 7Tsae Zﬁk ( 7} ﬁ(k)))>
< lf’ e < 2 wa ).

(32)

(33)

Here, the last inequality follows from the definition of d(7;) which is mentioned in (30) and e is all-one vector defined
in Section 1. Remind that, Lemma 3.1 implies .J, (7, p) is Lr-Lipschitz in 7, and Lemma 3.1 also shows that ®(7) is
L-Lipschitz. Thus, combine this Lipschitz property and the above equation (32), we get

O(m) — ®(n*) = ®(w) — O(7) + D(7) — D(7™)

o (7)

< D590, (m)) + a(m) -
SDFIIV‘P ()| + Ll — |

Ve 1
- ?C”V‘I’u},(“)” + L

where (34) holds by using arguments of Lemma D.5 and Lemma D.6.

21
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Proof of Theorem 3.3. The proof is split into two parts. We first show our algorithm can reach a e-first stationary point of

O () := maxpep Jp(m, p). Then, we next prove that this e-first stationary point is close enough to the global minimum of
d().

We begin by defining a policy 7, = arg minzem ®(7) + £ || — 7||?> where ® () has been well defined as the objective
function J, (7, p) taking the worst-case transition probability, then, we have

© 1 (mppr) = min ®(m) + Ll oy — 7
< O() + U || i — 7|
= O(7;) + L || Pri(me — @V Jp(m01, 1)) — Pral(7e) ||
)

INE

() + U |7y — AV dp(me, pr) — 7|2
O(7y) + L7 — ﬁ'tHQ — WUr (Vg Jp (704, Dt), T0p — ) + 042£7r||v7er(7Tt,Pt)H2

IN

™

- -
P 1 () + 2rr (‘I’(ﬁ't) —®(m) + e + ?Hﬂ't - 7Tt2) + Pl L, (35)

where (7, p;) is produced from the DRPG scheme at iteration step ¢ and <I>% is the Moreau envelope fucntion of ® with

parameter A = i. The inequality (a) follows the basic projection property (Rockafellar, 1976), i.e., for any @1, z2 € R",

[Prx(@1) = Pa(®2)]| < [l21 — @2,

and the last inequality holds due to the fact that J,, (7, p) is £r-weakly convex in 7, in the sense that, for the 7,

~ ~ ~ ETF ~
O(1) = Jo(Fespr) = oo, po) + (Ve o, o) T = me) = - — A

~ ‘€7r ~
> max J, (1, p) —€r + (Vo Jp(T0, Pr), 7o — T0) — — || — 74|
peEP 2

()

Next, by summing (35) up over ¢, we obtain,

!

~ ’67\' ~
P (mr—1) <P _1 (o) + 2lnax (@(ﬂ't) —O(my) + e+ ?”ﬂ't — 7-;t|2) + Tl L2

Py

Rearranging this inequality yields

=1 O 1 (mg) =P (mr_1) 2 T-1
_ - . 1 (7o T-1 TaL2
Z <<I>(7Tt) — ®(7;) — ?HTH - 7Tt||2) < = 26,,07” +—"+ Z €. (36)
t=0 t=0
Then, we have
L

D) — D) — Tl — 7l

- . /l -
=‘I’(Wt)+fn||ﬂ't—ﬂ't\|2—q>(ﬂ't)—€w||7"t—7"t||2+§||7"t—7"t||2

) l -
Z‘I’(ﬂt)JrffrHTft—ﬂ'tHQ—ﬂmelg {‘I’(W)Jrfwﬂﬂ't—W||2}+7ﬂ||7ft—77t\\2
@ = 2 1 2
> Al — 7| = IHV‘I’ﬁ(M)H : (37)

The inequality (a) is obtained by the Lemma E.3 and the last equality in (37) is obtained by using the gradient of Moreau
envelope function proposed in Lemma D.5, i.e.,

VO 1 () =20, (ﬂ’t — arg max <<I>(7r) + U || — 7r||2)) =2 (p — 711) .
2bm mell
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Let 7y := arg mingem ®(7) + || w1 — 7||? and 7o := arg ming e ®(7) + || w2 — 7||? for any 7wy, o € 11, and then

we have

© L (m) =@ (m2) = min (O(7) + b || — 7?) — min (O(7) + lre |2 — 7|1?)
= (7)) + e ||m1 — 71> — ®(F2) — Lr|| 72 — T2 )?
< B(7y) + Lr |71 — 7a||? — @(T2) — L[|z — 72|
= lr (|l = T2||* — [l — 72?)
< 20,8

Plug (38) and (37) into (36) and reach the first result that

T-1
vaq) L (m)|? < ALY e

t=0
Notice that, when the LHS is smaller than T'€2, i.e

T-min ||V ()| < Z IV o (m)|* < T,

there exists one # such that [IV®__ ()| < eand m; is a e-first order stationary point for ®(7r).

(38)
(39)
(40)
(41)
(42)

(43)

We finished the first part of the proof, and the next step is to show this approximate stationary point is close to the global

minimum of ® (7). Formally, we next to show there exists some ¢ such that

Jp(ﬂ*7p*) - ma%{ Jp(ﬂ'up) =o(m") - d(m) < e
pE
Applying the result in Theorem 3.2 for the iterative policy 7y, we have

J(ﬂ'hpt) - minmax']p(ﬂ'ap) < q)(ﬁt) - @(Tf*) <

Vo, Ln e
well peP - 1-— H (ﬂ-t)” +

2ln

Combined this two parts, we finally state the global convergence guarantee. Equation (45) implies that

. L1
iy | ) e ) Z( (mop0) ~ mig ()
T-1

(D(me) — (7))
t=0

1 (DVSA L)\ <2
T< T *2@,>;HV%<’”>

IN
Nl =

IN

By Cauchy-Schwarz inequality, we can obtain

1 T-1

T—1
<\ S Ive . (w2
t=0

D\/SA

We then multiply the constant

23
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iteration time 7" satisfies

1 (DVSA L —
(46) < —= +5- IV o ()2
T 1—v 2 =0
T-1
1 (DVSA L, 40r
. 5S4 Lx S+2Ta£ﬂL3r+4€,TZet
T 1—7 2n « —0
@ 1 (DVSA L 4 4
< — + = b S\F VTSl 4 Hmo
T\ 1—~ 2 - 1—~
1 (DVSA L, 40, SvT W T
< — 54 | Ln ﬂ—l—%/féﬁ,,L%—% vT
T\ 1—~ 20 § 1—7
=€
where the inequality (a) holds due to the adaptive tolerance sequence, in the sense that
T-1 0 ¢
0
IEED S (R S E P
t=0 t=0
which implies that
(Dl‘fsj + QLT">4 (—“gs + 200, L2 + %)2
Y ™ vy —4
T 2 4 = O(E )7
€
then, we have
i J J <
) {7 op) i o) f <
Intuitively, we have
i o — min ¢ <e.
te{o,r{l-l,nTl}{ () glelg (ﬂ-)} =€
O
F. Discussion on R-contamination ambiguity set
Recall that the R-contamination ambiguity set is a kind of (s, a)-rectangular set P = X Ps q where P , is defined as
s€S,acA
Pso :={(1 —R)psa + Rq| g A(S)},s€S,a € A 47

We have the following property of the R-contamination sets which illustrates their limited applicability.

Proposition F.1. Any RMDP with an R-contamination ambiguity set has the same optimal robust policy as a corresponding
ordinary MDP with a reduced discount factor.

Proof of Proposition F.1. The robust optimal bellman operator of a RMDP with R-contamination ambiguity can be written
as

(TTv)s : = ffélﬂ psine%ia(csa + 'yp;rav)
= min cgq + 7y {(1 —R)p v+ Rmaxvs/}
acA s’

= [min Coa + (1 — R)p;v} + Rymax vy
acA ’ s’
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Consider an ordinary MDP with the same reward function, transition kernel p := (Psq)ses,ac4 € (AS )S %4 and discount
factor v(1 — R). The optimal bellman operator is defined as

s = MiN Cgq 1—R)p.l v.
(Tw)s == min csq +( )Psq ¥
Then, we have that
(T"v)s = (Tv)s + Ry|[v]l (48)

We define optimal value functions for 7" and 7 as follow

and consider the value iteration with the given initial value functions v" first. Then we have that
T'v" =Tv" + Ry|v"||«e
= (T = (T)0" + RylIT v | ce + Ry*(1 = R)[[v" || e
=(T)0" + [Ry + Ry*(1 - R)] - |v"]| - €
= (T = (T "+ [Ry+ Ry(1 = R)+ Ry’ (1 = R)* + - ] 07| - e

k
FoT+ Y R - R o7 - e

By taking the limitation for both side, we obtain

lim (77)*v" ="

k—oco

= lim
k—o0

k
ST+ Y Ry (1= R 07 - 61
n=1

k

Ry"(1=R)"™ - o' ~€]

=v" + lim
k—o0
n=1

{1;@(1—1%))’“],

=v" + lim
-1(1-R)

k—o0

1

m‘“” o - €.

— U'ﬂT’ +
Each operation 7" on v" will take the same optimal action due to the definition of v, which implies operation 7" on v"

works with the same action is taken. This intuitive result shows that the RMDP with R-contamination ambiguity and its
corresponding ordinary MDP with discount factor y(1 — R) has the same optimal policy. O

G. Proofs of Section 4

Proof of Lemma 4.1. Notice that

p ™ .
Ps-
Opsas' ics Opsas'
BT
Then, we discuss op. -, OVer two cases: §#sand §=s
ovg P P ovg®
R Z Tsa Z DPsas’ Csas’ + Y =7 Z Tsa Z Psas’ =3
8psa8’ 8#s 8]%@5 Py yes ies apsas
8,0;*'47
N =7 Z Tsa Z paaa + Tsa (Cbas’ + 'YU ’ )
8psas’ $=s Psas’

3’es
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By condensing ) . msapsasr = pZs (1), we can obtain,

ovr P 81}” 81}3’1’
=7 D pi +7 D P .
6psas’ S#s ,2#:5 5 8psas S/ZS 5 6psas’
ovL P
:Vngg Zﬂ'sazpene”
§'#s §"eS psas
+7pgq ,}/ZWGQ Zpeas’ +7T€a (Csae/ +’YU )
ies Psas’
™ 2 81}7};@
= 5 (D)7sa (Csas +7057) + Zpgél@)a .
Py Psas’
2 3 Ovg®
™, ™, !
= 1055 (D)Tsa (Csas' + 705 P) + D5 (2)Tsa (Csasr +705F) +4 Zpgg/ 3) aps
5 sas’
)
= Z ’Ytp‘gs (t)ﬂ-sa (csas’ + WJ ’ Z’y pss 7Tsa Csas’ + 71] /,p) .
t=1

The last equality is from the initial assumption § # s, i.e., pT,(0) = 0, and similarly for the case § = s we have,

ot
apeas'/

Z’Y pSS 7Tsa Csas’ + ’7/0 /,p) .

S§=s

Hence, the partial derivative for transition probability is obtained

0J,(m,
P( B) = Z Z'V paP3s(t) | Tsa (Csast + YVgr p)
Opsas 1= 3€8 t=0
dg®(s)

idﬂ- ( )ﬂ'sa (Csas’ + 7’03/71’) :

The uniformly bounded cost c;,s implies that, the absolute value of the value function is bounded for any policy 7r and
transition kernel p,

oo o0
‘,U;r,p| = Eﬂ'A,P Z/ytcstatst+l S0 = S‘| < Z’yt =71
t=0 t=0
then we obtain that ) 1
v
‘ﬂ'sa (Csas" + 'Y'U )| < |7Téa| |cba6’ + v, /7p| <1+ 17 = ?

Therefore, by vectorizing the p as a 52 A-dimensional vector, we have

IVpdo(m D) = | D (W)Q

s,a,s’

1 7, T™,p\12
= Ty 2 57 () ea (coas + 1077

s,a,s’

VSA
ZZ ST

26



Policy Gradient in Robust MDPs

where the last inequality holds since the discounted state occupancy measure satisfies

> (dp(s)® < <Z(d:;’f(s))> =1.

S S

O

Notice that, the objective function J,, (7, p) is twice differentiable on p. Hence, to prove the smoothness condition in
Lemma 4.2 is equal to show that there exists a constant L < oo such that

V%Jp(ﬂ',p) <XLI < Vxe ]RASZ, wTV?,J,,(ﬂ',p)w <Lz'x.

Proof of Lemma 4.2. Denote p(a) := p + az € P where a € R is a small scalar, whereas z € (RS)S*A. Since

Jo(m,p) =D, psvs ¥ (@) with a known initial distribution p, we turn to consider the derivative of value function vs ¥ (@)

of the transition kernel p(«) over «,

,U;r,p(oz) = Z Tsa Z[p(a)]sas’csas' + v Z Tsa Z[p(a)]sas’v;’p(a)a (49)

s’ s’

First, let us simplify the form of v?’p(a). We define P(a) € (AS)S as the state transition kernel and for any s, s’ € S,

[P(0)]ser = Y TaalP(@)]sas' (50)

and ¢(a) € R® where for any s € S,

|[C(Oz)}s| = Zﬂ-sa Z[p(o‘)]sas’csas/ < 1. (51)

s/

Then, the value function (49) can be written as,

oI = el (I —yP(a)) ™ ¢(a), (52)
N—————
M(a)
where e :=[0,--- , 1, 7O]T € R¥ is a vector whose s-th element is 1 and others are 0. By using power series expansion

technique (Agarwal et al., 2021; Mei et al., 2020), we can obtain that,

M(a) = (I —vP(a))™" = > 7'P(a)', (53)
t
which implies that, for any s, s’ € S, [M («)]ss > 0, and we have
efi (I —~vP(a))e <= M( )e*Le (54)
o 1— vy v « o - 1— v )

which implies each row of M (a) sums to 1/(1 — «y). Therefore, for any vector 2 € RS, we have

1
M (e)]| ,, = max |[M(a)z];| < T || oo - (55)
Taking derivative with respect to « on v?’p(a) defined in (52),
,p(a) P
31}587& = eZM(a)agiS) + vel M(a) 0 6((;!) M (o)c(a). (56)
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Then taking the twice derivative with respect to «,

21}3’1)(“) 2c(a o cla
i =T () e o
(0% (0% 2 [0
+ 2v%e] M (o) 81;& )Mal;(l )M(a)c(a) ﬂejM(a)a( ;Z ()Q)M(a)c(a). (57)

Notice that, above two form of derivatives are obtained by using matrix calculus techniques, i.e., for any matrix A, B, U (z)
and scalar z,

0AU(z)B 0U(x) U(z)™ _
ox =4 ox B and Ox =-Ul) Ox

524 P(e)

So far, we get the derivative form of the value function. Then we’d like to bound GOE

a=0 ’
For the first term in (57), we have,

0?c(a)
(Oc)?

IN

el M(a)

el - [ T2,
1 9?c(a)
1—v || (Oa)? -

=0, (58)

IN

a=0

where the last but one inequality is obtained from (55) and the last equality holds since for any o € R,

) (a[cga)}é,)’

aﬁ (a (3, Tsa Zsézv(a)]sas/csas/) ) ’

(6%
0
= Inax E 7rsa§ Zsas’Csas’
s | Oa
a s’

=0. (59)
For the second term in (57), we have
OP(a) Oc(a) OP(a) Oc(a)
T <"l .
es M(a) oo M{(a) Oa la=0| — Hes ||1 M(a) oo M(a) Ja la=0||
1 OP(a) Oc(a)
“1-—x H Oa M(a) Oa la=0]| (60)
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and its ¢, norm can be upper bounded as

OP(« Jp(a sas’
H a(i ) azom N = m?X §;ﬂ-sa [p(ai] a:OmS/
< mgxz Zﬂ'sa |zsas/| |zs’|
S In?XZ Zﬂsa |Zsas/| : ||I||oo
= Zzwm |25as| - |||l o
<D0 D oo max 2sa| 7]
s’ a ”
= max |2sas'] - Z (B[P
<S8zl - 7]l
<S-zllz - 7]l (61)
Similarly, for any o € R, we have
86(0[) — max 8(2:@ Tsa ZS/ [p(a)]sas’csas’)
Oa s da
= mmax Zﬂ—sa Zzsas/csas’
a s’
< 8- lzl2. (62)
Then, we obtain an upper bound of the second term,
OP(« Oc(a S de(a
eI M) 2 pp) 2 | o B g2z,
Oa da la=0 1—9 Oa la=0]|
S Oc(a)
CeT e e W IR
52 9
< . 63
For the third term of in (57), we can similarly bound it as
oP oP oP oP
el M(a) 5‘c(xa)M(a) aéa)M(a)c(a) o < HM(a) a;OK)M(oz) aia) M(a)c(a amol
1 1 1
. S. . 9. R
<= Sl T S el T
52
REEER 1213 (64)
Denote that, for any = € R,
9*P(a) 0*[p()]sas’
= sa s'| — O. 65
H 00)? lazo™|| = ZZ” 9(0)?  lazo® ©5)
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Therefore, we combine (58), (63), (64) and (65),

2T P . 02c(a) o |+ OP(a) OP(a)
(0a)?  la=0 e M(a) (0a)? la=0 T2y |es M(a) da () da (@)efa a=0
OP(a) Oc(a) 0?P(a)
. T . T
+2v-le, M(a) 50 M () 90 |0 +7v-le, M(a) e M (a)c(a o
S? S?
<oy 2R |22
2752 2
=" |zl (66)
(1_,7)3 H ||2
Then, for any y € RA5”, we have
%P
ly VoI, (mp)y| <> pe- |y’ Op)? y’
y 7Py ‘ 2
- s ° Y
2.0 ’(nyng) @p? Tulln)| 1l
aZUw,p > 9
< s+ max Sz, z ) -
_;p, lzllz=1 <(310)2 Iyl
S mas |[(ZE) o6 06 e
T 2P EE \ @p(a)? la=o da 7 da Yliz
azv;r,p(a) )
:zs:ps'ngﬁ?fl (0a)? | 01
2752 2
< 22yl (67)
(1_7)3 ||y||2

Proof of Lemma 4.3. By the definition of J,, (7, p), we have
Jp(ﬂ-7p) - Jp(ﬂ-vpl) = ZP& (U:’p — 'U:-’p ) .

For any s € S and p,p’ € P, we have
VTP — U;ryp’

N 2 : E : ’ P / ,p 7,p
= Vg P — Tsa Psas’ (CSGS' + ')/’US/ ) + § Tsa E Psas’ (CSGS' + ’Y’Us’7 ) — Vg P
a s’ a s’
— P / ™,P
- § Tsa § Psas’ (Csas/ + VUS/’ ) - E Tsa E Psas’ (CSGS/ + ryvs’7 )
a s’ a s’
/
/ TP / ™, p
+ g Tsa § DPsas’ (Csas’ + yvg ) - E Tsa E Psas (CSU«S' + vy )
a s’ a s’
’
§ : § : / TP } : E : ’ T, p TP
Tsa (psas’ - psas’) (csas’ + '771517 ) + Y Tsa Psas’ ('US/7 - 'US/ )
a a s’

s’/

Y

oo
Z ok Zp/;; (t) (Z Ts'al Z (Psrars = Porarsr) (Csrars + 7“3}13)) :
t=0 s a’
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Here, the last equation is obtained by the recursion and we then obtain

Jp(m.p) = Jp(m,p) = po (TP =0T ")
s
oo
= ZPS Z'Yt Zp/ (Z Ts'a! Z ps/alsu — plslalsu) (CS rals! + fyvs” )>
S t=0 ry

s’

= Z <ZZPY psp > (Z Ts'a! Z ps’a’s” _pls/alsu) (Cs I + ’)/’US,, ))

s’ S s’

__r dmp (Z Tea Z (Psas’ — Phags') (Csas’ + 71@)”)) )

1—7 .

Let p’ = p* and then, we have

* 1 g . _
0 < Jp(ﬂ-;p ) - Jp(ﬂ-ap) = m de,p (5) (Z Tsa Z (pms/ *psas/) (Csas’ + 'szfp))
1 dg,p* (s) . . Wp
- 1—7 ; d;,p(s) ' dp ’p(S) ; Tsa ; (psas’ - psas’) (Csas’ + vy )
drp” )
S dnr(s) (Z Tea Y (Dhas — Psas) (Coas + Wg/”))
dmP"

= d%#’ ’ ZI <1dﬂ- ( )7T'3a (Csas’ + ’W{?f’p)) : (p;as’ _psas/)

-7

(@ 1
<

l=n

D
dp

dr
p T, p T, _
< W ' %163‘%{ S;/ (]-_d ( )ﬂ-sa (Csas’ + YUgr p)) : (psas’ - psas/)
as? _ dJ,(m, p)
= d%ﬁ 'rglea%( <p—p, p8p> (by Lemma 4.1)

D _ 0Jp(m,p)
< — _p PN
<2 (r w2

which completes the proof. The first inequality (a) is obtained due to the fact that for any s € S,
Z Msa Z (Pias: — Psas’) (Csas +705F) >0

holds under the s-rectangularity assumption.

O

Now, we proceed to prove main theorem in section 4. Here we can define f(p) := J, (7, p) for a fixed policy 7 € IT and
define the gradient mapping

GP(p) = % (Projp(p + BV /(D)) — D). 68)

Notice that P is convex and f(p) is £p-smooth, then the following lemma can be derived directly using existing classic

results:

Lemma G.1. (Beck, 2017, Theorem 10.15) Let {p;},>0 be the sequence generated by Algorithm 2 for solving the inner
problem with the constant step size 3 := %, then
D

min[|6%(py)]| < \/%p Uz Jalp) )

te{0,---, T—1}
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Proof of Theorem 4.4. Tt has been shown in Lemma 3 in (Ghadimi & Lan, 2016) that if ||G®(p)|| < e, then

Vir(p") € Np(p™) + 2eB(1), (70)

where pT := p+ BG”(p), Np is the norm cone of the set P and B(r) := {x € R" : ||z|| < r}. By the gradient dominance
condition established in Lemma 4.3,

D . _
eoin F=(07) = fx(po)} < T o™i, (P =P, Vir(pr))
D
< ﬁmax (P — D3 Vir(pg)) s (71)

where  := 1 + arg min;<7_1 ||G?(p;)||. Recall Lemma G.1, we showed that

||G6(p£_1)||g\/2€p(f;;f"(p0)) S (1 iES)T,

where the last inequality holds due to

o0 oo 1
U: = IE:‘rr,p [Z PytcstatstJA S0 = 3‘| < Z"/t = m (72)
t=0 t=0
If we set that
20, (1— ~)e 320,D*S A 9
=T >R T — O,
(1—)T = 4DVSA T (L=y)Pe )
then a )
—~)e
G?(p; < —
167 )l <
Hence, by applying the equation (70), we have
D _ (1—n)e
7)< —max||p—p;|| - 2- ———= =¢,
( )— 17’}/13673 ||p pt” 4Dm
where for any p1,p2 € P,
[p1 — P2 < |lpall + [[p2]| < 2V SA. (73)

Then, we provide the standard proof of Lemma 4.5.

Proof of Lemma 4.5. We first show that the inner problem gradient form. Notice that,

Za’l}ﬂ-p

. P .
Then we consider the 6%2 directly.

P 9 Toar
be = o lz Tea@ g]
=> ”S“a% [Z Pay (cauw +107€)
€
S 5 B () e
- Z Tsa Z apsas (Csas, T ’yvs/s) T Z Tsa Zpsas’ 81} >

s/
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By condensing ), wsapfas, = pi(l), we can obtain,

av:m apgas/ 7€ 7€ ov
T za:ma o€ (csasl + v, ) + 7;1733/ (1)
apgas/
= § Tsa § o€ (Csaa’ +7U E)
T apf/als// a7-}5//
+7 § :pg;’g(l) [Zﬂ(s/a’ Z Tg <CS ‘a’s’ +7U " ) +7 E ps’s” ) 85 ]

S

1

[ £
= Z Zpas k) Z Ts'a’ Z apsa/igsw (Cs’a’s” + v /76) + '72 Zpb av l
k=0

— a’ L s’

8p P 81} /,g
= k Zpgs”g(k) Z Tsla! Z 882 5 (CS rqls + Yv /75) + ’73 Zpss
k= s’ a’ L

[ V)

¢
LI Z Toar | % (Cs'“’s” T 7”3;5)
s’

t”ﬁg

=
Il
<]

So we have

0Jp( 7r§ ov™¢
=3 TR

seS

- ¢
MDD SLIC) B ol T CIERES)]
s = s’ a’

s’

8 E/ 1ol
= — /DG kp:rg/ Ts'al —Qa.  \Cs’a’'s” + VUS/;
1 E: Ev F(k )E [Z psazs ( ﬂﬁ)]
a/

1—
v s k=0 s’

¢

_ Z dr ZWM lz 0P (cm, n 7”?6)]
Z d‘rr,€ Zﬂ—sa Zpsas, [apéas/ . % . (Csas’ + 7U;7€)]

Pgqst
1 dlo p'S /
e S |2 ()
v s a s’

1 810gp§a8, €
= T o B, B [ag (6now +07) |

Then, we consider the partial derivative on 6 and A separately. Notice that
1—y

8J,(m & 1 Olog p>
%(T) — EgNd::'&EaNﬂ54Es/Npsa4 |:89 Csas’ + fyq}

3
OJp(m,€) _ 1 Ologp: €
5/\541 = 17yEs~d,’;'£EaN7"s~ES/NP5a« 3)\7:15 Csas’ +’YUS/

We found that for all (s,a,s’) € S x A x S, 6; will appear in the parametrization form of pﬁas,. Hence we consider partial
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derivative of log pgas, then.

alogpgas’ _
00; -0,

W}_

1 _sas’
o + 25

.
0 [log (?p’“ el Aﬂk))ﬂ

(9 (k) )- @i (k)

_ (ﬁl(sl) kasak €xp

Asa
Asa kasak eXp(M)
_ ¢1(3/) . Z psa_] eXp( ¢(J)) . ¢1(])
Asa Yy Bsar - exp( 2 Asa
_ i(s) ¢ 9ild)
RS A W

Now we can obtain that

aJ, - bi(s’ ¢i(J m,
0t peegn pa (32-p 42 s

J

Similarly we can derive the partial derivative on Ay, for any state-action pair (s,a). Interestingly, we notice that for

¢
(5,a) # (s,a), % = 0. Therefore, we can consider the case (5,a) = (s, a).

dlogpS,, 0 _ T¢>(s') 0 _ 6" p(k)
a)\sa = a)\sa |:10gpsas’ + 8/\sa IOg zk:psak 'eXp( >\sa )

k 0" ok
| S e (G20 U-%“ 076()
- 2
kamk exp( (k)) )\SG
0" 6(j) .
Z psaj exp( Asa ) ) 0T¢(j) . 9T¢(Sl)
j kasak exp(md’(k)) Aga /\ga

HT 07 o(s
S )

J

Then we can obtain that

oI, (m &) 1 ¢ e 0700G) 079(s) e
1 ’yds *Tsa * Zpsas’ ) - . (Csas’ + ’YUS, )

Msa N2, A2,
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H. Experiment Details

H.1. Details on the Garnet problem example

10- 6(10,5,10)
— ¢(15,8,15)
o)
(8}
[
g
9]
E
S
o 2
2
©
3]
e
0_

0 25 50 75 100 125 150 175 200
Number of iterations

Figure 3. The error of value function computed by non-parametric DRPG for two Garnet problems with s-rectangular ambiguity.

Note that, in our simulations, we test our algorithm for both high connectivity (i.e., b = |S|) in s-rectangular case, and low
connectivity (i.e., b = |S|/5) in (s, a)-rectangular case. We also apply DRPG on random RMDPs with L;-constrained
s-rectangular ambiguity, which generally assumes the uncertain in transition probabilities is independent for each state-action
pair and are defined as

7) = X ,Ps where Ps = (psly s 7psA) S (AS)A ‘ Z Hpsa _ﬁsanl § Rs .
sES =

We run DRPG with a sample size of 50 for 200 iteration times on Garnet problems with three sizes for the (s, a)-rectangular
case and two medium sizes for the s-rectangular case. We record the absolute value of gaps between objective values of
DRPG and robust value iteration at each iteration time step, and then plot the relative difference under the s-rectangular
assumption in Figure 3. The upper and lower envelopes of the curves correspond to the 95 and 5 percentiles of the 50
samples, respectively. From Figure 3, we can obtain similar results with the (s, a)-rectangular case that DRPG converges to
a nearly identical value computed by the value iteration computed by the robust value iteration.

H.2. Details on the inventory management example

In our inventory management example, we present a specific example of this problem with eight states and three actions.

We draw the cost for each (s, a, s) € S x A x S at random uniformly in [0, 1], and we fix a discount factor v = 0.95. Below
we give details about the nominal transitions and the parameter «.

The feature function we use is the radial-type features which is introduced in (Sutton & Barto, 2018), i.e., ¢;(s) =

s 2 . . . . . .
exp (—H‘Sz%”) . We define a two-dimension state feature with deterministic ¢; and ;. Our parameters also share the same

i

dimensions as these two features from our parameterization form.

The ambiguity set = in our problem is simply chosen as a L;-norm constrained set, that is,
Z:={(0,N)]]|0 — 0.]l1 < Ko, |A = Acll1 < Ka} (74)

The updating step size for & = (@, \) on the inner problem are taken 0.01. For simplicity, we choose all elements of A. as
one and 6. := [0.4,0.9] ", and set 9 = 1,5 = 1 in this problem. Other parameters are included in the published codes.
Note that the instances for a larger number of states are constructed in the same fashion by adding some condition states.
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