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Abstract

Robust Markov decision processes (RMDPs)

provide a promising framework for computing

reliable policies in the face of model errors.

Many successful reinforcement learning algo-

rithms build on variations of policy-gradient meth-

ods, but adapting these methods to RMDPs has

been challenging. As a result, the applicability of

RMDPs to large, practical domains remains lim-

ited. This paper proposes a new Double-Loop Ro-

bust Policy Gradient (DRPG), the first generic pol-

icy gradient method for RMDPs. In contrast with

prior robust policy gradient algorithms, DRPG

monotonically reduces approximation errors to

guarantee convergence to a globally optimal pol-

icy in tabular RMDPs. We introduce a novel para-

metric transition kernel and solve the inner loop

robust policy via a gradient-based method. Fi-

nally, our numerical results demonstrate the util-

ity of our new algorithm and confirm its global

convergence properties.

1. Introduction

Markov decision process (MDP) is a standard model in

dynamic decision-making and reinforcement learning (Put-

erman, 2014; Sutton & Barto, 2018). However, a funda-

mental challenge with using MDPs in many applications

is that model parameters, such as the transition function,

are rarely known precisely. Robust Markov decision pro-

cesses (RMDPs) have emerged as an effective and promis-

ing approach for mitigating the impact of model ambiguity.

RMDPs assume that the transition function resides in a pre-

defined ambiguity set and seek a policy that performs best

for the worst-case transition function in the ambiguity set.

Compared to MDPs, the performance of RMDPs is less sen-

sitive to the parameter errors that arise when one estimates
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the transition function from empirical data, as is common in

reinforcement learning (Xu & Mannor, 2009; Petrik, 2012;

Petrik et al., 2016).

As is common in recent literature on RMDPs, we assume

that the RMDP’s ambiguity set satisfies certain rectan-

gularity assumptions (Wiesemann et al., 2013; Ho et al.,

2021; Panaganti & Kalathil, 2021). Albeit general RMDPs

are NP-hard to solve (Wiesemann et al., 2013), they be-

come tractable under rectangularity assumptions and can be

solved using dynamic programming (Iyengar, 2005; Nilim

& El Ghaoui, 2005; Kaufman & Schaefer, 2013; Ho et al.,

2021). The simplest rectangularity assumption is known

as (s, a)-rectangularity and allows the adversarial nature

to choose the worst transition probability for each state

and action independently. Because the (s, a)-rectangularity

assumption can be too restrictive, we assume the more-

general s-rectangular ambiguity set (Le Tallec, 2007; Wiese-

mann et al., 2013; Derman et al., 2021; Wang et al., 2022),

which restricts the adversarial nature to choose a transition

probability without observing the action. Our results also

readily extend to other notions of rectangularity, includ-

ing k-rectangular (Mannor et al., 2016), and r-rectangular

RMDPs (Goyal & Grand-Clément, 2022).

Policy gradient techniques have gained considerable pop-

ularity in reinforcement learning due to their remarkable

empirical performance and flexibility in large and complex

domains (Silver et al., 2014; Xu et al., 2014). By parameter-

izing policies, policy gradient methods easily scale to large

state and action spaces, and they also easily leverage generic

optimization techniques (Konda & Tsitsiklis, 1999; Bhatna-

gar et al., 2009; Petrik & Subramanian, 2014; Pirotta et al.,

2015; Schulman et al., 2015; 2017; Behzadian et al., 2021a).

In addition, recent work shows that many policy gradient

algorithms are guaranteed to find a globally-optimal policy

in tabular MDPs even though they optimize a non-convex

objective function (Agarwal et al., 2021; Bhandari & Russo,

2021).

As our first contribution, we propose a new policy gradi-

ent method for solving s-rectangular RMDPs. We call this

method the Double-Loop Robust Policy Gradient (DRPG),

because it is inspired by double-loop algorithms designed

for solving saddle point problems (Jin et al., 2020; Luo

et al., 2020; Razaviyayn et al., 2020; Zhang et al., 2020). In
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particular, DRPG solves RMDPs using two nested loops: an

outer loop updates policies, and an inner loop approximately

computes the worst-case transition probabilities. While

the outer loop resembles policy gradient updates in regular

MDPs, the inner loop must optimize over an infinite number

of transition probabilities in the ambiguity set. To effec-

tively optimize the continuous transition probabilities, we

use a projected gradient method with a finite but complete

parametrization in tabular MDPs. To scale the algorithm to

large problems, we propose to use a parametrization based

on KL-divergence ambiguity sets.

As our second contribution, we show that DRPG is guaran-

teed to converge to a globally optimal policy in s-rectangular

RMDPs. While this result mirrors similar known results

for ordinary MDPs, the robust setting involves several ad-

ditional non-trivial challenges. Unlike in ordinary MDPs,

the RMDP return is not differentiable in terms of the pol-

icy (Razaviyayn et al., 2020), which precludes us from

leveraging MDP results. Since the RMDP return is not

convex, it also does not admit subgradients. Instead, we

show that it is sufficient to approximate it by its Moreau

envelope, which is differentiable. An additional challenge is

that solving the inner loop optimally in every policy carries

an unacceptable computational policy, but solving it approx-

imately may cause oscillations. We address this problem

by proposing a schedule of decreasing approximation errors

that are sufficient to converge to the optimal solution. In fact,

the policy updates are guaranteed to converge to the optimal

policy as long as the inner loop can be solved with sufficient

precision, even when the RMDP is non-rectangular.

Despite the recent advances in robust reinforcement learning

(Roy et al., 2017; Badrinath & Kalathil, 2021; Wang & Zou,

2021; Panaganti & Kalathil, 2022), policy gradient meth-

ods for solving RMDPs have received only limited atten-

tion. A concurrent work proposes a policy gradient method

for solving RMDPs with a particular R-contamination am-

biguity sets (Wang & Zou, 2022). While this algorithm

is compellingly simple, the R-contamination set is very

limited in comparison with the general sets that we con-

sider. In fact, we show in Proposition F.1 that RMDPs

with R-contamination ambiguity sets simply equal to or-

dinary MDPs with a reduced discount factor; please see

Appendix F for more details. Another recent work develops

an extended mirror descent method for solving RMDPs (Li

et al., 2022); however, their results are limited to (s, a)-
rectangular MDPs only, and their algorithm requires the ex-

act robust Q function to update the policy at every iteration.

On the other hand, our proposed algorithm is compatible

with any compact ambiguity set, and we do not require an

exact optimal solution when solving the inner maximization

problem. Moreover, by parameterizing the inner problem,

the proposed algorithm is scalable to large problems.

While this paper exclusively focuses on RMDPs, it is worth

mentioning that there is an active line of research studying

a related model, called distributionally robust MDPs, which

assumes the transition kernel is random and governed by an

unknown probability distribution that lies in an ambiguity

set (Ruszczyński, 2010; Xu & Mannor, 2010; Shapiro, 2016;

Chen et al., 2019; Grand-Clément & Kroer, 2021a; Shapiro,

2021; Liu et al., 2022).

The remainder of the paper is organized as follows. Sec-

tion 2 outlines RMDP and optimization properties that are

needed for our results. Then, Section 3 describes the outer

loop of DRPG, our proposed algorithm, and shows its global

convergence guarantee. The algorithms for solving the inner

loop are then described in Section 4. Finally, in Section 5,

we present experimental results that illustrate the effective

empirical performance of DRPG.

Notation: We reserve lowercase letters for scalars, lower-

case bold characters for vectors, and uppercase bold charac-

ters for matrices. We denote ∆S as the probability simplex

in R
S
+. For vectors, we use ∥ · ∥ to denote the l2-norm. For a

differentiable function f(x, y), we use∇xf(x, y) to denote

the partial gradient of f with respect to x. The symbol e

denotes a vector of all ones of the size appropriate to the

context.

2. Notations and Settings

An ordinary MDP is specified by a tuple ⟨S,A,p, c, γ,ρ⟩,
where S = {1, 2, · · · , S} and A = {1, 2, · · · , A} are the

finite state and action sets, respectively. The discount factor

is γ ∈ (0, 1) and the distribution of the initial state is ρ ∈
∆S . The probability distribution of transiting from a current

state s to a next state s′ after taking an action a is denoted as

a vector psa ∈ ∆S and in a part of the transition kernel p :=
(psa)s∈S,a∈A ∈ (∆S)S×A. The cost of the aforementioned

transition is denoted as csas′ for each (s, a, s′) ∈ S×A×S .

It is well-known that translating the costs by a constant or

multiplying them by a positive scalar does not change the

set of optimal policies. Therefore, we can assume without

loss of generality that the cost function is bounded in [0, 1].

Assumption 2.1 (Bounded cost). For any (s, a, s′) ∈ S ×
A× S , the cost csas′ ∈ [0, 1].

Given a stationary randomized policy π := (πs)s∈S that

lies in the policy space Π = (∆A)S , π maps from state

s ∈ S to a distribution over action a ∈ A, and the quality

of a policy π is evaluated by the value function vπ,p ∈ R
S ,

defined as

vπ,p
s = Eπ,p

[ ∞∑

t=0

γt · cstatst+1
| s0 = s

]

,

where at follows the distribution πst , and Eπ,p denotes

expectation with respect to the distribution induced by π
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and transition function p conditioned on the initial state

event {s0 = s}. Similarly, the value of taking action a at

state s is referred as the action value function as below

qπ,p
sa = Eπ,p

[ ∞∑

t=0

γtcstatst+1
| s0 = s, a0 = a

]

,

where it is known that vπ,p
s =

∑

a∈A πsaq
π,p
sa (Puterman,

2014; Sutton & Barto, 2018). The objective of an MDP is

to compute the optimal policy π⋆ that yields the minimum

expected cost, i.e.,

π⋆ = argmin
π∈Π

Eπ,p

[ ∞∑

t=0

γtcstatst+1
|s0 ∼ ρ

]

. (1)

In most domains, the exact transition kernel and cost func-

tion are not known precisely and must be estimated from

data. These estimation errors often result in policies that per-

form poorly when deployed. To compute reliable policies

with model errors, RMDPs, defined as ⟨S,A,P, c, γ,ρ⟩,
aim to optimize the worst-case performance with respect to

plausible errors (Iyengar, 2005; Nilim & El Ghaoui, 2005;

Wiesemann et al., 2013), i.e.

min
π∈Π

max
p∈P

Jρ(π,p) := ρ⊤vπ,p =
∑

s∈S
ρsv

π,p
s , (2)

where P is known as the ambiguity set. By carefully cal-

ibrating P so that it contains the unknown true transition

kernel, the optimal policy in (2) can achieve reliable perfor-

mance in practice (Russell & Petrik, 2019; Behzadian et al.,

2021b; Panaganti et al., 2022).

Note that, at this point, there is no need to assume that the

RMDP in (2) is rectangular, such as (s, a)-rectangular or

s-rectangular (Iyengar, 2005; Nilim & El Ghaoui, 2005;

Wiesemann et al., 2013; Ho et al., 2021). We do not need

these assumptions to describe or analyze DRPG and only

require P to be compact. Rectangularity assumptions will

be helpful, however, when developing algorithms for solving

the inner maximization problem.

Given a specific policy and transition kernel, the occupancy

measure represents the frequencies of visits to states (Puter-

man, 2014), which is defined as follow.

Definition 2.2 (Occupancy measure). The discounted state

occupancy measure dπ,p
ρ : S → [0, 1] for an initial distribu-

tion ρ, a policy π ∈ Π, and a transition kernel p is defined

as

dπ,p
ρ (s′) = (1− γ)

∑

s∈S

∞∑

t=0

γtρ(s)pπss′(t). (3)

Here, pπss′(t) is the probability of arriving in a state s′ after

transiting t time steps from state s over the policy π and the

transition kernel p.

The non-convex minimax problem in (2) can be reformu-

lated as an equivalent problem of minimizing the worst-case

return:

min
π∈Π

{

Φ(π) := max
p∈P

Jρ(π,p)
}

. (4)

Then, it may seem natural to solve (4) by a gradient descent

on the function Φ. This is, in general, not possible because

the function Φ is not differentiable. In addition, since Φ is

neither convex nor concave, its subgradient does not exist

either (Nouiehed et al., 2019; Lin et al., 2020). These com-

plications motivate the need for the double-loop iterative

scheme to solve RMDPs in Section 3.

Next, we introduce two crucial definitions on smoothness

and Lipschitz continuity, which we need to analyze DRPG.

Definition 2.3. A function h : X → R is L-Lipschitz if

for any x1,x2 ∈ X , we have that ∥h(x1) − h(x2)∥ ≤
L∥x1 − x2∥, and ℓ-smooth if for any x1,x2 ∈ X , we have

∥∇h(x1)−∇h(x2)∥ ≤ ℓ∥x1 − x2∥.

To discuss the global optimality of RMDPs, we introduce

the following definition of weak convexity officially.

Definition 2.4 (Weak Convexity). The function h : X → R

is ℓ-weakly convex if for any g ∈ ∂h(x) and x,x′ ∈ X ,

h(x′)− h(x) ≥ ⟨g,x′ − x⟩ − ℓ

2
∥x′ − x∥2.

Here, ∂h(x) represents the Fréchet sub-differential (See

Definition D.1 in the appendix) of h(·) at x ∈ X , which

generalizes the notion of gradient for the non-smooth func-

tion (Vial, 1983; Davis & Drusvyatskiy, 2019; Thekumpara-

mpil et al., 2019).

3. Solving the Outer Loop

In this section, we describe a policy gradient approach that

solves the minimization problem in (4). Surprisingly, we

show that a form of gradient descent applied to (4) converges

to a globally-optimal solution, even though the objective

function is neither convex nor concave. This result is in-

spired by the recent analysis of policy gradient methods for

ordinary MDPs (Agarwal et al., 2021; Bhandari & Russo,

2021). For now, we assume that there exists an oracle that

solves the inner maximization problem. We provide the

discussion and algorithms for solving the inner problem in

Section 4.

The remainder of the section is organized as follows. In

Section 3.1, we describe our new policy gradient scheme

and then, in Section 3.2, we show that our scheme is guar-

anteed to converge to the global solution. To the best of our

knowledge, this is the first generic robust policy gradient

algorithm with global convergence guarantees.
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Algorithm 1 Double-Loop Robust Policy Gradient (DRPG)

Input: initial policy π0, iteration time T , tolerance se-

quence {ϵt}t≥0 such that ϵt+1 ≤ γϵt, step size sequence

{αt}t≥0

for t = 0, 1, . . . , T − 1 do

Find pt so that Jρ(πt,pt) ≥ maxp∈P Jρ(πt,p)− ϵt.
Set πt+1 ← ProjΠ(πt − αt∇πJρ(πt,pt)). (Eq. (5))

end for

Output: πt⋆ ∈ {π0, . . . ,πT−1} s.t. Jρ(πt⋆ ,pt) =
mint′∈{0,...,T−1} Jρ(πt′ ,pt)

3.1. Double-Loop Robust Policy Gradient Method

(DRPG)

We now describe the proposed policy gradient scheme sum-

marized in Algorithm 1, named Double-Loop Robust Policy

Gradient (DRPG). We refer to DRPG as a “double loop”

method in order to be consistent with the terminology in

game theory literature (Nouiehed et al., 2019; Thekumpara-

mpil et al., 2019; Jin et al., 2020; Zhang et al., 2020).

The inner loop of DRPG updates the worst-case transition

probabilities pt while the outer loop updates the policies πt.

Specifically, DRPG iteratively takes steps along the policy

gradient to search for an optimal policy in (2). At each

iteration t, we first solve the inner maximization problem to

some specific precision ϵt; that is, for a policy πt at iteration

t, we seek for any transition kernel pt such that

Jρ(πt,pt) ≥ max
p∈P

Jρ(πt,p)− ϵt .

Once pt is computed, DRPG then takes a projected gradient

step to minimize Jρ(π,pt) subject to a constraint π ∈ Π.

When chosen appropriately, the sequence ϵt allows for quick

policy updates in the initial stages of the algorithm without

putting the global convergence in jeopardy. Similar algo-

rithms studied in the context of zero-sum games do not in-

clude this tolerance ϵt (Nouiehed et al., 2019; Thekumpara-

mpil et al., 2019). The adaptive tolerance sequence {ϵt}t≥0

is inspired by prior work on algorithms for RMDPs (Ho

et al., 2021). The convergence analysis below provides

further guidance on appropriate choices of ϵt.

DRPG updates policies using projected gradient descent.

The well-known proximal representation of projected gradi-

ent is (Bertsekas, 2016):

πt+1 ∈ arg min
π∈Π
⟨∇πJρ(πt,pt),π − πt⟩+

1

2αt

∥π − πt∥2

= ProjΠ (πt − αt∇πJρ(πt,pt)) , (5)

where ProjΠ is the projection operator onto Π and αt > 0
is the step size. This projected gradient update on πt :=
(πt,s)s∈S ∈ (∆A)S can be further decoupled to multiple

projection updates that across states and take the form as

πt+1,s = Proj∆A (πt,s − αt∇πs
Jρ(πt,pt)) , ∀s ∈ S,

which can also be seen as a gradient step followed by a

projection onto ∆A for each state s ∈ S. Note that the

gradient ∇πJρ(πt,pt) used in DRPG is identical to the

the gradient in ordinary MDPs, e.g., (Agarwal et al., 2021;

Bhandari & Russo, 2021),

∂Jρ(π,p)

∂πsa

=
1

1− γ
· dπ,p

ρ (s) · qπ,p
sa . (6)

Actor-critic RL algorithms are typically based on this form

of the policy gradient.

An alternative to double-loop algorithms is to use single-

loop algorithms. Single-loop algorithms interleave gra-

dient updates to the inner and outer optimization prob-

lems (Mokhtari et al., 2020; Zhang et al., 2020). Interleaving

gradient updates is fast but prone to instabilities and oscil-

lations. The most-common approach to preventing such in-

stabilities is to resort to two-scale step size updates (Heusel

et al., 2017; Daskalakis et al., 2020; Russel et al., 2020).

We focus in this work on double-loop algorithms because

of their conceptual simplicity and good empirical behavior.

3.2. Convergence Analysis

We now turn to analyzing the convergence behavior of

DRPG. First, recall that we assume that P is compact. Vir-

tually all ambiguity sets considered in prior work, such as

L1-ambiguity sets, L∞-ambiguity sets, L2-ambiguity sets,

and KL-ambiguity sets, are compact.

Then, the following lemma helps us to derive the weak

convexity of this non-convex, non-differentiable (i.e., non-

smooth) objective function Φ(π).

Lemma 3.1. The objective function Jρ(π,p) in (2) is Lπ-

Lipschitz and ℓπ-smooth in π with

Lπ :=

√
A

(1− γ)2
, ℓπ :=

2γA

(1− γ)3
.

Furthermore, the objective Φ(π) is ℓπ-weakly convex and

Lπ-Lipschitz.

The proof of this lemma, as well as of all the remaining

auxiliary results, are provided in the appendix. Lemma 3.1

establishes some general continuity properties of Φ(π) and

serves as an important stepping stone for deriving the global

convergence of Algorithm 1; however, weak convexity alone

is insufficient to guarantee that gradient-based updates con-

verge to a global optimum.

Recent work (Agarwal et al., 2021) proved the global conver-

gence of policy gradient methods in ordinary MDP relying
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on a “gradient dominance condition”. Informally speaking,

a function h(x) is said to satisfy the gradient dominance

condition if h(x) − h(x⋆) = O(G(x)), where G(·) is a

suitable notion that measures the gradient of h. By having a

gradient dominance condition, one can prevent the gradient

from vanishing before reaching a globally optimal point.

Despite the non-smoothness of Φ(π), weakly convex prob-

lems naturally admit an implicit smooth approximation

through the Moreau envelope (Davis & Drusvyatskiy, 2019;

Mai & Johansson, 2020). Inspired by the idea of gradient

dominance, we introduce the gradient of the Moreau enve-

lope and show that Φ(π) satisfies a particular variant of the

gradient dominance condition in the next theorem.

Theorem 3.2. Denote π⋆ as the global optimal policy for

RMDPs. Then, for any policy π, we have

Φ(π)− Φ(π⋆) ≤
(

D
√
SA

1− γ
+

Lπ

2ℓπ

)

∥∇Φ 1
2ℓπ

(π)∥, (7)

where Φλ(π) is the Moreau envelope function of Φ(π) (see

Definition D.3) and D := supπ∈Π,p∈P ∥dπ,p
ρ /ρ∥∞ < ∞

for every ρ with mins∈S ρs > 0.

Here, ∥dπ,p
ρ /ρ∥∞ is formally named as distribution

mismatch coefficient which is often assumed to be

bounded (Scherrer, 2014; Chen & Jiang, 2019; Mei et al.,

2020; Agarwal et al., 2021; Leonardos et al., 2021).

This gradient-dominance type property implies that any first-

order stationary point of the Moreau envelope results in an

approximately global optimal policy. We are now ready to

state our main result.

Theorem 3.3 (Global convergence for DRPG). Denote πt⋆

as the policy that Algorithm 1 outputs. Then, for a constant

step size α := δ√
T

with any δ > 0 and the initial tolerance

ϵ0 ≤
√
T , we have

Φ(πt⋆)−min
π∈Π

Φ(π) ≤ ϵ, (8)

and T is chosen to be a large enough such that

T ≥

(
D
√
SA

1−γ
+ Lπ

2ℓπ

)4 (
4ℓπS

δ
+ 2δℓπL

2
π + 4ℓπ

1−γ

)2

ϵ4

= O(ϵ−4). (9)

Compared to the ordinary MDPs, the convergence analysis

for solving RMDPs poses additional difficulties as objec-

tive function Φ(π) is not only non-convex but also non-

differentiable (Nouiehed et al., 2019; Lin et al., 2020). The-

orem 3.3 shows that the proposed Algorithm 1 converges to

the global optimal for RMDPs by the following strategy. We

first show the existence of an ϵ-first order stationary point

(see Definition D.4) of Φ(π). More concretely, we prove

the gradient of the Moreau envelope is smaller than ϵ on

the output policy. Then, by applying the derived gradient

dominance condition (Theorem 3.2), we finally complete

the proof as this stationary point is arbitrarily close to the

global optimal solution.

Theorem 3.3 shows that DRPG converges to an ϵ global

optimum withinO(ϵ−4) steps, which has a slower rate com-

pared to standard policy gradient methods (Agarwal et al.,

2021). The additional complexity arises from this need to

control the approximation error in order to avoid looping.

In particular, computational errors at the inner loops could

break the convergence of the outer loop. Similar behaviors

are also observed in policy iteration for robust MDPs (Con-

don, 1990; Ho et al., 2021). Nevertheless, our analysis

matches and is consistent with the other minimax conver-

gence results obtained in non-convex non-concave minimax

optimization (Davis & Drusvyatskiy, 2019; Jin et al., 2020),

and provides a conservative convergence guarantee.

DRPG relies on an oracle that outputs at least one worst-case

transition kernel for any given π. In fact, solving the inner

loop problem could still be NP-hard for non-rectangular

cases (Wiesemann et al., 2013). The following section pro-

poses an algorithm for solving the inner loop problem.

4. Solving the Inner Loop

So far, we have described the outline of DRPG and proved

its global convergence. In Algorithm 1, the transition kernel

pt is obtained by approximately solving the inner maximiza-

tion problem with a fixed outer policy πk ∈ Π:

max
p∈P

Jρ(πk,p) = max
p∈P

ρ⊤vπk,p. (10)

Whereas assumptions of boundness and compactness

are used to ensure the inner maximum existing for the

maximization problem, solving this maximization prob-

lem is still computationally challenging due to its non-

convexity (Wiesemann et al., 2013). This section discusses

two solution methods for solving the inner maximization

problem, which we refer to as the robust policy evaluation

problem. Note that the convergence results in Section 3 are

independent of the method used to solve this robust policy

evaluation problem.

We now introduce two broad classes of ambiguity sets that

are considered in the rest of this section. An ambiguity set

P is (s, a)-rectangular (Iyengar, 2005; Nilim & El Ghaoui,

2005; Le Tallec, 2007) if it is a Cartesian product of sets

Ps,a ⊆ ∆S for each state s ∈ S and action a ∈ A, i.e.,

P = {p ∈ (∆S)S×A | ps,a ∈ Ps,a, ∀s ∈ S, a ∈ A},

whereas an ambiguity set P is s-rectangular (Wiesemann

et al., 2013) if it is defined as a Cartesian product of sets
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Ps ⊆ (∆S)A, i.e.,

P = {p ∈ (∆S)S×A | (ps,a)a∈A ∈ Ps, ∀s ∈ S}.

4.1. Value-iteration Approach

The optimum of the inner problem (10) is attained by

solving vπk := minp∈P vπk,p, which is commonly de-

fined as the robust value function (Iyengar, 2005; Nilim &

El Ghaoui, 2005; Wiesemann et al., 2013). The robust value

function vπ of a rectangular RMDP for a policy π ∈ Π
can be computed using the robust Bellman policy update

Tπ : RS → R
S (Ho et al., 2021). Specifically, for (s, a)-

rectangular RMDPs, the operator Tπ is defined for each

state s ∈ S

(Tπv)s :=
∑

a∈A

(

πsa · max
psa∈Psa

p⊤
sa(csa + γv)

)

,

while for s-rectangular RMDPs, the the operator Tπ is de-

fined as

(Tπv)s := max
ps∈Ps

{
∑

a∈A
πsa · p⊤

sa(csa + γv)

}

.

For rectangular RMDPs, Tπ is a contraction and the robust

value function is the unique solution to vπ = Tπvπ . To

solve the robust value function, the state-of-the-art method

is to compute the sequence vπ
t+1 = Tπvπ

t with any initial

values vπ
0 , which is similar to the policy evaluation for

ordinary MDPs.

Note that computing the value function update vπ
t to vπ

t+1

requires solving an optimization problem. For the common

ambiguity sets which are constrained by the support infor-

mation and one additional convex constraint (e.g. L1-norm

ball), one has to solve A convex optimization problems with

O(S) variables and O(S) constraints for all s ∈ S at each

iteration (Grand-Clément & Kroer, 2021b). Examples of

common ambiguity sets are provided in Appendix A.

4.2. Gradient-based Approach

Unlike the extensive study of efficient value-based meth-

ods (Iyengar, 2005; Nilim & El Ghaoui, 2005; Wiesemann

et al., 2013; Petrik & Subramanian, 2014; Ho et al., 2018;

Behzadian et al., 2021a), there has been little work on de-

signing gradient-based algorithms to compute the robust

value function. In this subsection, a first gradient-based

algorithm is proposed in Algorithm 2 to solve the inner-loop

robust policy evaluation problem with a global convergence

guarantee, under the assumptions of having rectangular and

convex ambiguity set.

Note that the inner problem (10) could be regarded as a con-

strained non-concave maximization problem when the outer

Algorithm 2 Projected gradient descent for the inner prob-

lem

Input: Target fixed policy πk, initial transition kernel p0,

iteration time Tk, step size sequence {βt}t≥0

for t = 0, 1, . . . , Tk − 1 do

Set pt+1 ← ProjP(pt + βt∇pJρ(πk,pt)).
end for

Output: pt⋆ ∈ {p0, . . . ,pTk−1} s.t. Jρ(πk,pt⋆) =
mint∈{0,...,Tk−1} Jρ(πk,pt)

policy πk is fixed. Therefore, the most intuitive approach to

solve (10) is to iteratively update the variable by following

its ascent direction within the feasible set.

To maximize Jρ(πk,p), Algorithm 2 iteratively computes

the projected gradient step on p; that is, at iteration t, we

compute

pt+1 = ProjP(pt + βt∇pJρ(πk,pt)), (11)

which depends on the explicit form of P . Although (s, a)-
rectangular ambiguity sets can be viewed as a special case

of s-rectangular ambiguity sets in general (Wiesemann et al.,

2013; Ho et al., 2021), the implementations of the projected

gradient step for two rectangular ambiguity sets are differ-

ent.

For (s, a)-rectangular RMDPs, this projected gradient up-

date can be decoupled to multiple projection updates that

across state-action pairs such as

pt+1,sa = ProjPs,a
(pt,sa + βt∇psa

Jρ(πk,pt)).

Similarly, for s-rectangular RMDPs, the projected gradient

update can be computed across states as

pt+1,s = ProjPs
(pt,s + βt∇ps

Jρ(πk,pt)).

If the ambiguity set is convex, the projected update can

be implemented by solving a convex optimization problem

with a quadratic objective.

4.3. Inner Loop Global Optimality

To establish some general convergence properties of Algo-

rithm 2, we first derive some continuity properties for the

inner objective (10). Then, we prove the global optimality of

Algorithm 2 by introducing a particular gradient dominance

condition for the inner problem.

The next lemma derives the gradient for the inner loop.

Lemma 4.1 (Differentiability). The partial derivative of

Jρ(π,p) has the explicit form for any (s, a, s′) ∈ S×A×S ,

∂Jρ(π,p)

∂psas′
=

1

1− γ
dπ,p
ρ (s)πsa (csas′ + γvπ,p

s′ ) .

Moreover, Jρ(π,p) is Lp-Lipschitz in p with Lp :=
√
SA

(1−γ)2 .
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If a function is smooth, then a gradient update with a suffi-

ciently small step size is guaranteed to improve the objective

value. As it turns out, inner problem is ℓp-smooth.

Lemma 4.2 (Smoothness). The function Jρ(π,p) is ℓp-

smooth in p with ℓp := 2γS2

(1−γ)3 .

Due to the non-convexity of Jρ, smoothness is not sufficient

to establish the global convergence guarantee. We notice

that the inner problem can be interpreted as having an adver-

sarial nature to maximize the total reward (decision maker’s

cost) by selecting a proper transition kernel from the ambigu-

ity set P (Lim et al., 2013; Goyal & Grand-Clément, 2022).

Hence we leverage the idea from the convergence analysis

of the classical policy gradient (Agarwal et al., 2021) and

derive our global convergence guarantee by first deriving the

following inner problem’s gradient dominance condition.

Lemma 4.3 (Gradient dominance). For any fixed π ∈ Π,

Jρ(π,p) satisfies the following condition for any p ∈ P
such that

Jρ(π,p
⋆)−Jρ(π,p) ≤

D

1− γ
max
p̄∈P
⟨p̄− p,∇pJρ(π,p)⟩ ,

where Jρ(π,p
⋆) := maxp∈P Jρ(π,p).

Using this notion of gradient dominance, we now give an

iteration complexity bound for Algorithm 2.

Theorem 4.4. Let pt⋆ be the point obtained by Algorithm 2

and ϵk > 0 be the desired precision. Algorithm 2 with

constant step size β = (1−γ)3

2γS2 satisfies

max
p∈P

Jρ(πk,p)− Jρ(πk,pt⋆) ≤ ϵk, (12)

whenever

T ≥ 32γS3AD2

(1− γ)6ϵ2k
= O(ϵ−2

k ). (13)

4.4. Scalability of Parametric Transition

In standard policy-gradient methods, one considers a family

of policies parametrized by lower-dimensional parameter

vectors to limit the number of variables when scaling to

large problems. The projected gradient step in Algorithm 2

needs to update each psas′ , which is difficult with large state

and action spaces. To overcome this problem, we provide a

new approach to transition probability parameterization. To

the best of our knowledge, comparable parameterizations

for the inner problem have not been studied previously.

We parameterize transition kernel with the following form

for any (s, a, s′) ∈ S ×A× S ,

pξsas′ :=
p̄sas′ · exp(θ

⊤φ(s′)
λsa

)
∑

k p̄sak · exp(
θ⊤φ(k)

λsa
)
, (14)

where φ(s) := [ϕ1(s), · · · , ϕm(s)] is a m-dimensional fea-

ture vector corresponding to the state s ∈ S , ξ := (θ,λ) is

the collection of parameters, consisting of the strictly posi-

tive parameter λ := {λsa > 0 | ∀(s, a) ∈ S × A} and the

unconstrained parameter θ := [θ1, · · · , θm]. The symbol p̄

represents the nominal transition kernel, which is typically

estimated from the empirical sample of state transitions.

The parameterization in (14) is motivated by the form

of the worst-case transition probabilities in RMDPs with

KL-divergence constrained (s, a)-rectangular ambiguity

sets (Nilim & El Ghaoui, 2005). In fact, the worst-case

transitions has an identical form to (14) when linear approx-

imation θ⊤φ(s) is applied.

Then, the RMDPs problem then becomes,

min
π∈Π

max
ξ∈Ξ

Jρ(π, ξ),

where Ξ is the ambiguity set for the parameter ξ. In practice,

Ξ could be constructed via distance-type constraint; that is,

we consider

Ξ := {ξ | D (ξ∥ξc) ≤ κ},

where D(·∥·) represents a distance function, such as L1-

norm and L∞-norm, ξc is the user-specified empirical esti-

mation of ξ, and κ ∈ R++ is a given radius.

To apply the gradient-based update on parameterized tran-

sition, we introduce the following lemma to derive the gra-

dient of the inner problem, which is similar to the classical

policy gradient theorem (Sutton et al., 1999)

Lemma 4.5. Consider a map ξ 7→ pξsas′ that is differ-

entiable for any (s, a, s′) . Then, the partial gradient of

Jρ(π, ξ) on ξ is

∂Jρ(π, ξ)

∂ξ
=

1

1− γ
Es∼dπ,ξ

ρ
a∼πs·

s′∼psa·

[

∂ log pξsas′

∂ξ

(

csas′ + γvπ,ξ
s′

)
]

.

(15)

Moreover, when parameterization (14) is applied, the score

function
∂ log p

ξ

sas′

∂ξ
has the analytical form:

∂ log pξsas′

∂θi
=

ϕi(s
′)

λsa

−
∑

j

pξsaj ·
ϕi(j)

λsa

, (16)

∂ log pξsas′

∂λsa

=
∑

j

pξsaj ·
θ⊤φ(j)

λ2
sa

− θ⊤φ(s′)

λ2
sa

. (17)

5. Experiments

In this section, we demonstrate the global convergence of

DRPG and verify the robustness of the policies computed
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selecting a suitable step size and an adaptive decreasing

tolerance sequence, our algorithm converges to the global

optimal policy under mild conditions. Moreover, we pro-

vide the first gradient-based solution method with a novel

parameterization for solving the inner maximization. In

our experiments, our results demonstrate the global conver-

gence of DRPG and its reliable performance against the

non-robust approach. Future work should address exten-

sions to related models (e.g., distributionally RMDP) and

scalable model-free algorithms.
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A. Examples of Common Ambiguity Sets

We discuss a particularly popular class of rectangular ambiguity sets which are defined by norm constraints bounding

the distance of any feasible transition probabilities from a nominal (average) state distribution. It is usually referred to

as an L1-constrained ambiguity set (Petrik & Subramanian, 2014; Petrik et al., 2016; Ho et al., 2021) or L∞-constrained

ambiguity set (Delgado et al., 2016; Behzadian et al., 2021a). For such rectangular ambiguity sets, problem (10) can be

solved efficiently by updating the value function with the robust Bellman operator Tπ : RS → R
S . Below, we show forms

of Bellman operator within different rectangular conditions.

Example B. L1-constrained (s, a)-rectangular ambiguity sets generally assume the uncertain in transition probabilities is

independent for each state-action pair and are defined as

P = ×
s∈S,a∈A

Ps,a where Ps,a :=
{
p ∈ ∆S | ∥p− p̄sa∥1 ≤ κsa

}
.

For (s, a)-rectangular RMDPs constrained by the L1-norm, Tπ is defined for each s ∈ S as

(Tπvπ,p)s :=
∑

a∈A

(

πsa · max
psa∈Psa

{
p⊤
sa(csa + γvπ,p) | ∥psa − p̄sa∥1 ≤ κsa

}
)

.

Example C. L∞-constrained s-rectangular ambiguity sets generally assume the uncertain in transition probabilities is

independent for each state-action pair and are defined as

P = ×
s∈S
Ps where Ps :=

{

(ps1, . . . ,psA) ∈ (∆S)A |
∑

a∈A
∥psa − p̄sa∥∞ ≤ κs

}

.

For s-rectangular RMDPs constrained by the L∞-norm, Tπ is defined for each s ∈ S as

(Tπvπ,p)s := max
ps∈Ps

{
∑

a∈A
πsa · p⊤

sa(csa + γvπ,p) |
∑

a∈A
∥psa − p̄sa∥∞ ≤ κs

}

.

There exists an unique solution to the Bellman equation vπ,p = Tπvπ,p, which is called the robust value function (Iyengar,

2005; Wiesemann et al., 2013). Specially, both L1-constrained ambiguity sets and L∞-constrained ambiguity sets are in

fact polyhedral, which implies the worst-case transition probabilities in bellman updates can be computed as the solution of

linear programs (LPs). Instead, RMDPs with other distance-type ambiguity sets, such as L2-constrained ambiguity sets can

compute an Bellman update Tπ by solving convex optimization problems.

D. Technical Lemmas and Definitions

As promised, we first introduce the definition of the Fréchet sub-differential for general functions.

Definition D.1. The Fréchet sub-differential of a function h : X → R at point x ∈ X is defined as the set ∂h(x) =
{u| lim infx′→x h(x′)− h(x)− ⟨u,x′ − x⟩/∥x′ − x∥ ≥ 0}.

Then, a common lemma is provided to illustrate a basic property that a smooth function satisfies.

Lemma D.2. Let h : X → R be ℓ-smooth, then it is a ℓ-weakly convex function.

Proof of Lemma D.2. Let r(t) := h(x+ t(x′ − x)), for any x, x′ ∈ X . The following holds true

h(x) = r(0) and h(x′) = r(1).

Then, we observe that

h(x′)− h(x) = r(1)− r(0) =

∫ 1

0

∇r(t)dt,

where

∇r(t) = ∇h(x+ t(x′ − x))⊤(x′ − x).
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We complete the proof as

∥h(x′)− h(x)−∇h(x)⊤(x′ − x)∥

≤
∥
∥
∥
∥

∫ 1

0

∇r(t)dt−∇h(x)⊤(x′ − x)

∥
∥
∥
∥

≤
∫ 1

0

∥
∥∇r(t)−∇h(x)⊤(x′ − x)

∥
∥ dt

=

∫ 1

0

∥
∥∇h(x+ t(x′ − x))⊤(x′ − x)−∇h(x)⊤(x′ − x)

∥
∥ dt

≤
∫ 1

0

∥∇h(x+ t(x′ − x))−∇h(x)∥ · ∥(x′ − x)∥dt

≤
∫ 1

0

tℓ∥x′ − x∥2dt = ℓ

2
∥x′ − x∥2.

For smooth function h(x), a point x ∈ X is defined as the first-order stationary point (FOSP) when 0 ∈ ∂h(x). However,

this notion of stationarity can be very restrictive when optimizing nonsmooth functions (Lin et al., 2020). In respond

to this issue, an alternative measure of the first-order stationarity is proposed based on the construction of the Moreau

envelope (Thekumparampil et al., 2019).

Definition D.3. For function h : X → R and λ > 0, the Moreau envelope function of h is given by

hλ(x) := min
x′∈X

{

h(x′) +
1

2λ
∥x− x′∥2

}

. (18)

Definition D.4. Given an ℓ-weakly convex function h, we say that x⋆ is an ϵ-first order stationary point (ϵ-FOSP) if,

∥∇h 1
2ℓ
(x⋆)∥ ≤ ϵ, where h 1

2ℓ
(x) is the Moreau envelope function of h with parameter λ = 1

2ℓ .

The following lemma connects ℓ-weakly convex function and its Moreau envelope function and will be useful in our proofs.

Lemma D.5. (Rockafellar & Wets, 2009, Proposition 13.37) Assume h : X → R is a ℓ-weakly convex function. Then, for

λ < ℓ, the Moreau envelope function hλ is C1-smooth with the gradient given by,

∇hλ(x) = λ−1

(

x− argmin
x′

(

h(x′) +
1

2λ
∥x− x′∥2

))

.

Lemma D.6. Assume the function h : X ⊆ R
n → R is ℓ-weakly convex and not differentiable at any point. Let λ < 1

ℓ
and

x̂λ = argminx′∈X h(x′) + 1
2λ ∥x− x′∥2. Then we have

1

λ
∥x̂λ − x∥ = ∥∇hλ(x)∥.

As a result, ∥∇hλ(x)∥ ≤ ϵ implies∥x̂λ − x∥ ≤ λϵ and ∃ξ ∈ ∂h(x̂λ) such that

−ξ ∈ NX (x̂λ) +
1

λ
(x̂λ − x) ⊆ NX (x̂λ) +

1

λ
∥x̂λ − x∥B(1),

where NX (x̂λ) denotes the normal cone of X at x̂λ and B(r) := {x ∈ R
n : ∥x∥ ≤ r}.

Proof. Here, we consider the function f(x) = h(x) + IX (x) where I is the indicate function and here f(x) := R
n → R.

The Moreau envelope function of f(x) is defined as

fλ(x) = min
x′∈Rn

{

h(x′) + IX (x′) +
1

2λ
∥x− x′∥2

}

, ∀x ∈ R
n

= min
x′∈X

{

h(x′) +
1

2λ
∥x− x′∥2

}

, ∀x ∈ R
n.

14
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The gradient of the moreau envelope fλ(x) is well defined (Lemma D.5) as

∇fλ(x) = λ−1 (x− x̂) ,

where

x̂ : = argmin
x̄∈Rn






h(x̄) + IX (x̄) +

1

2λ
∥x− x̄∥2

︸ ︷︷ ︸

:=ϕx(x̄)







= argmin
x̄∈X

(

h(x̄) +
1

2λ
∥x− x̄∥2

)

Then, we consider the optimality of the function ϕx(y) = h(y) + IX (y) + 1
2λ ∥x− y∥2. Notice that, for any x ∈ R

n, x̂ is

the optimal solution of ϕx(y), then for some ξ ∈ ∂h(x̂), we have

ϕx(x̂(x)) = min
y∈Rn

ϕx(y)⇐⇒ ϕx(x̂(x)) = min
y∈Rn

h(y) + IX (y) +
1

2λ
∥x− y∥2

⇐⇒ 0 ∈ ∂

(

h(y) + IX (y) +
1

2λ
∥x− y∥2

) ∣
∣
∣
y=x̂

,

⇐⇒ 0 ∈ ξ +NX (x̂) +
1

λ
(x̂− x)

⇐⇒ −ξ ∈ NX (x̂) +
1

λ
(x̂− x) . (19)

The above equation (19) implies that, for any z ∈ R
n,

⟨ξ +
1

λ
(x̂− x) , z − x̂⟩ ≥ 0⇐⇒ ⟨−ξ, z − x̂⟩ ≤ ⟨ 1

λ
(x̂− x) , z − x̂⟩, ∀z ∈ R

n

⇐⇒ ⟨−ξ, z − x̂⟩ ≤ 1

λ
∥x̂− x∥ · ∥z − x̂∥, ∀z ∈ R

n

⇐⇒ ⟨−ξ, z − x̂⟩ ≤ 1

λ
∥x̂− x∥, ∀z ∈ R

n, ∥z − x̂∥ = 1. (20)

The above Lemma D.6 implies that if ∥∇hλ(x)∥ is small enough, then x is an approximate stationary point of the original

constrained optimization minX h(x), by the definition of ϵ-FOSP. This motivates us to consider the optimality of the Moreau

envelope function of Φ(π) instead of the optimality of Φ(π) directly.

E. Proofs of Section 3

Proof of Lemma 3.1. First, we first derive the form of partial derivative for πsa to obtain (6). While this form was known

(Agarwal et al., 2019), we included a proof for the sake of completeness. Notice that,

∂Jρ(π,p)

∂πsa

=
∑

ŝ∈S

∂vπ,p
ŝ

∂πsa

ρŝ.

Then, we discuss
∂v

π,p
ŝ

∂πsa
over two cases: ŝ ̸= s and ŝ = s

∂vπ,p
ŝ

∂πsa

∣
∣
∣
ŝ ̸=s

=
∂

∂πsa

[
∑

â

πŝâ

∑

s′∈S
pŝâs′ (cŝâs′ + γvπ,p

s′ )

]

= γ
∑

â

πŝâ

∑

s′∈S
pŝâs′

∂vπ,p
s′

∂πsa

;

∂vπ,p
ŝ

∂πsa

∣
∣
∣
ŝ=s

=
∂

∂πsa










∑

â

πsâ

∑

s′∈S
psâs′ (csâs′ + γvπ,p

s′ )

︸ ︷︷ ︸

q
π,p
sâ










= qπ,p
sa + γ

∑

â

πsâ

∑

s′∈S
psâs′

∂vπ,p
s′

∂πsa

;
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Condense the notation
∑

â

πsâpsâs′ = pπss′(1) (21)

pπss′(t− 1) ·
∑

a

πs′aps′as′′ = pπss′′(t) (22)

Then, combining these two equations, we can obtain,

∂vπ,p
ŝ

∂πsa

∣
∣
∣
ŝ ̸=s

= γ
∑

s′ ̸=s

pπŝs′(1)
∂vπ,p

s′

∂πsa

+ γ
∑

s′=s

pπŝs′(1)
∂vπ,p

s′

∂πsa

= γ2
∑

s′ ̸=s

pπŝs′(1)
∑

â

πs′â

∑

s′′∈S
ps′âs′′

∂vπ,p
s′′

∂πsa

+ γpπŝs(1)

(

qπ,p
sa + γ

∑

â

πsâ

∑

s′∈S
psâs′

∂vπ,p
s′

∂πsa

)

= γpπŝs(1)q
π,p
sa + γ2

∑

s′

pπŝs′(2)
∂vπ,p

s′

∂πsa

= γpπŝs(1)q
π,p
sa + γ2pπŝs(2)q

π,p
sa + γ3

∑

s′

pπŝs′(3)
∂vπ,p

s′

∂πsa

= · · ·

=
∞∑

t=1

γtpπŝs(t)q
π,p
sa =

∞∑

t=0

γtpπŝs(t)q
π,p
sa .

The last equality is from the initial assumption ŝ ̸= s, i.e., pπŝs(0) = 0, and similarly for the case ŝ = s we have,

∂vπ,p
ŝ

∂πsa

∣
∣
∣
ŝ=s

=

∞∑

t=0

γtpπss(t)q
π,p
sa .

Hence, the partial derivative is obtained

∂Jρ(π,p)

∂πsa

=




∂vπ,p

s

∂πsa

ρs +
∑

ŝ ̸=s

∂vπ,p
ŝ

∂πsa

ρŝ



 =
1

1− γ










(1− γ)
∑

ŝ∈S

∞∑

t=0

γtρŝp
π
ŝs(t)

︸ ︷︷ ︸

d
π,p
ρ (s)










qπ,p
sa .

After deriving the form of partial derivative, we next prove that Jρ(π,p) is Lπ-Lipschitz in π by showing the boundedness

of ∇πJρ(π,p). The uniformly bounded cost csas′ implies that, the absolute value of the action value function is bounded

for any policy π and transition kernel p,

|qπ,p
sa | =

∣
∣
∣
∣
∣
Eπ,p

[ ∞∑

t=0

γtcstatst+1 | s0 = s, a0 = a

]∣
∣
∣
∣
∣
≤

∞∑

t=0

γt =
1

1− γ
.

Then, by vectorizing the π as a SA-dimensional vector, we have

∥∇πJρ(π,p)∥ =

√
√
√
√
∑

s,a

(
∂Jρ(π,p)

∂πsa

)2

=
1

1− γ

√
∑

a

∑

s

(dπ,p
ρ (s)qπ,p

sa )
2

≤ 1

(1− γ)2

√
∑

a

∑

s

(dπ,ξ
ρ (s))2 ≤

√
A

(1− γ)2
,
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where the last inequality holds since the discounted state occupancy measure satisfies

∑

s

(dπ,ξ
ρ (s))2 ≤

(
∑

s

(dπ,ξ
ρ (s))

)2

= 1.

About the smoothness of Jρ(π,p), it can be immediately proved by (Agarwal et al., 2021, Lemma 54). Finally, we turn to

derive the continuity of Φ(π). 1. We first show Φ(π) is Lπ-Lipschitz if Jρ(π,p) is Lπ-Lipschitz in π. For any π1,π2 ∈ Π,

we let p1 := argmaxp∈P Jρ(π1,p) and p2 := argmaxp∈P Jρ(π2,p), then

Φ(π1)− Φ(π2) = max
p∈P

Jρ(π1,p)−max
p∈P

Jρ(π2,p)

= Jρ(π1,p1)− Jρ(π2,p2)

≤ Jρ(π1,p1)− Jρ(π2,p1)

≤ Lπ∥π1 − π2∥.

2. Then, (Thekumparampil et al., 2019, Lemma 3) shows that, Φ(π) = maxp∈P Jρ(π,p) is ℓπ-weakly convex if Jρ(π,p)
is ℓπ-smooth. Combining the results of these two parts, this lemma is proved.

The following lemma is helpful throughout in the convergence analysis of policy optimization.

Lemma E.1. (The performance difference lemma) For any π,π′ ∈ Π, p ∈ P and ρ ∈ ∆S , we have

Jρ(π,p)− Jρ(π
′,p) =

1

1− γ

∑

s,a

dπ,p
ρ (s)πsa

(

qπ
′,p

sa − vπ
′,p

s

)

. (23)

Generally, the term qπ,p
sa − vπ,p

s is defined as the advantage function.

Proof of Lemma E.1. By the definition of Jρ(π,p) in (2), we have

Jρ(π,p)− Jρ(π
′,p) =

∑

s

ρs

(

vπ,p
s − vπ

′,p
s

)

.
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We introduce the advantage functionAπ,p
sa := qπ,p

sa − vπ,p
s for convenience, and observe that, for any s ∈ S ,

vπ,p
s − vπ

′,p
s

= vπ,p
s −

∑

a

πsa

∑

s′

psas′
(

csas′ + γvπ
′,p

s′

)

+
∑

a

πsa

∑

s′

psas′
(

csas′ + γvπ
′,p

s′

)

− vπ
′,p

s

=
∑

a

πsa

∑

s′

psas′ (csas′ + γvπ,p
s′ )−

∑

a

πsa

∑

s′

psas′
(

csas′ + γvπ
′,p

s′

)

+
∑

a

πsa

∑

s′

psas′
(

csas′ + γvπ
′,p

s′

)

︸ ︷︷ ︸

q
π′,p
sa

−vπ′,p
s

= γ
∑

a

πsa

∑

s′

psas′
(

vπ,p
s′ − vπ

′,p
s′

)

+
∑

a

πsa

(

qπ
′,p

sa − vπ
′,p

s

)

= γ
∑

a

πsa

∑

s′

psas′
(

vπ,p
s′ − vπ

′,p
s′

)

+
∑

a

πsaA
π′,p
sa

(a)
= γ

∑

s′

pπss′(1)

(

γ
∑

s′′

pπs′s′′(1)
(

vπ,p
s′′ − vπ

′,p
s′′

)

+
∑

a′

πs′a′Aπ′,p
s′a′

)

+
∑

a

πsaA
π′,p
sa

=
∑

a

πsaA
π′,p
sa + γ

∑

s′

pπss′(1)
∑

a′

πs′a′Aπ′,p
s′a′ + γ2

∑

s′

pπss′(2)
(

vπ,p
s′ − vπ

′,p
s′

)

= · · ·

=

∞∑

t=0

γt
∑

s′

pπss′(t)

(
∑

a′

πs′a′Aπ′,p
s′a′

)

,

where pπss′(t) is defined in (21), and (a) uses the recursion. We then obtain

Jρ(π,p)− Jρ(π
′,p) =

∑

s

ρs

(

vπ,p
s − vπ

′,p
s

)

=
∑

s

ρs

∞∑

t=0

γt
∑

s′

pπss′(t)

(
∑

a′

πs′a′Aπ′,p
s′a′

)

=
∑

s′

(
∑

s

∞∑

t=0

γtρsp
π
ss′(t)

)(
∑

a′

πs′a′Aπ′,p
s′a′

)

=
1

1− γ

∑

s,a

dπ,p
ρ (s)πsaA

π′,p
sa .

The last equality is obtained by the definition of state occupancy measure (See Definition 2.2).

Then, we introduce the gradient dominance condition for non-RMDPs proposed in (Agarwal et al., 2021), which will be

used in the proof of Theorem 3.2.

Lemma E.2 (Gradient dominance). For any p ∈ P and ρ ∈ ∆S , we have

Jρ(π,p)− Jρ(π
⋆,p) ≤ D

1− γ
max
π̄∈Π

(π − π̄)⊤∇πJρ(π,p), (24)

where π⋆ is one of optimal policies over p, i.e., π⋆ ∈ argminπ∈Π Jρ(π,p).
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Proof of Lemma E.2. From the Lemma E.1, we have

Jρ(π
⋆,p)− Jρ(π,p) =

1

1− γ

∑

s,a

dπ
⋆,p

ρ (s)π⋆
sa (q

π,p
sa − vπ,p

s )

=
1

1− γ

∑

s,a

dπ
⋆,p

ρ (s)π⋆
saA

π,p
sa

≥ 1

1− γ

∑

s,a

dπ
⋆,p

ρ (s)π⋆
sa min

ā
Aπ,p

sā

=
1

1− γ

∑

s

dπ
⋆,p

ρ (s)min
ā

Aπ,p
sā .

Then, we multiply −1 on both sides

0 ≤ Jρ(π,p)− Jρ(π
⋆,p) ≤ 1

1− γ

∑

s

dπ
⋆,p

ρ (s)− (min
ā

Aπ,p
sā )

=
1

1− γ

∑

s

dπ
⋆,p

ρ (s)max
ā

(−Aπ,p
sā )

=
1

1− γ

∑

s

dπ
⋆,p

ρ (s)

dπ,p
ρ (s)

dπ,p
ρ (s)max

ā
(−Aπ,p

sā )

≤ 1

1− γ

(

max
s

dπ
⋆,p

ρ (s)

dπ,p
ρ (s)

)
∑

s

dπ,p
ρ (s)max

ā
(−Aπ,p

sā )

=

∥
∥
∥
∥
∥

dπ
⋆,p

ρ

dπ,p
ρ

∥
∥
∥
∥
∥
∞

1

1− γ

∑

s

dπ,p
ρ (s)max

ā
(−Aπ,p

sā )

≤ D

1− γ

(

1

1− γ

∑

s

dπ,p
ρ (s)max

ā
(−Aπ,p

sā )

)

(25)

The last inequality (25) is due to the fact (Kakade & Langford, 2002)
∥
∥
∥
∥
∥

dπ
⋆,p

ρ

dπ,p
ρ

∥
∥
∥
∥
∥
∞
≤ 1

1− γ

∥
∥
∥
∥
∥

dπ
⋆,p

ρ

ρ

∥
∥
∥
∥
∥
∞
≤ D

1− γ
.

Notice that, the term in (25) is equivalent to

1

1− γ

∑

s

dπ,p
ρ (s)max

ā
(−Aπ,p

sā ) = max
π̄∈Π

1

1− γ

∑

s,a

dπ,p
ρ (s)π̄sa(−Aπ,p

sa )

= max
π̄∈Π

1

1− γ

∑

s,a

dπ,p
ρ (s)(π̄sa − πsa)(−Aπ,p

sa )

= max
π̄∈Π

1

1− γ

∑

s,a

dπ,p
ρ (s)(πsa − π̄sa)q

π,p
sa

= max
π̄∈Π

(π − π̄)⊤∇πJρ(π,p).

The first equality holds since the optimal π̄ is a deterministic policy, i.e., for some ā ∈ A, π̄sā = 1. The second step is

supported by the property
∑

a πsaA
π,p
sa = 0. The third step follows as

∑

a(πsa − π̄sa)v
π,p
s = 0 and the last equation is

obtained from Lemma 3.1. Thus, we obtain that

Jρ(π,p)− Jρ(π
⋆,p) ≤ D

1− γ
max
π̄∈Π

(π − π̄)⊤∇πJρ(π,p).
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Before providing the proof of Theorem 3.3, we introduce the below intermediate results which are helpful to our proof. We

first introduce a common property for strongly convex functions.

Lemma E.3. Let h : X → R be a ℓ-strongly convex function. Then for any x,y ∈ X , h(x), we have

h(y)− h(x) ≤ ∇h(y)⊤(y − x)− ℓ

2
∥x− y∥2. (26)

Moreover, by taking y = x⋆ := argminx∈X h(x) as the minimum point of h(x), we get

h(x)− min
x∈X

h(x) ≥ ℓ

2
∥x− x⋆∥2. (27)

Proof of Lemma E.3. The inequality (26) is a basic property that the strongly convex function hold, whereas the second

inequality is obtained by the first-order optimality condition for the convex optimization problem, i.e.,∇h(x⋆)⊤(x−x⋆) ≥
0.

We also need to introduce the following Danskin’s Theorem, which helps prove our global convergence theorem.

Proposition E.4. (Bertsekas, 2016, Proposition B.25) Let Z ⊆ R
m be a compact set, and let ϕ : Rn × Z → R be

continuous function and such that ϕ(·, z) : Rn → R is convex for each z ∈ Z . If ϕ(·, z) is differentiable for all z ∈ Z and

∇ϕ(x, ·) is continuous on Z for each x, then for f(x) := maxz∈Z ϕ(x, z) and any x ∈ R
n,

∂f(x) = conv

{

∇xϕ(x, z) | z ∈ argmax
z∈Z

ϕ(x, z)

}

.

Notice that, Lemma 3.1 successfully proves that Jρ(π,p) is ℓπ-smooth and Lπ-Lipschitz in π. We want to emphasize that,

these results also leads to the fact that Jρ(π,p) is ℓπ-weakly convex in π by applying the Lemma D.2.

Now, we are ready to prove Theorem 3.2 and Theorem 3.3.

Proof of Theorem 3.2. Since Jρ(π,p) is non-concave in p and the ambiguity set P is only assumed as a compact set, there

may exists multiple inner maxima. In particular, we denote p(k) as the k-th element of the set argmaxp∈P Jρ(π,p) for

fixed policy π ∈ Π. Then, we apply Lemma E.2 to obtain

Φ(π)− Φ(π⋆) = J(π,p(k))− J(π⋆,p⋆)

= J(π,p(k))−min
π∈Π

max
p∈P

J(π,p)

≤ J(π,p(k))−min
π∈Π

J(π,p(k))

≤ D

1− γ
max
π̄

(π − π̄)⊤∇πJ(π,p
(k)). (28)

As we mentioned before this proof that, Jρ(π,p) is ℓπ-weakly convex in π, it implies that J̃ρ(π,p) := Jρ(π,p)+
ℓπ
2 ∥π∥2

is convex in π and ∇πJ̃ρ(π,p) = ∇πJρ(π,p) + ℓππ, referring to (Kruger, 2003, Corollary 1.12.2). Let Φ̃(π) :=

maxp∈P J̃ρ(π,p). Due to the convexity of J̃ρ(π,p) and the compactness of P , we can apply Proposition E.4 to attain

∂Φ̃(π) = conv

{

∇πJ̃ρ(π,p) | p ∈ argmax
p∈P

J̃ρ(π,p)

}

=⇒ ∂Φ(π) + ℓππ = conv

{

∇πJρ(π,p) + ℓππ | p ∈ argmax
p∈P

Jρ(π,p)

}

=⇒ ∂Φ(π) = conv

{

∇πJρ(π,p) | p ∈ argmax
p∈P

Jρ(π,p)

}

. (29)

Assume the set argmaxp∈P Jρ(π,p) contains N finite components, then, Proposition E.4 implies that, for any π ∈ Π,

there exists a sequence {βk}Nk=1 with
∑

k βk = 1 such that for any sub-gradient ξ ∈ ∂Φ(π), it can be represented by a
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convex combination, i.e.,

ξ =

N∑

k=1

βk∇πJρ(π,p
(k)) p(k) ∈ argmax

p∈P
Jρ(π,p), k = 1, 2, · · · , N

Let us define π̃ = argminπ̂∈Π Φ(π̂) + ℓπ∥π − π̂∥2 and Lemma D.6 implies that there exists ξ̄ ∈ ∂Φ(π̃) such that it

satisfies −ξ̄ ⊆ NX (π̃) + 2ℓπ ∥π̃ − π∥ · B(1). Then by assuming argmaxp∈P Jρ(π̃,p) contains N̄ finite components,

there exists a specific sequence {β̄k}N̄k=1 with
∑

k β̄k = 1 such that

ξ̄ =
N̄∑

k

β̄k∇πJρ(π̃, p̃
(k)), p̃(k) ∈ argmax

p∈P
Jρ(π̃,p), k = 1, 2, · · · , N̄ (30)

Then, we have

Φ(π̃)− Φ(π⋆) =

N̄∑

k=1

β̄k (Φ(π̃)− Φ(π⋆))

≤ D

1− γ

N̄∑

k=1

β̄k

(

max
π̄∈Π

(π̃ − π̄)⊤∇πJ(π̃, p̃
(k))

)

≤ D

1− γ

N̄∑

k=1

β̄k⟨max
π̄∈Π

(π̄ − π̃),−∇πJ(π̃, p̃
(k))⟩

≤ D

1− γ

N̄∑

k=1

β̄k⟨(π̄k − π̃),−∇πJ(π̃, p̃
(k))⟩, (31)

where π̄k := argmaxπ̄∈Π⟨(π̄−π̃),−∇πJ(π̃, p̃
(k))⟩, and the second step is obtained by using (28). Since the cost function

is bounded, i.e., 0 ≤ csas′ ≤ 1 for any (s, a, s′) ∈ S × A × S, it implies the action value function qπ,p
s,a and the partial

gradient∇πJ(π,p) are non-negative. Since Φ(π̃)− Φ(π⋆) and the partial gradient∇πJ(π,p) are both non-negative, we

can denote the maximum element of the vector sequence {π̄k − π̃}N̄k=1 as π̄sa which satisfies 0 < π̄sa ≤ 1. Then we get

(31) ≤ D

1− γ

N̄∑

k=1

β̄k⟨π̄sae,−∇πJ(π̃, p̃
(k))⟩ (32)

=
D

1− γ
⟨π̄sae,

N̄∑

k=1

β̄k

(

−∇πJ(π̃, p̃
(k))
)

⟩

≤ D

1− γ
⟨e,−ξ̂⟩ ≤ D

√
SA

1− γ
∥∇Φ 1

2ℓπ
(π)∥. (33)

Here, the last inequality follows from the definition of d̄(π̃t) which is mentioned in (30) and e is all-one vector defined

in Section 1. Remind that, Lemma 3.1 implies Jρ(π,p) is Lπ-Lipschitz in π, and Lemma 3.1 also shows that Φ(π) is

Lπ-Lipschitz. Thus, combine this Lipschitz property and the above equation (32), we get

Φ(π)− Φ(π⋆) = Φ(π)− Φ(π̃) + Φ(π̃)− Φ(π⋆)

≤ D
√
SA

1− γ
∥∇Φ 1

2ℓπ
(π)∥+Φ(π)− Φ(π̃)

≤ D
√
SA

1− γ
∥∇Φ 1

2ℓπ
(π)∥+ Lπ∥π − π̃∥

=
D
√
SA

1− γ
∥∇Φ 1

2ℓπ
(π)∥+ Lπ ·

∥∇Φ 1
2ℓπ

(π)∥
2ℓπ

, (34)

where (34) holds by using arguments of Lemma D.5 and Lemma D.6.
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Proof of Theorem 3.3. The proof is split into two parts. We first show our algorithm can reach a ϵ-first stationary point of

Φ(π) := maxp∈P Jρ(π,p). Then, we next prove that this ϵ-first stationary point is close enough to the global minimum of

Φ(π).

We begin by defining a policy π̃t = argminπ̃∈Π Φ(π̃) + ℓπ∥πt − π̃∥2 where Φ(π) has been well defined as the objective

function Jρ(π,p) taking the worst-case transition probability, then, we have

Φ 1
2ℓπ

(πt+1) = min
π

Φ(π) + ℓπ∥πt+1 − π∥2

≤ Φ(π̃t) + ℓπ∥πt+1 − π̃t∥2

= Φ(π̃t) + ℓπ∥PΠ(πt − α∇πJρ(πt,pt))− PΠ(π̃t)∥2
(a)

≤ Φ(π̃t) + ℓπ∥πt − α∇πJρ(πt,pt)− π̃t∥2

= Φ(π̃t) + ℓπ∥πt − π̃t∥2 − 2ℓπα⟨∇πJρ(πt,pt),πt − π̃t⟩+ α2ℓπ∥∇πJρ(πt,pt)∥2

≤ Φ 1
2ℓπ

(πt) + 2ℓπα

(

Φ(π̃t)− Φ(πt) + ϵt +
ℓπ
2
∥πt − π̃t∥2

)

+ α2ℓπL
2
π, (35)

where (πt,pt) is produced from the DRPG scheme at iteration step t and Φ 1
2ℓπ

is the Moreau envelope fucntion of Φ with

parameter λ = 1
2ℓπ

. The inequality (a) follows the basic projection property (Rockafellar, 1976), i.e., for any x1,x2 ∈ R
n,

∥PX (x1)− PX (x2)∥ ≤ ∥x1 − x2∥,

and the last inequality holds due to the fact that Jρ(π,p) is ℓπ-weakly convex in π, in the sense that, for the π̃t,

Φ(π̃t) ≥ Jρ(π̃t,pt) ≥ Jρ(πt,pt) + ⟨∇πJρ(πt,pt), π̃t − πt⟩ −
ℓπ
2
∥πt − π̃t∥2

≥ max
p∈P

Jρ(πt,p)

︸ ︷︷ ︸

Φ(πt)

−ϵt + ⟨∇πJρ(πt,pt), π̃t − πt⟩ −
ℓπ
2
∥πt − π̃t∥2.

Next, by summing (35) up over t, we obtain,

Φ 1
2ℓπ

(πT−1) ≤ Φ 1
2ℓπ

(π0) + 2ℓπα

T−1∑

t=0

(

Φ(π̃t)− Φ(πt) + ϵt +
ℓπ
2
∥πt − π̃t∥2

)

+ Tα2ℓπL
2
π.

Rearranging this inequality yields

T−1∑

t=0

(

Φ(πt)− Φ(π̃t)−
ℓπ
2
∥πt − π̃t∥2

)

≤
Φ 1

2ℓπ
(π0)− Φ 1

2ℓπ
(πT−1)

2ℓπα
+

TαL2
π

2
+

T−1∑

t=0

ϵt. (36)

Then, we have

Φ(πt)− Φ(π̃t)−
ℓπ
2
∥πt − π̃t∥2

= Φ(πt) + ℓπ∥πt − πt∥2 − Φ(π̃t)− ℓπ∥πt − π̃t∥2 +
ℓπ
2
∥πt − π̃t∥2

= Φ(πt) + ℓπ∥πt − πt∥2 −min
π∈Π

{
Φ(π) + ℓπ∥πt − π∥2

}
+

ℓπ
2
∥πt − π̃t∥2

(a)

≥ ℓπ∥πt − π̃t∥2 =
1

4ℓπ
∥∇Φ 1

2ℓπ
(πt)∥2. (37)

The inequality (a) is obtained by the Lemma E.3 and the last equality in (37) is obtained by using the gradient of Moreau

envelope function proposed in Lemma D.5, i.e.,

∇Φ 1
2ℓπ

(πt) = 2ℓπ

(

πt − argmax
π∈Π

(

Φ(π) + ℓπ ∥πt − π∥2
))

= 2ℓπ (πt − π̃t) .
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Let π̄1 := argminπ̄∈Π Φ(π̄) + ℓπ∥π1 − π̄∥2 and π̄2 := argminπ̄∈Π Φ(π̄) + ℓπ∥π2 − π̄∥2 for any π1,π2 ∈ Π, and then

we have

Φ 1
2ℓπ

(π1)− Φ 1
2ℓπ

(π2) = min
π̄∈Π

(
Φ(π̄) + ℓπ∥π1 − π̄∥2

)
−min

π̄∈Π

(
Φ(π̄) + ℓπ∥π2 − π̄∥2

)
(38)

= Φ(π̄1) + ℓπ∥π1 − π̄1∥2 − Φ(π̄2)− ℓπ∥π2 − π̄2∥2 (39)

≤ Φ(π̄2) + ℓπ∥π1 − π̄2∥2 − Φ(π̄2)− ℓπ∥π2 − π̄2∥2 (40)

= ℓπ
(
∥π1 − π̄2∥2 − ∥π2 − π̄2∥2

)
(41)

≤ 2ℓπS. (42)

Plug (38) and (37) into (36) and reach the first result that

T−1∑

t=0

∥∇Φ 1
2ℓπ

(πt)∥2 ≤
4ℓπS

α
+ 2TαℓπL

2
π + 4ℓπ

T−1∑

t=0

ϵt. (43)

Notice that, when the LHS is smaller than Tϵ2, i.e.,

T ·min
t
∥∇Φ 1

2ℓπ
(πt)∥2 ≤

T−1∑

t=0

∥∇Φ 1
2ℓπ

(πt)∥2 ≤ Tϵ2,

there exists one t̂ such that ∥∇Φ 1
2ℓπ

(πt̂)∥ ≤ ϵ and πt̂ is a ϵ-first order stationary point for Φ(π).

We finished the first part of the proof, and the next step is to show this approximate stationary point is close to the global

minimum of Φ(π). Formally, we next to show there exists some t such that

Jρ(π
⋆,p⋆)−max

p∈P
Jρ(πt,p) = Φ(π⋆)− Φ(πt) ≤ ϵ. (44)

Applying the result in Theorem 3.2 for the iterative policy πt, we have

J(πt,pt)−min
π∈Π

max
p∈P

Jρ(π,p) ≤ Φ(πt)− Φ(π⋆) ≤ D
√
SA

1− γ
∥∇Φ 1

2ℓπ
(πt)∥+ Lπ ·

∥∇Φ 1
2ℓπ

(πt)∥
2ℓπ

. (45)

Combined this two parts, we finally state the global convergence guarantee. Equation (45) implies that

min
t∈{0,··· ,T−1}

{

J(πt,pt)−min
π∈Π

max
p∈P

Jρ(π,p)

}

≤ 1

T

T−1∑

t=0

(

J(πt,pt)−min
π∈Π

max
p∈P

Jρ(π,p)

)

≤ 1

T

T−1∑

t=0

(Φ(πt)− Φ(π⋆))

≤ 1

T

(

D
√
SA

1− γ
+

Lπ

2ℓπ

)
T−1∑

t=0

∥
∥
∥∇Φ 1

2ℓπ
(πt)

∥
∥
∥ (46)

By Cauchy–Schwarz inequality, we can obtain

1√
T

T−1∑

t=0

∥
∥
∥∇Φ 1

2ℓπ
(πt)

∥
∥
∥ ≤

√
√
√
√

T−1∑

t=0

∥∇Φ 1
2ℓπ

(πt)∥2.

We then multiply the constant D
√
SA

1−γ
+ Lπ

2ℓπ
on both sides and combine the inequality (43) to obtain the result that, if the
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iteration time T satisfies

(46) ≤ 1√
T

(

D
√
SA

1− γ
+

Lπ

2ℓπ

)
√
√
√
√

T−1∑

t=0

∥∇Φ 1
2ℓπ

(πt)∥2

=
1√
T

(

D
√
SA

1− γ
+

Lπ

2ℓπ

)
√
√
√
√

(

4ℓπS

α
+ 2TαℓπL2

π + 4ℓπ

T−1∑

t=0

ϵt

)

(a)

≤ 1√
T

(

D
√
SA

1− γ
+

Lπ

2ℓπ

)
√
√
√
√

(

4ℓπS
√
T

δ
+ 2
√
TδℓπL2

π +
4ℓπϵ0
1− γ

)

≤ 1√
T

(

D
√
SA

1− γ
+

Lπ

2ℓπ

)
√
√
√
√

(

4ℓπS
√
T

δ
+ 2
√
TδℓπL2

π +
4ℓπ
√
T

1− γ

)

= ϵ

where the inequality (a) holds due to the adaptive tolerance sequence, in the sense that,

T−1∑

t=0

ϵt ≤
∞∑

t=0

ϵt ≤ ϵ0 ·
(
1 + γ + γ2 + · · ·

)
≤ ϵ0

1− γ
,

which implies that

T ≥

(
D
√
SA

1−γ
+ Lπ

2ℓπ

)4 (
4ℓπS

δ
+ 2δℓπL

2
π + 4ℓπ

1−γ

)2

ϵ4
= O(ϵ−4),

then, we have

min
t∈{0,··· ,T−1}

{

J(πt,pt)−min
π∈Π

max
p∈P

Jρ(π,p)

}

≤ ϵ.

Intuitively, we have

min
t∈{0,··· ,T−1}

{

Φ(πt)−min
π∈Π

Φ(π)

}

≤ ϵ.

F. Discussion on R-contamination ambiguity set

Recall that the R-contamination ambiguity set is a kind of (s, a)-rectangular set P = ×
s∈S,a∈A

Ps,a where Ps,a is defined as

Ps,a := {(1−R)p̄sa +Rq | q ∈ ∆(S)}, s ∈ S, a ∈ A. (47)

We have the following property of the R-contamination sets which illustrates their limited applicability.

Proposition F.1. Any RMDP with an R-contamination ambiguity set has the same optimal robust policy as a corresponding

ordinary MDP with a reduced discount factor.

Proof of Proposition F.1. The robust optimal bellman operator of a RMDP with R-contamination ambiguity can be written

as

(T rv)s : = min
a∈A

max
psa∈Ps,a

(csa + γp⊤
sav)

= min
a∈A

csa + γ
[

(1−R)p̄⊤
sav +Rmax

s′
vs′
]

=

[

min
a∈A

csa + γ(1−R)p̄⊤
sav

]

+Rγmax
s′

vs′
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Consider an ordinary MDP with the same reward function, transition kernel p := (p̄sa)s∈S,a∈A ∈ (∆S)S×A and discount

factor γ(1−R). The optimal bellman operator is defined as

(T v)s := min
a∈A

csa + γ(1−R)p̄⊤
sav.

Then, we have that

(T rv)s = (T v)s +Rγ∥v∥∞ (48)

We define optimal value functions for T r and T as follow

T rvr = vr, T vnr = vnr,

and consider the value iteration with the given initial value functions vr first. Then we have that

T rvr = T vr +Rγ∥vr∥∞e

⇐⇒ (T r)2vr = (T )2vr +Rγ∥T rvr∥∞e+Rγ2(1−R)∥vr∥∞e

= (T )2vr +
[
Rγ +Rγ2(1−R)

]
· ∥vr∥∞ · e

⇐⇒ (T r)kvr = (T )kvr +
[
Rγ +Rγ2(1−R) +Rγ3(1−R)2 + · · ·

]
· ∥vr∥∞ · e

= (T )kvr +
k∑

n=1

Rγk(1−R)k−1 · ∥vr∥∞ · e.

By taking the limitation for both side, we obtain

lim
k→∞

(T r)kvr = vr

= lim
k→∞

[

(T )kvr +

k∑

n=1

Rγn(1−R)n−1 · ∥vr∥∞ · e
]

= vnr + lim
k→∞

[
k∑

n=1

Rγn(1−R)n−1 · ∥vr∥∞ · e
]

= vnr + lim
k→∞

[
1− (γ(1−R))k

1− γ(1−R)

]

· ∥vr∥∞ · e

= vnr +
1

1− γ(1−R)
· ∥vr∥∞ · e.

Each operation T r on vr will take the same optimal action due to the definition of vr, which implies operation T r on vr

works with the same action is taken. This intuitive result shows that the RMDP with R-contamination ambiguity and its

corresponding ordinary MDP with discount factor γ(1−R) has the same optimal policy.

G. Proofs of Section 4

Proof of Lemma 4.1. Notice that

∂Jρ(π,p)

∂psas′
=
∑

ŝ∈S

∂vπ,p
ŝ

∂psas′
ρŝ.

Then, we discuss
∂v

π,p
ŝ

∂psas′
over two cases: ŝ ̸= s and ŝ = s

∂vπ,p
ŝ

∂psas′

∣
∣
∣
ŝ ̸=s

=
∂

∂psas′

[
∑

â

πŝâ

∑

ŝ′∈S
pŝâŝ′ (cŝâŝ′ + γvπ,p

ŝ′ )

]

= γ
∑

â

πŝâ

∑

ŝ′∈S
pŝâŝ′

∂vπ,p
ŝ′

∂psas′
;

∂vπ,p
ŝ

∂psas′

∣
∣
∣
ŝ=s

= γ
∑

â

πsâ

∑

ŝ′∈S
psâŝ′

∂vπ,p
ŝ′

∂psas′
+ πsa (csas′ + γvπ,p

s′ ) ;
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By condensing
∑

â πŝâpŝâŝ′ = pπŝŝ′(1), we can obtain,

∂vπ,p
ŝ

∂psas′

∣
∣
∣
ŝ ̸=s

= γ
∑

ŝ′ ̸=s

pπŝŝ′(1)
∂vπ,p

ŝ′

∂psas′
+ γ

∑

ŝ′=s

pπŝŝ′(1)
∂vπ,p

ŝ′

∂psas′

= γ
∑

ŝ′ ̸=s

pπŝŝ′(1) · γ
∑

â

πŝ′â

∑

ŝ′′∈S
pŝ′âŝ′′

∂vπ,p
ŝ′′

∂psas′

+ γpπŝs(1) ·
(

γ
∑

â

πsâ

∑

ŝ′∈S
psâŝ′

∂vπ,p
ŝ′

∂psas′
+ πsa (csas′ + γvπ,p

s′ )

)

= γpπŝs(1)πsa (csas′ + γvπ,p
s′ ) + γ2

∑

ŝ′

pπŝŝ′(2)
∂vπ,p

ŝ′

∂psas′

= γpπŝs(1)πsa (csas′ + γvπ,p
s′ ) + γ2pπŝs(2)πsa (csas′ + γvπ,p

s′ ) + γ3
∑

ŝ′

pπŝŝ′(3)
∂vπ,p

ŝ′

∂psas′

= · · ·

=
∞∑

t=1

γtpπŝs(t)πsa (csas′ + γvπ,p
s′ ) =

∞∑

t=0

γtpπŝs(t)πsa (csas′ + γvπ,p
s′ ) .

The last equality is from the initial assumption ŝ ̸= s, i.e., pπŝs(0) = 0, and similarly for the case ŝ = s we have,

∂vπ,p
ŝ

∂psas′

∣
∣
∣
ŝ=s

=

∞∑

t=0

γtpπss(t)πsa (csas′ + γvπ,p
s′ ) .

Hence, the partial derivative for transition probability is obtained

∂Jρ(π,p)

∂psas′
=

1

1− γ










(1− γ)
∑

ŝ∈S

∞∑

t=0

γtρŝp
π
ŝs(t)

︸ ︷︷ ︸

d
π,p
ρ (s)










πsa (csas′ + γvπ,p
s′ )

=
1

1− γ
dπ,p
ρ (s)πsa (csas′ + γvπ,p

s′ ) .

The uniformly bounded cost csas′ implies that, the absolute value of the value function is bounded for any policy π and

transition kernel p,

|vπ,p
s | =

∣
∣
∣
∣
∣
Eπ,p

[ ∞∑

t=0

γtcstatst+1 | s0 = s

]∣
∣
∣
∣
∣
≤

∞∑

t=0

γt =
1

1− γ
,

then we obtain that

|πsa (csas′ + γvπ,p
s′ )| ≤ |πsa| · |csas′ + γvπ,p

s′ | ≤ 1 +
γ1

1− γ
≤ 1

1− γ
.

Therefore, by vectorizing the p as a S2A-dimensional vector, we have

∥∇pJρ(π,p)∥ =

√
√
√
√
∑

s,a,s′

(
∂Jρ(π,p)

∂psas′

)2

=
1

1− γ

√
∑

s,a,s′

[dπ,p
ρ (s)πsa (csas′ + γvπ,p

s′ )]
2

≤ 1

(1− γ)2

√
∑

a,s′

∑

s

(dπ,ξ
ρ (s))2 ≤

√
SA

(1− γ)2
,
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where the last inequality holds since the discounted state occupancy measure satisfies

∑

s

(dπ,ξ
ρ (s))2 ≤

(
∑

s

(dπ,ξ
ρ (s))

)2

= 1.

Notice that, the objective function Jρ(π,p) is twice differentiable on p. Hence, to prove the smoothness condition in

Lemma 4.2 is equal to show that there exists a constant L ≤ ∞ such that

∇2
pJρ(π,p) ⪯ LI ⇐⇒ ∀x ∈ R

AS2

, x⊤∇2
pJρ(π,p)x ≤ Lx⊤x.

Proof of Lemma 4.2. Denote p(α) := p + αz ∈ P where α ∈ R is a small scalar, whereas z ∈ (RS)S×A. Since

Jρ(π,p) =
∑

s ρsv
π,p(α)
s with a known initial distribution ρ, we turn to consider the derivative of value function v

π,p(α)
s

of the transition kernel p(α) over α,

vπ,p(α)
s =

∑

a

πsa

∑

s′

[p(α)]sas′csas′ + γ ·
∑

a

πsa

∑

s′

[p(α)]sas′v
π,p(α)
s′ , (49)

First, let us simplify the form of v
π,p(α)
s . We define P (α) ∈ (∆S)S as the state transition kernel and for any s, s′ ∈ S ,

[P (α)]ss′ =
∑

a

πsa[p(α)]sas′ , (50)

and c(α) ∈ R
S where for any s ∈ S ,

|[c(α)]s| =
∣
∣
∣
∣
∣

∑

a

πsa

∑

s′

[p(α)]sas′csas′

∣
∣
∣
∣
∣
≤ 1. (51)

Then, the value function (49) can be written as,

vπ,p(α)
s = e⊤s (I − γP (α))

−1

︸ ︷︷ ︸

M(α)

c(α), (52)

where es := [0, · · · , 1, · · · , 0]⊤ ∈ R
S is a vector whose s-th element is 1 and others are 0. By using power series expansion

technique (Agarwal et al., 2021; Mei et al., 2020), we can obtain that,

M(α) = (I − γP (α))
−1

=

∞∑

t

γtP (α)t, (53)

which implies that, for any s, s′ ∈ S , [M(α)]ss′ ≥ 0, and we have

e =
1

1− γ
· (I − γP (α)) e⇐⇒M(α)e =

1

1− γ
· e, (54)

which implies each row of M(α) sums to 1/(1− γ). Therefore, for any vector x ∈ R
S , we have

∥M(α)x∥∞ = max
i
|[M(α)x]i| ≤

1

1− γ
· ∥x∥∞. (55)

Taking derivative with respect to α on v
π,p(α)
s defined in (52),

∂v
π,p(α)
s

∂α
= e⊤s M(α)

∂c(α)

∂α
+ γe⊤s M(α)

∂P (α)

∂α
M(α)c(α). (56)
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Then taking the twice derivative with respect to α,

∂2v
π,p(α)
s

(∂α)2
= e⊤s M(α)

∂2c(α)

(∂α)2
+ 2γe⊤s M(α)

∂P (α)

∂α
M(α)

∂c(α)

∂α

+ 2γ2e⊤s M(α)
∂P (α)

∂α
M

∂P (α)

∂α
M(α)c(α) + γe⊤s M(α)

∂2P (α)

(∂α)2
M(α)c(α). (57)

Notice that, above two form of derivatives are obtained by using matrix calculus techniques, i.e., for any matrix A,B,U(x)
and scalar x,

∂AU(x)B

∂x
= A

∂U(x)

∂x
B and

∂U(x)−1

∂x
= −U(x)−1 ∂U(x)

∂x
U(x)−1.

So far, we get the derivative form of the value function. Then we’d like to bound

∣
∣
∣
∂2vπ,p(α)

s

(∂α)2

∣
∣
∣
α=0

∣
∣
∣.

For the first term in (57), we have,

∣
∣
∣
∣
e⊤s M(α)

∂2c(α)

(∂α)2

∣
∣
∣
α=0

∣
∣
∣
∣
≤
∥
∥e⊤s

∥
∥
1
·
∥
∥
∥
∥
M(α)

∂2c(α)

(∂α)2

∣
∣
∣
α=0

∥
∥
∥
∥
∞

≤ 1

1− γ
·
∥
∥
∥
∥

∂2c(α)

(∂α)2

∣
∣
∣
α=0

∥
∥
∥
∥
∞

= 0, (58)

where the last but one inequality is obtained from (55) and the last equality holds since for any α ∈ R,

∥
∥
∥
∥

∂2c(α)

(∂α)2

∥
∥
∥
∥
∞

= max
s

∣
∣
∣
∣

∂

∂α

(
∂[c(α)]s

∂α

)∣
∣
∣
∣

= max
s

∣
∣
∣
∣

∂

∂α

(
∂ (
∑

a πsa

∑

s′ [p(α)]sas′csas′)

∂α

)∣
∣
∣
∣

= max
s

∣
∣
∣
∣
∣

∂

∂α

(
∑

a

πsa

∑

s′

zsas′csas′

)∣
∣
∣
∣
∣

= 0. (59)

For the second term in (57), we have

∣
∣
∣
∣
e⊤s M(α)

∂P (α)

∂α
M(α)

∂c(α)

∂α

∣
∣
∣
α=0

∣
∣
∣
∣
≤
∥
∥e⊤s

∥
∥
1
·
∥
∥
∥
∥
M(α)

∂P (α)

∂α
M(α)

∂c(α)

∂α

∣
∣
∣
α=0

∥
∥
∥
∥
∞

≤ 1

1− γ
·
∥
∥
∥
∥

∂P (α)

∂α
M(α)

∂c(α)

∂α

∣
∣
∣
α=0

∥
∥
∥
∥
∞

. (60)

According to (50), for any x ∈ R
S and s ∈ S , we have,

[
∂P (α)

∂α
x

]

s

=
∑

s′

∑

a

πsa

∂[p(α)]sas′

∂α
xs′ ,
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and its ℓ∞ norm can be upper bounded as

∥
∥
∥
∥

∂P (α)

∂α

∣
∣
∣
α=0

x

∥
∥
∥
∥
∞

= max
s

∣
∣
∣
∣
∣

∑

s′

∑

a

πsa

∂[p(α)]sas′

∂α

∣
∣
∣
α=0

xs′

∣
∣
∣
∣
∣

≤ max
s

∑

s′

∑

a

πsa |zsas′ | |xs′ |

≤ max
s

∑

s′

∑

a

πsa |zsas′ | · ∥x∥∞

=
∑

s′

∑

a

πs̄a |zs̄as′ | · ∥x∥∞

≤
∑

s′

∑

a

πs̄a max
s,a,s′

|zsas′ | · ∥x∥∞

= max
s,a,s′

|zsas′ | ·
∑

s′

∥x∥∞

≤ S · ∥z∥∞ · ∥x∥∞
≤ S · ∥z∥2 · ∥x∥∞ (61)

Similarly, for any α ∈ R, we have

∥
∥
∥
∥

∂c(α)

∂α

∥
∥
∥
∥
∞

= max
s

∣
∣
∣
∣

∂ (
∑

a πsa

∑

s′ [p(α)]sas′csas′)

∂α

∣
∣
∣
∣

= max
s

∣
∣
∣
∣
∣

∑

a

πsa

∑

s′

zsas′csas′

∣
∣
∣
∣
∣

≤ S · ∥z∥2. (62)

Then, we obtain an upper bound of the second term,

∣
∣
∣
∣
e⊤s M(α)

∂P (α)

∂α
M(α)

∂c(α)

∂α

∣
∣
∣
α=0

∣
∣
∣
∣
≤ S

1− γ
·
∥
∥
∥
∥
M(α)

∂c(α)

∂α

∣
∣
∣
α=0

∥
∥
∥
∥
∞
· ∥z∥2

≤ S

(1− γ)2
·
∥
∥
∥
∥

∂c(α)

∂α

∣
∣
∣
α=0

∥
∥
∥
∥
∞
· ∥z∥2

≤ S2

(1− γ)2
· ∥z∥22. (63)

For the third term of in (57), we can similarly bound it as

∣
∣
∣
∣
e⊤s M(α)

∂P (α)

∂α
M(α)

∂P (α)

∂α
M(α)c(α)

∣
∣
∣
α=0

∣
∣
∣
∣
≤
∥
∥
∥
∥
M(α)

∂P (α)

∂α
M(α)

∂P (α)

∂α
M(α)c(α)

∣
∣
∣
α=0

∥
∥
∥
∥
∞

≤ 1

1− γ
· S · ∥z∥2 ·

1

1− γ
· S · ∥z∥2 ·

1

1− γ

=
S2

(1− γ)3
· ∥z∥22. (64)

Denote that, for any x ∈ R
S ,

∥
∥
∥
∥

∂2P (α)

(∂α)2

∣
∣
∣
α=0

x

∥
∥
∥
∥
∞

= max
s

∣
∣
∣
∣
∣

∑

s′

∑

a

πsa

∂2[p(α)]sas′

∂(α)2

∣
∣
∣
α=0

xs′

∣
∣
∣
∣
∣
= 0. (65)
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Therefore, we combine (58), (63), (64) and (65),

∣
∣
∣
∣
∣

∂2v
π,p(α)
s

(∂α)2

∣
∣
∣
α=0

∣
∣
∣
∣
∣
=

∣
∣
∣
∣
e⊤s M(α)

∂2c(α)

(∂α)2

∣
∣
∣
α=0

∣
∣
∣
∣
+ 2γ2 ·

∣
∣
∣
∣
e⊤s M(α)

∂P (α)

∂α
M(α)

∂P (α)

∂α
M(α)c(α)

∣
∣
∣
α=0

∣
∣
∣
∣

+ 2γ ·
∣
∣
∣
∣
e⊤s M(α)

∂P (α)

∂α
M(α)

∂c(α)

∂α

∣
∣
∣
α=0

∣
∣
∣
∣
+ γ ·

∣
∣
∣
∣
e⊤s M(α)

∂2P (α)

(∂α)2
M(α)c(α)

∣
∣
∣
α=0

∣
∣
∣
∣

≤ 2γ · S2

(1− γ)2
· ∥z∥22 + 2γ2 · S2

(1− γ)3
∥z∥22

=
2γS2

(1− γ)3
· ∥z∥22. (66)

Then, for any y ∈ R
AS2

, we have

∣
∣y⊤∇2

pJρ(π,p)y
∣
∣ ≤

∑

s

ρs ·
∣
∣
∣
∣
y⊤ ∂2vπ,p

s

(∂p)2
y

∣
∣
∣
∣

=
∑

s

ρs ·
∣
∣
∣
∣
(

y

∥y∥2
)⊤

∂2vπ,p
s

(∂p)2
(

y

∥y∥2
)

∣
∣
∣
∣
· ∥y∥22

≤
∑

s

ρs · max
∥z∥2=1

∣
∣
∣
∣

〈
∂2vπ,p

s

(∂p)2
z, z

〉∣
∣
∣
∣
· ∥y∥22

=
∑

s

ρs · max
∥z∥2=1

∣
∣
∣
∣
∣

〈

∂2v
π,p(α)
s

(∂p(α))2

∣
∣
∣
α=0

∂p(α)

∂α
,
∂p(α)

∂α

〉∣
∣
∣
∣
∣
· ∥y∥22

=
∑

s

ρs · max
∥z∥2=1

∣
∣
∣
∣
∣

∂2v
π,p(α)
s

(∂α)2

∣
∣
∣
α=0

∣
∣
∣
∣
∣
· ∥y∥22

≤ 2γS2

(1− γ)3
· ∥y∥22. (67)

Proof of Lemma 4.3. By the definition of Jρ(π,p), we have

Jρ(π,p)− Jρ(π,p
′) =

∑

s

ρs

(

vπ,p
s − vπ,p′

s

)

.

For any s ∈ S and p,p′ ∈ P , we have

vπ,p
s − vπ,p′

s

= vπ,p
s −

∑

a

πsa

∑

s′

p′sas′ (csas′ + γvπ,p
s′ ) +

∑

a

πsa

∑

s′

p′sas′ (csas′ + γvπ,p
s′ )− vπ,p′

s

=
∑

a

πsa

∑

s′

psas′ (csas′ + γvπ,p
s′ )−

∑

a

πsa

∑

s′

p′sas′ (csas′ + γvπ,p
s′ )

+
∑

a

πsa

∑

s′

p′sas′ (csas′ + γvπ,p
s′ )−

∑

a

πsa

∑

s′

p′sas′
(

csas′ + γvπ,p′

s′

)

=
∑

a

πsa

∑

s′

(psas′ − p′sas′) (csas′ + γvπ,p
s′ ) + γ

∑

a

πsa

∑

s′

p′sas′
(

vπ,p
s′ − vπ,p′

s′

)

= · · ·

=

∞∑

t=0

γt
∑

s′

p′πss′(t)

(
∑

a′

πs′a′

∑

s′′

(ps′a′s′′ − p′s′a′s′′) (cs′a′s′′ + γvπ,p
s′′ )

)

.
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Here, the last equation is obtained by the recursion and we then obtain

Jρ(π,p)− Jρ(π,p
′) =

∑

s

ρs

(

vπ,p
s − vπ,p′

s

)

=
∑

s

ρs

∞∑

t=0

γt
∑

s′

p′πss′(t)

(
∑

a′

πs′a′

∑

s′′

(ps′a′s′′ − p′s′a′s′′) (cs′a′s′′ + γvπ,p
s′′ )

)

=
∑

s′

(
∑

s

∞∑

t=0

γtρsp
′π
ss′(t)

)(
∑

a′

πs′a′

∑

s′′

(ps′a′s′′ − p′s′a′s′′) (cs′a′s′′ + γvπ,p
s′′ )

)

=
1

1− γ

∑

s

dπ,p′

ρ (s)

(
∑

a

πsa

∑

s′

(psas′ − p′sas′) (csas′ + γvπ,p
s′ )

)

.

Let p′ = p⋆ and then, we have

0 ≤ Jρ(π,p
⋆)− Jρ(π,p) =

1

1− γ

∑

s

dπ,p⋆

ρ (s)

(
∑

a

πsa

∑

s′

(p⋆sas′ − psas′) (csas′ + γvπ,p
s′ )

)

=
1

1− γ

∑

s

dπ,p⋆

ρ (s)

dπ,p
ρ (s)

· dπ,p
ρ (s)

(
∑

a

πsa

∑

s′

(p⋆sas′ − psas′) (csas′ + γvπ,p
s′ )

)

(a)

≤ 1

1− γ
·
∥
∥
∥
∥
∥

dπ,p⋆

ρ

dπ,p
ρ

∥
∥
∥
∥
∥
∞
·
∑

s

dπ,p
ρ (s)

(
∑

a

πsa

∑

s′

(p⋆sas′ − psas′) (csas′ + γvπ,p
s′ )

)

=

∥
∥
∥
∥
∥

dπ,p⋆

ρ

dπ,p
ρ

∥
∥
∥
∥
∥
∞
·
∑

s,a,s′

(
1

1− γ
dπ,p
ρ (s)πsa (csas′ + γvπ,p

s′ )

)

· (p⋆sas′ − psas′)

≤
∥
∥
∥
∥
∥

dπ,p⋆

ρ

dπ,p
ρ

∥
∥
∥
∥
∥
∞
·max
p̄∈P




∑

s,a,s′

(
1

1− γ
dπ,p
ρ (s)πsa (csas′ + γvπ,p

s′ )

)

· (p̄sas′ − psas′)





=

∥
∥
∥
∥
∥

dπ,p⋆

ρ

dπ,p
ρ

∥
∥
∥
∥
∥
∞
·max
p̄∈P

〈

p̄− p,
∂Jρ(π,p)

∂p

〉

(by Lemma 4.1)

≤ D

1− γ
max
p̄∈P

〈

p̄− p,
∂Jρ(π,p)

∂p

〉

.

which completes the proof. The first inequality (a) is obtained due to the fact that for any s ∈ S ,

∑

a

πsa

∑

s′

(p⋆sas′ − psas′) (csas′ + γvπ,p
s′ ) ≥ 0

holds under the s-rectangularity assumption.

Now, we proceed to prove main theorem in section 4. Here we can define fπ(p) := Jρ(π,p) for a fixed policy π ∈ Π and

define the gradient mapping

Gβ(p) :=
1

β
(ProjP(p+ β∇fπ(p))− p) . (68)

Notice that P is convex and fπ(p) is ℓp-smooth, then the following lemma can be derived directly using existing classic

results:

Lemma G.1. (Beck, 2017, Theorem 10.15) Let {pt}t≥0 be the sequence generated by Algorithm 2 for solving the inner

problem with the constant step size β := 1
ℓp

, then

min
t∈{0,··· ,T−1}

∥Gβ(pt)∥ ≤
√

2ℓp (f⋆
π − fπ(p0))

T
(69)
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Proof of Theorem 4.4. It has been shown in Lemma 3 in (Ghadimi & Lan, 2016) that if ∥Gβ(p)∥ ≤ ϵ, then

∇fπ(p+) ∈ NP(p
+) + 2ϵB(1), (70)

where p+ := p+βGβ(p),NP is the norm cone of the set P and B(r) := {x ∈ R
n : ∥x∥ ≤ r}. By the gradient dominance

condition established in Lemma 4.3,

min
t∈{0,··· ,T−1}

{fπ(p⋆)− fπ(pt)} ≤
D

1− γ
min

t∈{0,··· ,T−1}
max
p̄∈P
⟨p̄− pt,∇fπ(pt)⟩

≤ D

1− γ
max
p̄∈P
⟨p̄− pt̂,∇fπ(pt̂)⟩ , (71)

where t̂ := 1 + argmint≤T−1 ∥Gβ(pt)∥. Recall Lemma G.1, we showed that

∥Gβ(pt̂−1)∥ ≤
√

2ℓp (f⋆
π − fπ(p0))

T
≤
√

2ℓp
(1− γ)T

,

where the last inequality holds due to

vπs = Eπ,p

[ ∞∑

t=0

γtcstatst+1
| s0 = s

]

≤
∞∑

t=0

γt =
1

1− γ
. (72)

If we set that
√

2ℓp
(1− γ)T

≤ (1− γ)ϵ

4D
√
SA
⇐⇒ T ≥ 32ℓpD

2SA

(1− γ)3ϵ2
= O(ϵ−2),

then

∥Gβ(pt̂−1)∥ ≤
(1− γ)ϵ

4D
√
SA

.

Hence, by applying the equation (70), we have

(71) ≤ D

1− γ
max
p̄∈P
∥p̄− pt̂∥ · 2 ·

(1− γ)ϵ

4D
√
SA

= ϵ,

where for any p1,p2 ∈ P ,

∥p1 − p2∥ ≤ ∥p1∥+ ∥p2∥ ≤ 2
√
SA. (73)

Then, we provide the standard proof of Lemma 4.5.

Proof of Lemma 4.5. We first show that the inner problem gradient form. Notice that,

∂Jρ(π, ξ)

∂ξ
=
∑

s∈S

∂vπ,p
s

∂ξ
ρs.

Then we consider the
∂vπ,p

s

∂ξ
directly.

∂vπ,p
s

∂ξ
=

∂

∂ξ

[
∑

a

πsaQ
πsa,ξ

]

=
∑

a

πsa

∂

∂ξ

[
∑

s′

pξsas′
(

csas′ + γvπ,ξ
s′

)
]

=
∑

a

πsa

∑

s′

[

∂pξsas′

∂ξ

(

csas′ + γvπ,ξ
s′

)

+ γpξsas′
∂vπ,ξ

s′

∂ξ

]

=
∑

a

πsa

∑

s′

∂pξsas′

∂ξ

(

csas′ + γvπ,ξ
s′

)

+ γ
∑

a

πsa

∑

s′

pξsas′
∂vπ,ξ

s′

∂ξ
.
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By condensing
∑

a πsap
ξ
sas′ = pπ,ξ

ss′ (1), we can obtain,

∂vπ,p
s

∂ξ
=
∑

a

πsa

∑

s′

∂pξsas′

∂ξ

(

csas′ + γvπ,ξ
s′

)

+ γ
∑

s′

pπ,ξ
ss′ (1)

∂vπ,ξ
s′

∂ξ

=
∑

a

πsa

∑

s′

∂pξsas′

∂ξ

(

csas′ + γvπ,ξ
s′

)

+ γ
∑

s′

pπ,ξ
ss′ (1)

[
∑

a′

πs′a′

∑

s′′

∂pξs′a′s′′

∂ξ

(

cs′a′s′′ + γvπ,ξ
s′′

)

+ γ
∑

s′′

pπ,ξ
s′s′′(1)

∂vπ,ξ
s′′

∂ξ

]

=

1∑

k=0

γk
∑

s′

pπ,ξ
ss′ (k)

∑

a′

πs′a′

[
∑

s′′

∂pξs′a′s′′

∂ξ

(

cs′a′s′′ + γvπ,ξ
s′′

)
]

+ γ2
∑

s′

pπ,ξ
ss′ (2)

∂vπ,ξ
s′

∂ξ

=

2∑

k=0

γk
∑

s′

pπ,ξ
ss′ (k)

∑

a′

πs′a′

[
∑

s′′

∂pξs′a′s′′

∂ξ

(

cs′a′s′′ + γvπ,ξ
s′′

)
]

+ γ3
∑

s′

pπ,ξ
ss′ (3)

∂vπ,ξ
s′

∂ξ

= · · ·

=
∞∑

k=0

γk
∑

s′

pπ,ξ
ss′ (k)

∑

a′

πs′a′

[
∑

s′′

∂pξs′a′s′′

∂ξ

(

cs′a′s′′ + γvπ,ξ
s′′

)
]

.

So we have

∂Jρ(π, ξ)

∂ξ
=
∑

s∈S

∂vπ,ξ
s

∂ξ
ρs

=
∑

s

ρs

∞∑

k=0

γk
∑

s′

pπ,ξ
ss′ (k)

∑

a′

πs′a′

[
∑

s′′

∂pξs′a′s′′

∂ξ

(

cs′a′s′′ + γvπ,ξ
s′′

)
]

=
1

1− γ

∑

s′

(1− γ)
∑

s

ρs

∞∑

k=0

γkpπ,ξ
ss′ (k)

︸ ︷︷ ︸

d
π,ξ

s′

∑

a′

πs′a′

[
∑

s′′

∂pξs′a′s′′

∂ξ

(

cs′a′s′′ + γvπ,ξ
s′′

)
]

=
1

1− γ

∑

s

dπ,ξ
s

∑

a

πsa

[
∑

s′

∂pξsas′

∂ξ

(

csas′ + γvπ,ξ
s′

)
]

=
1

1− γ

∑

s

dπ,ξ
s

∑

a

πsa

∑

s′

pξsas′

[

∂pξsas′

∂ξ
· 1

pξsas′
·
(

csas′ + γvπ,ξ
s′

)
]

=
1

1− γ

∑

s

dπ,ξ
s

∑

a

πsa

∑

s′

pξsas′

[

∂ log pξsas′

∂ξ

(

csas′ + γvπ,ξ
s′

)
]

=
1

1− γ
E
s∼d

π,ξ
ρ

Ea∼πs·
Es′∼psa·

[

∂ log pξsas′

∂ξ

(

csas′ + γvπ,ξ
s′

)
]

.

Then, we consider the partial derivative on θ and λ separately. Notice that







∂Jρ(π,ξ)
∂θi

= 1
1−γ

E
s∼d

π,ξ
ρ

Ea∼πs·
Es′∼psa·

[
∂ log p

ξ

sas′

∂θi

(

csas′ + γvπ,ξ
s′

)]

∂Jρ(π,ξ)
∂λsa

= 1
1−γ

E
s∼d

π,ξ
ρ

Ea∼πs·
Es′∼psa·

[
∂ log p

ξ

sas′

∂λsa

(

csas′ + γvπ,ξ
s′

)]

We found that for all (s, a, s′) ∈ S ×A× S , θi will appear in the parametrization form of pξsas′ . Hence we consider partial
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derivative of log pξsas′ then.

∂ log pξsas′

∂θi
=

∂

∂θi

[

log p̄sas′ +
θ⊤φ(s′)

λsa

]

− ∂

∂θi

[

log

(
∑

k

p̄sak · exp(
θ⊤φ(k)

λsa

)

)]

=
ϕi(s

′)

λsa

−
∑

k p̄sak · exp(
θ⊤φ(k)

λsa
) · ϕi(k)

λsa
∑

k p̄sak · exp(
θ⊤φ(k)

λsa
)

=
ϕi(s

′)

λsa

−
∑

j

p̄saj · exp(θ
⊤φ(j)
λsa

)
∑

k p̄sak · exp(
θ⊤φ(k)

λsa
)
· ϕi(j)

λsa

=
ϕi(s

′)

λsa

−
∑

j

pξsaj ·
ϕi(j)

λsa

.

Now we can obtain that

∂Jρ(π, ξ)

∂θi
=

1

1− γ

∑

s

dπ,ξ
s

∑

a

πsa

∑

s′

pξsas′








ϕi(s

′)

λsa

−
∑

j

pξsaj ·
ϕi(j)

λsa



 ·
(

csas′ + γvπ,ξ
s′

)



 .

Similarly we can derive the partial derivative on λsa for any state-action pair (s, a). Interestingly, we notice that for

(s̄, ā) ̸= (s, a),
∂ log(pξ

s̄ās′
)

∂λsa
= 0. Therefore, we can consider the case (s̄, ā) = (s, a).

∂ log pξsas′

∂λsa

=
∂

∂λsa

[

log p̄sas′ +
θ⊤φ(s′)

λsa

]

− ∂

∂λsa

[

log

(
∑

k

p̄sak · exp(
θ⊤φ(k)

λsa

)

)]

=

∑

k p̄sak · exp
(

θ⊤φ(k)
λsa

)

· θ
⊤φ(k)
λ2
sa

∑

k p̄sak · exp
(

θ⊤φ(k)
λsa

) − θ⊤φ(s′)

λ2
sa

=
∑

j

p̄saj · exp
(

θ⊤φ(j)
λsa

)

∑

k p̄sak · exp
(

θ⊤φ(k)
λsa

) · θ
⊤φ(j)

λ2
sa

− θ⊤φ(s′)

λ2
sa

=
∑

j

pξsaj ·
θ⊤φ(j)

λ2
sa

− θ⊤φ(s′)

λ2
sa

.

Then we can obtain that

∂Jρ(π, ξ)

∂λsa

=
1

1− γ
dπ,ξ
s · πsa ·

∑

s′

pξsas′








∑

j

pξsaj ·
θ⊤φ(j)

λ2
sa

− θ⊤φ(s′)

λ2
sa



 ·
(

csas′ + γvπ,ξ
s′

)



 .
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