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Abstract

An in-depth understanding of uncertainty is the first step to making effective decisions under uncertainty. Machine/deep learning
(ML/DL) has been hugely leveraged to solve complex problems involved with processing high-dimensional data. However, rea-
soning and quantifying different uncertainties to achieve effective decision-making have been much less explored in ML/DL than
in other Artificial Intelligence (AI) domains. In particular, belief/evidence theories have been studied in Knowledge representation
and reasoning (KRR) since the 1960s to reason and measure uncertainties to enhance decision-making effectiveness. Based on
our in-depth literature review, only a few studies have leveraged mature uncertainty research in belief/evidence theories in ML/DL
to tackle complex problems under different types of uncertainty. Our present survey paper discusses major belief theories and
their core ideas dealing with uncertainty causes and types and quantifying them, along with the discussions of their applicability
in ML/DL. Particularly, we discuss three main approaches leveraging belief theories in Deep Neural Networks (DNNs), including
Evidential DNNs, Fuzzy DNNs, and Rough DNNs, in terms of their uncertainty causes, types, and quantification methods along
with their applicability in diverse problem domains. Through an in-depth understanding of the extensive survey on this topic, we
discuss insights, lessons learned, limitations of the current state-of-the-art bridging belief theories and ML/DL, and future research
directions. This paper conducts an extensive survey by bridging belief theories and deep learning in reasoning and quantifying
uncertainty to help researchers initiate uncertainty and decision-making research.
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PACS: 0000, 1111
2000 MSC: 0000, 1111

1. Introduction

1.1. Motivation

An in-depth understanding of uncertainty is a must to make
effective and efficient decisions. Uncertainty reasoning and
quantification in decision-making have been studied for several
decades in various artificial intelligence (AI) domains (e.g., be-
lief/evidence theory, game theory, and machine/deep learning).
However, different uncertainty estimates considering other root
causes of uncertainty have not been sufficiently examined. The
Internet and Big Data era have brought a flood of information
for decision-making. Yet, a large volume of information does
not allow effective and efficient decision-making because of
unavailable, unreliable, incomplete, or deceptive information,
generating various uncertainties.

In AI, a series of belief or evidence theories have a long his-
tory of studying reasoning and decision-making under uncer-
tainty. In particular, Subjective Logic (SL) discusses the esti-
mates of different uncertainty types. SL offers the capability

of measuring uncertainty caused by a lack of information or
knowledge (i.e., vacuity), failure to distinguish an observation
(i.e., vagueness), and conflicting evidence (i.e., dissonance [1]).
In addition, ML/DL algorithms have considered two common
uncertainty types, aleatoric uncertainty and epistemic uncer-

tainty, for decision-making [2]. However, there has been no
consensus on multidimensional uncertainty because of differ-
ent and limited understanding of uncertainty and its attributes.

Via conducting an in-depth survey on a series of belief mod-
els, our work aims to introduce a new, promising research di-
rection that leverages uncertainty reasoning and quantification
in belief/evidence theory to develop uncertainty-aware ML/DL
solutions for effective decision-making. In particular, it is crit-
ical to quantify diverse types of uncertainty caused by differ-
ent root causes, which may provide other courses of action for
a decision-maker. For example, recent studies combined be-
lief models (e.g., Subjective Belief Models [3, 4, 5], Fuzzy
Logic [6]) with DL models to quantify different uncertainty
types about the predictions of a DL model, such as vacuity,
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vagueness, and dissonance [7]. This approach will help pro-
vide solutions for ML/DL that can meet explainable AI (XAI)
by providing how uncertainty derives from, the reason behind
it, and ultimately how it impacts a decision’s effectiveness. The
state-of-the-art decision-making research has fully recognized
the significance of uncertainty in the decision-making process.
However, few works have extensively examined the general
trends of how to apply existing belief models to ML/DL tech-
niques for solving complex decision-making problems in di-
verse application domains.

1.2. Other Existing Survey Papers

This section describes existing survey papers on uncertainty
research and identifies the key differences between those papers
and our survey paper.

Li et al. [8] discussed the causes of different uncertainties and
how to process them in belief models for making effective de-
cisions in various domains. According to the nature of aleatory
and epistemic uncertainty, they classified uncertainty types pro-
cessing in probability theory, fuzzy theory, information-gap
theory, and derived uncertainty theory for their comparison.
They focused on how different uncertainties can be processed
in data management techniques. Kabir et al. [9] surveyed pre-
diction interval techniques using deep neural networks (DNNs).
The prediction interval techniques quantify the level of uncer-
tainty or randomness and have been widely applied in the med-
ical and electricity fields. They discussed aleatoric and epis-
temic uncertainty (see Section 2 for their definitions) to explain
uncertainty in prediction using DNNs. They also discussed how
a Bayesian method is used to optimize the weight of an NN dur-
ing training and applied for NN-based prediction intervals in
various fields. Hariri et al. [10] surveyed various AI techniques,
including ML, Natural Language Processing (NLP), and com-
putational intelligence, that can recognize and reduce uncer-
tainty in Big Data. Abdar et al. [11] reviewed over 700 papers
studying uncertainty quantification in ML/DL. They mainly fo-
cused on discussing Bayesian and ensemble techniques and
their applications in image processing, computer vision, medi-
cal applications, NLP, and text mining.

We also discuss the contributions of the survey papers fo-
cusing on the uncertainty mainly in ML/DL in the following
papers. Hüllermeier and Waegeman [2] distinguished aleatoric
uncertainty from epistemic uncertainty. They explained how
these two uncertainties are represented in various ML prob-
lems or models and can contribute to decision-making under
the assessed uncertainty. Ulmer [12] surveyed the methods of
quantifying uncertainty in the evidential deep learning model
based on the conjugate prior and posterior distributions and un-
known outlier samples. This model estimates uncertainty from
the Dirichlet distribution by data (aleatoric) uncertainty, model
(epistemic) uncertainty, and distributional uncertainty. Gaw-
likowski et al. [13] provided a comprehensive survey on the un-
certainty in DNNs. They discussed two types of uncertainties:
reducible uncertainty and unreducible uncertainty.’ The con-
cept of reducible uncertainty is aligned with that of epistemic
uncertainty, where the reducible uncertainty can be introduced
by variability in the real world, errors in model structure, or in

training parameters (i.e., batch size, optimizer). Unreducible
uncertainty means uncertainty by noises in measurement (i.e.,
sensor noise) and is in line with aleatoric uncertainty. The au-
thors classified uncertainty estimation methods based on the
cross-combination of the nature (i.e., deterministic or stochas-
tic) and number (i.e., single or multiple) of DNNs. Since the
discussions of uncertainty in [2, 12, 13] are very limited in
scope, we did not include them in Table 1.

Some studies also investigated uncertainty measures based
on entropy in a statistical model and deep learning. Kopet-
zki et al. [14] investigated whether Dirichlet-based uncertainty
(DBU) models are robust under adversarial attacks. They found
that uncertainty estimates of DBU models are not robust in de-
tecting classified samples, adversarial examples, and detecting
in-distribution and out-of-distribution data. However, this work
only used a measure of uncertainty based on differential en-
tropy, not other uncertainty measures studied in belief/evidence
theories. Bengs et al. [15] discussed that evidential deep learn-
ing and prior networks do not precisely capture evidence ade-
quately because epistemic uncertainty does not converge to zero
as the training dataset size goes to infinity. This phenomenon is
because a loss function is based upon minimizing first-order
prediction error, associated with the probability’s calibration
but not the probability’s variance.

Unlike the existing survey papers above [8, 9, 10, 11], our
paper provides an in-depth survey of eight different belief mod-
els emphasizing how to reason and quantify uncertainty based
on the root causes and types of the uncertainty. In addition, we
discussed how a belief model is applicable in the DL domain.
This will allow researchers to leverage both the solid method-
ologies of uncertainty reasoning/quantification in belief models
and DL techniques for attaining effective decision-making. Fi-
nally, in Table 1, we summarize the key differences between our
survey paper and the existing four survey paper on uncertainty
research. We selected the key criteria based on the common
discussion points covered by the existing survey papers consid-
ered in this paper as well as the key discussion points made in
our survey paper.

1.3. Research Questions

This study will answer the following research questions:

RQ1. What are the key causes and types of uncertainty studied

in belief theory and deep learning?
RQ2. How can the taxonomy of uncertainty be defined based

on the multidimensional aspects of uncertainty studied in

belief models and deep learning?
RQ3. How has each belief model considered and measured un-

certainty?
RQ4. How has each belief model been applied in deep learn-

ing and vice-versa for effective decision-making under

uncertainty?
RQ5. What are the key differences between belief theory and

deep learning about uncertainty reasoning and quantifi-

cation?
RQ6. How can belief model(s) be applied in deep learning to

solve complicated decision-making problems?
The research questions above will be answered in Section 5.
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Table 1: Comparison of Our Survey Paper with the Existing Surveys on Uncertainty Research

Key Criteria Our Survey

(2023)

Li et al. [8]

(2012)

Kabir et al.

[9] (2018)

Hariri et al.

[10] (2019)

Abdar et al.

[11] (2021)

Taxonomies of uncertainty 4 s s s s

Causes of uncertainty 4 4 4 s 4

Uncertainty reasoning & quantification in DST 4 4 8 8 8

Uncertainty reasoning & quantification in TBM 4 8 8 8 8

Uncertainty reasoning & quantification in DSmT 4 8 8 8 8

Uncertainty reasoning & quantification in IDM 4 s 8 8 8

Uncertainty reasoning & quantification in TVL 4 s 8 8 8

Uncertainty reasoning & quantification in Fuzzy Logic 4 4 8 s 8

Uncertainty reasoning & quantification in Bayesian Inference 4 4 8 s s

Uncertainty reasoning & quantification in Subjective Logic 4 8 8 s 8

Uncertainty reasoning & quantification in Bayesian Deep Learning s 8 s 8 4

Applicability of Belief Models in Deep Learning 4 8 s 8 8

Insights, lessons, and limitations of the existing uncertainty-aware approaches 4 s s s 4

Future research directions 4 4 4 4 4

4: Fully addressed; s: Partially addressed; 8: Not addressed at all; DST: Dempster-Shafer Theory; TBM: Transferable Belief Model, DSmT: Dezert-Smarandache Theory; TVL:
Three-Valued Logic.

1.4. Scope & Key Contributions

The decision-making (DM) term embraces a broad meaning
with many implications. Our work mainly suggests a promising
research direction for uncertainty reasoning and quantification
methods explored in various belief/evidence theories to be ap-
plicable in machine/deep learning applications. Hence, we use
DM in common ML/DL applications, such as inference, classi-
fication prediction, action selection, or object detection.

Different domains and disciplines have diverse understand-
ings and interpretations of uncertainty and differently justify
how to deal with it. For example, probabilistic theory considers
uncertainty as an aleatory uncertainty where uncertainty comes
from randomness [16, 17, 18]. Game/decision theory consid-
ers uncertainty an aleatory uncertainty where each player can
take an action probabilistically [19, 20]. ML/DL researchers
have investigated uncertainty in terms of two main uncertainty
types, aleatory and epistemic uncertainty, and used entropy as
a common measure of uncertainty [21, 2, 22, 23]. On the other
hand, belief/evidence theorists have reasoned and quantified un-
certainty in terms of vacuity due to a lack of evidence, fuzzi-
ness due to inconclusiveness, and ambiguity due to failing to
distinguish a single observation or interpretation [24, 25, 26].
However, there is no prior work that can provide a comprehen-
sive viewpoint about uncertainty, its diverse root causes, its rea-
soning and quantification, and its application to machine/deep
learning. To fill this gap, our work conducts an extensive survey
on belief theories dealing with uncertainty reasoning and quan-
tification and discusses example studies applying belief mod-
els to deep learning, which is one of the emerging research ar-
eas in decision-making research. In addition, we outlook the
promising directions of taking hybrid approaches that bridge
belief models and machine/deep learning for effective decision-
making under uncertainty.

This paper makes the following key contributions:

1. We conduct an extensive survey on identifying the causes
and types of uncertainty studied in various belief models and
deep learning using the ontology of uncertainty.

2. We investigate how various belief theories reasoned and
quantified uncertainty for effective decision-making.

3. We discuss how belief theories can be effectively leveraged
for DL-based solutions for decision-making.

4. We identify the key commonalities and differences about
how each belief theory reasons and quantifies uncertainty
and how it is applied in DL or along with it.

5. We provide the overall perspectives of insights and lessons
learned and the limitations from our extensive survey and
suggest promising future research directions.

Our paper mainly discusses quantitative measurements of un-
certainty based on observations. Measuring qualitative uncer-
tainty involved with human cognitive aspects is beyond the
scope of this research.

The rest of the paper is organized as follows. Section 2 pro-
vides various classification types of uncertainty, the causes of
different types of uncertainties, and proposes an uncertainty on-
tology based on the key concepts of uncertainty. Section 3 de-
tails eight belief models and discusses belief formation, causes
and types of uncertainty, uncertainty quantification, and its ap-
plication. Section 4 discusses how a belief theory can be ap-
plied in the context of DL as a decision-making application un-
der uncertainty. Section 6 concludes our paper by discussing
the limitations, insights, and lessons learned from our survey
and future research directions.

Caveat of Mathematical Notations: In Sections 3 and 4, we
discuss a set of belief theories and deep learning theories lever-
aging belief models, including Subjective Logic, Fuzzy theory,
and rough set theory. The discussion of a theory needs to use
mathematical notations, which are only used under the theory,
not other theories. We keep the mathematical notations of orig-
inal papers in order to deliver the common notations used to
discuss each theory in the literature. The summary of all nota-
tions is given in Table A.1 of Appendix A.

2. Types, Causes, and Ontology of Uncertainty

In this work, we deal with uncertainty in data or information.
We define an uncertainty type as a perceived state of data or
information, such as fuzziness, discord, non-specificity, ambi-
guity, and so forth (see Section 2.1). We define the causes of

uncertainty by the reason introducing uncertainty in a decision

3



Jo
u
rn

al
P

re
-p

ro
of

Journal Pre-proof

maker’s judgment. We also discuss the ontology of uncertainty,
where ontology is studied as a branch of philosophy. Ontology
means the “science of what it is” describing the structures of ob-
jects, properties, events, processes, and relations in every area
of reality [27]. This section will describe the ontology of un-
certainty in its types, causes, and outcomes of decision-making
based on uncertainty reasoning and quantification.

2.1. Classification of Uncertainty Types

In the probabilistic uncertainty research community [24, 18],
two types of uncertainty natures are widely discussed:

• Aleatoric uncertainty: This refers to statistical uncertainty
about the long-term relative frequencies of possible out-
comes [24]. For example, if we do not know whether a dice is
loaded – and thereby unfair – then we are faced with aleatoric
uncertainty. This uncertainty can be reduced to the true vari-
ance about the loaded dice by throwing the dice sufficiently
many times. However, every time a dice is thrown, we can-
not predict its outcome exactly but can have only a long-term
probability [24]. In this sense, the long-term probability can
reduce epistemic uncertainty through more and more obser-
vations. Therefore, aleatoric uncertainty is fundamentally re-
lated to the nature of randomness in which a variable is gov-
erned by a frequentist process [18, 24].
• Epistemic uncertainty: This uncertainty is related to a situa-

tion in which we cannot predict an event exactly because of
a lack of knowledge. A typical example is the assassination
of President Kennedy in 1963 [24], where the uncertainty
is about whether he was killed by Lee Harvey Oswald and
who organized it. The nature of epistemic uncertainty derives
from a lack of knowledge or information (or data). This type
of uncertainty is also called systematic uncertainty or model

uncertainty. This means that the outcome of a specific future
or past event can be known, but there is insufficient evidence
to support it. This uncertainty can be reduced by more ev-
idence, advanced technology, and/or scientific principles to
interpret the evidence (e.g., forensic science) [18]. This fol-
lows a non-frequentist process representing the likelihood of
an event [24].

Since the above two natures of uncertainty have been most
widely discussed as the nature of uncertainty, we will discuss
how a different type of uncertainty in different belief models
and DL models is related to these two natures of uncertainty.

Uncertainty reasoning and quantification research have been
heavily explored by several theories, such as probability the-
ory, fuzzy sets theory, possibility theory, evidence theory, and
rough sets theory. These theories can be seen as complemen-
tary as each of them is designed to deal with different types
of uncertainty. In these theories, Dubois [28] identified three
uncertainty types in terms of fuzziness, discord, and nonspeci-

ficity. The latter two terms, discord, and non-specificity, are
combined as the term ambiguity. Each type is represented by a
brief common-sense characterization and several pertinent syn-
onyms as follows:

• Fuzziness: This refers to a lack of sharp distinctions and has
pertinent synonyms, such as vagueness, cloudiness, haziness,
unclearness, indistinctness, or sharplessness.
• Ambiguity: In general, there exists ambiguity when an object

cannot be specified as a single class due to conflicting evi-
dence. Hence, these two cases can be further classified into
the following two subclasses:

– Discord: This is associated with disagreement among sev-
eral alternatives and interchangeably used with synonyms,
including dissonance, incongruity, or discrepancy.

– Nonspecificity: This refers to a situation in which two or
more alternatives are left unspecified. It is also called va-
riety, generality, diversity, equivocation, and imprecision.

Based on our understanding, fuzziness introduces vagueness
(i.e., failing to distinguish one from another), while ambigu-
ity belongs to epistemic uncertainty. In addition to the above,
the most common uncertainty is also derived from a lack of ev-
idence, called vacuity (or ignorance) [24] as we do not know
how to make a decision because of insufficient evidence, which
belongs to epistemic uncertainty as more evidence can reduce
vacuity. In the modeling and risk assessment research [29, 30],
uncertainty associated with choices made by modelers has been
studied, such as differences in problem formulation, model im-
plementation, and parameter selection originating from subjec-
tive interpretation of the problem at hand. We call this ‘modeler
uncertainty,’ categorized by the following three types:

• Parameter uncertainty: This refers to uncertainty derived
from the values of input parameters in a model, such as mea-
surement errors, sampling errors, variability, and use of sur-
rogate data. Hence, it is a type of epistemic uncertainty and
can be reduced by collecting more reliable evidence to more
accurately estimate the parameters used in the model.
• Model uncertainty: This indicates uncertainty about a model

structure and the mathematical relationships of components
defined in the model. For example, uncertainty can be intro-
duced by making assumptions and simplifying mathematical
equations in modeling real-world problems. This uncertainty
is introduced by missing or incomplete information, which
makes it hard to fully define the model. This belongs to epis-
temic uncertainty and can be reduced by gathering necessary,
reliable information to accurately define the model.
• Scenario uncertainty: This represents uncertainty caused by

normative choices made in constructing scenarios, includ-
ing the choice of a functional unit, time horizon, geograph-
ical scale, and other methodological choices. This uncer-
tainty arises from uncertain problem formulations and the-
oretic assumptions, which are not statistical in nature. Due
to this nature of uncertainty, we understand this uncertainty
as epistemic uncertainty. This uncertainty can be reduced by
collecting more evidence, using more advanced technology,
and/or considering scientific principles to interpret the evi-
dence, such as finding a better choice of a time horizon or a
geographical scale for crime hotspot detection.
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Figure 1: Classification of uncertainty types.

2.2. Causes of Uncertainty

From the perspective of framing research in decision-
making, where frames are heuristic representations of the ex-
ternal world, there are three main causes of uncertainty: un-
predictability, incomplete knowledge, and multiple knowledge
frames [31]). Our work chooses the classification of the causes
of uncertainty in [31] based on the nature and knowledge rela-
tionships producing uncertainty. From an engineering perspec-
tive, these three causes can be introduced by a lack of evidence,
limited cognition to process a large amount of evidence, con-
flicting evidence, ambiguity, measurement errors, and subjec-
tive beliefs [32]. The three causes are described:

• Unpredictability: A system (or entity/data) may exhibit
chaotic, variable behavior in space/time. In Statistics, con-
fidence intervals have been used to measure uncertainty [32].
Statistical noise is a common factor triggering uncertainty,
leading to unpredictability. The system exhibits highly vari-
able behaviors even if it learns and adapts to dynamic, new
conditions. The variability may be due to unreliability in in-
formation, data, or an entity caused by system/network dy-
namics, non-stationary environmental conditions, or adver-
sarial attacks. If this is the case, this type of uncertainty can
be reduced by detecting and excluding unreliable sources or
data in the decision-making process [32]. Unpredictability
is caused by multiple sources, such as unpredictable model
error, unpredictable outcome due to lack of knowledge or ev-
idence, or long-term stochastic variability [33]. Therefore,
unpredictability is related to epistemic uncertainty, such as
ambiguity (including discord and nonspecificity) and vacu-
ity. More observations and evidence can reduce epistemic
uncertainty. However, some extent of unpredictability still
will remain due to the variability of an outcome, which is
related to fuzziness in aleatory uncertainty [34].
• Incomplete Knowledge: This refers to situations where we

do not know enough about a system to be managed or our

knowledge about the system is incomplete (i.e., epistemic
uncertainty) [32]. This can be due to a lack of evidence (e.g.,
information/data) or knowledge, called vacuity, because we
may not have sufficient theoretical understanding (e.g., igno-
rance) or reliable information or data. From the modeling
perspective, the lack of evidence and knowledge will lead
to ‘modeler uncertainty,’ such as parameter, model, and sce-
nario uncertainties. This uncertainty can be reduced by con-
sidering more evidence or discarding unreliable evidence.
In addition, when human decision-makers receive a large
amount of information, which is often highly complex, they
cannot process them properly because of their limited cogni-
tion and processing power. This may lead to non-specificity:
the scenario where two or more alternatives can not be speci-
fied due to the lack of knowledge or the complexity of the al-
ternatives. To deal with this, people usually transform avail-
able data into information with a rougher ‘granularity’ or fo-
cus on important features, neglecting other less important (or
noisy) information or data. This uncertainty can be reduced
by considering relevant information among the available in-
formation [32].
• Multiple Knowledge Frames: This refers to when the same

information (e.g., evidence or opinions) is interpreted differ-
ently, resulting in different, conflicting views. Dewulf et al.
[35] defined ambiguity as the presence of multiple, valid be-
liefs about a certain phenomenon. It is related to fuzziness
because the information may lack definite or sharp distinc-
tions in its states. The ways of understanding the system
(or the external world) can differ in where to put the sys-
tem’s boundaries or what and who to put as the focus of at-
tention. The differences can also emerge from the way in
which the information about the system is interpreted. This
cause can also be interpreted as conflicting evidence, repre-
senting a situation where some of the information available
may be incorrect, simply irrelevant, or the model to observe
a system may not be correct at a given time. Further, multi-
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Figure 2: A taxonomy of uncertainty in data (or information).

ple observers may provide different opinions based on their
subjective views. The related uncertainty types from this per-
spective are discord and non-specificity, as discussed in Sec-
tion 2.1.

We demonstrated our view about the classifications of uncer-
tainty types based on the existing classifications in Figure 1.

2.3. Taxonomies of Uncertainty

Rocha Souza et al. [36] discussed the taxonomy of spatiotem-
poral uncertainties by categorizing uncertainty in terms of in-
trinsic and extrinsic uncertainties. Smithson [37] also addressed
the taxonomy of uncertainty and ignorance and interpreted ‘un-
certainty’ as a specific type of ‘incompleteness.’ Lovell [38]
also provided a taxonomy of uncertainty based on different
sources of uncertainty, such as individual difference factors and
information flow. Rowe [39] classified types of uncertainty in
terms of uncertainty and variability of information. For the con-
venience of demonstrating their taxonomies, we summarized
them in Table B.1.

To more extensively understand the concepts of uncertainty
and its multiple causes, we develop the taxonomy of uncer-
tainty in Figure 2 as an example that can be used as the basis to
provide the taxonomy of uncertainty in data (or information).
We placed the extended version of the taxonomies with subat-
tributes of each factor in Figure 2 of Appendix B.

The sources of uncertainty can be as follows:

• Humans: Human beings make mistakes in daily life, con-
sciously or unconsciously, leading to uncertainty. For exam-
ple, humans make errors in perception, imperfect cognition,
irrational propensity because of lacking the cognitive ability
to judge fairly and accurately, bias, prejudice, delusional be-
liefs, or distorted memories. They will all impact decision-
making. Even some humans have malicious intent, which
adds uncertainty to an entity (e.g., other humans or systems)
to disrupt its decision-making process.

• System Environments: System environments can be very
complicated. A system is in a dynamic environment whose
internal and external factors continuously generate uncer-
tainty within the environment [40]. For instance, multiple
internal factors (e.g., system dynamics, system structures -
centralized, decentralized, distributed structures, high-tempo
operations, etc.) often increase uncertainty because the dy-
namic environment changes its internal settings to support
continuous communication with the environments. At the
same time, uncertainty can also be generated by external fac-
tors, such as regulation changes, operating function transfor-
mations, and continued technological revolutions to run the
system. All those aforementioned reasons can lead to gener-
ating uncertainty [40].
• Machines: Systems run on machines. Its certainty relies on

machines as well. If machines should have non-functional
hardware or software, or compromised software, an uncer-
tainty level can increase.
• Networks: Networks, as the carrier of information, will cre-

ate uncertainty. Congestion is normal in networks, causing
transfer delays, and networks are vulnerable to cyber attacks
or sometimes result in unavailability. All those conditions
generate uncertainty in the systems that use networks.
• Procedures: Uncertainty is derived from two kinds of proce-

dures. One is based on objective evidence, which should be
able to be implemented by the formal and repeatable proce-
dure. The other is based on subjective evidence, which in-
cludes beliefs, judgments, and opinions that are mostly gen-
erated by humans who use bias or subjective feeling in their
decision-making process.

3. Uncertainty Reasoning and Quantification and Its Use in

Decision-Making in Belief Theory

Different types of uncertainty affect the assessment and anal-
ysis of a specific situation. Underlying uncertainty comes from
how to view and model a given part of the world which we call
a domain. A domain is the abstract representation of states of
the world, where analysts or decision-makers can have beliefs
about the true states of a domain. Beliefs about domains can be
easily biased by an analyst or a decision maker, which is often
called the “framing effect” [41, 30], which can cause subjective
beliefs about the world to deviate from the ground truth of the
world (e.g., past or future events) [30]. The way a situation is
formally modeled (i.e., elements in a domain) can also affect the
types and levels of uncertainty perceived by a decision-maker.

Figure 1 is developed based on well-known classifications of
uncertainty types in the belief/evidence theory [42] and ML/DL
domains [5]. Belief has been based on the decision-making pro-
cess. In the 1930s, Three-Valued Logic (TVL) [43] was defined
as an algebra based on three values, including false, unknown,
and truth. Many other theories expressing a belief based on
probabilities have been proposed since the 1960s. They include
Fuzzy Logic [44], Dempster-Shafer Theory (DST) [45], Trans-
ferable Belief Model (TBM) [46], Subjective Logic (SL) [47,
48], Dezert-Smarandache Theory (DSmT) [49], Bayesian Infer-
ence (BI) [50], and Imprecise Dirichlet Model (IDM) [51]. As
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Figure 3: Taxonomies of the considered belief theories and their applications in
deep learning.

shown in Figure 3, belief theories have been discussed in terms
of statistical inference and probabilistic logic. This section will
first discuss DST, which is most prevalent in many applica-
tions. DST [45] first defined a “frame of discernment,” the set
of propositions considered. DST generalized Bayesian theory
based on subjective probability [45]. However, it is well known
that DST’s combination rule generates a counter-intuitive result
when evidence-forming beliefs conflict with each. To resolve
the issue in DST, TBM [46] has been proposed to deal with
more knowledge and situations than DST. Further, DSmT [49]
extended DST to deal with conflicting evidence in trust man-
agement systems [52, 53]. However, applying DST, DSmT, and
TBM in ML/DL is limited. To our knowledge, TBM has not
been considered in the ML/DL domain. BI was studied in the
18th century and used even in various modern statistical infer-
ence and machine learning applications [50].

We discuss Fuzzy Logic, TVL, and SL as a probabilistic
logic theory. In the 1960s, Zadeh [44] introduced fuzzy set

theory to represent an uncertain, subjective belief based on a
membership function [54] and has been applied to various trust-
based systems [55, 56, 57, 58, 59, 60, 61]. As TVL was pro-
posed in the 1930s, its application was limited to the 1970s
and 1980s classification research. SL is initially proposed in
1997 [62] and has been further explored until recent years [24].
SL has its root in DST and can estimate multidimensional un-
certainty. SL has been recently leveraged to develop evidence
neural networks (ENNs) [5, 63, 64, 65, 66, 67], discussed in
Section 4. We discuss how each belief theory has been consid-
ered in the ML/DL research in Section 3.

3.1. Dempster Shafer Theory (DST)

In [68, 69], the authors presented the key concepts and no-
table results of DST used to develop a crucial tool for knowl-
edge representation and uncertain reasoning. The authors re-
viewed how DST has evolved in terms of transitioning into a

computational tool for evidential reasoning in AI by discussing
its various practical applications in business, engineering, and
medicine. Kohlas and Monney [69] also discussed DST by em-
phasizing the process of combining multiple hints relative to a
common question, and they drew a comprehensive relationship
between these hints and their corresponding Dempster’s rule.

DST is a fusion technique for decision-making based on
the belief mass (a.k.a. evidence) of various detection systems.
Each system can be defined as a set of possible conclusions,
called proposition [45]. The set of all propositions is denoted
by Θ (a.k.a. the frame of discernment (FOD)). Given the set
Θ, we can generate the power set P(Θ) (a.k.a. the powerset

of FOD), where the P(Θ) represents all possible combinations
of the set Θ, including an empty set ∅. So, 2|Θ| is the size
of the P(Θ). As an example of P(Θ), if Θ = {W,Z, L}, then
P(Θ) = {∅, {W}, {Z}, {L}, {W,Z}, {W, L}, {Z, L}, {W,Z, L}}.

3.1.1. Belief Formation

The belief mass is an observed probability based on evidence.
For example, assume we have a black ball, a black square, and a
red ball. The mass for focal element black is m(black) = 2

3 , and
the mass for focal element red is m(red) = 1

3 . We assign a be-
lief mass to each element in power set P(Θ) and define the mass
function as m : P(Θ) → [0, 1]. The belief mass, also called
basic probability assignment (bpa) [70], is an observed proba-
bility based on evidence. It defines a mapping of the power set
to the interval between 0 and 1, where the bpa of the null set is
zero. The sum of the mass for each element in set P(Θ) is equal
to one, that is [45]:

m : Θ→ [0, 1],
∑

A∈P(Θ)

m(A) = 1, where m(∅) = 0. (1)

Given the power set P(Θ) and the corresponding belief mass
m for each focal element (i.e., a subset) A in P(Θ), we can cal-
culate the belief interval of each focal element A, and represent
it as [Bel(A), pl(A)]. The belief Bel(A) is the lower bound and
plausibility pl(A) indicates the upper bound [71]. The Bel(A)
and pl(A) are obtained by:

Bel(A) =
∑

B|B⊆A

m(B), pl(A) =
∑

B|B∩A,∅

m(B), (2)

Dis(A) = 1 − pl(A).

For example, given Θ = {W,Z, L} and the belief mass m(W),
m(Z), m(W or L), we can obtain beliefs of focal element W

and (W and Z) by Bel(W) = m(W) and Bel(W and Z) =
m(W) · m(Z), respectively, and plausibility of W by pl(W) =
m(W) + m(W or L). The belief interval for W is denoted by
[m(W),m(W) + m(W or L)].

The disbelief of focal element A is given as Dis(A), which
equals Bel(A), where A means the complement of A (i.e., nega-
tion of A). The Dis(A) is calculated by summing all masses of
the focal elements that do not intersect with A. Dis(A) can also
be estimated by Dis(A) = 1 − pl(A) where pl(A), indicating
uncertainty, can be considered as a potential credit to increase
the given belief, which is different from the conventional inter-
pretation of uncertainty as risk [72].Figure 5 describes the key
concept of DST.
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Figure 4: Dempster’s Rule of Combination.

Figure 5: Belief, Plausibility, and Disbelief in DST.

Dempster’s Rule of Combination is a belief mass combina-
tion function for two independent detection systems i and j over
the same frame. The joint mass committed to the focal element
A is given by:

m(A) = κ
∑

Ai∩B j=A,∅

m1(Ai) · m2(B j), (3)

where Ai and B j are values in set Θ of two different systems
i and j that contain target value A. The κ is a renormalization
constant, defined by κ = (1 −

∑
Ai∩B j=∅ m1(Ai)m2(B j))−1 [45].

For example, we have m1(W), m1(Z), m1(W,Z), m2(W), m2(Z),
and m2(W or Z). The joint mass for focal element W is cal-
culated by m(W) = m1(W) · m2(W) + m1(W) · m2(W or Z) +
m1(W or Z) ·m2(W)+m1(W or Z) ·m2(W or Z). We summarize
the key concept of Dempster’s rule of combination in Figure 4
based on our discussion above.

Many DST variants have been proposed. Those variant tech-
niques usually aim to solve the problem of the original DST. For
example, Dempster’s rule requires a normalization operation to
move the zero belief into a null set. However, Zadeh discovered
that such normalization operation could lead to a counterintu-
itive result/belief in some situations [73, 74, 75]. To eliminate
this problem, Yager [74] proposed a DST-concept-based tech-
nique for generating beliefs from evidence combining in the
Dempster Shafer framework. Murphy [76] also solved an issue
in Dempster’s combination rule, introducing greater uncertainty
with greater conflict evidence by refining the normalization part
with the average belief. This modification removes the mass as-
signed to null set ∅, and also combines weighted averages of the
masses n−1 times in Eq. (3), where n is the number of values in
set Θ. In addition, the transferable belief model (TBM) is one
of the well-known variants of DST, which is described in detail
in Section 3.3.

3.1.2. Causes and Types of Uncertainty

DST considers uncertainty in plausibility due to a lack of ev-
idence. This implies that uncertainty in DST is closely related
to epistemic uncertainty or vacuity. Hence, DST can quantify
an uncertain opinion as a subjective belief in a given proposi-
tion [45].

3.1.3. Uncertainty Quantification

Smarandache et al. [71] measured uncertainty in DST based
on its multiple dimensions, including auto-conflict (i.e., con-
flict in a belief function with conjunctive rule), non-specificity

(i.e., a generic form of Hartley entropy with base 2), confu-

sion (i.e., uncertainty by a lack of evidence), dissonance (i.e.,
all beliefs are mostly the same), aggregate uncertainty measure

(AU) (i.e., generalized Shannon entropy), and ambiguity mea-

sure (AM) (i.e., non-specificity and discord).
Smarandache et al. [71] measured uncertainty in DST by its

multiple dimensions as follows:

1. Auto-conflict quantifies how much a source of evidence dis-
agrees with itself when it is combined with itself repeat-
edly using the conjunctive combination rule [77]. The auto-
conflict of order n (an with n ≥ 1) fuses n identical belief
functions and is estimated by:

an(e) = (
n
⊕

i=1
)(∅), (4)

where ⊕, conjunctive combination rule, is given by:

mCon j(X) =
∑

A∩B=X

m1(Ai)m2(B j) := (m1) ⊕ m2)(X). (5)

mCon j(X) is a non-normalized conjunctive rule, which is a
multinomial form of the DST combination rule shown in
Eq. (3). The ‘semantics of conflict’ (k) quantifies the de-
gree to which different sources of evidence disagree, while
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the ‘auto-conflict’ quantifies the intrinsic conflict within a
single source of evidence when combined with itself.

2. Non-specificity is a generalization of Hartley entropy, which
is aligned with Shannon entropy when base two is used in a
logarithmic term. Non-specificity increases when there are
many subsets A ⊆ Θ because it implies more subsets of Θ
overlap in their elements. This non-specificity can be treated
as a weighted sum of the Hartley measure [78] for different
focal elements A in P(Θ) and is measured by:

N(m) =
∑

A⊆Θ

m(A) log2 |A|. (6)

3. Confusion [79] refers to uncertainty caused by a lack of evi-
dence supporting each set A ⊆ Θ and estimated by:

Confusion(m) = −
∑

A⊆Θ

m(A) log2(Bel(A)). (7)

As shown above, confusion increases when a large number
of subsets A ⊆ Θ exists, and each belief in set A is very
small.

4. Dissonance [79] is similar to confusion but differs in using
plausibility rather than belief. That is, dissonance increases
when there are a large number of subsets A ⊆ Θ, and its as-
sociated plausibility is very low. This implies that the differ-
ence between the lower bound (i.e., belief) and upper bound
(i.e., plausibility) is small. Hence, the dissonance is more
likely to be higher when there is a sufficient amount of ev-
idence (i.e., uncertainty due to a lack of evidence is low)
supporting all possible beliefs (i.e., subsets) generating each
pl(A) with very small probabilities. The dissonance is mea-
sured by:

Dissonance(m) = −
∑

A⊆Θ

m(A) log2(pl(A)). (8)

Note that in [68], natural logarithmic (i.e., ln) is used rather
than log2.

5. Aggregate uncertainty measure (AU) is a generalized Shan-

non entropy for total uncertainty and measured by:

AU(Bel) = max
[
−

∑

θ∈Θ

pθ log2 pθ
]
. (9)

Recall that Θ = {W,Z, L} and θ refers an element in set Θ.
6. Ambiguity measure (AM) [80] represents non-specificity

and discord where the discord means disagreement in choos-
ing several alternatives and non-specificity refers to a situa-
tion with two or more alternatives left unspecified. The AM
is obtained by:

AM(m) =
∑

θ∈Θ

BetPm(θ) log2(BetPm(θ)), (10)

where BetPm is defined by the Generalized pignistic trans-
formation (GPT), a pignistic 1 generalized basic belief as-
signment in DSmT, as estimated in Eq. (32).

1The pignistic means a probability assigned to an option by a person who is
required to make a rational decision [81].

Blasch et al. [25] defined the Interval of Uncertainty (IOU)
by:

IOU(A) = pl(A) − Bel(A) (11)

= 1 − Bel(Ā) − Bel(A) = 1 − Dis(A) − Bel(A).

Klir and Ramer [82] measured the total uncertainty in DST, de-
noted by UT (A), by considering two types of uncertainty, non-
specificity, and discord. Both UT (A) and AM consider non-
specificity and discord and capture them differently. AM cap-
tures them in a level of each proposition (i.e., element θ ∈ Θ)
while UT (A) obtains them at the level of sets, A ⊂ Θ. Hence,
UT (A) is given by [82]:

UT (A) =
∑

A⊂Θ

m(A) log2

(
|A|

∑
B⊂Θ m(B) |A∩B|

|B|

)
. (12)

The key merit of DST is to combine an amount of uncertain ev-
idence from multiple sources and select elements based on the
combined belief mass. However, the combination rule of DST
fails to balance different sources, especially when sources pro-
vide conflicting evidence. Although many alternative combina-
tion rules have been proposed, Dubois and Prade [26] argued
that no single combination rule could be a universal solution to
all encountered situations.

3.1.4. Applications of DST on Machine/Deep Learning

Early use of DST in deep learning in [83] was focused on
creating an adaptive pattern classifier. This model used basic
belief assignments (BBAs) in DST within a multilayer neural
network architecture for flexible decision rules and robust sen-
sor fusion. Soua et al. [84] also proposed a framework using
a Deep Belief Network (DBN) to independently predict traffic
flow based on streams and events. DST was then utilized to fuse
these predictions in handling heterogeneous data sources. Since
the 2020s, DST has further applied to tackle various tasks, such
as classification problems by combining Convolutional Neural
Networks (CNNs) with DST [85], intrusion detection by apply-
ing DST within a Long Short-Term Memory Recurrent Neural
Network (LSTM-RNN) [86], and fault diagnosis problems by
applying DST in deep neural networks [87].

Besides the applications above, the evidential reasoning
(ER) approach, rooted in Dempster-Shafer’s evidence the-
ory, has been widely utilized in various machine/deep learn-
ing (ML/DL) domains. For instance, Xu et al. [88] intro-
duced a classification method using the evidence reasoning
(ER) rule, which enhances Dempster’s combination rule. This
data-driven method has shown competitive classification accu-
racy on benchmark databases. Similarly, in the realm of rec-
ommendation systems, Le et al. [89] proposed a multi-criteria
collaborative filtering method for hotel recommendations. This
method integrates matrix factorization with a deep learning
model and then employs the evidential reasoning approach to
handle the uncertainty of multi-criteria ratings. Furthermore,
Xu et al. [90] extended the Dempster-Shafer theory to ensem-
ble learning, representing an ML paradigm to train and combine
multiple weak models to solve the same problem and achieve
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better solution quality. This method uses the ER rule as a
combination strategy. Their approach focuses on determining
the weight of evidence through a novel combination weighting
method, demonstrating its effectiveness in image classification
datasets. These studies emphasize the growing viability and
importance of the ER approach in recent ML/DL applications.
This evolution signifies the versatility of DST and its potential
for further explorations in deep learning.

3.1.5. Algorithmic Complexity of DST

In DST, Dempster’s Rule of Combination is directly propor-
tional to the number of hypotheses or subsets in the frame of
discernment. Given a frame of discernment with n elements,
it has 2n subsets, resulting in an exponential algorithmic com-
plexity. Thus, the complexity of DST is represented by O(2n).

3.2. Dezert-Smarandache Theory (DSmT)

Dezert and Smarandache [49] introduced DSmT theory for
data and information fusion problems as a general framework
that provides new rules for handling highly imprecise, vague,
and uncertain sources of evidence and making decisions under
them. The main advantages of DSmT over DST are as fol-
lows. First, DSmT has a more general fusion space in a hyper-
power set (discussed in Section 3.2.1) than a power set. Second,
DSmT fits free and a hybrid model compared to a strict DST
model (see Section 3.2.1). Third, DSmT also combines com-
plex classes based on subsets or complements and introduces
better fusion rules, such as proportional conflict redistribution
rule 5 (PCR5), dynamic fusion by hybrid DSm rule (DSmH),
a new probability transformation, qualitative operators for data
with labels (e.g., linguistic labels in natural language), and new
belief conditioning rules (BCRs), or new fusion rules for set-
valued imprecise beliefs. However, DSmT has not been largely
applied in applications compared to DST. In addition, the sparse
distribution and high complexity lower efficiency leading to a
lack of scalability. Further, inefficiency lies in requiring a spe-
cific combination rule for each problem with no universal rule.

3.2.1. Belief Formation

A generalized basic belief assignment (gbba) is formulated
the same as a belief function of DST in Eqs. (1) and (3.1.1),
but the domain of DSmT is the hyper-power set DΘ, com-

pared to a power set P(Θ) of DST. Note that P(Θ)
∆
= (Θ,∪),

DΘ
∆
= (Θ,∪,∩), and S Θ

∆
= (Θ,∪,∩, c(·)). If Θ = {a, b},

P(Θ)
∆
= (∅, a, b, a ∪ b), DΘ

∆
= (∅, a, b, a ∪ b, a ∩ b), and

S Θ = (∅, a, b, a ∪ b, a ∩ b, c(∅), c(a), c(b), c(a ∪ b), c(a ∩ b))
where c(X) refers to the complement of X.

Other various types of belief mass functions introduced in
DSmT are formulated via the following concepts:

• A hyper-power set: The closed finite set (i.e., frame), de-
noted by Θ, has n hypotheses elements, represented by Θ =

θ1, . . . , θn. The hyper-power set DΘ
∆
= (Θ,∪,∩) is defined

as all composite subsets built from elements of Θ with ∪
and ∩ operators. In general, notation GΘ covers the be-
lief functions defined under any frames, such as a power set

PΘ
∆
= (Θ,∪)for DST, a hyper-power set DΘ or a super-power

set for DSmT [91].
• Free and hybrid DSm models: DST is the most restricted

hybrid DSm model, denoted byM0(Θ), because all the ele-
ments are exhaustive and exclusive. However, in real-world
fusion problems, the hypothesis can be vague and imprecise.
The exclusive elements, θi’s, may not be identified and sep-
arated. When there is no constraint on the elements (i.e.,
hypothesis elements θi’s can overlap), this model is the free
DSm model as M f (Θ). Hybrid DSm models, M(Θ), take
into account some exclusivity constraints and non-existential
constraints (i.e., changes of frame Θ with time in a dynamic
fusion problem). DSmT works with any kind of hybrid mod-
els, such as the free DSm model, hybrid model, or Shafer’s
model (i.e., DST) [91].
• Generalized belief functions: The generalized belief and

plausibility functions, Bel(A) and pl(A), are defined in the
same way DST defines a belief by Eq. (3.1.1).
• Qualitative belief assignment: The qualitative beliefs are a

set of m linguistic labels L = {L0, L1, L2, . . . , Lm, Lm+1} with
a total order relationship ≺ where L1 ≺ L2 ≺ . . . ≺ Lm. The
example of ordered labels is L = {very poor, poor, good, very
good}. L0 and Lm+1 represent the boundary of numeric val-
ues in [0, 1] for the labels. With numeric values, the labels
can have qualitative operators of label addition, label multi-
plication, and label division in [49]. The qualitative belief
assignment is a mapping function by [91]:

qm(·) : GΘ 7→ L. (13)

• Fusion of precise beliefs by the classic DSm rule of combi-

nation: For the free DSm model, M f (Θ), the belief func-

tions combination, mM f (Θ) ≡ m(·)
∆
= [m1 ⊕ m2](·), from the

two independent sources is the conjunctive consensus of the
sources [49]:

∀ C ∈ DΘ,

mM f (Θ)(C) ≡ m(C) =
∑

A,B∈DΘ,A∩B=C

m1(A)m2(B), (14)

where belief functions from two sources Bel1(·) and Bel2(·)
are related to generalized basic belief assignments, m1(·) and
m2(·). This function uses the same method as Dempster’s
rule of combination in Eq. (3), but the fusion space can be
expanded to hyper-sets.
• Fusion of precise beliefs by the hybrid DSm rule of combi-

nation: The hybrid DSm rule (DSmH) works for the set with
integrity constraints in a hybrid model,M(Θ) ,M f (Θ). For
all A ∈ DΘ [49]:

mDS mH(A) = mM(Θ)(A)
∆
= ϕ(A)[S 1(A)+S 2(A)+S 3(A)], (15)

S 2(A) =
∑

X1,X2,...,Xk∈∅
(U=A)∨(U,∅)∧(A=It)

k∏

i=1

mi(Xi), (16)

S 3(A) =
∑

X1,X2,...,Xk∈D
Θ,(X1∪X2∪...∪Xk)=A,

X1∩X2∩...∩Xk)∈∅

k∏

i=1

mi(Xi), (17)
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where ϕ(A) indicates the non-emptiness of a set A, i.e.,
ϕ(A) = 1 if A < ∅. S 1(A) = mM f (θ)(A) is the classic rule based
on the free DSm model as shown in Eq. (14). The S 2(A) is the
relative or total ignorance with non-existential constraints in
some dynamic problems, calculated from the mass of empty
sets Xi, where i is one of the k sources of evidence. Total

ignorance, It, is defined as It
∆
= θ1 ∪ θ2 ∪ . . . ∪ θn, meaning

the union of n hypotheses elements. The mass of relatively
empty sets in S 2(A) is defined as the X1, X2, . . . , Xk ∈ ∅where
U = u(X1) ∪ u(X2) ∪ . . . ∪ u(Xk) and u(X) is the union of all
the granules θ forming X. S 3(A) is the canonical disjunctive
form of non-empty sets Xi, calculated from relatively empty
sets. The details of S 2(A) and S 3(A) are defined in [49] and
their formulations are shown in Eq. (17).
• Fusion of imprecise beliefs by the classic DSm rule of com-

bination: For k sources of evidence, the imprecise belief is
defined by [49]:

∀ A , ∅ ∈ DΘ, mI(A) =
∑

X1,X2,...,Xk∈D
Θ

(X1∩X2∩...∩Xk)=A

∏

i=1,...,k

mI
i (Xi), (18)

where
∑

and
∏

are for summation and product operation of
sets, respectively. The imprecise beliefs are defined by a set
of points or continuous intervals in [0, 1]. The notations of
intervals can either be open, closed, or half-open intervals
(i.e., (a, b), [a, b], or [a, b)).
• Fusion of imprecise beliefs by hybrid DSm rule of combina-

tion: The hybrid model DSm rule from the sets of imprecise
beliefs are defined by [49]:

mI
DS mH(A) = mI

M(Θ)(A)
∆
= ϕ(A) · [S I

1(A) + S I
2(A) + S I

3(A)],
(19)

S I
2(A) =

∑

X1,X2,...,Xk∈∅
(U=A)∨(U,∅)∧(A=It)

k∏

i=1

mI
i (Xi), (20)

S I
3(A) =

∑

X1,X2,...,Xk∈D
Θ,(X1∪X2∪...∪Xk)=A,

X1∩X2∩...∩Xk)∈∅

k∏

i=1

mI
i (Xi), (21)

where the + and · operators are both for two sets. S I
1(A) =

mI(A) in Eq. (18) and S I
2(A) and S I

3(A) in Eq. (21) are de-
scribed similar to the precise belief DSm rule of combination
in [49].
• Fusion of qualitative precise beliefs: The qualitative DSm

Classic rule (q-DSmC) is similar to Eq. (14) by the qualita-
tive conjunctive rule as below [49]:

qmqDS mC(A) =
∑

X1,...,Xk∈D
Θ

X1∩...∩Xk=A

k∏

i=1

qmi(Xi), for k ≥ 2, (22)

where ∀ A ∈ DΘ\{∅}, qmqDS mC(∅) = L0,

where k refers to the number of sources.
The qualitative hybrid DSm rule (q-DSmH) is similarly de-

fined to Eq. (15) by [49]:

qmqDS mH(A)
∆
= ϕ(A)[qS 1(A) + qS 2(A) + qS 3(A)]

where qmqDS mH(∅) = L0, (23)

qS 2(A) =
∑

X1,X2,...,Xk∈∅
(U=A)∨(U,∅)∧(A=It)

k∏

i=1

qmi(Xi), (24)

qS 3(A) =
∑

X1,X2,...,Xk∈D
Θ,(X1∪X2∪...∪Xk)=A,

X1∩X2∩...∩Xk)∈∅

k∏

i=1

qmi(Xi), (25)

where qS 1(A) = qmqDS mC(A) and the details of qS 2(A) and
qS 3(A) are defined in Eq. (17).
• Proportional conflict redistribution (PCR) rules: Compared

to DSmH, which considers a direct transfer of partial con-
flicts to partial uncertainties, PCR transfers total or partial
conflicting belief functions to non-empty sets in the conflicts
in proportion to the belief functions by sources. The be-
lief function redistribution generates several versions of PCR
rules. We take the following two examples:

– PCR5 is the most sophisticated PCR rule. The PCR5 for-
mula of combining two sources, considering mPCR5(∅) = 0
and ∀X ∈ GΘ\{∅}, is defined by [49]:

mPCR5(X) = m12(X)+
∑

Y∈GΘ\{X}
X∩Y=∅

(
m1(X)2m2(Y)

m1(X) + m2(Y)
+

m2(X)2m1(Y)
m2(X) + m1(Y)

)
, (26)

where all sets are in canonical form and m12(X) ≡ m∩(X)
for the conjunctive consensus on X and all denominators
are not zero. If a denominator is zero, m12(X) = 0. The
PCR5 rule also provides good results for combining qual-
itative results into a refined label.

– PCR6 is a more intuitive PCR formula than other PCR for-
mulas [49]:

mPCR6(X) = m12...k(X)+

∑

X1,X2,...,Xk∈G
Θ\{∅}

X1∩X2∩...∩Xk=∅

( k∑

r=1

δX
Xr
· mr(Xr)

)
·

m1(X)2m2(Y)
m1(X) + m2(Y)

, (27)

where δX
Xr
= 1 if X = Xr; δX

Xr
= 0 otherwise. The

m12...s(X) ≡ m∩(X) is the conjunctive consensus on X for
s > 2 sources. For s = 2 sources, PCR5 and PCR6 have
the same formulas.

3.2.2. Causes and Types of Uncertainty

DSmT handles various uncertainties as follows [91]:

• Precise, uncertain beliefs from multiple sources: The beliefs
from multiple sources contribute uncertainty even if the be-
lief of each proposition is a precise m(X), where each m(X)
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is only represented by one real number in [0, 1] in DΘ. Un-
certainty exists when a single source provides beliefs about
partial elements or multiple sources provide conflicting be-
liefs. For example, for Θ = {θ1, θ2, θ3}, two independent
sources provide beliefs m1(θ1) = 0.6,m1(θ3) = 0.4 and
m2(θ2) = 0.8,m2(θ3) = 0.2, respectively.
• Highly conflicting evidence from multiple sources: If k multi-

ple sources have conflicting evidence toward the same event,
there is uncertainty about which source to trust. For ex-
ample, for Θ = {θ1, θ2, θ3}, two sources provide m1(θ1) =
0.2,m1(θ2) = 0.1,m1(θ3) = 0.7 and m2(θ1) = 0.5,m2(θ2) =
0.4,m2(θ3) = 0.1. The decision is based on conflicting evi-
dence.
• Imprecise beliefs: Imprecise beliefs are represented by

the admissible imprecise. Imprecise beliefs can be either
quantitative or qualitative. Quantitative imprecise beliefs
mI(·) are real subunitary intervals of [0, 1] or real subuni-
tary sets over DΘ. Qualitative mI(·) is a set of labels
L = {L0, L1, L2, . . . , Lm, Lm+1} in order. Imprecise beliefs
are common in fusion problems because it is very hard to
generate precise sources of evidence. For example, the
set of ordered sentiment labels are L = {L0, L1, L2} =

{negative, neutral, positive} and the set of elements is Θ =
{θ1, θ2}. The two sources can give qualitative beliefs by sen-
timent labels as qm1(θ1) = L1, qm1(θ2) = L0 and qm2(θ1) =
L2, qm2(θ2) = L1, respectively.

• Subjective probability (DSm probability or DSmP) transfor-

mation, fusion space, and fusion rules: The criteria (i.e.,
frame Θ), the set of elements (i.e., GΘ), the choice of com-
bination rule, the probability function, and controllable pa-
rameter ϵ for DSmP, all contribute to the uncertainty that can
significantly impact decision making.

3.2.3. Uncertainty Quantification

DSmT does not provide its own uncertainty measure. It bor-
rows other methods and helps decision-making using the fol-
lowing uncertainty measures:

• In probability theory, uncertainty in proposition A can be de-
fined as [92]:

U(A) =
∑

B∈S Θ\{∅},B∩A,∅,B∩C(A),∅

m(B), (28)

where A, B, and C are three different elements (i.e., propo-
sitions), Θ is a set of the elements, and S Θ is a super power
set. The C(A) is the complement of A. Uncertainty and IOU
can also be defined in the same way as DST in Eq. (3.1.3).
• Degree of uncertainty can be evaluated in the probability

transformation. Normalized Shannon’s entropy is a measure
of uncertainty in probability theory and is given by:

EH = −

∑n
i=1 m(θi) log2(m(θi))

Hmax

, (29)

where Hmax is the maximal entropy for the uniform distribu-
tion.

• Probabilistic information content (PIC) score refers to the de-
gree of certainty which can be estimated by PIC = 1 − EH .
Less uncertainty (or higher certainty) can lead to a correct
and reliable decision.

For decision making, DSmT extends the probability func-
tion, called classical pignistic transformation (CPT) in DST,
into either the Generalized pignistic transformation (GPT), or
a generalization of a subjective probability measure of m(·) by
ϵ ≥ 0 in the new probability transformation, DS mPϵ , with a
subjective measure, ϵ.

1. Generalized pignistic transformation (GPT): To make a ra-
tional decision, a subjective/pignistic probability function
BetP(·) in Eq. (32) is constructed, based on any generalized
basic belief assignment m(·) from the DSmT rules of combi-
nation by expanding the set to DΘ and counting the cardinal
of propositions in the hyper-power set.

2. DSmP transformation: In GPT, the decision to map belief to
the probability is in a fixed way but DSmP provides varia-
tions in subjective probabilities. DSmP is a new probability
transformation that considers both the values and the car-
dinality of the elements involved in each ignorance in the
proportional redistribution process. This mapping is defined
by DS mPϵ(∅) = 0 and ∀X ∈ GΘ\{∅}:

DS mPϵ(X) =
∑

Y∈GΘ

∑
Z⊆X∩Y,
|Z|M=1

m(Z) + ϵ · |X ∩ Y |M

∑
Z⊆Y,
|Z|M=1

m(Z) + ϵ · |Y |M
m(Y), (30)

where | · |M is the DSm cardinal of proposition in DΘ and
ϵ ≥ 0 is parameter for a subjective probability measure
of m(·). The smaller ϵ, the bigger the PIC value. When
ϵ = 1, DS mPϵ=1 = BetP (i.e., Eq. (30) is reduced to
Eq. (32)). DSmP is a more accurate distribution of the ig-
norance masses to the elements than BetP. DSmP and BetP

work in both DST (Shafer’s model) and DSmT (free or hy-
brid models).

Figure 6 demonstrates the following steps/criteria to make a
decision. In Figure 6, (b) and (c) combines the belief masses
from different sources. Uncertainty is not combined into input
evidence and is used to make final decisions in (c).

1. Belief functions and models are defined in the proper frame
Θ of a given problem. The closed finite set (i.e., frame),
denoted by Θ, has n elements of hypotheses. These steps
decide the elements of the given problem.

2. The belief functions are defined in the proper set of GΘ (e.g.,
power, hyper, or super set) where GΘ means any set of items,
including power set PΘ, hyper-power set DΘ, and super-
power set S Θ. DSmT works on any GΘ, but normally DΘ

is used to distinguish from PΘ in DST. This step means the
choice of PΘ, DΘ, or S Θ.

3. Choose an efficient rule to combine belief functions (see
Section 3.2.1).

4. Before making a decision, one must use a probability func-
tion (e.g., GPT, see Eq. (30)) or DSmP with a subjective
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Figure 6: Decision-making process using DSmT where the generalized basic belief assignment (gbba) is the formal name of m(·) and BetP refers to a pignistic
transformation in gbba domain.

measure) which is from the belief functions. The maximum
of the GPT function can be used as a decision criterion be-
tween two choices.

Making decisions by DSmP can improve the previous proba-
bilistic transformations and increase the strength of a critical
decision from the total knowledge.

3.2.4. Applications of DSmT on Machine/Deep Learning

DSmT covers broad information fusion topics of data and
sensors in robotics, biometrics, image fusion, trust manage-
ment, situation analysis, or object tracking. DSmT was mainly
applied in developing machine/deep learning-based informa-
tion fusion tools in binary or multi-class classification prob-
lems [93, 94]. DSmT is an extension to the ML multi-class
classification models, such as Support Vector Machine (SVM).
For example, as a fusion step in SVM One-Against-All, DSmT
quantifies partial ignorance by combining conflicting evidence
from two complementary SVM results through the PCR6 rule
in Section 3.2.1. This PCR6 combination can reduce focal
elements in the two sources. The complex, layered ML/DL
multi-classifier structures, including CNNs, LSTM, and Ran-
dom Forests (RF), PCR6 fusion rules can also be integrated as a
DSmT-based fusion step [94]. DSmT has been applied to the fi-
nal decision-making process by combining multi-signal sources
of fault characteristics.

3.2.5. Algorithmic Complexity of DSmT

Due to the considered hyper-power domain, given the num-
ber of elements n, DSmT’s algorithmic complexity in Big-O is
O(22n

).

3.3. Transferable Belief Model (TBM)

TBM is a variant of DST to resolve unreasonable results
of the DST combination rule (see Section 3.1) when multiple
sources provide conflicting evidence [46]. TBM is based on
the open-world assumption with two levels of belief reasoning:
credal level and pignistic level. The credal level quantifies and
updates a belief through a belief function. The pignistic level

transfers a belief into a probability using the so-called pignistic

probability function for making a decision [46].

Figure 7: A belief at the credal and pignistic levels and their relationships in
TBM.

3.3.1. Belief Formation

TBM defines basic belief masses the same as DST [45] (see
Eq. (1)). The credal level belief function updating a belief upon
the arrival of new evidence is formulated by [46]:

mB(A) =



∑
C⊆B m(A∪C)

1−
∑

C⊆B m(C) for (A ⊆ B) ∧ (A , ∅);

0 otherwise.
(31)

Here mB(A) means the belief mass supporting propositions A

when conditional evidence does not support proposition B as
the truth [46]. The

∑
C⊆B m(C) refers to the sum of beliefs sup-

porting a set not supporting B and
∑

C⊆B m(A ∪ C) is the sum
of beliefs not supporting B or supporting A. For mB(A) : R →
[0, 1], Eq. (31) needs to hold

∑
C⊆B m(A∪C) < 1−

∑
C⊆B m(C).

The probability transformed through the pignistic probability
function for decision-making is denoted by BetP:

BetP(x) =
∑

x∈A⊆X

m(A)
|A|
=

∑

x∈A⊆X

m(A)
|x ∩ A|

|A|
, (32)

where m(A)
|A|

means belief mass, m(A), is evenly distributed into
the atoms of A, a set of atoms, and |A| means the number of
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atoms x in set A (i.e., x ∈ A). The X is the Boolean algebra

of the subset of Ω, where Ω is a set of worlds (truth). The
probability distribution calculated from the pignistic probability
function is used for decision-making.

3.3.2. Causes and Types of Uncertainty

TBM considers epistemic uncertainty caused by a lack of ev-
idence.

3.3.3. Uncertainty Quantification

In TBM, uncertainty has not been explicitly discussed. Since
a belief at the pignistic level is for decision-making in real-
world settings, the pignistic probability function gives a belief
mass that considers uncertainty in practice, while the credal
level belief function estimates a belief based on observed ev-
idence. Figure 7 shows how a belief is constructed at the credal
level upon the arrival of evidence and how the credal level belief
is transferred to the pignistic level belief for decision-making.

3.3.4. Applications of TBM on Machine/Deep Learning

Applications of TBM have evolved from the classical as-
sociative classification [95] leveraging TBM to produce a ro-
bust and compact classifier composed of (pignistic) probability
functions summarizing vast mined rule sets [95]. Next, the con-
cept of TBM was broadened by Quost et al. [96] to improve the
efficiency of multi-class classification through classifier combi-
nation within the belief function framework, marking a crucial
step towards handling more complex classification tasks. TBM
began to integrate more prominently with deep learning tech-
niques. Soua et al. [84] proposed a Deep Belief Network (DBN)
based framework to accurately predict traffic flow using TBM
to fuse predictions based on diverse data types. Henni et al.
[97] developed a TBM-based localization algorithm to man-
age ambiguities during zone transitions. On the other hand,
Honer and Hettmann [98] focused on improving Occupancy
Grid Mapping (OGM) algorithm for autonomous vehicles by
using TBM to deliver a more accurate map, integrating infor-
mation from both LIDAR and OGM maps. Finally, in the fight
against cyber threats, Ioannou et al. [99] proposed the Markov
Multi-phase TBM (MM-TBM) to deal with multi-phase cyber-
attacks characterized by uncertainty and conflicting informa-
tion. These steps reveal the expanding application of TBM in
ML/DL and underpin its potential in dealing with a variety of
complex real-world scenarios.

3.3.5. Algorithmic Complexity of TBM

The algorithmic complexity of the TBM is largely deter-
mined by the operations used to combine belief functions. Sim-
ilar to the DST, when applying the combination rule in TBM,
we consider all subsets of a frame of discernment with n el-
ements, leading to 2n subsets. Consequently, the algorithmic
complexity in Big-O is O(2n).

3.4. Bayesian Inference (BI)

Bayesian theory has evolved for more than a hundred
years [50]. Bayesian inference (BI) is the process of induc-
tive learning using Bayer’s rule [100]. Inductive learning is the

process of estimating the characteristics of a population from
a subset of members of the entire population. Although some
literature treats BI as an ML technique due to its statistical na-
ture [101], we treat BI as a belief model because it deals with a
subjective probability representing a belief.

3.4.1. Belief Formation

Bayes’ rule offers a rational tool for updating beliefs of un-
known information, which connects probabilities and informa-
tion [100]. Beliefs are statements that can have overlapping
domains, such as two beliefs A and B and A ∩ B , ∅. A higher
value returned from a belief function indicates a higher degree
of a given belief. Bayesian inference estimates population char-
acteristics θ from a single dataset sample y. A belief is formed
via three steps:

1. Prior distribution p(θ) describes that the belief of θ being
true population characteristics.

2. Sampling model p(y|θ) shows the belief where y means a
sample of the huge sample space Y if θ is true and y needs
to be estimated.

3. Posterior distribution p(θ|y) updates the belief about θ from
Bayes’ rule based on observed datasets y [100], for the set
of all possible parameter values in the parameter space, Θ:

p(θ|y) =
p(y|θ)p(θ)∫

Θ
p(y|θ̃)p(θ̃)dθ̃

. (33)

Bayesian inference includes conjugate (i.e., prior and posterior
distributions are in the same class) prior distributions, poste-
rior inference, predictive distributions, and confidence regions.
There are variants of quantifying the uncertainty of variables
depending on different sampling methods.

There are variants of quantifying the uncertainty of variables
depending on different sampling methods as follows:

1. Binomial model: A random variable Y ∈ {0, 1, . . . , n} has a
binomial distribution [100] if

Pr(Y = y|θ) = dbinom(y, n, θ) =

(
n

y

)
θy(1 − θ)n−y,

where y ∈ {0, 1, . . . , n}, (34)

where E[Y |θ]=nθ and Var[Y |θ]=nθ(1 − θ). The prior is an
uncertain variable θ from Beta(a, b) distribution [100] if

p(θ) = B(θ, a, b) =
Γ(a + b)
Γ(a)Γ(b)

θa−1(1 − θ)b−1 for 0 ≤ θ ≤ 1,

(35)
where Γ(x + 1) = x!, E[θ]= a

a+b
, and Var[θ]= E[θ]E[1−θ]

a+b+1 . Then
the posterior distribution [100] is given by:

p(θ|y) = dbeta(θ, a + y, b + n − y), (36)

where E[θ|y]= a+y

a+b+n
and Var[θ|y]=E[θ|y]E[1−θ|y]

a+b+n+1 . This reflects
that beta priors are conjugate for the binomial sampling
model.
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2. Poisson model: A random variable Y has a Poisson distribu-
tion [100] if

Pr(Y = y|θ) = dpois(y, θ) = θy
e−θ

y!
for y ∈ {0, 1, 2, . . .},

(37)
with E[Y |θ]=θ and Var[Y |θ]=θ. The conjugate prior can be a
gamma(a, b) distribution [100] if

p(θ) = Γ(θ, a, b) =
ba

Γ(a)
θa−1e−bθ for θ, a, b > 0, (38)

with E[θ]= a
b
, Var[θ]= a

b2 . Combining the gamma family pri-
ors and Poisson sampling model, the posterior distribution
of θ is given by [100]:

p(θ|y) = Γ(a + y, b + n), (39)

where b is the number of prior observations, a is the sum of
counts from b prior observations, and E[θ|y]= a+y

b+n
.

3. Monte Carlo approximation: For the arbitrary pos-
terior distributions, Monte Carlo approximation gener-
ates random sampling with large S samples to model
p(θ|y1, y2, . . . , yn) [100]. The empirical distribution of the
samples {θ(1), . . . , θ(S )} can represent p(θ|y1, y2, . . . , yn). For
S → ∞, the mean θ (i.e., θ) and the variance of the samples
are given by:

θ =

S∑

s=1

θ(s)

S
→ E[θ|y1, . . . , yn],

S∑

s=1

(θ(s) − θ)2

(S − 1)
→ Var[θ|y1, . . . , yn]. (40)

4. The normal model: Normal model is a two-parameter model
with mean θ and variance σ2. If the sampling model is nor-
mal, {Y1, . . . , Yn|θ, σ

2} ∼ normal (θ, σ2), the joint sampling
density is [100]:

p(y1, . . . , yn|θ, σ
2) =

n∏

i=1

p(yi|θ, σ
2) = (2πσ2)−

n
2 e
− 1

2

∑ (
yi−θ

σ

)2

.

(41)
When σ2 is known, a posterior distribution can be inferred
with conditional prior p(θ|σ2). The conjugate prior distribu-
tion is normal based on θ ∼ normal (µ0, τ

2
0). The (condi-

tional) posterior distribution is [100]:

p(θ|σ2, y1, . . . , yn) ∝ exp
(
−

1
2

(θ − µn

1/τn

)2)
, (42)

τ2
n =

1
1
τ2

0
+ n
σ2

, µn =
κ0

κ0 + n
µ0 +

n

κ0 + n
ȳ, τ2

0 =
σ2

κ0
.

When σ2 is also unknown, the joint inference for the poste-
rior distribution can be calculated based on the prior distri-
butions and sampling model normal (θ, σ2) as: prior 1

σ2 ∼

gamma( ν02 ,
ν0σ

2
0

2 ), prior {θ|σ2} ∼ normal(µ0,
σ2

κ0
) [100]. Then

the joint posterior distribution is given by:

p(θ, σ2|y1, . . . , yn) = (43)

p(θ|σ2, y1, . . . , yn)p(σ2|y1, . . . , yn),

where

{θ|σ2, y1, . . . , yn} ∼ normal
(
µn,
σ2

κn

)
,

with κn = κ0 + n, µn =
(κ0µ0 + nȳ)
κn

, (44)

{ 1
σ2
|y1, . . . , yn

}
∼ gamma

(νn
2
,
νnσ

2
n

2

)
,

with νn = ν0 + n, σ2
n =

[
ν0σ

2
0

2 + (n − 1)s2 +
(ȳ−µ0)2κ0n

κn

]

νn
.

The probability of an event can be obtained by [100]: (1)
determining proper parameter θ and sample spaces; (2) select-
ing sampling model p(y|θ) and collecting samples; (3) observ-
ing prior distribution p(θ) by experience or select uninformative
prior; (4) calculating posterior distribution p(θ|y) based on prior
and sampling methods; (5) performing sensitivity analysis for a
range of parameter values; and (6) finalizing general estimation
of a population mean. The reliable estimate of θ contains a best
guess and degree of its confidence. Figure 8 shows the diagram
of uncertainty and belief process of Bayesian inference.

3.4.2. Causes and Types of Uncertainty

A belief is formed with the unknown values of random vari-
ables. In a population, the parameter of population characteris-
tics θ may be unknown. This means the conjugate prior belief
p(θ) is unknown. Before obtaining a dataset y, the subset of
a population is also unknown. A sample of dataset y can help
to reduce the uncertainty about the population characteristics.
This type of uncertainty is caused by a lack of evidence.

3.4.3. Uncertainty Quantification

In single-parameter sampling models, such as Binomial,
Poisson, and Monte Carlo approximation, the posterior infer-
ence variance of the estimated mean θ measures uncertainty
from the current belief formation. The uncertainty is measured
by a variance in the Binomial model, Poisson model, and Monte
Carlo sampling by:

VarBin[θ|y] =
E[θ|y]E[1 − θ|y]

a + b + n + 1
, VarPoiss[θ|y] =

a + y

b + n
, (45)

VarMC[θ|y] =
S∑

s=1

θ(s) − θ)2

(S − 1)
, (46)

where n is the number of choices of y, a and b are the parameters
in Beta(a, b) distribution for a Binomial model, a and b are the
parameters of Γ(a, b) distribution for a Poisson model, and θ is
the estimation of parameters and θ is the mean of θ for Monte
Carlo sampling.

In the normal model with mean θ and variance σ2, a joint
distribution can be transformed to a conditional probability
by Eq. (4). The distribution p(θ|σ2, y1, . . . , yn) is defined by
Eq. (42) with variance τ2

n = 1/( 1
τ2

0
+ n
σ2 ). The posterior inverse

variance 1
τ2

n
= 1
τ2

0
+ n
σ2 indicates that the posterior inverse vari-

ance (a.k.a. precision) 1/τ2
n combines sampling precision 1/σ2

and prior precision 1/τ2
0.
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Figure 8: Uncertainty-aware decision making process using Bayesian inference where p(θ) refers to the probability estimation of θ that causes uncertainty. Bel(·) is
the belief of evidence in Eq. (3.1.1). When no model is identified, the Monte Carlo approximation can be used.

3.4.4. Applications of Bayesian Inference on ML/DL

Tipping [101] introduced how Bayesian inference (BI) is
used in ML. BI solves a non-deterministic relationship between
dependent (Y) and independent (X) variables. Given N data
examples and many parameters w, the model of probability of
Y given X is computed by P(Y |X) = f (X; w) [101]. The dis-
tribution over parameters w can be inferred from Bayes’ rule.
Approximation techniques are the key points, such as least-
square, maximum likelihood, and regularization. The common
choice of a prior is a zero-mean Gaussian prior. The Bayesian
way of estimating Maximum A Posteriori (MAP) is for poste-
rior inference. Marginalization serves an important role in the
Bayesian framework [101]. Sofman et al. [102] used improved
robot navigation in a linear Gaussian model to estimate the
posterior distribution of the general Bayesian features and the
locale-specific (i.e., preferred by users) features. Tripathi and
Govindaraju [103] used relevance vector machines to predict
uncertainty in hydrology. Tian et al. [104] analyzed brain image
segmentation by applying the Gaussian mixture model (GMM)
with a genetic algorithm (GA) and the variational expectation-
maximization algorithm.

Many parameters in the ML/DL were expanded in the
Bayesian neural network (BNN) [105]. BNN is natural to
capture uncertainty for prediction by putting a prior distri-
bution over its weights, such as Gaussian prior distribution:
θ ∼ N(0, I), where θ is the model weights (parameters). Specif-
ically, given a dataset D = {X = {x1, . . . , xN},Y = {y1, . . . , yN}},
instead of optimizing the deterministic model weights via max-
imum likelihood estimation (MLE), BNN refers to extending
standard networks with posterior inference, which learns a pos-
terior over model weights p(θ|D) such that model output f (x, θ)
is stochastic.

3.4.5. Algorithmic Complexity of BI

The BI’s algorithmic complexity is simply considered as
O(N), where N is the number of features.

3.5. Imprecise Dirichlet Model (IDM)

Walley [51] proposed IDM to derive beliefs based on objec-
tive statistical inference from multinomial data without prior
information. The inference is expressed in terms of posterior
upper and lower probabilities. A typical application is predict-
ing the color of the next marble from a bag whose contents
are initially unknown. Objective Bayesian does not satisfy this
principle because the predicted outcome is unknown, and we
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Figure 9: Derivation of the upper and lower bounds in IDM.

cannot formulate the sample space. In IDM, the inferences are
expressed as the posterior upper and lower probabilities, P(A|n)
and P(A|n), where A refers to an event and n is the number of
observations towards event A. In a multinomial sampling (i.e.,
k ≥ 2), the sample space, any event of interest can be identified
as a subset ofΩ. IDM generates the lower and upper bounds for
each value in Beta/Dirichlet PDFs (Probability Density Func-
tions).

3.5.1. Belief Formation

According to Walley [51], IDM can be defined as the set
of all Dirichlet (s, t) distribution, such that 0 < t j < 1 for
j = 1, 2, . . . , k and

∑k
j=1 t j = 1 and s is a specified positive con-

stant that does not depend on Ω. Walley suggests s ≤ 2 where s

determines how quickly the upper and lower probabilities con-
verge as the observation data accumulate. This is a prior set and
is denoted as µ0 to model the prior ignorance about chance θ.
Given θ = {θ1, θ2, . . . , θk}, which refers to the identical proba-
bility distribution of observations. The corresponding set of a
posterior distribution, denoted by µN , is composed of all Dirich-
let (N+ s, t∗) distribution (i.e., t∗ = {t∗1, t

∗
2, . . . , t

∗
j
, . . . , t∗

k
}), where

t∗
j
=

n j+s×t j

N+s
and n j is the number of observations of category ω j

in N trials.
For example, let A j be the event with outcome ω j from the

next trial. The predictive probability P(A j|n) under Dirichlet
(N + s, t∗) is equal to the posterior mean of θ. By maximizing
and minimizing t∗

j
with respect to t j (i.e., t j → 1 and t j → 0),

the posterior upper and lower probabilities of A j are given by:

P(A j|n) =
n j + s

N + s
for t j → 1; (47)
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P(A j|n) =
n j

N + s
for t j → 0. (48)

If s is the hidden observation and N is the number of revealed
observations, those values can be interpreted as the upper and
lower bound of the relative frequency of A j. For example, be-
fore making any observation, n j = N = 0, so that P(A j|n) =
s
s
= 1 and P(A j|n) = 0

s
= 0. However, the interval of an IDM

bound may be out of range under insufficient evidence (s) con-
ditions. For example, if a bag has nine red balls and one black
ball, we randomly pick a ball and obtain a black ball. Now we
have evidence r(black) = 1, which gives P(black) = 1

2+1 =
1
3 .

However, we know that the actual probability of having a black
ball is p(black) = 1

10 . So P(black) > p(black) when the number
of trials is not sufficient. This case shows that actual probability
may be outside the range of IDM under a lack of evidence [24].

3.5.2. Causes and Types of Uncertainty

In IDM, uncertainty decreases as more amount of evidence
is received. Hence, it is aligned with the concept of epistemic
uncertainty, which can be reduced by increasing the number of
observations (or evidence).

3.5.3. Uncertainty Quantification

In IDM, the uncertainty is associated with the imprecision
whose degree is captured by the difference between the poste-
rior upper and lower probabilities as:

P(A j|n) − P(A j|n) =
s

N + s
. (49)

From the above, we conclude that the imprecision does not de-
pend on event A j. That is, uncertainty due to the imprecision is
based on the number of hidden observations.

3.5.4. Applications of IDM on Machine/Deep Learning

IDM has undergone a progressive development over the
years, with its application on ML/DL evolving in complex-
ity and utility. Utkin [106] first proposed the IDMBoost al-
gorithm and demonstrated its adaptability and effectiveness in
improving classic ML algorithms, such as AdaBoost, by ad-
dressing the overfitting problem and reducing iterations. Ser-
afín et al. [107] also devised an adaptation of Credal Deci-
sion Trees (CDTs), leveraging the Non-Parametric Predictive
Inference Model (NPI-M) for imprecise probabilities. Corani
and de Campos [108] presented the TANC classifier, a tree-
augmented naïve model that employs imprecise probabilities
and models prior near-ignorance using the Extreme Imprecise
Dirichlet Model (EDM). This work illustrated how IDM could
handle missing data conservatively, providing a reliable and ef-
ficient classifier with better performance than previous TANs.
These advancements illustrate the potential of IDM for enhanc-
ing machine and deep learning applications.

3.5.5. Algorithmic Complexity of IDM

IDM calculates the posterior upper and lower probabilities of
an event. The algorithmic complexity of IDM arises primarily
from its generation of posterior distributions and the calcula-
tion of these probabilities. Considering that the IDM performs

a relatively small amount of operations (e.g., a few arithmetic
operations and comparisons), the computational complexity is
constant, often expressed as O(1). This indicates that the com-
putational cost remains constant regardless of the size of the
input data or the number of outcomes.

3.6. Fuzzy Logic

Łukasiewicz and Alfred Tarski [109] first proposed
Łukasiewicz logic, which is the most typical case of many val-
ued logic. Our discussion focuses on the real-valued semantics
of Łukasiewicz logic as the backbone of fuzzy logic. Assume α
and β are two propositional formulas with truth values v(α) = x

and v(β) = y, we adopt these semantics in the following context:

v(α ∨ β) = max{x, y}, v(α ∧ β) = min{x, y}, (50)

v(∼ α) = 1 − x,

where ∨ refers to logical disjunction, ∧ is logical conjunction,
and ∼ indicates negation.

3.6.1. Belief Formation

Fuzzy logic [110] is a kind of infinite-valued logic defined on
type 1 fuzzy sets [44]. A fuzzy logic truth value set T is a set
of linguistic truth values, which is a language generated from a
context-free grammar G:

T = L(G). (51)

For each truth value τ ∈ T , τ is defined as a fuzzy subset of a
truth-value set lτ of Łukasiewicz logic, which is given by:

τ =

∫ 1

0

µτ(v)
v
, (52)

where µlτ : [0, 1] → cτ ∈ [0, 1] and µτ : [0, 1] → [0, cτ] are
defined as the membership function of lτ and τ, respectively.
Suppose τ has a finite support set {v1, v2, . . . , vn} ⊂ [0, 1], then
we can write:

τ =
µ1

v1
+
µ2

v2
+ · · · +

µn

vn

, (53)

where µi = µτ(vi) for i ∈ [1, n] and ‘+’ stands for an union
operation. Since truth values are fuzzy subsets of truth-value
sets of Łukasiewicz logic, logic operations between them can
be similarly defined by:

µ¬τ0 = 1 − µτ0 , µτ0∨τ1 = max{µτ0 , (54)

µτ1 }, µτ0∧τ1 = min{µτ0 , µτ1 },

where τ0, τ1 ∈ T . From this, we can then derive µτ0⇒τ1 =

µ¬τ0∨τ1 = max{1−µτ0 , µτ1 } based on Kleene-Dienes implication.
Generally, a type n fuzzy set has a membership function de-

fined based on the set of fuzzy sets of type n − 1, where n ≥ 2.
Fuzzy numbers [111] can also be formulated as instances of
fuzzy sets. In other words, each fuzzy number is attached to a
membership function that defines a fuzzy set.

A decision-making process under fuzzy logic often consists
of three phases: fuzzification, inference, and defuzzification. A
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fuzzifier transforms crispy data into fuzzy sets. An inference
engine makes the logical deduction based on given fuzzy rules.
A defuzzifier transforms the fuzzy relationships into crispy re-
lationships and makes a final decision.

Zadeh [112] defined P(A) as the probability of a fuzzy event
A:

P(A) =
∫

Rn

µA(x)dP = E(µA), (55)

where A ⊆ R
n, µA : Rn → [0, 1] is the membership function of

A, and P(A) represents the belief of a fuzzy event A.
Let S be a nonempty set. A fuzzy set P in S is characterized

by a membership function: µp : S → [0, 1]. That is

µP(x) =



1, if x ∈ S

0, if x < S

(0, 1) if x is partly in S

(56)

Alternatively, a fuzzy set P in S is an object having the form

P =
{〈

x, µp(x)
〉
| x ∈ S

}
(57)

where the function: µp(x) : S → [0, 1] defines the degree of
membership of the element, x ∈ S .

The closer the membership value µp(x)to 1, the more x be-
longs to S , where grades 1 and 0 represent full membership and
full non-membership. A fuzzy set is a collection of objects with
graded membership, that is, having a degree of membership.

3.6.2. Causes and Types of Uncertainty

Uncertainty in fuzzy logic mostly comes from linguistic im-

precision or vagueness, leading to generating unpredictability,
multiple knowledge frames, and/or incomplete knowledge.

3.6.3. Uncertainty Quantification

Zadeh [112] defined two types of fuzzy sets: Type-1 fuzzy
set and Type-2 fuzzy set. In Type-1 fuzzy sets, the uncertainty
of fuzzy events introduces unpredictability and multiple knowl-
edge frames. Zadeh formulated the uncertainty of a fuzzy event
A based on the entropy of event A, HP(A), which is given by:

HP(A) = −
n∑

i=1

µA(xi)P(xi) log P(xi), (58)

where A = {x1, x2, . . . , xn}, µA is the membership function of
A, and P = {P(x1), P(x2), . . . , P(xn)}. Here, P(xi) refers to the
probability of occurring event xi.

Fuzzy logic research mainly focused on investigating uncer-
tainty measures on Type-2 fuzzy sets, which can provide a way
of accurately and effectively measuring fuzziness and uncer-
tainty characteristics of fuzzy complex systems with two mem-
bership functions [111]. Wu and Mendel [113] proposed five
novel uncertainty metrics, called centroid, cardinality, fuzziness

(entropy), variance, and skewness, to measure uncertainty in
interval Type-2 fuzzy sets. They further evaluated these met-
rics with inter-uncertainty and intra-uncertainty raised in words
paradigms [114]. Zhai and Mendel [115] extended the five met-
rics to general Type-2 fuzzy sets.

3.6.4. Applications of Fuzzy Logic on ML/DL

In general, fuzzy set theory has two types of applications.
First, it was used in the data preprocessing stage for data se-
lection and preparation, such as modeling vague data [116] and
summarizing crisp data [117] with fuzzy sets. As described in
Figure 10, the deterministic data must be fuzzified before being
processed by ML/DL module. Similarly, the fuzzy output must
be defuzzified to have a deterministic meaning. Second, the
fuzzy data analysis [118] can further process the fuzzy data.
This can be implemented by either extending the traditional
data analysis methods to fuzzy data or embedding the data to
a fuzzy space [119].

Recently, fuzzy deep neural networks (FDNNs) are con-
sidered for a system using both fuzzy logic and deep neu-
ral networks (DNNs) to deal with uncertainty or ambiguity in
data [120]. According to fuzzy data preprocessing and anal-
ysis discussed earlier, FDNNs fall into ensemble models and
integrated models. The ensemble models refer to ensembles of
DL and fuzzy logic systems with three models, including the
models with fuzzy inputs, fuzzy outputs, and parallel models.
Wang et al. [121] proposed a DL model that takes fuzzy feature
points for input for damaged fingerprint classification. Zhang
et al. [122] proposed a DL model with fuzzy granulation fea-
tures to predict time-series data. Chopade and Narvekar [6]
proposed an ensemble of fuzzy logic and DL to predict fuzzy
memberships for document summarization. Deng et al. [123]
proposed a DL architecture with DL layers and fuzzy member-
ship functions running in parallel. FDNNs have been applied in
various application domains, such as traffic control [124, 125],
surveillance and security [126, 127], text processing [128, 129],
image processing [130], and time-series prediction [131]. The
integrated models incorporated fuzzy logic as a part of DL mod-
els. In particular, Pythagorean Fuzzy Deep Boltzmann Machine
(PFDBM) [132] was developed based upon the DBM [133].
PFDBM used the Pythagorean Fuzzy Set (PFS) [134] to replace
standard real-valued parameters. El Hatri and Boumhidi [135]
developed a DL model in which a network architecture was de-
signed based on stacked-auto-encoders (SAE) where multiple
hyperparameters, such as the learning rate and the momentum,
were determined using fuzzy logic systems.

3.6.5. Algorithmic Complexity of Fuzzy Logic

Fuzzy logic is based on the support set and corresponding
membership function. Specifically, each fuzzy event is a sub-
set of the support set, and its uncertainty is the combination of
uncertainties on each element in the support set. According to
Eq. 57 the support set has the same cardinality as the fuzzy set.
Hence, the algorithmic complexity is O(|P|), where |P| is the
cardinality of the fuzzy set.

3.7. Kleene’s Three-Valued Logic (TVL)

3.7.1. Belief Formation.

Kleene [43] first proposed TVL in 1938 . Its truth table is
shown in Table 2, where p1 and p2 are two logical variables.
TVL’s belief distribution is determined by the logical values of
logical variables, i.e., b(p)q = 1 when p = q and 0 otherwise.
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Figure 10: Uncertainty-aware decision making in Fuzzy Logic.

Table 2: Truth Table of the TVL
p1 ∧ p2

p1

p2
T U F

T T U F

U U U F

F F F F

p1 ∨ p2

p1

p2
T U F

T T T T

U T U U

F T U F

The p is a logical variable and q is a logical value from {T,U, F}
where T is true, U is unknown, and F is false.

Kleene Algebras and TVL. Kleene’s TVL is a special case
of Kleene algebras. The properties of Kleene algebra, K =
(K,∨,∧,∼, F,T ), are:

• K is a bounded distributive lattice; and
• ∀a, b ∈ K, ∼ (a ∧ b) =∼ a ∨ ∼ b, ∼∼ a = a, and a ∧ ∼ a ≤

b ∨ ∼ b.

Here we apply the semantics where ∨ means logical disjunc-
tion, ∧ means logical conjunction and ∼ means negation. It can
be easily derived that Kleenes TVL, in which K = {T,U, F}, is
a Kleene algebra where T =∼ F, F =∼ T , and U =∼ U.

Rough Sets and Kleene Algebras. Kleene algebras are re-
lated to rough sets. The relationships between these two con-
cepts are as follows. Given an information system, I = (S ,A),
where S is a set of objects and A is a set of attributes a : x 7→

a(x) for any x ∈ S , we can define the set of equivalence re-
lationships, IND(I): IND(I) = {IND(A) : A ⊆ A}, where
IND(A) = {(x, y) ∈ S 2 : ∀a ∈ A, a(x) = a(y)}. Given any equiv-
alence relationship R ∈ IND(I), a rough set X ∈ (S × S )/R is
a pair (RX,RX), where RX and RX are called the R-lower and
R-upper approximation of X, respectively. More specifically,

RX =
⋃
{Y ∈ S/R : Y ⊆ X}, (59)

RX =
⋃
{Y ∈ S/R : Y ∩ X , ∅},

where S/R is the collection of equivalence classes correspond-
ing to R.

Given any set S with |S | ≥ 2, universal equivalence relation-
ship R := S × S and information system I = (S ,A), we can
induce a three-valued algebra on a collection of rough sets, RS,
with the Kleene semantics by:

RS = {(RA,RA) : A ⊆ S } = {(S , S ), (∅, S ), (∅, ∅)}. (60)

Here, if we define ∼ X := (RXc,RXc), we have (S , S ) =∼ (∅, ∅),
(∅, S ) =∼ (∅, S ), and (∅, ∅) =∼ (∅, ∅). This means K � RS. In
general, given the set of all logic functions (propositional for-
mula) denoted by F , the set of all Kleene algebras byAK , and
the collections of all rough sets over all possible information
systems byARS, the following theorem [136] is held:

∀α, β ∈ F , α ⊨AK β⇔ α ⊨ARS β. (61)

The above can be read by: For any logic functions α and β in F ,

if β is a semantic consequence of α inAK , then β is a semantic

consequence of α inARS. We summarize the uncertainty-aware
decision-making process using Kleene’s TVL in Figure 11.

3.7.2. Causes and Types of Uncertainty

Uncertainty is formalized as a logical value U (unknown)
and its relationship with two classical logical values T (true)
and F (false) are shown in Table 2. The stated uncertainty here
refers to unpredictability because of a lack of information or
knowledge. For example, in rough sets, due to unpredictable
noises, sets are represented by approximation spaces.

3.7.3. Uncertainty Quantification

Uncertainty in TVL represents an unknown or unspecified
state in the decision-making using TVL. This is related to vacu-
ity uncertainty caused by a lack of information/knowledge or
non-specificity. Since uncertainty is regarded as a logical value,
uncertainty value can be quantified through logical operations
of logical variables. In Kleene’s TVL, the three values of T , U

(uncertainty), and F are often defined by 1, 0, and -1. As seen
in Table 2, uncertainty, U, can be ignored under ∧ to decide T

or F while it can be used to support T over F.

3.7.4. Applications of TVL on Machine/Deep Learning

As being restricted by its design, TVL can only represent
qualitative uncertainties with limited granularity. Thus, TVL is
only applied in primary theoretical ML/DL research. Kashke-
vich and Krasnoproshin [137] defined a function of TVL to
solve classification problems in pattern recognition tasks. They
viewed the accepted accurate classification as T , accepted in-
correct classification as F, and refused classification as U. Dahl
[138] leveraged TVL to construct a database used for natural

19



Jo
u
rn

al
P

re
-p

ro
of

Journal Pre-proof

Input Evidence

(b) Uncertainty Generation 

Vacuity

Uncertainty State (𝑈)

Deductive  
Reasoning 

 

Make a final decision

(c) Evaluate each
logic variable 

(a) Set objectives
as propositional

formulas 

Figure 11: Decision-making using Kleene’s TVL.

language consultation. Codd [139] applied TVL in Structured
query language (SQLs), with the “Null” value behaving like
the uncertain value U in TVL. TVL is rarely observed for its
applications in recent research. Instead, as the topological gen-
eralization of TVL, rough sets are widely used in ML/DL for
powerful quantitative uncertainty representations, as described
in Section 4.3.

3.7.5. Algorithmic Complexity of TVL

TVL represents uncertainty as a logical value that can be de-
rived by logical operations. The uncertainty status of a com-
pound expression, including n simple expressions, needs n − 1
logical operations to be determined. Thus, the algorithmic com-
plexity is O(1) for each simple expression and O(n) for a com-
pound expression.

3.8. Subjective Logic (SL)

As a variant of DST, Jøsang [24] proposed a belief model,
called Subjective Logic (SL) that describes the subjectivity of
an opinion in terms of multiple belief masses and uncertainty.

3.8.1. Belief Formation

Since a binomial opinion is a special case of multinomial
opinions where the number of belief masses is two, for brevity,
we only provide the descriptions of multinomial opinions and
hyper-opinions.

Multinomial Opinions: In SL, a multinomial opinion in a
given proposition x is represented by ωX = (bX , uX , aX) where
a domain is X, a random variable X ∈ X, κ = |X| > 2 (for a
binomial opinion, κ = |X| = 2), and the additivity requirement
of ωx is given as

∑
x∈X bX(x) + uX = 1 where each parameter

refers to: (1) bX: belief mass distribution over X; (2) uX: uncer-

tainty mass representing vacuity of evidence; and (3) aX: base

rate distribution over X.
The projected probability distribution of multinomial opin-

ions is given by:

PX(x) = bX(x) + aX(x)uX , ∀x ∈ X. (62)

The probability distribution of a multinomial opinion follows
Dirichlet distribution [24].

Hyper-opinions: Hyper-opinions represent multiple choices
under a specific singleton belief x where belief mass is allowed
to be assigned to a composite value x ∈ C (X) consisting of a

set of singleton values x’s. Belief masses assigned to composite
values x ∈ C (X) can be used to estimate the vagueness of an
opinion. Hyperdomain, denoted by R(X), is the reduced pow-
erset of X which is the set of P(X) that excludes {X} and {∅}.
Hyperdomain can be defined by:

Hyperdomain : R(X) =P(X)\{{X}, {∅}}. (63)

Given X as a hyper variable in R(X), a hyper-opinion on X is
represented by ωX = (bX , uX , aX) where each element includes:
(1) bX: belief mass distribution over R(X); (2) uX: uncertainty

mass representing vacuity of evidence; and (3) aX: base rate

distribution over X, where
∑

x∈R(X) bX(x) + uX = 1.

The projected probability distribution of a hyper-opinion can
be given by:

PX(x) =
∑

xi∈R(X)

aX(x|xi)bX(xi) + aX(x)uX , (64)

aX(x|xi) =
aX(x ∩ xi)

aX(xi)
,∀x, xi ∈ R(X), (65)

where aX(x|x j) is the relative base rate and aX(xi) , 0. For the
binomial or multinomial opinions, the additivity requirement is
met (i.e.,

∑
x∈X PX(x) = 1). However, for the hyper-opinion,

the additivity requirement may not be met, but PX(x) follows
super-additivity (i.e.,

∑
x∈R(X) PX(x) ≥ 1) with a hyper-domain,

R(X).
Hyper-opinions can be represented by Dirichlet PDFs and the

hyper-Dirichlet distribution [140]. To do so, we can project a
hyper-opinion into a multinomial opinion based on [24]. The
approximation by the projection of hyper-opinions to multino-
mial opinions removes vague information in the representation
of opinions. This allows a decision-maker to see a particular
opinion without the veil of vagueness, which facilitates a more
direct and intuitive interpretation of the opinion.

3.8.2. Causes and Types of Uncertainty

SL discusses three types of uncertainties [1]: vacuity, vague-

ness, and dissonance. Vacuity uncertainty is caused by a lack
of evidence or knowledge. Vagueness uncertainty is caused by
vague observations, leading to failure in identifying a distinc-
tive singleton belief. Dissonance uncertainty is introduced due
to conflicting evidence, resulting in inconclusiveness. Vacu-
ity and dissonance can be understood as epistemic uncertainty,
which can be reduced with more evidence. Vagueness is related
to fuzziness, representing aleatoric uncertainty in its nature.
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3.8.3. Uncertainty Quantification

Uncertainty measures across all belief masses are calculated
based on the sum of uncertainty masses associated with indi-
vidual belief masses, as discussed above. They include total

vacuity (same as uX), total vagueness ( bTV
X

), and total disso-

nance (ḃDiss
X

):

uX =
∑

x∈R(X)

uF
X(x), bTV

X =
∑

x∈R(X)

bX(x), (66)

ḃDiss
X =

∑

xi∈X

bDiss
X (xi),

where uF
X

(x) refers to a focal uncertainty (vacuity per belief),
bX(x) is a belief mass supporting x, and bDiss

X
(xi) indicates dis-

sonance per singleton belief.
The uncertainty associated with each belief mass are:

1. Belief vacuity (a.k.a. focal uncertainty), uF
X

(x), is computed
by:

uF
X(x) = aX(x)uX , (67)

where x ∈ R(X) and uF
X

(x) : R(X)→ [0, 1].
2. Belief vagueness, bV

X
(x), is the vague belief mass associated

with an individual belief bX(x) where the belief has a com-
posite value, x ∈ C (X).

bV
X (x) =

∑

xi∈C (X)

xi⊈x

aX(x|xi) bX(xi) , ∀x ∈ R(X), (68)

where aX(x|xi) is found in Eq. (64). Note that this belief
vagueness can be only measured for hyper opinions (i.e.,
xi ∈ C (X)).

3. Belief dissonance, bDiss
X

(xi), estimates the difference be-
tween belief bX(xi) and other belief masses by:

bDiss
X (xi) =

bX(xi)
∑

x j∈X\xi

bX(x j)Bal(x j, xi)

∑
x j∈X\xi

bX(x j)
, (69)

where the relative mass balance between belief masses,
bX(x j) and bX(xi), is given by:

Bal(x j, xi) = 1 −
|bX(x j) − bX(xi)|

bX(x j) + bX(xi)
. (70)

In addition, Jøsang [24] proposed a technique called uncer-

tainty maximization where uncertainty refers to vacuity. Since
we discussed different types of uncertainties in SL, we will call
uncertainty maximization ‘vacuity maximization.’ In subjec-
tive opinions formulated by SL, when vacuity (i.e., uX) is 0
(i.e., complete certainty), then an opinion stops updating and
is ended with its final state. However, if the opinion’s disso-
nance is high, it leads to a situation of ‘multiple knowledge
frames,’ and a decision maker still cannot make a decision even
with zero uncertainty due to the same probabilities assessed for
given belief masses. To mitigate this effect, we can allow an
opinion to receive more information or consider other opinions

for the opinion being updated. This can be enabled by maxi-
mizing vacuity based on the minimum belief mass [24]. Given
opinion ωX = (bX , uX , aX) where PX(x) = bX(x) + aX(x)uX in
Eq. (62), the corresponding vacuity-maximized opinion is de-
noted by ω̈X = (b̈X , üX , aX) where üX and b̈X are computed by:

üX = min
i

[PX(xi)
aX(xi)

]
, b̈X(x) = PX(x) − aX(x)üX , for xi ∈ X.

(71)
A vacuity-maximized opinion is an epidemic opinion based on
the uncertain likelihood of the variable’s value in an unknown
past or future for a given proposition. Notice aX stays the same
in ω̈X , and the vacuity-maximized opinion is the same as an
epidemic opinion. Remind that the purpose of updating ωX to
ω̈X is to allow the opinion to be further updated by receiving
new evidence or being combined with other opinions, which
are possible only when uX > 0.

When one makes a decision under uncertainty using SL, we
can leverage SL’s capability to estimate multidimensional un-
certainty (i.e., vagueness, vacuity, and dissonance) to make ef-
fective decisions. As in Figure 12, after estimating multiple di-
mensions of uncertainty, one can use the vacuity maximization
technique if more evidence is needed in order to allow consid-
ering more evidence even under low vacuity, representing high
certainty due to a large volume of evidence collected. Recall
that SL-based opinion cannot be updated or is rarely updated
significantly if its vacuity is or close to zero. One can also con-
sider other opinions by using a variety of fusion operators in
SL [24], which can generate a single opinion with the updates
of corresponding belief masses and vacuity values. The gener-
ated single opinion can be also assessed based on which deci-
sion has the most utility by normalizing the opinion based on
each decision (i.e., belief mass)’s utility. Most decision-making
problems can be solved by these processes which allows us to
make a decision with minimum uncertainty and maximum util-
ity. However, if all decisions have the same uncertainty-aware
maximum utility, one can select a decision at random, which
we want to avoid.

3.8.4. Applications of SL on Machine/Deep Learning

Recently SL has been considered along with machine/deep
learning. Uncertainty reasoning to solve classification tasks has
been studied by leveraging SL to consider vacuity and disso-
nance uncertainty dimensions [5, 63]. In addition, SL-based
opinion formulation is used to infer subjective opinions along
with DL in the presence of adversarial attacks [64, 65, 66].
Further, SL-based opinions are considered along with deep re-
inforcement learning to propose uncertainty-aware decision-
making [67]. Using SL combined with DL is relatively a re-
cent move since 2018 [5, 65, 66]. As discussed in Section 4.1
SL’s belief mass is obtained from the output of the last layer
in DNNs to assist a decision-making process with a level of
estimated confidence based on uncertainty masses (e.g., vacu-
ity, dissonance, vagueness). Since then, SL has been applied
in graph neural networks to solve semi-supervised node classi-
fication [141]. [142] also combined SL with probabilistic soft
logic (PSL) to develop a hybrid approach, called CST+, to pre-
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Figure 12: Uncertainty-aware decision-making process using Subjective Logic.

dict unknown opinions. Further, SL leveraged evidential neural
networks (ENNs) to solve classification and out-of-distribution
problems where multidimensional uncertainty estimates in SL
are used to predict a class label. SL was also incorporated
into deep reinforcement learning (DRL) for achieving effective
decision-making [67] or detecting intent of fake news [143] us-
ing multidimensional uncertainty estimates where each class is
formulated as an uncertain opinion in SL.

3.8.5. Algorithmic Complexity of SL

SL has a variety of operators applicable to aggregate two
opinions. For each operator, the algorithmic complexity is O(1)
while aggregating one opinion with n opinions can be linear,
i.e., O(n).

4. Applications of Belief Theory in DL

In this section, we review several hybrid frameworks that
combine belief models and neural networks, including eviden-
tial (or subjective) neural networks, fuzzy neural networks, and
rough deep neural networks.

4.1. Evidential Neural Networks (ENNs)

Evidential neural networks (ENNs) [5] is a hybrid framework
of subjective belief models and neural networks. They are sim-
ilar to classic neural networks for classification. The main dif-
ference is that the softmax layer is replaced with an activation
function in ENNs, e.g., ReLU, to ensure non-negative output
in the range of [0,+∞], which is taken as the evidence vector
for the predicted Dirichlet distribution, or equivalently, multi-
nomial opinion.

4.1.1. Key Formulation of ENNs

Given the feature vector x of an input sample, let f (x|θ) rep-
resent the evidence vector by the network for the classifica-
tion, where θ is network parameters. Then the corresponding
Dirichlet distribution has parameters α = f (xi|θ) + 1, where
the k-th parameter αk denotes the effective number of obser-
vations of the k-th class, and the total number of classes is K.
Let p = (p1, . . . , pK)T be the probabilities of the K predefined
classes. The Dirichlet PDF (i.e., Dir(p;α)) with p as a random
vector is defined by:

Dir(p|α) =
1

B(α)

∏
k∈Y

p
(αk−1)
k

, (72)

where 1
B(α) =

Γ(
∑

k∈Y αk)∏
k∈Y Γ(αk) , αk ≥ 0, and pk , 0, if αk < 1. The

expected value of class probabilities p = (p1, . . . , pK)T is given
by:

E[pk] =
αk∑K
j=1 α j

=
ek + akW

∑K
j=1 e j +W

. (73)

The observed evidence in a Dirichlet PDF Dir(p|α) can be
mapped to a multinomial opinion (b1, · · · , bK , u) as follows:

bk =
ek

S
, u =

W

S
, for k = 1, · · · ,K, (74)

where S =
∑K

k=1 αk refers to the Dirichlet strength. Without loss
of generality, we set ak = 1/K and the non-informative prior
weight (i.e., W = K), which indicates that ak ·W = 1 for each
k ∈ {1, · · · ,K}. Therefore, the output of an ENN can be applied
to measure the subjective uncertainty about the predictive class
variable y in different types, such as vacuity and dissonance as
defined based on a multinomial opinion (See Section 3.8).
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The Bayesian framework of ENNs was proposed in [23]that
considers a prior distribution on the network parameters θ, de-
noted by P(θ). Let P(θ|D) be the posterior PDF, where D
refers to the training set. Let Cat(y|p) be the PDF of the cat-
egorical distribution about the predictive variable y, where the
class probabilities p are the parameters. We can then show
terms associated with different uncertainty, including data un-
certainty (DC), subjective uncertainty (SC), and model uncer-
tainty (MC), as follows:

P(y|x,D) =
∫ ∫

Cat(y|p)︸   ︷︷   ︸
DC

P(p|x, θ)︸    ︷︷    ︸
S C

P(θ|D)︸  ︷︷  ︸
MC

d pdθ, (75)

where P(p|x, θ) = Dir(p|α) and α = f (x, θ). In this expression,
data (aleatoric), subjective (distributional), and model (epis-
temic) uncertainty are modeled by a separate term within an in-
terpretable probabilistic framework. The data uncertainty is de-
scribed by the point-estimate categorical distribution, Cat(y|p).
The subjective (or distributional) uncertainty is described by the
distribution over predictive class variables P(p|x, θ). The model
uncertainty is described by the posterior distribution over the
parameters, given the data. The relationship between uncer-
tainties is made explicit – model uncertainty affects estimates
of subjective uncertainty, which in turn affects the estimates of
data uncertainty. This forms a hierarchical model with three
layers of uncertainty: the posterior over classes, the per-data
Dirichlet prior distribution, and the global posterior distribution
over model parameters. The uncertainty due to the mismatch
between testing and training distributions can be measured by
two methods. First, as the Dirichlet distribution P(p|x, θ) is
equivalent to a subjective multinomial opinion based on the
mapping defined in Eq. (74), we can quantify subjective uncer-
tainty types directly based on the Dirichlet distribution, such as
vacuity and dissonance, where vacuity captures elements of dis-
tributional uncertainty. Second, the distributional uncertainty
can be measured based on mutual information between the cat-
egorical label y and the class probabilities p as:

I[y,p|x,D)]︸         ︷︷         ︸
epistemic uncertainty

(76)

= H[EP(p|x;D)[Cat(y|p)]]︸                      ︷︷                      ︸
entropy

−EP(p|x;D)[H[Cat(y|p)]]︸                      ︷︷                      ︸
aleatoric uncertainty

.

We note that distributional uncertainty and vacuity negatively
correlate if the parameters θ are deterministic. The former is
maximized (and the latter is minimized) when all categorical
distributions are equiprobable, which occurs when the Dirichlet
distribution is flat.

Recent research works have proposed several methods to es-
timate model parameters θ of an ENN model based on train-
ing pairs of feature vectors and class labels, i.e., {x(i), y(i)}N

i=1.
As class labels are indirect samples of Dirichlet distributions,
traditional loss functions, such as mean squared error (MSE)
and cross-entropy (CE) functions, are ineffective for training
ENNs to predict Dirichlet distributions. In particular, MSE and
CE functions effectively train a model to predict class proba-
bilities. However, the two very different Dirichlet distributions

may have the same projected class probabilities and hence can-
not be well differentiated by MSE and CE functions. Recent
works addressed this challenge and developed a regularization
term enforcing that each predicted Dirichlet distribution should
be close to a uniform Dirichlet prior [5, 23]. Several studies
developed generative adversarial networks (GANs) to generate
synthetic out-of-distribution feature vectors (OODs) and devel-
oped regularization terms enforcing small vacuity values for
these OODs [144, 4]. Another research developed a new NN
architecture called posterior networks composed of three main
components: an encoder, which outputs a position in a latent
space, a normalizing flow, which performs a density estimation
in this latent space, and a Bayesian loss for the network train-
ing [145, 146].

4.1.2. Causes and Types of Uncertainty

Since ENNs provide a hybrid framework of subjective belief
models and neural networks, we can estimate evidential uncer-
tainty, such as vacuity (scenario uncertainty) and dissonance

(discord uncertainty), based on a subjective opinion. Recall
that vacuity is due to a lack of evidence introducing uncertainty
by incomplete knowledge. Dissonance is due to conflicting ev-
idence, resulting in multiple knowledge frames.

4.1.3. Uncertainty Quantification

ENNs estimate Dirichlet distribution parameters directly,
which can be transferred to a subjective opinion. After then,
we can estimate vacuity (u) and dissonance (diss) based on SL-
based subjective opinion where there are K classes and ek num-
ber of evidence to support each class k by:

u =
K

∑K
k=1 ek + K

, (77)

diss =

K∑

k=1

(
bk

∑
j,k b jBal(b j, bk)
∑

j,k b j

)
, (78)

Bal(b j, bk) =


1 −

|b j−bk |

b j+bk
if bib j , 0

0 if min(bi, b j) = 0,
(79)

where bk and b j refer to the belief masses supporting k class
and j class, respectively.

4.1.4. Applications of ENNs

There is a whole class of evidential neural networks with
the interpretation that evidence represents the number of nearby
training samples of various classes relative to the sample under
test. This includes the generative version from [144], posterior
networks based on density-based pseudo-counts in [145], and
Epistemic Neural networks [21] that allow a general interface
to distinguish epistemic from aleatoric uncertainty. The ENNs
have been applied on several applications in different domains,
such as justified true belief models [147, 148], active learning
on image data [149], misclassification and out-of-distribution
detection on graph data [7, 4], event early detection on time
series data [3], and self-training on NLP task [150].
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4.2. Fuzzy Deep Neural Networks (FDNNs)

Fuzzy deep neural networks (FDNNs) are a hybrid frame-
work of fuzzy logic systems and deep neural networks [120].
FDNNs are designed to address the drawback that deep neu-
ral networks are sensitive to the uncertainties and the ambigu-
ities of real-world data. Multiple approaches are developed to
implement an FDNN. Some models, such as Fuzzy Restricted
Boltzmann Machines (FRBMs) [126], consider the concept of
fuzzy numbers to represent network weights. Some models use
fuzzy logic units to replace perceptrons in the network [151].
Fuzzy systems are also used to train the network parameters of a
deep neural network [135]. In this section, we use Pythagorean
Fuzzy Deep Boltzmann Machines (PFDBMs) [127], a recent
extension of FRBMs, to demonstrate how fuzzy logic can be
integrated as a part of deep neural networks, such as deep Boltz-
mann machines.

4.2.1. Key Formulation of PFRBMs

We will first introduce the building blocks, including deep
Boltzmann machines and Pythagorean fuzzy set, and then in-
troduce the architecture design of PFRBMs. A deep Boltzmann
machine (DBM) is an extension of the restricted Boltzmann
machine [152] and considers multiple hidden layers to capture
more complex correlations of the activities of the preceding lay-
ers [153]. Considering a L hidden layers DBM whose set of lay-
ers is {x,h1, . . . , hL} where x is a set of visible units x ∈ {0, 1}D,
and hl is l-th hidden layer with a set of hidden units hl ∈ {0, 1}Pl .
DBM is an energy-based probabilistic model which defines a
joint probability distribution over x as

P(x; θ) =
1

Z(θ)

∑

h1

· · ·
∑

hL

e−E(x,h1,...,hL,θ) (80)

where θ = [W1, . . . ,WL] is a vector of the parameters, and
E(x,h1, . . . , hL; θ) is the energy function [154] n defined as

E(x,h1, . . . , hL; θ) = −xT W1h1 −

L∑

l=2

hT
l−1Wlhl, (81)

and Z(θ) is the partition function defined as

Z(θ) =
∑

x

∑

h1

· · ·
∑

hL

e−E(x,h1,...,hL,θ) (82)

DBM aims to maximize the joint probability P(x; θ), which has
the same effect as minimizing energy function E(·).

Pythagorean fuzzy sets (PFS) are an extension of the ba-
sic fuzzy sets in two perspectives. First, it introduces a non-
membership degree besides the standard membership degree.
Second, it considers the restriction that the sum of the squares
of the membership degree is between 0 and 1. PFS is defined
by the mathematical object:

P =
{
〈x, µp(x), vp(x)〉 | x ∈ S

}
, (83)

where µp(x) : S → [0, 1] is the membership degree (how much
degree of x ∈ S ) of element x to S in P, and νp(x) : S → [0, 1]

is the non-membership degree (how much degree of x < S ) as
well. In addition, we have µ2

p(x) + ν2p(x) ≤ 1, and the hesitant
degree, neither membership nor non-membership degree may
consider as uncertainty degree. The hesitation degree (uncer-
tainty degree) is the function that expresses a lack of knowledge
of whether x ∈ S or x < S . It can be calculated by:

πp(x) =
√

1 − µ2
p(x) − v2

p(x). (84)

Moreover, to simplify it, P(µp(x), νp(x)) is called a Pythagorean
fuzzy number (PFN) denoted β = P(µβ, νβ), where µβ, νβ ∈
[0, 1] and µ2

β
+ ν2
β
≤ 1. We can use two metrics to rank a PFN:

h(β) = µ2
β + v2

β, s(β) = µ2
β − v2

β, (85)

where h(β) is the accuracy function of β and s(β) is the score
function of β. The ranking of two PFNs, β1 = P(µβ1 , νβ1 ) and
β2 = P(µβ2 , νβ2 ), is performed by: (1) If s (β1) < s (β2), then
β1 < β2; and (2) If s (β1) = s (β2), then (a) if h (β1) < h (β2),
then β1 < β2; and (b) if h (β1) = h (β2), then β1 = β2.

The Pythagorean Fuzzy Restricted Boltzmann Machine
(PFRBM) extends the DBM model by replacing the standard
real-valued parameters with PFNs. PFRBM can handle fuzzy
and/or incomplete data and the fuzzy parameters provide a bet-
ter representation of the data using fuzzy probability. Figure 13
describes the framework of a PFRBM with L layers, denoted
as h1, . . . , hL. Let θ̃ = [W̃1, . . . , W̃L] be the fuzzy parameters
and x = (x1, · · · , xD) be the input feature vector. The energy
function and probability function of a PFRBM is shown by:

Ẽ
(
x,h1, . . . , hL; θ̃

)
= −xT W̃1h1 −

L∑

l=2

hT
l−1W̃lhl, (86)

P̃(x; θ̄) =
1

Z̃ (̃θ)

∑

h1

· · ·
∑

hL

e−Ẽ
(
x,h1,...,hL ,̃θ

)
. (87)

Therefore, we consider the log-likelihood as the objective func-
tion,

max
θ̃
L̃(̃θ,D) =

∑

x∈D

log(P̃(x, θ̃)). (88)

As fuzzy optimization problems are intractable, the PFDBM is
trained using a combination of gradient descent and metaheuris-
tic techniques.

4.2.2. Causes and Types of Uncertainty

PFDBMs provide a hybrid framework of fuzzy sets and
DNNs where uncertainty comes from a fuzzy set due to fuzzy
and/or incomplete data, leading to unpredictability. The fuzzi-
ness has its root nature in aleatoric uncertainty.

4.2.3. Uncertainty Quantification

Unlike traditional DNNs, PFDBMs with fuzzy parameters
can better represent data using a fuzzy probability to represent
uncertainty. The fuzzy parameters can learn new features and
investigate how much a certain (or uncertain) feature influences
the output.
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Figure 13: Pythagorean Fuzzy Deep Belief Network (PFDBN).

4.2.4. Applications of FDNNs

PFDBMs were proposed to develop an airline passenger pro-
filing [127] and provide an early warning system for industrial
accidents [132]. Besides PFDBMs, Park et al. [151] developed
intra- and inter-fraction FDNNs to track lung-cancer tumor mo-
tion. Similar to [135], fuzzy logic was employed to train the
learning parameters in FDNNs for traffic incident detection. In
addition, some models consider fuzzy logic and deep learning
in a sequential or parallel fashion. Wang et al. [121] proposed a
model that uses a deep neural network with fuzzy feature points
for damaged fingerprint classification. Zhang et al. [122] pro-
posed a model utilizing fuzzy granulation and deep belief net-
work for predicting time-series data.

4.3. Rough Deep Neural Networks (RDNNs)

Rough neural networks (RNNs) have been studied for a
decade by combining a rough set or rough neuron with DNNs
to process the uncertainties and high-dimensional data [155].
The methods fall into two main categories: rough neural-based
and rough set-based.

Rough set theory is first introduced in [156, 157] to deal with
the problems of inexact, uncertain, or vague knowledge. An in-
formation system is defined by the four-tuple S =< U, A,V, f >

where U is a finite nonempty set called the universe of primi-
tive objects and A is a finite nonempty set of attributes. Each
attribute a ∈ A is associated with a domain set Va and V =⋃

a∈A Va. The mapping f : U × A → V is an information func-
tion. Assume S is an information system and M ⊆ A. Two ob-
jects x, y ∈ U are indiscernible from each other by the set of at-
tributes M in S if and only if for every a ∈ M, f (x, a) = f (y, a).
Therefore, every M ⊆ A has a the indiscernibility relation.
Rough set theory defines two approximations for any concept
set X ⊆ U and attribute set M ⊆ A. Using the knowledge of
M, X can be approximated by the M-lower approximation MX

and M-upper approximation MX:

MX = {x|[x]M ⊆ X}

MX = {x|[x]M ∩ X , ∅}, (89)

where [x]M is the equivalence classes of the M-indiscernibility
relation. The M-boundary region of set X is defined by

BNDM(X) = MX − MX (90)

where MX is the set of all objects in U, which can be certainly
classified as members of X with respect to the set of attributes
M. MX is the set of objects in U, which can possibly be clas-
sified as members of X with respect to the set of attributes M.
The boundary region is the set of objects that cannot certainly
be classified to X only by employing the set of attributes M.
BNDM(X) describes the vagueness of X. If BNDM(X) = ∅,
then X is crisp (exact) with respect to M and if BNDM(X) , ∅,
then X is called a rough (inexact) set.

4.4. Regression Evidential Neural Networks (RENNs)

In Section 4, we have discussed Evidential Neural Networks
(ENNs) model for classification tasks. Next, we discuss the
uncertainty quantification for regression tasks when consider-
ing ENNs. Some metrics used in classification cannot apply
to regression, such as vacuity and dissonance from Subjective
Logic [7, 158]. For regression tasks, we can directly get uncer-
tainty information from the Gaussian process [159]. Like clas-
sification, epistemic and aleatoric uncertainties can be applied
to regression tasks. Epistemic uncertainty can be calculated by
the variance from dropout inference [160], or estimated via an
ensemble way [161]. More specifically, Eq. (91) gives an ap-
proximation formulation when we use dropout sampling or en-
semble.

Var(y) ≈
1
T

T∑

t=1

f(x; θt)
T f(x; θt) (xt) − E(y)T E(y), θt ∼ q(θ),

(91)
where q(θ) is the approximated posterior and E(y) ≈
1
T

∑T
t=1 f(x; θt) is the predictive mean. For aleatoric uncertainty,

Kendall and Gal [162] considered Gaussian likelihood as the
objective function,

LNN(θ) =
1
N

N∑

i=1

1

2σ (xi; θ)
2
‖yi − f (xi; θ)‖

2 +
1
2

logσ (xi; θ)
2

(92)
where σ (xi; θ) is heteroscedastic (data-dependent) aleatoric un-
certainty for each training sample and can be learned from a
neural network. In addition, Kendall et al. [163] considered
homoscedastic aleatoric uncertainty in a multi-task objective,
which is considered as Gaussian likelihood for the two tasks
respectively, Eq. (4.4) shows a two-task objective,

− log p (y1, y2 | f(xl; θ)) ∝ (93)

1

2σ2
1

‖y1 − f(x; θ)‖2 +
1

2σ2
2

‖y2 − f(x; θ)‖2 + logσ1σ2,

where σ1 and σ2 are the Homoscedastic (task-dependent)
aleatoric uncertainty corresponding to each task.

To address the limitation of prior network [23], Malinin
et al. [164] proposed a regression prior network that con-
siders Normal-Wishart distribution as the prior to estimating
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Figure 14: Rough neuron with six tunable parameters

knowledge uncertainty (distributional uncertainty) for regres-
sion tasks. Normal-Wishart distribution is similar to the Dirich-
let distribution, which is the conjugate prior to the categorical
distribution (used in classification task on Prior Networks [23]).
The Normal-Wishart distribution is defined by:

NW(µ,Λ | m, L, κ, ν) = N(µ | m, κΛ)W(Λ | L, ν), (94)

where m and L are the prior mean and inverse of the positive-
definite prior scatter matrix, while κ and ν are the strengths of
belief in each prior, respectively. The parameters κ and ν are
conceptually similar to the precision of the Dirichlet distribu-
tion. Usually, we use a neural network to estimate the parame-
ters of the Normal-Wishart,

p(µ,Λ | x, θ) = NW(µ,Λ | m, L, κ, ν),

{m, L, κ, ν} = Ω = f (x; θ), (95)

whereΩ = {m, L, κ, ν} is the parameters of the Normal-Wishart
predicted by a neural network. Then we obtain the posterior
predictive,

p(y | x, θ) = Ep(µ,Λ|x,θ)[p(y | µ,Λ)] (96)

= T

(
y | m,

κ + 1
κ(ν − K + 1)

L−1, ν − K + 1

)
.

And similar to the distribution uncertainty, we calculate the
knowledge uncertainty based on mutual information,

I[y, {µ,Λ}]︸        ︷︷        ︸
Knowledge Uncertainty

= H
[
Ep(µ,Λ|x,θ)[p(y | µ,Λ)]

]
︸                           ︷︷                           ︸

Total Uncertainty

(97)

−Ep(µ,Λ|x,θ)[H[p(y | µ,Λ)]]︸                           ︷︷                           ︸
Expected Data Uncertainty

Similar to [164], [165] accomplished uncertainty quantifica-
tion in the regression model by placing evidential priors (Nor-
mal Inverse-Gamma distribution) over the original Gaussian
likelihood function and training the neural network to infer the
hyperparameters of the evidential distribution. Furthermore,
Russell and Reale [166] modeled multivariate uncertainty for
regression problems with neural networks, incorporated both
aleatoric and epistemic sources of heteroscedastic uncertainty
by training a deep uncertainty covariance matrix model directly
using a multivariate Gaussian density loss function, or indi-
rectly using end-to-end training through a Kalman filter.

4.4.1. Key Formulation of RDNNs

The rough neural-based method considers a rough neuron in
DNNs to improve the robustness of learning. For a traditional

neural network, if the input feature is represented by a range,
such as the temperature of climate (e.g., daily maximum and
minimum temperature), the neural network cannot learn a good
representation, and the prediction error will be relatively large.
The neural network based on a rough neuron can address this
issue.

Figure 14 shows how the rough neuron is applied for rough
pattern recognition. This neuron consists of an upper bound
neuron with parameters θU = {WU , bU , α}, and a lower bound
neuron with parameters θL = {WL, bL, β}. Here WU and bU are
the weight and bias of the upper bound, respectively, while WL

and bL are those for the lower bound neuron, respectively. Out-
put coefficients, 0 ≤ α and β ≤ 1, determine the contribution of
upper bound output OU and lower bound output OL to the over-
all neuron’s output O. A rough extension of auto-encode, called
rough auto-encoder (RAE), uses rough neurons in its hidden
layer and output layer. Here Wk

U
, bk

U
, and αk are the upper

bound parameters of layer k and Wk
L
, bk

L
, and βk are the lower

bound parameters of layer k, respectively.
Given the RAE defined with input vector h0 = X, the up-

per bound and lower bound outputs of the first hidden layer
are shown where W1

U
and W1

L
are the learned parameters and

f 1W1
L
X + b1

L
can be larger than f 1W1

U
X + b1

U
. The h1

U
(X) and

h1
L
(X) are defined by:

h1
U(X) = max

[
f 1

(
W1

U X + b1
U

)
, f 1

(
W1

LX + b1
L

) ]
,

h1
L(X) = min

[
f 1

(
W1

U X + b1
U

)
, f 1

(
W1

LX + b1
L

) ]
,

(98)

where f 1 is a sigmoid function. The latent representation in the
hidden layer is computed by:

h1 = α1h1
U + β

1h1
L. (99)

For the rough decoding process in the output layer, the upper
bound and lower bound outputs are computed as:

h2
U = max

[
f 2

(
W2

Uh1 + b2
U

)
, f 2

(
W2

Lh1 + b2
L

) ]
,

h2
L = min

[
f 2

(
W2

Uh1 + b2
U

)
, f 2

(
W2

Lh1 + b2
L

) ]
,

(100)

where f 2 is considered to be a linear function. Therefore, we
have the reconstructed input,

r = α2h2
U + β

2h2
L. (101)

4.4.2. Causes and Types of Uncertainty

In RDNNs, uncertainty is considered in a rough set introduc-
ing unpredictability and rough neuron introducing incomplete
knowledge. Hence, the rough set and neuron can capture vague-
ness from model input and parameter uncertainty from model
parameters.

4.4.3. Uncertainty Quantification

The uncertainty in RDNNs can be estimated based on the
rough set theorem introduced in Section 3.7. The rough set the-
orem approximates an M-boundary region, which contains a set
of objects that cannot be clearly classified by only employing
the set of attributes and representing vagueness.
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4.4.4. Applications of RDNNs

Most RDNNs are proposed to reduce uncertainty. Zhang and
Wang [167] applied the fuzzy-rough neural network in vowel
recognition. Khodayar et al. [168] proposed a rough extension
of stacked denoising autoencoder (SDAE) for ultrashort-term
and short-term wind speed forecasting, incorporating a rough
neural network into wind uncertainties. Sinusoidal Rough-
Neural Network (SR-NN) [169] is proposed to predict wind
speed by using rough neurons to handle the high intermittent
behavior of wind speed.

In Appendix A, Table A.1 summarizes the notations and
their meanings used in each theory. Table A.2 summarizes the
key components of belief models and ML/DL models to com-
pare their features. Table A.3 summarizes the advantages and
disadvantages of each theory discussed in this work.

5. Summary of the Key Findings

We summarize the key findings from our survey by answer-
ing the key research questions below:

RQ1. What are the key causes and types of uncertainty stud-

ied in belief theory and deep learning?

Answer: The majority of belief models, such as DST, TBM,
IDM, SL, TVL, and Bayesian inference, consider uncertainty
caused by a lack of evidence, which is called vacuity in SL. It
is related to aleatoric uncertainty where a long-term probabil-
ity can increase as more evidence is received. The second most
common uncertainty type considered in belief models, such as
DSmT, SL, or Fuzzy Logic, is discord (or dissonance), caused
by disagreement or conflicting evidence from multiple sources
or observers, which generates multiple knowledge frames and
results in inconclusiveness in decision making. Lastly, unpre-
dictability is introduced by unclearness or impreciseness of ob-
servations or beliefs, which are considered as fuzziness in TVL,
vagueness in SL, and imprecise beliefs in DSmT. In DL, two
types of uncertainty natures are mainly considered: epistemic
uncertainty and aleatoric uncertainty. Epistemic uncertainty,
also called ‘model or systematic uncertainty,’ represents the
model (parameters) uncertainty due to the limited training data.
Aleatoric uncertainty indicates data uncertainty introduced by
the nature of randomness in data.

RQ2. What are the key differences between belief theory and

deep learning about uncertainty reasoning and quantifica-

tion?

Answer: We demonstrated the ontology of uncertainty in Fig-
ure 2. The source of uncertainty can be from machines, net-
works, environmental factors, and humans that can generate a
lot of various types of uncertain data. Uncertainty has a model
of reasoning and quantifying various types of uncertainties to
make effective decision-making. We limited the models to be-
lief theory and DL. Uncertainty has procedures to collect ev-
idence, including both subjective and objective data or infor-
mation. Uncertainty has multiple types including ambiguity
and fuzziness which also have been studied under different tax-
onomies (see Figure 1), such as vagueness, imprecision, un-
clearness, and so forth. Uncertainty has its root nature in the

most popularly used two types of uncertainty: aleatoric and
epistemic uncertainty.

RQ3. How has each belief model considered and measured

uncertainty?

Answer: DST’s combination rule helps the decision by com-
bining beliefs from multiple information channels. Imprecise
Dirichlet Model (IDM) provides a belief range, rather than a
single value, allowing a decision-maker to be aware of the mag-
nitude of uncertainty. In DSmT, Shannon’s entropy and the
Probabilistic Information Content (PIC) score are used to indi-
cate uncertainty caused by a lack of evidence where a decision
is made based on Generalized pignistic transformation (GPT)
and Dezert-Smarandache Theory (DSmT). Bayesian inference
theory uses a variance or co-variance to measure uncertainty
representing unpredictability. In SL, one can use a projected
belief that interprets uncertainty (i.e., vacuity) based on its prior
belief (i.e., base rate). If there is very low vacuity but high dis-
sonance, one can maximize vacuity by offsetting the amount
of the smallest belief mass while increasing vacuity to have a
high effect on new evidence. TVL uses an unknown status to
model system uncertainty and defines a set of logical opera-
tions to decide the system status for decision-making in system
operations. Fuzzy Logic uses fuzzy entropy to quantify the un-
predictability and multiple knowledge frames of fuzzy events.

RQ4. How has each belief model been applied in deep learn-

ing and vice-versa for effective decision-making under uncer-

tainty?

Answer: TVL is used to solve classification problems in
pattern recognition tasks [137] and leveraged to establish a
database for natural language consultation [138] in 1970s. We
rarely found any recent work using TVL in ML/DL applica-
tions. DST is mainly used to fuse data from multi-sensors
before conducting neural network training, or fuse predic-
tions from two identically trained models [84, 85, 86]. To
our knowledge, TBM is also used to solve classification prob-
lems but is not used with ML/DL. DSmT is used along with
ML/DL to solve classification problems where it is integrated
with SVM, CNN, LSTM, and RF [93, 94]. IDM is used to
improve ML algorithms, such as AdaBoost [106], Decision
Tree [107], or näive classifier [108]. Fuzzy Logic is com-
bined with DNNs, named fuzzy DNNs, to deal with ambi-
guity in data [120, 133, 135, 121, 122]. Bayesian inference
is mainly used to infer the posterior distribution of Bayesian
features [102, 103, 104]. SL’s vacuity and dissonance un-
certainty dimensions are considered in evidential neural net-
works for uncertainty-aware decision-making in classification
problems [5, 63]. Vacuity is used to detect out-of-distribution
(OOD) samples while dissonance is used to detect misclassi-
fication samples. Rough set theory is combined with DNNs,
named RDNNs, to deal with imprecise information and uncer-
tainty in data (e.g., ranges as values for input and/or output vari-
ables) [170, 171, 155, 168].

RQ5. What are the key differences between belief theory and

deep learning about uncertainty reasoning and quantifica-

tion?

27



Jo
u
rn

al
P

re
-p

ro
of

Journal Pre-proof

Answer: Deep learning (DL) has received high attention be-
cause of its powerful capability to deal with a large volume of
high dimensional data and provide solutions to maximize deci-
sion performance. However, as DL is limited in dealing with
uncertainty explicitly, it often faces the issue of unexplainabil-
ity, a well-known issue of explainable AI (XAI), due to its na-
ture of statistical inference. On the other hand, belief models
provide rigorous mathematical formulation based on a limited
number of parameters which can offer the capability to easily
reason and quantify different types of uncertainties. This merit
of quantifiable uncertainty in belief models can provide rea-
sons to explain a decision made based on mathematical induc-
tion. However, belief models suffer from dealing with a large
volume of data, which can be complemented by DL. There-
fore, our work discussed how a belief model (e.g., SL) has been
bridged with DL to improve decision-making capability based
on the merits of both approaches to achieve XAI.

RQ6. How can belief model(s) be applied in DL to solve com-

plicated decision-making problems?

Answer: There may be various ways to leverage belief models
considered in DL research. One example we discussed in Sec-
tion 4 is combining SL’s opinions with DNNs by constructing
evidential NNs (ENNs). That is, ENNs can be built to generate
evidence to formulate a subjective opinion in SL, rather than
using a common activation function, such as softmax, gener-
ating class probabilities. Based on the estimated evidence in
ENNs, we can calculate vacuity and dissonance uncertainty by
leveraging the operators in SL. Depending on the degree of the
quantified uncertainty values, such as vacuity, vagueness, or
dissonance, diverse algorithms can be developed for effective
decision-making. Based on our prior work [63], we found vacu-
ity is a promising uncertainty type to detect out-of-distribution
(OOD) samples while dissonance is an uncertainty type that can
effectively detect misclassification samples.

6. Concluding Remarks

6.1. Insights, Lessons Learned, and Limitations

• Recent efforts have been made to estimate different types of
uncertainty in our prior work [1] while vacuity and vague-
ness have been mainly considered in the past [45, 24, 44].
However, reasoning and quantification of other dimensions
of uncertainty still remain unaddressed in the literature. Fur-
thermore, the question of how different types of uncertainty
can be helpful for effective decision-making has not been ad-
dressed in the literature.
• When both the belief masses and a prior belief supporting

each belief are the same, decision-making becomes more
challenging because it leads to inconclusiveness. Although
utility-based belief masses have been studied [172, 24], their
contributions are limited to theoretical discussions based on
simple examples.
• Most belief/evidence theories and their uncertainty reason-

ing show high maturity as they have been explored since the
1960s. However, they are mostly theoretical and have not

been thoroughly validated based on real datasets and/or ap-
plications for effective decision-making and learning.
• Bayesian theorem and inference methods are the founda-

tions of advanced machine learning and deep learning algo-
rithms. However, the fitting of Bayesian inference from a
one-parameter model to a deep learning model with a large
volume of parameters can introduce non-trivial challenges in
quantifying uncertainties.
• Although belief models have considered various types of un-

certainties, as described in Figure 1, the terminologies of
those types are often found very similar but their distinctions
have not been clarified. Although our survey paper can help
readers better understand the diverse types of uncertainties,
one may want to argue about our clarification of uncertainty
types in Section 2. Much more effort should be made to in-
vestigate different types of uncertainties and their effect on
diverse decision-making settings and applications.
• Some efforts leveraging both a belief theory and deep learn-

ing have been made, such as fuzzy deep neural networks
(FDNNs) combining fuzzy logic and DNNs [120], rough
deep neural networks (RDNNs) combining rough logic and
DNNs [155], and evidential neural networks (ENNs) com-
bining SL and DNNs [7]. However, although belief theories
have been explored for several decades and their uncertainty
research has matured more than any other field, their applica-
tions in reasoning and quantifying uncertainty in DL are still
in an infant stage.
• Although we can detect misclassification and out-of-

distribution to evaluate the accuracy of predictive uncertainty
measured in a DL model, the metrics of predictive uncer-
tainty have not been validated due to the challenges of de-
termining the ground truth of measured uncertainty. To have
more valid metrics of predictive uncertainty, we need to de-
velop a way to evaluate the data generation process by con-
sidering the causes of uncertainty (e.g., how to generate data
with vagueness).
• Uncertainty can be easily introduced by intelligent adver-

sarial attacks performing deceptive poisonous or evasion at-
tacks. Detecting such adversarial attacks with the intent to in-
crease various types of uncertainty should first reduce noises
or false information, increasing uncertainty before estimating
uncertainty in data for effective decision-making.

6.2. Future Research Directions

• Uncertainty quantification research can be explored more for
the studies using qualitative labels. Since belief theories,
such as DST, DSmT, or TBM, can provide the capability
to fuse qualitative beliefs, their applications in Natural Lan-
guage Processing (NLP) [173] are promising. Other conven-
tional NLP methods can be compared to DSmT in handling
uncertainty for the qualitative beliefs and its effect on appli-
cation performance.
• Belief models can be incorporated into deep learning mod-

els, such as ENNs, FDNNs, and RDNNs. However, soft-
ware platforms lack accelerating such models compared to
traditional deep learning processes. Furthermore, the current
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design of such models is mainly limited to particular applica-
tions, which lacks the generalizability of the models to other
applications. Therefore, developing a generic model based
on a balance between simplicity and technical solidity is crit-
ical for efficient and effective validation.
• Each belief theory provides a way of estimating different un-

certainty types. Hence, when one combines a belief model
with a deep learning technique, we can investigate how such
different uncertainty quantification methods can introduce
different impacts on decision-making performance. For in-
stance, we can propose a novel hybrid framework combin-
ing hyper-opinions in SL and deep neural networks to handle
vague labels in training data and accurately measure their as-
sociated vagueness in vague labels.
• Existing ENN models are difficult to accurately estimate

Dirichlet distribution parameters (or evidence) due to the lack
of ground truth evidence. Therefore, it is critical to develop
a method that can improve the accuracy of the Dirichlet dis-
tribution parameters estimation. In addition, most existing
ENN models have been applied to classification and regres-
sion tasks. We can extend the ENN models to solve other
complex tasks, such as time series tasks, sequence data, and
multi-label classification.
• We can reduce the complexity of DSmT fusion algorithms

by limiting the number of combining sources or ignoring
several events in the hyper-power domain. Since the hyper-
power domain becomes large with sparse distribution of be-
lief masses, we need to improve the efficiency of DSmT.
• When diverse uncertainty reasoning and quantification in be-

lief models are combined with deep learning, we can inves-
tigate how the different ways of measuring uncertainty can
impact decision-making performance.
• IDM offers the ability to derive a belief without prior knowl-

edge about a given proposition. In settings that do not allow
any prior knowledge or information about the proposition,
IDM can allow one to make decisions under uncertainty. In
addition, incorporating IDM’s probability range into a NN
will produce more randomness in results. Particularly when
data is insufficient at the beginning of training, introducing
the probability range gives a better explorability in reaching
optimal solutions.
• To solve sequential decision-making problems, belief mod-

els can be combined with deep reinforcement learning. In
particular, as IDM does not require having prior knowledge
in the decision-making process, it can be easily used for an
RL agent to make decisions in the environment with no prior
knowledge and to learn an optimal action via trial and error.
• Although many different types of uncertainty have been dis-

cussed in belief models, we can capture three main uncer-
tainty types: vacuity caused by a lack of evidence, vagueness
(or fuzziness) by failing to capture a singleton belief, and
discord (or dissonance) by conflicting evidence. This can be
further examined to propose a unified mathematical belief
framework to quantify various uncertainty types and belief
masses for its broader applicability.
• Most uncertainty measurement approaches are designed for

singleton prediction, such as an image or node classifications.

However, they may be unable to extend for time series appli-
cation because they ignore temporal dependencies in uncer-
tainty quantification. It is critical to develop novel uncer-
tainty metrics considering the temporal dependencies of time
series data.
• Most uncertainty estimation research focuses on unstructured

tasks, such as classification and regression tasks. Meanwhile,
for the structured prediction tasks, such as language mod-
eling (e.g., machine translation and named entity recogni-
tion), we can further investigate a general, unsupervised, in-
terpretable uncertainty framework.
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Appendix A. Notations

The notations and their meanings used in each uncertainty
reasoning and quantification theory are summarized in Ta-
ble A.1. Table A.2 compares belief and ML/DL models in their
uncertainty consideration and applications in various domains.

29



Jo
u
rn

al
P

re
-p

ro
of

Journal Pre-proof

Table A.1: Notations and TheirMeanings

Notation Meaning

TVL

K Kleene algebra
K3 Kleenes three-valued logic
I Information system

IND The set of equivalence relationships
X = (RX,RX) Rough set

F The set of all logic functions
AK The set of all Kleene algebras
ARS The collections of all rough sets over all possible information systems

DST

Θ A set of all propositions (also known as the frame of discernment (FOD))
P(Θ) A power set (also known as the powerset of FOD)

A Focal element in P(Θ)
m Belief mass (also known as evidence)

Bel(A) Belief of A

pl(A) Plausibility of A (i.e., 1 − Dis(A))
Dis(A) Disbelief of A (i.e., 1 − pl(A))
IOU Interval of Uncertainty

UT (A) Total uncertainty in DST
TBM (inherits all notations from DST)

mB(A) Belief mass supporting propositions A when the conditional evidence supports
proposition B

B A set not support B
BetP Probability transformed through the pignistic probability function for decision

making
X Boolean algebra of the subset of Ω

DSmT (inherits all notations from DST)
DΘ Hyper-power set of frame Θ
GΘ Any set including power set, hyper-power set, and super-power set

qm(θ) Qualitative beliefs of evidence θ
mI(A) Imprecise beliefs of evidence A

EH Normalized Shannon’s entropy
PIC Probabilistic information content score
GPT Generalized pignistic transformation

DS mPϵ Probability transformation with a subjective probability measure ϵ
M0(Θ) DST model, the most restricted DSm model
M f (Θ) Free DSm model, without constraints on the elements
M(Θ) Hybrid DSm models

L Set of labels for qualitative beliefs
It Total ignorance, as the union of all hypotheses elements

IDM

Ω = [ω1, . . . , ωk] Set of worlds (truth) / Sample space / Exhaustive set of all possible outcomes
P(A|n) & P(A|n) Upper and lower posterior probabilities from IDM, where n is the number of

observations towards event A

A An observed event
N Total number of observations for all events
s Positive constant used in IDM
θ Probability distribution of the observations
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Table A.1: Notations and TheirMeanings (cont’d)

Notation Meaning

Bayesian Inference

p(θ) Prior distribution of the population characteristics θ
Y Sample space

p(y|θ) The belief that y is the dataset if θ is true
p(θ|y) Posterior distribution based on the observed dataset y

Θ Parameter space for the set of all possible parameter values
VarBin,VarPoiss,VarMC Variance of Binomial, Poisson, and Monte Carlo approximation models

τ2
n Posterior variance in normal model

1/τ2
n Posterior inverse variance or posterior precision

Y Dependent variables
X Independent variables

dbinom(y, n, θ) Binomial distribution
dpois(y, θ) Poisson distribution
θ Mean θ from S number of samples

Fuzzy Logic

T The fuzzy logic truth value set
lτ Łukasiewicz logic
τ Fuzzy set

P(A) The probability of a fuzzy event A

HP(A) The entropy of a fuzzy event A

Subjective Logic

x A proposition
bX Belief mass distribution over X
X A domain or a set of propositions where x ∈ X or A hypervariable in R(X)
uX Uncertainty (vacuity) mass
aX Base rate (or prior belief) distribution over X

PX(x) Projected probability of belief x

uF
X(x) Focal uncertainty

bDiss
X

(xi) Dissonance per singleton belief
bTV

X
Total vagueness

ḃDiss
X

Total dissonance
R(X) Hyper domain

pH
X Hyper-probability distribution
αX Strength vector over κ number of x’s where x ∈ R(X)

DirH
X (pH

X ;αX(x)) Dirichlet hyper-PDF
Evidential Deep Neural Networks

Dir(·) Probability density function of Dirichlet distribution
Cat(·) Probability density function of Categorical distribution
α Parameter of Dirichlet distribution
p Class probability
e Evidence in subjective opinion
b Belief mass in subjective opinion
u Uncertainty mass in subjective opinion, i.e., vacuity

diss Dissonance uncertainty
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Table A.1: Notations and TheirMeanings (cont’d)

Notation Meaning

Fuzzy Deep Neural Networks

x A set of visible units x ∈ {0, 1}D

h A set of hidden units h ∈ {0, 1}H

P(x; θ) Joint probability of x

P Pythagorean fuzzy set (PFS)
µp(x) Membership function of x

νp(x) Non-membership function of x

πp(x) Hesitant function of x

β β = P(µβ, νβ) is Pythagorean fuzzy number (PFN)
h(β) Accuracy function of β
s(β) Score function of β

Rough Deep Neural Networks

θU Parameters of upper bound neuron
θL Parameters of lower bound neuron

WU Weight of the upper bound neuron
WL Weight of the lower bound neuron
bU Bias of the upper bound neuron
bL Bias of the lower bound neuron
α Coefficient of the upper bound output
β Coefficient of the lower bound output
f 1 Sigmoid function
f 2 Linear function
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Table A.2: Comparison of Belief andML/DL Models In Their Uncertainty Consideration and Applications.

Model Uncertainty
type(s)

Uncertainty cause(s) Uncertainty metric(s) Application domain(s) ML/DL techniques Algorithmic
complexity

Kleene’s
Three-Valued
Logic (TVL)

Unpredictability Lack of information or
knowledge

Unknown or unspecified
state

Pattern recognition [137],
natural language

consultation [138],
SQLs [139]

Rough DNNs [155] O(1)

Dempster Shafer
Theory (DST)

Epistemic
uncertainty

Lack of evidence Plausibility - Belief Classification
tasks [84, 85, 83],

intrusion detection [86],
fault diagnosis [87]

DBN [174],
CNN [175],

LSTM-RNN [176],
Multilayer NNs [83]

O(2n)

Transferable
Belief Model

(TBM)

Epistemic
uncertainty

Lack of evidence N/A Prediction/classification
tasks [22, 95, 96, 98, 97]

using only TBM

No techniques
combined with

ML/DL

O(2n)

Dezert-
Smarandache

Theory (DSmT)

Fusion of precise,
imprecise,

qualitative beliefs

Conflicting, imprecise,
subjective probability

Uncertainty, Shannon’s
entropy, PIC

Robotics [91],
biometrics [91], trust

management [91], image
fusion [93]

SVM OAA [93],
CNN [94],

LSTM [94], RF [94]

O(22n
) where n = |Θ|

Imprecise
Dirichlet Model

(IDM)

Epistemic
uncertainty

Lack of evidence Eq. (49) Classification
tasks [106, 107, 108]

IDMBoost [106],
Credal Decision Trees

[107]

O(1)

Fuzzy Logic (FL) Multiple
knowledge

frames

Linguistic imprecision or
vagueness

Entropy Traffic control [124, 125],
surveillance and

security [126, 127], text
processing [128, 129],

image processing [130],
time-series

prediction [131]

FDNNs [120, 132],
FL-based DL [135,
121, 122, 6, 123]

O(|P|) where |P| is
the cardinality of the

fuzzy set

Bayesian
Inference (BI)

Aleatoric,
Epistemic

Data randomness,lack of
data, label overlap

Uncertainty, Shannon’s
entropy, mutual

information

Robotics [102],
biometrics [105], face

recognition [105], image
classification [104]

Expectation-
Maximization [104],

parameter
estimation [103]

O(N) where N is the
number of features

Subjective Logic
(SL)

Vacuity,
vagueness, and

dissonance

Lack of evidence, vague
observations, conflicting

evidence

Belief vacuity, vagueness,
dissonance

Adversarial attacks, trust
networks

ENNs [5, 63],
DNNs [64, 65, 66],

DRL [67]

O(1)

Machine/Deep
Learning

Aleatoric,
Epistemic

Limited of training data,
data noise, noise of

measurement

Shannon’s entropy, mutual
information, variance,

differential entropy

Computer vision [162],
natural language

processing [150], medical
analysis [177], time series

forecasting [178]

Monte
Carlo-Dropout [179],
prior network [23],

ensemble
method [180]

O(N) where N is the
number of Monte

Carlo sample times
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Table A.3: Advantages and Disadvantages of Each Theory Discussed in OurWork

Model Advantages Disadvantages
TVL Easy to implement simple tasks Limited in quantifying uncertainty
DST Providing a way of measuring plausibility; providing a combination

rule to fuse data from multiple sources
Not applicable to consider multinomial opinions; generating
counter-intuitive results using DST’s combination rule with

information from unreliable sources [46]
TBM Resolving the issue of DST’s combination rule High complexity leading to a lack of applicability in diverse domains

DSmT Providing multiple fusion rules and criteria; being applied in broad
data combination topics

The specific combination rule should be decided based on the specific
problem or topic

FL Strong theoretical background and wide application High complexity in modeling high order uncertainties
IDM Providing a range of a prediction probability, which can be narrowed

down with more evidence
possible to generate an invalid prediction range with a lack of

evidence [24]
BI Offering solid computational methods to be applicable in various

problem domains incorporating prior distributions
High influence of prior distributions over posterior distributions while

selecting good priors is not trivial
SL Providing various types of uncertainty estimates and diverse operators

of combining multiple subjective opinions
Not scalable for high-dimensional data problems

ENNs Inheriting the merit of SL in quantifying multidimensional uncertainty;
more efficient than Bayesian neural networks; possible to estimate

uncertainty by only one froward pass

Challenging to train ENNs with a lack of ground truth evidence labels
of Dirichlet distribution

FDNNs Mitigating the sensitivity of DNNs to uncertainties of real-world data Hard to deal with imprecise data and humans’ subjective perception or
bias

RDNNs No need for any prior knowledge for inference; can estimate vagueness
directly

Hard to train RDNNs well; difficult to extend RDNNs to other DL
models

Appendix B. Taxonomy of Uncertainty

The existing taxonomies of uncertainty are summarized in
Table B.1. Figure B.1 shows detailed taxonomies of uncer-
tainty, as an extension of Figure 2.

34



Journal Pre-proof

J
o
u
rn

a
lP

re
-p
ro

o
f

Figure B.1: A Detailed taxonomy of uncertainty, as an extension of Figure 2.
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Table B.1: Existing Taxonomies of Uncertainty

Taxonomy of Spatio-Temporal Uncertainty [36]

Intrinsic Ontological Caused by a lack of knowledge
Epistemic Caused by imprecision, ignorance, or incompleteness

Extrinsic
User input Caused by errors, misinterpretation, entropy, or information truncation

Data conversion Caused by changing technologies
Data record Caused by ambiguity, undecidability, data conversion errors, or users’ introduced

errors
Taxonomy of Ethics-based Uncertainty for Decision-Making [181]

Objective
Epistemological For knowledge-guided decision

Ontological For quasi-rational decision

Subjective
Moral For rule-guided decision
Rule For intuition guided decision

Taxonomy of Ignorance and Uncertainty [37]

Error
Delusion

Distortion
Inaccuracy (→ Infidelity)

Confusion

Incompleteness

Uncertainty
Stochastic Probability

Vagueness (→ Fuzziness or Non-specificity)
Absence N/A

Emergence N/A
Undecidable N/A

Uncomputable N/A
Inconceivable N/A
Contradiction Ambiguity

Irrelevance
Untopical N/A

Taboo N/A
Integrated Taxonomy of Uncertainty [182]

Individual
Difference

Factors

Cognitive processing N/A
Personality Coping with uncertainty

Decision-making bias N/A

Expertise
Experience
Knowledge

Information
Flow

Source reliability Trust

Raw Data

Baseline information
Conflicting information

Ambiguity or missing data
Unreliable information

Taxonomy of Uncertainty from Different Sources [38]

The World

Natural World

Complexity
Disorder

Partial regularity (e.g., chaos)
Stochastic regularity

Fundamental dynamism

Actors
Unmade decisions in terms of actions, values, group decisions, or preference

aggregations
Actors may change

Unpredictable behavior

Evidence

Data
Measurement

Imprecision
Incomplete
Conflicting

Linguistic
Evidence

Ambiguity
Fuzziness

Evidence from
Actors

Possible error
Possible deception

The Decision
Maker

Processing
Capability

Memory failure
Time or resource limits

Ability to
Interpret Evidence

Linguistic ability
Knowledge of context

Mental Models
Wrong

Incomplete
Conflicting
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Table B.1: Existing Taxonomies of Uncertainty (cont’d)

Taxonomy of Uncertainty and Variability of Information [39]

Metrical Measurement Empirical observations, interpretation of observations, and interpretation of
measurements

Structural Complexity in models and
their validation

System fluctuations, parameter interactions, interpretation of models, or
different choices of models

Temporal Future and past states Prediction, measurement, retrodiction, interpretation of data, and measurement
uncertainty

Translational Explaining uncertain results
(or communications)

Different training and capability of understanding, conflicting goals and values,
different views and perspectives in risk estimation
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• Identifying the causes and types of uncertainty in various belief models 

• Uncertainty reasoning and quantification of belief models for decision-making 

• Applying uncertainty quantification of belief models into deep learning 

• Comparing uncertainty consideration in belief models and deep learning 

• Insights, lessons learned, limitations, and future research directions 
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