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1 Introduction

This contribution is motivated by the increasing use of simulation
in the design of autonomous robots and vehicles. Simulation reduces
design time, cuts costs, and leads to a safer development cycle and a
more robust engineered solution [1]. For instance, one might be
interested in choosing the model parameters that would allow simple
two-degree-of-freedom (DOF) or eight-DOF vehicle models to be
used effectively for model predictive control in an autonomy stack
[2]. This poses a parameter calibration problem—data obtained
from a vehicle is available and the task is to calibrate an expeditious
model that is a good proxy for the dynamics of the actual vehicle.
Traditionally, the parameter calibration problem for multibody
systems has been posed as an optimization problem by coupling the
integrator with an optimization procedure [3—7]. With the exception
of Ref. [7], these parameter estimation approaches provide single
point estimates for the parameters. They require direct access to the
model being calibrated since either forward sensitivities or
associated adjoint coefficients need to be estimated in processes
that require derivative information and might have large memory
footprint. Finally, there might also be an expectation of calibration
data being smooth and clean, a requirement that might not be met.
An approach that takes a different tack is presented in Ref. [ 7], where
inertial parameters of a delta robot are calibrated using a least
squares estimator. Its limitation is that the parameters sought must
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appear linearly in the model, which happens to work for inertial
parameters in multibody dynamics. Against this backdrop, the
parameter calibration problem is approached herein in a Bayesian
framework, a choice motivated by three observations: it works with
noisy data; it is not intrusive, in that no access to the equations of the
model or their sensitivities is required; and it produces confidence
bounds for the results.

Bayesian inference can be used to calibrate unknown parameters
0 in a computer model [8]. Compared to calibrating a model via
classical optimization that identifies the optimal 0 values, the
Bayesian approach views the unknown parameters as random
variables and aims at producing the associated conditional
probability distributions, i.e., the posterior distribution
n(0) = p(0ly), given some data y. In other words, the approach
produces information that speaks to how well a certain choice of
model parameters 0 explains the observed/experimental data y.
Although Bayes’ theorem provides a formula of the posterior
distribution

p(10) p(0)

p(0ly) = (€Y
Jp(y\H)P((?)d@

it is often difficult to directly evaluate that formula, particularly for
the evidence term in the denominator when the posterior distribution
is on a high-dimensional space. Therefore, Markov-chain Monte
Carlo (MCMC) methods [9—11] have been widely used to sample
from the posterior distribution. Then, one does not have a closed
form for the posterior, but the samples obtained from MCMC can be
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used to approximately evaluate any expectation with respect to the
posterior distribution, which is after all the task of practical interest.

The MCMC algorithm is setup to produce samples of the
distribution. It is suitable for the task of Bayesian inference, as
MCMC algorithm can be used when the distribution is only known
up to a normalizing constant. This is done by trying to see whether a
particular choice of parameters adequately explains the observed
data, which calls for running a simulation with the candidate set of
parameters. Sequential Monte Carlo (SMC) samplers [12,13] have
been explored as an efficient alternative to classical MCMC. In

general, SMC samples from a sequence of distributions {nn (0) }:/:1 ,
which could arise from the conditional distributions =,(0) =
p(Oly1, ..., y,) with a sequence of data {y, }1121:1’ or from a sequence
of artificial intermediate distributions [14] that starts from an easy-
to-sample distribution, e.g., the prior distribution, and gradually
converges to the posterior distribution. Compared to MCMC, SMC
is easier to parallelize and less likely to be trapped in local modes.

This contribution is organized as follows. Section 2 covers the
fundamentals of the Bayesian inference process used. It discusses
the Bayesian framework; the SMC sampler that helps one draw
samples from the posterior distribution; and the probabilistic
programing framework PyMC [15] used to code in Python the
described inference framework. In Sec. 3, the Bayesian machinery is
used to answer this question: for simulating vehicle dynamics over
short time intervals, can a high-fidelity high-mobility multipurpose
wheeled vehicle (HMMWYV) Chrono model [16,17] be replaced by a
simple model, with eight degrees-of-freedom, that runs faster given
that its evolution is captured by a small set of differential equations?
A discussion of the Bayesian calibration approach embraced makes
up Sec. 4, in which we highlight limitations of the methodology and
our use of it. Directions of future work and a series of conclusion
wrap up the paper.

2  Methodology

Herein, the general problem setting is cast as
y=G(0)+e &e~N(,T) )

where G: X'+— ) denotes a computer model with unknown
parameters 0 € X; y € ) represents the available data with noise ¢

Pre-processing

Gaussian

white
noise

that follows a zero-mean normal distribution with a covariance
matrix I'; and A" and ) denote complete normed vector spaces. The
goal is to estimate the posterior distribution p(f|y) via Bayesian
inference

p01y) xexp (31~ GO} )0) G

where p(0) is the prior distribution that carries some existing
knowledge about the unknown parameters 0. We use SMC to draw
samples from the posterior distribution p(0ly).

2.1 Sequential Monte Carlo. The Sequential Monte Carlo
sampler [12,13] aims at sampling a sequence of distributions. In the
context of Bayesian model calibration, SMC samples a sequence of
artificial intermediate distributions [14]

o) oo (<3 1= g0 | o0

where {¢, } denotes a sequence of hyperparameters that starts from
0 and eventually converges to 1. In practice, SMC employs
sequential importance sampling to sample each p, based on an
importance distribution 7, (6). More specifically, it often starts with
10(0) = p(0) and then sequentially updates 1, according to 17,,_; and
the local random walk kernel K,,(0, 0) for n > 1 [13]. Compared to
the traditional MCMC approach, SMC has a few advantages,
including better sampling of multimodal distributions and more
straightforward parallel implementation that improves the computa-
tional efficiency.

2.2 Software Framework. The workflow for Bayesian cali-
bration of the vehicle model is presented in Fig. 1. Within this
workflow, a Python package called PyMC [15] is used to sample
from the posterior distribution.

2.2.1 Preproccessing. Due to the lack of experimental data, we
use Chrono and its Chrono::Vehicle module [17] to generate
synthetic high-fidelity “experimental” data. Since real data collected
in physical experiments is noisy, we add Gaussian white noise on top
of the data produced by the simulator. More details about the data
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Fig. 1

Workflow for Bayesian calibration of the vehicle model. Data synthetically generated in

Chrono is used to setup the 8DOF model whose dynamics is a good proxy for that of the actual
vehicle. The approach requires a Gaussian log likelihood function and a sampler, which we
chose from PyMC. Once sampling is completed, PyMC provides the posterior as an inference
data object which is used with ArviZ to perform analysis. See Ref. [19] for a Python

implementation of this workflow.
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generation process are provided in Sec. 3.1. We also define an 8DOF
model whose unknown parameters 0 we aim to calibrate are based
on the synthetic data. The goal is to identify a choice of SDOF model
parameters that makes its dynamics a good proxy for that of the
“real” vehicle in Chrono.

2.2.2 Sampling. We use a Gaussian likelihood function, i.e., the
squared exponential term in Eq. (3). The likelihood function
demands the evaluation of G(6), which involves running the 8DOF
model and gathering model responses. For the prior distributions of
the unknown parameters ), we assume a uniform distribution within
an empirically chosen range for each unknown parameter. The
samples obtained from PyMC, along with various sampler statistics,
can be used with ArviZ [18] to do exploratory analysis of PyMC
results.

3 Demonstration of Bayesian Calibration Framework

Inrobotics, one needs an expeditious model for tasks such as state
estimation, path planning, or model predictive control. While
typically task specific, these models are similar in one regard: they
are expected to run much faster than real-time. These observations
motivate the case study in this section: producing a simple vehicle
model that runs fast and whose time evolution (dynamics) is a good
proxy for the dynamics of a complex vehicle of interest. The vehicle
of interest is simulated in Chrono to produce synthetic training/
ground truth data and is subsequently used to calibrate a simplified
vehicle model. Upon completing the calibration process, we assess
how close the dynamics of the simple model comes to that of the
vehicle of interest.

In this contribution, the simple model is an 8DOF model, while
the vehicle of interest is a U.S. Army HMMWYV. The Chrono high
fidelity model used for simulating this HMMWYV captures all
relevant dynamics for a wide range of on- and off-road mobility
applications. Constructed using the template-based approach
enabled by Chrono::Vehicle [17], this model includes accurate
models of the HMMWYV independent double A-arm suspensions, a
Pitman-arm or rack-and-pinion steering mechanism, a full dynamic
model of the driveline (including models of the central and axle
differentials), as well as models of the engine (based on power-
torque curves including engine losses) and of the automatic
transmission (torque converter and gear box). The main components
of the resulting multibody system, which includes both kinematic
joints and bushings, are shown in the simulation snapshots of Fig. 2.
Chrono::Vehicle offers a variety of different tire models, from the
commonly used semi-empirical Pacejka, Fiala, and TMeasy, to full
FEA models using ANCF or corotational elements.

The 8DOF vehicle dynamics model is shown in Fig. 3. It has
lateral, longitudinal, yaw, and roll DOFs. Additionally, four more
differential equations are associated with the rotation of the four
wheels [20-22]. The limitation of this model is that it does not
capture the pitch and heave motions, and the front and rear

suspensions are represented simply by their respective equivalent
roll stiffness (k¢s/ky,) and roll damping coefficients (bgy/bg,), thus it
generally cannot be used to model aggressive acceleration/
deceleration maneuvers. The equations of motion for the chassis
velocities are thus given by [20,22]

m (i — w,v) = ZFXgij + (myra — murb)wf — 2l ema. o, (4)
m (v 4+ w.u) = ZF)’gU + (mub — mypa)i, + hyemay, — (5)

sz)z +szd)x = (Fyglf + Fygrf)a - (Fyglr + Fygrr)b

+ (Fxgrf - Fxglf)Cf + (Fxgrr - Fxglr)cr (6)
2 2
+ (myb — mypa) (v + w.u)
jxd)x +sz(bz = mghrc¢ - (k¢f + k¢,~)¢ - (bqﬁf + b(i)l')é (7)

+ heem(v 4 w,u)

where . = % and J, = (Jy + mh2,).

In these equations, /.. and A, are the vertical distances of the
front and rear roll centers below the sprung mass center of mass
(CM), and thus /. is the vertical distance from the sprung mass CM
to the vehicle roll center. It should be noted that Eq. (7) for the roll
degree-of-freedom is written by considering moments acting about
the vehicle roll center rather than the sprung mass CM, and thus the
roll inertia of the sprung mass about the vehicle roll center (J/, +
mhfc) is considered in Eq. (7) [20,22]. The forces F g and Fj; are
the global longitudinal and lateral forces at the four tire contact
patches and the subscript “ij” denotes If (left-front), rf (right-front),
Ir (left-rear), and rr (right-rear).

Using the notation in Ref. [23], a steady-state implementation of
the Fiala tire model has been used in the development of these tire
forces. The longitudinal and lateral slips used in the tire model were
thus calculated respectively as

5o i — [1gij c08(3) + vgij sin()]
! |ugij 005(5) + Veij Sln(5)|

% = tan”! (@) . ©)

Ugij

®)

where ¢ is the steering angle at the tire (only the front wheels can be
steered), ug;j and v;; are the global longitudinal and lateral velocities
of the tire contact patch, wjj is the angular velocity of the tire, and r;;
is the instantaneous tire radius. For instance, the velocities of
the tire contact patch at the right front contact patch are given by
Ugry = U + -¢f /2 and v =V + w.a.

The angular velocity of the tire @ is given by the tire rotational
dynamics model as [24] J,,@j; = Taij — Tyij — Trij — 73jF xij» Where

Fig. 2 Chrono::Vehicle HUMWV multibody system model. The powertrain and driveline

models are not rendered.
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Tgij is the driving torque applied to the wheel, Ty is the braking
torque applied to the wheel, Tyj; is the rolling resistance torque acting
on the tire, J,, is the rotational inertia of the wheel about its local Y
axis (ISO-W coordinate system) and Fy; is the local longitudinal
force on the tire contact patch. The drive torque and the brake torque
are controls that are provided as input to the 8DOF model whereas
the rolling resistance torque is given by Ty = —r7|F|sgn(w), where
1t is the tire rolling resistance coefficient. The instantaneous tire
radius r is calculated as [20] rij = 10O — xj, where r0;; is the
unloaded radius of the tire and xg; is the instantaneous tire
compression Since the wheels do not have a DOF along the Z
axis, xyj is calculated by a linear equation given by x;;; = k L, where
F i is the vertical force on the tire and k;; is the front/rear tire vertical
stiffness. Thus, it is assumed that the tire has no vertical damping
properties and behaves as a linear spring on application of a vertical
force. This vertical force F; is obtained based on quasi-static lateral
and longitudinal load transfers as [20,24]

mgb Mug <k</>fr/> + b</>f¢)

Foof = ———— —fe 10
zglf 2((l+b) P i ¢f f ( )
S Y PP C L ALL) SR
zgrf 2(a i b) D) Jf ¢ Je
Fo . Mmsa Myrg i (k(/,,.(l) +b¢,.¢) ny (12)
gir 2(a+b) 2 g ¢ ¢
kpr + byrp
mga my 8 <¢’ r )
Fron=s—F+—F"+H+—"+/f, 13
T 2a+b) 2 T ¢ e (13
where f; = % % (v + o:u), and _ﬁ- = (e 4
milhs ) (4 o.u), andf, = et o)

Fegrs
Front View

v mgl ww,
4—0} —————————————————
N
b
Fxglr Fxgrr
F yglr K ygrr
” Cr >
Top View

Finally, using Egs. (8) and (9), with the comprehensive slip s« and
the coefficient of friction U as defined in conjunction with the tire
vertical forces F., the critical longitudinal slip ratio Scriticar 1S
calculated as in Ref. [23]. Specifically, if the absolute value of the
longitudinal slip ratio |s| < Serigcars then the tire is in elastic
deformation state and the local longitudinal tire force is given by
Fyij = Cyjsjj. Otherwise, the tire is in the complete sliding state and
the local longitudinal tire force is F wij = sgn(s) (Friij — Fxaij)s

where Frjj = Ul Ful. Fuij = |3 U“FZ” |, and Cy;j is the longitudinal

tire stiffness of the front/rear Wheels.
When the tire is in the elastic deformation state, the lateral tire
force is given as (dropping tire index ij) Fy = —U|F.| (1 — H?)

sgn(a), where H = 1 — CJ;;‘;(‘M In the complete sliding state, the
lateral tire force is given as Fy, = —UF.sgn(«), where C, is the

lateral tire stiffness, and Fi, and Fy, are obtained from Fy and Fy;
using a coordinate transformation.

The parameters of the 8DOF vehicle model are summarized in
Table 1. Therein, a distinction is made between a tire and a wheel:
the former is regarded as a force elements, the latter combines a tire
and a wheel hub.

3.1 Data Generation. The calibration of the 8DOF model
using HMMWYV synthetic data is split into three stages which
concentrate, respectively, on the longitudinal dynamics, lateral
dynamics, and tire rolling resistance. The longitudinal dynamics
stage of the calibration process uses the vehicle longitudinal velocity
along with the front and rear angular velocities of the wheels. The
lateral dynamics stage uses the lateral velocity of the vehicle, as well
as its yaw rate, roll angle, and roll rate. The tire rolling resistance
stage of the calibration uses the vehicle’s longitudinal velocity, but
with a different vehicle maneuver.

A Gaussian white noise is added to the synthetic data. Although
this is not a prerequisite to using Bayesian calibration approaches,
noise is added to demonstrate that the data used need not be smooth,
which is the case when dealing with real world scenarios. The

Side View

Fig. 3 Schematic of the 8DOF vehicle model [20,22]
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Table 1 Description of 8DOF model parameters

Parameter description

m Sprung mass (kg)

Myg Front unsprung mass (kg)

My Rear unsprung mass (kg)

J Sprung mass roll inertia (kgm?)

J. Sprung mass yaw inertia (kgm?)

e Sprung mass XZ inertia (kgm?)

a Distance of sprung mass CM from front axle (m)
b Distance of sprung mass CM from rear axle (m)
h Sprung mass CM height (m)

cr Front track width (m)

c, Rear track width (m)

kgr Front roll stiffness (Nm/rad)

kgr Rear roll stiffness (Nm/rad)

byy Front roll damping coefficient (Nm/s.rad)

by, Rear roll damping coefficient (Nm/s.rad)

ke Front tire stiffness (N/m)

ke Rear tire stiffness (N/m)

Cyp Front right tire lateral stiffness (N/rad)

Cy: Rear right tire lateral stiffness (N/rad)

Cyt Front right tire longitudinal stiffness (N)

Cxr Rear right tire longitudinal stiffness (N)

T Rolling resistance coefficient of tire (m)

o Nominal tire radius (m)

J Wheel roll inertia (kg m?)

[/ Front roll center dist. below sprung mass CM (m)
Prer Rear roll center dist. below sprung mass CM (m)

standard deviation of the noise for each data vector is ¢, =0.1,
0w =1,00,=1,0,=0.05, 0, = 0.02, o4 =0.005 and, 0= 0.002.

3.2 Eight-Degrees-of-Freedom Known Parameters. In order
to calibrate the 8DOF model, we set out to first identify the
parameters of interest that, in practice, are unknown or difficult to
quantify using simple experiments. Measurable parameters such as
the sprung/unsprung mass of the vehicle (m1, myg, my;), the position
of the CM (h,a, b) and the roll center (hf, hyr), the track width
(¢f,cr) and the nominal tire radius (r0) are not required to be
calibrated. Similarly, sprung mass inertias (/,,J.,Jx;), wheel
inertias (J,,) and the tire vertical stiffness (k, k) are obtainable
through fairly simple experiments. Thus, obtaining distributions
over these parameters is not of much interest as they can be
quantified fairly accurately without the need of data from vehicle
maneuvers.

The parameters in Table 2 are considered known parameters,
where the HMMWYV model in the Chrono::Vehicle simulation and

Table 2 Eight-degrees-of-freedom known parameters

Parameter value

M 2097.85 (kg)
Myg 127.86 (kg)
Myr 129.98 (kg)
Je 1289.00 (kgm?)
J. 4519.00 (kgm?)
Sz 3.26 (kgm®)

A 1.68 (m)

B 1.68 (m)

H 0.71 (m)

cr 1.82 (m)

c, 1.82 (m)

ke 326332.00 (N/m)
ke 326332.00 (N/m)
o 0.47 (m)

J 11.00 (kgm?)
hrcf 0.38 (m)

Tiger 0.32 (m)

Journal of Computational and Nonlinear Dynamics

the 8DOF model use the same set of values. This leads to the
following unknown parameters for which we obtain posterior
distributions: Cyy, Cyy, Cyp, Cyr, kgps ks byr, by, TT.

3.3 The Longitudinal Dynamics Phase of the Calibration.
We first calibrate the 8DOF model for longitudinal dynamics, i.e.,
we aim to make the 8DOF model perform like the HMMWYV for
longitudinal acceleration and deceleration vehicle maneuvers.

3.3.1 Maneuver Description. To generate calibration data, a
simple straight line acceleration test is used. A normalized throttle
input increasing from 0 to 0.5, see Fig. 4, is applied to the HMMWV
vehicle. The HMMWYV vehicle model uses a simple powertrain with
a single gear ratio along with a maximum torque and speed map
(much like a DC motor). The powertrain is connected to a four-
wheel driveline which specifies the intermediate shaft inertias and
the gear ratios of the differentials. The SDOF model uses an identical
powertrain and thus takes the same normalized throttle input.
However, it does not have a driveline and so the torque from the
powertrain is directly applied to the four wheels. It should be noted
however that additional gear ratios of the differentials in the
HMMWY vehicle are taken into account in the SDOF model. Also,
the 8DOF uses a simple tire model that has poor behavior when the
vehicle starts from rest. Thus, the simulation of the 8DOF model
starts from the state reached by the HMMWYV at time 1.0's into its
simulation; at that point, the state of the 8DOF model (initial
conditions) is made to match the state of the Chrono::Vehicle (red
vertical line in Fig. 4). Although this does not play a role in the
calibration effort, it remains a problem to be addressed in the future.

3.3.2  Prior distribution. Out of the unknown parameters, the
ones identifiable through a longitudinal acceleration experiment are
the front and rear longitudinal tire stiffness Cys and Cy;.
According to the empirical knowledge about Cys and Cy., we
provide uniform-distributed prior distributions within a range, i.e.,
Cxt ~ U(1000,50000) and C, ~ U(1000, 50000). The values
1000 and 50,000 are chosen to cover a reasonable range where we
expect Cyr and Cy; to lie.

In addition to Cy¢ and Cy;, we also sample the standard deviations
of the noise in the three data vectors of interest: the longitudinal
velocity of the vehicle, the left front wheel angular velocity and the
left rear wheel angular velocity. Although in this study the standard

Chrono::Vehicle Controls

—— Throttle
——- Start of 8 DOF

0.5 1

0.4

0.3 1

0.2 A

Normalized Acceleration

0.1 A

0.0 1

Time (s)

Fig. 4 Normalized throttle input for longitudinal dynamics
calibration
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deviation of the noise added is already known and can be directly
used to evaluate the Gaussian likelihood, this may not be the case for
real world data. Thus, it makes sense to sample the standard
deviations together with other unknown model parameters as it can
be particularly useful to build measurement error models when the
noise is in fact unknown [25,26]. We choose a half-normal prior
distribution as this incorporates our prior knowledge of the noise
being small and always positive. The priors are of the form
oy ~ H(0.1), 6, ~ H(1), and o, ~ H(1).

The vehicle maneuver for the longitudinal dynamics calibration is
designed such that the remaining unknown variables
Cyt, Cyr kg, kyr, by, by play no effect on the response and can
thus be randomly picked. The rolling resistance coefficient rr
however does play an effect on the response, albeit a small one.
Therefore, 1t is not calibrated at this stage since its contribution to
straight line acceleration performance is negligible. Instead, a
simpler straight line deceleration vehicle maneuver is used in
Sec. 3.5 to calibrate rr. We choose the values of the unknown
parameters of interest as the mean of uniform prior distributions in
Eq. (14). These prior distributions are further used in later
calibration stage when we sample the remaining unknown
parameters using additional data

Cyr ~ U(20000,80000)
Cyr ~ U(20000,80000)
k¢f ~ U(5000,80000)

(

(

U (5000, 80000) (14)
(

U(

b¢f ~ U(100,30000)
100, 30000)
U(0.005,0.03)

3.3.3  Sampling. The SMC sampler from PyMC is used for the
longitudinal dynamics calibration. Eight SMC chains are run in
parallel with each chain drawing 1000 samples. The SMC kernel
used is Independent Metropolis Hastings. This means that in each
chain, at each stage, the required (algorithm determined) steps of
random walk (using Metropolis Hastings kernel) are run from each
sample of SMC. The acceptance probability for each Metropolis
Hastings chain is set to 0.9. Running multiple chains is essential for
obtaining valid inferences from iterative simulations of finite length
[27]. Having multiple chains is also critical in gauging chain
convergence using diagnostics such as split-R [28]. In addition,
multiple chains are more likely to reveal multimodality and poor
adaptation or mixing [28]—scenarios that are particularly common
for engineering applications. The minimum number of chains
recommended in practice is four [28].

In practice, it is recommended that the Effective Sample Size
(ESS) be greater than 400 [28]. It should be noted that ESS is not the
same as the number of draws but rather a quantity of interest that
captures how many independent draws contain the same amount of
information as the dependent samples obtained by the Markov
chains [28]. In this work, we have 1000 draws per SMC chain to
ensure that ESS is greater than 400.

3.34 Posterior. The posterior distribution obtained for the
parameters Cy¢ and Cy; is plotted using ArviZ in Fig. 5. The posterior
distribution for the standard deviation of the synthetic Gaussian
white noise added to the Chrono::Vehicle data is shown in Fig. 6.
The posteriors obtained for the standard deviation of the noise are in
the range of the values seen in Sec. 3.1. It is noted that the standard
deviation obtained through the posterior is slightly larger than that
supplied due to the difference in physics captured by the 8DOF and
HMMWYV models. Although these posteriors are useful as they
show a distribution over the parameters, what is more insightful is to
analyze the response of the 8DOF model with samples drawn from
these posteriors—this will show one how the fact that we are not
certain in the value of the calibration parameters reflects in the
response (dynamics) of the 8DOF model.

061004-6 / Vol. 18, JUNE 2023
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Fig. 5 Longitudinal dynamics calibration—posterior distribu-
tion of Cys and Cy,. In the plot, HDI stands for high density interval
(shown as a black horizontal line in the plot), which corresponds
to the smallest interval that provides the required percentage
value for a credible interval (in this case 94%).
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Fig. 6 Longitudinal dynamics calibration—posterior distribu-
tionof o

3.3.5 Eight-Degrees-of-Freedom Response. We show the
improvement of the posterior compared to the prior, by drawing
samples of Cxs and Cy, from them, and assessing the fit between the
8-DOF response and that of the HMMWV. We first draw samples
from the prior distribution, which represents our noninformative
belief about the 8-DOF model prior to seeing any HMMWYV data.
Therefore, the 8DOF model can assume very different trajectories,
see Figs. 7(a)-9(a). These figures are obtained by taking 100 random
samples out of the prior distribution and plotting the 8DOF response.
Bringing in the HMMWYV data shapes our belief about the parameter
values and leads to a posterior distribution. Note that drawing
samples from the posterior is as straightforward as picking random
samples from the Markov Chain that was used to generate the
posterior. Thus, we pick 100 random samples of Cys and Cy, from
their joint posterior distribution obtained from the trace of the chain
(to be discussed shortly) and plot 100 responses of the 8DOF model,
see blue line in Figs. 7(b)-9(b).

These figures show that drawing samples from the posterior
produces a response that is much narrower and closer to the noisy
HMMWYV data. Plotted along with the 100 responses are also the
posterior/prior expectation and the posterior/prior mean.
The posterior/prior expectation is obtained by taking the mean of
the 100 responses whereas the posterior/prior mean is the response
obtained by plugging in the mean values of the posterior/prior
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distributions of the calibrated parameters. The latter two lines are
very close to each other, which suggests that the posterior mean is a
good single point estimate of the posterior as it produces similar
results to the expectation of the model response [29].

In order to quantify the posterior fit, we use the mean of the Root-
Mean-Squared-Error (RMSE) between the 100 response lines and
the noisy data. The RMSE of a single response with the data is
given as
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Fig. 7 Longitudinal dynamics calibration—comparison of the
longitudinal velocity response of the 8DOF model with the noisy
data with (a) parameters drawn from the prior (100 lines represent
model responses for 100 draws of the parameters from their prior
distribution) and (b) parameters drawn from the posterior (100
lines represent model responses for 100 draws of the parameters
from their posterior distribution)
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where G(0), is the SDOF model response at time-step i, y; is the noisy
data at each time-step and 7, is the number of time steps. The mean
RMSE for both the prior and the posterior is reported in Table 3. This
shows that the response of the 8DOF model with parameters drawn
from the posterior produces a much tighter fit than with parameters
drawn from the priors, a confirmation that the Bayesian framework
uses the HMMWYV data meaningfully when it comes to improving
the quality of the 8DOF model.
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Fig. 8 Longitudinal dynamics calibration—comparison of the
angular velocity (LF) response of the 8DOF model with the noisy
data with (a) parameters drawn from the prior (100 lines represent
model responses for 100 draws of the parameters from their prior
distribution) and (b) parameters drawn from the posterior (100
lines represent model responses for 100 draws of the parameters
from their posterior distribution)
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Fig. 9 Longitudinal dynamics calibration—comparison of the
angular velocity (LR) response of the 8DOF model with the
noisy data with (a) parameters drawn from the prior (100 lines
represent model responses for 100 draws of the parameters from
their prior distribution) and (b) parameters drawn from the
posterior (100 lines represent model responses for 100 draws of
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Table3 Mean RMSE—Ilongitudinal dynamics calibration

Data Prior mean-RMSE Posterior mean-RMSE
U 0.402 0.214
[om 2.379 0.960
Wyt 2.574 1.305

061004-8 / Vol. 18, JUNE 2023

3.3.6  Chain Diagnostics. “While MCMC, as well as more
general iterative simulation algorithms, can usually be proven to
converge to the target distribution as the number of draws
approaches infinity, there are rarely strong guarantees about their
behavior after finite time” [28]. In order to draw conclusions from
the posterior distribution, it is important to first assess how well the
sampler is approximating the specified posterior distribution. One
way to do this is by visually inspecting the sample paths of the eight
chains via trace plots. The trace plots for the longitudinal dynamics
calibration can be seen in Fig. 10 (right). Therein, it can be seen that
the eight chains, which start from random points in prior parameter
space, converge to a similar posterior. This shows that the chains are
relatively insensitive to the starting point, thus showing geometrical
ergodicity, a critical property for the central limit theorem to hold for
approximate posterior expectations [28]. Generally, however, a
qualitative assessment of chain convergence using visual inspection

Cxr Cxf
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&
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Cxr

200 400 600 800
CX"

30000

20000

10000

10000 20000 30000 0 200 400 600 800
Fig.10 Longitudinal dynamics calibration—(left) posterior of all

eight chains (right) trace plots of all eight chains

Table 4 Chain statistics—R should be lesser than 1 and MCSE
should be small

Parameter IMCSE OMCSE R
Cyr 21.797 15.427 1.0003
Cyr 22.687 16.043 1.0002
o, 0.0006 0.0004 1.0001
Oy 0.0059 0.0042 1.0000
O, 0.0060 0.0043 1.0002
C}f 2000 Ckr
8000 Method Method
—e— bulk —eo— bulk
6000{ —— tail 60001 —e— tail

A @ 4000
% 4000 o

2000 2000

2500 5000 7500
Total number of draws

2500 5000 7500
Total number of draws

Fig. 11 Longitudinal dynamics calibration—bulk-ESS and tail-
ESS evolution with the number of draws. For a well explored
distribution, bulk/tail-ESS should increase linearly with the
number of draws.
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Fig. 12 Normalized throttle and steering input for lateral
dynamics calibration. The 8DOF model is set to the state of the
Chrono:Vehicle at the red dotted line and given the same input
controls.

is often times considered “notoriously unreliable” [30]. Thus, we
also calculate the split-R metric using ArviZ as this is the most
commonly used convergence diagnostic in practice [28]. “Roughly
speaking, the split R metric compares between and within chain
estimates for model parameters” [28]. If the chain has not mixed
well, the variance of all the chains mixed together will be higher than
the variance of individual chains and the split-R will be larger than 1.
It is recommended to only use samples if the split-R < 1.01 [28].
Table 4 shows that the split-R for all our parameters is less than 1.01.
In addition to this, we also calculate the mean and standard deviation
of the Monte Carlo Standard Error (MCSE), which is a statistic that
helps quantify the sampler error [28,31]. It can be seen from Table 4
that the mean and standard deviation of the MCSE for all our
parameters calculated using ArviZ is much smaller than the scale of
the parameters, which is reassuring.

Further, we also plot the ESS evolution plot [28] as it gives a
“scale-free”” measure of information and is particularly useful when
diagnosing sampling efficiency. In particular, we plot the evolution
of both the bulk-ESS—the effective sample sizes in the “bulk” (5%
to 95% quantiles) of the posterior, as well as the tail-ESS—the
effective sample sizes in the “tails” of the posterior (minimum of 5%
and 95% quantiles). “For a well explored distribution, we expect
both the bulk-ESS and tail-ESS measures to grow linearly with the
total number of draws S, or, equivalently, that the relative efficiency
(ESS divided S) is approximately constant for different values of S”
[28]. Figure 11 indicates that both the bulk-ESS and the tail-ESS for
Cyr and Cy, increase linearly with the number of draws and reach a
much higher value than the recommended value of 400 [28]. To
conclude, the SMC sampler approximates the posterior distribution
well.

3.4 Lateral Dynamics Calibration

3.4.1 Maneuver Description. To calibrate the parameters that
dictate the lateral dynamics of the 8DOF model, the following
Chrono HMMWYV simulation is run to generate synthetic data: first,
the vehicle is accelerated for 7s to bring it to a speed of
approximately 40 mph. For the next 3.7 s, the normalized steering
input at the steering wheel is increased from 0 to 0.2, linearly
(positive value corresponds to left steer). The throttle and steering

Journal of Computational and Nonlinear Dynamics

input can be seen in Fig. 12. The HMMWYV uses a rack-and-pinion
steering mechanism. The 8DOF model is provided the state of the
HMMWYV at 7s and is then given the same normalized steering
input. Only data from 7 to 10.7 s is used for the calibration. This is
done to separate the longitudinal dynamics from the lateral
dynamics during the training stage. Unlike the HMMWYV, the
8DOF model does not include a model of the steering mechanism.
To ensure a similar steering angle at the front wheels for both the
8DOF and HMMWYV for the same normalized steering input at the
steering wheel, we take the average of the maximum front wheel
steering angles of the HMMWYV and set it as the maximum steering
angles of the front wheels of the 8DOF model. A left/right average is
used to accommodate Ackerman steering which is captured by the
Chrono model, but not the 8DOF model. With this, the same
normalized steering wheel angle is supplied to both the SDOF model
and HMMWYV resulting in similar steering angles at the wheels.

3.4.2  Prior Distribution. The parameters calibrated during this
stage of the process are Cyt, Cyr, kgf, kgr, Dyr, bgr, along with the
standard deviation of the noise of each of the data vectors of interest—
01,0,,,04,0 (corresponding to lateral velocity, yaw angle, roll angle
and roll rate). For the 8DOF model parameters, the same priors from
Eq. (14) for Cyt, Cyr, kg and k- are used. However, for by and by, we
sample a single vehicle damping coefficient b, and then set
bys = by = 0.5 by. This choice is further explained in Sec. 4.2. The
mean of the posterior obtained in the longitudinal dynamics calibration
for Cys and Cy; is used. A half normal prior was chosen for the noise
parameters. The scale of the prior is chosen according to the scale of the
data as g, ~H(0.05), o, ~ H(0.05), g4 ~ H(0.005), and
g~ H(0.005).

3.4.3 Sampling. The SMC sampler described for longitudinal
dynamics is used herein; also, the SMC settings stay the same.

3.4.4 Posterior. The posterior distribution obtained for the
parameters of interest is shown in Fig. 13. For the noise parameters,
see Fig. 14. The posteriors are very narrow with a concentrated 94%
HDI, which is highly desirable. It can also be seen that bys and by,
have identical posteriors, which is expected based the way they are
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Fig. 13 Posterior distribution of lateral parameters
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Fig. 14 Posterior distribution of noise for lateral dynamics
calibration
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evaluated via 0.5bg. Also, the standard deviation of the noise
obtained is in the same range as those supplied during data
generation (see Sec. 3.1). Similar to the longitudinal dynamics
calibration, we will first discuss the 8DOF response using the
posterior distribution and then discuss chain convergence statistics.

3.4.5 Eight-Degrees-of-Freedom Response. A set of 100
responses using the prior distribution are summarized in Figs. 15
(@)-18(a). We pick 100 random samples of Cy¢, Cyr, kgr, kg, bgr and
by, from the joint posterior distribution to plot 100 responses of the
8DOF model after bringing to bear the HMMWYV synthetic data. The
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Fig. 15 Lateral dynamics calibration—comparison of the lateral
velocity response of the 8DOF model with the noisy data with
(a) parameters drawn from the prior (100 lines represent model
responses for 100 draws of the parameters from their prior
distribution) and (b) parameters drawn from the posterior (100
lines represent model responses for 100 draws of the parameters
from their posterior distribution)
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Table 5 Mean RMSE—Iateral dynamics calibration

Data Prior mean-RMSE Posterior mean-RMSE
Vv 1.397 0.037
¢ 0.025 0.003
¢ 0.02 0.002
W 0.175 0.016
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Fig. 16 Lateral dynamics calibration—comparison of the Roll
Angle response of the 8DOF model with the noisy data with
(a) parameters drawn from the prior (100 lines represent model
responses for 100 draws of the parameters from their prior
distribution) and (b) parameters drawn from the posterior (100
lines represent model responses for 100 draws of the parameters
from their posterior distribution)
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100 responses are seen in Figs. 15(b)-18(b). To quantify the
posterior fit, we use again the mean of the RMSE between the 100
response lines and the noisy data. The results in Table 5 confirm that
the average RMSE of the responses using samples from the posterior
is approximately 10 times smaller than using samples from the prior
across all data vectors.

3.4.6 Chain Diagnostics. Aninspection of the trace plots for the
eight chains in Fig. 19 reveals that the eight chains converge to a
similar posterior. Table 6 shows that the split-R is less than 1.01 for
all parameters. The mean and standard deviation of the MCSE is also
small compared to the scale of each parameter and is thus
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Fig. 17 Lateral dynamics calibration—comparison of the Roll
rate response of the 8DOF model with the noisy data with
(a) parameters drawn from the prior (100 lines represent model
responses for 100 draws of the parameters from their prior
distribution) and (b) parameters drawn from the posterior (100
lines represent model responses for 100 draws of the parameters
from their posterior distribution)
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acceptable. The bulk-ESS and tail-ESS evolution plots are shown
in Fig. 20. The values obtained are well above the required minimum
of 400 and also grow linearly with the number of draws.

The SMC sampler is thus able to approximate the posterior
distribution well. The posteriors over the parameters Cyr, Cyr,
kgrkgr, by and by, also produce a well calibrated lateral dynamics
response. We now finally calibrate the rolling resistance of the tires
using a similar approach. We then test our calibrated 8DOF model
against different combinations of vehicle maneuvers that were not
seen in the “training” data.
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Fig. 18 Lateral dynamics calibration—comparison of the Yaw
rate response of the 8DOF model with the noisy data with
(a) parameters drawn from the prior (100 lines represent model
responses for 100 draws of the parameters from their prior
distribution) and (b) parameters drawn from the posterior (100
lines represent model responses for 100 draws of the parameters
from their posterior distribution)
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Fig. 19 Lateral dynamics calibration—(left) posterior of all 8
chains (right) Trace plots of all eight chains

3.5 Rolling Resistance Calibration

3.5.1 Maneuver Description. This stage of the calibration
process draws on a basic maneuver shown in Fig. 21. We first
accelerate the HMMWYV in Chrono to a speed of about 90 km/h. We
then let the vehicle coast. Note that there is no aerodynamic drag
included in the Chrono HMMWYV model for the purpose of these
simulations and therefore the slow down comes from the rolling

061004-12 / Vol. 18, JUNE 2023

Cr Cr Ko,
8000 8000

8000 Method Method Method
—e— bulk —e— bulk —e— bulk
6000 —*— tail 6000 —*— tail 6000{ —— tail

a a a
) 4000 {} 4000 90 4000

2000 2000 2000

2500 5000 7500
Total number of draws

2500 5000 7500
Total number of draws

2500 5000 7500
Total number of draws

— Ks, by, by,
Method Method Method
—— bulk —— bulk —— bulk
6000( —o— tail 60001 o tail 60001 o tail
B 4000 & 4000 8 4000
w w w

2000 2000 2000

2500 5000 7500 2500 5000 7500
Total number of draws Total number of draws

2500 5000 7500
Total number of draws

Fig. 20 Lateral dynamics calibration—bulk-ESS and tail-ESS
evolution versus the number of draws. For a well explored
distribution, bulk/tail-ESS should increase linearly with the
number of draws.
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Fig. 21 Normalized throttle input for rolling resistance coef-

ficient calibration. Note: The 8DOF model is set to the state of the
Chrono: Vehicle at the dotted line and then given the same inputs.

resistance of the tires. The 8DOF model is set to the state of the
HMMWYV at the 5.6 s time-mark as shown by the dotted red line in
Fig. 21. The Longitudinal velocity is selected as the data vector of
interest that is used to drive the calibration process.

3.5.2  Prior Distribution. Since we expect the rolling resistance
coefficient values of both the 8DOF tire model and the HMMWV
tire model to be similar, we can provide a narrow prior around the
HMMWV’s value (Eq. (14)). We also provide a prior over the
standard deviation of the longitudinal velocity noise as
o, ~ H(0.1). This is the same prior for the noise used in the
longitudinal dynamics component of the calibration effort.

3.5.3 Sampling. The SMC sampler described earlier, with the
same settings, is re-used for the rolling resistance calibration.
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3.54 Posterior. The posterior distribution obtained for the
rolling resistance coefficient is shown in Fig. 22. For the posterior
distribution of the standard deviation of the longitudinal velocity
noise, see Fig. 23. The posteriors visually look narrow with a thin
95% high density interval (HDI).

Table 6 Chain statistics—R should be lesser than 1 and MCSE
should be small

Parameter HMCSE OMCSE R
Cr 1.615 1.142 1.0002
C, 1.358 0.961 1.0004
kd,/ 2.542 1.798 1.0004
kg, 2.345 1.659 1.0005
b(/,f 0.959 0.0678 1.0007
oy 1x10°* 1x10°* 1.0000
7y 1x107° 1x107° 1.0000
a4 1x10°° 1x107° 1.0002
7 1x10°* 1x10°* 1.0002
Table 7 Mean RMSE—rolling resistance coefficient calibration
Data Prior mean-RMSE Posterior mean-RMSE
U 0.354 0.133
18
Qo"f) & Qo'\o) K 0«:‘:9 & 0«:\6 K¢ 0’1«"9 3§
\} Q- Q° Q° Q I\ Q° Q-

Fig. 22 Posterior distribution of the rolling resistance
coefficient rr
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Fig. 23 Rolling resistance calibration—posterior distribution
of o,
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3.5.5 FEight-Degrees-of-Freedom Response. We perform a
similar exercise to evaluate the response of the 8DOF
postcalibration—draw 100 samples and plot the 8DOF system
response, see Figs. 24(a) and 24(b). The RMSE results are provided
in Table 7. Compared to the lateral calibration, the agreement
between sampled simulations is less prominent, nonetheless the
posterior mean and expectation show significant improvements over
the prior.

3.5.6  Chain Diagnostics. We once again evaluate the trace
(Fig. 25), the split-R (Table 8) and the ESS (Fig. 26). All the
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Fig. 24 Rolling resistance calibration—comparison of the
longitudinal velocity response of the 8DOF model with the noisy
data with (a) parameters drawn from the prior (100 lines represent
model responses for 100 draws of the parameters from their prior
distribution) and (b) parameters drawn from the posterior (100
lines represent model responses for 100 draws of the parameters
from their posterior distribution
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Fig. 25 Rolling resistance calibration—(left) posterior of all
eight chains (right) Trace plots of all eight chains

Table 8 Chain statistics—R should be less than 1 and MCSE
should be small

Parameter HUMCSE OMCSE R
T 0.000025 0.000018 0.9997
o, 0.000664 0.000469 0.9998

convergence diagnostics suggest a successful calibration process, as
the SMC sampler is able to approximate the posterior well.

3.6 Testing of the Calibrated Eight-Degrees-of-Freedom
Model. The calibration steps described in Subsections 3.3-3.5,
which drew on data collected from the HMMWYV over a small
number of maneuvers, have lead to a calibrated 8DOF model. The
question is whether the 8DOF model has become a good proxy for
the HMMWV. To answer this, we subjected both the 8DOF model
and HMMWYV to a set of maneuvers that were not used during the
calibration stage. We use the posteriors from the previous three
calibration stages and plot 100 responses of the 8DOF model
(Figs. 28-35). The control inputs chosen are illustrated in Fig. 27.
We first accelerate the vehicle by applying a steeper ramp throttle
from 0to 3.5 s. We then let go of the throttle and apply a left step steer
simultaneously. Then we apply a right ramp steer for approximately

r
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Fig.27 Normalized inputs for test maneuver. The 8DOF model is
set to the state of the HMMWYV at the red dotted line and then given
the same inputs.

3s. We then again bring back the steer to 0 and apply brakes for the
last 2s. We set the state of the 8DOF model as the state of the
Chrono::Vehicle at the 1s time-mark of the simulation. This is
because, as mentioned before, the 8DOF has difficulties starting
from rest.

Similarly we also calculate the mean-RMSE for each of the data
vectors (Table 9). Overall, the responses of the SDOF model is much
more concentrated in and around the Chrono data postcalibration.

Figure 32 indicates that the SDOF model roll angle during the first
3.5 sisrelatively constant and close to zero. The evolution of the roll
angle in the data is however decreasing. This is because the
HMMWYV has a small amount of roll even during straight-line
acceleration due to the reaction torque of the engine and trans-
mission on the chassis. This cannot be captured by the SDOF model
through any combination of parameters. Similarly, the 8DOF model
is also not able to match the transient roll rate during the step steer
maneuver (Fig. 33). The 8DOF roll rate does however stabilize to a
value much closer to the data.

3.6.1 Time Comparison. The 11.6s scenario described above
will be used for a time comparison to gain a rough understanding of
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Fig. 26 Rolling resistance calibration—bulk-ESS and tail-ESS evolution with the number of
draws. For awell explored distribution, bulk/tail-ESS should increase linearly with the number of

draws.
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Table 9 Mean RMSE—test experiment

Data Posterior mean-RMSE
U 0.319
\% 0.020
12 0.026
W 0.021
¢ 0.006
¢ 0.016
Oy 1.300
Oy 1.245
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Fig.29 Comparison of the lateral velocity response of the 8DOF
model with the noisy data with parameters drawn from the
posterior
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Fig. 30 Comparison of the yaw angle response of the 8DOF
model with the noisy data with parameters drawn from the
posterior

the 8DOF model execution speed. A time-step of 5 x 107 s is used
for the 8DOF model; the HMMWYV simulation in Chrono uses a
time-step of 2 x 107> s and with an Euler linearized implicit
integrator [16,32]. The 8DOF model uses a half-implicit integrator
[33]. The simulations were performed on a Intel(R) Core(TM) i7-
7500 U CPU @ 2.70 GHz and the results are provided in Table 10.
Note that the HMMWYV is simulated at a real-time factor (RTF) of
about 0.41. Unsurprisingly, the 8DOF model runs more than an
order of magnitude faster than the HMMWYV, at an RTF of 0.03. The
8DOF simulation can be further accelerated by re-implementing the
model in C/C++, a future task that falls outside the scope of this
work.
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Fig.31 Comparison of the yaw rate response of the 8DOF model
with the noisy data with parameters drawn from the posterior
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4 Discussion

4.1 Using Different Samplers. There are multiple samplers
available to solve a Bayesian calibration problem. Herein, three of
them are employed to understand (a) how close they are in terms of
the posterior distributions produced and (b) how efficient they are.
Besides SMC, we considered the Metropolis-Hastings sampler [34],
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—— noisy data
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—— posterior mean
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Fig. 32 Comparison of the roll angle response of the 8DOF
model with the noisy data with parameters drawn from the
posterior
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Fig. 33 Comparison of the roll rate response of the 8DOF model
with the noisy data with parameters drawn from the posterior

Table 10 Run time comparison

Model Simulation time (s) Run time (s)
8-DOF 11.5 0.37 £0.01
Chrono::Vehicle 11.5 4.82 *+0.05

061004-16 / Vol. 18, JUNE 2023

which is one of the first algorithms employed for MCMC, and the
No-U-Turn Sampler (NUTS) [35], which works using the
Hamiltonian Monte Carlo algorithm [10].

The Metropolis-Hastings algorithm is an adaptation of a random
walk with an acceptance/rejection rule to converge to the specified
target distribution [30]. While simple to implement, it is known to
not perform very well in high dimensional parameter spaces due to
its random-walk style of exploration [36].

Hamiltonian Monte Carlo (HMC) is a MCMC algorithm that
avoids the random walk behavior and sensitivity to correlated
parameters that plague many MCMC methods. It accomplishes this
taking a series of steps informed by first-order gradient information
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—— noisy data
— posterior expectation
25 —— posterior mean

10 A

Angular Velocity (LF) (RPS)
o]

2 4 6 8 10 12
Time (S)

Fig. 34 Comparison of the angular velocity of wheel (left-front)
response of the 8DOF model with the noisy data with parameters
drawn from the posterior
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Fig.35 Comparison of the angular velocity of wheel (right-rear)
response of the 8DOF model with the noisy data with parameters
drawn from the posterior
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Fig. 36 Posterior produced using the NUTS sampler
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Fig.37 Posteriorof the noise produced using the NUTS sampler
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Fig. 38 Trace of 1000 draws produced using the Metropolis-
Hastings sampler. The chain has not converged to the target
distribution.
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[35]. This allows the HMC methods to explore high dimensional
spaces much more efficiently by producing less correlated samples.
NUTS is an extension of HMC. Among other things, it eliminates the
need to set the step size and the number of steps, two crucial
parameters for the computational efficiency of the HMC algorithm.

To gain insights into their performance, we perform the lateral
dynamics calibration once again using all three samplers. The same
priors are used for the parameters, and the sample acceptance
probability is set to 0.9 for all samplers. NUTS and M-H differ from
SMC in their need to have tuning samples. Tuning is the process of
discarding the initial few samples drawn by the sampler since they
typically do not belong to the converged target distribution [29]. The
default number of tuning samples in PyMC is 500 and we use the
same in this study. NUTS requires us to take the first order gradient
of the likelihood functions; we do this via finite differences.

An effective sample size (ESS) per second metric is used to
measure sampler efficiency. The split-R obtained for the different
parameters is used to compare chain convergence and chain
autocorrelation. Finally, it is insightful to check whether all three
samplers arrive at a similar posterior albeit through different means.

The posterior obtained using the NUTS sampler can be seen in
Figs. 36 and 37. The posterior is very similar to that produced by
SMC in Figs. 13 and 14. However, the M-H algorithm does not
produce a converged chain after 1000 draws (Fig. 38). We thus

Table 11 Comparison of the Metropolis-Hastings (M-H), NUTS,
and SMC samplers. T2C stands for time to completion for
calibration when using a certain sampler (expressed in minutes).

Sampler T2C Bulk-ESS Bulk-ESS/s R

NUTS 567 6924 0.203 1.0011
SMC 123 7654 1.037 1.0003
M-H 439 5155 0.196 1.0039

54500

54000

26000 27000 3500 4000
Fig. 39 Posterior of 10,000 draws produced using the
Metropolis-Hastings sampler. The chain has now converged to

the target distribution.
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Fig.40 Posterior of noise of converged chain using M-H sampler
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increase the number of draws per chain from 1000 to 10,000.
Comparing results from 10,000 draws of M-H and 1000 draws of
NUTS and SMC is still fair as the metric used for the comparison is
scale free. With 10000 draws per chain, the M-H algorithm produces
a converged posterior, see Figs. 39 and 40. This posterior is, again,
almost identical to the posteriors produced using the NUTS and
SMC sampler. .

Next, rather than comparing the ESS per second and split-R of all
the parameters individually between the three methods, we take the
average across all the parameters. Table 11 shows that SMC
outperforms NUTS and M-H in all the metrics. Although we ran M-
H for 10000 draws per chain, we only obtained a total of 5155
effective samples which shows that the M-H algorithm struggles to
produce noncorrelated, independent samples. The NUTS algorithm
does well to produce independent samples. However, as it requires
the gradient of the likelihood for each draw, it is severely slowed
down. The performance of NUTS could thus significantly improve if
the model was implemented in a way that allows for techniques such
as automatic differentiation (AD) to take derivatives rather than
having to rely on finite differences.

4.2 Combining Rear and Front Roll Damping Coefficients.
This subsection highlights one typical scenario in which the
Bayesian approach described cannot help. While calibrating the
8DOF model with the HMMWYV model in the lateral direction, we
had to reduce two of the model parameters, namely, the front (by,)
and rear (by, ) roll damping coefficient into a single vehicle roll
damping coefficient by by setting by = by, = 0.5bgy. This was
done because initial calibration attempts showed that b, and b, are
not uniquely identifiable using the HMMWYV synthetic data
available. This can be seen in the posterior pairwise plot between
the two parameters (plotted after performing Kernel Density
Estimation), see Fig. 41, as well as in the marginal posterior
distribution which is not very sharp, see Fig. 42. Kernel Density
Estimation (KDE) is a nonparametric way to estimate the
probability density of a random variable based on kernels as
weights. In Fig. 41, we provide a cross section of the joint—
probability distribution of our two parameters where the more
yellowish the hue, the higher the probability.

12000
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<
L 6000
40001
2000 ;
5000 10000
by,
Fig. 41 Pairwise KDE plot between b, and b, shows

nonidentifiability
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10000

Fig. 42 Posterior of b,, and b; not very sharp due to
nonidentifiability

0 10000 0

This can be explained using Eq. (7) where by, and by occur
together, as a summation, to provide the coefficient to the roll rate.
Although in the vertical load transfer equations (Egs. (10)), by ’ and
by, occur independently, their low magnitude when combined with
the roll rate is almost negligible in comparison with the rest of the
terms. This also explains why the problem is not seen with k4, and
kg, , which have a sufficiently distinguishable effect on the vertical
forces. This served as a reminder of a classical scenario in which the
Bayesian calibration is not capable of providing accurate estimation
of each individual parameter—when several parameters are non-
identifiable based on the data. Such kind of nonidentifiability would
be manifested in the strong correlation between certain dimensions
of the joint posterior distribution as illustrated in Fig. 41.

5 Conclusion and Future Work

This contribution outlines a Bayesian methodology to calibrate
models used in robotics and autonomous vehicle applications,
wherein there is a need for expeditious models to estimate state, plan
motion, or determine control policies. The calibration approach
discussed: (i) is robust in that it handles noisy data; and, (ii) it
provides levels of confidence in the model parameters obtained via
probability distributions. In other words, the approach does not
produce one parameter set, but rather an infinite number of possible
parameter sets, each labeled by a probability of explaining the
experimental data observed. We relied on a Sequential Monte Carlo
technique to draw samples from the joint posterior distribution of the
model parameters, a process that in combination with classical
Monte Carlo estimation opens the door to predicting with quantified
uncertainties other quantities of interest tied to the dynamic
evolution of the simplified model, e.g., most likely trajectory,
most likely speed evolution.

Looking ahead, we plan to apply the same Bayesian inference
framework to terramechanics calibration, wherein the goal is to use a
high-fidelity approach to generate data subsequently used to
calibrate a lower-fidelity but faster terramechanics model. Two
cases are of interest—using a continuum representation of the terrain
[37] to calibrate a lower-fidelity Chrono terrain [38,39]; or using a
fully resolved, discrete representation of the terrain [40], to produce
calibration data for a lower-fidelity continuum representation of the
terrain [37]. Second, we plan to employ automatic differentiation to
better gauge the potential of the Hamiltonian Monte Carlo approach,
which is currently hindered by the lack of gradient information.
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Finally, we are in the process of using a real vehicle to generate
calibration data, instead of relying on synthetic data generated in
Chrono.

The software used to generate the results reported herein is
available on GitHub as open source and distributed under a
permissive BSD3 license [19].
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