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Abstract. In this paper, we study the forward and the inverse problem for the frac-
tional magnetic Schrödinger equation with a nonlinear electric potential. We first obtain
the maximum principle for the linearized equation and apply it to show that the prob-
lem is well-posed under suitable assumptions for the exterior condition. Then we obtain
the uniqueness in recovering both the magnetic and the nonlinear electric potentials,
assumed to be analytic in terms of the solution, from the exterior data of the solution.

1. Introduction

We study the inverse problem for a nonlinear fractional magnetic Schrödinger equation
(FMSE)

(1.1)

{
(−∆)sAu+ a(x, u) = 0 in Ω

u = g in Ωe := Rn\Ω,

where Ω ⊂ Rn, n ≥ 2 is a bounded domain with smooth boundary, s ∈ (0, 1), A represents
the magnetic vector potential and a is the nonlinear electric potential. Here the operator
(−∆)sA is defined by (∇s + A)2 in Section 2.1 following the model introduced in [10].

The inverse problem considered in this paper is a natural generalization of the problems
for linear fractional elliptic equations such as the fractional Schrödinger equation (FSE)
(−∆)su + qu = 0 and the linear FMSE (−∆)sAu + qu = 0. The inverse problem for
(−∆)su+ qu = 0 was first considered in [18] and more results associated to the fractional
Laplacian can be found in [3, 6, 16, 17, 21, 22, 37, 38, 51]. For the linear FMSE (−∆)sAu+
q(x)u = 0, the inverse problems were studied in both [10] and [45], where the fractional
magnetic laplacian (−∆)sA were defined differently. We adopt the definition introduced in
[10], given explicitly in (2.4) in Section 2 to form our problem. The alternative definition

(−∆)sAu(x) := Cn,sp.v.

∫
Rn

u(x)− ei(x−y)·A(x+y
2

)u(y)

|x− y|n+2s
dy,(1.2)

was first introduced in [11] and then used in [45].
Below, we briefly discuss the difference between (2.4) and (1.2). Physically, the operator

(−∆)sA = (∇s + A)2 is shown to arise as continuous limits of long jump random walks
with weights (see [10]). For the definition (1.2), the motivation of its introduction is
discussed in [11] and, in particular, relies on the Lévy-Khintchine formula for the generator
associated to a general Lévy process. For the inverse problems, we point out that the
FMSE associated to the definition (2.4) in [10] admits a gauge equivalence (see (1.6))
when considering the uniqueness of determining the potential pair (A, q) for the linear
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equations, similar to the classical magnetic Schrödinger equations problem. During our
tackling the problem for the nonlinear equations, we encountered the result in [46] based
on the definition in (1.2). In comparison with [46], where only the nonlinear electric
potential a(x, u) is uniquely determined, we show that both the magnetic and nonlinear
electric potentials can be recovered from the exterior measurements. Finally we mention
that the inverse problems for the semilinear FSE, where the magnetic potential A = 0,
were also studied in [35, 36].

For classical PDEs, the corresponding inverse problem for the linear magnetic Schrödinger
equation (MSE) (−i∇+A)2u+ qu = 0 has been investigated in [8, 13, 15, 19, 20, 24, 30,
34, 48, 49], where one aims to determine the vector magnetic potential A(x) and the scalar
electric potential q(x) from the boundary Dirichlet-to-Neumann (DN) map. Specifically,
due to a gauge invariance, one can only expect to recover uniquely the curl of magnetic
field curlA and q. This forms a part of the inverse theory of Calderón problem for elliptic
PDEs, originated from the 1980’s. We omit the vast literature in this manuscript. (They
can be found in the references of above mentioned results.) One regards the inverse prob-
lems described in the previous paragraph and those considered in this paper the fractional
analogues of the Calderón problem. The nonlocal magnetic Schrödinger operator (−∆)sA
extends the classical diffusion process modeled by the Laplacian −∆ :=

∑n
k=1 ∂

2
xk

and
the nonlocal diffusion phenomena modeled by the fractional Laplacian (−∆)s. We also
mention that fractional Laplacian (−∆)s can be seen arising in stochastic theory as the
operators associated with symmetric 2s-stable Lévy processes, for example, in a pricing
model in financial mathematics (see [9]). The equations with subcritical nonlinearities
were studied in [4] from the variational point of view.

In this part, we briefly survey recent development of the (higher order) linearization ap-
proach for inverse problems of nonlinear PDEs. For example, in dealing with the Calderón
problem for certain nonlinear equations, by taking the first order linearization of the DN-
map, the result of the inverse problem for the linear PDEs can be applied directly to
identify the full nonlinearity of the medium. See for instance [23, 25, 26, 27, 28, 53] for
the demonstration of the method for certain semilinear, quasilinear elliptic and parabolic
equations. Later by further expanding the terms in the data operators (such as the DN-
map or the source-to-solution map), known as the higher order linearization, it is shown
that several inverse problems for nonlinear hyperbolic equations on Lorentzian manifolds
can be solved by combining the analysis of nonlinear interaction of waves [33]. In contrast
the underlying problems for linear hyperbolic equations are still open in general, see [7, 44]
and the references therein. In some other cases, higher order linearization reduces showing
uniqueness for the inverse problem to proving certain density result of products of linear
solutions. This strategy was successfully applied to elliptic equations with power-type
nonlinearities in [14, 31, 32, 36, 41, 42, 47] (in particular, the second order linearization of
the nonlinear boundary map was studied in [5, 29, 52, 53]); to Maxwell’s equations with
Kerr-type and the second harmonic generation nonlinearities in [1, 2]; to nonlinear kinetic
equations in [39] and to semilinear wave equations in [43]. In [40], we solved an inverse
problem for the magnetic Schrödinger equation with nonlinearity in both magnetic and
electric potentials A and q.
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In order to describe our main results, we first introduce some definitions, notations and
assumptions on the potentials.

Definition 1. Let A ∈ Cs
c (Rn × Rn,Rn). We define the symmetric As, antisymmetric

Aa, parallel A|| and perpendicular A⊥ parts of A at point (x, y) as

As(x, y) := A(x,y)+A(y,x)
2

, Aa(x, y) := A(x, y)− As(x, y) = A(x,y)−A(y,x)
2

,

A||(x, y) :=

{ A(x,y)·(x−y)
|x−y|2 (x− y) if x 6= y

A(x, y) if x = y
, A⊥(x, y) := A(x, y)− A||(x, y).

For the inverse problem, we assume that A(x, y) ∈ Cs
c (Rn×Rn,Rn) has compact support

in Ω× Ω and satisfies

(1.3) As|| ∈ Hs(R2n), (∇·)sAs|| ∈ L∞(Rn), Aa||(x, y)·(y−x) ≥ 0 in Rn×Rn;

a(x, z) : Ω× R→ R satisfies{
a(x, 0) = 0 for all x ∈ Ω,

the map z 7→ a(·, z) is analytic with values in Cs(Ω).
(1.4)

Therefore, the potential a admits the following Taylor expansion

a(x, z) =
∞∑
k=1

∂kza(x, 0)
zk

k!
, ∂kza(x, 0) ∈ Cs(Ω).

and the convergence of this series is in Cs(Ω) topology. Together they also satisfy

(1.5) (∇·)sAs|| +
∫
Rn
|A(x, y)|2 dy + ∂za(x, z) ≥ 0 for x ∈ Ω, |z| < R0

for some constant R0 > 0. Here we denote by Cs(Ω) the usual Hölder space.

Remark 1.1. The above conditions posed on the potentials A and a are required for the
definition of the FMSE to be well-defined and the properties such as the maximum principle
to be satisfied in order to prove the well-posedness of both the linear and nonlinear FMSE,
as well as the boundedness of the solutions. More discussions can be found in Remark 3.1
of [10]. Also, the alternative weak formulation of the operators in Remark (2.1) helps to
understand these conditions better.

In Theorem 2, it is shown that there exists a small constant ε0 > 0 and a constant
C > 0 such that when the exterior data g ∈ Sε0 , denoted by

Sε0 := {g ∈ C∞c (Ωe) : ‖g‖C∞c (Ωe) ≤ ε0},

the problem (1.1) has a small unique solution u ∈ Cs(Rn) satisfying ‖u‖Cs(Rn) ≤ C‖g‖C∞c (Ωe).
Therefore, we can define the Dirichlet-to-Neumann (DN) map Λs

A,a via the bilinear form
as in Lemma 4.
We introduce the gauge equivalence ∼ defined in [10]. We say that two pairs of coefficients
(A1(x, y), q1(x)) and (A2(x, y), q2(x)) satisfy (A1, q1) ∼ (A2, q2) if and only if

(1.6) (−∆)sA1
u+ q1u = (−∆)sA2

u+ q2u
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for all u ∈ Hs(Rn). [10, Lemma 3.8] further implies that (A1, q1) ∼ (A2, q2) holds if and
only if

A1,a||(x, y) = A2,a||(x, y) in Rn × Rn,

and ∫
Rn
|A1|2 dy + (∇·)sA1,s|| + q1 =

∫
Rn
|A2|2 dy + (∇·)sA2,s|| + q2 in Ω.

Our main result is stated here.

Theorem 1. Let 0 < s < 1 and let Ω ⊂ Rn, n ≥ 2 be a bounded domain with smooth
boundary. Let W1 and W2 be two arbitrary nonempty open subsets in Ωe. Suppose that
(Aj, aj) satisfy (1.3), (1.4) and (1.5) for j = 1, 2. Then if

Λs
A1,a1

[g]
∣∣
W2

= Λs
A2,a2

[g]
∣∣
W2

for any g ∈ Sε0 ∩ C∞c (W1),(1.7)

where ε0 > 0 is sufficiently small (Here [g] is the equivalence class of g in Hs(Rn)\H̃s(Ω)),
we have

(A1, ∂za1(x, 0)) ∼ (A2, ∂za2(x, 0))(1.8)

and

a1(x, z)− ∂za1(x, 0)z = a2(x, z)− ∂za2(x, 0)z in Ω× R.(1.9)

The proof of Theorem 1 is built upon several preliminary results: the well-posedness
for the problem, the Runge approximation property and maximum principle. We start
by investigating the forward problem since the study of the inverse problem stands on
it. To this end, we formulate the maximum principle and a barrier function, which
can be applied to prove the boundedness of solution to the FMSE. Together with the
benefit introduced by the nonlinearity of the equation, they guarantee the effectiveness
of the fixed point theorem. This then leads to the well-posedness result for the nonlinear
equation under study. Moreover, to reconstruct unknown potentials, we apply the higher
order linearization scheme. By taking derivatives of the integral identity for the DN map
multiple times, the Runge approximation property, which states that the set of solutions
is dense in L2(Ω), then plays in to extract the information of unknown potentials out of
the integral.

This theorem guarantees uniqueness of higher order term of a(x, z). However, similar
to the inverse problem for the linear FMSE, it is expected that one can only determine
the magnetic and linear electric potentials up to a gauge as shown in (1.8). In fact, in
Section 3, we found that only coefficients A and ∂za(x, 0) appear in the linearized equation
and then they are recovered up to the gauge by applying the available inverse problem
result for the linear equation. While in the higher order linearization steps, the higher
order coefficients ∂kza(x, 0), k ≥ 2 can be viewed as a part of the source term in the k-th
linearized equation. Therefore, this explains the unique reconstruction of these terms
without any gauge in (1.9).

The structure of the paper is as follows. In Section 2, we establish the well-posedness of
the problem (1.1) for a small enough exterior data g by deriving the maximum principle
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and the barrier function in order to obtain the Cs regularity of the solution for (−∆)sA+q.
In Section 3, we determine the potentials A and a(x, z) using the linearization steps.

2. The forward problem

2.1. Notations. We introduce the notations and properties below. We define Hs(Rn) =
W s,2(Rn) to be the standard L2-based Sobolev space with norm

‖u‖Hs(Rn) = ‖F−1((1 + |ξ|2)s/2Fu)‖L2(Rn),

where F is the Fourier transform defined as

Fu(ξ) =

∫
Rn
e−ix·ξu(x) dx.

Let U be an open set in Rn. For scalar β ∈ R, we define the following spaces:

Hβ(U) :=
{
u|U : u ∈ Hβ(Rn)

}
,

H̃β(U) := closure of C∞c (U) in Hβ(Rn),

Hβ
0 (U) := closure of C∞c (U) in Hβ(U)

where ‖u‖Hβ(U) := inf{‖w‖Hβ(Rn) : w ∈ Hβ(Rn), w|U = u}.
Following the notations in [10], the magnetic fractional Laplacian (−∆)sA is an operator

mapping from Hs(Rn) to H−s(Rn), such that for all u, v ∈ Hs(Rn),

〈(−∆)sAu, v〉 = 〈∇s
Au,∇s

Av〉.
The magnetic fractional gradient operator∇s

A is defined by∇s+A(x, y) with the fractional
gradient ∇s : Hs(Rn)→ L2(R2n) extends the definition

∇su(x, y) =

√
Cn,s

2

u(x)− u(y)

|y − x|n/2+s+1
(y − x).

Then the fractional divergence (∇·)s : L2(R2n)→ H−s(Rn) is defined by

〈(∇·)su, v〉 = 〈u,∇sv〉 for v ∈ Hs(Rn).

Recall that the fractional Laplacian (−∆)s : Hs(Rn)→ H−s(Rn) is defined by

(−∆)su(x) := Cn,s p.v.

∫
Rn

u(x)− u(y)

|x− y|n+2s
dy,

where the constant Cn,s depends only on n, s, see for instance [12], and p.v. stands for the
principal value. Then we have (−∆)s = (∇·)s∇s in weak sense, that is, 〈(−∆)su, v〉 =
〈∇su,∇sv〉 for u, v ∈ Hs(Rn).

2.2. Preliminary results. The proof of the following result can be found in [10, Lemma 3.15],
where the regularity of A can be relaxed if certain integrability conditions are imposed.

Proposition 1 (The Runge approximation). Suppose that q ∈ Lp(Ω), p := max{2, n/(2s)}
and A ∈ Cs

c (Rn × Rn,Cn) has compact support in Ω × Ω and satisfies (2.1). Let W be
an open set in Ωe and ug be the solution to (−∆)sAug + qug = 0 in Ω with ug = g in Ωe.
Then the set R = {ug|Ω : g ∈ C∞c (W )} is dense in L2(Ω).
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The Runge approximation will be applied to recover the unknowns A and a(x, z) in
Section 3.

2.3. Boundedness of solutions. We will follow the steps in [35] to prove an L∞-bound
for the weak solution of (2.5) in Proposition 3. To this end, we prove a maximum principle
in Proposition 2 and construct a barrier function in Lemma 1.

Proposition 2 (Maximum principle for the weak solution of FMSE). Let Ω be a bounded
Lipschitz domain in Rn and A(x, y) ∈ Cs

c (Rn × Rn,Rn) satisfy

(2.1) As|| ∈ Hs(R2n), Aa||(x, y) · (y − x) ≥ 0 in Rn × Rn;

and

(2.2) (∇·)sAs|| +
∫
Rn
|A(x, y)|2 dy ≥ 0 for x ∈ Ω.

Suppose u ∈ Hs(Ω) is a weak solution of{
(−∆)sAu = F in Ω,

u = g in Ωe.

Then if 0 ≤ F ∈ L∞(Ω) and 0 ≤ g ∈ L∞(Ωe), we have u ≥ 0 in Ω, hence in Rn.

Proof. Using the weak formulation, we obtain for φ ∈ Hs
0(Ω) satisfying φ ≥ 0,

〈∇su(x) + A(x, y)u(x),∇sφ(x) + A(x, y)φ(x)〉 =

∫
Ω

Fφ dx ≥ 0,(2.3)

where we used F ≥ 0 in Ω. Let u− := max{−u, 0}. Then by u ∈ Hs(Ω), we can take
φ = u− ∈ Hs

0(Ω) as a test function. We want to show that if φ 6≡ 0, the left hand side of
(2.3) turns out to be negative, in order to draw a contradiction. We rewrite the left hand
side of (2.3) as

〈∇su+ Au,∇sφ+ Aφ〉 = 〈∇su,∇sφ〉+ [〈∇su,A(x, y)φ(x)〉 − 〈∇su,A(y, x)φ(x)〉]
+ [〈∇su,A(y, x)φ(x)〉+ 〈∇sφ,A(x, y)u(x)〉+ 〈Au,Aφ〉]

=: 〈∇su,∇sφ〉+ I + II.

It was shown in [35] (see the proof of Proposition 3.1 in [35]) that the fraction Laplacian
term 〈∇su,∇sφ〉 < 0, where g ≥ 0 in Ωe is used. We will discuss below that I + II is
indeed nonpositive, that is I + II ≤ 0, which then leads to a contradiction to (2.3).

To this end, the term I is actually 2〈∇su,Aa(x, y)φ(x)〉 and

I = 2

√
Cn,s

2

∫
R2n

Aa(x, y) · (y − x)

|x− y|n/2+s+1
(u(x)− u(y))φ(x) dxdy.

Note that the integrand function vanishes on S0 := {(x, y) | u(x) ≥ 0} since φ = 0 on S0.
On the set S1 := {(x, y) | u(x) < 0 and u(y) ≥ 0}, we have

(u(x)− u(y))φ(x) < 0 in S1,

by (2.1) (which is equivalent to Aa(x, y) · (y− x) ≥ 0), and thus the integrand function is
≤ 0. On the remaining set S2 := {(x, y) | u(x) < 0 and u(y) < 0}, we have

φ(x) = u− = −u(x) in S2.
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We denote Ω− := {x | u(x) < 0}. Then it is sufficient to consider the integral over
Ω− × Ω−:

− 2

√
Cn,s

2

∫
Ω−×Ω−

Aa(x, y) · (y − x)

|x− y|n/2+s+1
(u(x)− u(y)) u(x) dxdy

=−
√
Cn,s

2

∫
Ω−×Ω−

Aa(x, y) · (y − x)

|x− y|n/2+s+1
(u(x)− u(y)) u(x)

+
Aa(y, x) · (x− y)

|x− y|n/2+s+1
(u(y)− u(x)) u(y) dxdy

=−
√
Cn,s

2

∫
Ω−×Ω−

Aa(x, y) · (y − x)

|x− y|n/2+s+1
(u(x)− u(y))2 dxdy ≤ 0,

since Aa(y, x) = −Aa(x, y) and also by (2.1). Combining these estimates together, we
have I ≤ 0.

For the term II, one first check that, using the definition of ∇su, we have

〈∇su,A(y, x)φ(x)− A(x, y)φ(y)〉 = 0.

Moreover,

〈∇su,A(x, y)φ(y)〉+ 〈∇sφ,A(x, y)u(x)〉

=

∫
R2n

A(x, y) · (φ(y)∇su(x, y) + u(x)∇sφ(x, y)) dx dy

=

∫
R2n

√
Cn,s

2
A(x, y) · (y − x)

|y − x|n2 +s+1

(
φ(y)(u(x)− u(y)) + u(x)(φ(x)− φ(y))

)
dx dy

=

∫
R2n

√
Cn,s

2
As|| ·

(y − x)

|y − x|n2 +s+1

(
u(x)φ(x)− u(y)φ(y)

)
dx dy

=〈As||,∇s(uφ)〉.
Combining these together, we obtain

II = 〈As||,∇s(uφ)〉+ 〈Au,Aφ〉 =

∫
Ω

(
(∇·)sAs||(x) +

∫
Rn
|A(x, y)|2 dy

)
φ(x)u(x) dx ≤ 0

by the assumption (2.2) and the fact u(x)φ(x) ≤ 0 in Rn. Note that the fourth line is due
to that the integrand is the product of a symmetric, parallel vector and A.

This completes the proof of 〈∇su + Au,∇sφ + Aφ〉 < 0, which in turn concludes the
proof of the proposition by contradiction. �

Remark 2.1. In the proof above, it actually verifies a more accessible format of (−∆)sA
in weak sense (was also presented in Lemma 3.3 of [10]) given by

(−∆)sAu = (−∆)su+ 2

∫
Rn

(
Aa|| · ∇su

)
dy +

(
(∇·)sAs|| +

∫
Rn
|A|2 dy

)
u(2.4)

for u ∈ Hs(Rn).

We now build a barrier function.
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Lemma 1 (Barrier). Let Ω be a bounded Lipschitz domain in Rn. Assume that A ∈
Cs
c (Rn × Rn;Rn) satisfies (2.1) and (2.2). Then there exists ϕ ∈ C∞c (Rn) satisfying

(−∆)sAϕ ≥ 1 in Ω,

ϕ ≥ 0 in Rn,

ϕ ≤ C in Ω,

for some constant C depending on n, s and Ω.

Proof. We will show the barrier function ϕ in Lemma 3.4 in [35] qualifies. More specifically,
let BR be a large ball such that Ω b BR and η ∈ C∞c (BR) be a smooth cutoff function
satisfying

0 ≤ η ≤ 1 in Rn, η ≡ 1 in Ω.

We directly use the format (2.4). By the definition of (−∆)s and the fact that η has
maximum value 1 in Ω, one has when x ∈ Ω

(−∆)sη(x) =Cn,s

∫
Rn

η(x)− η(z)

|x− z|n+2s
dz

≥Cn,s
∫
Rn\BR

1

|x− z|n+2s
dz

≥ Cn,s
2

∫
Rn\BR

1

(R + |z|)n+2s
dz := λ > 0,

where λ depends only on n, s and Ω. By the condition (2.2) and A is compactly supported
in Ω× Ω, we only need to show

2

∫
Rn

(
Aa|| · ∇sη

)
dy = 2

∫
Ω

(
Aa|| · ∇sη

)
dy ≥ 0

when x ∈ Ω. This is verified because the integrand(
Aa|| · ∇sη

)
(x, y) =

√
Cn,s

2

Aa(x, y) · (y − x)

|x− y|n/2+s+1
(η(x)− η(y)) ≥ 0 when x ∈ Ω.

Here we applied (2.1) to obtain Aa(x, y) · (y − x) = Aa||(x, y) · (y − x) ≥ 0 and also
observed that η(x) − η(y) = 1 − η(y) ≥ 0 for x ∈ Ω and y ∈ Rn. Thus we have shown

that (−∆)sAη ≥ λ. Finally, set ϕ(x) = η(x)
λ

. The upper bound C is 1/λ, hence depends
on n, s and Ω. �

With the maximum principle and the barrier function, we can show an L∞-estimate
for the weak solution.

Proposition 3 (L∞-bound for the weak solution of FMSE). Let Ω be a bounded smooth
domain and A ∈ Cs

c (Rn × Rn,Rn) satisfy (2.1) and (2.2). For F ∈ L∞(Ω) and g ∈
L∞(Ωe), assume that u ∈ Hs(Ω) is a weak solution of

(2.5)

{
(−∆)sAu = F in Ω,

u = g in Ωe.

Then
‖u‖L∞(Rn) ≤ ‖g‖L∞(Ωe) + C‖F‖L∞(Ω)
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for some constant C > 0 depending on n, s and Ω. (It can be the same constant as in
Lemma 1.)

Proof. It is a standard proof such as in [35]. For completeness we prove it here for (−∆)sA.
We set

v(x) = ‖g‖L∞(Ωe) + ‖F‖L∞(Ω)ϕ(x) in Rn,

where ϕ is the barrier function in Lemma 1. Since (−∆)sAϕ ≥ 1 in Ω,

(−∆)sA(‖g‖L∞(Ωe)) =

(
(∇·)sAs|| +

∫
Rn
|A|2 dy

)
‖g‖L∞(Ωe)

and (2.2), we have

(−∆)sAv ≥ ‖F‖L∞(Ω) ≥ F = (−∆)sAu,

in Ω. Moreover, we get v ≥ ‖g‖L∞(Ωe) ≥ u in Ωe due to ϕ ≥ 0 in Ωe. Applying Proposition
2 we obtain v − u ≥ 0 in Rn. This proves

u(x) ≤ ‖g‖L∞(Ωe) + C‖F‖L∞(Ω) in Ω.

Similarly, the same would hold for −u. This completes the proof. �

Remark 2.2. Here we can certainly add a scalar potential q ∈ L∞(Ω,R) to obtain the
above results (Proposition 2, Lemma 1, Proposition 3) for equation (−∆)sAu+ q(x)u = F
with the condition (2.2) replaced by

(2.6) (∇·)sAs|| +
∫
Rn
|A(x, y)|2 dy + q(x) ≥ 0 for x ∈ Ω.

We also need the following strong maximum principle in the proof of Theorem 1.

Proposition 4 (Strong maximum principle). Let Ω be a bounded Lipschitz domain in
Rn. Let A(x, y) ∈ Cs

c (Rn × Rn,Rn) and q ∈ L∞(Ω,R) satisfy conditions (2.1) and (2.6).
Suppose u ∈ Hs(Ω) is a weak solution of{

(−∆)sAu+ qu = F in Ω,

u = g in Ωe.

Then if 0 ≤ F ∈ L∞(Ω) and 0 ≤ g ∈ L∞(Ωe) with g 6≡ 0, we have u > 0 in Ω.

Proof. Proposition 2 yields that u ≥ 0 in Rn. Suppose that u is not strictly positive in Ω.
Then there must exists a nonempty subset B ⊂ Ω with positive measure so that u = 0
in B. We take a smooth function 0 6= ϕ ∈ C∞c (B) satisfying ϕ ≥ 0 in B. Since u is the
weak solution, by (2.4), we have

0 ≤
∫
B

F (x)ϕ(x) dx =

∫
B

((−∆)sAu(x) + q(x)u(x))ϕ(x) dx

=

∫
B

[−Cn,s
∫
Rn

u(y)

|x− y|n+2s
dy −

√
2Cn,s

∫
Rn

Aa(x, y) · (y − x)u(y)

|x− y|n/2+s+1
dy]ϕ(x) dx

≤ 0,

(2.7)
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where the last inequality follows by the fact that u, ϕ ≥ 0, the constant Cn,s > 0 and also
Aa(x, y) · (y − x) ≥ 0 based on the assumption. This further yields that the first term in
(2.7) satisfies ∫

B

−Cn,s
∫
Rn

u(y)

|x− y|n+2s
dyϕ(x)dx = 0.

Now due to Cn,s > 0, u, ϕ ≥ 0, from the above identity, we can then derive
∫
Rn

u(y)
|x−y|n+2s dy =

0, which leads to u ≡ 0 in Rn and contradicts the assumption that g 6≡ 0 in Ωe. �

2.4. Well-posedness of a nonlinear fractional MSE. With the L∞-bound, we will
show that the solution of the fractional magnetic equation (2.5) indeed has Cs regularity.
This regularity is essential to prove the well-posedness result later.

Lemma 2 (Cs-estimate). Let Ω be a bounded smooth domain in Rn (n ≥ 2). Suppose
A ∈ Cs

c (Rn × Rn,Rn) and q ∈ L∞(Ω,R) satisfy conditions (2.1) and (2.6). Suppose also
that (∇·)sAs|| ∈ L∞(Rn). Given F ∈ L∞(Ω) and g ∈ C∞c (Ωe), if u ∈ Hs(Rn) is a weak
solution of

(2.8)

{
(−∆)sAu+ qu = F in Ω,

u = g in Ωe,

then we have u ∈ Cs(Rn) and u satisfies

(2.9) ‖u‖Cs(Rn) ≤ C
(
‖F‖L∞(Ω) + ‖g‖Cs(Ωe)

)
,

where the constant C depends on A, q, n, s, and Ω.

Proof. We first extend g ∈ C∞c (Ωe) to the whole Rn by zero and denote this extension by
g as well. Then ũ := u− g satisfies{

(−∆)sAũ+ qũ = F − [(−∆)sA + q]g =: F̃ ∈ L∞(Ω) in Ω,
ũ = 0 in Ωe.

(2.10)

Note that since n ≥ 2, the change of variables yields that (−∆)sAg ∈ L∞(Ω). By Propo-
sition 3 and Remark 2.2, one has

‖ũ‖L∞(Rn) ≤ Cn,s,Ω‖F̃‖L∞(Ω),

where the constant Cn,s,Ω depends on n, s,Ω. Also, from (2.4), we have

(−∆)sũ = F̃ −Hũ, ũ|Ωe = 0,(2.11)

where

Hũ := 2

∫
Rn

(
Aa|| · ∇sũ

)
dy +

(
(∇·)sAs|| +

∫
Rn
|A|2 dy + q

)
ũ.
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Note that since A is Cs and compactly supported in Ω×Ω and n/2 ≥ 1 > s > 0, we can

derive that Aa(x,y)·(y−x)

|x−y|n/2+s+1 is integrable in Rn and thus∣∣∣∣2 ∫
Rn

(
Aa|| · ∇sũ

)
dy

∣∣∣∣ =

∣∣∣∣√2Cn,s

∫
Rn

(
Aa(x, y) · (y − x)

ũ(x)− ũ(y)

|x− y|n/2+s+1

)
dy

∣∣∣∣
≤ 2
√

2Cn,s‖ũ‖L∞(Ω)

∫
Rn

|Aa · (y − x)|
|x− y|n/2+s+1

dy

≤ CA,n,s,Ω‖F̃‖L∞(Ω);

and
(
(∇·)sAs|| +

∫
Rn |A|

2 dy + q
)

is bounded in Ω. This yields that∣∣∣∣((∇·)sAs|| +
∫
Rn
|A|2 dy + q

)
ũ

∣∣∣∣ ≤ CA,q,n,s,Ω‖F̃‖L∞(Ω) in Ω.

Therefore,

‖Hũ‖L∞(Ω) ≤ CA,q,n,s,Ω‖F̃‖L∞(Ω).

We apply to (2.11) the classical Cs elliptic regularity (see [50, Proposition 1.1]) for the
fractional laplacian, that is, the solution to (−∆)su = g in Ω with u = 0 in Rn\Ω
belongs to Cs(Rn) and satisfies ‖u‖Cs(Rn) ≤ C‖g‖L∞(Ω), given g ∈ L∞(Ω). Then we have
ũ ∈ Cs(Rn) and

‖ũ‖Cs(Rn) ≤ CΩ,s‖F̃ −Hũ‖L∞(Ω) ≤ CA,q,n,s,Ω‖F̃‖L∞(Ω),

which proves (2.9). �

We are ready to prove unique existence of solutions to the nonlinear FMSE.

Theorem 2 (Well-posedness for the nonlinear equation). Let Ω be a bounded smooth
domain and A ∈ Cs

c (Rn × Rn,Cn) and a(x, z) satisfy (1.3), (1.4) and (1.5). Moreover,
assume that 0 is not an eigenvalue for the linear operator (−∆)sA + ∂za(x, 0). Then there
exists ε > 0 small enough such that when g ∈ C∞c (Ωe) with ‖g‖C∞c (Ωe) < ε, the boundary
value problem {

(−∆)sAu+ a(x, u) = 0 in Ω,

u = g in Ωe,
(2.12)

admits a unique solution u ∈ Cs(Rn)∩Hs(Rn) satisfying

(2.13) ‖u‖Cs(Rn) ≤ C‖g‖C∞c (Ωe),

where C is a constant depending on A, ∂za(x, 0), n, s, and Ω.

Proof. The well-posedness of the direct problem for FMSE (see Lemma 2.6 from [51])
and the regularity estimate in Lemma 2 yield that there exists a unique solution u0 ∈
Cs(Rn)∩Hs(Rn) to the linear equation{

(−∆)sAu0 + ∂za(x, 0)u0 = 0 in Ω,

u0 = g in Ωe,
(2.14)
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such that

‖u0‖Cs(Rn) ≤ C‖g‖C∞c (Ωe).(2.15)

Then looking for a solution of (2.12) is equivalent to solving for v := u− u0 in{
(−∆)sAv + ∂za(x, 0)v = − (a(x, u0 + v)− ∂za(x, 0)(u0 + v)) in Ω,

v = 0 in Ωe.
(2.16)

where we use the assumption a(x, 0) = 0. To achieve this, let us define the set

Xδ =
{
φ ∈ Cs(Rn) : φ|Ωe = 0, ‖φ‖Cs(Rn) ≤ δ

}
,

where 0 < δ < 1 will be determined later. It is easy to see that Xδ is a Banach space. We
also define the map F : Xδ → L∞(Ω), by

F(v) := − (a(x, u0 + v)− ∂za(x, 0)(u0 + v)) ,

and note that the operator

L−1
s : F ∈ L∞(Ω) 7→ uF,0 ∈ Cs(Rn)∩Hs(Rn)

is bounded, where uF,0 denotes the solution of [(−∆)sA + ∂za(x, 0)] uF,0 = F in Ω and
uF,0 = 0 in Ωe. It suffices to show that L−1

s ◦ F is a contraction map on Xδ.
To show L−1

s ◦ F is contractive, we first apply Taylor’s theorem and the assumption
a(x, 0) = 0 to obtain

a(x, z) = ∂za(x, 0)z + ar(x, z)z2, (x, z) ∈ Ω× R
with

ar(x, z) :=

∫ 1

0

∂2
za(x, tz)(1− t) dt.

Therefore,
F(v) = −ar(x, u0 + v)(u0 + v)2.

In Ω, it is not hard to see that ar(x, u0 + v) is bounded by a constant. Then

(2.17) ‖F(v)‖L∞(Ω) ≤ C
(
‖u0‖Cs(Rn) + ‖v‖Cs(Rn)

)2 ≤ C(ε+ δ)2

for v ∈ Xδ. This implies

‖L−1
s ◦ F(v)‖Cs(Rn) ≤ C(ε+ δ)2 ≤ δ

when ε < Cδ for some C > 0 (this is to say that δ cannot be arbitrarily small, but
depending on ε) and δ is small enough, that is, L−1

s ◦ F maps Xδ to itself.
To show it is a contraction, we derive for v1, v2 ∈ Xδ

‖F(v1)−F(v2)‖L∞(Ω) ≤ ‖ar(x, u0 + v1)− ar(x, u0 + v2)‖L∞(Ω)

(
‖u0‖Cs(Rn) + ‖v1‖Cs(Rn)

)2

+ ‖ar(x, u0 + v2)‖L∞(Ω)‖2u0 + v1 + v2‖Cs(Rn)‖v1 − v2‖Cs(Rn)

≤ C[(ε+ δ)2 + 2ε+ 2δ]‖v1 − v2‖Cs(Rn),

where we used the fact that ar(x, z) is Lipchitz in z. This shows

‖L−1
s (F(v1)−F(v2))‖Cs(Rn) ≤ C[(ε+ δ)2 + 2ε+ 2δ]‖v1 − v2‖Cs(Rn),

hence L−1
s ◦ F is a contraction when ε and δ are small enough.
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Therefore, the contraction mapping principle yields that there exists a fixed point v ∈
Xδ so that v = L−1

s ◦ F(v) satisfies (2.16). Lastly, we have by (2.15) and (2.17)

‖v‖Cs(Rn) = ‖L−1
s ◦ F(v)‖Cs(Rn) ≤ C‖F(v)‖L∞(Ω) ≤ C(ε+ δ)(‖g‖C∞c (Ωe) + ‖v‖Cs(Rn)),

which gives

‖v‖Cs(Rn) ≤ C‖g‖C∞c (Ωe)

if ε, δ are sufficiently small. Combining the above estimate for v with (2.15), this gives
(2.13). �

Corollary 1. Assume that Ω, A and a are as in Theorem 2. Let u be the unique solution
to (2.12) for g ∈ C∞c (Ωe) with ‖g‖C∞c (Ωe) < ε. Then for ε > 0 small enough, we have

‖u‖Hs(Rn) ≤ C‖g‖Hs(Rn).

Proof. In the above proof of Theorem 2, indeed we also have

‖u0‖Hs(Rn) ≤ C‖g‖Hs(Rn)

from (2.14) and the well-posedness result of [10] for the linear FMSE. Then using the Cs

bounds of u0 and v from the theorem, we obtain

‖F(v)‖H−s(Ω) ≤ ‖F(v)‖Hs(Ω) ≤ C(ε+ δ)(‖g‖Hs(Rn) + ‖v‖Hs(Rn))

for δ, ε as in the proof of the theorem. Then the well-posedness result of [10] also implies
the solution of (2.16) has Hs bound, which satisfies

‖v‖Hs(Rn) ≤ C‖F(v)‖H−s(Ω) ≤ C(ε+ δ)(‖g‖Hs(Rn) + ‖v‖Hs(Rn)).

Lastly, by choosing the δ, ε pair in the proof of Theorem 2 to be further small to obtain

‖v‖Hs(Rn) ≤ C‖g‖Hs(Rn).

From u = u0 + v and the estimates for u0 and v above, the proof is complete. �

3. The inverse problem

In this section, we will reconstruct the magnetic potential and nonlinear electric poten-
tial. We have showed in Theorem 2 that for any

g ∈ Sε0 := {g ∈ C∞c (Ωe) : ‖g‖C∞c (Ωe) ≤ ε0},

with ε0 > 0 small enough, there is a unique small solution ug ∈ Cs(Rn) ∩Hs(Rn) to the
problem {

(−∆)sAu+ a(x, u) = 0 in Ω,

u = g in Ωe.
(3.1)

To show that the map g 7→ ug is differentiable in Sε0 , we consider for sufficiently small
ε > 0 and f ∈ C∞c (Ωe), let uεf = uεf (x; ε) be the unique small solution to the problem{

(−∆)sAu+ a(x, u) = 0 in Ω,

u = εf in Ωe.
(3.2)
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3.1. Linearization. We define the k-th derivative of the solution uεf with respect to ε
by

u(k)
ε (x) :=

dk

dεk
uεf (x; ε)

for any positive integer k. We show that u
(k)
ε satisfies various linear equations.

Lemma 3. Let Ω be a bounded domain of Rn with smooth boundary. Assume A ∈
Cs
c (Rn × Rn;Rn) and a = a(x, z) : Ω × R → R satisfy (1.3), (1.4) and (1.5). Let

f ∈ C∞c (Ωe), f 6= 0 and ε ∈ R satisfy |ε| < ε0
‖f‖C∞c (Ωe)

for above ε0 > 0. Then we have uεf

is infinitely many times differentiable in ε in
(
− ε0
‖f‖C∞c (Ωe)

, ε0
‖f‖C∞c (Ωe)

)
. Moreover, we have

for k = 1,

(−∆)sAu
(1)
ε + ∂za(x, uεf )u(1)

ε = 0 in Ω, u(1)
ε = f in Ωe,

and for k = 2, 3, . . .,

(3.3)

{
(−∆)sAu

(k)
ε + ∂za(x, uεf )u(k)

ε + ∂kza(x, uεf )(u(1)
ε )k +Rk−1(a, uεf ) = 0 in Ω,

u(k)
ε = 0 in Ωe,

where the term Rk−1(a, uεf ) only involves ∂2
za(x, uεf ), . . . , ∂k−1

z a(x, uεf ) and u
(1)
ε , . . . , u

(k−1)
ε .

Proof. For ε ∈
(
− ε0
‖f‖C∞c (Ωe)

, ε0
‖f‖C∞c (Ωe)

)
and ∆ε 6= 0, set

ũ =
u(ε+∆ε)f − uεf

∆ε
.

By Taylor’s formula, ũ is the solution to

(−∆)sAũ+ a∗(x)ũ = 0 in Ω

with ũ = f in Ωe, where

a∗(x) :=

∫ 1

0

∂za(x, su(ε+∆ε)f + (1− s)uεf ) ds

belongs to L∞(Ω) satisfies ‖a∗‖L∞(Ω) is bounded by a constant independent of the solution
uεf and

(∇·)sAs|| +
∫
Rn
|A(x, y)|2 dy + a∗(x) ≥ 0

for x ∈ Ω due to (1.5). By Lemma 2,

‖ũ‖Cs(Rn) ≤ C‖f‖C∞c (Ωe),

which implies that

‖u(ε+∆ε)f − uεf‖Cs(Rn) ≤ C|∆ε|‖f‖C∞c (Ωe).(3.4)
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By (3.4), we have

‖a∗(x)− ∂za(x, uεf )‖L∞(Ω) = ‖
∫ 1

0

(∂za(x, su(ε+∆ε)f + (1− s)uεf )− ∂za(x, uεf )) ds‖L∞(Ω)

≤ sup
0<s<1

‖∂za(x, su(ε+∆ε)f + (1− s)uεf )− ∂za(x, uεf )‖L∞(Ω)

≤ ‖∂2
za(x, z)‖L∞(Ω×(−cε0,cε0))‖u(ε+∆ε)f − uεf‖Cs(Rn)

≤ ‖∂2
za(x, z)‖L∞(Ω×(−cε0,cε0))|∆ε|‖f‖C∞c (Ωe)

where c > 0 is a uniform constant. This shows that as ∆ε → 0, we have ũ → u
(1)
ε in

Cs(Rn), where u
(1)
ε is the solution to

(−∆)sAu
(1)
ε + ∂za(x, uεf )u(1)

ε = 0 in Ω, u(1) = f in Ωe.

In fact, if we denote w := ũ− u(1)
ε , it is then a solution to

(−∆)sAw + a∗(x)w = (∂za(x, uεf )− a∗(x))u(1)
ε in Ω, w = 0 in Ωe.

By Lemma 2 we have the estimate

‖w‖Cs(Rn) ≤ C‖(∂za(x, uεf )− a∗(x))u(1)
ε ‖L∞(Ω)

≤ C‖∂za(x, uεf )− a∗(x)‖L∞(Ω)‖u(1)
ε ‖Cs(Rn)

≤ ‖∂2
za(x, z)‖L∞(Ω×(−cε0,cε0)|∆ε|‖f‖2

C∞c (Ωe) → 0, as ∆ε→ 0.

Similarly, set ũ(1) :=
u

(1)
ε+∆ε−u

(1)
ε

∆ε
. Then

(−∆)sAũ
(1) +

1

∆ε

[
∂za

(
x, u(ε+∆ε)f

)
u

(1)
ε+∆ε − ∂za (x, uεf ) u(1)

ε

]
= 0,

giving

(−∆)sAũ
(1) + a∗1(x)ũu

(1)
ε+∆ε + ∂za(x, uεf )ũ(1) = 0,

where

a∗1(x) :=

∫ 1

0

∂2
za(x, su(ε+∆ε)f + (1− s)uεf ) ds→ ∂2

za(x, uεf )

in L∞ as ∆ε→ 0. Similar to above, as ∆ε→ 0, we have ũ(1) → u
(2)
ε where

(−∆)sAu
(2)
ε + ∂za(x, uεf )u(2)

ε + ∂2
za(x, uεf )(u(1)

ε )2 = 0.

Here we used the continuity of u
(1)
ε in ε which can be derived by following a similar

argument in the derivation of (3.4) above. We apply the induction argument. Suppose
(3.3) is true for index k and thus we have

ũ(`) :=
u

(`)
ε+∆ε − u

(`)
ε

∆ε
→ u(`+1)

ε(3.5)
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for ` = 0, . . . , k − 1. Here we denote ũ(0) := ũ. Set ũ(k) :=
u

(k)
ε+∆ε−u

(k)
ε

∆ε
. Then one can

check for k ≥ 2,

(−∆)sAũ
(k) +

1

∆ε

[
∂za(x, u(ε+∆ε)f )u

(k)
ε+∆ε − ∂za(x, uεf )u(k)

ε

]
+

1

∆ε

[
∂kza(x, u(ε+∆ε)f )(u

(1)
ε+∆ε)

k − ∂kza(x, uεf )(u(1)
ε )k

]
+ R̃k−1 = 0,

(3.6)

where the term R̃1 = 0 and R̃k−1 := Rk−1(a, u(ε+∆ε)f )−Rk−1(a, uεf ) involves a∗2(x), . . . , a∗k−1(x),

ũ, ũ(1), . . . , ũ(k−1), ∂2
za(x, uεf ), . . . , ∂k−1

z a(x, uεf ), u
(1)
ε , . . . , u

(k−1)
ε and u

(1)
ε+∆ε, . . . , u

(k−1)
ε+∆ε where

a∗l (x) :=

∫ 1

0

∂l+1
z a(x, su(ε+∆ε)f + (1− s)uεf ) ds.

As ∆ε→ 0, we can derive ũ(k) → u
(k+1)
ε due to (1.4), (3.5) and a similar argument above.

Here u
(k+1)
ε satisfies

(−∆)sAu
(k+1)
ε + ∂za(x, uεf )u(k+1)

ε + ∂k+1
z a(x, uεf )(u(1)

ε )k+1 +Rk(a, uεf ) = 0,(3.7)

where

Rk(a, uεf ) = ∂2
za(x, uεf )u(1)

ε u(k)
ε + k∂kza(x, uεf )(u(1)

ε )k−1u(2)
ε + lim

∆ε→0
R̃k−1

only involves ∂2
za(x, uεf ), . . . , ∂kza(x, uεf ) and u

(1)
ε , . . . , u

(k)
ε . This completes the proof. �

3.2. The DN map. We now define the operator Bs
A,a : Hs(Rn)×Hs(Rn)→ R by

Bs
A,a[u, v] :=

∫
Rn

∫
Rn
∇s
Au · ∇s

Av dydx+

∫
Ω

a(x, u)vdx.

Now we give a definition of the DN map Λs
A,a.

Lemma 4. Let Ω be a bounded domain of Rn with smooth boundary. Assume A ∈
Cs
c (Rn ×Rn;Rn) and a = a(x, z) : Ω×R→ R satisfy (1.3), (1.4) and (1.5). There exists

a bounded map Λs
A,a : {[g] ∈ X : g ∈ Sε0} → X∗ defined by

〈Λs
A,a[g], [v]〉 := Bs

A,a[ug, v] ∀ v ∈ Hs(Rn), g ∈ Sε0 ,

where X is the quotient space Hs(Rn)/H̃s(Ω) and ug ∈ Hs(Rn) solves (−∆)sAug+a(x, ug) =

0 in Ω with ug − g ∈ H̃s(Ω).

Proof. We first show that the definition of the DN map only depend on the equivalence

classes. To this end, for any φ, ψ in H̃s(Ω), we have ug+φ = ug on Rn by uniqueness of
the solution. Also, since Bs

A,s is linear in the second component,

Bs
A,a[ug+φ, v + ψ] = Bs

A,a[ug, v + ψ] = Bs
A,a[ug, v] + Bs

A,a[ug, ψ],

where

Bs
A,a[ug, ψ] =

∫
Rn

∫
Rn
∇s
Aug · ∇s

Aψ dydx+

∫
Ω

a(x, ug)ψdx = 0

by the weak formulation of the equation (−∆)sAug + a(x, ug) = 0 in Ω and ψ ∈ H̃s(Ω).
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Next the map is bounded because

|Bs
A,a[ug, v]| ≤ C‖∇s

Aug‖L2(R2n)‖∇s
Av‖L2(R2n) + ‖a(x, ug)‖L2(Ω)‖v‖L2(Rn)

≤ C‖ug‖Hs(Rn)‖v‖Hs(Rn)

≤ C‖g‖Hs(Rn)‖v‖Hs(Rn),

by Corollary 1. Here we used the fact that a(x, 0) = 0 and Taylor’s Theorem yield

‖a(x, ug)‖L2(Ω) =

∥∥∥∥(∫ 1

0

∂za(x, sug(x)) ds

)
ug(x)

∥∥∥∥
L2(Ω)

≤ ‖∂za(x, z)‖L∞(Ω×BCε0 )‖ug‖L2(Rn),

where BCε0 stands for a ball with center at the origin and radius Cε0 > 0. This completes
the proof. �

Lemma 3 implies that the solution uεf = uεf (x; ε) to (3.2) is differentiable with respect
to ε in the space Cs(Rn). To simplify the notation, we now denote the k-th derivative of
the solution u with respect to ε at ε = 0 by

(3.8) u(k)(x) =
dk

dεk

∣∣∣
ε=0

uεf (x; ε).

Moreover, this allows us to take the k-th derivative Λ
(k),s
A,a of the map Λs

A,a with respect to
ε at ε = 0:

〈Λ(k),s
A,a [f ], [v]〉 := lim

ε→0

dk

dεk
Bs
A,a[uεf (x; ε), v], f ∈ C∞c (Ωe), v ∈ Hs(Rn).

Lemma 5. Let Ω be a bounded domain of Rn with smooth boundary. Assume A ∈
Cs
c (Rn × Rn;Rn) and a = a(x, z) : Ω × R → R satisfy (1.3), (1.4) and (1.5). Then we

have

〈Λ(1),s
A,a [f ], [v]〉 =

∫
Rn

∫
Rn
∇s
Au

(1) · ∇s
Av dydx+

∫
Ω

∂za(x, 0)u(1)v dx,

and for k ≥ 2,

〈Λ(k),s
A,a [f ], [v]〉 =

∫
Rn

∫
Rn
∇s
Au

(k) · ∇s
Av dydx

+

∫
Ω

(
∂za(x, 0)u(k) + ∂kza(x, 0)(u(1))k +Rk−1(a, u)

)
v dx,

for v ∈ Hs(Rn), where the term R1 = 0 and Rk−1(a, u) only contains ∂2
za(x, 0), . . . , ∂k−1

z a(x, 0)
and u(1), . . . , u(k−1).

Proof. For any v ∈ Hs(Rn), by the Cs regularity of A and a, we can justify passing the
limits into the integral to obtain

dk

dεk

∣∣∣
ε=0

Bs
A,a[uεf (x, ε), v]

=

∫
Rn

∫
Rn
∇s
Au

(k)(x) · ∇s
Av dydx+

∫
Ω

(
∂za(x, 0)u(k) + . . .+ ∂kza(x, 0)(u(1))k

)
v dx.

�
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3.3. Proof of Theorem 1. Below are the steps to prove the Theorem 1. Assume

Λs
A1,a1

[g]
∣∣
W2

= Λs
A2,a2

[g]
∣∣
W2

for any g ∈ Sε0 ∩ C∞c (W1).(3.9)

where W1,W2 are two arbitrary open subsets in Ωe. For f ∈ C∞c (W1) and ε > 0 small
enough, let uj be the solution to (1.1) with the exterior data εf and A, a replaced by
Aj, aj for j = 1, 2. The hypothesis (3.9) yields

0 = 〈(Λs
A1,a1

− Λs
A2,a2

)[εf ], [v]〉 = Bs
A1,a1

[u1(x, ε), v]− Bs
A2,a2

[u2(x, ε), v]

for any v ∈ Hs(Rn) satisfying supp(vχΩe) ⊂ W2 where χΩe denotes the characteristic
function of Ωe. Immediately, we have the k-derivatives of Λs

Aj ,aj
satisfying

Λ
(k),s
A1,a1

[f ]
∣∣∣
W2

= Λ
(k),s
A2,a2

[f ]
∣∣∣
W2

for f ∈ C∞c (W1).

3.3.1. The determination of the first order term. We can recover A and ∂za up to a gauge.

Proposition 5. Let Ω be a bounded domain of Rn with smooth boundary. Assume Aj ∈
Cs
c (Rn×Rn;Rn) with support in Ω×Ω and aj = aj(x, z) : Ω×R→ R satisfy (1.3), (1.4)

and (1.5) for j = 1, 2. Suppose Λs
A1,a1

[g]|W2 = Λs
A2,a2

[g]|W2 for g ∈ Sε0 ∩ C∞c (W1). Then
we have

(A1, ∂za1(·, 0)) ∼ (A2, ∂za2(·, 0)).

Proof. It is shown in [10] that Λ
(1),s
A,a is linear, symmetric and bounded onX, and Λ

(1),s
A,a [f ]|W2

for all f ∈ C∞c (W1) determines (A(x, y), q(x)) up to the gauge ∼, where q(x) = ∂za(x, 0)
here. �

We need the following lemma for determining the full nonlinear potential a(x, u).

Lemma 6. Let Ω be a bounded domain of Rn with smooth boundary. Assume A ∈
Cs
c (Rn × Rn;Rn) and a = a(x, z) : Ω× R→ R satisfy (1.3), (1.4), (1.5) and

(A1, ∂za1(·, 0)) ∼ (A2, ∂za2(·, 0)).

Given f ∈ C∞c (Ωe) and ε > 0 small, let uj = uj(x; ε) be the solution to{
(−∆)sAju+ aj(x, u) = 0 in Ω,

u = εf in Ωe,
(3.10)

for j = 1, 2. Then we have u
(1)
1 = u

(1)
2 . Moreover, for k ≥ 2, if

∂`za1(x, 0) = ∂`za2(x, 0) in Ω for any 2 ≤ ` ≤ k,

then

u
(`)
1 = u

(`)
2 in Rn for any 2 ≤ ` ≤ k,(3.11)

where u
(`)
j is defined as in (3.8).

Proof. First, by Lemma 3, we have

(−∆)sAju
(1)
j + ∂zaj(x, 0)u

(1)
j = 0 in Ω, u

(1)
j = f in Ωe.
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Since (A1, ∂za1(x, 0)) ∼ (A2, ∂za2(x, 0)), the definition of the equivalence relation, (2.4)
and the uniqueness of the solution to the linear FMSE yield that

u
(1)
1 = u

(1)
2 in Rn.

For k = 2, by Lemma 3 again, u
(2)
j are solutions to

(−∆)sAju
(2)
j + ∂zaj(x, 0)u

(2)
j = −∂2

zaj(x, 0)(u
(1)
j )2

When ∂2
za1(x, 0) = ∂2

za2(x, 0) in Ω, the equations for u
(2)
j , j = 1, 2 are identical and both

u
(2)
1 and u

(2)
2 are zero in Ωe. Then we obtain u

(2)
1 = u

(2)
2 by the well-posedness.

Now suppose for k ≥ 2, ∂`za1(x, 0) = ∂`za2(x, 0) in Ω for 2 ≤ ` ≤ k + 1 and u
(`)
1 = u

(`)
2

for 2 ≤ ` ≤ k. The equations for u
(k+1)
j is given by

(−∆)sAju
(k+1)
j + ∂zaj(x, 0)u

(k+1)
j = −∂k+1

z aj(x, 0)(u
(1)
j )k+1 +Rk(aj, uj).

Here Rk(aj, uj) only involves ∂2
zaj(x, 0), . . . , ∂kzaj(x, 0) and u

(1)
j , . . . , u

(k)
j and thus we have

Rk(a1, u1) = Rk(a2, u2).

By assumption, the equations for u
(k+1)
1 and u

(k+1)
2 are identical in Ω and both u

(k+1)
1 and

u
(k+1)
2 are zero in Ωe, hence u

(k+1)
1 = u

(k+1)
2 in Rn. This completes the induction proof. �

3.3.2. The proof of main result. Now we are ready to complete the proof of the main
theorem by reconstructing the higher order term of Taylor expansion of a.

Proof of Theorem 1. From Proposition 5, it remains to show ∂kza1(x, 0) = ∂kza2(x, 0) for
x ∈ Ω and k ≥ 2 due to (1.4).

First, let v ∈ Hs(Rn) be a function satisfying

(3.12) (−∆)sA1
v + ∂za1(x, 0)v = 0 in Ω

and supp(vχΩe) ⊂ W2. Note that here (A1, ∂za1(·, 0)) ∼ (A2, ∂za2(·, 0)) implies (−∆)sA2
v+

∂za2(x, 0)v = 0 in Ω. Then by Lemma 5 and that u
(2)
j = u

(3)
j = · · · = 0 in Ωe, we have

〈Λ(k+1),s
Aj ,aj

[f ], [v]〉 =

∫
Rn

∫
Rn
∇s
Aj
u

(k+1)
j · ∇s

Aj
v dy dx+

∫
Ω

∂zaj(x, 0)u
(k+1)
j v dx

+

∫
Ω

[
∂k+1
z aj(x, 0)(u

(1)
j )k+1 +Rk(aj, uj)

]
v dx

=

∫
Ω

[
∂k+1
z aj(x, 0)(u

(1)
j )k+1 +Rk(aj, uj)

]
v dx, for k ≥ 1.

By Lemma 6, we first have u
(1)
1 = u

(1)
2 . From Λ

(2),s
A1,a1

[f ]|W2 = Λ
(2),s
A2,a2

[f ]|W2 for any
f ∈ C∞c (W1), we have

0 = 〈(Λ(2),s
A1,a1

− Λ
(2),s
A2,a2

)[f ], [v]〉 =

∫
Ω

(∂2
za1(x, 0)− ∂2

za2(x, 0))(u
(1)
1 )2v dx,

since R1(aj, uj) = 0.
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By the Runge approximation property in Proposition 1, for any g ∈ L2(Ω), we can find
a sequence of linear solutions vi ∈ Hs(Rn), whose restriction to Ωe is compactly supported
in W2, to (3.12) such that vi → g in L2(Ω). Plugging vi and let i→∞, we obtain∫

Ω

(∂2
za1(x, 0)− ∂2

za2(x, 0))(u
(1)
1 )2g dx = 0

for any g ∈ L2(Ω), which yields

(∂2
za1(x, 0)− ∂2

za2(x, 0))(u
(1)
1 )2 = 0, x ∈ Ω.

Now based on the strong maximum principle proved in Proposition 4, we can choose

suitable exterior data u
(1)
1 = f ≥ 0 and f 6≡ 0 in W1 so that u

(1)
1 > 0 in Ω. Then

(∂2
za1(x, 0)− ∂2

za2(x, 0)) must be zero in Ω.
Now for any fixed positive integer k > 1, we suppose that

∂`za1(x, 0) = ∂`za2(x, 0) in Ω, for 2 ≤ ` ≤ k.(3.13)

Then Lemma 6 yields that

u
(`)
1 = u

(`)
2 in Rn, for 1 ≤ ` ≤ k.(3.14)

Combining Λ
(k+1),s
A1,a1

[f ]|W2 = Λ
(k+1),s
A2,a2

[f ]|W2 for f ∈ C∞c (W1) with (3.13) and (3.14), one has

0 =

∫
Rn

(∂k+1
z a1(x, 0)− ∂k+1

z a2(x, 0))(u
(1)
1 )k+1v dx

for u
(1)
1 and v as above, which similarly proves ∂k+1

z a1(x, 0) = ∂k+1
z a2(x, 0) in Ω. By

induction, this completes the proof. �
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