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Abstract—In epidemic networks, walk-based centrality in-
dices are often used to identify the nodes that are significantly
contributing to the spread of disease. While the network
topology can provide a good insight into how the disease might
propagate throughout the network, epidemic-related factors
can change the ranking results as well. This paper presents
a dynamics-based node centrality that incorporates epidemic
characteristics, internal time delays, and network structure at
the same time. This centrality allows for dynamic identification
of the nodes that are more sensitive to external shocks, which
in turn can help prevent performance degradation in the
network. It is shown that some of the prominent walk-based
centralities, such as local and eigenvector centralities, are in fact
correlated with dynamics-based centrality for certain epidemic
parameters.

I. INTRODUCTION

The emergence of contagious diseases has directed schol-
ars’ attention toward networked models to capture the epi-
demic behavior at the community level [1]. In many of
these studies the effect of internal time delays, resulting
from the latent period of a disease, has been modeled
by including an extra compartment called exposed, e.g.,
Susceptible-Exposed-Infected-Removed (SEIR) model [2],
[3]. However, it is shown that the behavior of models with an
exposed compartment is not necessarily identical to models
that directly include the effect of internal time delays [4],
[5]. In other words, epidemic models defined based on
ordinary differential equations (with or without considering
the exposed group) fail to show the successive waves of
epidemic, common in several epidemic diseases [6].

From the network robustness point of view, the perfor-
mance of noisy linear consensus networks has been investi-
gated in [7], where a performance measure based on the H,
norm of the system is developed. The proposed performance
measure is then adopted to analyze the robustness of delayed
networks with linear SIS dynamics against exogenous noises
[8]. This is a metric defined based on transportation network
topology, epidemic characteristics, internal time delays, and
noise variance, which provides an insight into the impact of
each of those components.
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Regarding the identification of central individuals in a
network, some studies have investigated the correlation be-
tween various centralities that are defined based on network
structure (adjacency matrix) [9]. For instance, it is shown that
parameterized centralities like Katz centrality and subgraph
centrality can be “tuned” to interpolate between walk-based
centralities such as degree and eigenvector centrality [10].
Various research studies have employed these walk-based
centralities to develop epidemic control approaches [11]—
[13]. This study is mainly focused on the notion of centrality
in noisy delayed epidemic networks with the following
contributions.

i. We first present the SIS dynamics of epidemic networks
affected by time delay. The objective is to investigate the
role of network properties and time delays in emerging
successive epidemic waves under linear SIS dynamics
(Section II).

ii. We then evaluate the robustness of such delayed systems
against external shocks affecting the epidemic network.
A metric of network performance is employed to ana-
lyze performance sensitivity against noises and delays
(Section III).

iii. A specific dynamics-based node centrality index is
defined to evaluate the role of each node in epidemic
progress when an exogenous noise is present. Unlike
many widely used centralities, e.g., degree or eigenvec-
tor centrality, this dynamics-based centrality measure
does not merely depend on network structure; it is af-
fected by epidemiological properties of the disease, such
as epidemic rates and internal time delays. This unique
characteristic makes this dynamics-based centrality in-
dex an ideal candidate for identifying the key nodes in
epidemic networks. The relationship between dynamics-
based centrality and some well-known centralities is
also investigated (Section IV).

The simulation results for a network of the United States’
busiest airports are presented in Section V.

II. DELAYED SIS MODEL FOR EPIDEMIC NETWORKS

A. Background and definitions

We denote an undirected and weighted (with or without
loops) graph by G = (V,E,w). G is defined by V, a set
of n € N nodes, £ C {(,j)]i,5 € V}, aset of m € N
weighted edges, and w, the vector of weights w. € R for
all e = (4,7) € £. The adjacency matrix of the corresponding
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network is then defined by A = [a;;] € R™*™, where

We
Qi = 0

We consider an epidemic network comprising n subpop-
ulations/nodes in V), where each subpopulation can be in
one of two states, susceptible to the infectious disease or
infected by the disease. The map of connection between
the subpopulations is given by set £. The interpopulation
connection strength, i.e., traffic flow, is denoted by 0 <
a;; = we < 1 for all e € £. The disease progress in each
subpopulation of the network depends on its intrapopulation
and interpopulation connections, as well as epidemic rates of
the disease. While the effect of interpopulation connections
is reflected through the off-diagonal elements of the adja-
cency matrix, its diagonal elements indicate the intensity of
intrapopulation connections. We project the final effect of
local (intrapopulation) social distancing between members
of subpopulation ¢ on a;;, where a;; — 0 belongs to a
subpopulation which follows the local social distancing and
as a;; — 1, the local social distancing rules become less
strict.

if e={i,j}ef
otherwise .

(D

B. Deterministic SIS metapopulation model with time delay

This subsection briefly introduces the deterministic SIS
dynamics of a delayed epidemic network with underlying
graph G. The multi-delayed SIS dynamics of epidemic net-
works has been thoroughly investigated in [14], where local
and global time delays are considered. Note that in this study,
it is assumed that local and global time delays are identical.

We employ mean-field approximation to derive the de-
layed SIS dynamics, where we assume that every subpopu-
lation/node has a constant population size and is experiencing
a time delay 7.

Let p;(t) € [0,1] be the marginal probability of subpop-
ulation ¢ being infected at time ¢ such that p;(¢) = 1 if
the entire population of ¢ is infected and p;(¢t) = 0 if it is
completely susceptible. Therefore, p;(¢) can be interpreted
as the fraction of infected individuals in subpopulation ¢ at
time t. The approximated deterministic dynamics of node 7
can then be described by

pi(t) = B(1 —pi(t)) i:l agpi(t —7) = 0pi(t —7); t>7

pi(t) = ¢i(t); t <,
2)

where § € R, is the infection rate and § € Ry is the
recovery rate. ¢;(t) is the initial history function of infection
for node .

Using (2), the n-intertwined SIS model of network can
now be expressed below

p(t) = Ap(t —7) — BP(t)Ap(t —7); t>7 3)
pt) =o(t); t<T,
where p(t) = [p1(t),....pn(O)]", &) = [¢1,....dn] .

P(t) = diag(p(t)), and A = BA — 4I,. The sorted

681

eigenvalues of A and A are denoted by A\ < \s < ... <
Ap and u; < ug < < wuy,, respectively. The non-
negative adjacency matrix of network can be decomposed
by A=VUVT, where V = [vy,Vva, - ,V,] is orthogonal
and U = diag ([u1,uz,- - ,uy]). Note that the eigenvalues
of adjacency matrix A are connected to those of A by
U; = 2t for all § € V. Linearization of equation (3)
around its disease-free equilibrium, p*(¢) = 0, provides the
following linear SIS dynamics [15]

p(t)=Ap(t—71); t>7
p(t) =¢(t); t<T.

The stability of an epidemic network that follows the linear
dynamics (4) is previously studied in [14], [16]. It is shown
that for a network with dynamics (4) and Ry < 1, if 0 <
T < —35; then the asymptotic stability is guaranteed.

The basic reproduction number of an epidemic network,
Ron, 1s a metric that provides the expected number of neigh-
bors an infected subpopulation will infect. For a metapopu-
lation with dynamics (4), the network reproduction number
is defined below

“4)

An
Rom =1+ ? (5)

III. PERFORMANCE ANALYSIS IN THE PRESENCE OF
SMALL SHOCKS

In this section, the performance deterioration of linear
network (4) subject to small shocks is investigated. The
effect of shock on the infection dynamics of subpopula-
tion ¢ is modeled by an additive white noise such that
&(t) ~ N(0,02)!, and it is assumed that the input noise
for each subpopulation is independent of the others [17],
[18], ie., &(t) = [&1(t),&2(t),- .., &u(t)] T, where (1) ~
N (0, diag ([0%,03,...,02])). An Ha-based performance
measure is adopted from [7] to find an explicit representation
for the network performance loss. This Ho norm-based
measure quantifies fluctuations in the average number of
infected people based on the steady-state variance of nodal
state fluctuations.

Assume that the exogenous noise input described earlier
is affecting the dynamics of network (4) as shown below

p(t) = Ap(t —7) +&(t); t=>7 ©
p(t) = o(t); t<T.
According to [19], the performance measure pgs of a stable
system (6) with transfer function G(jw) can be found by the
frequency domain definition of its {5 norm as follows

+oo

1 H - .
pss—%Tr[ G (jw)G(jw)dw]| , (7)

— 00

where G (jw) corresponds to the complex conjugate trans-
pose of G(jw). pss measures the performance loss of net-
work; therefore, smaller values of pg result in a better
performance.

IThe notation N (0,01.2) represents a normal distribution with mean 0

and variance cr?.
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For the network system with dynamics (6), let fl = 5— for
all i € V. We then have & = BE, where £ = [él,ég, . ,én]
and B = diag ([01,02,...,0,]). Note that £ is a vector of
unit variance and identically distributed Gaussian processes.
We next define G/(jw) as the transfer function from £(t) to
p(t) and present the closed-form solution of (7) by
=2

i=1

~ @ cos(NiT)
2)\1 1+ sin (/\77') ’

Pss (®)

ith

in which ®; is the diagonal element of the matrix
Q"BBTQ, where Q [Q1,---,qn] € R™" is the

orthonormal matrix of eigenvectors of A.

The network performance measure (8) can be expressed
by the following compact matrix operator form

Pss = —%Tr BB A ' cos(tA) (I, + sin(rA) . 9

IV. DYNAMICS-BASED CENTRALITY INDEX

In what follows, we define a node centrality index based
on network’s sensitivity to small shocks, and provide its
closed form as a function of transportation network topology
(adjacency matrix), epidemic rates (recovery and infection
rates), and internal time delays.

Consider system (6) with an additive Gaussian white noise,
&(t) ~ N(0,02) for all i € V. We define the dynamics-
based centrality of subpopulation ¢ by the rate of network
performance measure (9) with respect to the noise variance
as shown below
o Opss
= Oo?

K2

f % [A*l cos(TA) (I + Sin(T.A))_l}

;o 310)

(X3

for all ¢ € V. Note that A = SA — §I,, and operator [.J;;
returns the i*" diagonal element of its matrix argument.

Network performance measure ps can now be retrieved
using (10) as shown below

Pss = anaf

9%

(11

Moreover, the series expansion of dynamics-based central-
ity n; can be obtained by
2

mz%@ﬂ+€%ﬂ&ﬂﬂn+ﬁ

52 02(67)[A2}ii —+ .-

o gk
-y %ckw)m“ (12)
k=0
where
B cos(d7) _cos(0T) — 0T
w07) = 350 —sm@r))’ 7 = 2501 —sim(er))’
and

2(cos(67) — 67)(1 — sin(d7))?
46(1 — sin(67))3
. 6272 cos(67) (cos(0T) — sin(d7) 4 sin? (7))
46(1 — sin(67))3

62(57') =

13)

The dynamics-based centrality 7; can then be interpreted
as a walk-based index that penalizes a walk of length k by
?—:ck(&'). This notion is particularly close to the resolvent
subgraph centrality defined in the next subsection.

A. Correlation with resolvent centrality
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The resolvent centrality (a.k.a. resolvent subgraph cen-
trality) of undirected network (6) with weighted adjacency
matrix A is defined by

RC;i(a) = [(In — aA)_l] g

(X3

= Zak[Ak]iiv
k=0

where [A];; indicates the weight of self-loop for node i.
[A¥];; computes the sum of weighted closed walks of length
k starting from 4. « is bounded above by the inverse of A’s
largest eigenvalue to ensure that I,, —«A is invertible and that
its power series converges to its inverse. Note that the largest
eigenvalue of A is denoted by w,,; therefore, 0 < o < u%
Resolvent centrality of node ¢ presents the sum of weighted
closed walks of length k for k = 0,1, 2, - - -, where weighted
closed walks of length k are penalized by o*. The following
theorem presents a correlation between dynamics-based and
resolvent centralities.

Theorem 1: For undirected epidemic network (6) over a
weighted (or unweighted) graph G with adjacency matrix
A = [a;5] € R™™", infection rate (3, and recovery rate J, as
7 — 0, node rankings obtained by dynamics-based centrality
7; converge to that provided by resolvent centrality RC},
where @ = 5.

(14)

B. Correlation with local centralities

We define the following local centrality for epidemic
network (6) with adjacency matrix A = [a;;]

0; = [Alsi = ai;, (15)

which is dependent on local social distancing status (self-
loops) in the network. We also introduce another local
centrality for epidemic network (6) as follows

n
li = [A%; = Za?jv
=1

which returns the sum of weighted closed walks with length 2
starting from node ¢. Note that for an unweighted undirected
network with no self-loops, [; turns the degree centrality
of node i, which is a special version of local centrality.
We denote the output of rankings obtained using centrality
measures 7);, o;, and I; by Z., Z,, and Z;, respectively. In
other words, Z., Z,, and Z; present the set of nodes ranked in

(16)
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a descending order based on the value of their corresponding
centrality index. In what follows, the reverse order of a set
7 is denoted by R(Z). In the following theorem, we propose
a correlation between local centralities and dynamics-based
centrality when the ratio of infection rate to recovery rate is
close to zero, i.e., the disease is not highly contagious.
Theorem 2: For epidemic network (6) over a weighted
undirected graph G with adjacency matrix A = [a;;] €
R™ " infection rate [, recovery rate §, and time delay
0<1< %, if g — 07, the following statements hold.
(1) When all subpopulations follow local social distancing
(graph G with adjacency matrix A is loop-less), i.e.,
a;; = 0 for all 7 € V, then

7. =T, (17)

(il) When some subpopulations follow local social distanc-
ing (graph G with adjacency matrix A contains loops),
i.e., a;; # 0 for some i € V, then

7, if 0<dT<nzm
I, =41, it 0r=z2 (18)
R(Z,) if 2 <d7 <3,

where z; ~ 0.739 is the numerical solution to ¢1(z1) =
0 such that z; < § (see (12)).

It can be inferred that the local centralities {; and o;
can provide an appropriate node ranking for network (6)
only when less contagious diseases are spreading. However,
since these local node centralities provide a fixed ranking
list regardless of the disease status, one can not rely on
those indices to dynamically identify the central nodes as
the disease progresses.

C. Correlation with eigenvector centrality

The eigenvector centrality for epidemic network (6) with
adjacency matrix A = [a;;] is obtained by

(19)

ev; = e;rvn = v, (i),

where e; is the " standard basis vector and v,, is the

dominant eigenvector of matrix A associated with its largest
eigenvalue w,. Since network (6) is undirected, we can
decompose its non-negative adjacency matrix by A
VUV, where V = [vy,Va,--- ,Vv,] is orthogonal and U =
diag ([u1, ua, - - -, uy]). Note that based on Perron-Frobenius
theorem, a connected graph with non-negative adjacency
matrix A has a non-negative real eigenvalue, which has
the maximum absolute value among all eigenvalues, that
is |ui| < -+ < |up—1| < un. The eigenvector associated
with u,, can be chosen to have non-negative real entries,
ie., v, > 0.

We denote the output of node ranking based on eigenvector
centrality ev; by Z.,, and present the following theorem
to connect the dynamics-based centrality and eigenvector
centrality for certain ranges of epidemic rates.

Theorem 3: For epidemic network (6) over a weighted
undirected graph G with adjacency matrix A = [a;;] €
R™ "™ infection rate [, recovery rate §, and time delay
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T — 0, if % — L7 then the ranking provided by

dynamics-based centralfty, 7., converges to that obtained by
eigenvector centrality, Z,,.

D. Interlacing nodes in dynamics-based centrality

As shown in the previous subsections, rankings obtained
by dynamics-based centrality are subject to change as time
delay or epidemic rates change, which results in having
interlacing nodes (nodes with variable ranks) as the dis-
ease progresses. This phenomenon is consistent with what
happens as an epidemic disease progresses in a cluster
of connected communities; as the disease circulates in the
network, different communities become more critical. This
subject is further studied in this subsection.

Definition 1: Two nodes i and j of graph G are cospectral
if for every integer k > 0, we have [A*];; = [4*];;.2

Definition 2: Two non-cospectral nodes ¢ and j of graph
G interlace at % if n; s = anB; %

We should note that two coéspectral nodes also have the
same degree, eigenvector, and dynamics-based centrality
measures. The following theorem provides an upper bound
on the number of interlacing values for every pair of nodes
in the non-delayed version of network (6) when dynamics-
based centrality is incorporated.

Theorem 4: Consider the epidemic network (6) over graph
G. For any two non-cospectral nodes i, j € V, there can be at
most n — 1 interlacing values for dynamics-based centrality
when 7 = 0.

is an interlacing value.

V. CASE STUDY

Air transportation plays an important role in introducing
a new disease to a metapopulation and spreading it within
its subpopulations. In this regard, we have implemented our
simulations on a group of United States’ busiest airports as
a representative of an epidemic network; the airports are
the network nodes, which connect to other nodes by air
traffic. This network includes |V | = n = 15 airports and
|E] = m = 104 weighted connections between them, see
Fig. 1. The weight of connections is determined based on
the available data in [21], which provides the total number
of flights between every two airports during a certain year.
The interconnection between every pair of nodes is ranked
based on air traffic volume between them, which is specified
by the color of links. The airports are ranked based on their
dynamics-based centrality index, 7;, which is indicated by
the size of circles located in the position of each airport.

Fig. 2 shows the average infection size of network, p(t) =
% %pi(t), with nonlinear dynamics (3) and different time

deiaelys when 50 percent of the metapopulation is initially
infectious and Rgps = 2.3. For the network with no delay,
7 = 0 days, or comparatively small delays, there would be
no fluctuations in the epidemic dynamics but as the delay
increases, epidemic pulses begin to appear. Experiencing

2Equivalently, two vertices ¢ and j in a graph G are cospectral if the
node-removed subgraphs G\{:} and G\{j} have the same characteristic
polynomial (cf. [10], [20]).
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Fig. 1. (a) Network of United States’ busiest airports with 15 sub-
populations and their normal air traffic volume. All the subpopulations
are experiencing 11 days of time delay. The hubs are ranked based on
their dynamics-based centrality index, 7);, which is reflected through the
size of their indicating circle. The interconnections are ranked by their
corresponding traffic volume which is specified by the color of edges. The
basic reproduction number of this network is Roas = 0.892.
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Fig. 2. Average infection size of network (3) with different time delays.
50 percent of the metapopulation is initially infectious and Ropr = 2.3.

TABLE I
TOP 4 AIRPORT RANKINGS BY DYNAMICS-BASED CENTRALITY FOR
DIFFERENT VALUES OF Rgps WHEN 7 — 0.

Rank | 0 < Ropr <0.06 | Roar = 0.5 ] 092 < Rom <1
1 LAS SFO SFO
2 SFO LAS DEN
3 DEN DEN LAS
4 MIA PHX LAX
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Fig. 3. dynamics-based centrality difference between nodes 1 (Atlanta) and
3 (Chicago) versus network basic reproduction number Rgys for 7 = 11
days. The dynamics-based centrality of the two nodes interlace once.

12 days of lag results in approximately 2 percent (which
corresponds to a considerable number of individuals in the
United States population) increase in the average infection
size within 30 days of epidemic onset.

The dynamics-based centrality difference between Atlanta
and Chicago with respect to basic reproduction number
is shown in Fig. 3. When 7 = 11 days, one interlacing
between the selected nodes is observed. In other words, as
the disease progresses and Ry, increases, Atlanta becomes
a more central subpopulation than Chicago, requiring a more
restricted traffic control strategy.

Table I presents the top 4 ranking results for different
ranges of Rops when 7 — 0 and a;; € [0,1] for all i € V.
As proven by Theorem (2), the output of dynamics-based
centrality, Z., and local centrality, Z,, converge as % — 0t
or Roys — 0F. For the simulated network in particular,
when 0 < Ropr < 0.06, the first 4 central airports based
on dynamics-based and local centralities are identical. On
the other hand, when 7 — 0, the output of dynamics-based
centrality, Z., will converge to that of eigenvector centrality,
Teo, as g — L7 or Ry — 17, see Theorem (3). For
the studied netw%rk, these centralities provide the same top
4 rankings while 0.92 < Rgps < 1. The simulation results,
along with our theoretical findings, indicate that for Ry —
0" and Ry — 17, the effect of epidemic properties on
the rankings results is negligible. In such cases, a node’s
location in the network will be the only factor determining
its impact on the network performance. On the other hand,
for 0 < Ron < 1, the epidemic properties of disease will
also contribute to the rankings provided by dynamics-based
centrality, which in turn leads to a different output.

Fig. 4(a) presents the transition of dynamics-based rank-
ings in non-delayed network as the reproduction number
increases. Since 7); is a nonlinear function of epidemic rates,
a non-smooth variation in airport rankings is observed. The
initial and final rankings (obtained for Rgps — 0T and
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Fig. 4. Heat map of airport rankings obtained by the dynamics-based centrality with respect to (a) network basic reproduction number
Ron when 7 — 0. (b) time delay 7 when Roar — 0. (c) time delay 7 when Roar — 17

Rom — 17, respectively) are equivalent to the rankings
found by local and eigenvector centralities, respectively.

The airport rankings provided by dynamics-based cen-
trality for different time delays (in the stable range) when
Ron — 07 is shown in Fig. 4(b). As predicted by Theorem
2, when 7 = 6.4 (equivalent to 7 = z; in Theorem 2), we
observe a sudden shift in the rankings, which reverses the
order of central nodes. In this case, the value of internal time
delay determines the order of central airports.

Fig. 4(c) shows the dynamics-based rankings for R —
17 as time delay increases. An invariant ranking is observed
for a certain range of time delay.

VI. CONCLUSION

The n-intertwined SIS model with internal time delays is
studied and a performance measure based on the 5 norm is
developed to evaluate the effect of small shocks, modeled by
Gaussian white noise, on the network robustness. This metric
is then employed to define a new node centrality index,
which evaluates the sensitivity of network performance with
respect to shocks to its nodes. Unlike walk-based centralities,
such as local or eigenvector centrality, the introduced cen-
trality incorporates the impact of epidemiological properties
of the disease to penalize the long closed walks in the
network, making it a dynamics-based centrality. We prove
that for certain choices of parameters, the dynamics-based
centrality and resolvent centrality are equivalent. For slightly
contagious disease, i.e., significantly low infection rate with
respect to recovery rate, we present the correlation between
the dynamics-based centrality and two local centralities, one
of which turns to degree centrality for the loop-less networks.
Moreover, we show that for certain epidemic rates, when
internal time delays are negligible, the output of dynamics-
based centrality and eigenvector centrality converge. The re-
sults obtained in this study are based on certain assumptions,
including the use of a linear SIS model and an undirected
network. Future research can build upon these findings to
explore more complex scenarios.
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