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Abstract— In epidemic networks, walk-based centrality in-
dices are often used to identify the nodes that are significantly
contributing to the spread of disease. While the network
topology can provide a good insight into how the disease might
propagate throughout the network, epidemic-related factors
can change the ranking results as well. This paper presents
a dynamics-based node centrality that incorporates epidemic
characteristics, internal time delays, and network structure at
the same time. This centrality allows for dynamic identification
of the nodes that are more sensitive to external shocks, which
in turn can help prevent performance degradation in the
network. It is shown that some of the prominent walk-based
centralities, such as local and eigenvector centralities, are in fact
correlated with dynamics-based centrality for certain epidemic
parameters.

I. INTRODUCTION

The emergence of contagious diseases has directed schol-

ars’ attention toward networked models to capture the epi-

demic behavior at the community level [1]. In many of

these studies the effect of internal time delays, resulting

from the latent period of a disease, has been modeled

by including an extra compartment called exposed, e.g.,

Susceptible-Exposed-Infected-Removed (SEIR) model [2],

[3]. However, it is shown that the behavior of models with an

exposed compartment is not necessarily identical to models

that directly include the effect of internal time delays [4],

[5]. In other words, epidemic models defined based on

ordinary differential equations (with or without considering

the exposed group) fail to show the successive waves of

epidemic, common in several epidemic diseases [6].

From the network robustness point of view, the perfor-

mance of noisy linear consensus networks has been investi-

gated in [7], where a performance measure based on the H2

norm of the system is developed. The proposed performance

measure is then adopted to analyze the robustness of delayed

networks with linear SIS dynamics against exogenous noises

[8]. This is a metric defined based on transportation network

topology, epidemic characteristics, internal time delays, and

noise variance, which provides an insight into the impact of

each of those components.
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Regarding the identification of central individuals in a

network, some studies have investigated the correlation be-

tween various centralities that are defined based on network

structure (adjacency matrix) [9]. For instance, it is shown that

parameterized centralities like Katz centrality and subgraph

centrality can be “tuned” to interpolate between walk-based

centralities such as degree and eigenvector centrality [10].

Various research studies have employed these walk-based

centralities to develop epidemic control approaches [11]–

[13]. This study is mainly focused on the notion of centrality

in noisy delayed epidemic networks with the following

contributions.

i. We first present the SIS dynamics of epidemic networks

affected by time delay. The objective is to investigate the

role of network properties and time delays in emerging

successive epidemic waves under linear SIS dynamics

(Section II).

ii. We then evaluate the robustness of such delayed systems

against external shocks affecting the epidemic network.

A metric of network performance is employed to ana-

lyze performance sensitivity against noises and delays

(Section III).

iii. A specific dynamics-based node centrality index is

defined to evaluate the role of each node in epidemic

progress when an exogenous noise is present. Unlike

many widely used centralities, e.g., degree or eigenvec-

tor centrality, this dynamics-based centrality measure

does not merely depend on network structure; it is af-

fected by epidemiological properties of the disease, such

as epidemic rates and internal time delays. This unique

characteristic makes this dynamics-based centrality in-

dex an ideal candidate for identifying the key nodes in

epidemic networks. The relationship between dynamics-

based centrality and some well-known centralities is

also investigated (Section IV).

The simulation results for a network of the United States’

busiest airports are presented in Section V.

II. DELAYED SIS MODEL FOR EPIDEMIC NETWORKS

A. Background and definitions

We denote an undirected and weighted (with or without

loops) graph by G = (V, E ,w). G is defined by V , a set

of n 2 N nodes, E ✓ {(i, j)|i, j 2 V}, a set of m 2 N

weighted edges, and w, the vector of weights we 2 R+ for

all e = (i, j) 2 E . The adjacency matrix of the corresponding
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network is then defined by A = [aij ] 2 R
n⇥n, where

aij =

(

we if e = {i, j} 2 E

0 otherwise .
(1)

We consider an epidemic network comprising n subpop-

ulations/nodes in V , where each subpopulation can be in

one of two states, susceptible to the infectious disease or

infected by the disease. The map of connection between

the subpopulations is given by set E . The interpopulation

connection strength, i.e., traffic flow, is denoted by 0 <

aij = we  1 for all e 2 E . The disease progress in each

subpopulation of the network depends on its intrapopulation

and interpopulation connections, as well as epidemic rates of

the disease. While the effect of interpopulation connections

is reflected through the off-diagonal elements of the adja-

cency matrix, its diagonal elements indicate the intensity of

intrapopulation connections. We project the final effect of

local (intrapopulation) social distancing between members

of subpopulation i on aii, where aii ! 0 belongs to a

subpopulation which follows the local social distancing and

as aii ! 1, the local social distancing rules become less

strict.

B. Deterministic SIS metapopulation model with time delay

This subsection briefly introduces the deterministic SIS

dynamics of a delayed epidemic network with underlying

graph G. The multi-delayed SIS dynamics of epidemic net-

works has been thoroughly investigated in [14], where local

and global time delays are considered. Note that in this study,

it is assumed that local and global time delays are identical.

We employ mean-field approximation to derive the de-

layed SIS dynamics, where we assume that every subpopu-

lation/node has a constant population size and is experiencing

a time delay ⌧ .

Let pi(t) 2 [0, 1] be the marginal probability of subpop-

ulation i being infected at time t such that pi(t) = 1 if

the entire population of i is infected and pi(t) = 0 if it is

completely susceptible. Therefore, pi(t) can be interpreted

as the fraction of infected individuals in subpopulation i at

time t. The approximated deterministic dynamics of node i

can then be described by
8

<

:

ṗi(t) = �(1� pi(t))
n
P

j=1

aijpj(t� ⌧)� �pi(t� ⌧); t � ⌧

pi(t) = �i(t); t  ⌧,

(2)

where � 2 R+ is the infection rate and � 2 R+ is the

recovery rate. �i(t) is the initial history function of infection

for node i.

Using (2), the n-intertwined SIS model of network can

now be expressed below
(

ṗ(t) = Ap(t� ⌧)� �P (t)Ap(t� ⌧); t � ⌧

p(t) = φ(t); t  ⌧,
(3)

where p(t) = [p1(t), . . . , pn(t)]
>

, φ(t) = [�1, . . . ,�n]
>

,

P (t) = diag (p(t)), and A = �A � �In. The sorted

eigenvalues of A and A are denoted by �1  �2  . . . 

�n and u1  u2  . . .  un, respectively. The non-

negative adjacency matrix of network can be decomposed

by A = V UV >, where V = [v1,v2, · · · ,vn] is orthogonal

and U = diag ([u1, u2, · · · , un]). Note that the eigenvalues

of adjacency matrix A are connected to those of A by

ui = �i+�
�

for all i 2 V . Linearization of equation (3)

around its disease-free equilibrium, p⇤(t) = 0, provides the

following linear SIS dynamics [15]
(

ṗ(t) = Ap(t� ⌧); t � ⌧

p(t) = φ(t); t  ⌧.
(4)

The stability of an epidemic network that follows the linear

dynamics (4) is previously studied in [14], [16]. It is shown

that for a network with dynamics (4) and R0M < 1, if 0 <

⌧ < � ⇡
2�1

, then the asymptotic stability is guaranteed.

The basic reproduction number of an epidemic network,

R0M , is a metric that provides the expected number of neigh-

bors an infected subpopulation will infect. For a metapopu-

lation with dynamics (4), the network reproduction number

is defined below

R0M := 1 +
�n

�
. (5)

III. PERFORMANCE ANALYSIS IN THE PRESENCE OF

SMALL SHOCKS

In this section, the performance deterioration of linear

network (4) subject to small shocks is investigated. The

effect of shock on the infection dynamics of subpopula-

tion i is modeled by an additive white noise such that

⇠i(t) ⇠ N (0,�2
i )

1, and it is assumed that the input noise

for each subpopulation is independent of the others [17],

[18], i.e., ξ(t) = [⇠1(t), ⇠2(t), . . . , ⇠n(t)]
>, where ξ(t) ⇠

N
�

0n, diag
�

[�2
1 ,�

2
2 , . . . ,�

2
n]
��

. An H2-based performance

measure is adopted from [7] to find an explicit representation

for the network performance loss. This H2 norm-based

measure quantifies fluctuations in the average number of

infected people based on the steady-state variance of nodal

state fluctuations.

Assume that the exogenous noise input described earlier

is affecting the dynamics of network (4) as shown below
(

ṗ(t) = Ap(t� ⌧) + ξ(t); t � ⌧

p(t) = φ(t); t  ⌧.
(6)

According to [19], the performance measure ⇢ss of a stable

system (6) with transfer function G(j!) can be found by the

frequency domain definition of its H2 norm as follows

⇢ss =
1

2⇡
Tr


Z +1

�1

GH(j!)G(j!)d!

�

, (7)

where GH(j!) corresponds to the complex conjugate trans-

pose of G(j!). ⇢ss measures the performance loss of net-

work; therefore, smaller values of ⇢ss result in a better

performance.

1The notation N (0,σ2
i
) represents a normal distribution with mean 0

and variance σ
2
i

.
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For the network system with dynamics (6), let ⇠̂i :=
⇠i
�i

for

all i 2 V . We then have ξ = Bξ̂, where ξ̂ = [⇠̂1, ⇠̂2, . . . , ⇠̂n]
and B = diag ([�1,�2, . . . ,�n]). Note that ξ̂ is a vector of

unit variance and identically distributed Gaussian processes.

We next define G(j!) as the transfer function from ξ̂(t) to

p(t) and present the closed-form solution of (7) by

⇢ss =

n
X

i=1

�
Φi

2�i

cos (�i⌧)

1 + sin (�i⌧)
, (8)

in which Φi is the ith diagonal element of the matrix

Q>BB>Q, where Q = [q1, . . . ,qn] 2 R
n⇥n is the

orthonormal matrix of eigenvectors of A.

The network performance measure (8) can be expressed

by the following compact matrix operator form

⇢ss = �
1

2
Tr

h

BB>A�1 cos(⌧A) (In + sin(⌧A))
�1

i

. (9)

IV. DYNAMICS-BASED CENTRALITY INDEX

In what follows, we define a node centrality index based

on network’s sensitivity to small shocks, and provide its

closed form as a function of transportation network topology

(adjacency matrix), epidemic rates (recovery and infection

rates), and internal time delays.

Consider system (6) with an additive Gaussian white noise,

⇠i(t) ⇠ N (0,�2
i ) for all i 2 V . We define the dynamics-

based centrality of subpopulation i by the rate of network

performance measure (9) with respect to the noise variance

as shown below

⌘i :=
@⇢ss

@�2
i

=�
1

2

h

A�1 cos(⌧A) (In + sin(⌧A))
�1

i

ii
, (10)

for all i 2 V . Note that A = �A � �In and operator [.]ii
returns the ith diagonal element of its matrix argument.

Network performance measure ⇢ss can now be retrieved

using (10) as shown below

⇢ss =
X

i2V

⌘i�
2
i . (11)

Moreover, the series expansion of dynamics-based central-

ity ⌘i can be obtained by

⌘i =c0(�⌧) +
�

�
c1(�⌧)[A]ii +

�2

�2
c2(�⌧)[A

2]ii + · · ·

=
1
X

k=0

�k

�k
ck(�⌧)[A

k]ii (12)

where

c0(�⌧) =
cos(�⌧)

2�(1� sin(�⌧))
, c1(�⌧) =

cos(�⌧)� �⌧

2�(1� sin(�⌧))
,

and

c2(�⌧) =
2(cos(�⌧)� �⌧)(1� sin(�⌧))2

4�(1� sin(�⌧))3

+
�2⌧2 cos(�⌧)(cos(�⌧)� sin(�⌧) + sin2(�⌧))

4�(1� sin(�⌧))3
.

(13)

The dynamics-based centrality ⌘i can then be interpreted

as a walk-based index that penalizes a walk of length k by
�k

�k
ck(�⌧). This notion is particularly close to the resolvent

subgraph centrality defined in the next subsection.

A. Correlation with resolvent centrality

The resolvent centrality (a.k.a. resolvent subgraph cen-

trality) of undirected network (6) with weighted adjacency

matrix A is defined by

RCi(↵) =
⇥

(In � ↵A)�1
⇤

ii

= 1 + ↵[A]ii + ↵2[A2]ii + · · ·+ ↵k[Ak]ii + · · ·

=
1
X

k=0

↵k[Ak]ii, (14)

where [A]ii indicates the weight of self-loop for node i.

[Ak]ii computes the sum of weighted closed walks of length

k starting from i. ↵ is bounded above by the inverse of A’s

largest eigenvalue to ensure that In�↵A is invertible and that

its power series converges to its inverse. Note that the largest

eigenvalue of A is denoted by un; therefore, 0 < ↵ < 1

un

.

Resolvent centrality of node i presents the sum of weighted

closed walks of length k for k = 0, 1, 2, · · · , where weighted

closed walks of length k are penalized by ↵k. The following

theorem presents a correlation between dynamics-based and

resolvent centralities.

Theorem 1: For undirected epidemic network (6) over a

weighted (or unweighted) graph G with adjacency matrix

A = [aij ] 2 R
n⇥n, infection rate �, and recovery rate �, as

⌧ ! 0, node rankings obtained by dynamics-based centrality

⌘i converge to that provided by resolvent centrality RCi,

where ↵ = �
�

.

B. Correlation with local centralities

We define the following local centrality for epidemic

network (6) with adjacency matrix A = [aij ]

oi := [A]ii = aii, (15)

which is dependent on local social distancing status (self-

loops) in the network. We also introduce another local

centrality for epidemic network (6) as follows

li := [A2]ii =

n
X

j=1

a2ij , (16)

which returns the sum of weighted closed walks with length 2
starting from node i. Note that for an unweighted undirected

network with no self-loops, li turns the degree centrality

of node i, which is a special version of local centrality.

We denote the output of rankings obtained using centrality

measures ⌘i, oi, and li by Ie, Io, and Il, respectively. In

other words, Ie, Io, and Il present the set of nodes ranked in
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a descending order based on the value of their corresponding

centrality index. In what follows, the reverse order of a set

I is denoted by R(I). In the following theorem, we propose

a correlation between local centralities and dynamics-based

centrality when the ratio of infection rate to recovery rate is

close to zero, i.e., the disease is not highly contagious.

Theorem 2: For epidemic network (6) over a weighted

undirected graph G with adjacency matrix A = [aij ] 2

R
n⇥n, infection rate �, recovery rate �, and time delay

0 < ⌧ < �⇡
2�1

, if �
�
! 0+, the following statements hold.

(i) When all subpopulations follow local social distancing

(graph G with adjacency matrix A is loop-less), i.e.,

aii = 0 for all i 2 V , then

Ie = Il. (17)

(ii) When some subpopulations follow local social distanc-

ing (graph G with adjacency matrix A contains loops),

i.e., aii 6= 0 for some i 2 V , then

Ie =

8

>

<

>

:

Io if 0 < �⌧ < z1

Il if �⌧ = z1

R(Io) if z1 < �⌧ < ⇡
2
,

(18)

where z1 ⇡ 0.739 is the numerical solution to c1(z1) =
0 such that z1 < ⇡

2
(see (12)).

It can be inferred that the local centralities li and oi
can provide an appropriate node ranking for network (6)

only when less contagious diseases are spreading. However,

since these local node centralities provide a fixed ranking

list regardless of the disease status, one can not rely on

those indices to dynamically identify the central nodes as

the disease progresses.

C. Correlation with eigenvector centrality

The eigenvector centrality for epidemic network (6) with

adjacency matrix A = [aij ] is obtained by

evi := e>i vn = vn(i), (19)

where ei is the ith standard basis vector and vn is the

dominant eigenvector of matrix A associated with its largest

eigenvalue un. Since network (6) is undirected, we can

decompose its non-negative adjacency matrix by A =
V UV >, where V = [v1,v2, · · · ,vn] is orthogonal and U =
diag ([u1, u2, · · · , un]). Note that based on Perron-Frobenius

theorem, a connected graph with non-negative adjacency

matrix A has a non-negative real eigenvalue, which has

the maximum absolute value among all eigenvalues, that

is |u1|  · · ·  |un�1| < un. The eigenvector associated

with un can be chosen to have non-negative real entries,

i.e., vn > 0.

We denote the output of node ranking based on eigenvector

centrality evi by Iev , and present the following theorem

to connect the dynamics-based centrality and eigenvector

centrality for certain ranges of epidemic rates.

Theorem 3: For epidemic network (6) over a weighted

undirected graph G with adjacency matrix A = [aij ] 2

R
n⇥n, infection rate �, recovery rate �, and time delay

⌧ ! 0, if �
�

! 1

un

�
, then the ranking provided by

dynamics-based centrality, Ie, converges to that obtained by

eigenvector centrality, Iev .

D. Interlacing nodes in dynamics-based centrality

As shown in the previous subsections, rankings obtained

by dynamics-based centrality are subject to change as time

delay or epidemic rates change, which results in having

interlacing nodes (nodes with variable ranks) as the dis-

ease progresses. This phenomenon is consistent with what

happens as an epidemic disease progresses in a cluster

of connected communities; as the disease circulates in the

network, different communities become more critical. This

subject is further studied in this subsection.

Definition 1: Two nodes i and j of graph G are cospectral

if for every integer k � 0, we have [Ak]ii = [Ak]jj .2

Definition 2: Two non-cospectral nodes i and j of graph

G interlace at �
�

if ⌘i

�

�

�

�
�

= ⌘j

�

�

�

�
�

; �
�

is an interlacing value.

We should note that two cospectral nodes also have the

same degree, eigenvector, and dynamics-based centrality

measures. The following theorem provides an upper bound

on the number of interlacing values for every pair of nodes

in the non-delayed version of network (6) when dynamics-

based centrality is incorporated.

Theorem 4: Consider the epidemic network (6) over graph

G. For any two non-cospectral nodes i, j 2 V , there can be at

most n� 1 interlacing values for dynamics-based centrality

when ⌧ = 0.

V. CASE STUDY

Air transportation plays an important role in introducing

a new disease to a metapopulation and spreading it within

its subpopulations. In this regard, we have implemented our

simulations on a group of United States’ busiest airports as

a representative of an epidemic network; the airports are

the network nodes, which connect to other nodes by air

traffic. This network includes | V | = n = 15 airports and

| E | = m = 104 weighted connections between them, see

Fig. 1. The weight of connections is determined based on

the available data in [21], which provides the total number

of flights between every two airports during a certain year.

The interconnection between every pair of nodes is ranked

based on air traffic volume between them, which is specified

by the color of links. The airports are ranked based on their

dynamics-based centrality index, ⌘i, which is indicated by

the size of circles located in the position of each airport.

Fig. 2 shows the average infection size of network, p̄(t) =
1

n

P

i2V

pi(t), with nonlinear dynamics (3) and different time

delays when 50 percent of the metapopulation is initially

infectious and R0M = 2.3. For the network with no delay,

⌧ = 0 days, or comparatively small delays, there would be

no fluctuations in the epidemic dynamics but as the delay

increases, epidemic pulses begin to appear. Experiencing

2Equivalently, two vertices i and j in a graph G are cospectral if the
node-removed subgraphs G\{i} and G\{j} have the same characteristic
polynomial (cf. [10], [20]).
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Fig. 1. (a) Network of United States’ busiest airports with 15 sub-
populations and their normal air traffic volume. All the subpopulations
are experiencing 11 days of time delay. The hubs are ranked based on
their dynamics-based centrality index, ηi, which is reflected through the
size of their indicating circle. The interconnections are ranked by their
corresponding traffic volume which is specified by the color of edges. The
basic reproduction number of this network is R0M = 0.892.

Fig. 2. Average infection size of network (3) with different time delays.
50 percent of the metapopulation is initially infectious and R0M = 2.3.

TABLE I

TOP 4 AIRPORT RANKINGS BY DYNAMICS-BASED CENTRALITY FOR

DIFFERENT VALUES OF R0M WHEN τ → 0.

Rank 0 < R0M  0.06 R0M = 0.5 0.92  R0M < 1
1 LAS SFO SFO

2 SFO LAS DEN

3 DEN DEN LAS

4 MIA PHX LAX

Fig. 3. dynamics-based centrality difference between nodes 1 (Atlanta) and
3 (Chicago) versus network basic reproduction number R0M for τ = 11
days. The dynamics-based centrality of the two nodes interlace once.

12 days of lag results in approximately 2 percent (which

corresponds to a considerable number of individuals in the

United States population) increase in the average infection

size within 30 days of epidemic onset.

The dynamics-based centrality difference between Atlanta

and Chicago with respect to basic reproduction number

is shown in Fig. 3. When ⌧ = 11 days, one interlacing

between the selected nodes is observed. In other words, as

the disease progresses and R0M increases, Atlanta becomes

a more central subpopulation than Chicago, requiring a more

restricted traffic control strategy.

Table I presents the top 4 ranking results for different

ranges of R0M when ⌧ ! 0 and aii 2 [0, 1] for all i 2 V .

As proven by Theorem (2), the output of dynamics-based

centrality, Ie, and local centrality, Io, converge as �
�
! 0+

or R0M ! 0+. For the simulated network in particular,

when 0 < R0M < 0.06, the first 4 central airports based

on dynamics-based and local centralities are identical. On

the other hand, when ⌧ ! 0, the output of dynamics-based

centrality, Ie, will converge to that of eigenvector centrality,

Iev , as �
�

! 1

un

�
or R0M ! 1�, see Theorem (3). For

the studied network, these centralities provide the same top

4 rankings while 0.92 < R0M < 1. The simulation results,

along with our theoretical findings, indicate that for R0M !

0+ and R0M ! 1�, the effect of epidemic properties on

the rankings results is negligible. In such cases, a node’s

location in the network will be the only factor determining

its impact on the network performance. On the other hand,

for 0 < R0M < 1, the epidemic properties of disease will

also contribute to the rankings provided by dynamics-based

centrality, which in turn leads to a different output.

Fig. 4(a) presents the transition of dynamics-based rank-

ings in non-delayed network as the reproduction number

increases. Since ⌘i is a nonlinear function of epidemic rates,

a non-smooth variation in airport rankings is observed. The

initial and final rankings (obtained for R0M ! 0+ and
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(a) (b) (c)

Fig. 4. Heat map of airport rankings obtained by the dynamics-based centrality with respect to (a) network basic reproduction number
R0M when τ → 0. (b) time delay τ when R0M → 0

+. (c) time delay τ when R0M → 1
−.

R0M ! 1�, respectively) are equivalent to the rankings

found by local and eigenvector centralities, respectively.

The airport rankings provided by dynamics-based cen-

trality for different time delays (in the stable range) when

R0M ! 0+ is shown in Fig. 4(b). As predicted by Theorem

2, when ⌧ ⇡ 6.4 (equivalent to �⌧ = z1 in Theorem 2), we

observe a sudden shift in the rankings, which reverses the

order of central nodes. In this case, the value of internal time

delay determines the order of central airports.

Fig. 4(c) shows the dynamics-based rankings for R0M !

1� as time delay increases. An invariant ranking is observed

for a certain range of time delay.

VI. CONCLUSION

The n-intertwined SIS model with internal time delays is

studied and a performance measure based on the H2 norm is

developed to evaluate the effect of small shocks, modeled by

Gaussian white noise, on the network robustness. This metric

is then employed to define a new node centrality index,

which evaluates the sensitivity of network performance with

respect to shocks to its nodes. Unlike walk-based centralities,

such as local or eigenvector centrality, the introduced cen-

trality incorporates the impact of epidemiological properties

of the disease to penalize the long closed walks in the

network, making it a dynamics-based centrality. We prove

that for certain choices of parameters, the dynamics-based

centrality and resolvent centrality are equivalent. For slightly

contagious disease, i.e., significantly low infection rate with

respect to recovery rate, we present the correlation between

the dynamics-based centrality and two local centralities, one

of which turns to degree centrality for the loop-less networks.

Moreover, we show that for certain epidemic rates, when

internal time delays are negligible, the output of dynamics-

based centrality and eigenvector centrality converge. The re-

sults obtained in this study are based on certain assumptions,

including the use of a linear SIS model and an undirected

network. Future research can build upon these findings to

explore more complex scenarios.
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