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Abstract

Ab-initio molecular dynamics enables following the dynamics of biological systems from the first
principles, describing the electronic structure and offering the opportunity to “watch” the
evolution of biochemical processes with unique resolution, beyond the capabilities of
state-of-the-art experimental techniques. This article reports the role of first-principles (ab-initio)
molecular dynamics (MD) in the CRISPR-Cas9 genome editing revolution, achieving a profound
understanding of the enzymatic function and offering valuable insights for enzyme engineering.
We introduce the methodologies and explain the use of ab-initio MD simulations to establish the
two-metal dependent mechanism of DNA cleavage in the RuvC domain of the Cas9 enzyme, and
how a second catalytic domain, HNH, cleaves the target DNA with the aid of a single metal ion. A
detailed description of how ab-initio MD is combined with free-energy methods—i.e.,
thermodynamic integration and metadynamics—to break and form chemical bonds is given,
explaining the use of these methods to determine the chemical landscape and establish the catalytic
mechanism in CRISPR-Cas9. The critical role of classical methods is also discussed, explaining
theory and application of constant pH MD simulations, used to accurately predict the catalytic
residues’ protonation states. Overall, first-principles methods are shown to unravel the electronic
structure and reveal the catalytic mechanism of the Cas9 enzyme, providing valuable insights that
can serve for the design of genome editing tools with improved catalytic efficiency or controllable
activity.

1. Introduction

Genome editing enables the modification of nucleic acids, by deleting, replacing, or inserting desired
sequences, to improve biological function and correct diseases [1]. Considered the future of medicine and
biotechnology, genome editing will enable to cure at their source plethora of genetic diseases, including
cancer and neurodegeneration. Genome editor proteins are at the core of this revolution, with the clustered
regularly interspaced short palindromic repeat (CRISPR)-Cas9 system introducing the precise manipulation
of nucleic acids [2].

CRISPR-Cas9 is a part of a prokaryotic immune system that protects bacterial cells against invading
foreign DNA. This system is based on a single protein—the endonuclease Cas9—that uses a guide RNA to
recognize and cleave foreign DNA sequences [2, 3]. As the guide RNA can be easily switched to target any
desired DNA sequence, this system has been widely applied for targeting and manipulating nucleic acids not
only in basic bioscience, but also as a successful genome editor for medicinal, pharmaceutical and
biotechnological purposes. Due to the widespread utilization of CRISPR-Cas9, an urgent need has emerged
to understand its enzymatic function and rationally tune the complex activity to fit the requirements of
specific applications. This has been an ideal scenario for first-principles molecular dynamics (MD), enabling
us to dig deeply into the electronic structure of CRISPR-Cas9, characterizing its catalytic cycle, and offering
fundamental insights for the enzymatic design of improved function.

© 2023 IOP Publishing Ltd
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Figure 1. (a) Overview of the Streptococcus pyogenes CRISPR-Cas9 system in complex with DNA and RNA (PDB: 5F9R) [11]. The
cas9 protein is shown in molecular surface, highlighting the catalytic domains RuvC (blue) and HNH (green). The RNA
(magenta) and the DNA (black) are shown as ribbons. (b) Catalytic site of the RuvC domain, displaying a two-metal ion
architecture, including two Mg?* ions (orange spheres) surrounded by the E762, D986, D10 carboxylates and the catalytic H983
[15, 16]. (c) Catalytic site of the HNH domain, holding a single catalytic Mg?T ion (orange sphere) coordinated by D839, the
N863 backbone, and water molecules [13, 15]. The catalytic H840 is also shown.

Intense structural studies of the CRISPR-Cas9 reported several crystallographic and cryogenic electron
microscopy (cryo-EM) structures [4, 5], from a number of species [6—8], characterizing the Cas9 protein in
the apo form and in complex with nucleic acids [9-11], and recently also bound to off-target DNA sequences
[12]. The most recent structures of the Streptococcus pyogenes Cas9 disclose the system in its activated form
[13-15], prone to perform double-stranded DNA breaks through two nuclease domains—viz., HNH and
RuvC (figure 1(a)). HNH cleaves the DNA strand base-pairing the guide RNA, i.e. the so-called target strand,
while RuvC cleaves the other non-target strand (NTS). The nuclease activity of CRISPR-Cas9 is cardinal for
genome editing. Indeed, upon site-specific DNA cleavages, the homology-directed DNA repair machinery of
the cell fixes the break introducing the desired insertions or modification.

As the CRISPR-Cas9 complex originates from the bacterial immune system, it evolved in a DNA-rich
environment avoiding, but often also tolerating, the undesired cleavage of DNA sequences that do not fully
match the RNA guide. This phenomenon is part of the so-called ‘off-target’ effects [17], which can limit the
applicability of CRISPR-Cas9 for biomedical applications, resulting in the deletion/insertion of erroneous
genes, and henceforth unwanted phenotypes. In order to adapt to this scenario, Cas9 developed a number of
allosteric control mechanisms [18, 19], which help limit DNA off-target cleavages. Extensive experimental
efforts have established the biophysical function of this genome editor [20], using biochemistry [2, 21, 22],
structural biology [4—15], and single-molecule spectroscopy [23-27]. Computational studies based on
classical mechanics outlined the conformational changes for nucleic acid binding [28-32], the allosteric
effects associated with DNA recognition [33-35], and its specificity [36, 37]. However, characterizing how
CRISPR-Cas9 ultimately cleaves DNA is a matter that pertains to its electronic structure and, hence,
high-level quantum mechanical (QM) simulations. Understanding the mechanism of DNA cleavage and its
underlying electronic structure is critical to control its enzymatic function, and developing new genome
editing tools with improved specificity.

In this review article, we provide an overview of the computational methods that have been used to
characterize the catalytic mechanism by which CRISPR-Cas9 cuts nucleic acids. The theoretical basis of
ab-initio methods is explained, followed by their application, providing a direct explanation of their use with
real-world examples on genome editing systems. This contribution offers an easy-to-read description of
complex computational approaches, including high-level quantum mechanics and first-principles MD
simulations, which will help their understanding by a broad audience of chemists and biochemists. Methods
and applications reviewer here are valuable to the computational investigation of genome editing systems
and RNA guided enzymes through computational methods [38].

2. Unique opportunity for first-principles molecular dynamics

Cas9 is a metal-dependent nuclease, performing DNA cleavages thanks to the aid of metal ions [9]. The
RuvC domain displays the structural fold of the RNA ribonuclease H, with a two-metal dependent site,
which mainly exploits Mg?T to perform phosphodiester bond cleavages (figure 1(b)). The HNH domain
shows structural homology with homing endonucleases (such as the T4 endonuclease VII), performing
phosphodiester bond cleavage of the DNA through a single Mg?™ ion (figure 1(c)). Although the structural
homology of the Cas9 domains with known nucleases was known, the active site chemistry and the specific

2



10P Publishing

Electron. Struct. 5 (2023) 014003 L. Nierzwicki et al

role of residues in the catalytic pocket remained ambiguous for a long time. Due to the high flexibility of the
complex, early structural studies alone could not provide an unambiguous description of the active site
chemistry. Moreover, as the enzyme performs its activity, it is often difficult for structural biology to
characterize the rapid events during the cleavage step. As a few experimental techniques enable us to ‘watch’
the bond breaking and formation along chemical reactions [39], high-level QM offers the opportunity to
unravel the electronic structure deep inside, and to describe how chemical bonds form and break. By
empowering QM with MD simulations, one can follow the dynamics of the enzymatic reaction from the
first-principles (i.e. ab-initio), integrating the equation of motion for the electronic degrees of freedom over
time. Ab-initio MD also offers a reliable description of metal ions, which are so crucial for the Cas9 enzyme
and for other genome editors, but whose charge transfer and polarization effects are not completely
described by point-charge classical force fields [40].

Despite this power and ever-increasing advance in high-performance computing (HPC), ab-initio MD
remains computationally expensive and restricted to a few hundreds of atoms. This is a limitation for
studying genome editors in their realistic water environment, as they can comprise more than 500 000 atoms.
This is solved by combining ab-initio MD with mixed QM/molecular mechanics (QM/MM) schemes,
treating the enzyme’s active site at a high QM level, while the rest of the system in explicit solution is
described at the classical MM level (figure 2(a)) [41]. This scheme allows taking into account how the
environment impacts the electronic structure of the reactive center, providing a holistic description.

In this scenario, first-principles MD is uniquely positioned not only to achieve a profound understanding
of the enzymatic function but to provide valuable insights that can directly serve the design of genome editing
enzymes with improved catalytic efficiency or controllable activity. As one of the key goals of CRISPR-Cas9
engineering is to reduce off-target cleavages, knowing how Cas9 cleaves DNA is of the utmost need.

3. Overview of first-principles (ab-initio) methods

First-principles (ab-initio) MD uses accurate electronic structure calculations to integrate the equation of
motion over time, henceforth describing the dynamics of nuclei and electrons [42]. Thanks to the QM
description, and its combination with MD simulations, bonds can be formed and broken ‘on-the-fly’,
enabling to study of enzymatic catalysis [43]. The QM description can be achieved using various levels of
theory. A good trade-off between accuracy and computational cost is reached with density functional theory
(DFT), using functionals of the electron density [44]. Though the application of a mixed QM/MM approach,
the reactive center of the enzyme (i.e. active site) can be treated at a QM DFT level, while the rest of the
system in explicit solution is described at the classical MM level (figure 2(a)) [45—47]. In the general form of
a hybrid QM/MM scheme, the total energy of the system (i.e. the Hamiltonian, H) is achieved through the
summation of the Hamiltonians for the quantum (Hqy) and classical (Hym) systems and the interaction
between the QM and MM regions (Hqmmm ). This results in a single hybrid Hamiltonian, H:

H= Hqm + Hmm + Hommim- (1)

The classical Hamiltonian (Hy) is calculated based on the MM formalism using the force field. The
quantum Hgy is obtained from the Kohn—Sham energy, described as:

ES [{0:}] = T, [{0;}] + /dr Vext(r)n(r)Jr%/dr Vit (N)n(r) + Ex [n]+ Eions (RY) 2)

where (); is the auxiliary function representing the Kohn—Sham orbitals. The first term (T;) in the equation
represents the kinetic energy, the second term (V) denotes the external potential due to the interaction
between nuclei and electrons, the third term (Vi) represents electrostatic energy due to electron density
calculated using Hartree potential, and the fourth term (Ey.) is the exchange correlation function calculated
here using generalized gradient approximation functionals. The last term accounts for the interaction energy
due to nuclear charges.

The Hommm determines the interaction between the QM and MM regions of system. It comprises of
terms defining the bonded interaction (H B‘I{,}f\jM) at the boundary, Van der Waals (H ‘SMMM) and electrostatic
interactions (H qyppee) between QM and MM regions,

bond aw 1
Hommm = H Qviam + H qvinm + H?}?\?/MM' (3)

In the equation above, the first term takes care of the covalent bonds which crosses the QM and MM
interface. There are three approaches to address these bonds: (a) hydrogen atoms can be placed along the
bond to complete the valency requirements of the QM atoms, (b) a capping potential can be used to cap the
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Figure 2. First-principles quantum mechanics/molecular mechanics (QM/MM) approaches. (a) QM/MM partitioning of the
CRISPR-Cas9 system. The reactive center is treated at a QM (DFT/BLYP [30, 31]) level of theory, while the remaining of the
system is treated at a classical MM force field level (Amber ff12SB [48] + ff99bsc0 for DNA [49] & xOL3 for RNA [50, 51]).

(b) Simplified diagram of classical and Born—Oppenheimer MD simulations. In classical MD simulations, the equation of motion
F = ma is integrated over time for the atoms only, considering the atoms as balls connected by springs. In Born—-Oppenheimer
MD simulations, the electronic Schrédinger equation is solved at each time step of the dynamics, computing the forces for the
present nuclear configuration. The forces are then used to integrate the equation of motion and propagate the dynamics. (c) In
Car—Parrinello MD simulations, an extended Lagrangian (Ley) is used to introduce Newtonian fictitious dynamics for the
electronic degrees of freedom. Lex includes the kinetic energy for the nuclei (T ) and for the electronic degrees of freedom (Tg),
as well as the potential energy (Epo(). By introducing a fictitious’ mass, the electronic degrees of freedom are propagated on the
Born-Oppenheimer surface without the need of solving the electronic Schrodinger equation at each time step (as in
Born-Oppenheimer MD). Details are given in the text.

boundary atoms, (c) localized frozen orbitals can be used to define for the boundary atoms of the QM
region. The Van der Waals (H gI\%MM) interaction between QM and MM atoms are calculated by using the
12—6 L] potential using the coefficients from the MM forcefield. The electrostatic interactions (Hgiff,MM)
between QM and MM regions are the most crucial term for the Hopmmv Hamiltonian, as the surrounding
MM atoms polarize the QM region and establish environmental effects on the QM region. The best
approach to obtain the electrostatic term is a fully Hamiltonian electronic embedding scheme [52]. In this
method, short range electrostatic effects due to the MM atoms near to the QM region are obtained through a
modified coulombic functional, while the electrostatics between the distant MM atoms and QM region is
determined by coupling the multipole moments of QM charge with the point charges on MM atoms. The
system’s dynamics is then investigated by integrating the equation of motion for the electronic degrees of
freedom over time through the Born—-Oppenheimer or Car—Parrinello methods (vide infra).
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4. Ab-initio schemes to describe the electronic structure of genome editors

Born—-Oppenheimer MD is an established ab-initio method, which builds on the approximation that the
motion of the electrons and nuclei can be separated [42]. Since the electrons are by orders of magnitude
lighter than the nuclei, they move faster and relax rapidly to the ground-state configuration given by the
nuclear positions. Hence, the nuclei can be considered stationary points, and their coordinates become
parameters in the wave function for the electrons. The electronic Schrodinger equation can be solved for
each fixed nuclear configuration:

He\pe = Ee\I/e (4)

with E. is the contribution of the electrons to the energy of the system and H. is the electronic Hamiltonian.
In Born—Oppenheimer MD, the electronic Schrodinger equation is solved at each time step of the dynamics,
computing the forces for the present nuclear configuration (figure 2(b)). This can be computationally
demanding in the case of a large number of QM atoms. Born—-Oppenheimer MD simulations are commonly
employed to characterize the electronic structure of protein/nucleic acid complexes [53, 54], and to perform
a careful equilibration prior Car—Parrinello MD simulations.

Car-Parrinello MD introduced Newtonian fictitious dynamics for the electronic degrees of freedom
through an extended Lagrangian with coupled equations of motion for both nuclei and electrons [55]. The
extended Lagrangian (L) includes the kinetic energy for the nuclei (Ty) and for the electronic degrees of
freedom (T§), as well as the potential energy (Epo)that depends on both the nuclear positions (R;) and the
electronic wave functions ;,

Lx= Tn+ Te— Epot~ (5)

Ly is written as:
1 1 .
b= YA+ 3 bl vl Sons[{ [ ar - (©
1 i ij

where the Lagrange multipliers A;; ensure the orthonormality of the wave functions ¢; and y is a fictitious’
mass associated with the electronic degrees of freedom; and the potential energy is given by the expectation
value of the total (ground state) energy E = v |H| 1)y of the system. This enables the electronic degrees of
freedom to be treated as fictitious’ dynamic variables, which are propagated on the Born—-Oppenheimer

(i.e. the ground state) surface, without the need of a wave function optimization at each time step as in
Born—-Oppenheimer MD (figure 2(c)). Car—Parrinello MD has been almost exclusively used for
first-principles studies of the CRISPR-Cas9 genome editor, while using Born—-Oppenheimer MD to properly
equilibrate the system.

Car—Parrinello MD simulations were used to characterize the conformation of the RuvC active site in the
presence of Mg?* ions. Early structural data reported the RuvC active site bound to Mn?** ions. In the
4CMQ PDB structure, the D10, D986 and E762 carboxylates coordinate the two metal ions, with the H983
residue also coordinating one metal [9]. Car—Parrinello MD simulations of this structure were performed in
the presence of the catalytic Mg?* ions and in replicates of ~40 ps each (figure 3) [56]. As a result, the active
site chemistry remarkably changed in the presence of the different metals, as also observed in ab initio studies
of the CRISPR-associated protein 1, which intervenes in integrating the viral DNA into the bacterial genome
[57]. In the Mg?>T—bound RuvC site, one water molecule stably locates between H983 and the scissile
phosphate on the DNA (figure 3(a)). This suggested that H983 could act as an activator of the catalysis, a
hypothesis that was supported by alanine mutations of H983 impeding non-target DNA cleavages [58]. The
simulations also revealed that an arginine residue R976, located far away from the active site in the x-ray
structure, approached the cleavage site, to stably bind the scissile phosphate (figures 3(a) and (b)). This
‘arginine finger’ was suggested to stabilize Pscy for catalysis, in line with other Mg?* -aided phosphatases [59].
Remarkably, recent structural work by Bravo and co-workers captured a high-resolution cryo-EM structure
of RuvC right after NTS cleavage (PDB: 754X at 2.76 A) [15], confirming that R976 repositions to bind Psc;.

5. The ‘blue moon ensemble’ to characterize the catalytic mechanism in RuvC

To investigate chemical reactions, ab-initio MD is coupled with free energy methods to determine the
activation free energy of the chemical step and, within transition state (TS*) theory, the associated rate
constant [60, 61]. A popular free energy method is the so-called ‘blue moon ensemble’ approach, in
association with Thermodynamic Integration [62, 63]. The ‘blue moon’ refers to the fact that chemical
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Figure 3. (a) Configuration of the RuvC catalytic site, as arising from QM/MM Car—Parrinello MD simulations (tree replicates of
~40 ps each) [56]. These simulations consistently revealed that H983 positions in close proximity to the scissile phosphate to act
as an activator of the nucleophile. (b) The simulations also showed that the R976 residue, located far away from the active site in
the x-ray structure (R976 in yellow), approaches the cleavage site and stably binds the scissile phosphate (R976 in magenta).

(c) Free energy landscape describing the conformational change of R976, showing that this residue reaches a stable minimum that
corresponds to a ‘down’ conformation pointing toward the scissile phosphate. The free energy profile is plotted along two
coordinates: (a) the distance between the C{ atom of R976 and the scissile phosphate (R976-Ppna) and (b) the dihedral angle
between the Cae — C3 — Cy — C6 atoms of R976 (19-R976). Reprinted with permission from [56]. Copyright (2019) American
Chemical Society.

reactions are rare events in the timescales that can be simulated through ab-initio MD (i.e. picoseconds), and
thereby difficult to observe like a ‘blue moon’. This method allows computing the free energy profile along a
predefined reaction coordinate (RC). In detail, to explore a reaction step, a series of constraints are applied to
enable exploration of the configurations along them. Then, the average converged constraint forces are
computed and integrated along the given RC ({), deriving the associated free energy profile. In the case a
simple distance (or difference in distances) is used as a RC, from the average constraint force F at each point
along the RC, the free energy difference between two points ¢, and ¢; along the RC can be calculated as:

€}
F(G)—F(G) = / d j{ @)

G

where F((;) is the free energy at point (;. This approach has been successfully employed in studies of
phosphodiester bond cleavage in several RNA/DNA processing enzymes [54]. The choice of the RCis a
critical step, since an inappropriate RC could lead to an unphysical description of the chemical step. The RC
might not include all degrees of freedom relevant for the proceeding of the reaction, resulting in the
exploration of the free energy surface (FES) along an incorrect pathway. This problem is limited for
phosphodiester bond cleavage, where the attacking group linearly opposes the leaving group, and a reduced
number of degrees of freedom enter into action. Several studies have shown that using as a simple RC the
difference in distance between breaking and forming P-O bonds [64—68], one can achieve an unbiased
representation of the FES for phosphodiester bond cleavage, obtaining also a fair agreement with the
experimental rates.

The catalytic mechanism of non-target DNA cleavage in the RuvC active site was studied using the blue
moon ensemble in association with thermodynamic integration (figure 4) [16].

Phosphodiester bond cleavage was studied along the difference in the distance between the breaking and
forming P-O bonds (used as RC). As a result of these simulations, a Sy2-like associative mechanism was
observed, with the critical role of H983. Indeed, H983 acts as a general base, abstracting a proton from the
water nucleophile before the TS* and thereby activating the nucleophile. This mechanism is similar to what
observed in other nucleases, using a histidine residue to activate the nucleophile [65, 69]. The joint dynamics
of the two metal ions is critical for this mechanism. Indeed, the two MgZJr ions come closer to each other
while reaching the TS*. In this way, they stabilize the TS, and bring together the reactant groups (i.e. leaving
group, nucleophile and electrophile). This catalytic step was shown to proceed with an overall Helmholtz free
energy (AF#) of ~16.55 + 1.22 kcal mol ™!, which is consistent with the experimental catalytic rate of
3.557! for the RuvC domain [70] that, employing TS* theory and assuming a transmission factor of unity,
results in an activation barrier of ~16/17 kcal mol~!. Taken together, these results reconciled previous
experimental evidences, establishing the catalytic role of the conserved H983 and the metal cluster
conformation within the RuvC active site.
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Figure 4. (a) QM/MM study of phosphodiester bond cleavage in the RuvC domain through a thermodynamic integration
approach. (b) Free energy profile computed at the QM (DFT/BLYP [30, 31]) level of theory. The reaction is studied along the
difference in the distance between the breaking and forming P-O bonds (Ppna-O3’~Owar-Ppna) used as reaction coordinate.
The reaction proceeds from the reactant (R) to the product (P), passing though the transition state (TS) with an energetic
barrier of ~16.9 kcal mol~!. The chemical step is activated by a proton transfer (PT) from the water nucleophile to H983.

(c) Schematic diagram of a thermodynamic integration approach. The free energy difference between two points ¢, and ¢ is
computed by integrating the average constraint forces at each point along the along the reaction coordinate. Reprinted with
permission from [16]. Copyright (2020) American Chemical Society.

6. Metadynamics to establish the HNH catalysis

Another possible limitation of thermodynamic integration is that the FES might consist of numerous
minima that are separated by barriers much larger than the thermal energies and multiple multidimensional
reaction paths might contribute. The metadynamics approach is a free energy method that enables the
dynamic study of the FES along multiple dimensions [71]. In metadynamics, an external history-dependent
bias potential is added to the Hamiltonian of the system as a function of a set of predefined degrees of
freedom (collective variables, CV5s). This allows studying multiple slow processes at once, each described by a
separated CV. Using metadynamics, one can reduce the complex multidimensional free energy space with a
few CVs, while obtaining a multidimensional description. The general idea behind the metadynamics
history-dependent bias is to enhance the system sampling by discouraging configurations that have already
been visited (figure 5(a)). The Hamiltonian of the system, H, is thereby augmented with an external bias
potential V (S, 1):

H=T+V+ V(S ). (8)
This external bias potential V (S, f) is constructed as a sum of Gaussians, deposited during the simulation
to act on a restricted number of degrees of freedom (CVs), S(R) = S; (R) ... S; (R). The total history

dependent potential V (S, t) acting on the system at time ¢ is given by:

d

v )= [drves _y (SR = S(R())’ N

, 2072
i=1 t

where o; is the Gaussian width and (corresponding to the ith CV) and w is the rate at which the bias potential
grows. Several variations of this method led to well-tempered metadynamics [72], multiple walkers
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Figure 5. (a) Schematic diagram of a metadynamics approach. An external history-dependent bias potential V (S, t) is added to
the Hamiltonian H of the system as a function of predefined collective variables (CVs). As the simulation proceeds (i.e. from ~10
to ~90 ps), the free energy basin gets filled and the and the free energy surface can be recovered. (b) QM/MM study of
phosphodiester bond cleavage in the HNH domain through metadynamics. The reaction is activated by H480, extracting a proton
from the water nucleophile and leading to phosphodiester bind cleavage. (c) Time evolution along ~120 ps of metadynamics of
CVj, i.e. the difference in distance between the breaking bond (di = Ppna—03’) and forming bond (d> = Owar—Ppna), showing
that the simulation visits the reactant and product multiple times. (d) Two-dimensional free energy profile, describing

phosphodiester bond cleavage in one dimension (the first collective variable, CV;) and deprotonation of the water nucleophile in
the other dimension (CV>).

metadynamics [73], and histogram reweighted metadynamics [74], which improve the use of metadynamics
for several applications. Metadynamics is widely employed in classical MD simulations for studies of ligand
binding, and biophysical characterizations. The use of metadynamics with ab-initio MD requires particular
attention. Indeed, using a standard metadynamics approach could result in boosting only the collective
variable (as in a classical scheme), not coupling the system to the electronic degrees of freedom. To overcome
this limitation an extended Lagrangian has been introduced [75]. Briefly, a new set of fictitious’ variables
s ={s;} is introduced, where each s; is associated to one of the selected collective variables S;. The new
variable s; has a fictitious’ mass M; and a velocity §;. The dynamics of s; is then derived though an extended
Lagrangian, where the fictitious’ kinetic energy and the potential energy are added as a function of s. This
approach couples the dynamics of the collective variables to the electronic degrees of freedom, avoiding
instabilities and heating of the system. This evades what experts commonly refer to an ‘explosion’ of the
simulation.

Metadynamics was used to characterize the catalytic mechanism of target DNA cleavage in the active
conformation of the HNH catalytic site (figure 5(b)) [76]. As noted above, the HNH domain displays high
flexibility a complex conformational landscape, which made difficult for the early structural studies alone to
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provide an unambiguous description of the active site chemistry. Computational studies thereby inferred
structural information from the homologous enzyme endo T4 endonuclease VII [77], or were based on low
resolution (i.e. 5.2 A) cryo-EM structures [78].

However, recent breakthroughs in the structural biology of CRISPR-Cas9 paved the way for novel and
unexplored catalytic hypotheses [13—15]. Starting from these new configurations of HNH, obtained at
higher resolution, QM/MM metadynamics simulations were applied [76]. A two-dimensional FES was
obtained, describing phosphodiester bond cleavage on one dimension (the first CV;) and the deprotonation
of the water nucleophile on the other (CV;). Through a ~120 ps metadynamics simulation, the chemical
step was sampled from the reactants (R) to products (P) back and forth, which is essential to reconstruct a
converged FES (figure 5(c)). As a result, an Sy2-like catalytic mechanism was observed, in which H840
extracts the water’s proton before the TS#, similar to what observed in RuvC. Notably, also in this case, the
activation free energy for the chemical step was in line with the experimental catalytic rate measured for
HNH, with a computed Helmholtz free energy (AF#) of 17.06 + 1.22 kcal mol ™!, and an experimental
catalytic rate of 4.3 s™! (i.e. AGH ~16/17 kecal mol™!) [70]. The catalytic mechanism also agreed with DNA
cleavage experiments [79]. A critical difference that distinguishes HNH from RuvC is that HNH cuts the
target DNA through a single Mg?™ ion, requiring the support of additional positive charges to stabilize the
TS* [80]. This is attained by K866, which was shown to also engage in the protonation of the DNA O3/,
leading target DNA cleavage to completion [76]. In summary, the use of metadynamics and first-principles
MD simulations resolved the catalytic mechanism, and the conformation of responsible for target DNA
cleavage in CRISPR-Cas9.

Opverall, first-principles QM/MM MD simulations have shown to be instrumental in establishing the
catalytic mechanism of DNA cleavage in CRISPR-Cas9, achieving a profound understanding of the Cas9
function and offering valuable insights for enzyme engineering. First-principles methods are thereby
promising to investigate the catalysis of off-target DNA sequences, which limits the use of CRISPR-Cas9 for
biomedical applications, and the catalytic role of alternative metal ions, which remains unmet. Additional
free energy methods, such as transition path sampling [81], or the string method [82] could be harnessed in
combination with ab-initio QM/MM MD to further explore the intricacies of the catalysis in CRISPR-Cas9.
These methods are valuable additions to the ‘arsenal’ of QM/MM methods to study biochemical reactions. It
is important to note, however, that the application of ab-initio MD for biological systems can be very
challenging, especially when combined with complex free-energy methods. Ab-initio MD is notoriously very
expensive under the computational point of view. It requires massive computational resources that only the
world’s most advanced HPC architectures can provide. For example, the investigation of the HNH catalysis
required collecting an independent sampling of ~700 ps of ab-initio MD. Using a state-of-the-art Intel cluster
(i.e. Expanse at the San Diego Supercomputer Center) and using 120 cores, the performance for ab-initio MD
of a CRISPR-Cas9 system including ~150 QM atoms (on a total of ~500 000 classical atoms) was ~0.6/0.8 ps
each day. This clearly shows that reaching appropriate sampling requires time and persistence, often resulting
in studies that take two years (or more) of computer simulations. In this scenario, the use of the BLYP
[30, 31] DFT functional for the description of the QM part allows sampling the FES in the most exhaustive
way possible and in a timely fashion. However, the calculated FES might suffer by an underestimation that is
intrinsic to the BLYP level. On the other hand, exhaustive sampling using a hybrid functional (e.g. B3LYP
[31, 54]) might be prohibitive, due to the extremely high computational cost. To overcome this limitation,
new frameworks for multiscale modeling are being developed. These include a multiscale modeling in
computational chemistry approach [83], with high parallelization of both the QM and MM subsystems on
HPC architectures. This recent breakthrough will hopefully reduce the computational cost for more accurate
QM/MM simulations, implementing also multiple time step approaches.

7. Role of classical molecular dynamics simulations

Classical MD simulations are essential to properly equilibrate the system prior QM/MM simulations and to
compute biochemical properties that are foundational to start ab-initio MD. A critical property for catalysis
is certainly the pK, of catalytic residues, which can clarify the protonation state of a residue and give an idea
on how the reaction could proceed. Starting QM/MM simulations from an erroneous protonation state
could lead to invalid catalytic mechanisms. It is thereby essential to establish the protonation state of reactive
residues prior QM/MM simulations. Toward this goal, constant pH (CpH) MD simulations are a valuable
approach [84]. In this method, the protonation state of an ionizable group can change during the simulation
according to the local electrostatic environment and the pH of the solution. The protonation states can be
periodically updated using Monte-Carlo sampling following MD steps [85-87], or through A-dynamics by
continuously propagating the motion of a virtual ‘A-particle’ between different protonation Hamiltonians in
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Figure 6. Titration curves (a) and population of states (b) for the H799 and H840 residues of the HNH domain of Cas9, computed
though constant pH (CpH) MD simulations. (a) Titration curves (continuous lines) were obtained by fitting the simulation data
(points) to equation (9). For each titration curve, the pK, and the Hill coefficient n are reported. The Hill coefficient assumes
values within the 0.5-1.5 range, indicating that the protonation states are properly sampled at each pH value [29]. (b) Population
of histidine residues protonated (His-d¢, red) and in the two neutral tautomeric forms protonated on § (His-d, green) or on &
(His-¢, blue) is computed at each pH value from CpH MD simulations. At pH 7.4 (indicated using a dashed line), the catalytic
H840 assumes the neutral tautomeric form protonated on the e position for >60% of the simulation time. (c) Representative
snapshot from CpH MD simulations, showing the HNH catalytic core with H840 protonated on the € position.

explicit solvent simulations [88-91]. The pK, is computed from the distributions of the protonation states
using the Hill equation:

Xi

pK, (i) = pH—nlog (10)

1— x;

in which x; is deprotonated fraction of residue 7, and # is the Hill Coefficient. The titration curves can be
derived by fitting the deprotonated fraction x; to equation (9), using the Levenberg—Marquardt nonlinear
optimization method:

1

10m(PKa—pH) 4 1”7 (11)

fo=

Good titration curves are characterized by small deviations of each point from the fitted titration curve
(i.e. error from the fit) and Hill coefficients between 0.5 and 1.5, which indicates that the protonation states
are properly sampled at the simulated pH values [29]. To determine the protonation state of the catalytic
histidine residues in CRISPR-Cas9, explicit solvent CpH MD simulations were performed in conjunction
with a replica exchange method [23] to enhance the sampling of the protonation states (figure 6).

These simulations were extensively performed, sampling for ~40 ns at each pH value from 1 to 14, and
obtaining an excellent agreement with the experimental pK,, measured through nuclear magnetic resonance
(NMR). Titration curves were built for the HNH catalytic residue H840 and for the neighboring H799, used
as a control. The experimentally measured pK, for H840 was ~6.83, and ~7.27 for H799. This indicates that,
at pH 7.4, H840 is 57% protonated and H799 is 79% protonated. CpH MD simulations reported an excellent
agreement with the NMR measurements, resulting in pK, values of ~6.90 and ~7.52 for H840 and H799,
respectively (figure 6(a)). Moreover, in-depth analysis of the protonation states also revealed that at pH 7.4,
H840 is likely to be a neutral tautomer protonated on the € position (H840-¢ > 60% of the simulation;
figure 6(b)). In this protonation state, the H840 § nitrogen locates in proximity to the water nucleophile for
its activation. This is a critical information, which enabled to start QM/MM simulations from the correct
protonation state.

8. Conclusions

Here, we reviewed methods and applications of first-principles MD simulations to unravel the biochemical
function of the CRISPR-Cas9 genome editing system. At the core of this technology, the endonuclease Cas9
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performs double-stranded DNA cleavages using two catalytic domains. First-principles MD simulations have
been instrumental in characterizing the catalytic mechanism of DNA cleavage, offering critical insights for
the design of genome editing enzymes with improved catalytic efficiency.
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