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Abstract— In this paper, we investigate the performance
deterioration of commensurate fractional-order consensus net-
works under exogenous stochastic disturbances. We formulate
fractional-order differential equations for the network dynam-
ics using Caputo derivatives and the Laplace transform, and
employ the H2 norm of the dynamical system as a performance
measure. By developing a graph-theoretic methodology, we
relate the structural specifications of the underlying graphs to
the performance measure and explicitly quantify fundamental
limits on the best achievable levels of performance in fractional-
order consensus networks. We also establish new connections
between the sparsity of the network and the performance
measure, characterizing fundamental tradeoffs that reveal the
interplay between the two. Finally, we provide numerical
illustrations to verify our theoretical results, which could help
in the design of robust fractional-order control systems in the
presence of disturbances.

I. INTRODUCTION

Background: The study of complex dynamical networks has
been a subject of growing interest in recent years, with
a focus on the accurate description and modeling of such
systems [1]–[4]. While many canonical models and methods
exist, complex systems still have eluded quantitative analytic
descriptions. One such example is soft/flexible robots, which
are entailed by elastic properties that ordinary differen-
tial equations cannot fully capture [5]–[8]. Fractional-order
systems have been proposed as a method to model these
systems accurately with fewer parameters [9]. Fractional-
order systems are considered as an extension of integer order
systems, where the state space representation of the dynamic
system involves non-integer derivatives of states [10]–[12].
Although there has been considerable research in the field
of fractional order systems, limited attention has been given
to investigating the robustness of the performance measure
of a Fractional-Order Linear Time-Invariant (FLTI) system
over various types of underlying graphs.
Objectives and research questions: The role of aggregation
in multi-agent systems is crucial for executing complex tasks,
such as coordinating the movements of a group of mobile
robots to maintain a predetermined formation pattern while
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sustaining stability in the presence of external disturbances
or shocks [13]–[16]. To explore this behavior, this study
aims to propose a novel virtual viscoelastic-based model
for inter-agent interaction [11]. This model characterizes the
sensing abilities of each agent through virtual viscoelastic
links, collectively referred to as the Voigt system, which
allows each agent to compute its neighbors’ states using only
local information.

Each robot in the multi-agent system is equipped with
sensors and actuators that gather information about the
environment and its relative position with respect to other
robots. The collected data is then aggregated to determine the
desired formation pattern and velocity for the entire team,
which is used by each robot to adjust its movements and
maintain the predetermined formation pattern, even under
adverse conditions such as external disturbances or shocks.
The virtual viscoelastic-based model further improves the
performance of the system by leveraging fractional-order
systems to accurately model the complexities of viscoelastic
materials. This results in a more robust and efficient method
for modeling and optimizing complex multi-agent networks
compared to traditional approaches.

The study aims to answer the following research questions: 

- How can virtual viscoelastic models be used to accurately
model the behavior of multi-agent systems?

- What is the impact of structural specifications of the
underlying graphs of the network on the performance
measure?

- What are the trade-offs between sparsity, dynamic com-
plexity, and performance in fractional-order linear consen-
sus networks?

- What is the performance of the proposed virtual
viscoelastic-based model for a soft robot, and how does
it compare to traditional approaches?

Significance and contribution: The proposed virtual
viscoelastic-based model is a significant contribution
to the analysis and modeling of multi-agent networks,
particularly for systems with long memory and nonlinear
interactions. The study integrates control theory, fluid
dynamics, network science, and fractional-order calculus to
provide a comprehensive analysis of the design of complex
soft robots. The findings of this study will have important
implications for the design and control of multi-agent
systems and will contribute to the development of more
efficient and robust methods for modeling and optimizing
complex networks.
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Methodology: This paper builds upon previous work on
fractional-order systems [17]–[20] and investigates commen-
surate fractional-order consensus networks. A framework for
robustness analysis of commensurate first-order and second-
order linear consensus networks is presented, and the per-
formance measure of the system is evaluated using the H2

norm. The relationship between the performance measure
and the underlying graph of the network is explored using
a graph-theoretic methodology. The study also highlights
the tradeoffs between sparsity, dynamic complexity, and
performance in fractional-order linear consensus networks.
The proposed methodology is evaluated using numerical
illustrations, demonstrating the robustness of fractional-order
linear consensus networks under external stochastic distur-
bances. Finally, the potential of the proposed methodol-
ogy for designing robust fractional-order control systems in
the presence of disturbances is showcased by modeling a
fractional-order system for a soft robot. The study represents
a significant advancement in the analysis and modeling of
multi-agent networks, particularly for systems with long
memory and nonlinear interactions.

In this conference paper, the proofs are omitted due to the
space limitation.

II. NOTATIONS, DEFINITIONS, AND BASIC CONCEPTS

A. Spectral Graph Theory

Let G = (V, E , w), denote an un-directed graph, where V
is the set of nodes, E ⊆

{
{i, j}

∣∣ i, j ∈ V, i 6= j
}

is the
set of edges, and w : E → R++ is the weight function.
An unweighted graph G is a graph with weight function
w(e) = 1 for e ∈ E . The adjacency matrix A = [aij ] of graph
G is defined by setting aij = w(e) if e = (i, j) ∈ E and 0
otherwise. The Laplacian matrix L of graph G = (V, E , w) is
defined by: L = ∆−A where ∆ = diag[d1, · · · , dn], where
di is the degree of node i. For an undirected and connected
graph, the Laplacian matrix L has n − 1 strictly positive
eigenvalues and one zero eigenvalue. The eigenvalues are
arranged in the ascending order as 0 = λ1 < λ2 ≤ . . . ≤
λn. Moreover, the oriented incidence matrix of graph G is
denoted by D. Throughout this paper, a complete graph
is represented by Kn, a tree graph is represented by T , a
star graph is represented by Sn, and a bipartite graph is
represented by Bn1,n2.

B. Fractional Calculus

In this work, we concentrate on the Caputo definition of
fractional calculus. The definition is expressed mathemati-
cally as follows:

dα

dtα
f(t) =

1

Γ(n− α)

∫ t

0

(t− τ)n−α−1
dn

dtn
f(τ)dτ, (1)

where α is a positive real number, Γ(.) is the Gamma
function and n is the first integer not less than α (i.e.,
dαe = n). A Fractional-order Linear Time Invariant (FLTI)
system can be represented by the following pseudo state

space form {
dᾱ

dtᾱx(t) = Ax(t) + Bξ(t),

y(t) = Cx(t),
(2)

where x ∈ Rn, u ∈ Rm, y ∈ Rp, A ∈ Rn×n, B ∈ Rn×m,
C ∈ Rp×n, and dᾱ

dtᾱ refers to the Caputo derivative where
ᾱ = [α1 · · ·αn]> indicates fractional order settled in the
range (0, 2)n.

Definition 1: The Mittag Leffler function is defined as
follows:

Eα,β (z) =
∞∑
k=0

zk

Γ (αk + β)
β > 0, α > 0 (3)

where Γ(x) is the Gamma function and α and β refers to
the fractional order of the system.

III. ROBUSTNESS ANALYSIS OF FLTI CONSENSUS
NETWORKS

In this section, we consider the class of linear fractional-
order dynamical networks that consist of multiple agents
with scalar state variables xi and control inputs ui whose
dynamics evolve in time according to

dα

dtα
xi(t) = ui(t) + ξi(t) (4)

yi(t) = xi(t)− x̄(t) (5)

for all i = 1, . . . , n, where xi(0) = x∗i is the initial condition
and

x̄(t) =
1

n

(
x1(t) + . . .+ xn(t)

)
is the average of all states at time t. The impact of the
uncertain environment on each agent’s dynamics is modeled
by the exogenous anomalous disturbance input ξi(t). A
virtual viscoelastic-based model for inter-agent interaction
is utilized in this study to accurately model multi-agent
systems with reduced parameters. This model accounts for
long memory and nonlinear interactions between agents,
which are modeled through a feedback control law applied
to the agents of the network as follows

ui(t) =
n∑
j=1

kij
(
xj(t)− xi(t)

)
, (6)

the resulting closed-loop system will be a fractional-order
linear consensus network. The control law incorporates the
virtual viscoelastic inter-agent interaction, which allows for
effective capture of the damping properties of agents and
is well-suited for modeling real-world multi-agent systems.
This approach is based on fractional-order systems, which
have been proposed as a method to accurately model the
complexities of viscoelastic materials with fewer parameters,
offering significant advantages over traditional integer-order
models. By utilizing this approach, we can gain insights
into the impact of network topology on the performance
of fractional-order consensus networks under exogenous
stochastic disturbances. The closed-loop dynamics of the
network (4)-(5) with feedback control law (6) can be written
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in the following compact form

Σ :

{
dα

dtαx(t) = −Lx(t) + ξ(t)

y(t) = Mn x(t),
(7)

with initial condition x(0) = x∗, where x = [x1, . . . , xn]>

is the state, y = [y1, . . . , yn]> is the output, and ξ =
[ξ1, . . . , ξn]> is the anomalous disturbance input of the
network. The state matrix of the network is a graph Laplacian
matrix that is defined by L = [lij ], where

lij :=

 −kij if i 6= j

ki1 + . . .+ kin if i = j
(8)

and the output matrix is a centering matrix that is defined
by

Mn := In −
1

n
Jn. (9)

The underlying coupling graph of the consensus network
(7) is a graph G = (V, E , w) with node set V = {1, . . . , n},
edge set

E =
{
{i, j}

∣∣ ∀ i, j ∈ V, kij 6= 0
}
, (10)

and weight function w(e) = kij for all e = {i, j} ∈ E , and
w(e) = 0 if e /∈ E . The Laplacian matrix of graph G is equal
to L.

Assumption 1: The coupling graph G of the consensus
network (7) is connected and time-invariant. Moreover, all
feedback gains (weights) satisfy the following properties for
all i, j ∈ V:
(a) non-negativity: kij ≥ 0,
(b) symmetry: kij = kji,
(c) simpleness: kii = 0.

Property (b) implies that feedback gains are symmetric and
(c) means that there is no self-feedback loop in the network.

According to Assumption 1, the underlying coupling
graph is undirected, connected, and simple. Assumption
1 implies that only one of the modes of network (7) is
marginally stable with eigenvector 1n and all other ones
are stable (see [17]). The marginally stable mode, which
corresponds to the only zero Laplacian eigenvalue of L, is
unobservable from the output (7). The reason is that the
output matrix of the network satisfies Mn1n = 0.

Corollary 1: Assume that there is no exogenous noise
input, i.e., ξ(t) = 0 for all time, and Assumption 1 holds,
then the states of all agents converge to a consensus state,
which for network Γ (7), the consensus state is

lim
t→∞

x(t) = x̄(0)1n =
1

n
1n1

>
n x∗, (11)

Remark 1: For the case of α = 1, the result of Corollary
1 recovers the well-known result of ordinary consensus
problems [14].

A. Robustness Measure
In order to find the robustness performance of the system,

we utilize the frequency domain definition of the (squared)

Fig. 1: Performance of a FOC system on a complete graph G = Kn

as α ranges from 0.5 to 2 and network size (n) from 5 to 1000.

H2 norm of the system, i.e,

ρ(Σ, α) :=
1

2π
Tr

[∫ +∞

−∞
GH(jω)G(jω)dω

]
(12)

with transfer matrix:

G(s) = Mn(sαIn + L)−1. (13)

Theorem 1 ( [17]): Suppose that an FLTI consensus net-
work (7) over graph G is given. The performance measure
(12) for 1

2 < α < 2 is given by

ρ(Σ, α) =

∣∣∣∣ cot(απ2 )

α sin(πα )

∣∣∣∣ n∑
i=2

λ−βi , (14)

where β = 2− α−1. Moreover, for α = 1, this reduces to

ρ(Σ, 1) =
1

2

n∑
i=2

λ−1i .

B. Convexity of the Robustness Performance Measure: Im-
plications for Optimization

In this section, we demonstrate that the performance
measure of the network over G exhibits convexity properties
with respect to both the eigenvalues λi and the fractional-
order parameter α.

Formally, we prove that the performance measure of the
FLTI network (7) with graph G is convex with respect to
both the eigenvalues λi and the fractional-order parameter
α.

Lemma 1: The performance measure of the fractional-
order LTI consensus network ρ(Σ, α) is convex on λi, the
eigenvalues of the graph, if and only if α > 0.5.

Lemma 2: The performance measure of FLTI consensus
network (7), denoted by ρ(Σ, α), is convex with respect to
α if and only if α belongs to the interval (0.5, 2).

The convexity property of the robustness measure (12)
is particularly advantageous in optimization problems as
it simplifies finding optimal values for the eigenvalues or
the fractional-order parameter that minimize performance
degradation.
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Fig. 2: This plot depicts the consensus states reached by FLTI
network consisting of 6 nodes where the underlying graph is a
complete graph, G = Kn, and α ∈ (0.5, 2) and a Gaussian noise
N (0, 0.01) is being applied to the system.

Example 1: Consider a fractional order consensus net-
work (7) consisting of 6 nodes and the underlying graph,
connecting them is a complete graph G = Kn. The value
of α ranges from 0 and 2. The network is then stimulated
for all the nodes to reach a consensus state. The consensus
state depends on the initial conditions of all the nodes. In
this example, the nodes are started from an initial position
of [-3,-2,-1,1,2,3] respectively. We can see from Fig. 2 and 3,
that for α < 0.5, and for α > 2 the network does not seem to
reach a consensus state whereas for α ∈ (0.5, 2), the network
does seem to reach a consensus state. This helps tell that the
network is convex in α, when α ∈ (0.5, 2).

Additionally, Fig. 1 depicts a plot of performance measure
against α, for a complete graph, Kn, while simultaneously
increasing the number of nodes. We can observe that as α→
0.5 and α → 2, the performance measure of the graph (14)
increases, and tries to remain constant while in between.

IV. SCALING LAWS FOR VARIOUS FLTI NETWORKS

The following result presents the universal lower and
upper bounds for the best and the worst achievable values for
the performance measure among all fractional order networks
with arbitrary unweighted coupling graphs.

Corollary 2: For a given Fractional Order Network with
an unweighted coupling graph, G ∈ Gn, the performance
measure is universally bounded by:

n−β (n− 1) ≤ ρ(Σ, α)

A
≤ 2−β

n−1∑
k=1

(
1− cos(

πk

n
)

)−β
(15)

where A = | cot(
απ
2 )

α sin π
α
|, and β = 2 − α−1. Moreover, the

upper bound is achieved if and only if G = Pn, i.e., for a
path graph, and the lower bound is achieved if and only if
G = Kn, i.e., for a complete graph.

These bounds can be tightened if we consider more
specific sub-classes of graphs. In the following theorems, we

Fig. 3: This plot depicts the consensus states reached by FLTI
network consisting of 6 nodes where the underlying graph is a
complete graph, G = Kn, and for 0 < α < 0.5 and for α > 2 and
a Gaussian noise N (0, 0.01) is being applied to the system.

can improve the bounds by considering various sub-classes
of graphs such as tree, and bipartite graphs.

A. Tree Graphs

A tree graph is a connected acyclic un-directed graph in
which every node is connected by a single edge. The number
of edges present in a complete graph = n−1. The maximum
degree for a tree graph ranges from 2 to n− 1.

Corollary 3: For a given fractional order network, with
an unweighted tree coupling graph T ∈ Gn, with n ≥ 5, the
performance measure is bounded by:

(n−β + (n− 2)−β−1 ≤ ρ(Σ, α)

A
≤

≤ 2−β
n−1∑
k=1

(
1− cos(

πk

n
)

)−β
, (16)

where A
∣∣∣ cot(απ2 )

α sin π
α

∣∣∣, and β = 2− α−1.
The lower bound is achieved if and only if T = Sn, and

the upper bound is achieved if and only if T = Pn.

B. Bi-Partite Graphs

Corollary 4: For a given fractional order network, with
an unweighted bipartite coupling graph Bn1,n2 ∈ Gn, with
n ≥ 5, the performance measure is bounded by:

(
2.

√
Z(G)

n

)−β
+

(
2.m− 2.

√
Z(G)
n

)−β
(n− 2)−β−1

≤ ρ(Γ, α)

A

≤ 2−β
n−1∑
k=1

(
1− cos(

πk

n
)

)−β
, (17)

where A
∣∣∣ cot(απ2 )

α sin π
α

∣∣∣, and β = α−1 − 2, m is the number of
edges, and Z(G) is the sum of squares of degrees of all the
vertex in a graph.
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Fig. 4: A block diagram for a Fractional Model System network. Λi

are fractional-order dynamics (springpot model) and Σi are second-
order dynamics (mass model). Matrix D is an oriented incidence
matrix of the underlying graph

The best possible lower bound can be achieved when
Bn1,n2 = Kn/2,n/2 and the best possible upper bound is
achieved when Bn1,n2 = Pn.

V. EXTENDING CONSENSUS-BASED APPROACHES FOR
SOFT ROBOTICS APPLICATIONS

Soft robots composed of a homogeneous continuum of
soft material can predict their own dynamics, which is an
essential capability to have a lower-level sparse controller. In
order to improve the performance of flexible robotic systems,
we will adopt the machinery developed in the theoretical
computer science community for graph sparsification and
combine it with fractional calculus for nonlinear dynamics
to find a sparse underlying topology.

The complex behaviour of visco-elastic materials can be
approximated with classical Maxwell and Kevin-Voigt mod-
els, which dramatically limits model parameter estimation
and optimal design mechanisms.

Since soft robots are entitled by visco-elastic property of
porous media and long-term memory, these properties cannot
be fully modelled using ordinary differential equations and
instead modelled using fractional calculus.

The position and velocity of each node are governed by

Σi :

{
v̇i(t) = 1

mi
ui(t),

ẋi(t) = vi(t),
(18)

where mi is an inertia coefficient of node i, the position
and the velocity of node i is obtained by xi(t) and vi(t),
respectively. The feedback laws from the morphology depend
on relative positions with respect to a subset of other nodes,
a.k.a. nearest neighbors. We introduce a weighted graph
G = (V, E , k) with n nodes and m links, where the vertices
are masses of the complex soft network, and an edge between
vertices is a springpot (i.e., a generalization of the classical
visco-elastic elements). Then the incidence matrix Dn×m
of the underlying graph G generates a vector of relative
velocities ye for the edges e ∈ E by y(t) = D>v(t), where
y> = [(y1)>, . . . , (yn)>]> and v> = [(v1)>, . . . , (vn)>]>.
The coupling of the relative position dynamics is governed
by

Λe :

{
dα

dtα ze(t) = ke(t)ye(t) + ξe(t),

we(t) = ze(t),
(19)

where ke is the parameter of link e and ξ(t) is measure-
ment noise on link e. These coupling dynamics (Λe) are a
generalization of the classical visco-elastic elements (both
the spring and the dashpot) and present behavior that is
intermediate between these two elements (see Fig. 4). Finally,
vector u(t) = Dw(t) is fed back to the nodes where D is
the adjacency matrix of the morphology G. The closed-loop
dynamics of the network (19) with feedback control loops
given by graph G (i.e., incidence matrix D) can be written
in the following compact form{

v̇(t) = −M−1Dz(t),
dα

dtα z(t) = KD>v(t) + ξ(t),
(20)

where M and K are diagonal matrices with mi’s and
Ke’s on their diagonals, respectively, and vector z> =
[(z1)>, . . . , (zm)>]>.

From (20), we get,

v(t) = Eγ,1(Atγ)v(0) +B.tγ−1Eγ,γ(Atγ) ∗ ξe(t), (21)

where γ = α + 1, A = −M−1DKD>, B = M−1D and
Eγ,1 is the Mittag Leffler function.

Example 2: Let us consider system (20) with 100 nodes
over path graph P100. The initial velocity for the nodes are
assumed to be v0 = [1, 2, 3, 4, · · · , 100]. The masses of all
the nodes were assumed to be unity, and the spring constants,
ke’s were assumed to be -1 for all the nodes. The network
is then stimulated to reach consensus for various values of
α, along with a Gaussian noise with mean 0, and standard
deviation, σ = 0.01. Figs. 5 and 6 depict the velocity time
graph and position time graph for α ∈ (0.5, 2). From Figs.
5 and 6, we can see that, as α → 2, the system becomes
unstable and the position of the nodes tends to go to ∞.
Additionally, Fig. 7 displays the position-time graph for the
100 nodes wherein the initial velocities of the nodes are
assumed to be random, for α = 0.75 and α = 0, where a
small perturbed Gaussian disturbance of standard deviation
σ = 0.01, is being applied to the system. We can see that
when α = 0, i.e., for a first order system (γ = α + 1, the
order of the system, see (21)), reaching a consensus state is
slower when compared to a fractional order system (see Fig.
7).

VI. CONCLUSIONS

This paper investigates the performance degradation of
multi-agent networks under exogenous stochastic distur-
bances. To accurately model multi-agent systems with re-
duced parameters, we utilize the Virtual Viscoelastic-Based
Model for inter-agent interaction in multi-agent networks via
fractional-order systems. We employ Caputo derivatives and
Laplace transforms to formulate fractional-order differential
equations for the entire network dynamics and use the H2

norm as a performance measure. Through a graph-theoretic
methodology, we relate the performance measure to the
underlying graph’s structural specifications and quantify fun-
damental limits on the best achievable levels of performance.
Our analysis characterizes the tradeoffs between network
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Unweighted Coupling Graph Lower Bound Upper Bound

Arbitrary A n−β (n− 1) A 2−β
∑n−1
k=1

(
1− cos(πkn )

)−β
Tree A (n−β + (n− 2)−β−1 A 2−β

∑n−1
k=1

(
1− cos(πkn )

)−β
Bi-partite A

((
2
√

Z(G)
n

)−β
+

(
2m−2

√
Z(G)
n

)−β

(n−2)−β−1

)
A 2−β

∑n−1
k=1

(
1− cos(πkn )

)−β
TABLE I: Universal bounds on performance (14) for unweighted FLTI Consensus networks in Gn.

Fig. 5: Velocity-time plots for system (20) on a 100-node path
graph, for α ∈ [0, 1.25] and Gaussian noise (σ = 0.01).

sparsity and performance measure and reveals their interplay.
The findings highlight the impact of network topology on the
performance of fractional-order consensus networks. To sup-
port the theoretical results, we provide numerical simulations
that demonstrate the usefulness of our findings.
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