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Abstract—This paper considers endogenous uncertainty (EnU)
in the stochastic economic dispatch (SED) problem, where the
endogenous uncertainty means decision dependent uncertainty.
In this problem, demand response (DR) commitment is the source
of the EnU. Nevertheless, EnU is not well considered in existing
literature. Our first contribution is to build up an optimization
model of DR-involved SED under EnU (SED-DR-EnU). This
is a computational challenging problem due to the EnU. Our
second contribution is introducing a coupled learning enabled
optimization algorithm which can effectively solve the proposed
SED-DR-EnU problem. This strategy is tested on the IEEE 14
bus, and IEEE 39 bus systems, and the results showed the
importance of considering EnU in the DR-involved SED problem.

Index Terms—Decision dependent uncertainty, Endogenous
uncertainty, Stochastic economic dispatch, Exogenous uncer-
tainty, Demand response

I. INTRODUCTION

Economic dispatch (ED) is the process of allocating output

(active and reactive power) among available generation at the

lowest cost and meeting the operational restrictions of the

generation and the transmission system [1]. Demand response

(DR) is a tariff or program that aims to persuade end-user

consumers to change their electricity consumption in response

to changes in the cost of electricity over time, or to offer

incentive payments designed to persuade consumers to use

less electricity during times of high market prices or when the

stability of the grid is in danger [2].

In reality, several variables, including inconvenience costs,

incentive policies, and level of education, may affect how

responsive consumers are. We must consider how dependent

the consumers’ uncertain behavior is on these elements. The

assumption that consumers’ demand responsiveness or demand

response commitment, is a constant that can be comprehended

or perfectly projected by the utility company in advance,

is made in the majority of recent publications [3], [4], [5],

[6]. consumers may have different consumption patterns and

preferences, making it challenging for utility companies to

understand each DR consumer’s unique characteristics in real-

world settings. Additionally, even if such data were available,

other factors, such as unusual events, might still affect people’s

responsiveness. A deterministic model would find it difficult

to forecast the effects of these factors. As a result, while the

system is in operation, the utility companies should be com-

pletely unaware of the system’s actual DR capacity. However,

while plans were being created, these DR ambiguity issues

were rarely taken into consideration.

Exogenous uncertainty or decision-independent uncertainty

is the term used in practice to describe an uncertain variable

that follows a particular statistical regularity that may be

known in advance and does not change over time. On the other

hand, endogenous uncertainty (EnU) or decision-dependent

uncertainty refers to uncertain variables whose probability

distribution is not known and is affected by the decision

variables. Neglecting EnU in DR modeling could lead utility

companies to make poor system strategic planning decisions

by vastly overestimating the capacity value of DR resources.

In the prior works, the majority of the DR uncertainties were

modeled as fixed probability distributions that could be fully

described before the evaluation. In other words, existing mod-

els have considered consumer demand responsiveness as an

exogenous uncertain quantity that is unrelated to the operator’s

choice of control method. In practice, consumer participation

in DR might benefit them financially but adversely affect their

comfort and accessibility of electricity service [7]. Ineffective

scheduling strategies could reduce the level of compliance of

the consumers with DR calls [8]. As a result, the current

distribution of consumer responsiveness is influenced by grid

operating decisions. DR presents uncertainty and is dynamic

in nature. Thus, underestimating these aspects is likely to yield

unreliable utilization of DR-based economic dispatch (ED) [9].

For example, the operational and control tactics may impact

some stochastic features (such as response probability and

temperature preference); however, these kinds of uncertainties,

which are called EnU are disregarded and considered to be

static and known probability distributions [10].

Stochastic programming (SP) methods use the discretization

process with scenarios of uncertainty without knowing the

precise probability distribution of the uncertainty. Scenarios

are frequently regarded as a priori in SP approaches when

the uncertainty is decision independent, which is fair because

they may be simulated using either an exogenous prediction

model or from a historical data collection [11]. Decisions taken

before the realization of uncertainty affect EnU. By altering

its parameters or information structures, decisions might have
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an impact on uncertainty. A few examples include operating

budgets, equipment switch status, and investment plans for

renewable energy sources (RES). End-consumers must adapt

their loads when the demand response set point changes.

Some examples include reducing PV output, switching the

state of domestic appliances, and rescheduling electric vehicle

charging. Decision-related uncertainty loads can change as a

result of amplification or reduction of uncertainty sources [12].

In this paper, the decision variable influences the probability

distribution of the random variable. In addition, the learning

step of predicting the latent dependency and the optimization

step of computing a candidate decision are carried out inter-

actively. The contributions of this work are as follows:

• Considering both the exogenous and endogenous uncer-

tainties of Demand Response in the stochastic economic

dispatch (SED-DR-EnU) problem, which are a result

of demand-side physical factors and the behavior of

consumers.

• A coupled learning enabled optimization (CLEO) algo-

rithm [14] is introduced to effectively solve the DR prob-

lem under both exogenous and endogenous uncertainties

without making any assumptions about the probability

distribution of decision-dependent uncertainty.

• Comparative analysis to demonstrate how the demand-

side participation uncertainty may have a significant

impact on the effectiveness of DR programs.

II. OPTIMIZATION MODEL OF SED-DR-ENU

This section describes the optimization model we developed

for the stochastic economic dispatch considering demand

response under both exogenous and endogenous uncertain-

ties in detail. Incorporating demand response commitments

P rd
j,max from end-consumers utilizing a variety of incentives,

a demand response provider (DRP) aggregates a group of

residential/commercial consumers and sets its offer price πDR
j

in the day-ahead market. The cost function of the unit i is

presented as:

Ci(P
G
i ) =

NG∑

i=1

(
aiP

G
i

2
+ biP

G
i

)
(1)

Where, ai and bi are coefficients of the cost function and PG
i

is power generation of unit i. Each RES output’s uncertainty

interval is given by ζi ∈ [−PRi, PRi]× (r/100), where PRi is

the ith RES nominal output and r determines the uncertainty

level of PRi. It is assumed that the predicted RES generation

is such that the average value of its uncertainty is zero. The

parameter r shows the confidence interval for the RES output

forecast error; that means, the closer r is to 100, the power

forecast would be the less accurate. The power generation is

made up of the nominal conditions output PG
i( base ), and the

shift in generation brought on by RES output changes. Let αi

stand for the unit i’s participation factor, which represents the

contribution of generator i to the uncertain component of total

load, i.e., the difference between the real and forecasted total

load. It is subject to the constraints (2) [15].

αi =
1/ai

∑NG
j=1

1/aj

, 0 ≤ αi ≤ 1,
∑NG

j=1 αi = 1, i = 1, . . . , NG

(2)

Then PG
i is calculated as:

PG
i = PG

i( base ) − αi ×

NR∑

j=1

ζj , i = 1, . . . , NG (3)

NG is the total number of generators and NR is the number

of available RES. If λ is covariance matrix of the predicted

RES generation uncertainty and the expected prediction error

of the uncertainty is zero, the mathematical formulation of

the expectation of supply-side cost, which is the sum of the

generation costs, and the cost of DRPs will be as follows:

min f
(
P rd

)
= E[Ci(P

G
i ) +

NG∑

i=1

a′iα
2
i +

NDRP∑

j=1

P rd
j,EnUπ

DR
j ]

(4)

Where

a′i =

⎡
£

NR∑

j=1

NR∑

k=1

λ(j,k)

¤
⎦× ai, i = 1, . . . , NG (5)

P rd
j,EnU = h(P rd

j , εj) (6)

where P rd
j is the decision variable which represents the

accepted DR commitment of the j-th DRP, εj is a random

variable that is independent of P rd
j . P rd

j,EnU is the actual DR

commitment considering EnU that shows the responsiveness

of consumers and is a function of the independent system

operator’s (ISO) decisions (accepted DR commitments). πDR
j

is the j-th DRP’s offer price, and NDRP is the number of DRPs

for a group of consumers. Subject to the following constraints:

1- Energy adequacy constraint :

∑NG

i=1 P
G
i +

∑NR

i=1 P
R
i +

∑NDRP

j=1 P rd
j,EnU >

∑NB

i=1 P
L
i
(7)

2- Power flow limit:

L×
(
I1

∑NG

i=1 P
G
i + I2

∑NDRP

j=1 P rd
j,EnU + I3

∑NR

i=1

(
PR
i + ζi

)
− I4

∑NB

i=1 P
L
i

)
≤ Fmax

l

(8)

where L is an NL × (NB − 1) matrix of power transfer

distribution factors. NB is the number of buses and NL is

the number of lines. PL
i represents the load at bus i. ε

indicates the upper limit of violation probability in (7). Fmax
l

is the maximum line power flow vector. I1, I2, I3, and I4 are

matrices that respectively map the vectors PG, P rd, PR, ζ,

and PL into (NB − 1)×1 vectors, with the nonzero elements

denoting connections to one of the NB buses other than the

slack bus.

3- Power generation limit:

PG
i,min ≤ PG

i ≤ PG
i,max, i = 1, 2, . . . , NG (9)

4- DR commitment limit:

0 ≤ P rd
j ≤ P rd

j,max, j = 1, 2, . . . , NDRP (10)
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Assuming a linear aggregated demand curve, P rd
j,max can be

calculated as

P rd
j,max = min

(
Pbase ,j ,

πs,j

πmax
j − πRR

Pbase ,j

)
(11)

where πs,j is DRP’s incentive price to end-consumers, Pbase

is the baseline for end-consumers, πmax
j is the demand curve’s

Y-axis intercept. πRR is the retail price. This problem is very

hard to solve, because P rd
j,EnU and the distribution of the

random variable ε are unknowns before optimization. In addi-

tion because realizations of ε cannot be observed, traditional

SP techniques cannot be used. Data pairs of decisions and

uncertainties should be gathered together to understand the

link between uncertainty and the decision variable in order to

successfully address such SP problems. This paper introduces

a coupled learning enabled optimization (CLEO) algorithm

[14] to solve this problem.

III. SOLUTION METHOD

This section is devoted to providing a detailed description of

the presented framework. In this work, it is considered that the

responsiveness of consumers is a function of the independent

system operator’s (ISO) decisions as below:

P rd
j,EnU = ψ(P rd

j ) + ε (12)

ψ(P rd
j ) =

(
A1

)�
P rd
j +

(
A0

)�
(13)

The derivative-free trust region method is the foundation of

the CLEO algorithm, which is used to solve SED with la-

tently decision-dependent uncertainty. In the proposed solution

process, the SED-DR-EnU problem (1)-(9) is solved in two

steps, learning and optimization. At each iteration, a region

around the current best solution is defined that is trusted to

be a sufficient approximation of the objective function and

hence the model is called trust region. Using local linear

regression (LLR) centered at the current iteration, the local

latent dependency is predicted in the learning step. During

the optimization phase, a potential answer to the trust region

subproblem is sought, which is made up of the random

LLR model. At the kth iteration, the current point is P rd
j,k,

δk is the radius of the current trust region and the data

set is Tk =
{(

P rd
j,i , P

rd
j,i,EnU

)}
of size Nk. The estimation

of parameters A1 and A0 can be found by minimizing the

sum of square errors between the actual and acctepted DR

commitment.{
Âk,0, Âk,1

}
∈ argmin

A0,A1

∑

(P rd
j,i

,P rd
j,i,EnU)∈Tk

∥∥∥P rd
j,i,EnU −

(
A1

)�
P rd
j,i −

(
A0

)�∥∥∥
2

(14)

Âk,0 and Âk,1 are the estimation of parameters A0 and A1

respectively. By subtracting the actual DR commitment from

the estimated one, the error ek,i can be calculated as shown

in (15).

ek,i ← P rd
j,i,EnU −

(
Âk,1

)�

P rd
j,i −

(
Âk,0

)�

i = 1, 2, .., Nk

(15)

A random variable with the empirical probability distribution

of
{
ek,i

}Nk

i=1
is denoted by the symbol εk. The LLR model

mk is constructed as follows.

mk

(
P rd
k + sk, εk

)
�

(
Âk,1

)� (
P rd
k + sk

)
+

(
Âk,0

)�

+ εk

(16)

Where sk is the step which minimizes the objective function

in the trust region and satisfies a ”sufficient” decrease

requirement. The mathematical formulation of the DR

problem under both exogenous and endogenous uncertainties

(1)-(8) will change to:

min f
(
P rd
k + sk

)
= E[Ck,i(P

G
k,i)+

NG∑

i=1

a′k,iα
2
k,i +

NDRP∑

j=1

mj,k

(
P rd
j,k + sk, εj,k

)
πDR
j,k ]

(17)

subject to the following constraints:

1- Energy adequacy constraint:We reformulate the constraint

(7) to (18) by substituting P rd
j,EnU with mj,k

(
P rd
j,k + sk, εj,k

)
.

∑NG

i=1 P
G
k,i +

∑NR

i=1 P
R
k,i +

∑NDRP

j=1 mj,k

(
P rd
j,k + sk, εj,k

)
>

∑NB

i=1 P
L
i,k

(18)

2- Power flow limit:

L×
(
I1

∑NG

i=1 P
G
k,i + I2

∑NDRP

j=1 P rd
k,j + I3

∑NR

i=1

(
PR
k,i + ζi

)
− I4

∑NB

i=1 P
L
i,k

)
≤ Fmax

l

(19)

3- Power generation limit:

PG
i,min ≤ PG

k,i ≤ PG
i,max, i = 1, 2, . . . , NG (20)

4- DR commitmen limit:

0 ≤ P rd
k,j ≤ P rd

j,max, j = 1, 2, . . . , NDRP (21)

5-

‖s‖ ≤ δk (22)

Actual to predicted reduction ratio of the objective function is

used to determine whether sk is a descent step. The problem

has a decision-dependent uncertainty. This dependency is

unknown. As a result, it is impossible to compute the objective

function’s true value. In this case, local linear regression

models can be used to estimate the value of the objective

function. Particularly, uk and uk+1/2 are used to estimate the

values of the functions f
(
pk
)

and f
(
pk + sk

)
.

uk �
[
f
(
pk,mk,1

(
pk, εk,1

))]
(23)

uk+1/2 �
[
f
(
pk + sk,mk,2

(
pk + sk, εk,2

))]
(24)

The estimated ratio between actual and predicted decrease in

objective function is then roughly represented as

ρk �
(
uk − uk+1/2

)
/
(
fk

(
pk
)
− fk

(
pk + sk

))
(25)

To determine if the new step pk + sk will be approved or

denied, the ratio ρk needs to be large enough. In addition,

‖s‖ ≤ δk should be satisfied and the generalized gradient and

the TR radius δk should be large enough in relation to one

another. After applying the two steps of the algorithm, cost

and total demand response commitment are predicted.
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IV. RESULTS AND DISCUSSION

In this section, IEEE 14 bus and 39 bus power systems with

DRPs and RESs are examined to evaluate the performance of

the proposed stochastic economic dispatch model. The SED-

DR-ENU formulations are coded in Python. Looking back

on (11), a linear aggregated inherent demand curve for end-

consumers is assumed, with baseline Pbase = 60, retail price

πRR = 100, the j-th DRP’s offer price πDR
j = 100, and Y-

axis intercept πmax
j = 400. In total, 3 cases are considered

to analyze the effect of EnU on DR commitment, as it is

described below:

Case 1: Demand response considering both endogenous and

exogenous uncertainties (uncertainty of load and RES)

Case 2: Demand response without considering uncertainties.

Case 3: Demand response considering just exogenous uncer-

tainties (uncertainty of RES)

A. IEEE 14 bus system

This subsection analyzes a more complex IEEE 14-bus

system that has two DRPs and two RESs as shown in Fig.1. In

order to lower the demand, it is supposed that DRPs are located

in buses 3 and 4 that have the highest loads (NDRP = 2). It

is assumed that two RESs, each with a 40 MW capacity, are

connected to buses 2 and 3, with r = 20% (NR = 2). Fig.

2 shows the result of the simulation for the three cases. The

amount of required load reduction for case 1 is higher than

for cases 2 and 3 because case 1 is more accurate. Based on

the first row of Table I case 1 needs more DR commitment

compared with cases 2 and 3. This result represents the

importance of considering EnU in the SED problem.

Fig. 1. IEEE 14 Bus system with 2 DRPs and 2 RESs

B. IEEE 39 bus system

In this subsection, IEEE 39 bus system with two DRPs is

studied as shown in Fig. 3. Buses 20 and 39 are presumed to

have DRPs (NDRP = 2). RES integration is simulated using

three wind farms connected to buses 30, 34 and 37. Total

contribution of wind farms is assumed to be around 20% of

the system’s total generating capacity, r is equal to 20% and

NR = 3. Fig. 4 represents the result of the simulation for the

three cases. Required load reduction for case 1 is higher than

Fig. 2. IEEE 14 Bus system results

cases 2 and 3, this shows the inaccuracy of the case 2 and

3. The second row of Table I compares the DR commitment

values for the 39 bus system.

Fig. 3. IEEE 39 Bus system with 2 DRPs and 2 RESs

Fig. 4. IEEE 39 Bus system results

Cases 2 and 3 represent the existing research where case 2

does not consider any uncertainties and case 3 considers just

exogenous uncertainties (uncertainty of RES). Case 1 is the

proposed scenario of this paper which is closer to real-world

situations since it considers both endogenous and exogenous

uncertainties (uncertainty of load and RES). Given this, the

simulation results shown in 2 and 4 indicate that cases 2 and

3 (i.e., existing research) are not accurate enough to represent

the real-world. An important conclusion we can make from

the simulation results is that endogenous uncertainty should

be considered in the economic dispatch problems which in-

volve demand response. To evaluate the performance of the
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stochastic ED model, the convergence curve of a deterministic

ED which does not take into account any uncertainties is

compared with our model in Fig. 5. Both approaches converge

after about 210 iterations. In addition, a comparison between

stochastic and deterministic approaches is represented in Fig.

5. Minimum objective function vlues are 2109.73 and 4890

for stochastic and deterministic algorithms respectively. The

SED problem is also solved with SVR and linear regression in

addition to CLEO algorithm, to evaluate CLEO performance.

Table II compares the standard deviation of the objective

function and simulation time of all three algorithms. Based on

these results CLEO performs as well as the SVR algorithm.

Fig. 5. Comparison of convergence curves of stochastic (blue) and determin-
istic (orange) ED (top). Deterministic (red plot) VS. Stochastic (green plot)
results. Vertical axis shows objective function vlue which has minimum value
of 2109.73 and 4890 for stochastic and deterministic algorithms respectively.
X, Y and Z axes show accepted DR commitment, total power generation of
the generators and objective function value respectively (bottom).

TABLE I
DR COMMITMENT VALUE FOR 3 CASES AND IEEE 14 BUS AND 39 BUS

SYSTEMS

Value Case 1 Case 2 Case 3

DR commitment(14Bus) 28.05 pu 6.48e-08 pu 5.30e-08 pu

DR commitment (39Bus) 100.44 pu 100.22 pu 100.26 pu

TABLE II
COMPARISON OF STANDARD DEVIATION OF THE SUPPLY-SIDE COST AND

THE SIMULATION TIME BETWEEN SVR, CLEO AND LINEAR REGRESSION

MODELS.

Value SVR CLEO LinearRegression

Obj func standard deviation 0 1.13e-13 0.10

Simulation time(1000 samples) 0.004 0.02 0.007

V. CONCLUSION

SED-DR-EnU framework is presented in this paper, to

account for the importance of considering endogenous uncer-

tainty in the day-ahead market. Demand response is provided

by DRPs using bottom-up aggregation, which has a significant

degree of DR uncertainty because of end-consumer behavior.

The proposed framework’s ability to take into account both of

the exogenous and endogenous uncertainties of DR in the SED

problem—which are caused by physical factors and behavior

of consumers on the demand side—represents its key inno-

vation in comparison to past research. CLEO model has been

presented to take into account the unpredictability of consumer

responsiveness, and it is considered that the responsiveness of

consumers is a function of accepted DR commitments, to show

the dependence of consumer behavior with DR operations.

The simulation results show that DR commitment is influenced

by factors like consumer consumption patterns and the grid’s

DR operation decisions. Additionally, a comparative study

demonstrates that demand-side participation uncertainty may

have a high impact on how effectively DR programs operate.

Thus, in actuality, effective calculation of DR commitment

should take into account the impact of endogenous uncertainty.
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