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Abstract—This paper considers endogenous uncertainty (EnU)
in the stochastic economic dispatch (SED) problem, where the
endogenous uncertainty means decision dependent uncertainty.
In this problem, demand response (DR) commitment is the source
of the EnU. Nevertheless, EnU is not well considered in existing
literature. Our first contribution is to build up an optimization
model of DR-involved SED under EnU (SED-DR-EnU). This
is a computational challenging problem due to the EnU. Our
second contribution is introducing a coupled learning enabled
optimization algorithm which can effectively solve the proposed
SED-DR-EnU problem. This strategy is tested on the IEEE 14
bus, and IEEE 39 bus systems, and the results showed the
importance of considering EnU in the DR-involved SED problem.

Index Terms—Decision dependent uncertainty, Endogenous
uncertainty, Stochastic economic dispatch, Exogenous uncer-
tainty, Demand response

I. INTRODUCTION

Economic dispatch (ED) is the process of allocating output
(active and reactive power) among available generation at the
lowest cost and meeting the operational restrictions of the
generation and the transmission system [1]. Demand response
(DR) is a tariff or program that aims to persuade end-user
consumers to change their electricity consumption in response
to changes in the cost of electricity over time, or to offer
incentive payments designed to persuade consumers to use
less electricity during times of high market prices or when the
stability of the grid is in danger [2].

In reality, several variables, including inconvenience costs,
incentive policies, and level of education, may affect how
responsive consumers are. We must consider how dependent
the consumers’ uncertain behavior is on these elements. The
assumption that consumers’ demand responsiveness or demand
response commitment, is a constant that can be comprehended
or perfectly projected by the utility company in advance,
is made in the majority of recent publications [3], [4], [5],
[6]. consumers may have different consumption patterns and
preferences, making it challenging for utility companies to
understand each DR consumer’s unique characteristics in real-
world settings. Additionally, even if such data were available,
other factors, such as unusual events, might still affect people’s
responsiveness. A deterministic model would find it difficult
to forecast the effects of these factors. As a result, while the
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system is in operation, the utility companies should be com-
pletely unaware of the system’s actual DR capacity. However,
while plans were being created, these DR ambiguity issues
were rarely taken into consideration.

Exogenous uncertainty or decision-independent uncertainty
is the term used in practice to describe an uncertain variable
that follows a particular statistical regularity that may be
known in advance and does not change over time. On the other
hand, endogenous uncertainty (EnU) or decision-dependent
uncertainty refers to uncertain variables whose probability
distribution is not known and is affected by the decision
variables. Neglecting EnU in DR modeling could lead utility
companies to make poor system strategic planning decisions
by vastly overestimating the capacity value of DR resources.

In the prior works, the majority of the DR uncertainties were
modeled as fixed probability distributions that could be fully
described before the evaluation. In other words, existing mod-
els have considered consumer demand responsiveness as an
exogenous uncertain quantity that is unrelated to the operator’s
choice of control method. In practice, consumer participation
in DR might benefit them financially but adversely affect their
comfort and accessibility of electricity service [7]. Ineffective
scheduling strategies could reduce the level of compliance of
the consumers with DR calls [8]. As a result, the current
distribution of consumer responsiveness is influenced by grid
operating decisions. DR presents uncertainty and is dynamic
in nature. Thus, underestimating these aspects is likely to yield
unreliable utilization of DR-based economic dispatch (ED) [9].
For example, the operational and control tactics may impact
some stochastic features (such as response probability and
temperature preference); however, these kinds of uncertainties,
which are called EnU are disregarded and considered to be
static and known probability distributions [10].

Stochastic programming (SP) methods use the discretization
process with scenarios of uncertainty without knowing the
precise probability distribution of the uncertainty. Scenarios
are frequently regarded as a priori in SP approaches when
the uncertainty is decision independent, which is fair because
they may be simulated using either an exogenous prediction
model or from a historical data collection [11]. Decisions taken
before the realization of uncertainty affect EnU. By altering
its parameters or information structures, decisions might have
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an impact on uncertainty. A few examples include operating
budgets, equipment switch status, and investment plans for
renewable energy sources (RES). End-consumers must adapt
their loads when the demand response set point changes.
Some examples include reducing PV output, switching the
state of domestic appliances, and rescheduling electric vehicle
charging. Decision-related uncertainty loads can change as a
result of amplification or reduction of uncertainty sources [12].
In this paper, the decision variable influences the probability
distribution of the random variable. In addition, the learning
step of predicting the latent dependency and the optimization
step of computing a candidate decision are carried out inter-
actively. The contributions of this work are as follows:

o Considering both the exogenous and endogenous uncer-
tainties of Demand Response in the stochastic economic
dispatch (SED-DR-EnU) problem, which are a result
of demand-side physical factors and the behavior of
consumers.

o A coupled learning enabled optimization (CLEO) algo-
rithm [14] is introduced to effectively solve the DR prob-
lem under both exogenous and endogenous uncertainties
without making any assumptions about the probability
distribution of decision-dependent uncertainty.

o Comparative analysis to demonstrate how the demand-
side participation uncertainty may have a significant
impact on the effectiveness of DR programs.

II. OPTIMIZATION MODEL OF SED-DR-ENU

This section describes the optimization model we developed
for the stochastic economic dispatch considering demand
response under both exogenous and endogenous uncertain-
ties in detail. Incorporating demand response commitments
P“fnw from end-consumers utilizing a variety of incentives,
a demand response provider (DRP) aggregates a group of
residential/commercial consumers and sets its offer price 7er R
in the day-ahead market. The cost function of the unit i is

presented as:

Ng

Ci(PE) =3 (aiPZGQ + bﬂ?ﬁ) (1)

i=1

Where, a; and b; are coefficients of the cost function and P,,G
is power generation of unit i. Each RES output’s uncertainty
interval is given by (; € [—Pgr;, Pr;] % (r/100), where Pg; is
the 7, RES nominal output and 7 determines the uncertainty
level of Pg;. It is assumed that the predicted RES generation
is such that the average value of its uncertainty is zero. The
parameter r shows the confidence interval for the RES output
forecast error; that means, the closer r is to 100, the power
forecast would be the less accurate. The power generation is
made up of the nominal conditions output P (base ) and the
shift in generation brought on by RES output changes Let o;
stand for the unit ¢’s participation factor, which represents the
contribution of generator ¢ to the uncertain component of total
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load, i.e., the difference between the real and forecasted total
load. It is subject to the constraints (2) [15].

1/a;

Ng g
;= V6 170y 0<o; <1, > 5a;=1 i=1...,Ng
2
Then P is calculated as:
R
Pf = Py —aix 3 Gy i=1....No ()

Ng is the total number of generators and Ny is the number
of available RES. If ) is covariance matrix of the predicted
RES generation uncertainty and the expected prediction error
of the uncertainty is zero, the mathematical formulation of
the expectation of supply-side cost, which is the sum of the
generation costs, and the cost of DRPs will be as follows:

Nprp
min  f (P") = E[C;(PF) +Zal% + Z Py T
“4)
Where
R R
= D> Agw| xani=1,....Ne (5)
it
PTE'nU h(Pjrdvsj) (6)

where PJT'd is the decision variable which represents the
accepted DR commitment of the j-th DRP, £; is a random
variable that is independent of P/%. P/}, . is the actual DR
commitment considering EnU that shows the responsiveness
of consumers and is a function of the independent system
operator’s (ISO) decisions (accepted DR commitments). 7er R
is the j-th DRP’s offer price, and Npprp is the number of DRPs
for a group of consumers. Subject to the following constraints:

1- Energy adequacy constraint :

Z PG+Z PR+ZNDHPPjErLL>ENBPL
(7

2- Power flow limit:

Lx (1l SN PO+ LY N P+ SN (PR G) — LYY, PL) < Fmox
®)
where L is an Nj x (Np — 1) matrix of power transfer
distribution factors. Np is the number of buses and Ny, is
the number of lines. PF represents the load at bus i. ¢
indicates the upper limit of violation probability in (7). Fj"%*
is the maximum line power flow vector. Iy, I5, I3, and I, are
matrices that respectively map the vectors P, P™® PE (¢,
and P* into (Ng — 1) x 1 vectors, with the nonzero elements
denoting connections to one of the Np buses other than the
slack bus.
3- Power generation limit:

PG < PE<PY . i=1,2,... Ng )
4- DR commitment limit:
OSI_)jrdSRj{?TLam?J:1727"'7NDRP (10)
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Prd

T maz Can be

Assuming a linear aggregated demand curve,
calculated as

Ts,j

Pffi@am = min (Pbase s mpbase ,j) (1)
J

where 7, ; is DRP’s incentive price to end-consumers, Pyqse
is the baseline for end -consumers, 7;"** is the demand curve’s
Y-axis intercept. 777 is the retail price. This problem is very
hard to solve, because PT ‘Eny and the distribution of the
random variable ¢ are unknowns before optimization. In addi-
tion because realizations of £ cannot be observed, traditional
SP techniques cannot be used. Data pairs of decisions and
uncertainties should be gathered together to understand the
link between uncertainty and the decision variable in order to
successfully address such SP problems. This paper introduces
a coupled learning enabled optimization (CLEO) algorithm
[14] to solve this problem.

III. SOLUTION METHOD

This section is devoted to providing a detailed description of
the presented framework. In this work, it is considered that the
responsiveness of consumers is a function of the independent
system operator’s (ISO) decisions as below:

PGy = V(P[) + ¢
(P = (A1) Pt (40) (13)
The derivative-free trust region method is the foundation of
the CLEO algorithm, which is used to solve SED with la-
tently decision-dependent uncertainty. In the proposed solution
process, the SED-DR-EnU problem (1)-(9) is solved in two
steps, learning and optimization. At each iteration, a region
around the current best solution is defined that is trusted to
be a sufficient approximation of the objective function and
hence the model is called trust region. Using local linear
regression (LLR) centered at the current iteration, the local
latent dependency is predicted in the learning step. During
the optimization phase, a potential answer to the trust region
subproblem is sought, which is made up of the random
LLR model. At the ki, iteration, the current point is P;}%,
0 1is the radius of the current trust region and the data
set is T, = {(P]¢, P/ )} of size Ny. The estimation
of parameters A and” A° can be found by minimizing the
sum of square errors between the actual and acctepted DR
commitment.
{A\k’o, Ekl} € argmin Z
( prd_prd

0 1
A0 A
7,177 j,i, EnU

(12)

€T (14)

2
d 1T prd 0
| Pt = (41) T Py = (49)|
Ak and Ak are the estimation of parameters A and Al
respectively. By subtracting the actual DR commitment from

the estimated one, the error ¢ can be calculated as shown
in (15).

~ T Y T
P — (A’“l) P]T;?—(A’“O) i=1,2,., N,

15)

978-1-6654-6441-3/23/$31.00 ©2023 IEEE

A random variable with the empirical probablhty distribution
of {e’€ 1}2.:'“1 is denoted by the symbol £¥. The LLR model
my, 18 constructed as follows.

T T
mp (P,:d + sk,sk) £ (/Alk’l) (P,zd + sk) + (/Tk’o) +ek
(16)
Where s” is the step which minimizes the objective function
in the trust region and satisfies a “sufficient” decrease
requirement. The mathematical formulation of the DR
problem under both exogenous and endogenous uncertainties
(1)-(8) will change to:

min  f (P{?+ s*) = E[Ch(PC)+

Nprp

Zakzak1+ Z Mjk Pr +S EJk) f]f]

subject to the followmg constraints:
1- Energy adequacy constraint:We reformulate the con%traint

(7) to (18) by substituting P, with m, (P kel k>

z P;SI‘FZ\R PR Z\DRP m; i (P’L{Jrs €/A> >Z\B PL
(18)

a7)

2- Power flow limit:

L (hLNS PG+ )5 P+ 10N (PR +G) - LN PR < e

(19)
3- Power generation limit:
Plgmzngpk,zSPsza'p?Z:LQ?"'aNG (20)
4- DR commitmen limit:
0< PSS < Pumi=12...,Nprp 1)
3-
sl < O (22)

Actual to predicted reduction ratio of the objective function is
used to determine whether s is a descent step. The problem
has a decision-dependent uncertainty. This dependency is
unknown. As a result, it is impossible to compute the objective
function’s true value. In this case, local linear regression
models can be used to estimate the value of the objective
function. Particularly, uj and w1 /5 are used to estimate the
values of the functions f (p*) and f (p* + s¥).

A

ur 2 [f (0%, mi (0F,51))]
U172 = [f (p P st em?))]

The estimated ratio between actual and predicted decrease in
objective function is then roughly represented as

pre 2 (e — wpiry2) / (Fr (PF) = fu (7 +57))

To determine if the new step p* + s* will be approved or
denied, the ratio p; needs to be large enough. In addition,
||s|l < dx should be satisfied and the generalized gradient and
the TR radius &5 should be large enough in relation to one
another. After applying the two steps of the algorithm, cost
and total demand response commitment are predicted.

(23)

Pt sk s (p 24)

(25)
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IV. RESULTS AND DISCUSSION

In this section, IEEE 14 bus and 39 bus power systems with
DRPs and RESs are examined to evaluate the performance of
the proposed stochastic economic dispatch model. The SED-
DR-ENU formulations are coded in Python. Looking back
on (11), a linear aggregated inherent demand curve for end-
consumers is assumed, with baseline Pbase = 60, retail price
7R — 100, the j-th DRP’s offer price 7erR = 100, and Y-
axis intercept 7"** = 400. In total, 3 cases are considered
to analyze the effect of EnU on DR commitment, as it is
described below:

Case 1: Demand response considering both endogenous and
exogenous uncertainties (uncertainty of load and RES)

Case 2: Demand response without considering uncertainties.
Case 3: Demand response considering just exogenous uncer-
tainties (uncertainty of RES)

A. IEEE 14 bus system

This subsection analyzes a more complex IEEE 14-bus
system that has two DRPs and two RESs as shown in Fig.1. In
order to lower the demand, it is supposed that DRPs are located
in buses 3 and 4 that have the highest loads (Nprp = 2). It
is assumed that two RESs, each with a 40 MW capacity, are
connected to buses 2 and 3, with » = 20% (Ngr = 2). Fig.
2 shows the result of the simulation for the three cases. The
amount of required load reduction for case 1 is higher than
for cases 2 and 3 because case | is more accurate. Based on
the first row of Table I case 1 needs more DR commitment
compared with cases 2 and 3. This result represents the
importance of considering EnU in the SED problem.
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Fig. 1. IEEE 14 Bus system with 2 DRPs and 2 RESs

B. IEEE 39 bus system

In this subsection, IEEE 39 bus system with two DRPs is
studied as shown in Fig. 3. Buses 20 and 39 are presumed to
have DRPs (Nprp = 2). RES integration is simulated using
three wind farms connected to buses 30, 34 and 37. Total
contribution of wind farms is assumed to be around 20% of
the system’s total generating capacity, r is equal to 20% and
Np = 3. Fig. 4 represents the result of the simulation for the
three cases. Required load reduction for case 1 is higher than
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Fig. 2. IEEE 14 Bus system results

cases 2 and 3, this shows the inaccuracy of the case 2 and
3. The second row of Table I compares the DR commitment
values for the 39 bus system.
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Fig. 4. IEEE 39 Bus system results

Cases 2 and 3 represent the existing research where case 2
does not consider any uncertainties and case 3 considers just
exogenous uncertainties (uncertainty of RES). Case 1 is the
proposed scenario of this paper which is closer to real-world
situations since it considers both endogenous and exogenous
uncertainties (uncertainty of load and RES). Given this, the
simulation results shown in 2 and 4 indicate that cases 2 and
3 (i.e., existing research) are not accurate enough to represent
the real-world. An important conclusion we can make from
the simulation results is that endogenous uncertainty should
be considered in the economic dispatch problems which in-
volve demand response. To evaluate the performance of the
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stochastic ED model, the convergence curve of a deterministic
ED which does not take into account any uncertainties is
compared with our model in Fig. 5. Both approaches converge
after about 210 iterations. In addition, a comparison between
stochastic and deterministic approaches is represented in Fig.
5. Minimum objective function vlues are 2109.73 and 4890
for stochastic and deterministic algorithms respectively. The
SED problem is also solved with SVR and linear regression in
addition to CLEO algorithm, to evaluate CLEO performance.
Table II compares the standard deviation of the objective
function and simulation time of all three algorithms. Based on
these results CLEO performs as well as the SVR algorithm.

20000 = Stochastx
Deterministsc

Objective function value

0

10
loag

20

30
40
Yctio, ™ 50 0

Fig. 5. Comparison of convergence curves of stochastic (blue) and determin-
istic (orange) ED (top). Deterministic (red plot) VS. Stochastic (green plot)
results. Vertical axis shows objective function vlue which has minimum value
of 2109.73 and 4890 for stochastic and deterministic algorithms respectively.
X, Y and Z axes show accepted DR commitment, total power generation of
the generators and objective function value respectively (bottom).

TABLE I
DR COMMITMENT VALUE FOR 3 CASES AND IEEE 14 BUS AND 39 BUS
SYSTEMS
Value Case 1 Case 2 Case 3
DR commitment(14Bus) 28.05 pu | 6.48e-08 pu | 5.30e-08 pu
DR commitment (39Bus) | 100.44 pu 100.22 pu 100.26 pu
TABLE 11

COMPARISON OF STANDARD DEVIATION OF THE SUPPLY-SIDE COST AND
THE SIMULATION TIME BETWEEN SVR, CLEO AND LINEAR REGRESSION

MODELS.
Value SVR CLEO LinearRegression
Obj func standard deviation 0 1.13e-13 0.10
Simulation time(1000 samples) | 0.004 0.02 0.007

V. CONCLUSION

SED-DR-EnU framework is presented in this paper, to
account for the importance of considering endogenous uncer-
tainty in the day-ahead market. Demand response is provided
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by DRPs using bottom-up aggregation, which has a significant
degree of DR uncertainty because of end-consumer behavior.
The proposed framework’s ability to take into account both of
the exogenous and endogenous uncertainties of DR in the SED
problem—which are caused by physical factors and behavior
of consumers on the demand side—represents its key inno-
vation in comparison to past research. CLEO model has been
presented to take into account the unpredictability of consumer
responsiveness, and it is considered that the responsiveness of
consumers is a function of accepted DR commitments, to show
the dependence of consumer behavior with DR operations.
The simulation results show that DR commitment is influenced
by factors like consumer consumption patterns and the grid’s
DR operation decisions. Additionally, a comparative study
demonstrates that demand-side participation uncertainty may
have a high impact on how effectively DR programs operate.
Thus, in actuality, effective calculation of DR commitment
should take into account the impact of endogenous uncertainty.
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