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Abstract

Motivation: Multiple sequence alignments (MSAs) of homologous sequences contain information on structural and
functional constraints and their evolutionary histories. Despite their importance for many downstream tasks, such
as structure prediction, MSA generation is often treated as a separate pre-processing step, without any guidance
from the application it will be used for.

Results: Here, we implement a smooth and differentiable version of the Smith–Waterman pairwise alignment algo-
rithm that enables jointly learning an MSA and a downstream machine learning system in an end-to-end fashion. To
demonstrate its utility, we introduce SMURF (Smooth Markov Unaligned Random Field), a new method that jointly
learns an alignment and the parameters of a Markov Random Field for unsupervised contact prediction. We find that
SMURF learns MSAs that mildly improve contact prediction on a diverse set of protein and RNA families. As a proof
of concept, we demonstrate that by connecting our differentiable alignment module to AlphaFold2 and maximizing
predicted confidence, we can learn MSAs that improve structure predictions over the initial MSAs. Interestingly, the
alignments that improve AlphaFold predictions are self-inconsistent and can be viewed as adversarial. This work
highlights the potential of differentiable dynamic programming to improve neural network pipelines that rely on an
alignment and the potential dangers of optimizing predictions of protein sequences with methods that are not fully
understood.

Availability and implementation: Our code and examples are available at: https://github.com/spetti/SMURF.

Contact: so@fas.harvard.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Multiple sequence alignments (MSAs) are commonly used in biology
to model evolutionary relationships and the structural/functional
constraints within families of proteins and RNA. MSAs are a critical
component of the latest contact (Balakrishnan et al., 2011; Jones
et al., 2012; Morcos et al., 2011) and protein structure prediction
pipelines (Baek et al., 2021; Jumper et al., 2021). Moreover, they
are used for predicting the functional effects of mutations (Figliuzzi
et al., 2016; Frazer et al., 2021; Hopf et al., 2017; Sundaram et al.,

2018), phylogenetic inference (Felsenstein and Felenstein, 2004) and
rational protein design (Goldenzweig et al., 2016; Ma et al., 2016;
Russ et al., 2020; Tian et al., 2018). Creating alignments, however,
is a challenging problem. Standard approaches use heuristics for
penalizing substitutions and gaps and do not take into account the
effects of contextual interactions (Steinegger et al., 2019) or long-
range dependencies. For example, these local approaches struggle
when aligning large numbers of diverse sequences, and additional
measures (such as the introduction of external guide Hidden
Markov Models, HMMs) must be introduced to obtain reasonable
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alignments (Sievers and Higgins, 2014). Finally, each alignment
method has a number of hyperparameters which are often chosen on
an application-specific basis. This suggests that computational meth-
ods that input an MSA could be improved by jointly learning the
MSA and training the method.

Here, we introduce the Learned Alignment Module (LAM),
which is a fully differentiable module for constructing MSAs and
hence can be trained in conjunction with another differentiable
downstream model. Building upon the generalized framework for
differentiable dynamic programming developed in Mensch and
Blondel (2018), LAM employs a smooth and differentiable version
of the Smith–Waterman algorithm. Whereas the classic implementa-
tion of the Smith–Waterman algorithm outputs a pairwise alignment
between two sequences that maximizes an alignment score (Smith
and Waterman, 1981), the smooth version outputs a distribution
over alignments. This smoothness is crucial to: (i) make the algo-
rithm differentiable and therefore applicable in end-to-end neural
network pipelines, and (ii) allow the method to consider multiple
hypothesized alignments simultaneously, which we believe to be a
beneficial feature early in training.

We demonstrate the utility of LAM with two differentiable pipe-
lines. First, we design an unsupervised contact prediction method
that jointly learns an alignment and the parameters of a Markov
Random Field (MRF) for RNA and protein, which we use to infer
better structure-based contact maps. Next, we connect our differen-
tiable alignment method to AlphaFold2 [here referred to as
AlphaFold, as in Jumper et al. (2021)] to jointly infer an alignment
that improves its prediction of protein structures. We find that the
alignments that improve structure prediction are nonsensical, reveal-
ing unexpected behavior of AlphaFold. Our main contributions are
as follows:

1. We implemented a smooth and differentiable version of the

Smith–Waterman algorithm for local pairwise alignment in JAX

(Bradbury et al., 2018). Our implementation includes options

for an affine gap penalty, a temperature parameter that controls

the relaxation from the highest scoring path (i.e. smoothness),

and both global and local alignment settings. Our code is freely

available and can be applied in any end-to-end neural network

pipeline written in JAX, TensorFlow (Abadi et al., 2015) or via

DLPack in PyTorch (Paszke et al., 2019). Moreover, we give a

self-contained description of our implementation and its math-

ematical underpinnings, providing a template for future imple-

mentations in other languages.

2. We introduced the LAM, a fully differentiable module for con-

structing MSAs that is trained in conjunction with a downstream

task. For each input sequence, a convolutional architecture pro-

duces a matrix of match scores between the sequence and a ref-

erence sequence. Unlike a substitution matrix typically input to

Smith–Waterman, these scores account for the local k-mer con-

text of each residue. Next, we apply our smooth Smith–

Waterman (SSW) implementation to these similarity matrices to

align each sequence to the reference, yielding an MSA (Fig. 1).

3. We used contact prediction as a case study to demonstrate that

joint learning with the LAM can recover alignments that have

similar (and sometimes better) performance on contact predic-

tion over traditional methods that input an MSA, establishing

that our module works as designed. Our method, Smooth

Markov Unaligned Random Field (SMURF), takes as input un-

aligned sequences and jointly learns an MSA (via LAM) and

MRF parameters. These parameters can then be used for contact

prediction.

4. Finally, we applied the LAM to reveal unexpected behavior of

AlphaFold: some low-quality inconsistent alignments yield bet-

ter structure predictions than sensible alignments of the same

sequences. We modify AlphaFold, replacing the input MSA with

the output of LAM. For a given set of unaligned, related protein

sequences, we backprop through AlphaFold to update the

parameters of LAM, maximizing AlphaFold’s predicted confi-

dence. Doing so results in learned MSAs that improve the struc-

ture prediction over our initial input MSA for three out of four

structures. Despite the improved structure predictions, we find

that the MSAs learned by the LAM may be adversarial as indi-

cated by their self-inconsistency. This finding raises questions

about how AlphaFold uses the input MSA to make its

predictions.

1.1 Related work
1.1.1 Differentiable dynamic programming in natural language

processing

Differentiable dynamic programming algorithms are needed in order
to model combinatorial structures in a way that allows backpropa-
gation of gradients (Berthet et al., 2020; Mensch and Blondel, 2018;
Vlastelica et al., 2019). Such algorithms have been used in natural
language processing to build neural models for parsing (Durrett and
Klein, 2015), grammar induction (Kim et al., 2019), speech (Cai and
Xu, 2019) and more. Smooth relaxations of argmax and other non-
differentiable functions can enable differentiation through dynamic
programs. More generally, Mensch and Blondel (2018) leverage
semirings to provide a unified framework for constructing differenti-
able operators from a general class of dynamic programming algo-
rithms. This work has been incorporated into the Torch-Struct
library (Rush, 2020) to enable composition of automatic differenti-
ation and neural network primitives, was recently implemented in
Julia (Stock, 2021), and is the basis for our JAX implementation of
SSW.

1.1.2 Smooth and differentiable alignment in computational biology

Before end-to-end learning was common, computational biologists
used pair HMMs to express probability distributions over pairwise
alignments (Durbin et al., 1998; Knudsen and Miyamoto, 2003;
Miyazawa, 2000). The forward algorithm applied to a pair HMM
can be viewed as a smoothed version of Smith–Waterman. Later, a
differentiable kernel-based method for alignment was introduced
(Saigo et al., 2006). More recently, Morton et al. implemented a dif-
ferentiable version of the Needleman–Wunsch algorithm for global
pairwise alignment (Morton et al., 2020; Needleman and Wunsch,
1970). Our implementation has several advantages: (i) vectorization
makes our code faster (Supplementary Fig. S2 and Section S4.3), (ii)
we implemented local alignment and an affine gap penalty
(Supplementary Section S4.4) and (iii) due to the way gaps are para-
meterized, the output of Morton et al. (2020) cannot be interpreted
as an expected alignment (Supplementary Section S4.2).
Independent and concurrent work (Llinares-López et al., 2021) uses
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Fig. 1. Learned alignment module (LAM). The residues of B sequences and a ‘query’

sequence are mapped to vectors using a convolution. For each sequence k, an align-

ment score matrix a is computed by taking the dot products of the vectors represent-

ing the query sequence and the vectors representing sequence k. The similarity

tensor is formed by concatenating these matrices, and then our differentiable imple-

mentation of smooth Smith–Waterman is applied to each similarity matrix in the

tensor to produce an alignment. The resulting B smooth pairwise alignments (all

aligned to the query sequence) are illustrated as the ‘Alignment Tensor’
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a different formulation of differentiable Smith–Waterman involving
Fenchel-Young loss.

1.1.3 Language models, alignments and MRFs

Previous work combining language model losses with alignment of
biological sequences place the alignment layer at the end of the pipe-
line. Bepler and Berger (2018) first pretrain a bidirectional RNN
language model, then freeze this model and train a downstream
model using a pseudo-alignment loss. Similarly, Morton et al.
(2020) use a pretrained language model to parametrize the align-
ment scoring function. Their loss, however, is purely supervised
based on ground-truth structural alignments. Llinares-López et al.
(2021) use differentiable Smith–Waterman with masked language
modeling (MLM) and supervised alignments to learn a scoring func-
tion derived from transformer embeddings. For RNA, a transformer
embedding has been trained jointly with an MLM and structural
alignment (Akiyama and Sakakibara, 2021). In contrast to all of
these papers, our alignment layer is in the middle of the pipeline and
is trained end-to-end with a task downstream of alignment.

Joint modeling of alignments and Potts models has been
explored. Kinjo (2016) include insertions and deletions into a Potts
model using techniques from statistical physics. Two other works
infer HMM and/or Potts parameters through importance sampling
(Wilburn and Eddy, 2020) and message passing (Muntoni et al.,
2020), with the goal of designing generative classifiers for protein
homology search.

2 Materials and methods

2.1 Smooth Smith–Waterman
Pairwise sequence alignment is the task of finding an alignment of
two sequences with the highest score, where the score is the sum of
the ‘match’ scores for each pair of aligned residues and ‘gap’ penal-
ties for residues that are unmatched. The Smith–Waterman algo-
rithm is a dynamic programming algorithm that returns a path with
the maximal score. A smooth version instead finds a probability dis-
tribution over paths in which higher scoring paths are more likely.
Smoothness and differentiability can be achieved by replacing the
max with logsumexp and argmax with softmax in the dynamic
programming algorithm. We implemented an SSW formulation in
which the probability that any pair of residues is aligned can be for-
mulated as a derivative (Supplementary Sections S1 and S4). We use
JAX due to its JIT (‘just in time’) compilation and automatic differ-
entiation features (Bradbury et al., 2018).

Our speed benchmark indicates that our implementation is faster
than the smooth Needleman–Wunsch implementation in Morton
et al. (2020) for both a forward pass as well as for the combined for-
ward and backward passes (see Supplementary Fig. S2). The latter is
relevant when using the method in a neural network pipeline requir-
ing backprogation. Moreover, comparison between a vectorized and
naive version of our code shows that vectorization substantially
reduces the runtime, see Wozniak (1997) and Supplementary
Section S4.3. Vectorization in both sequence length and batch di-
mension accounts for the speed improvement over the Needleman–
Wunsch implementation in Morton et al. (2020), which is only
vectorized over the batch dimension.

Our SSW has four other features: temperature, affine gap, retrict
turns and global alignment. A temperature parameter governs the ex-
tent to which the distribution concentrated on the highest scoring align-
ments. In the affine gap mode, the first gap in a streak incurs an ‘open’
gap penalty and all subsequent gaps incur an ‘extend’ gap penalty. A
restrict turns option corrects for the algorithm’s inherent bias toward
alignments near the diagonal. We also implemented Needleman–
Wunsch to output global alignments rather than local alignments. See
Supplementary Section S4.4 for additional details of SSW options.

2.2 Learned alignment module
The key to improving a Smith–Waterman alignment is finding the
right input matrix of alignment scores a ¼ ðaijÞi� ‘x ;j� ‘y

. Typically,

when Smith–Waterman is used for pairwise alignment the alignment
score between positions i and j, aij, is given by a BLOSUM or PAM
score for the pair of residues Xi and Yj (Altschul et al., 1997;
Dayhoff and Eck, 1972; Henikoff and Henikoff, 1992). This score
reflects how likely it is for one amino acid to be substituted for an-
other, but does not acknowledge the context of each residue in the
sequence. For example, consider serine, an amino acid that is both
small and hydrophilic. In a water-facing part of a protein, serine is
more likely to be substituted for other hydrophilic amino acids. In
other contexts, serine may only be substituted for other small amino
acids due to the geometric constraints of the protein fold.
Employing a scoring function with convolutions allows for local
context to be considered.

Our proposed LAM adaptively learns a context-dependent align-
ment score matrix aij, performs an alignment based on this score ma-
trix, all in conjunction with a downstream machine learning task.
The value aij expresses the similarity between Xi in the context of
Xi�w; . . .Xi; . . .Xiþw and Yj in the context of Yj�w; . . .Yj; . . .Yjþw.
We represent position i in sequence X as a vector vXi obtained by
applying a convolutional layer of window size 2wþ 1 to a one-hot
encoding of Xi and its neighbors. The dimension of the vectors is the
number of convolutional filters (here 512). The value aij in the simi-
larity matrix that we input to Smith–Waterman is the dot product of
the corresponding vectors, aij ¼ vXi � vYj : To construct an MSA from
a reference and B other sequences, the LAM constructs a similarity
matrix between each sequence and the reference, applies differenti-
able Smith–Waterman to each similarity matrix, and outputs an
alignment of each sequence to the reference (which can be viewed as
an MSA) (see Fig. 1). Since this process is entirely differentiable, we
can plug the alignment produced by the LAM into a downstream
module, compute a loss function, and train the whole pipeline end-
to-end.

We confirmed that the similarity scores learned by LAM are
much more expressive than BLOSUM scores. Supplementary
Figures S6 and S7 illustrate the distribution of similarity scores
learned by the LAM when trained in the context of our contact pre-
diction method SMURF. Unlike in the BLOSUM scoring scheme,
the score between a pair of amino acids is not simply a function of
their identities; instead the score can range substantially depending
on the contexts. Moreover, the distribution of scores varies between
families.

3 Results

3.1 Applying the LAM to contact prediction
GREMLIN is a probabilistic model of protein variation that uses the
MSA of a protein family to estimate parameters of an MRF (see
Supplementary Section S2.1), which in turn are used to predict con-
tact maps (Balakrishnan et al., 2011; Ekeberg et al., 2013;
Kamisetty et al., 2013; Ovchinnikov et al., 2014). Since GREMLIN
relies on an input MSA, one would expect that improved alignments
would yield better contact prediction results. To test this, we
designed a pipeline for training a GREMLIN-like model that inputs
unaligned sequences and jointly learns the MSA and MRF parame-
ters. We call our method Smooth Markov Unaligned Random Field
or SMURF.

SMURF takes as input a family of unaligned sequences and
learns both (i) the LAM convolutions and (ii) the parameters of the
MRF that are, in turn, used to predict contacts. SMURF has two
phases, each beginning with the LAM. First, BasicAlign learns LAM
convolutions by minimizing the squared difference between each
aligned sequence and the corresponding averaged MSA
(Supplementary Fig. S8). This objective (Supplementary Equation
S4) encourages alignments where each column is predominantly
composed of one or a few specific residues and allows the network
to learn convolutions that yield a reasonable alignment before being
tasked with deducing pairwise correlations (MRF parameters).
These convolutions are then used to initialize the LAM for the se-
cond training phase, TrainMRF, where an MLM objective is used to
learn MRF parameters and update the convolutions, allowing the
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network to adjust the alignment (Supplementary Fig. S9). In MLM,
random residues in the input are masked and the network uses the
energy function described by the MRF parameters to compute a
guess (represented as a distribution over residues) for each masked
residue. The objective function (Supplementary Equation S6) is a
combination of the cross entropy loss of these guesses and regular-
ization terms for the MRF parameters. For further details, see
Supplementary Section S2.3.

We compare SMURF to GREMLIN trained with MLM (MLM-
GREMLIN) as in Bhattacharya et al. (2020). The architecture of
MLM-GREMLIN is similar to TrainMRF step of SMURF, except
that a fixed alignment is input instead of a learned alignment com-
puted by LAM.

We trained and evaluated our model on a diverse set of protein
families, as described in Supplementary Section S2.2. Our model
was trained separately on each family (i.e. different convolutions are
learned for each family), and the families in the training set were
used to select the hyper-parameters and network architecture. To
evaluate the accuracy of downstream contact prediction, we com-
puted a standard metric used to summarize contact prediction accur-
acy, i.e. the area under the curve (AUC) for a plot of fraction of top
t predicted contacts that are correct for t equals 1 up to L, where L
is the length of the protein. Figure 2a illustrates that SMURF mildly
outperforms MLM-GREMLIN with a median AUC improvement of
0.007 across 193 protein families in the test set. To test whether
SMURF requires a deep alignment with many sequences, we ran
SMURF on protein families at most 128 sequences. The perform-
ance of SMURF and MLM-GREMLIN are comparable even for
these families with relatively few sequences, with a median AUC im-
provement of 0.002 (Supplementary Fig. S11).

Next, we sought to compare qualities of the MSAs learned
through SMURF and MSAs fed into GREMLIN, which were gener-
ated with HHblits (Steinegger et al., 2019). To quantify the consist-
ency of the MSAs, we compared the BLOSUM scores (Henikoff and
Henikoff, 1992) of all pairwise alignments extracted from our learn-
ed MSA to those extracted from the HHblits MSA. By this metric,
we found that alignments learned by SMURF were more consistent
than those from HHblits. Moreover, we observed a slightly positive
correlation between increased consistency and contact prediction
improvement (Supplementary Fig. S10, left). We also found that
SMURF alignments tend to have more positions aligned to the query
(Supplementary Fig. S10, right). We hypothesize that this is because
our MRF does not have a mechanism to intelligently guess the iden-
tity of residues that are insertions with respect to the query sequence
(the guess is uniform, see Supplementary Section S2.3).

Next, we applied SMURF to 17 non-coding RNA families from
Rfam (Kalvari et al., 2021) that had a corresponding structure in
PDB (see Supplementary Section S2.2). Due to the relatively small
number of RNAs with known 3D structures, we employed SMURF
using the hyperparameters optimized for proteins; fine-tuning
SMURF for RNA could improve performance. Overall, we observe
that SMURF outperforms MLM-GREMLIN with a median AUC
improvement of 0.02 (Fig. 2b). Despite choosing hyperparameters
for our network based on protein examples, we see comparatively
stronger improvement in RNA. Since our alignments are trained in
conjunction with an MRF, covariation patterns inform the align-
ments. Our observation suggests that there is more to be gained
from incorporating covariation into RNA alignment methods as
compared to proteins.

In Supplementary Section S5, we further discuss the RNA con-
tact predictions illustrated in Figure 2b and the SMURF predictions
for the three most and least improved protein families
(Supplementary Figs S12 and S13). We hypothesize that SMURF
generates fewer false positive predictions in seemingly random loca-
tions because the LAM finds better alignments.

Finally, we performed an ablation study on SMURF
(Supplementary Fig. S14). We found that replacing SSW with a dif-
ferentiable ‘pseudo-alignment’ procedure, similar to Bepler and
Berger (2018), degraded performance substantially. Skipping
BasicAlign also degraded performance, thus indicating the import-
ance of the initial convolutions found in BasicAlign.

3.2 Using backprop through AlphaFold to learn

alignments with LAM
Next, we tested whether jointly learning an alignment with
AlphaFold could improve structure prediction. While our experi-
ment found this to be possible, the more interesting takeaway was
our finding that AlphaFold sometimes makes better predictions
from strikingly low-quality alignments as compared to sensible
alignments of the same sequences. For our experiment, we selected
four CASP14 domains where the structure prediction quality from
AlphaFold was especially sensitive to how the MSA was constructed
(see Supplementary Section S3.1). We reasoned that the quality was
poor due to issues in the MSA and by realigning the sequences using
AlphaFold’s confidence metrics we may be able to improve on the
prediction quality.

For each of the four selected CASP targets, separate LAM
parameters were fit to maximize AlphaFold’s predicted confidence
metrics (see Supplementary Section S3.2). We repeated this 180
times for each target (varying the learning rates, random seeds and
smoothness of the alignment), and then selected the learned MSA
corresponding to the most confident AlphaFold (AF) prediction as
measured by AF’s predicted local Distance Difference Test
(pLDDT). For all targets, AF reported higher confidence in the pre-
diction from our learned MSA as compared to the prediction from
an MSA with the same sequences generated by MMSeqs2 as imple-
mented in ColabFold (Mirdita et al., 2021). However, only three of
the four targets showed an improvement in the structure prediction,
as measured by the RMSD (root-mean-squared-distance) to native
structure (see Figs 3 and 4).

Next, we compared the learned MSAs that led to better structure
predictions to the MMSeqs2 MSAs. Evaluating the learned MSAs by
eye, we found our learned MSAs to be strikingly low quality. We
saw many examples of inconsistently aligned motifs and even pairs
of nearly identical sequences exhibiting completely different align-
ments with the query. Figure 3a illustrates a conserved motif that is
consistently aligned in the MMSeqs2 MSA yet completely scattered
in our learned MSA. Next, we designed a method to quantify the
quality issues in our learned alignments. We compared the
BLOSUM scores (Henikoff and Henikoff, 1992) of all pairwise
alignments extracted from our learned MSAs to those extracted
from the MMSeqs2 MSA. Indeed, the learned MSAs contain much
lower scoring pairwise alignments than those of MMSeqs2 MSAs,
indicating far less consistency (Figs 3a and 4), which is the opposite
trend we observed for MSAs learned by SMURF. Thus, unlike
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Fig. 2. SMURF often outperforms MLM-GREMLIN on (a) protein and (b) non-cod-
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SMURF versus MLM-GREMLIN. (Bottom) Histograms of the difference in AUC

between SMURF and MLM-GREMLIN. (Right) Comparison of contact predictions

and the positive predictive value (PPV) for different numbers of top N predicted

contacts, with N ranging from 0 to 2L, for SMURF (red, above the diagonal) and

MLM-GREMLIN (blue, below the diagonal) for Rfam family RF00010

(Ribonuclease P.) and RF00167 (Purine riboswitch). Gray dots represent PDB-

derived contacts, circles represent a true positive prediction, and x represents a false

positive prediction. For contact predictions for RFAM00010, the black circles high-

light a concentration of false positive predictions (A color version of this figure

appears in the online version of this article)
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optimizing the MRF in SMURF, optimizing the confidence of AF
predictions does not yield consistent alignments with LAM.

We explored a simple explanation for how low-quality align-
ments could yield improved structure predictions; perhaps AF uses
its axial-like attention to consider only a subset of sequences, and
the poor alignments by the other sequences isn’t important or could
further disqualify those sequences from being attended to. To inves-
tigate this, we evaluated how sensitive the AF predictions are to the
inclusion of each individual sequence (Figs 3b and 4). Surprisingly,
the prediction accuracy can be incredibly sensitive to the removal of
a single sequence, especially for MMSeqs2 MSAs.

Next, we considered the effect of removing subsets of more dis-
tant sequences. The MMSeqs2 MSAs were constructed with a leni-
ent E-value threshold of 10, which may introduce sequences in the
MSA that are not true homologs. For targets T1064-D1 and T1070-
D1, we removed all sequences with an E-value smaller than 10�3.
The target T1064-D1 has two sequences above this threshold
(E-values 1.4 and 0.16) that almost certainly are not homologs of
the query. (E-value, defined as P-value multiplied by the size of data-
base, indicates the how many matches with detected similarity are
expected to occur by chance alone.) While removing either individu-
ally does not substantially change the accuracy of the prediction,
removing both worsens the prediction with the MMSeqs2 MSA sig-
nificantly (RMSD 3.46 to 12.11) and worsens the prediction with
our learned MSA mildly (RMSD 1.47 to 2.48). In T1070-D1 we
realized the opposite outcome; removing the sequences with E-value
at least 10�3 greatly improved the prediction with the MMSeqs2
MSA (RMSD 9.91 to 4.51) and slightly improved the prediction
with our learned MSA (RMSD 2.75 to 2.70). Noting the influence

of the closest homolog (E-value 6:1 � 10�30) on predictions for
T1039-D1, we defined most distant sequences for this target as
those with E-value greater than 10�15, leaving only the closest
homolog. Restricting to the query and this single homolog improved
the MMSeqs2 prediction substantially (RMSD 7.62 to 2.79), bring-
ing it on par with the prediction from our learned MSA on the full
set of sequences (RMSD 2.66). The inclusion of this single close
homolog is vital; the RMSD of the prediction for the query sequence
alone is 11.56.

Finally, we repeated our optimization experiment after removing
the distant sequences (Supplementary Fig. S16a). We found that the
most confident MSAs learned without the distant sequences tended
to yield predictions with similar RMSD to the predictions from the
most confident MSAs learned on the full set of sequences (see orange
and purple bars in Supplementary Fig. S16b). We also investigated
whether it was easier or harder to obtain ‘near optimal’ structure
prediction (having an RMSD of 1.25 times the RMSD of the predic-
tion of the learned MSA on the full set) with the restricted set of
sequences as compared to the full set. For T1064-D1 our optimiza-
tion scheme found ‘near optimal’ structures more often with the set
of sequences that includes the distant sequences. The opposite was
the case for T1039-D1, and there was no strong difference for
T1070-D1 (Supplementary Fig. S16b).

4 Discussion

In this work, we explored the composition of alignment in a pipeline
that can be trained end-to-end without usage of any existing align-
ment software or ground-truth alignments. With SMURF, we
trained alignments jointly with a well-understood MRF contact pre-
diction approach and found mild improvement in accuracy using
learned MSAs that were consistent and reasonable. When we instead
optimized with AlphaFold’s confidence metrics, we found low-
quality MSAs that yielded improved structure predictions for three
out of four examples. Our result establishes that in some cases
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Fig. 3. Learned MSA results in improved structure prediction, but a worse alignment

for T1039-D1. (a) The scatter plot shows the pLDDT and RMSD for the most confi-

dent point in each trajectory. The marker color indicates the learning rate

(10�2; 10�3; 10�4, lightest to darkest) and the shape indicates whether cooling was

used (circle ¼ no cooling, square ¼ cooling). The dotted lines show the pLDDT and

RMSD of the prediction using the MSA from MMseqs2. We selected the circled

point maximizing the confidence (pLDDT) as our ‘Learned MSA’. The native struc-

ture is rainbow colored, and the predictions are overlaid in grey. The view of our

Learned MSA illustrates the inconsistent alignment of a conserved motif (green)

that is aligned accurately in the MMSeqs2 MSA. The scatter plot shows that the

pairwise alignment scores for pairs extracted from the Learned MSA are much

lower than the scores for pairs extracted from the MMSeqs2 MSA. (b) Change in

RMSD when individual sequences are removed from the MSA (left) or a group of

distant sequences is removed (right) (A color version of this figure appears in the on-

line version of this article)
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Fig. 4. Learned MSA and structure predictions for three additional targets. The plots

are analogous to those in Figure 3. An improved structure was found for T1064-D1

and T1070-D1, but not T1043-D1. The MSAs learned for each target were less con-

sistent than their MMSeqs2 counterparts
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AlphaFold can make accurate structure predictions from very low-
quality alignments. Therefore, the task of optimizing AlphaFold
structure predictions does not force the LAM to learn high-quality
alignments. Perhaps by changing our objective function to also pen-
alize self-inconsistent alignments, we could learn more reasonable
MSAs while still improving AlphaFold predictions. Our work both
establishes the feasibility of pipelines which jointly learn alignments
in conjunction with downstream machine learning systems and
highlights the possibility of unexpectedly learning odd alignments
when it is not well-understood how exactly the downstream task
uses alignments.

While our findings that low-quality, self-inconsistent MSAs can
yield improved AlphaFold predictions and that AlphaFold predic-
tions may be quite sensitive to the inclusion of particular sequences
may seem paradoxical, these observations reflect behaviors found
across deep learning systems. It is well-known that deep neural net-
works are not robust to adversarial noise (Szegedy et al., 2013).
Experiments that use an image recognition neural network to opti-
mize an input image so that the image is confidently classified into a
particular category will not necessarily yield a human recognizable
image of the category (Mordvintsev et al., 2015; Nguyen et al.,
2015). Likewise, when we optimize an input alignment to maximize
the confidence of the corresponding AlphaFold prediction, we end
up with alignments that are nonsensical (e.g. fail to consistently
align a clearly conserved motif, as illustrated in Fig. 3a). Studying
adversarial examples has been one approach to trying to understand
how neural networks form predictions (Gu and Rigazio, 2014; Heo
et al., 2019; Mordvintsev et al., 2015). Our differentiable alignment
module could be used with AlphaFold to identify a range of align-
ments that yield a particular prediction. Studying these alignments
could provide insight on which aspects of an alignment are used by
AlphaFold to make its prediction.

Our SSW implementation is designed to be usable and efficient,
and we hope it will enable experimentation with alignment modules
in other applications of machine learning to biological sequences.
There is ample opportunity for future work to systematically com-
pare architectures for the scoring function in SSW. The use of convo-
lutions led to relatively simple training dynamics, but other
inductive biases induced by recurrent networks, attention mecha-
nisms, or hand-crafted architectures could capture other signal im-
portant for alignment scoring. Moreover, training one network
across protein families (rather than training a separate network for
each family) to produce vector encodings of residues and their con-
texts could be a promising strategy for aligning arbitrary pairs of
protein sequences. We also hope that the use of these more powerful
and general scoring functions enables applications in remote hom-
ology search, structure prediction, or studies of protein evolution.

Besides MSAs, there are numerous other discrete structures es-
sential to analysis of biological sequences. These include
Probabilistic Context Free Grammars used to model RNA
Secondary Structure (Nawrocki and Eddy, 2013) and Phylogenetic
Trees used to model evolution. Designing differentiable layers that
model meaningful combinatorial latent structure in evolution and
biophysics is an exciting avenue for further work in machine learn-
ing and biology.
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