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Abstract— In this paper, we investigate the problem of time-
varying sensor selection for linear time-invariant (LTI) dynami-
cal systems. We develop a framework to design a sparse sensor
schedule for a given large-scale LTI system with guaranteed
performance bounds using a learning-based algorithm. We show
how the observability Gramian matrix of an LTI system can
be interpreted as the sum of rank-1 matrices indicating the
contribution of the available sensors distributed in time. We
then employ a regret minimization framework over density
matrices to sparsify this sum of rank-1 matrices to approximate
fully sensed LTI dynamics up to a multiplicative factor in some
certain observability senses. Our main result provides a linear-
sized (in dimension of system) sensor schedule that on the
average activates only a constant number of sensors at each
time step and significantly improves the previous linearithmic
results. Our results naturally apply to the dual problem of
actuator selection where a guaranteed approximation to the
controllability Gramian will be provided.

I. INTRODUCTION

To capture dynamics, high-dimensionality, and non-
linearity of the large-scale networks proposed by the realistic
systems in science and engineering, a set of measurements
provided by a set of sensors is required. Different parameters
of a system can be measured via different types of sensors,
while the sensors normally are distributed in different places
to collect specific information of relevant spatial features of
the system. Since performing each measurement might be
expensive, or real-time processing of the complete set of
measurements may impose an unreasonable computational
load and so be practically impossible, it is often required to
utilize only a limited number of sensors to estimate the over-
all states of the system. In addition, most high-dimensional
dynamical networks present low-dimensional patterns and
coherent structures with a few key sensors placed strategi-
cally that facilitate making fast control decisions increasingly
requested by many engineering applications [1].

Finding the optimal set of these key sensors even for the
most straightforward scenarios exhibits a mostly unsolved
challenge which can be traced back to the 1970’s and 80’s
[2]-[4]. In a simple problem with a given well-defined
cost function, finding the optimal key sensors requires a
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combinatorial search that is NP-hard and mostly intractable
[5]. In the dual problem, it was shown that even obtaining
the sparse actuator set such that the resulting system is still
controllable can be NP-hard [6], [7]. Therefore, most of
the accomplished efforts have been focused on establishing
an approximate solution for this problem. As [8] suggests,
obtaining the sparse set that makes the resulting system
reachable for a particular state is hard and even hard to
approximate. In general, the problem of finding the sparse
set of sensors or actuators may be optimized for robustness,
network control, and consensus problems [9]-[12].

Early attempts such as [2]-[4] have been found to employ
nonlinear integer programming to obtain an approximate
solution. The algorithms proposed in this category, however,
do not scale to the popular applications such as smart power
grids [13], robotics [14], and epidemiological modeling and
suppression [15]. In contrast, resent attempts have proposed
to leverage the submodularity of certain performance metrics
to design variants of greedy algorithms with performance
guarantees [16]. When the metric is submodular, applying
the classical rounding algorithms such as pipage and ran-
domized rounding to the semi-definite programming (SDP)
solution of the relaxed optimization offers computationally
fast algorithms with a constant approximation [17]. Although
these algorithms provide performance compared to the op-
timal (best) solution, they require an extra multiplicative
factor of logn [18] and do not work for non-submodular
metrics [19], [20]. Very recently, leveraging online learning
and regret minimization, Vafaee and Siami in [21] have
proposed a rounding method to obtain a so-called (1 + ¢)
approximation solution for a large class of observability
metrics (including non-submodular metrics). Their approach
provides a time-varying schedule and solves the issue of
the submodularity requirement, but the time complexity
of their convex optimization part is considerable, which
decreases the applicability of the proposed algorithm for
large-scale dynamics. Balanced truncation and QR pivoting
were exploited in [22] to propose a more computationally
efficient algorithm compared to leading greedy and convex
optimization approaches. Although their method maximizes
the search space of possible selections by providing a faster
algorithm, it only works for Ha-norm and returns a static
schedule that does not change over time.

While the results discussed so far try to find approxi-
mation algorithms to obtain the best sparse set, in some
recent work [18], [23], researchers have sought to gain new
fundamental insights into approximating various observabil-
ity/controllability metrics compared to the case when all
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the available sensors/actuators are activated. Siami et al. in
[18], inspired by the new advances in randomized linear
algebra and graph sparsification, developed deterministic
and randomized frameworks to design a time-varying sparse
schedule for LTI networks that each time samples on average
a constant number of sensors, independent of the system
dimension, to approximate a large class of controllabil-
ity/observability metrics (including some non-submodular
metrics). Their result provides a polynomial-time actuator
schedule that approximates controllability metrics compared
to when all actuators are in use, but it is necessary to sample
O(nlogn) active sensors (linearithmic size) to obtain an
approximation solution up to a multiplicative factor. This
left room to potentially improve the result by proposing a
linear-sized algorithm, which is the main goal of this paper.

Contributions: To circumvent the convex relaxation step
in the regret-based rounding procedure proposed in [21],
our work proposes a novel algorithm for directly apply-
ing a regret minimization framework to the set of rank-1
contributions from available sensors. We demonstrate that
our approach produces a time-varying schedule that approx-
imates a broad class of observability metrics, including both
submodular and non-submodular cases, and achieves compa-
rable performance to a fully-sensed system. Furthermore, our
approach yields a linear-sized sensor schedule that activates
at most n/e? sensors, where ¢ € (0,1) is an approximation
factor, and ensures the same performance guarantees as [18].
Overall, our framework provides a simpler and more effective
solution to the problem of sensor scheduling for large-scale
LTT dynamics.

II. PRELIMINARIES AND DEFINITIONS
A. Mathematical Notation

Throughout the paper, the discrete time index is denoted
by k. The sets of real (integer), non-negative real (integer),
and positive real (integer) numbers are represented by R
(Z), Ry (Z4) and Ry (Z44), respectively. The set of
natural numbers {i € Z i < n} is denoted by [n].
Uppercase letters stand for real-valued matrices (e.g., A),
uppercase sans script letters illustrate set’s names (e.g., A),
lowercase bold letters denote vectors (e.g., b), and non-bold
lowercase letters are used for scalars and indices (e.g., 7)
and function names (e.g., f(+)), except 7" that shows the total
number of iteration in the regret minimization. For a vector
z = [z;] € R", diag(z) € R"*" is the diagonal matrix with
elements of x sitting orderly on its diagonal. Furthermore,
given a square matrix X, det(X) and Trace X refer to the
determinant and the summation of on-diagonal elements of
X, respectively. S} (resp. S’} | ) is the positive semi-definite
cone (resp. positive definite cone) of n-by-n matrices. Let [
denotes the identity matrix whose dimension can be inferred
from the context. Notation A < B is equivalent to matrix
B— A being positive semi-definite. The transpose and Moore-
Penrose pseudoinverse of matrix A are referred to by A" and
AT, respectively. Operator (A, B) := Trace AT B represents

the inner product of two matrices A and B. The Lg-norm
that counts the total number of nonzero elements of a vector
is referred to by || - ||o. Moreover, symbol || - || denotes
the Euclidean norm for vectors and the spectral norm for
matrices. Given a matrix Z € R"*™,

VGC(Z) = [2’171, .. .,Zn7172172, .. .,ng, .. -721,m; .. .,me]

denotes the vectorized form of a matrix, whereas vec™! will
perform the inverse of this operation.

B. Linear Systems and Observability

We start with a canonical LTI, discrete-time dynamics as
follows:

z(k+ 1) = Az(k) + Bu(k), (1)
y(k) = Cz(k), 2)

where A € R"*", B € R"*™, C € RP*", and k € Z,.
The state matrix A describes the underlying structure of the
system and the interaction strength between the agents/states,
matrix B identifies how the control input enters the system,
and the output matrix C' shows how output vector y relates
to the state vector. Referring to (1)-(2), the expanded form
is given by

=u(t)

y(0) ¢ w0
I I N U I
y(t _ 1) CAt—l ’U.(t - 1)

3)
where 7 (t) is a block matrix with known structure, formed
by combining the system matrices A, B, and C, which maps
the input to the output over the interval [0,¢ — 1].

In an estimation problem, our goal is typically to recover
the initial condition z(0) = =z(, given the measurement
sequence y(k) and the input sequence u(k) for 0 < k < t—1.
The response in (3) can be separated into two terms. The
second term (the forced response) on the right-hand side of
(3) is known since the input vector, u(t), is given. Therefore,
we can subtract the forced response from the vector of
measurements on the left to obtain

y(t) = O(t) zo, “4)

where we have defined y(t) and the t-step observability
matrix O(t) in an obvious way. Note that we only need
to check observability when u(t) is zero; a non-zero input
changes the value of y(¢), but in either case, y(t) is a known
vector. In this paper, we assume ¢ € Z is the time horizon
to estimate (a.k.a the observation horizon).

We define the ¢-step observability Gramian matrix Q(t) =
OT(t)O(t) for the dynamics (1)-(2). The ¢-step observability
Gramian can be also expressed as the sum of rank-one
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matrices
t—1 tp tp
Q) =Y Y €] 49T (e] A5 = Y oie” =S M
k=0 j€[p] i=1 i=1

(5)
where ch’s are rows of matrix C' € RP*" g; T denotes the
i-th row of the observability matrix O(t), i = k- p + j,
j€lpl, k+1 € [t], and finally M,’s are the rank-1 matrices
built upon the rows of the observability matrix.

Assumption 1: Throughout the paper, we assume that sys-
tem (1)-(2) is observable, i.e., the obervability matrix is full
column rank, and the Gramian is positive definite (PD).

In time-varying sensor schedules, however, we will deal
with linear, discrete-time dynamics with time-varying output
matrix C(k), i.e.,

z(k+ 1) = Az(k) + Bu(k), and y(k) = C(k)z(k). (6)

For this network, the {¢-step observability and

Gramian matrices are defined as O (t) =
T T t—=1yT1 T

co", Ccmar, -, Ct-1)A"HT],  and

Q. (t) = O] (t)O,(t), respectively.

C. Definition of Terms

This section is devoted to collect the definitions of some
key concepts that are required to understand the rest of the

paper.

1) Systemic Observability Metrics: Similar to [18], [21],
[24], we define the notion of systemic observability metrics
here. These measures are real-valued operators defined on
the set of all linear dynamical systems (1)-(2) and quantify
various measures of the required energies in the system.
All the metrics depend on the observability Gramian matrix,
which is a PD matrix (due to Assumption (1)). Therefore, one
can define a systemic performance measure as an operator on
the set of Gramian matrices of all observable systems over
n agents.

Definition 1 (Systemic Observability Metric): A
Gramian-based metric p St, — Ry is systemic if
and only if, for all A,B € S, a € [0,1], and t > 0,
it satisfies: (i) Homogeneity: p(tA) = t~1p(A) 1; (i)
Monotonicity: If B < A, then p(B) > p(A); (iii) Convexity
criterion: p(aA + (1 — a)B) < ap(A) + (1 — a)p(B).

Several comprehensive studies have been already done on
this class of performance metrics [18], [24]. They show that
the criteria listed on Definition 1 hold for many popular
choices of the observability metric. However, for the sake
of brevity, we do not repeat their discussions here and refer
the interested readers to [18, Table I] and [24, Table I] for a
complete list of systemic measures.

'A function p is homogeneous if p(tA) = t~7 - p(A), where 7 is
the degree of homogeneity. However, throughout this paper, when we say
a metric is homogeneous, it means it is homogeneous of degree 1.

2) Whitening Similarity Transformation: Given a non-
singular coordinate transformation T &€ R"™*™, the new

system realization of the state-space
by[AB}Z[T—lATT—lB
clo CT | 0
step observability Gramian matrix of the transformed system
is obtained by Q(t) = T' Q(t)T, where Q(t) is the t-step
observability Gramian matrix of the original state-space.

Cc 1o 1S given

. Furthermore, the t¢-

Definition 2 (Whitening Similarity Transformation): Let
T = Q(t)~'/2, then this change of coordinates converts
the ¢-step observability Gramian matrix of the transformed
system, Q(t) to identity matrix I. Statisticians often call
this process whitening, since it converts the covariance
matrix of the given samples to the identity matrix.

We remark that since Q(¢) > 0 (due to Assumption
1), so Q(t)"1/2 = Q(t)~ /2 = UN"Y2UT exists, where
UAUT is the eigen decomposition of the symmetric ¢-step
observability Gramian matrix Q(t).

3) Leverage Score: The leverage score of the i-th row of
matrix P € R"™*" is defined as

ni=7(p;) =p (PTP)'p;, )
where p, is the i-th row of matrix P.

Remark 1: Leverage scores, 7;’s, are the diagonal ele-
ments of the projection matrix P(P " P)TPT, and therefore
are always between zero and one (inclusive), i.e., 7; € [0, 1]
[25].

Remark 2: When P is full column rank, Zie['r] Ti =
Trace P(PTP)'PT = TraceI = n.

4) Facts and Lemmas: To maintain consistency in our
paper, we present a few commonly known results in this
section.

Lemma 1: Given a matrix A > 0,
)\min(A) = Unéléln <A7 U>a (8)

where Q,, == {M € S : Trace M = 1}.
Fact 1 (Jensen’s Inequality): For a real concave func-
tion ¢, numbers xi,xs9,...,T, in its domain, and positive
weights (;, Jensen’s inequality is given by
@(Z?:l 5;‘%‘) - > i1 Bip(xs)
Z?:l Bj - Z?:l Bj

III. SPARSE SENSOR SCHEDULE

©))

A. Sparse Sensor Selection Problems

Given dynamics (1)-(2), the goal of the sparse sensor
selection problem is to design a sparse output/sensor sched-
ule such that the observability performance metric of the
original fully sensed and the sparse dynamics are close in
an appropriately defined sense. We also try to keep the
number of active sensors much less than the fully sensed
system in the output schedule. In other words, given a
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canonical discrete-time LTI dynamics (1)-(2), which has p
sensors, the observability systemic metric p(-) that is aligned
with the properties addressed in Definition 1, and the ¢-step
observability Gramian matrix of the fully sensed dynamics,
Q(t), the goal is to find a sensor schedule such that the
resulting sparse system with the ¢-step observability Gramian
matrix Qg(t) is well-approximated, i.e.,

where ¢’ > 0 is the approximation factor.

(10)

B. Weighted Sensor Schedule

A weighted schedule can be obtained if we scale the
output signal by a non-negative factor while keeping the
scales bounded. The scalars introduce an extra degree of
freedom that allow us to obtain a sparser sensor set. Given
(2), we mathematically define a weighted sensor schedule
S = [sjk+1] and scalars sj ;11 > 0 where j € [p] and
k+ 1 € [t]. The resulting output dynamics for this schedule
are

y(k) =Y sjn1-ejeja(k), keZy, (1)
j€lp]

where ch’s are rows of output matrix C € RP*™, e;’s are

the standard basis for R?, and s; 141 > 0 shows the strength
of the j-th output signal at time k. Moreover, the t-step
observability Gramian matrix for the sparse dynamics (11)
is given by

Q,(t) = (diag(vec(S)) : (9(15))T (diag(vec(S)) : O(t))

= O4(t)
tp tp
= (vec(S)(i))%0;0] =D ciM;, (12)
i=1 =1

where O4(t) is the t-step sparse observability matrix, o,
is the i-th row of the observability matrix O(t), ¢; is the
square of the i-th entery of vec(.S), and M, denotes the rank-
1 matrix built by o, .

The ultimate goal in sparse sensor selection problems is to
decrease the number of active sensors on average d, where

1
d = T [lvec(S)|lo, (13)

such that the ¢-step observability Gramian of the fully sensed
and sparse system are close. Obtaining this approximate
sparse system needs horizon length that is potentially longer
than the dimension of the state. We borrow the following
approximation definition from [18].

Definition 3 ((¢, d)-approximation): Given a time horizon
t > n, dynamics (11) with the sparse weighted sensor
schedule S is an (e, d)-approximation of dynamics (2), if
and only if

(1 -6)Q(t) 2 Qs(t) X (14 €)Q(), (14)

where Q(t) and Q,(t) are the ¢-step observability Gramian
matrices for fully sensed and sparse dynamics, respectively.
Parameter d, defined in (13), is the average number of active
sensors, and finally € € (0,1) is the approximation factor.
Succinctly, Q4(t) =4 Q(t) denotes the same condition in
this paper.

Remark 3: When ¢ is small enough 2, (e, d)-
approximation is a necessary condition for being well-
approximated one. Specifically, if Q(t) o(t),

then (Q (t))
P s c
‘k’g o(Q(1)) ‘ .

To obtain (15), we utilize the facts that e=? is almost 1 — /3
when 3 is appropriately small, and 1+ 3 < e for all 3 € R.

~
Re,d

5)

Remark 4: Based on (14), we note that the ranks of
Gramian matrices Q(t) and Q,(t) are the same. Therefore,
the resulting (e, d)-approximation remains observable if the
original dynamics are observable.

One can apply the whitening similarity transformation set
forth in Definition 2 to reduce (14) to
::M7
tp -
1—eI =) ci66, < (1+e),
i=1

—_—
=0, (t)

(16)

where ﬁiT is the i¢-th row of the transformed (whitened)
observability matrix O(t) :== O(t)Q(t)~'/2, Mj is the rank-
1 matrix of 6; , O, (t) is the whitened sparse observability
Gramian, and ¢; = (vec(S)(i))?.

Note: There is a one to one correspondence between the
the set of sensors expanding in time and the rows of any
types (original, whitened, and normalized whitened) of the
t-step observability matrix. Therefore, we use the phrases
of “row selection” and “sensor selection” interchangeably in
this paper.

After this reduction, the problem of finding a sparse sensor
schedule that is (e, d)-approximation of the fully sensed
dynamics boils down to choose and potentially rescale td
vectors of the set M := {6, }'”, such that (16) holds. We
claim that the size of each member of M is less than one.
To validate our claim, let us obtain the leverage score of oiT
using the formulation discussed in II-C.3

7 =0, O(t)"'o; = Trace M; = |0, (17)
for all ¢ in {1,...,¢p}. Since the leverage score is bounded

by one (see Remark 1), the immediate observation is [|6;]| <
1, which gives us the claim. For the purpose of this paper,
we prefer to normalize the members of the search space, M.
Let M be the matrix M; that is scaled by it’s corresponding
leverage score, i.e.,

1 1 1 )T

M; = . - M; = (ﬁai) ' (ﬁﬁf,

2which is the case in this paper since € € (0, 1).

=0,0,, (18)
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for all i € {1,...,tp} where 0; = (1/\/7;) - 6;. It is
easy to check that M, is still rank-1 while Trace M; = 1.
Note that Trace M; = 1 implies that |jo;]| = 1 for all
i € {1,...,tp}. This normalization opens the opportunity
to select vectors only based on their directions. We will
have enough freedom to appropriately scale them later since
this is a weighted schedule problem. One can show 0;’s are
the rows of the normalized whitened observability matrix
O(t) = diag(ry,...,m,) " 20(t) where 7, = (0] ) for
all i € [tp]. Furthermore, >.2 M; = Y2 ;- M, = I.

After these two rounds of reduction, we finally state
the problem of weighted sparse sensor scheduling as the
following:

Problem 1: Given a time horizon ¢ > n, the average
number of active sensors d, the approximation factor
€ € (0,1), and the set of rank-1 matrices M :=
{M;}' |, design a weighted sparse sensor schedule

Se {Z ERP : |vec(Z) o = td},

such that

where ¢; = 7; - (vec(S)(i))?.

We notice that constraint (19) can equivalently be rewritten
as (1—€) < \j(XWP, & M;) < (1+¢) for all j € [n] where
A;j(+) gives the j-th eigenvalue.

The authors of [21] show that the capability of swapping
regret minimization to solve a single-sided version® of Prob-
lem 1. A regret sequence was maintained in their algorithm
to eventually control the lower bound of the eigenvalues of
the ¢-step sparse observability Gramian. Thus, a natural idea
to solve Problem 1 with two-sided constraint is to maintain
two regret sequences to simultaneously control the lower and
upper bounds of the eigenvalues. This is exactly what we will
do in the next section to obtain a solution.

IV. REGRET MINIMIZATION SOLUTION

Regret minimization is an online optimization framework.
The problem of online sequential decision making can be
cast as a two-player repeated game, where the environment
(adversary) is seen as the opponent. At each stage, the
decision maker (player) takes an action from a set of possible
actions to allegedly minimizes a cost (or maximizes a reward)
that is a function of its action and of the action of the
adversary. Adversary’s action is independently selected so as
to supposedly maximize the cost. We assume that nothing is
known a priori about the evolution law for the actions of the
adversary, which in particular may depend on the actions of

3Single-sided is the same problem as Problem 1, but the two-sided
constraint (19) is replaced by a single-sided constraint, e.g., 1—-el <

tp —
=1 CiMi.

the player and/or on an unobservable state of the adversary,
and be nonstationary.

Unfortunately, due to the lack of knowledge about the
adversary, certain objectives such as minimizing expected
cost raise some controversy as to how one should define the
expectation. However, a popular criterion in online learning
is to minimize the regret of the player where regret of
the player is defined as the cost that could have been
accumulated by the player’s actions compared to the cost
of the best fixed action in hindsight.

In the next section, we will explain the regret minimization
over density matrices. The materials are adopted from [26],
[27].

A. Regret Minimization over Density Matrices

In this type of regret minimization game, at each stage
¢ €{0,...,T — 1}, the player picks an action A, from the
set of density matrices

Q, = {D €S" . TraceD = 1}, (20)

also known as action space. The player then receives a

symmetric feedback matrix Fy and tolerates a loss defined as

(A, Fy). At this moment, the feedback matrix Fy is available

to the player without any limitation. The goal of the player

is to minimize the regret with re§rpect to the best fixed action

in hindsight, $},cs = arginf 24;01 (4, Fy), defined as
UeQ,

T-1 T-1
Regret(Spest) == Y (Ae, Fr) = Y (toest, F)
=0 =0
T-1 T-1
= > A6 F) = (Y R). @D
=0 =0

where 7' is the total number of iteration in the game. The
second equality in (21) holds since

T—1 T—1 T-—1
g SOWLF) = ok ; Fe) = Auin ; Fr),

where the first equality holds because the sum of traces is
equal to the trace of sum, and second holds due to Lemma 1.
An interesting interpretation of this result is: the total loss for
the best action Ll;,.s¢ can be obtained as the rank-1 projection
over the minimum eigenvector of ZZ:_OI .

A popular strategy to minimize the regret is Follow-
The-Regularized-Leader (FTRL). Based on this strategy, the
player should pick action

Ay = a;gergin{r(Z) + OéZO<Z, Fj>}7

at stage ¢ where r(-) is a strongly convex function over the
simplex known as regularizer, and o > 0 is the learning
rate that balances the loss and the regularization. One can
interpret FTRL as the trade-off between minimizing the
accumulated loss happened thus far and the value of the

2694

Authorized licensed use limited to: Northeastern University. Downloaded on August 15,2023 at 14:37:12 UTC from IEEE Xplore. Restrictions apply.



regularizer. Different choices for the regularization result
in different strategies. Similar to [21], we utilize the £ o-
regularizer, r(Z) == —2 Trace Z'/? that was proposed for
the first time in [26]. Using the £, /o-regularizer, the player
should play the closed-form action

-1 9
AgZ(aZFj—U[I) 5
j=0

where v, € R is a unique constant that ensures « Zté F;—
vel > 0 and Trace Ay = 1. We succinctly refer to (22) as
{1 j9-strategy in the rest of this paper.

(22)

The upper bound for the regret of the ¢, o-strategy (22)
is obtained in [26, Theorem 3.2 and 3.3] and repeated in the
following Lemma.

Lemma 2 (Regret Upper Bound): Assume in the regret
game (21), the player picks actions based on ¢, /5-strategy
(22), and let a > 0 be the learning rate and F, be a rank-1
feedback matrix satisfying <A(15/ > aFy)) > —1/2 for all ¢,
then, for every i € Q,,

T—1 T—1 w (u>
> (Fo Ae— ) <20 Y (A Fo) - (A%, Fy) + 220,
=0 £=0

(23)
where

Vx (V) = (X2 Y) + Trace X'/2 — 2 Trace Y/2, (24)

is the so-called Bregman divergence for the {; o-regularizer;
moreover, 14, (L) < 24/n.

Remark 5: Lemma 2 specifies regret with respect to any
fixed matrix 4 € €, and not only to the best fixed action
$Upest in hindsight.

In the next, we will finally use the regret game discussed
in this section to develop a solution for Problem 1.

B. A Linear-sized Regret Solution

The authors of [21] show that a sequence of actions in a
regret game is able to control the minimum eigenvalue of the
sparse observability Gramian. Therefore, we aim to maintain
two sequences of action matrices to simultaneously control
both the minimum and maximum eigenvalues of the sparse
matrix as required by (19).

We define the action space (2, as the set of all n-by-n
positive semi-definite matrices that their trace is equal to one.
We define actions A, and By for £ € {0,...,T — 1} based
on {; jo-strategy (22) as the two sequences of actions that we
maintain during the game to control the range of eigenvalues.
Conversely, at each round /, the adversary picks the vector
05, of the set of rows {0, }'? | such that for M}, = 04,0,
we have

(Mg, Ag) < (Myy, By), (25)

By using averaging arguments, it is guaranteed that for

each round /¢, the adversary can always find a vector E;J

such that
Vi Ti  wF 1 1
(Mg, Ag) < Z o (M;, Ay) = E(LA@) = gTraceAz
i€[tp]
1 T, — _
= Trace B, = > = (M, By) < (M, By);

i€[tp]

(26)

therefore, playing the strategy (25) is always possible for the
adversary. In (26), we use Z:’; 1Ti - M; = I and the fact
that Trace D = 1 for any D € Q,,.

The adversary then reflects the respective feedback matri-
ces FZA = ﬁf - M, and FEB = ﬁf - M, to maximize the
costs (F', A) and (F2, By) at round £. Lemma 3 shows
how to define 8;' and BP for our purpose such that the
prerequisite of Lemma 2 is satisfied. We will later use these
two coefficients to build our final regret setup that solves
Problem 1. The following result is needed to prove Lemma
3.

Proposition 1: For any D in Q,, and every M; defined in
(18), the following holds

(M;, DY/?y < (M;, D)*/2. 27)
Proof: Let UAU T be the eigen decomposition for ma-
trix D, A = diag(\y,...,\,), and M; = 0,0, . Therefore,
(M;, D) = Trace(U T8;) TA(U"8,) = M\62 , + - 4+ Anb2 ,,
- . ;
where 0; = (01, - .. ,0,,.) . Using the same arguments, one
can show that (M, DY/?) = /X163 ,+- - -++/A,02 ;. In ad-
dition, 67 ; 4 - - - + 62 ; = Trace6, 6; = Traced, UU To; =
1. Thus, (27) can be refashioned as

2103
for all 4 in [¢p], and (28) holds since it is a Jensen’s inequality

(see Fact 1) for the choice of /- as the real concave function
¢©(-) over the positive numbers 67 ;.. ., 07 [

Lemma 3: Taking f;' = —(Ap, My,)~V2, B =
(By, My,)~%/2, and a € (0,1/2) ensure that the prerequisite

of Lemma 2 is satisfied for both sequences.

(28)

Proof: To show for the sequence Ay, i.e., to prove
a- (FA, A% > —1/2 holds, we can write

= _Oég Y

My, A1/2> @ ;

Q- FA,Al/2 = a-<—77,

Vi A (A, Myg)t/2 "
where inequality (a) holds due to Proposition 1. To obtain the
result for By, we know By and so Bl} /2 are in Si; therefore,
(Bg, My,) = E;JB@M and similarly <B;/2,MM> are non
negative which means (F/ >Bz}/ ®) > 0. Finally, since o €
(0,1/2), then o - (F2, B}’?) > 0. m

Theorem 1 (Linear-sized Regret Solution): Given the
time horizon ¢ > n, dynamics (6), and the approximation
factor € € (0,1/4), T = n/e? rounds of the regret game (21)
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as described below deterministically constructs a weighted
sensor schedule such that the resulting dynamics (12) is an
(e, T/t)-approximation of dynamics (1)-(2).

Regret game setup: At each round ¢ € {0,...,T — 1},
the player picks two different actions A, and By
based on £y /,-strategy (22) for some a € (0,1/4) to
separately minimize the costs (F*, A;) and (FP, By),
respectively. At every round /¢, the adversary then
chooses vector 8, from the row vector set {0; ' }'7,
such that (25) holds and then reflects the respective
feedback matrices F/* = —(Ay, My,)~ /% - My, and
FP = (By, My,)~'/? . M}, to maximize the costs.

Due to space limitations, we omit the proof of Theorem
1 in this paper. The proof is technical and lengthy, requiring
more than a page of space. We plan to provide the full proof
in the extended version of the paper, which will be submitted
to a journal.

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]
The sensor schedule resulting from Theorem 1 has, on
average, n/ te2 active sensors. However, note that this value  [11]
represents the most pessimistic estimate for the average [12]
number of active sensors, since the selection at each round
of the game in Theorem 1 is made with replacement. As a [13]
result, it’s possible for the same sensor to be chosen more
than once during the game, potentially reducing the number [14]
of sampled individual sensors as well as the average number
of active sensors d
Theorem 1 provides a linear-sized sparse schedule with ~ [15]
n/e? active sensors, which yields an (e, d)-approximation of
the fully sensed network. We note that these results improve ~ [16]
upon the randomized results of [18, Theorem 2] for (e, d)-
approximation, as their algorithm requires O(nlogn/e?)  [17]
active sensors, which contains an additional factor of logn,
as well as a potentially large universal constant. (18]
V. CONCLUDING REMARKS [19]
Inspired by a growing body of work on online learning
and graph sparsification, this paper presents a simple deter-  [20]
ministic framework for designing a linear-sized time-varying 21]
sensor schedule for large-scale LTI networks. Our proposed
method uses regret minimization as an online optimization [22]
framework to maintain two sequences of actions over density
matrices. We provide a regret bound that yields a sparse [23]
schedule, which on average samples a constant number of
active sensors to approximate a wide range of observability [24]
measures of the fully sensed networks up to a multiplicative
factor. Specifically, our proposed framework samples at most 5]
n/e? sensors, which removes the logn factor from the
sample complexity of the best available competitive result.
We also note that similar results can be obtained for the [2¢)
actuator scheduling problem.
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