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AbstractÐ In this paper, we investigate the problem of time-
varying sensor selection for linear time-invariant (LTI) dynami-
cal systems. We develop a framework to design a sparse sensor
schedule for a given large-scale LTI system with guaranteed
performance bounds using a learning-based algorithm. We show
how the observability Gramian matrix of an LTI system can
be interpreted as the sum of rank-1 matrices indicating the
contribution of the available sensors distributed in time. We
then employ a regret minimization framework over density
matrices to sparsify this sum of rank-1 matrices to approximate
fully sensed LTI dynamics up to a multiplicative factor in some
certain observability senses. Our main result provides a linear-
sized (in dimension of system) sensor schedule that on the
average activates only a constant number of sensors at each
time step and significantly improves the previous linearithmic
results. Our results naturally apply to the dual problem of
actuator selection where a guaranteed approximation to the
controllability Gramian will be provided.

I. INTRODUCTION

To capture dynamics, high-dimensionality, and non-

linearity of the large-scale networks proposed by the realistic

systems in science and engineering, a set of measurements

provided by a set of sensors is required. Different parameters

of a system can be measured via different types of sensors,

while the sensors normally are distributed in different places

to collect specific information of relevant spatial features of

the system. Since performing each measurement might be

expensive, or real-time processing of the complete set of

measurements may impose an unreasonable computational

load and so be practically impossible, it is often required to

utilize only a limited number of sensors to estimate the over-

all states of the system. In addition, most high-dimensional

dynamical networks present low-dimensional patterns and

coherent structures with a few key sensors placed strategi-

cally that facilitate making fast control decisions increasingly

requested by many engineering applications [1].

Finding the optimal set of these key sensors even for the

most straightforward scenarios exhibits a mostly unsolved

challenge which can be traced back to the 1970’s and 80’s

[2]±[4]. In a simple problem with a given well-defined

cost function, finding the optimal key sensors requires a
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combinatorial search that is NP-hard and mostly intractable

[5]. In the dual problem, it was shown that even obtaining

the sparse actuator set such that the resulting system is still

controllable can be NP-hard [6], [7]. Therefore, most of

the accomplished efforts have been focused on establishing

an approximate solution for this problem. As [8] suggests,

obtaining the sparse set that makes the resulting system

reachable for a particular state is hard and even hard to

approximate. In general, the problem of finding the sparse

set of sensors or actuators may be optimized for robustness,

network control, and consensus problems [9]±[12].

Early attempts such as [2]±[4] have been found to employ

nonlinear integer programming to obtain an approximate

solution. The algorithms proposed in this category, however,

do not scale to the popular applications such as smart power

grids [13], robotics [14], and epidemiological modeling and

suppression [15]. In contrast, resent attempts have proposed

to leverage the submodularity of certain performance metrics

to design variants of greedy algorithms with performance

guarantees [16]. When the metric is submodular, applying

the classical rounding algorithms such as pipage and ran-

domized rounding to the semi-definite programming (SDP)

solution of the relaxed optimization offers computationally

fast algorithms with a constant approximation [17]. Although

these algorithms provide performance compared to the op-

timal (best) solution, they require an extra multiplicative

factor of logn [18] and do not work for non-submodular

metrics [19], [20]. Very recently, leveraging online learning

and regret minimization, Vafaee and Siami in [21] have

proposed a rounding method to obtain a so-called (1 + ϵ)
approximation solution for a large class of observability

metrics (including non-submodular metrics). Their approach

provides a time-varying schedule and solves the issue of

the submodularity requirement, but the time complexity

of their convex optimization part is considerable, which

decreases the applicability of the proposed algorithm for

large-scale dynamics. Balanced truncation and QR pivoting

were exploited in [22] to propose a more computationally

efficient algorithm compared to leading greedy and convex

optimization approaches. Although their method maximizes

the search space of possible selections by providing a faster

algorithm, it only works for H2-norm and returns a static

schedule that does not change over time.

While the results discussed so far try to find approxi-

mation algorithms to obtain the best sparse set, in some

recent work [18], [23], researchers have sought to gain new

fundamental insights into approximating various observabil-

ity/controllability metrics compared to the case when all
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the available sensors/actuators are activated. Siami et al. in

[18], inspired by the new advances in randomized linear

algebra and graph sparsification, developed deterministic

and randomized frameworks to design a time-varying sparse

schedule for LTI networks that each time samples on average

a constant number of sensors, independent of the system

dimension, to approximate a large class of controllabil-

ity/observability metrics (including some non-submodular

metrics). Their result provides a polynomial-time actuator

schedule that approximates controllability metrics compared

to when all actuators are in use, but it is necessary to sample

O(n logn) active sensors (linearithmic size) to obtain an

approximation solution up to a multiplicative factor. This

left room to potentially improve the result by proposing a

linear-sized algorithm, which is the main goal of this paper.

Contributions: To circumvent the convex relaxation step

in the regret-based rounding procedure proposed in [21],

our work proposes a novel algorithm for directly apply-

ing a regret minimization framework to the set of rank-1

contributions from available sensors. We demonstrate that

our approach produces a time-varying schedule that approx-

imates a broad class of observability metrics, including both

submodular and non-submodular cases, and achieves compa-

rable performance to a fully-sensed system. Furthermore, our

approach yields a linear-sized sensor schedule that activates

at most n/ϵ2 sensors, where ϵ ∈ (0, 1) is an approximation

factor, and ensures the same performance guarantees as [18].

Overall, our framework provides a simpler and more effective

solution to the problem of sensor scheduling for large-scale

LTI dynamics.

II. PRELIMINARIES AND DEFINITIONS

A. Mathematical Notation

Throughout the paper, the discrete time index is denoted

by k. The sets of real (integer), non-negative real (integer),

and positive real (integer) numbers are represented by R

(Z), R+ (Z+) and R++ (Z++), respectively. The set of

natural numbers ¶i ∈ Z++ : i ≤ n♢ is denoted by [n].
Uppercase letters stand for real-valued matrices (e.g., A),

uppercase sans script letters illustrate set’s names (e.g., A),

lowercase bold letters denote vectors (e.g., b), and non-bold

lowercase letters are used for scalars and indices (e.g., j)
and function names (e.g., f(·)), except T that shows the total

number of iteration in the regret minimization. For a vector

xxx = [xi] ∈ R
n, diag(xxx) ∈ R

n×n is the diagonal matrix with

elements of xxx sitting orderly on its diagonal. Furthermore,

given a square matrix X , det(X) and TraceX refer to the

determinant and the summation of on-diagonal elements of

X , respectively. Sn
+ (resp. Sn

++) is the positive semi-definite

cone (resp. positive definite cone) of n-by-n matrices. Let I
denotes the identity matrix whose dimension can be inferred

from the context. Notation A ⪯ B is equivalent to matrix

B−A being positive semi-definite. The transpose and Moore-

Penrose pseudoinverse of matrix A are referred to by A⊤ and

A†, respectively. Operator ⟨A,B⟩ := TraceA⊤B represents

the inner product of two matrices A and B. The L0-norm

that counts the total number of nonzero elements of a vector

is referred to by ∥ · ∥0. Moreover, symbol ∥ · ∥ denotes

the Euclidean norm for vectors and the spectral norm for

matrices. Given a matrix Z ∈ R
n×m,,

vec(Z) = [z1,1, . . . , zn,1, z1,2, . . . , zn,2, . . . , z1,m, . . . , zn,m]⊤

denotes the vectorized form of a matrix, whereas vec−1 will

perform the inverse of this operation.

B. Linear Systems and Observability

We start with a canonical LTI, discrete-time dynamics as

follows:

xxx(k + 1) = Axxx(k) +Buuu(k), (1)

yyy(k) = Cxxx(k), (2)

where A ∈ R
n×n, B ∈ R

n×m, C ∈ R
p×n, and k ∈ Z+.

The state matrix A describes the underlying structure of the

system and the interaction strength between the agents/states,

matrix B identifies how the control input enters the system,

and the output matrix C shows how output vector yyy relates

to the state vector. Referring to (1)-(2), the expanded form

is given by




yyy(0)
yyy(1)
· · ·

yyy(t− 1)


 =




C
CA
· · ·

CAt−1


xxx(0) + T (t)

:=uuu
˜

(t)
︷ ︸︸ ︷


uuu(0)
uuu(1)
· · ·

uuu(t− 1)


,

(3)

where T (t) is a block matrix with known structure, formed

by combining the system matrices A, B, and C, which maps

the input to the output over the interval [0, t− 1].

In an estimation problem, our goal is typically to recover

the initial condition xxx(0) = xxx0, given the measurement

sequence yyy(k) and the input sequence uuu(k) for 0 ≤ k ≤ t−1.

The response in (3) can be separated into two terms. The

second term (the forced response) on the right-hand side of

(3) is known since the input vector, uuu
˜

(t), is given. Therefore,

we can subtract the forced response from the vector of

measurements on the left to obtain

yyy(t) = O(t) xxx0, (4)

where we have defined yyy(t) and the t-step observability

matrix O(t) in an obvious way. Note that we only need

to check observability when uuu
˜

(t) is zero; a non-zero input

changes the value of yyy(t), but in either case, yyy(t) is a known

vector. In this paper, we assume t ∈ Z+ is the time horizon

to estimate (a.k.a the observation horizon).

We define the t-step observability Gramian matrix Q(t) :=
O⊤(t)O(t) for the dynamics (1)-(2). The t-step observability

Gramian can be also expressed as the sum of rank-one
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matrices

Q(t) =
t−1∑

k=0

∑

j∈[p]

(ccc⊤
j A

k)⊤(ccc⊤
j A

k) =

tp∑

i=1

oioioioioioi
⊤ =

tp∑

i=1

Mi,

(5)

where ccc⊤
j ’s are rows of matrix C ∈ R

p×n, oioioi
⊤ denotes the

i-th row of the observability matrix O(t), i = k · p + j,
j ∈ [p], k+ 1 ∈ [t], and finally Mi’s are the rank-1 matrices

built upon the rows of the observability matrix.

Assumption 1: Throughout the paper, we assume that sys-

tem (1)-(2) is observable, i.e., the obervability matrix is full

column rank, and the Gramian is positive definite (PD).

In time-varying sensor schedules, however, we will deal

with linear, discrete-time dynamics with time-varying output

matrix C(k), i.e.,

xxx(k + 1) = Axxx(k) +Buuu(k), and yyy(k) = C(k)xxx(k). (6)

For this network, the t-step observability and

Gramian matrices are defined as O⋆(t) =[
C(0)⊤ , (C(1)A)⊤ , · · · , (C(t− 1)At−1)⊤

]⊤
, and

Q⋆(t) = O⊤
⋆ (t)O⋆(t), respectively.

C. Definition of Terms

This section is devoted to collect the definitions of some

key concepts that are required to understand the rest of the

paper.

1) Systemic Observability Metrics: Similar to [18], [21],

[24], we define the notion of systemic observability metrics

here. These measures are real-valued operators defined on

the set of all linear dynamical systems (1)-(2) and quantify

various measures of the required energies in the system.

All the metrics depend on the observability Gramian matrix,

which is a PD matrix (due to Assumption (1)). Therefore, one

can define a systemic performance measure as an operator on

the set of Gramian matrices of all observable systems over

n agents.

Definition 1 (Systemic Observability Metric): A

Gramian-based metric ρ : S
n
++ → R+ is systemic if

and only if, for all A,B ∈ S
n
++, α ∈ [0, 1], and t > 0,

it satisfies: (i) Homogeneity: ρ(tA) = t−1ρ(A) 1; (ii)

Monotonicity: If B ⪯ A, then ρ(B) ≥ ρ(A); (iii) Convexity

criterion: ρ
(
αA + (1 − α)B

)
≤ αρ(A) + (1 − α)ρ(B).

Several comprehensive studies have been already done on

this class of performance metrics [18], [24]. They show that

the criteria listed on Definition 1 hold for many popular

choices of the observability metric. However, for the sake

of brevity, we do not repeat their discussions here and refer

the interested readers to [18, Table I] and [24, Table I] for a

complete list of systemic measures.

1A function ρ is homogeneous if ρ(tA) = t−γ · ρ(A), where γ is
the degree of homogeneity. However, throughout this paper, when we say
a metric is homogeneous, it means it is homogeneous of degree 1.

2) Whitening Similarity Transformation: Given a non-

singular coordinate transformation TTT ∈ R
n×n, the new

system realization of the state-space

[
A B
C 0

]
is given

by

[
Â B̂

Ĉ 0

]
=

[
TTT

−1ATTT TTT
−1B

CTTT 0

]
. Furthermore, the t-

step observability Gramian matrix of the transformed system

is obtained by Q̂(t) = TTT
⊤Q(t)TTT, where Q(t) is the t-step

observability Gramian matrix of the original state-space.

Definition 2 (Whitening Similarity Transformation): Let

TTT := Q(t)−1/2, then this change of coordinates converts

the t-step observability Gramian matrix of the transformed

system, Q̂(t), to identity matrix I . Statisticians often call

this process whitening, since it converts the covariance

matrix of the given samples to the identity matrix.

We remark that since Q(t) ≻ 0 (due to Assumption

1), so Q(t)−1/2 = Q(t)−⊤/2 = UΛ−1/2U⊤ exists, where

UΛU⊤ is the eigen decomposition of the symmetric t-step

observability Gramian matrix Q(t).

3) Leverage Score: The leverage score of the i-th row of

matrix P ∈ R
r×n is defined as

τi = τ(ppp⊤
i ) = ppp⊤

i (P⊤P )†pppi, (7)

where ppp⊤
i is the i-th row of matrix P .

Remark 1: Leverage scores, τi’s, are the diagonal ele-

ments of the projection matrix P (P⊤P )†P⊤, and therefore

are always between zero and one (inclusive), i.e., τi ∈ [0, 1]
[25].

Remark 2: When P is full column rank,
∑

i∈[r] τi =

TraceP (P⊤P )†P⊤ = Trace I = n.

4) Facts and Lemmas: To maintain consistency in our

paper, we present a few commonly known results in this

section.

Lemma 1: Given a matrix A ⪰ 0,

λmin(A) = min
U∈Ωn

⟨A,U⟩, (8)

where Ωn := ¶M ∈ S
n
+ : TraceM = 1♢.

Fact 1 (Jensen’s Inequality): For a real concave func-

tion φ, numbers x1, x2, . . . , xn in its domain, and positive

weights βj , Jensen’s inequality is given by

φ
∑n

j=1 βjxj∑n
j=1 βj

)
≥

∑n
j=1 βjφ(xj)
∑n

j=1 βj
. (9)

III. SPARSE SENSOR SCHEDULE

A. Sparse Sensor Selection Problems

Given dynamics (1)-(2), the goal of the sparse sensor

selection problem is to design a sparse output/sensor sched-

ule such that the observability performance metric of the

original fully sensed and the sparse dynamics are close in

an appropriately defined sense. We also try to keep the

number of active sensors much less than the fully sensed

system in the output schedule. In other words, given a
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canonical discrete-time LTI dynamics (1)-(2), which has p
sensors, the observability systemic metric ρ(·) that is aligned

with the properties addressed in Definition 1, and the t-step

observability Gramian matrix of the fully sensed dynamics,

Q(t), the goal is to find a sensor schedule such that the

resulting sparse system with the t-step observability Gramian

matrix Qs(t) is well-approximated, i.e.,
∣∣∣∣ log

ρ(Qs(t))

ρ(Q(t))

∣∣∣∣ ≤ ϵ′, (10)

where ϵ′ > 0 is the approximation factor.

B. Weighted Sensor Schedule

A weighted schedule can be obtained if we scale the

output signal by a non-negative factor while keeping the

scales bounded. The scalars introduce an extra degree of

freedom that allow us to obtain a sparser sensor set. Given

(2), we mathematically define a weighted sensor schedule

S = [sj,k+1] and scalars sj,k+1 ≥ 0 where j ∈ [p] and

k + 1 ∈ [t]. The resulting output dynamics for this schedule

are

yyy(k) =
∑

j∈[p]

sj,k+1 · eeejccc
⊤
j xxx(k), k ∈ Z+, (11)

where ccc⊤
j ’s are rows of output matrix C ∈ R

p×n, eeej’s are

the standard basis for Rp, and sj,k+1 ≥ 0 shows the strength

of the j-th output signal at time k. Moreover, the t-step

observability Gramian matrix for the sparse dynamics (11)

is given by

Qs(t) =


diag(vec(S)) · O(t)
)⊤ 

diag(vec(S)) · O(t)
)

︸ ︷︷ ︸
:= Os(t)

=

tp∑

i=1

(vec(S)(i))2
oooiooo

⊤
i =

tp∑

i=1

ciMi, (12)

where Os(t) is the t-step sparse observability matrix, ooo⊤
i

is the i-th row of the observability matrix O(t), ci is the

square of the i-th entery of vec(S), and Mi denotes the rank-

1 matrix built by ooo
⊤
i .

The ultimate goal in sparse sensor selection problems is to

decrease the number of active sensors on average d, where

d :=
1

t
· ∥vec(S)∥0, (13)

such that the t-step observability Gramian of the fully sensed

and sparse system are close. Obtaining this approximate

sparse system needs horizon length that is potentially longer

than the dimension of the state. We borrow the following

approximation definition from [18].

Definition 3 ((ϵ, d)-approximation): Given a time horizon

t ≥ n, dynamics (11) with the sparse weighted sensor

schedule S is an (ϵ, d)-approximation of dynamics (2), if

and only if

(1 − ϵ)Q(t) ⪯ Qs(t) ⪯ (1 + ϵ)Q(t), (14)

where Q(t) and Qs(t) are the t-step observability Gramian

matrices for fully sensed and sparse dynamics, respectively.

Parameter d, defined in (13), is the average number of active

sensors, and finally ϵ ∈ (0, 1) is the approximation factor.

Succinctly, Qs(t) ≈ϵ,d Q(t) denotes the same condition in

this paper.

Remark 3: When ϵ is small enough 2, (ϵ, d)-

approximation is a necessary condition for being well-

approximated one. Specifically, if Qs(t) ≈ϵ,d Q(t),

then ∣∣∣∣ log
ρ(Qs(t))

ρ(Q(t))

∣∣∣∣ ≤ ϵ. (15)

To obtain (15), we utilize the facts that e−β is almost 1 − β
when β is appropriately small, and 1+β ≤ eβ for all β ∈ R.

Remark 4: Based on (14), we note that the ranks of

Gramian matrices Q(t) and Qs(t) are the same. Therefore,

the resulting (ϵ, d)-approximation remains observable if the

original dynamics are observable.

One can apply the whitening similarity transformation set

forth in Definition 2 to reduce (14) to

(1 − ϵ)I ⪯
tp∑

i=1

ci

:=M̂i︷︸︸︷
ôooiôoo

⊤
i

︸ ︷︷ ︸
:=Q̂s(t)

⪯ (1 + ϵ)I, (16)

where ôoo
⊤
i is the i-th row of the transformed (whitened)

observability matrix Ô(t) := O(t)Q(t)−1/2, M̂i is the rank-

1 matrix of ôoo⊤
i , Q̂s(t) is the whitened sparse observability

Gramian, and ci = (vec(S)(i))2.

Note: There is a one to one correspondence between the

the set of sensors expanding in time and the rows of any

types (original, whitened, and normalized whitened) of the

t-step observability matrix. Therefore, we use the phrases

of ªrow selectionº and ªsensor selectionº interchangeably in

this paper.

After this reduction, the problem of finding a sparse sensor

schedule that is (ϵ, d)-approximation of the fully sensed

dynamics boils down to choose and potentially rescale td
vectors of the set M̂ := ¶ôoo⊤

i ♢tp
i=1 such that (16) holds. We

claim that the size of each member of M̂ is less than one.

To validate our claim, let us obtain the leverage score of ooo⊤
i

using the formulation discussed in II-C.3

τi = ooo
⊤
i Q(t)−1

oooi = Trace M̂i = ∥ôooi∥, (17)

for all i in ¶1, . . . , tp♢. Since the leverage score is bounded

by one (see Remark 1), the immediate observation is ∥ôooi∥ ≤
1, which gives us the claim. For the purpose of this paper,

we prefer to normalize the members of the search space, M̂.

Let M i be the matrix M̂i that is scaled by it’s corresponding

leverage score, i.e.,

M i :=
1

τi
· M̂i = (

1√
τi
ôooi) · (

1√
τi
ôooi)

⊤ = oooiooo
⊤
i , (18)

2which is the case in this paper since ϵ ∈ (0, 1).
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for all i ∈ ¶1, . . . , tp♢ where oooi := (1/
√
τi) · ôooi. It is

easy to check that M i is still rank-1 while TraceM i = 1.

Note that TraceM i = 1 implies that ∥oooi∥ = 1 for all

i ∈ ¶1, . . . , tp♢. This normalization opens the opportunity

to select vectors only based on their directions. We will

have enough freedom to appropriately scale them later since

this is a weighted schedule problem. One can show oooi’s are

the rows of the normalized whitened observability matrix

O(t) := diag(τ1, . . . , τtp)−1/2Ô(t) where τi = τ(ooo⊤
i ) for

all i ∈ [tp]. Furthermore,
∑tp

i=1 M̂i =
∑tp

i=1 τi ·M i = I .

After these two rounds of reduction, we finally state

the problem of weighted sparse sensor scheduling as the

following:

Problem 1: Given a time horizon t ≥ n, the average

number of active sensors d, the approximation factor

ϵ ∈ (0, 1), and the set of rank-1 matrices M :=
¶M i♢tp

i=1, design a weighted sparse sensor schedule

S ∈
{
Z ∈ R

p×t
+ : ∥vec(Z)∥0 = td

}
,

such that

(1 − ϵ)I ⪯
tp∑

i=1

ciM i ⪯ (1 + ϵ)I, (19)

where ci = τi · (vec(S)(i))2.

We notice that constraint (19) can equivalently be rewritten

as (1 − ϵ) ≤ λj(
∑tp

i=1 ciM i) ≤ (1 + ϵ) for all j ∈ [n] where

λj(·) gives the j-th eigenvalue.

The authors of [21] show that the capability of swapping

regret minimization to solve a single-sided version3 of Prob-

lem 1. A regret sequence was maintained in their algorithm

to eventually control the lower bound of the eigenvalues of

the t-step sparse observability Gramian. Thus, a natural idea

to solve Problem 1 with two-sided constraint is to maintain

two regret sequences to simultaneously control the lower and

upper bounds of the eigenvalues. This is exactly what we will

do in the next section to obtain a solution.

IV. REGRET MINIMIZATION SOLUTION

Regret minimization is an online optimization framework.

The problem of online sequential decision making can be

cast as a two-player repeated game, where the environment

(adversary) is seen as the opponent. At each stage, the

decision maker (player) takes an action from a set of possible

actions to allegedly minimizes a cost (or maximizes a reward)

that is a function of its action and of the action of the

adversary. Adversary’s action is independently selected so as

to supposedly maximize the cost. We assume that nothing is

known a priori about the evolution law for the actions of the

adversary, which in particular may depend on the actions of

3Single-sided is the same problem as Problem 1, but the two-sided
constraint (19) is replaced by a single-sided constraint, e.g., (1 − ϵ)I ⪯∑tp

i=1
ciM i.

the player and/or on an unobservable state of the adversary,

and be nonstationary.

Unfortunately, due to the lack of knowledge about the

adversary, certain objectives such as minimizing expected

cost raise some controversy as to how one should define the

expectation. However, a popular criterion in online learning

is to minimize the regret of the player where regret of

the player is defined as the cost that could have been

accumulated by the player’s actions compared to the cost

of the best fixed action in hindsight.

In the next section, we will explain the regret minimization

over density matrices. The materials are adopted from [26],

[27].

A. Regret Minimization over Density Matrices

In this type of regret minimization game, at each stage

ℓ ∈ ¶0, . . . , T − 1♢, the player picks an action Aℓ from the

set of density matrices

Ωn :=
{
D ∈ S

n
+ : TraceD = 1

}
, (20)

also known as action space. The player then receives a

symmetric feedback matrix Fℓ and tolerates a loss defined as

⟨Aℓ, Fℓ⟩. At this moment, the feedback matrix Fℓ is available

to the player without any limitation. The goal of the player

is to minimize the regret with respect to the best fixed action

in hindsight, Ubest := arginf
U∈Ωn

∑T −1
ℓ=0 ⟨U, Fℓ⟩, defined as

Regret(Ubest) :=

T −1∑

ℓ=0

⟨Aℓ, Fℓ⟩ −
T −1∑

ℓ=0

⟨Ubest, Fℓ⟩

=
T −1∑

ℓ=0

⟨Aℓ, Fℓ⟩ − λmin

 T −1∑

ℓ=0

Fℓ

)
, (21)

where T is the total number of iteration in the game. The

second equality in (21) holds since

inf
U∈Ωn

T −1∑

ℓ=0

⟨U, Fℓ⟩ = inf
U∈Ωn

⟨U,
T −1∑

ℓ=0

Fℓ⟩ = λmin

 T −1∑

ℓ=0

Fℓ

)
,

where the first equality holds because the sum of traces is

equal to the trace of sum, and second holds due to Lemma 1.

An interesting interpretation of this result is: the total loss for

the best action Ubest can be obtained as the rank-1 projection

over the minimum eigenvector of
∑T −1

ℓ=0 Fℓ.

A popular strategy to minimize the regret is Follow-

The-Regularized-Leader (FTRL). Based on this strategy, the

player should pick action

Aℓ := argmin
Z∈Ωn

{
r(Z) + α

ℓ−1∑

j=0

⟨Z, Fj⟩
}
,

at stage ℓ where r(·) is a strongly convex function over the

simplex known as regularizer, and α > 0 is the learning

rate that balances the loss and the regularization. One can

interpret FTRL as the trade-off between minimizing the

accumulated loss happened thus far and the value of the
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regularizer. Different choices for the regularization result

in different strategies. Similar to [21], we utilize the ℓ1/2-

regularizer, r(Z) := −2 Trace Z1/2 that was proposed for

the first time in [26]. Using the ℓ1/2-regularizer, the player

should play the closed-form action

Aℓ =

α

ℓ−1∑

j=0

Fj − vℓI
)−2

, (22)

where vℓ ∈ R is a unique constant that ensures α
∑ℓ−1

j=0 Fj −
vℓI ≻ 0 and TraceAℓ = 1. We succinctly refer to (22) as

ℓ1/2-strategy in the rest of this paper.

The upper bound for the regret of the ℓ1/2-strategy (22)

is obtained in [26, Theorem 3.2 and 3.3] and repeated in the

following Lemma.

Lemma 2 (Regret Upper Bound): Assume in the regret

game (21), the player picks actions based on ℓ1/2-strategy

(22), and let α > 0 be the learning rate and Fℓ be a rank-1

feedback matrix satisfying ⟨A1/2
ℓ , αFℓ⟩ ≥ −1/2 for all ℓ,

then, for every U ∈ Ωn

T −1∑

ℓ=0

⟨Fℓ, Aℓ −U⟩ ≤ 2α ·
T −1∑

ℓ=0

⟨Aℓ, Fℓ⟩ · ⟨A1/2
ℓ , Fℓ⟩ +

ψA0
(U)

α
,

(23)

where

ψX(Y ) := ⟨X−1/2, Y ⟩ + TraceX1/2 − 2 TraceY 1/2, (24)

is the so-called Bregman divergence for the ℓ1/2-regularizer;

moreover, ψA0
(U) ≤ 2

√
n.

Remark 5: Lemma 2 specifies regret with respect to any

fixed matrix U ∈ Ωn and not only to the best fixed action

Ubest in hindsight.

In the next, we will finally use the regret game discussed

in this section to develop a solution for Problem 1.

B. A Linear-sized Regret Solution

The authors of [21] show that a sequence of actions in a

regret game is able to control the minimum eigenvalue of the

sparse observability Gramian. Therefore, we aim to maintain

two sequences of action matrices to simultaneously control

both the minimum and maximum eigenvalues of the sparse

matrix as required by (19).

We define the action space Ωn as the set of all n-by-n
positive semi-definite matrices that their trace is equal to one.

We define actions Aℓ and Bℓ for ℓ ∈ ¶0, . . . , T − 1♢ based

on ℓ1/2-strategy (22) as the two sequences of actions that we

maintain during the game to control the range of eigenvalues.

Conversely, at each round ℓ, the adversary picks the vector

oook
⊤
ℓ of the set of rows ¶ooo⊤

i ♢tp
i=1 such that for Mkℓ = oookℓoook

⊤
ℓ

we have

⟨Mkℓ, Aℓ⟩ ≤ ⟨Mkℓ, Bℓ⟩, (25)

By using averaging arguments, it is guaranteed that for

each round ℓ, the adversary can always find a vector oook
⊤
ℓ

such that

⟨Mkℓ, Aℓ⟩ ≤
∑

i∈[tp]

τi

n
· ⟨M i, Aℓ⟩ =

1

n
⟨I, Aℓ⟩ =

1

n
TraceAℓ

=
1

n
TraceBℓ =

∑

i∈[tp]

τi

n
· ⟨M i, Bℓ⟩ ≤ ⟨Mkℓ, Bℓ⟩;

(26)

therefore, playing the strategy (25) is always possible for the

adversary. In (26), we use
∑tp

i=1 τi · M i = I and the fact

that TraceD = 1 for any D ∈ Ωn.

The adversary then reflects the respective feedback matri-

ces FA
ℓ := βA

ℓ ·Mkℓ and FB
ℓ := βB

ℓ ·Mkℓ to maximize the

costs ⟨FA
ℓ , Aℓ⟩ and ⟨FB

ℓ , Bℓ⟩ at round ℓ. Lemma 3 shows

how to define βA
ℓ and βB

ℓ for our purpose such that the

prerequisite of Lemma 2 is satisfied. We will later use these

two coefficients to build our final regret setup that solves

Problem 1. The following result is needed to prove Lemma

3.

Proposition 1: For any D in Ωn and every M i defined in

(18), the following holds

⟨M i, D
1/2⟩ ≤ ⟨M i, D⟩1/2. (27)

Proof: Let UΛU⊤ be the eigen decomposition for ma-

trix D, Λ = diag(λ1, . . . , λn), and M i = oooiooo
⊤
i . Therefore,

⟨M i, D⟩ = Trace(U⊤
oooi)

⊤Λ (U⊤
oooi)︸ ︷︷ ︸

:=ǒooi

= λ1ǒoo
2
1,i + · · · + λnǒoo

2
n,i,

where ǒooi = (ǒoo1,i, . . . , ǒoon,i)
⊤. Using the same arguments, one

can show that ⟨M i, D
1/2⟩ =

√
λ1ǒoo

2
1,i+· · ·+

√
λnǒoo

2
n,i. In ad-

dition, ǒoo2
1,i + · · · + ǒoo

2
n,i = Trace ǒoo⊤

i ǒooi = Traceooo⊤
i UU

⊤
oooi =

1. Thus, (27) can be refashioned as
√∑n

j=1 ǒoo
2
j,iλj∑n

j=1 ǒoo
2
j,i

≥
∑n

j=1 ǒoo
2
j,i

√
λj∑n

j=1 ǒoo
2
j,i

, (28)

for all i in [tp], and (28) holds since it is a Jensen’s inequality

(see Fact 1) for the choice of
√· as the real concave function

φ(·) over the positive numbers ǒoo
2
1,i, . . . , ǒoo

2
n,i.

Lemma 3: Taking βA
ℓ = −⟨Aℓ,Mkℓ⟩−1/2, βB

ℓ =
⟨Bℓ,Mkℓ⟩−1/2, and α ∈ (0, 1/2) ensure that the prerequisite

of Lemma 2 is satisfied for both sequences.

Proof: To show for the sequence Aℓ, i.e., to prove

α · ⟨FA
ℓ , A

1/2
ℓ ⟩ > −1/2 holds, we can write

α ·⟨FA
ℓ , A

1/2
ℓ ⟩ = α ·

〈
− Mkℓ

⟨Aℓ,Mkℓ⟩1/2
, A

1/2
ℓ

〉 (a)

≤ −α ≤ −1

2
,

where inequality (a) holds due to Proposition 1. To obtain the

result for Bℓ, we know Bℓ and so B
1/2
ℓ are in Sn

+; therefore,

⟨Bℓ,Mkℓ⟩ = oook
⊤
ℓ Bℓoookℓ and similarly ⟨B1/2

ℓ ,Mkℓ⟩ are non

negative which means ⟨FB
ℓ , B

1/2
ℓ ⟩ ≥ 0. Finally, since α ∈

(0, 1/2), then α · ⟨FB
ℓ , B

1/2
ℓ ⟩ ≥ 0.

Theorem 1 (Linear-sized Regret Solution): Given the

time horizon t ≥ n, dynamics (6), and the approximation

factor ϵ ∈ (0, 1/4), T = n/ϵ2 rounds of the regret game (21)
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as described below deterministically constructs a weighted

sensor schedule such that the resulting dynamics (12) is an

(ϵ, T/t)-approximation of dynamics (1)-(2).

Regret game setup: At each round ℓ ∈ ¶0, . . . , T − 1♢,

the player picks two different actions Aℓ and Bℓ

based on ℓ1/2-strategy (22) for some α ∈ (0, 1/4) to

separately minimize the costs ⟨FA
ℓ , Aℓ⟩ and ⟨FB

ℓ , Bℓ⟩,

respectively. At every round ℓ, the adversary then

chooses vector oook
⊤
ℓ from the row vector set ¶oooi

⊤♢tp
i=1

such that (25) holds and then reflects the respective

feedback matrices FA
ℓ = −⟨Aℓ,Mkℓ⟩−1/2 · Mkℓ and

FB
ℓ = ⟨Bℓ,Mkℓ⟩−1/2 ·Mkℓ to maximize the costs.

Due to space limitations, we omit the proof of Theorem

1 in this paper. The proof is technical and lengthy, requiring

more than a page of space. We plan to provide the full proof

in the extended version of the paper, which will be submitted

to a journal.

The sensor schedule resulting from Theorem 1 has, on

average, n/tϵ2 active sensors. However, note that this value

represents the most pessimistic estimate for the average

number of active sensors, since the selection at each round

of the game in Theorem 1 is made with replacement. As a

result, it’s possible for the same sensor to be chosen more

than once during the game, potentially reducing the number

of sampled individual sensors as well as the average number

of active sensors d

Theorem 1 provides a linear-sized sparse schedule with

n/ϵ2 active sensors, which yields an (ϵ, d)-approximation of

the fully sensed network. We note that these results improve

upon the randomized results of [18, Theorem 2] for (ϵ, d)-

approximation, as their algorithm requires O(n logn/ϵ2)
active sensors, which contains an additional factor of logn,

as well as a potentially large universal constant.

V. CONCLUDING REMARKS

Inspired by a growing body of work on online learning

and graph sparsification, this paper presents a simple deter-

ministic framework for designing a linear-sized time-varying

sensor schedule for large-scale LTI networks. Our proposed

method uses regret minimization as an online optimization

framework to maintain two sequences of actions over density

matrices. We provide a regret bound that yields a sparse

schedule, which on average samples a constant number of

active sensors to approximate a wide range of observability

measures of the fully sensed networks up to a multiplicative

factor. Specifically, our proposed framework samples at most

n/ϵ2 sensors, which removes the logn factor from the

sample complexity of the best available competitive result.

We also note that similar results can be obtained for the

actuator scheduling problem.

REFERENCES

[1] K. Manohar, B. W. Brunton, J. N. Kutz, and S. L. Brunton, ªData-
driven sparse sensor placement for reconstruction: Demonstrating

the benefits of exploiting known patterns,º IEEE Control Systems
Magazine, vol. 38, no. 3, pp. 63±86, 2018.

[2] M. Athans, ªOn the determination of optimal costly measurement
strategies for linear stochastic systems,º IFAC Proceedings Volumes,
vol. 5, no. 1, pp. 303±313, 1972.

[3] P. MÈuller and H. Weber, ªAnalysis and optimization of certain qualities
of controllability and observability for linear dynamical systems,º
Automatica, vol. 8, no. 3, pp. 237±246, 1972.

[4] M. Morari and G. Stephanopoulos, ªMinimizing unobservability in
inferential control schemes,º International Journal of Control, vol. 31,
no. 2, pp. 367±377, 1980.

[5] D. Ge, X. Jiang, and Y. Ye, ªA note on the complexity of l p
minimization,º Mathematical programming, vol. 129, no. 2, pp. 285±
299, 2011.

[6] A. Olshevsky, ªMinimal controllability problems,º IEEE Transactions
on Control of Network Systems, vol. 1, no. 3, pp. 249±258, 2014.

[7] V. Tzoumas, M. A. Rahimian, G. J. Pappas, and A. Jadbabaie,
ªMinimal actuator placement with bounds on control effort,º IEEE
Transactions on Control of Network Systems, vol. 3, no. 1, pp. 67±78,
2015.

[8] A. Jadbabaie, A. Olshevsky, G. J. Pappas, and V. Tzoumas, ªMinimal
reachability is hard to approximate,º IEEE Transactions on Automatic
Control, vol. 64, no. 2, pp. 783±789, 2018.

[9] N. E. Leonard and E. Fiorelli, ªVirtual leaders, artificial potentials
and coordinated control of groups,º in Proceedings of the 40th IEEE
Conference on Decision and Control (Cat. No. 01CH37228), vol. 3.
IEEE, 2001, pp. 2968±2973.

[10] A. Rahmani, M. Ji, M. Mesbahi, and M. Egerstedt, ªControllability of
multi-agent systems from a graph-theoretic perspective,º SIAM Journal
on Control and Optimization, vol. 48, no. 1, pp. 162±186, 2009.

[11] J. C. Doyle, ªGuaranteed margins for lqg regulators,º IEEE Transac-
tions on automatic Control, vol. 23, no. 4, pp. 756±757, 1978.

[12] J. Doyle and G. Stein, ªMultivariable feedback design: Concepts for a
classical/modern synthesis,º IEEE transactions on Automatic Control,
vol. 26, no. 1, pp. 4±16, 1981.

[13] Y. Susuki and I. Mezic, ªNonlinear koopman modes and a precursor
to power system swing instabilities,º IEEE Transactions on Power
Systems, vol. 27, no. 3, pp. 1182±1191, 2012.

[14] K. Khosoussi, G. S. Sukhatme, S. Huang, and G. Dissanayake, ªDe-
signing sparse reliable pose-graph slam: A graph-theoretic approach,º
in Algorithmic Foundations of Robotics XII. Springer, 2020, pp. 17±
32.

[15] J. L. Proctor and P. A. Eckhoff, ªDiscovering dynamic patterns
from infectious disease data using dynamic mode decomposition,º
International health, vol. 7, no. 2, pp. 139±145, 2015.

[16] T. H. Summers, F. L. Cortesi, and J. Lygeros, ªOn submodularity and
controllability in complex dynamical networks,º IEEE Transactions
on Control of Network Systems, vol. 3, no. 1, pp. 91±101, 2015.

[17] S. N. Ravi, V. Ithapu, S. Johnson, and V. Singh, ªExperimental design
on a budget for sparse linear models and applications,º in International
Conference on Machine Learning, 2016, pp. 583±592.

[18] M. Siami, A. Olshevsky, and A. Jadbabaie, ªDeterministic and ran-
domized actuator scheduling with guaranteed performance bounds,º
IEEE Transactions on Automatic Control, vol. 66, no. 4, pp. 1686±
1701, 2020.

[19] Z. Allen-Zhu, Y. Li, A. Singh, and Y. Wang, ªNear-optimal design of
experiments via regret minimization,º in International Conference on
Machine Learning. PMLR, 2017, pp. 126±135.

[20] A. Olshevsky, ªOn (non)supermodularity of average control energy,º
IEEE Transactions on Control of Network Systems, 2018, to appear.

[21] R. Vafaee and M. Siami, ªLearning-based sensor selection with guar-
anteed performance bounds,º in 2022 American Control Conference
(ACC). IEEE, 2022, pp. 1459±1465.

[22] K. Manohar, J. N. Kutz, and S. L. Brunton, ªOptimal sensor and
actuator selection using balanced model reduction,º IEEE Transactions
on Automatic Control, vol. 67, no. 4, pp. 2108±2115, 2021.

[23] M. Siami and A. Jadbabaie, ªA separation theorem for joint sensor
and actuator scheduling with guaranteed performance bounds,º Auto-
matica, vol. 119, p. 109054, 2020.

[24] M. Siami and N. Motee, ªNetwork abstraction with guaranteed per-
formance bounds,º IEEE Transactions on Automatic Control, vol. 63,
no. 11, 2018.

[25] M. B. Cohen, Y. T. Lee, C. Musco, C. Musco, R. Peng, and A. Sidford,
ªUniform sampling for matrix approximation,º in Proceedings of the
2015 Conference on Innovations in Theoretical Computer Science,
2015, pp. 181±190.

[26] Z. Allen-Zhu, Z. Liao, and L. Orecchia, ªSpectral sparsification
and regret minimization beyond matrix multiplicative updates,º in
Proceedings of the forty-seventh annual ACM symposium on Theory
of computing, 2015, pp. 237±245.

[27] Z. Allen-Zhu, Y. Li, A. Singh, and Y. Wang, ªNear-optimal discrete op-
timization for experimental design: A regret minimization approach,º
Mathematical Programming, vol. 186, no. 1, pp. 439±478, 2021.

2696

Authorized licensed use limited to: Northeastern University. Downloaded on August 15,2023 at 14:37:12 UTC from IEEE Xplore.  Restrictions apply. 


