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Abstract. We study the inverse problem for the fractional Laplace equation

with multiple nonlinear lower order terms. We show that the direct problem

is well-posed and the inverse problem is uniquely solvable. More specifically,
the unknown nonlinearities can be uniquely determined from exterior measure-

ments under suitable settings.

1. Introduction. We study the inverse problem for the fractional Laplace equation
with lower order nonlinear perturbations. The problem setup is as follows. For
0 < t < s < 1, let Ω ⊂ Rn, n ≥ 1 be a bounded domain with smooth boundary ∂Ω,
and Ωe := Rn \Ω be the exterior domain of Ω. We consider the following fractional
elliptic equation: {

(−∆)su+ q(x, u,∇tu) + a(x, u) = 0 in Ω,

u = f in Ωe,
(1.1)

where a(x, u) is an unknown potential and the gradient term q takes the form

q(x, u,∇tu) := b(x)

�
Rn
∇tu(x, y) · ∇tu(x, y) dy + um(x)

�
Rn
d(x, y) · ∇tu(x, y) dy

(1.2)
for integer m ≥ 2. Here the unknown scalar function b(x) and vector-valued function
d(x, y), together with a(x, u), are to be determined from the exterior measurement.

In (1.1), for u ∈ Hs(Rn), 0 < s < 1, the fractional Laplacian is defined by

(−∆)su(x) := cn,sP.V.

�
Rn

u(x)− u(y)

|x− y|n+2s
dy, (1.3)

where the symbol P.V. denotes the principal value and

cn,s =
Γ(n2 + s)

|Γ(−s)|
4s

πn/2

is a constant; see also [10]. The space Hs(Rn) is the standard fractional Sobolev
space; see also Section 2. For u ∈ Hs(Rn), since Hs(Rn) ⊂ Ht(Rn) for 0 < t <
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s < 1, u is also in Ht(Rn). Then the fractional gradient of u at points x and y is
defined by

∇tu(x, y) :=
c
1/2
n,t√

2

y − x
|x− y|n/2+t+1

(u(x)− u(y)),

and the linear operator ∇t maps Ht(Rn) to L2(R2n) [6]. Further discussion of
notation will appear in Section 2.

For the coefficients b(x) and d(x, y), we assume that b = b(x) : Ω → R and
d = d(x, y) : Ω× Rn → Rn satisfy

b ∈ C(Ω) and d ∈ C(Ω× Rn) with compact support in Ω, Ω × Ω, (1.4)

respectively. Furthermore, we assume that the coefficient a = a(x, z) : Ω × R → R
satisfies the following conditions:{

∂kz a(x, 0) = 0 for all x ∈ Ω, 0 ≤ k ≤ m
the map z 7→ a(·, z) is holomorphic with values in Cs(Ω),

(1.5)

where Cs(Ω) denotes the usual Hölder space; see also Section 2. Then the function
a can be expanded into the following power series:

a(x, z) =
∞∑

k=m+1

ak(x)
zk

k!
, ak(x) := ∂kz a(x, 0) ∈ Cs(Ω), (1.6)

which converges in Cs(Ω× R) space.
The exterior measurement is encoded in the Dirichlet-to-Neumann (DN) map:

Λ : Hs(Ωe)→
(
Hs(Ωe)

)∗
,

where u is the solution to (1.1) with exterior data f and
(
Hs(Ωe)

)∗
represents the

dual space of Hs(Ωe). For small data f ∈ C∞c (Ωe), we show in Section 2 that the
problem (1.1) is well-posed and therefore the DN map is well-defined; indeed, it is
defined through the integral (2.18) corresponding to the equation (1.1).

A fractional version of the well-known Calderón problem [2, 45] was first investi-
gated in [14], in which the authors studied the inverse problem for the linear frac-
tional Schrödinger equation (with q = 0 and a(x, u) = a(x)u in (1.1)). Specifically,
in [14] the potential a(x) is uniquely determined from the associated DN map. The
essential idea in obtaining this uniqueness result is to establish the strong uniqueness
property of the fractional Laplacian (−∆)s (see Proposition 2.7) and the associated
Runge approximation property. Since then, there have been many works concerning
related inverse problems in various settings, including the problem with a single mea-
surement [13, 39], unique determination for the (anisotropic) fractional Laplacian
and conductivity equation [5, 7, 12], stability estimates [40], the inverse obstacle
problem [3], monotonicity inversion [15, 16], nonlinear equations [25, 26, 33, 34],
fractional parabolic equations [27], fractional magnetic equations [6, 31, 32], higher
order operators [8, 9], as well as equations with lower order nonlocal perturbations
[1].

1.1. Main result. The main objective of this paper is to study the simultaneous
reconstruction of three nonlinearities in a fractional equation. Due to the nonlocal-
ity, this is by nature a partial data inverse problem. The main result of the paper
is stated below.
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Theorem 1.1. Let 0 < t < s < 1 and let Ω ⊂ Rn, n ≥ 1 be a bounded domain
with smooth boundary. Let W1,W2 be two arbitrary open sets in Ωe. Suppose that
bj(x), dj(x, y), and aj(x, z) each satisfy the conditions (1.4) and (1.5) for j = 1, 2.
Suppose furthermore that

(d1 − d2)(x, y)|x− y|−n/2−t ∈ L2(Ω) for any fixed x ∈ Ω.

Let Λj(f) be the DN map corresponding to (1.1) with a, b, d replaced by aj , bj , dj,
respectively, for j = 1, 2. Suppose that

Λ1(f)|W2
= Λ2(f)|W2

for any f ∈ C∞c (W1) (1.7)

with ‖f‖C∞c (W1) < ε, where ε > 0 is sufficiently small. Then

b1(x) = b2(x) in Ω,

d1(x, y) · (x− y) = d2(x, y) · (x− y) in Ω× Ω,

and

a1(x, z) = a2(x, z) in Ω× R.

Remark 1.1. We can fully recover the coefficient d only if d is of the form

d(x, y) = d0(x, y)(x− y)

for some scalar-valued function d0 where d0(x, x) is known. This is due to the
natural gauge enjoyed by equation (1.1); see [6]. In particular, if u satisfies (1.1)
with d = d(x, y), then u also satisfies (1.1) for d = d(x, y) + d⊥(x, y) for any d⊥
satisfying d⊥ · (x− y) = 0. See also [6].

The linearization scheme in [18] is a promising method for the study of inverse
problems for local and nonlocal nonlinear elliptic equations. By performing a first
order linearization of the DN map, one can reduce the inverse problem under study
to the inverse problem for a linear equation. Then one can apply the available
results for this linear case to recover the unknowns. The higher order linearization
technique, in particular, uses nonlinearity as a tool in solving inverse problems for
nonlinear equations. It involves introducing small parameters into the data, and
then differentiating the nonlinear equation with respect to these parameters multiple
times to obtain simpler linearized equations. Note that the application of this higher
order linearization technique in treating local or nonlocal elliptic equations with
power-type nonlinearities has been exploited in [11, 23, 24, 26, 28, 30, 29, 33, 34].

The inverse boundary value problem (IBVP) for nonlocal elliptic equations with
nonlinearities was investigated in [25, 26, 34] for (−∆)su + a(x, u) = 0. In partic-
ular, when b = 0, d = 0 in (1.1), a(x, u) is uniquely determined from an exterior
measurement in [25] based on first order linearization. The necessary condition
W1 = W2 in [25] was removed later in [26], which also showed the well-posedness
of the equation using higher order linearization. Moreover, in [33], the problem
for the nonlinear fractional magnetic equation was studied by applying first order
linearization.

We shall next discuss the IBVP for local nonlinear elliptic equations. This prob-
lem has been extensively studied in the literature. For instance, −∆u+ a(x, u) = 0
was studied in [20, 21, 43] for the full data problem and [24, 29] for the partial data
setting when n ≥ 2. The quasilinear equation −∆u + a(u,∇u) = 0 was studied in
[19] when n = 3 and −∆u + a(x,∇u) = 0 was investigated in [42] when n = 2. It
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was however noted in [42] that the uniqueness of recovery of more general nonlin-
earity a(x, u,∇u) in −∆u+ a(x, u,∇u) = 0 in general fails. We refer the interested
reader to [4, 17, 18, 22, 41, 44] for related results.

In this paper, we apply the higher order linearization technique to prove the well-
posedness of (1.1) and reconstruct the unknown coefficients when the data is suffi-
ciently small (‖f‖C∞c (W1) < ε for some ε > 0). We consider m ≥ 2 so that the non-
linear terms in (1.1) have different degree of nonlinearity, which helps in separating
the unknown terms when performing the linearization scheme, see Section 3 for de-
tails. More specifically, in our setting, differentiating (1.1) w.r.t. to the small param-
eter ε yields the equation (−∆)su(1) = 0, whose solution is independent of unknown
coefficients. Differentiating (1.1) twice leads to (−∆)su(2) + b(x)h(x;u(1)) = 0,
which specifically contains only the unknown b with h(x;u(1)) acting as a source
term. We can then determine b uniquely from the exterior data; see Section 3 for
notation and details. Finally, let us remark that the nonlinearities here indeed help
by reducing the nonlinear equation to (−∆)su(1) = 0 after the first linearization.
This then enables the use of both strong uniqueness property (Proposition 2.7) and
the Runge approximation property for (−∆)s.

As mentioned above, when s = 1, a(x, u,∇u) in −∆u + a(x, u,∇u) = 0 cannot
be fully determined in general, which inspires us to consider the nonlocal setting
as in (1.1). We may think of the three nonlinear terms in (1.1) as an example
of the general nonlinear term a(x, u,∇tu). We show that they can be recovered
simultaneously in Theorem 1.1.

Finally, for the local equations, when s = 1, the determination of multiple nonlin-
ear terms was investigated in [23] for −∆u+q(x)∇u·∇u+a(x, u) = 0 and in [28] for
the magnetic Schrödinger equation with nonlinear terms like a1(x, u) + a2(u,∇u).
Both [23] and [28] applied the higher order linearization and the density result for
harmonic functions to solve the inverse problem. Here we apply an analogous den-
sity result, the Runge approximation, characterizing the density of the collection
of solutions to the fractional Laplace equation in L2 space. This density result is
crucial to recovering the coefficient d; see Section 3 for details.

The paper is organized as follows. Section 2 introduces notation and several
previous results, including the unique continuation property and the maximum
principle. The well-posedness result for (1.1) is also stated and proven in Section 2.
Finally in Section 3 we use the results of Section 2 to show Theorem 1.1.

2. Preliminaries. In this section, we introduce notation and the well-posedness
result for the problem (1.1).

2.1. Function spaces. We start by defining the Hölder spaces. Let U ⊂ Rn be
an open set and k a nonnegative integer. For a given 0 < α < 1, the Hölder space
Ck,α(U) is defined by

Ck,α(U) :=
{
f : U → R : ‖f‖Ck,α(U) <∞

}
,

where

‖f‖Ck,α(U) :=
∑
|β|≤k

‖∂βf‖L∞(U) + sup
x 6=y, x,y∈U

∑
|β|=k

|∂βf(x)− ∂βf(y)|
|x− y|α

.

Here β = (β1, . . . , βn) is a multi-index with βi ∈ N+ ∪ {0} and |β| = β1 + . . .+ βn.
When k = 0, we simply set Cα(U) ≡ C0,α(U). We use Ckc (U) to denote the space
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of functions on Ck(U) with compact support in U . Note that the above notation
applies similarly for the closed set U .

Next, following the notation in [14], for 0 < s < 1, we use Hs(Rn) := W s,2(Rn)
to denote the L2-based Sobolev space with the following norm:

‖u‖2Hs(Rn) = ‖u‖2L2(Rn) + ‖(−∆)s/2u‖2L2(Rn).

Here, by the Parseval identity, the semi-norm ‖(−∆)s/2u‖2L2(Rn) can be expressed
as

‖(−∆)s/2u‖2L2(Rn) = ((−∆)su, u)Rn ,

where the operator (−∆)s is as defined in (1.3) and we write (u, v)U :=
�
U
uvdx if

U is an open set in Rn and u, v ∈ L2(Rn).
For scalar β ∈ R, we define the following Sobolev spaces and follow the notation

of [35]:

Hβ(U) :=
{
u|U : u ∈ Hβ(Rn)

}
,

H̃β(U) := closure of C∞c (U) in Hβ(Rn),

Hβ
0 (U) := closure of C∞c (U) in Hβ(U),

and

Hβ

U
(Rn) :=

{
u ∈ Hβ(Rn) : supp(u) ⊂ U

}
.

The Sobolev space Hβ(U) is complete under the graph norm

‖u‖Hβ(U) := inf
{
‖v‖Hβ(Rn) : v ∈ Hβ(Rn) and v|U = u

}
.

It is known that H̃β(U) ( Hβ
0 (U), and Hβ

U
(Rn) is a closed subspace of Hβ(Rn).

Moreover,

(Hβ(U))∗ = H̃−β(U), (H̃β(U))∗ = H−β(U), β ∈ R.

If U is also a bounded Lipschitz domain, the spaces and dual spaces can be expressed
as

Hβ

U
(Rn) = H̃β(U), and (Hβ

U
(Rn))∗ = H−β(U), and (Hβ(U))∗ = H−β

U
(Rn).

For more details on fractional Sobolev spaces, we refer to [10, 14, 35].

2.2. Well-posedness. Let 0 < t < s < 1 and let Ω ⊂ Rn, n ≥ 1 be a bounded
domain with smooth boundary ∂Ω. We consider the following Dirichlet problem
with exterior data:{

(−∆)su+ q(x, u,∇tu) + a(x, u) = 0 in Ω,

u = f in Ωe,
(2.1)

where f ∈ C∞c (Ωe), and q and a are as in (1.2) and (1.6).
For notational brevity, we define the function h as

h(x;u, v) :=

�
Rn
∇tu(x, y) · ∇tv(x, y) dy,

and, in particular, when u = v, we denote

h(x;u) :=

�
Rn
∇tu(x, y) · ∇tu(x, y) dy. (2.2)
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We also define

ψ(x; d, u) := um(x)

�
Rn
d(x, y) · ∇tu(x, y) dy. (2.3)

Then q can be expressed as q(x, u,∇tu) = b(x)h(x;u) + ψ(x; d, u).
In the following lemma, we analyze the boundness of h and ψ, which will be a

crucial ingredient in proving the well-posedness result.

Lemma 2.1. Let 0 < t < s < 1 and u, v ∈ Cs(Rn). For a fixed constant R > 0, we
have �

Rn

|(u(x)− u(y))(v(x)− v(y))|
|x− y|n+2t

dy

≤ Cn‖u‖Cs(Rn)‖v‖Cs(Rn)

(
1

2s− 2t
R2s−2t +

2

t
R−2t

)
(2.4)

for all x ∈ Ω. In particular, when u = v, we have

�
Rn

|u(x)− u(y)|2

|x− y|n+2t
dy ≤ Cn‖u‖2Cs(Rn)

(
1

2s− 2t
R2s−2t +

2

t
R−2t

)
(2.5)

for all x ∈ Ω. Here the constant Cn only depends on n.

Proof. We first denote M := ‖u‖Cs(Rn) and M̃ := ‖v‖Cs(Rn) and note that u, v ∈
Cs(Rn) yields

|u(x)− u(y)| ≤M |x− y|s, |v(x)− v(y)| ≤ M̃ |x− y|s (2.6)

for all x, y ∈ Rn.
To show (2.4), we note that for any fixed x ∈ Ω we have

�
Rn

|u(x)− u(y)||v(x)− v(y)|
|x− y|n+2t

dy

=

�
|x−y|≤R

|u(x)− u(y)||v(x)− v(y)|
|x− y|n+2t

dy +

�
|x−y|>R

|u(x)− u(y)||v(x)− v(y)|
|x− y|n+2t

dy

≤MM̃

�
|x−y|≤R

|x− y|−n−2t+2s dy + (2M)(2M̃)

�
|x−y|>R

|x− y|−n−2t dy.

Here we used (2.6) to derive the first term in the inequality. Applying a change of
variables to spherical coordinates and recalling that t < s, we then obtain

�
Rn

|u(x)− u(y)||v(x)− v(y)|
|x− y|n+2t

dy

≤ CnMM̃

� R

0

ρ2s−2t−1 dρ+ Cn4MM̃

� ∞
R

ρ−2t−1 dy

= Cn‖u‖Cs(Rn)‖v‖Cs(Rn)

(
1

2s− 2t
R2s−2t +

2

t
R−2t

)
,

which completes the proof of (2.4). Finally, the estimate (2.4) implies (2.5) when
u = v.
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We note that Lemma 2.1 implies that

‖h(x;u, v)‖L∞(Ω) = ‖
�
Rn
∇tu(x, y) · ∇tv(x, y) dy‖L∞(Ω)

≤ ‖cn,t
2

�
Rn

|u(x)− u(y)||v(x)− v(y)|
|x− y|n+2t

dy‖L∞(Ω)

≤ C‖u‖Cs(Rn)‖v‖Cs(Rn)

(
1

2s− 2t
R2s−2t +

2

t
R−2t

)
, (2.7)

where the constant C depends on n and t, and thus h(x;u, v) is in L∞(Ω).
Similarly, Lemma 2.1 also implies that

‖ψ(x; d, u)‖L∞(Ω) ≤ ‖u‖mL∞(Ω)‖
�
Rn
|d(·, y)|2 dy‖1/2L∞(Ω)‖

�
Rn
|∇tu(x, y)|2 dy‖1/2L∞(Ω)

≤ C‖u‖mL∞(Ω)‖
�
Rn

|u(x)− u(y)|2

|x− y|n+2t
dy‖1/2L∞(Ω)

≤ C‖u‖1+m
Cs(Rn)

(
1

2s− 2t
R2s−2t +

2

t
R−2t

)1/2

. (2.8)

Here C depends on Ω, n, t, and the coefficient d.

Remark 2.2. Lemma 2.1 suggests that in order to have pointwise control on the
terms h(x;u) and ψ(x; d, u), we must consider t satisfying 0 < t < s < 1, as the
above arguments fail when t = s.

The following lemma will also be useful for showing a contraction property in
the proof of well posedness (Theorem 2.1).

Lemma 2.3. Let 0 < t < s < 1 and u1, u2 ∈ Cs(Rn). We have the following two
estimates:

‖h(x;u1)− h(x;u2)‖L∞(Ω) ≤ C‖u1 − u2‖Cs(Rn)‖u1 + u2‖Cs(Rn)

and

‖ψ(x; d, u1)− ψ(x; d, u2)‖L∞(Ω)

≤ C‖u1 − u2‖Cs(Rn)

(
‖u1‖Cs(Rn)

m∑
k=1

‖u1‖m−kCs(Rn)‖u2‖k−1
Cs(Rn) + ‖u2‖mCs(Rn)

)
.

Here the constant C depends only on n, t, s, d, and Ω.

Proof. First, from the definition of h and (2.7) with R = 1, we derive

‖h(x;u1)− h(x;u2)‖L∞(Ω)

= ‖
�
Rn
∇tu1(x, y) · ∇tu1(x, y) dy −

�
Rn
∇tu2(x, y) · ∇tu2(x, y) dy‖L∞(Ω)

= ‖
�
Rn

(∇tu1 −∇tu2) · (∇tu1 +∇tu2)(x, y) dy‖L∞(Ω)

= ‖h(x;u1 − u2, u1 + u2)‖L∞(Ω)

≤ C‖u1 − u2‖Cs(Rn)‖u1 + u2‖Cs(Rn),

where C is a constant depending on s, t and n.
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Next, for any x ∈ Ω, we consider

‖ψ(x; d, u1)− ψ(x; d, u2)‖L∞(Ω)

= ‖um1 (x)

�
Rn
d(x, y) · ∇tu1(x, y) dy − um2 (x)

�
Rn
d(x, y) · ∇tu2(x, y) dy‖L∞(Ω)

≤ ‖(um1 (x)− um2 (x))

�
Rn
d(x, y) · ∇tu1(x, y) dy‖L∞(Ω)

+ ‖um2 ‖L∞(Ω)‖
�
Rn
d(x, y) · ∇tu1(x, y) dy −

�
Rn
d(x, y) · ∇tu2(x, y) dy‖L∞(Ω)

≤ ‖u1 − u2‖L∞(Ω)‖
m∑
k=1

um−k1 uk−1
2 ‖L∞(Ω)‖

�
Rn
d(x, y) · ∇tu1(x, y) dy‖L∞(Ω)

+ ‖um2 ‖L∞(Ω)‖
�
Rn
d(x, y) · ∇t(u1 − u2)(x, y) dy‖L∞(Ω).

Application of a similar argument as in (2.8) gives the following upper bounds:

‖
�
Rn
d(x, y) · ∇tu1(x, y) dy‖L∞(Ω) ≤ C‖u1‖Cs(Rn)

and

‖um2 ‖L∞(Ω)‖
�
Rn
d(x, y) ·∇t(u1−u2)(x, y) dy‖L∞(Ω) ≤ C‖u2‖mCs(Rn)‖u1−u2‖Cs(Rn).

Combining these estimates, we obtain the desired estimate for ψ.

We are now ready to show the well-posedness result.

Theorem 2.1 (Well-posedness). Let 0 < t < s < 1 and let Ω ⊂ Rn, n ≥ 1 be a
bounded domain with smooth boundary ∂Ω. Suppose that b(x), d(x, y), and a(x, z)
satisfy the conditions (1.4) - (1.6). Then there exists a small parameter 0 < ε < 1
such that when

f ∈ X :=
{
f ∈ C∞c (Ωe) : ‖f‖C∞c (Ωe) ≤ ε

}
, (2.9)

the boundary value problem (2.1) has a unique small solution u ∈ Cs(Rn)∩Hs(Rn).
Moreover, the solution u satisfies the estimate

‖u‖Cs(Rn) ≤ C‖f‖C∞c (Ωe),

where the constant C > 0 is independent of u and f .

Proof. Suppose that ‖f‖C∞c (Ωe) ≤ ε for some sufficiently small ε > 0. We may
extend f to the whole space Rn by zero so that ‖f‖C∞c (Rn) ≤ ε.

Before getting into the proof, we recall the following result of [14]. For g ∈ L∞(Ω),
there exists a unique solution ṽ ∈ Hs(Rn) to the problem{

(−∆)sṽ = g in Ω,

ṽ = 0 in Ωe.
(2.10)

Moreover, by [38, Proposition 1.1], we have

‖ṽ‖Cs(Rn) ≤ C‖g‖L∞(Ω)

for some constant C > 0 depending on s and Ω. This enables us to define the
solution operator

L−1
s : g ∈ L∞(Ω)→ ṽ ∈ Cs(Rn) ∩Hs(Rn)
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to (2.10). The solution L−1
s (g) to (2.10) then satisfies

‖L−1
s (g)‖Cs(Rn) ≤ C‖g‖L∞(Ω). (2.11)

We may now proceed to the linearization procedure.
Step 1: The linearized problem. We first consider the linear part of (2.1), given
by {

(−∆)su0 = 0 in Ω,

u0 = f in Ωe.
(2.12)

Due to [14], there exists a unique solution u0 ∈ Hs(Rn) to (2.12) satisfying

‖u0‖Hs(Rn) ≤ C‖f‖Hs(Rn).

By considering (−∆)s(u0−f) = −(−∆)sf with (u0−f)|Ωe = 0, we may then apply
(2.11) to obtain

‖u0 − f‖Cs(Rn) ≤ C‖(−∆)sf‖L∞(Ω),

which implies that

‖u0‖Cs(Rn) ≤ C‖f‖C∞c (Ωe), (2.13)

where the constant C > 0 depends only on s and Ω.
We next consider v := u−u0, where u0 satisfies (2.12) and u satisfies the original

nonlinear equation (2.1). If such a function v exists, then v satisfies the following
problem: {

(−∆)sv = G(v) in Ω,

v = 0 in Ωe,
(2.14)

where G(φ) is defined by

G(φ) := −b(x)h(x;u0 + φ)− ψ(x; d, u0 + φ)− a(x, u0 + φ).

We now construct a contraction map and establish the unique existence of a solu-
tion v to (2.14) by the contraction mapping principle.

Step 2: Construct a contraction map. Let us define the set

M =
{
φ ∈ Cs(Rn) : φ|Ωe = 0, ‖φ‖Cs(Rn) ≤ δ

}
,

where 0 < δ < 1 will be determined later (by choosing sufficiently small δ to satisfy
the specific inequalities below).

We define the map F on M by

F := L−1
s ◦G.

We will show below that F is indeed a contraction map on M.
We first claim that F :M→M. By (2.7), (2.8), (2.11), and the Taylor expan-

sion of a (1.6), for any φ ∈M, we obtain F(φ) ∈ Cs(Rn) ∩Hs(Rn), and

‖F(φ)‖Cs(Rn) ≤ C‖G(φ)‖L∞(Ω)

= C‖b(x)h(x;u0 + φ) + ψ(x; d, u0 + φ) + a(x, u0 + φ)‖L∞(Ω)

≤ C‖b‖C(Ω)‖u0 + φ‖2Cs(Rn) + C‖u0 + φ‖m+1
Cs(Rn) + C‖u0 + φ‖m+1

Cs(Ω)

≤ C‖b‖C(Ω)(δ + ε)2 + C(δ + ε)m+1 + C(δ + ε)m+1, (2.15)
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where the constant C depends on s, t, n and Ω. This indicates that the function
G(φ) ∈ L∞(Ω). When ε < Cδ for some C > 0 and δ is small enough, we then have

‖F(φ)‖Cs(Rn) ≤ C(ε+ δ)2 + C(ε+ δ)1+m + C(δ + ε)m+1 < δ.

This yields that F maps M into itself.
We also need to show that F is contractive. For any φ1, φ2 ∈ M, we apply

Lemma 2.3, (1.6), and (2.11) to obtain

‖F(φ1)−F(φ2)‖Cs(Rn) = ‖(L−1
s ◦G)(φ1)− (L−1

s ◦G)(φ2)‖Cs(Rn)

≤ C‖G(φ1)−G(φ2)‖L∞(Ω)

≤ C‖b(x)(h(x;u0 + φ1)− h(x;u0 + φ2))‖L∞(Ω)

+ C‖ψ(x; d, u0 + φ1)− ψ(x; d, u0 + φ2)‖L∞(Ω)

+ C‖a(x, u0 + φ1)− a(x, u0 + φ2)‖L∞(Ω)

≤ C(ε+ δ)‖φ1 − φ2‖Cs(Rn) + C(ε+ δ)m‖φ1 − φ2‖Cs(Rn)

+ C(ε+ δ)m‖φ1 − φ2‖Cs(Rn), (2.16)

where C is independent of ε, δ.
By further taking ε, δ sufficiently small so that C(ε+δ)+C(ε+δ)m+C(ε+δ)m <

1, the following estimate also holds:

‖F(φ1)−F(φ2)‖Cs(Rn) < ‖φ1 − φ2‖Cs(Rn).

Combining these results, we have shown that F is a contraction mapping on M.
Finally, the contraction mapping principle gives that there is a fixed point v ∈M

such that F(v) = v and thus v ∈ Hs(Rn) as well. This v is the solution to the
equation (2.14) and also satisfies

‖v‖Cs(Rn) ≤ C(‖u0‖2Cs(Ω)
+ ‖v‖2

Cs(Ω)
) ≤ C

(
ε‖f‖C∞c (Ωe) + δ‖v‖Cs(Ω)

)
(2.17)

due to (2.15). For δ small enough, by absorbing Cδ‖v‖Cs(Ω) into the left-hand side

of (2.17), we then have

‖v‖Cs(Rn) ≤ Cε‖f‖C∞c (Ωe).

As a result, we obtain the solution u = u0 + v ∈ Cs(Rn) to (2.1) and it satisfies

‖u‖Cs(Rn) ≤ C‖f‖C∞c (Ωe)

for some constant C > 0 independent of u and f . This completes the proof of
well-posedness for the boundary value problem (2.1).

Lemma 2.4. Under the same assumption as in Theorem 2.1, we have

‖u‖Hs(Rn) ≤ C‖f‖Hs(Rn).

Proof. In the proof of Theorem 2.1, we already have that ‖u0‖Hs(Rn) ≤ C‖f‖Hs(Rn).
We only need to estimate ‖v‖Hs(Rn). Since v is the solution to (2.14), it satisfies

‖v‖Hs(Rn) ≤ C‖G(v)‖H−s(Ω) ≤ C(ε+ δ)(‖u0‖Hs(Rn) + ‖v‖Hs(Rn)),

where in the second inequality we applied small Cs bound for v and u0 due to (2.13)
and v ∈M. Combining with the Hs estimate for u0, we then obtain

‖v‖Hs(Rn) ≤ C‖f‖Hs(Rn)

when ε, δ are chosen small enough.
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2.3. The DN map. In this subsection, we will define the corresponding DN map
for the equation (2.1).

We define the operator B : Hs(Rn)×Hs(Rn)→ R by

B[u, v] =

�
Rn

(−∆)s/2u(−∆)s/2v dx+

�
Ω

(q(x, u,∇tu)v + a(x, u)v) dx.

By Theorem 2.1, for f ∈ X , there exists a unique (small) solution uf ∈ Cs(Rn)∩
Hs(Rn) to (2.1) with uf − f ∈ H̃s(Ω). We define the DN map Λ : X ∩X → X∗ as
follows:

〈Λ[f ], [v]〉 := B[uf , v] (2.18)

for v ∈ Hs(Rn), where q and a are as defined in (1.2) and (1.6). Here X is the

quotient space Hs(Rn) \ H̃s(Ω). Note that (2.18) is not a bilinear form as in [14]
due to the nonlinear terms q and a.

Proposition 2.5. Let Ω ⊂ Rn be a bounded domain with smooth boundary ∂Ω for
n ≥ 1, 0 < t < s < 1. Suppose that b, d, and a = a(x, z) satisfy the conditions (1.4)
- (1.6). Then the DN map defined in (2.18) is bounded.

Proof. The definition of the DN map depends only on the equivalence classes. To

see this, we take any φ, ψ ∈ H̃s(Ω), the well-posedness result implies that uf+φ = uf
in Rn for f + φ, f ∈ X . Then

B[uf+φ, v + ψ] = B[uf , v + ψ] = B[uf , v] +B[uf , ψ] = B[uf , v],

where in the last identity we used the fact that uf is the solution to (−∆)suf +

q(x, u,∇tuf ) + a(x, uf ) = 0 in Ω and also ψ ∈ H̃s(Ω).
We now show that Λ is bounded. By using Lemma 2.4, we have

|B[uf , v]| ≤ ‖(−∆)s/2uf‖L2(Rn)‖(−∆)s/2v‖L2(Rn)

+ ‖q(x, u,∇tuf ) + a(x, uf )‖L2(Rn)‖v‖L2(Rn)

≤ ‖uf‖Hs(Rn)‖v‖Hs(Rn) + C‖uf‖Hs(Rn)‖v‖Hs(Rn)

≤ C‖f‖Hs(Rn)‖v‖Hs(Rn),

where C depends on b, d, a, ε. This completes the proof.

Remark 2.6. In this remark, we will discuss the differentiability of the solution of
(2.1) with respect to the given exterior data. To this end, we first define spaces

V1 :=
{
u ∈ Hs(Rn) : (−∆)su ∈ L∞(Ω), u|Ω ∈ Cs(Ω) and u|Ωe ∈ C1,s(Ωe)

}
equipped with the norm ‖u‖V1 := ‖u‖Hs(Rn)+‖(−∆)su‖L∞(Ω)+‖u‖Cs(Ω)+‖u‖C1,s(Ωe)

and

V2 := C1,s(Ωe) ∩Hs(Ωe)

equipped with the norm ‖u‖V2
:= ‖u‖C1,s(Ωe) + ‖u‖Hs(Ωe). Then V1 and V2 are

Banach spaces. We now consider the map F : V2 × V1 → L∞(Ω)× V2 defined by

F : (f, u) 7→ ((−∆)su+ q(x, u,∇tu) + a(x, u), u|Ωe − f).

Note that F (0, 0) = 0. A similar discussion as in the proof of Theorem 2.1 and (1.4)
yield that ∂uF (0, 0) : V1 → L∞(Ω) × V2 is linear isomorphism, and in particular,
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for any (w, g) ∈ L∞(Ω) × V2, one can find a unique solution v ∈ V1 satisfying the
linearized equation {

(−∆)sv = w in Ω,
v = g in Ωe.

(2.19)

By the implicit function theorem for Banach spaces (see for instance, [36, Chapter
10]), we have that there exists an open neighborhood O of 0 in V2 and a unique
analytic function h : O → V1 such that h(0) = 0 and also F (f, h(f)) = (0, 0) for
all f ∈ O. Therefore, we have the solution u = h(f) to the problem (2.1) and,
moreover, it is infinitely differentiable with respect to the data f in O.

Based on the above discussion, one can take a smaller set contained in both X
and O so that the differentiability of the solution, Theorem 2.1 and Proposition 2.5
hold.

2.4. Known results. We next state two known results which are crucial in the
proof of Theorem 1.1.

The first is the unique continuation property (UCP) for the fractional Laplacian
[14, Theorem 1.2].

Proposition 2.7 (UCP). Suppose that U is a nonempty open subset of Rn, n ≥ 1.
Let 0 < s < 1 and v ∈ Hr(Rn) for r ∈ R. If v = (−∆)sv = 0 in U , then v ≡ 0 in
Rn.

The second result is the maximum principle for the fractional Laplacian. The
proof of the following proposition can be found in [26] and [25], which extends the
result in [37] to include a non-negative potential term.

Proposition 2.8 (Maximum principle). Let Ω ⊂ Rn, n ≥ 1 be a bounded domain
with C1 boundary ∂Ω, and 0 < s < 1. Suppose that w(x) ∈ L∞(Ω) is a nonnegative
potential. Let u ∈ Hs(Rn) be the unique solution of{

(−∆)su+ w(x)u = F in Ω,

u = f in Ωe.

Suppose that 0 ≤ F ∈ L∞(Ω) in Ω and 0 ≤ f ∈ L∞(Ωe) with f 6≡ 0 in Ωe. Then
u > 0 in Ω.

3. Proof of Theorem 1.1. Using the results of Section 2, we proceed to show
the main theorem. Let u = u(x; ε) be the solution to the exterior boundary value
problem {

(−∆)su+ q(x, u,∇tu) + a(x, u) = 0 in Ω,

u = εf in Ωe.
(3.1)

Recall that

q(x, u,∇tu) = b(x)h(x;u) + ψ(x; d, u),

where h and ψ are defined in (2.2) and (2.3), respectively.
For notational simplicity, we denote the kth derivative of u with respect to ε by

u(k)
ε (x; ε) :=

∂ku

∂εk
(x; ε),

and at ε = 0 we simply denote

u(k)(x) := ∂kε
∣∣
ε=0

u(x; ε).
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Moreover, the differentiability of u with respect to ε allows us to take the k-th
derivative Λ(k) of the map Λ with respect to ε at ε = 0, and therefore we have

Λ
(k)
1 (f)|W2 = Λ

(k)
2 (f)|W2 provided that Λ1(f)|W2

= Λ2(f)|W2
. We then have the

following result.

Proposition 3.1. Let 0 < t < s < 1 and let Ω ⊂ Rn, n ≥ 1, be a bounded
domain with smooth boundary. Let ε be a small parameter and let f ∈ C∞c (W1).
For j = 1, 2, consider bj, dj, and aj satisfying (1.4) - (1.6), and let uj denote the
solution to (3.1) with b, d, and a replaced by bj, dj, and aj, respectively.

Suppose that

Λ1(f)|W2
= Λ2(f)|W2

for any f ∈ C∞c (W1). (3.2)

Then if b1 = b2 in Ω, we have u
(1)
1 = u

(1)
2 and u

(2)
1 = u

(2)
2 in Rn.

Moreover, given N ≥ 3, if

b1 = b2, d1 · (x− y) = d2 · (x− y), ∂`za1(x, 0) = ∂`za2(x, 0) for any 3 ≤ ` ≤ N,
(3.3)

then

u
(k)
1 = u

(k)
2 in Rn for any 3 ≤ k ≤ N. (3.4)

Proof. For clarity, we present the proof in the case m = 2 in the nonlinear terms ψ
and a. The proof for more general m > 2 follows a similar outline.

Fixing an arbitrary positive integer N , it is sufficient to show that u
(k)
1 = u

(k)
2 in

Rn for all 1 ≤ k ≤ N .
We first apply the operator ∂ε|ε=0 to (3.1). Using that u(x; 0) = 0 by the well-

posedness of (3.1), we obtain{
(−∆)su

(1)
j = 0 in Ω,

u
(1)
j = f in Ωe.

(3.5)

Since u
(1)
1 = u

(1)
2 = f in Ωe, the well-posedness of the problem (Theorem 2.1)

implies that

u
(1)
1 = u

(1)
2 =: u(1) in Rn. (3.6)

Next we apply ∂2
ε |ε=0 to (3.1). Then u

(2)
j satisfies the following problem:{

(−∆)su
(2)
j + bj(x)h(x;u(1)) = 0 in Ω,

u
(2)
j = 0 in Ωe.

(3.7)

Since b1 = b2 and u
(1)
1 = u

(1)
2 , both u

(2)
j for j = 1, 2 satisfy the same equation (3.7)

with trivial exterior data. Thus we have u
(2)
1 = u

(2)
2 in Rn.

Recalling that we have set m = 2 in ψ, we next apply ∂3
ε |ε=0 to (3.1) to get that

u
(3)
j satisfies{

(−∆)su
(3)
j + 2bjh(x;u(1), u(2)) + 2ψ(x; dj , u

(1)) + ∂3
zaj(x, 0)

(
u(1)

)3
= 0 in Ω,

u
(3)
j = 0 in Ωe.

(3.8)

By (3.3), we also have that both u
(3)
j for j = 1, 2 satisfy the same problem (3.8)

and thus u
(3)
1 = u

(3)
2 in Rn.
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Next, by an induction argument, we suppose that when N ≥ 3, (3.3) holds for

3 ≤ ` ≤ N + 1 and u
(k)
1 = u

(k)
2 for 1 ≤ k ≤ N . Now we perform ∂N+1

ε |ε=0 on (3.1),
which gives

(−∆)su
(N+1)
j +RN (uj , aj , bj , dj) + ∂N+1

z aj(x, 0)
(
u

(1)
j

)N+1

= 0 in Ω, (3.9)

with boundary data u
(N+1)
1 = u

(N+1)
2 = 0 in Ωe. Here RN (uj , aj , bj , dj) involves

only the functions bj(x), dj(x, y), and ∂βz aj(x, 0) for 3 ≤ β ≤ N and u
(k)
j (x) for

1 ≤ k ≤ N . Thus we have RN (u1, a1, b1, d1) = RN (u2, a2, b2, d2). As a result, both

u
(N+1)
j for j = 1, 2 satisfy the same equation with trivial data and thus u

(N+1)
1 =

u
(N+1)
2 in Rn. This completes the induction proof.

With Proposition 3.1, we are now ready to show the main result. The outline of
the proof of Theorem 1.1 is as follows. We will first show that b1 = b2 and then
∂3
za1(x, 0) = ∂3

za2(x, 0). Using these equalities, we can show d1 ·(x−y) = d2 ·(x−y).
Finally, to fully recover a, we rely on an induction argument.

Proof of Theorem 1.1. We again present the proof for the case m = 2 in the non-
linear terms ψ and a. For more general m > 2, the proof can be shown in a similar
manner.

The proof is completed in 3 steps.
Step 1. Recover b. Let ε be sufficiently small and let f ∈ C∞c (W1) be a non-
constant function. For j = 1, 2, let uj be the solution to the following exterior
boundary value problem:{

(−∆)suj + bj(x)h(x;uj) + ψ(x; dj , uj) + aj(x, uj) = 0 in Ω,

uj = εf in Ωe.
(3.10)

Using (2.18) and u
(N)
j = 0 in Ωe for N ≥ 2, one can derive that〈

Λ
(N)
j (f), f2

〉
=

�
Rn

(−∆)s/2u
(N)
j (−∆)s/2v dx+

�
Ω

[∂Nz aj(x, 0)(u
(1)
j )N

+RN−1(uj , aj , bj , dj)]v dx

=

�
Ω

[∂Nz aj(x, 0)(u
(1)
j )N +RN−1(uj , aj , bj , dj)]v dx,

where v ∈ Hs(Rn) is the solution to (−∆)sv = 0 in Ω with v = f2 in W1. In
particular, since ∂2

za(x, 0) = 0, when N = 2, we simply have〈
Λ

(2)
j (f), f2

〉
=

�
Ω

bj(x)h(x;u
(1)
j )v dx.

Thus since Λ
(2)
1 (f) = Λ

(2)
2 (f) for any small f ∈ C∞c (W1) and since u(1) := u

(1)
1 =

u
(1)
2 by Proposition 3.1, we then have

0 =

�
Ω

(b1 − b2)(x)h(x;u(1))v dx. (3.11)

By the Runge approximation property (see [14, Lemma 4.1] with q = 0), for any
g ∈ L2(Ω), there exists a sequence of solutions vj ∈ Hs(Rn) to (−∆)svj = 0 in Ω
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with exterior data in C∞c (W1) such that vj |Ω → g in L2(Ω). Replacing v in (3.11)
by vj and letting j →∞, we have

0 =

�
Ω

(b1 − b2)(x)h(x;u(1))g dx,

which further leads to

(b1 − b2)(x)h(x;u(1)) = 0 in Ω, (3.12)

since g is arbitrary. Note that by the definition of h,

h(x;u(1)) =
cn,t
2

�
Rn

|u(1)(x)− u(1)(y)|2

|x− y|n+2t
dy ≥ 0 for all x ∈ Ω.

We will show that in fact h > 0 in Ω. By contradiction, suppose that h(x0;u(1)) = 0
for some point x0 ∈ Ω. This implies that u(1) ≡ u(1)(x0) in Rn, which contradicts
that the chosen exterior data f is not a constant function. Therefore h(x;u(1)) 6= 0
for any point x in Ω. Thus (3.12) implies that

b1 = b2 in Ω.

Moreover, Proposition 3.1 yields that u(2) := u
(2)
1 = u

(2)
2 .

Step 2. Recover d and ∂3
za(x, 0). We will use that b := b1 = b2.

In this step, we also let ε be sufficiently small and f be any function in C∞c (W1).
For j = 1, 2, we also let uj be the solution to the following exterior boundary value
problem:{

(−∆)suj + b(x)h(x;uj) + ψ(x; dj , uj) + aj(x, uj) = 0 in Ω,

uj = εf in Ωe.
(3.13)

Similarly to above, since Λ
(3)
1 (f) = Λ

(3)
2 (f) and u(k) := u

(k)
1 = u

(k)
2 for k = 1, 2,

we have�
Ω

(
2

�
Rn

(d1 − d2) · ∇tu(1)(x, y) dy + (∂3
za1(x, 0)− ∂3

za2(x, 0))u(1)
)

(u(1))2v dx = 0.

(3.14)

By applying the Runge approximation property as above, we obtain

(
2

�
Rn

(d1 − d2) · ∇tu(1)(x, y) dy + (∂3
za1(x, 0)− ∂3

za2(x, 0))u(1)
)

(u(1))2 = 0.

(3.15)

Here u(1) is the solution to (3.5) with u(1)|Ωe = f for any f ∈ C∞c (W1). We can
also apply the Runge approximation property to find a sequence of solutions wk to
(3.5) such that wk → 1 in L2(Ω) as k →∞. Then there is a subsequence wkj which
converges pointwise almost everywhere (a.e.) to 1 as j →∞. Note, then, that since
we assume (d1 − d2)(x, y)|x − y|−n/2−t ∈ L2(Ω) for any fixed x ∈ Ω, we have that�
Rn(d1 − d2)(x, y) · ∇twkj (x, y) dy → 0 as j → ∞. Replacing u(1) by wkj in (3.15)

and taking j →∞, the first term thus vanishes, yielding

∂3
za1(x, 0) = ∂3

za2(x, 0).

With this, we now turn back to (3.15) and get that

(u(1))2(x)

�
Rn

(d1 − d2)(x, y) · (y − x)
u(1)(x)− u(1)(y)

|x− y|n/2+t+1
dy = 0. (3.16)
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For any fixed x0 ∈ Ω, since (d1 − d2)(x0, y) · (y − x0) is continuous in Ω, we may
define the following two open subsets of Ω:

A+ := {y ∈ Ω \ {x0} : (d1 − d2)(x0, y) · (y − x0) > 0}
and

A− := {y ∈ Ω \ {x0} : (d1 − d2)(x0, y) · (y − x0) < 0}.
We will show by contradiction that (d1 − d2)(x, y) · (y − x) = 0. Suppose that at
least one of A± is not empty.

We define the function ϕx0
by

ϕx0(y) =


1

1+|x0−y|2 if y ∈ A+,
1+2|x0−y|2
1+|x0−y|2 if y ∈ A−,

1 if y ∈ Ω \ (A+ ∪A−).

Since Ω is bounded, ϕx0
is in L2(Ω). It is clear that ϕx0

(x0) = 1 since x0 /∈ A±.
Then we have {

ϕx0
(x0) = 1 > ϕx0

(y) for all y ∈ A+,
ϕx0

(x0) = 1 < ϕx0
(y) for all y ∈ A−,

and thus

(d1 − d2)(x0, y) · (y − x0)
ϕx0

(x0)− ϕx0
(y)

|x0 − y|n/2+t+1
> 0 for all y ∈ A±. (3.17)

Again by the Runge approximation property, there exists a sequence of solutions
w̃k to (3.5) such that w̃k → ϕx0 in L2(Ω) as k →∞, which implies that there exists
a subsequence w̃kj → ϕx0

a.e. as j →∞. Since (d1−d2)(x, y)|x−y|−n/2−t ∈ L2(Ω)

for any fixed x ∈ Ω, we may replace u(1) by w̃kj in (3.16) and take j →∞ to obtain

ϕ2
x0

(x0)

�
Rn

(d1 − d2)(x0, y) · (y − x0)
ϕx0

(x0)− ϕx0
(y)

|x0 − y|n/2+t+1
dy = 0. (3.18)

However, since 0 6= ϕx0
(x0), by (1.4) and (3.17), the integral in (3.18) must be

strictly positive for any nonempty A±, which is a contradiction. Therefore, both
A± must be empty sets, which implies that

d1(x0, y) · (x0 − y) = d2(x0, y) · (x0 − y) for all y ∈ Ω.

Since x0 ∈ Ω is arbitrary, we then have

d1(x, y) · (x− y) = d2(x, y) · (x− y) for each (x, y) ∈ Ω× Ω.

Thus we uniquely determine the (x− y)-direction component of d(x, y).
Now the problem boils down to showing the uniqueness of the potential a. It is

then sufficient to show that ∂kz a1(x, 0) = ∂kz a2(x, 0) for k > 3.

Step 3. Recover higher order terms ∂kz a(x, 0), k > 3. Step 1 and Step 2 have
shown that

b1 = b2, ψ(x; d1, u
(1)) = ψ(x; d2, u

(1)), ∂3
za1(x, 0) = ∂3

za2(x, 0). (3.19)

By induction, for any fixed N ∈ N, suppose that

∂jza1(x, 0) = ∂jza2(x, 0) for 3 ≤ j ≤ N − 1, (3.20)

and thus u(k) := u
(k)
1 = u

(k)
2 for 1 ≤ k ≤ N − 1 by Proposition 3.1. It is sufficient

to show that ∂Nz a1(x, 0) = ∂Nz a2(x, 0) holds as well. From now on, we will use j
subscripts on aj only since the coefficients b, d have been recovered.
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From Λ
(N)
1 (f) = Λ

(N)
2 (f), we have

0 =

�
Ω

[∂Nz (a1(x, 0)− a2(x, 0))(u(1))N +RN−1(u, aj , b, d)]v dx. (3.21)

Recall thatRN−1(u, aj , b, d) only consists of the functions b(x), d(x, y), and ∂βz aj(x, 0)

for 3 ≤ β ≤ N − 1 and u(k)(x) for all 1 ≤ k ≤ N − 1. Then (3.20) implies that

RN−1(u, a1, b, d) = RN−1(u, a2, b, d),

and therefore, by applying the Runge approximation property as in Step 1 and 2
to remove the integrand in (3.21), we have

∂Nz a1(x, 0)(u(1))N = ∂Nz a2(x, 0)(u(1))N .

Choosing exterior data f > 0 in (3.5) and using the maximum principle (Propo-
sition 2.8), we have u(1) 6= 0. This gives ∂Nz a1(x, 0) = ∂Nz a2(x, 0). Finally, by
the uniqueness of the expansion (1.6), we obtain a1(x, z) = a2(x, z). The proof is
complete.
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