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REVIEW

Machine learning, pharmacogenomics, and clinical psychiatry: predicting 
antidepressant response in patients with major depressive disorder
William V. Boboa,b, Bailey Van Ommerenc and Arjun P. Athreyad

aDepartment of Psychiatry & Psychology, Mayo Clinic Florida, Jacksonville, FL, USA; bCenter for Individualized Medicine, Mayo Clinic, Rochester, FL, 
USA; cDepartment of Research and Education, Mayo Clinic, Rochester, MN, USA; dDepartment of Molecular Pharmacology & Experimental 
Therapeutics, Mayo Clinic, Rochester, MN, USA

ABSTRACT
Introduction: The efficacy of antidepressants for patients with major depressive disorder (MDD) varies 
from individual to individual, making the prediction of therapeutic outcomes difficult. Better methods 
for predicting antidepressant outcomes are needed. However, complex interactions between biological, 
psychological, and environmental factors affect outcomes, presenting immense computational chal
lenges for prediction. Using machine learning (ML) techniques with pharmacogenomics data provides 
one pathway toward individualized prediction of therapeutic outcomes of antidepressants.
Areas covered: This report systematically reviews the methods, results, and limitations of individual 
studies of ML and pharmacogenomics for predicting response and/or remission with antidepressants in 
patients with MDD. Future directions for research and pragmatic considerations for the clinical imple
mentation of ML-based pharmacogenomic algorithms are also discussed.
Expert opinion: ML methods utilizing pharmacogenomic and clinical data demonstrate promising 
results for predicting short-term antidepressant response. However, predictions of antidepressant 
treatment outcomes depend on contextual factors that ML algorithms may not be able to capture. 
As such, ML-driven prediction is best viewed as a companion to clinical judgment, not its replacement. 
Successful implementation and adoption of methods predicting antidepressant response warrants 
provider education about ML and close collaborations between computing scientists, pharmacoge
nomic experts, health system engineers, laboratory medicine experts, and clinicians.
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1. Introduction

Major depressive disorder (MDD) affects over 264 million people 
worldwide [1], making it one of the most prevalent illnesses in 
medicine [2]. MDD is traditionally described as an episodic illness; 
however, many patients continue to experience persisting symp
toms between syndromal relapses that are associated with poor 
quality of life and functioning in nearly every domain [3,4]. 
Depression is considered the leading cause of disability asso
ciated with chronic illness worldwide and is a leading cause of 
early mortality due to general medical illness and suicide [5–7]. 
Not surprisingly, the societal costs associated with MDD are 
staggering [8], totaling over $210 billion USD in 2010 [9].

For many patients, the symptoms of MDD can be managed 
with evidence-based psychosocial treatment and appropriate 
pharmacotherapy. Unfortunately, only one-third of depressed 
patients who receive antidepressants achieves remission 
[10,11], which is considered the goal of treatment by both 
clinicians and patients [12]. Additionally, multiple therapeutic 
trials, each lasting several weeks, are often required before 
achieving a good outcome from treatment [13]. Given the lack 
of a robust evidence base for selecting initial and next-step 
antidepressants for depressed patients, the pharmacological 
treatment of depression often resembles an ‘artisanal’ or ‘try- 
and-try-again’ approach [14]. That is, treatment selection and 

management are based mainly on intuition and experience 
rather than quantitative predictive factors that serve as 
a companion to clinical judgment.

These challenges highlight the importance of developing 
better methods for predicting outcomes of treatment with 
a given antidepressant based on an individual patient’s unique 
biological and clinical characteristics. Decades of research has 
identified clinical predictors of poor response to selective 
serotonin reuptake inhibitors (SSRIs) and other antidepres
sants, but, with few exceptions, these are only minimally pre
dictive of outcomes [15]. Historically, better responses to 
certain types of antidepressants have been suggested to 
occur for specific clinical subtypes of depressed patients 
[16,17]. However, these results have been difficult to replicate 
due, in part, to the considerable overlap between depressive 
subtypes [18]. Similarly, symptom clustering approaches have 
identified groups of patients with differential antidepressant 
response trajectories, but they are less useful for predicting 
discrete treatment outcomes at the individual patient level. 
Although a personalized treatment approach is desirable, no 
single set of assessments can yet predict antidepressant out
come with sufficient validity for clinical use [19].

In the last decade, an increasing body of research has 
shown that integrating pharmacogenomic markers of 
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response to antidepressants with machine learning prediction 
models may lead, in some cases, to robust predictions of 
therapeutic outcome [20]. Such approaches constitute an 
important step toward achieving the goal of individualized 
treatment selection of antidepressants in depressed patients. 
Here, we systematically review published studies focused on 
the integration of machine learning algorithms and pharma
cogenomics for purposes of predicting the response to anti
depressants in people with MDD. Directions for future 
research and integration into practice are also discussed.

2. Predicting response to antidepressants in 
depressed patients: the problem of heterogeneity

The ability to develop reliable (replicable) and valid models for 
predicting therapeutic responses to antidepressants in 
depressed patients is limited by several factors, including 
heterogeneity in disease manifestation and treatment 
response. Like most psychiatric disorders, MDD is a complex 
phenotype that is almost certainly not the result of a single 
etiological factor [21]. The clinical diagnosis of MDD is derived 
from a set of symptoms that, together, are required to meet 
diagnostic criteria [22]. There are more than 220 combinations 
of depressive symptoms [23], each with their own biological 
foundations and psychosocial interactions [24,25], which can 
lead to the diagnostic criteria for MDD being met. The severity 
of individual depressive symptoms can differ widely between 
patients who meet the same diagnostic criteria for MDD [26], 
adding an additional layer of complexity in disease presenta
tion. Not surprisingly, there are hundreds – if not thousands – 
of ways in which individual depressive symptoms can change 
over time after the initiation of antidepressant treatment in 
patients who all share the same clinical diagnosis, even with 
only short-term follow-up [27]. These sources of heterogeneity 
and the mélange of inter-weaving biological, psychological, 

and social/environmental factors that are likely underlying 
pose significant challenges for achieving – let along predict
ing – antidepressant treatment response in one group of 
patients and replicating those results in independent groups 
(or datasets) [26,28].

3. Machine learning, statistical learning, and 
pharmacogenomics

Heterogeneity in disease manifestation and treatment response 
creates immense computational challenges for achieving reliable 
and valid prediction of outcomes with antidepressant treatment 
and other phenotypes within psychiatry [29]. Consequently, the 
application of machine learning techniques for predicting the 
response to treatment with antidepressants has gained traction 
as a compliment to traditional regression-based statistical 
approaches [20]. Although the terms ‘machine learning’ and ‘arti
ficial intelligence’ are often used interchangeably, machine learn
ing may be best regarded as a set of methodologies under the 
broader umbrella of artificial intelligence that seek to learn pat
terns associated with types within a given dataset. Unsupervised 
machine learning methods use data without labels to infer sub
types (clusters) based on statistical properties (e.g. Euclidean dis
tances) [30]. Supervised machine learning methods use labeled 
data (e.g. treatment outcomes) from a ‘training’ cohort to derive 
models for predicting labels in separate ‘testing/validation’ (with 
no overlap from training samples) cohort [31]. Several common (if 
not exhaustive) supervised machine learning techniques are sum
marized in Table 1 [31–33].

Previous studies have shown that machine learning 
approaches that used sociodemographic and clinical measures 
to predict response to various antidepressants performed sig
nificantly better than chance, with areas under the receiver 
operating curve (AUCs) falling generally in the range of 0.54– 
0.67 [34–37]. Although some classification models using these 
predictors yielded higher accuracies for predicting antidepres
sant treatment outcome phenotypes [38], clinical and socio
demographic measures alone have not generally proven to be 
sufficiently useful as clinical outcome predictors for individua
lizing treatment decisions for patients with MDD.

To enable individualized antidepressant treatment selec
tion, analytic approaches that can integrate clinical measures 
with multiple types of biological response predictors at the 
individual patient level are needed [37]. The utilization and 
continuous refinement of predictive approaches utilizing - 
omic biomarkers (e.g. genomics, metabolomics, and proteo
mics) are of interest given the increasing knowledge of their 
associations with mechanisms of antidepressant drug 
response or MDD pathophysiology or both. Furthermore, 
advances in high-throughput biological assays are enabling 
researchers to generate large-scale data at ever-decreasing 
costs to researchers and health-care systems [39]. These scien
tific advances will facilitate the opportunity of developing 
laboratory-based biomarker panels that can be augmented 
with clinical measures for predicting the clinical effects of 
antidepressants and individualizing antidepressant treatment 
selection, even if relatively few predictive biomarkers have 
made their way into routine clinical practice today [19].

Article highlights

● Pharmacogenomic data have been used to predict short-term clinical 
responses to treatment with antidepressants in people with depres
sion using a variety of machine learning methods.

● The results of most studies show that high and generally comparable 
levels of predictive performance can be achieved using these meth
ods; however, individual studies vary widely regarding the machine 
learning methods, pharmacogenomic features, non- 
pharmacogenomic features, validation methods, and study drugs 
that were used, making direct comparisons between the reviewed 
studies difficult to conduct.

● Few studies included an independent dataset, separate from the 
original dataset(s) used for algorithm development, for validation of 
algorithm performance.

● Several factors may limit both the validity and clinical utility of the 
predictions achieved by machine learning models for the treatment 
of depression with antidepressants, including hidden biases in the 
data, unpredictable transformations of the data within the algorithms 
themselves, and the inability of machine learning algorithms to 
consider important but ‘unseen’ factors that are not specifically 
accounted for in the input data.

● For the treatment of depression with antidepressants, machine learn
ing-based tools may be best viewed as companions to clinical judg
ment within a shared decision-making framework, as opposed to 
being a driver of clinical decisions.
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Response to antidepressants is partially influenced by heri
table factors [40]. Pharmacogenomics is the study of the con
tribution of genomics to variation in drug response 
phenotypes. Therefore, pharmacogenomics has been an 
essential discipline in the field’s attempts to identify biomar
kers and associated mechanisms that are capable of distin
guishing depressed patients who respond positively or poorly 
to treatment [41,42]. Although not all studies are in agreement 
[43,44], pharmacogenomic tailoring of antidepressant selec
tion has shown promise for improving treatment outcomes 
for antidepressant-treated patients with MDD [45–47]. When 
combined with machine learning, the complex interactions 
between genetic variants, non-pharmacogenomic biomarkers, 
clinical measures, and sociodemographic characteristics may 
be identified (learned) and, if validated, may be exploited for 
purposes of response prediction in real-world practice [32].

4. Integration of machine learning and 
pharmacogenomics: methodology and review of the 
evidence

4.1. Methodology

We conducted a Medical Subject Heading (MeSH) search in 
PubMed using the following strategy: (major depressive dis
order OR depression*) AND (antidepressants) AND (artificial 

intelligence OR machine learning OR deep learning OR statis
tical learning OR prediction) AND (response OR outcome) AND 
(genomics* OR pharmacogenomics* OR genetics*). The initial 
search yielded 482 reports. This initial list was narrowed to the 
16 reports reviewed below, after excluding articles that did 
not present the results of original research (e.g. systematic 
reviews, commentaries, perspectives, and opinions); did not 
include machine learning or AI methods; were unrelated to 
antidepressant treatment of MDD; and were published only in 
abstract or protocol form (Figure 1). WVB and APA screened 
the articles independently, and a consensus list was derived by 
adjudicating on any differences in the classification of articles 
to be included.

4.2. Machine learning and pharmacogenomics for 
antidepressant response prediction: general overview

A variety of machine learning methods have been applied to 
longitudinal clinical datasets that generally include a rich array 
of clinical and sociodemographic variables and pharmacoge
nomic markers (Table 2). Despite the variety in machine learn
ing approaches across individual studies, all studies involved 
cohorts of patients with MDD who received short-term treat
ment with antidepressants and followed a similar general 
approach (Figure 2). Genomic SNPs used for the prediction 
of antidepressant treatment responses were either selected 

Table 1. Supervised machine and statistical learning approaches and their potential relevance to the prediction of response and remission in people with major 
depressive disorder who are treated with antidepressants.

Machine learning 
approach Definition

Potential relevance for predicting antidepressant response or 
remission

Supervised learning methods
Decision tree (DT) 

methods
Non-parametric approaches that have a flowchart-like appearance 

whereby data are continuously split according to specified 
parameters to perform a prediction task.

DT generally has good interpretability but is prone to over-fitting. 
Tree pruning heuristics are needed to generate compact trees.

Gradient boosting 
machines (GBM)

An approach whereby new DT models are fit consecutively; errors 
from ‘earlier’ trees are used to improve predictions in the 
‘subsequent’ trees.

Theoretically designed to achieve near perfect predictions in 
training samples. Extensive cross-validation required to learn 
optimal model parameters. Since multiple decision trees are used 
for prediction, GBMs are considered a subtype of ensemble 
machine learning as well as a subtype of DT methods.

Random forests 
(RF)

An approach that creates several decision trees that, together, are 
used to perform a prediction task.

RFs offer good bias-variance tradeoffs and are less prone to overfit. 
Since multiple decision trees are used for prediction, RF is 
considered a subtype of ensemble machine learning as well as 
a subtype of DT methods.

Deep learning Algorithms that learn patterns or data representation through the 
construction of large neural networks (algorithms that work in 
multiple layers). Neural networks are often used for unsupervised 
learning tasks as well as supervised learning tasks.

Deep learning methods can derive predictions from large volumes 
of complex data and can learn on its own but requires high 
computing power and may still rely on significant experimenter 
input to select optimal parameters for the learning algorithm for 
best predictive performance. Deep learning models offer little 
interpretability of the results or predictors.

Ensemble machine 
learning

An approach that creates or combines multiple base models to 
produce a single optimal model to yield more accurate predictions 
than would be possible with a single base model.

Provides the ability to overcome the biases of individual learners 
and reduce error rates based on aggregated results across 
multiple learners. Computationally expensive due to the need to 
learn and optimize multiple models.

K-nearest neighbor 
(kNN)

A non-parametric approach to classification whereby a test object 
(data point) is compared to the other data points that are most 
proximal to determine its classification.

Easy to implement and fast learner based on distance and number 
of neighbors. May not always be sensitive to outliers, high- 
dimensional feature space, and imbalanced data.

Logistic regression 
with elastic net 
penalty (EN)

Logistic regression with regularization to avoid overfit – in this case, 
by intentionally biasing the data by adding penalties equal to the 
absolute value and square of the magnitude of regression 
coefficients.

Easy to implement algorithms with interpretable model parameters. 
Prediction performance is high for linearly separable data.

Logistic regression 
with l2 penalty

Logistic regression with regularization to avoid overfit – in this case, 
by intentionally biasing the data by adding a penalty equal to the 
square of the magnitude of regression coefficients.

Support vector 
machine (SVM)

A non-parametric approach to classification that separates complex 
observations (data points) by identifying a hyperplane that 
optimally divides these observations into classes.

Provides the flexibility to achieve predictions in higher-dimensions 
wherein samples classes could be separated by linear or non- 
linear planes.

EXPERT REVIEW OF CLINICAL PHARMACOLOGY 929



a priori by the investigators or by using an unsupervised 
learning algorithm (or a combination of the two). The cohorts 
were typically split into ‘training’ data used to develop pre
dictive models with cross-validation used for optimizing pre
diction performance and for minimizing over-fitting of the 
models to the training data. Toward demonstrating general
izability, some predictive models were further validated using 
a second or even third independent dataset. The differences in 
methodological approaches for predicting antidepressant 
response across studies did not permit a quantitative synthesis 
of findings. Hence, we review the key methodological charac
teristics of (Table 2) and the principal findings from each study 
(Table 3). Outcomes of interest were response, generally 
defined as a ≥50% reduction (improvement) from baseline in 
total scores on a depression rating scale, or remission, defined 
as achieving a certain threshold of improvement in depressive 
symptom scores during or at the end of follow-up. We will 
formally define the outcomes of the studies summarized in the 
next section.

4.3. Models with only genomic predictors

Maciukiewicz and colleagues leveraged support vector 
machines (SVMs) and classification and regression trees 
(CARTs) with genomic data to predict response and remission 
after 8 weeks of treatment with duloxetine in a cohort of 186 
patients with MDD [48]. The single nucleotide polymorphisms 
(SNPs) for this study were selected using logistic regression 
and Least Absolute Shrinkage and Selection Operator (LASSO) 
from an initial pool of over 500,000 candidate SNPs. SVM and 
CART models were trained with nested cross-validation, and 
there was no validation of trained models in an external 
dataset. Response was defined as achieving a ≥ 50% reduction 
in Montgomery Asberg Depression Rating Scale (MADRS) 
scores and remission was defined as achieving a MADRS 
score ≤10 at the end of follow-up [49]. The average predictive 
accuracies of the SVM and CART models (with originally gen
otyped and imputed variants) were 64% and 57%, respec
tively, for response and 52% and 51%, respectively, for 

Records identified from*: 
Databases (n = 1) 

Records removed before screening: 
Duplicate records removed (n = 
0) 
Records marked as ineligible by 
automation tools (n = 0) 
Records removed for other 
reasons (n = 0) 

Records screened 
(n = 482) 

Records excluded** 
(n = 0) 

Reports sought for retrieval 
(n = 480) 

Reports not retrieved 
(n = 2) 
    Abstract (n = 1) 
    Protocol (n = 1) 

Reports assessed for eligibility 
(n = 480) 

Reports excluded: 
Articles without AI/ML (n = 287) 
Not related to MDD/AD (n = 27) 
Perspectives/Opinions (n = 17) 
Review articles (n = 119) 
Articles with AI/ML not meeting 
inclusion criteria (n = 14) 

Studies included in review 
(n = 16) 

Identification of studies via databases and registers 
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Figure 1. PRISMA flow diagram. The flow chart in Figure 1 shows the steps taken to locate individual studies that met criteria for inclusion in this review according 
to procedures outlined in Guideline of the Preferred Reporting Items for Systematic Reviews and Meta-Analyzes (PRISMA).
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remission and not significantly better than chance. Adding 
baseline depressive symptom scores to the SNP data did not 
significantly improve the predictive accuracies of the models 
for response or remission.

Bao et al. [50] compared the performances of six machine 
learning algorithms that included genomic data for predicting 
response in 83 patients with MDD who received 2 weeks of 
treatment with low-dose intravenous (IV) ketamine. All 
included patients had responded poorly to two or more ade
quate trials of antidepressants and had active suicidal idea
tions. The algorithms of interest included SVMs, random 
forests (RF), k-nearest neighbor (kNN), logistic regression with 
l2 penalty (LR/l2), decision trees, and logistic regression with 
elastic net penalty (LR/EN). Genomic SNPs were selected using 
logistic regression and RFs. All models were trained using 
nested cross-validation, and there was no validation of predic
tion models in an external dataset. Response was defined as 
a ≥50% reduction from baseline in Hamilton Depression 
Rating Scale (HAMD) scores [51]. Remission was defined as 
a HAMD score ≤7 at the end of follow-up. The average pre
dictive accuracies for response and remission were generally 
higher with SVM, kNN, LR/l2, and LR/EN (62%–63%) than with 
RF and decision trees (56%–57%). The most accurate predic
tive model was the SVM in fold 6, which had an accuracy of 
85% and AUC of 0.86. All of the models tested in this study 
performed better than a comparator model that used rando
mized labeled data for responders.

4.4. Models with genomic predictors and clinical/ 
demographic measures

Athreya et al. [52] used unsupervised (clustering) and RFs to 
predict response and remission in outpatients with MDD who 
were treated with citalopram or escitalopram for 8 weeks. 
Psychiatric diagnoses in the testing dataset were confirmed 
using the Structured Clinical Interview for Diagnostic and 
Statistical Manual of Mental Disorders (SCID), 4th Edition. The 
RFs were trained using baseline depression scores and six 
SNPs in or near TSPAN5 (rs10516436), ERICH3 (rs696692), 
DEFB1 (rs5743467, rs2741130, and rs2702877), and AHR 
(rs17137566). Each of these SNPs were previously selected 
using genome-wide association studies (GWASs) with plasma 
serotonin and kynurenine concentrations as phenotypes, 

followed by functional validation in experimental models 
[53,54]. Data from the Mayo Clinic Pharmacogenomics 
Research Network Antidepressant Medication 
Pharmacogenomic Study (PGRN-AMPS [55]) was used to train 
the models on two separate depression rating scales (the 17- 
item Hamilton Depression Rating Scale [HAMD-17] and the 
Quick Inventory of Depressive Symptomatology [QIDS]) 
[51,56]. The random forest models were trained using nested 
cross-validation. Data from the Sequenced Treatment 
Alternatives to Relieve Depression (STAR*D) trial and the 
International SSRI Pharmacogenomics Consortium (ISPC) pro
ject were used for external validation [57,58]. Across datasets, 
response was defined as a ≥ 50% reduction in depression scale 
total scores and remission was defined as a QIDS score ≤5 or 
HAMD-17 score ≤7 at either 4- or 8 weeks. The study results 
were stratified by sex. The predictive model trained using 
PGRN-AMPS data achieved comparable predictive accuracies 
for response (75%–77% with the HAMD-17 and 66%–69% with 
the QIDS) and remission (74%–76% with the HAMD-17 and 
66%–75% with the QIDS) in the STAR*D and ISPC datasets. The 
accuracies of the predictive models were higher than the null 
information rate (NIR), particularly for remission. The NIR, 
defined as the fraction of the larger class of patients that 
achieved the outcome of interest (e.g. if 60% of patients 
were responders, then NIR is 0.60), served as a proxy for 
chance.

Kautzky and colleagues similarly leveraged clustering and 
RFs to predict response after 4 weeks of treatment with anti
depressants or electroconvulsive therapy (ECT) using 12 SNPs 
in or near HTR2A (rs643627, rs6313), COMT (rs4680), ST8SIA2 
(rs8035760, rs3784723), PPP3CC (rs7430, rs10108011), and 
BDNF (rs6265, rs11030101, rs11030104, and rs12273363) in 
225 depressed participants in the Group for the Study of 
Resistant Depression (GSRD) cohort [59,60]. MDD diagnoses 
were confirmed using a modified version of the Mini- 
International Neuropsychiatric Interview (MINI), version 5.0.0 
[61]. SNPs were selected based on literature review. Study 
drugs included selective serotonin reuptake inhibitors (SSRIs), 
serotonin-norepinephrine reuptake inhibitors (SNRIs), noradre
naline reuptake inhibitors (NARIs), tricyclic and tetracyclic anti
depressants, and monoamine reuptake inhibitors (MAOIs). 
There was no stratification based on antidepressants or inter
vention types. Response to treatment was defined as achiev
ing a HAMD score ≤17 after one or two adequate trials of 

Figure 2. A general machine learning workflow. Data from clinical trials or observational studies are converted to feature tables (e.g. individual patients in rows, 
predictor variables in columns, etc.). Predictive methods are then trained using training data and the training prediction performance metrics are reported. The 
prediction performance of trained methods is then validated in an independent validation cohort (consisting of either a ‘hold out’ segment of the original dataset or 
a separate cohort of patients in another dataset). The prediction performance metrics in the validation cohort are also reported.
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antidepressants. The RF model was trained using 10-fold cross- 
validation, and the trained models were not validated in an 
external dataset. A four-factor RF model incorporating three 
SNPs (rs6265, rs6313, and rs7430) and melancholic depressive 
subtype was associated with a 4-fold higher chance of positive 
treatment response compared with other patients (OR 4.22, 
95% CI 1.43–12.49).

Lin et al. [62] and coauthors tested the performance of 
supervised deep learning using multi-layer feedforward neural 
networks (MFNNs) for predicting response and remission after 
8 weeks of treatment with SSRIs in a prospective cohort of 
outpatients with an investigator-confirmed diagnosis of MDD. 
Predictor variables for these models included clinical and 
demographic characteristics and SNPs in or near ABCA13 
(rs4917029), BNIP3 (rs9419139), CACNA1E (rs704329), EXOC4 
(rs6978272), GRIN2B (rs7954376), LHFPL3 (rs4352778), NELL1 
(rs2139423), NUAK1 (rs2956406), PREX1 (rs4810894), and SLIT3 
(rs139863958). Response was defined as ≥50% reduction from 
baseline in 21-item HAMD (HAMD-21) scores, and remission 
was defined as a HAMD-21 score ≤7 at week 8. MFNNs con
taining 1–3 hidden layers and MFNNs with logistic regression 
were trained using 10-fold cross-validation, and the trained 
models were not validated in an external dataset. MFNNs 
containing two hidden layers achieved the highest AUC 
(0.82), sensitivity (0.75), and specificity (0.69), although all 
models performed almost equally well.

These investigators subsequently compared a variety of 
supervised learning models for predicting response (≥50% 
reduction in HAMD-21 score) and remission (HAMD-21 score 
≤7) after 8 weeks of treatment with SSRIs using a similar 
cohort of depressed patients [63]. The predictive models 
included boosted ensemble machine learning, neural net
works (MFNNs), logistic regression, SVMs, decision trees, RFs, 
and naïve Bayes models. The clinical, demographic, and geno
mic predictors used in this study were similar to the predictors 
used in their previous study [62]. Of the models tested, the 
boosting ensemble algorithm with feature selection achieved 
the highest AUC (0.81–0.83), sensitivity (0.77–0.78), and speci
ficity (0.66–0.71) for predicting both response and remission, 
although all models generally performed well (minimum AUCs 
for predicting response and remission were 0.68 and 0.63, 
respectively). None of these models were further validated 
using an external dataset.

Taliaz et al. [64] also compared several supervised learning 
models for predicting response to 14 weeks of treatment with 
citalopram, sertraline, or venlafaxine using clinical and demo
graphic variables and genomic predictors. Genomic predictors 
were initially selected a priori based on literature review and 
were then used as predictors in elastic net logistic regression 
with Least Absolute Shrinkage and Selection Operator (LASSO) 
for feature selection. The training sample included 1,953 
patients with MDD who participated in the STAR*D trial. An 
external validation sample included 529 patients from the 
PGRN-AMPS trial. Since the PGRN-AMPS trial included only 
citalopram as a study drug, only the citalopram algorithm 
from STAR*D was validated using PGRN-AMPS data. 
Supervised learning methods included SVMs, extreme gradi
ent-boosted decision tree-based ensembles (XGBoost), RFs, 
and Adaptive Boosting (AdaBoost). Of these, SVMs with 

a linear kernel achieved the best prediction performance in 
the STAR*D training dataset (average balanced accuracy 73% 
across medications) and in the PGRN-AMPS validation dataset 
(average balanced accuracy 72%). The balanced accuracy for 
the algorithm’s citalopram model was similar in the STAR*D 
(60.5%) and PGRN-AMPS datasets (61.3%).

Fabbri and colleagues investigated the accuracies of 
machine learning models that combined genomic, clinical, 
and sociodemographic factors for predicting response, remis
sion, and treatment-resistance in patients with MDD after 
4 weeks of treatment with SSRIs or SNRIs [65]. The study 
datasets included patients with MDD from pooled European 
samples and a separate dataset consisting of STAR*D partici
pants for external validation. Genomic predictors included 44 
SNPs in or near CACNA1C, CACNB2, ANK3, GRM7, TCF4, ITIH3, 
SYNE1, and FKBP5 that were chosen by the investigators. 
Machine learning models included neural networks, recursive 
partitioning, learning vector quantization, gradient boosted 
machines (GBMs), and RFs. When combined with clinical and 
demographic characteristics, the best-performing candidate 
genes (ANK3, CADNB2, FKBP5, and CACNA1C) for predicting 
response (≥50% reduction in HAMD-21 or MADRS scores at 
weeks 4 or 6), remission (score ≤7 on the HAMD-21 or <10 on 
the MADRS), or treatment resistance (poor response to at least 
two consecutive antidepressant trials of adequate design) in 
the European datasets were tested for associations with 
response and remission in treatment-resistant STAR*D 
patients. Neural networks and GBMs had the highest predic
tive accuracies among the models tested in STAR*D (mean 
Accuracy 73%, Sensitivity 0.83, Specificity 0.56), although pre
dictive performances did not differ greatly across all machine 
learning algorithms.

Iniesta et al. [66] used supervised learning (LR/EN) with 
genomic predictors, sociodemographic variables, baseline 
depressive symptom measures, and other clinical variables to 
predict remission after 12 weeks of treatment with escitalo
pram or nortriptyline. Data for this study were from 430 
patients with MDD who participated in the Genome-based 
Therapeutic Drugs for Depression (GENDEP) study [67]. 
Variable selection was conducted using 5-fold cross- 
validation in the training data, with further validation in a non- 
overlapping group of GENDEP participants. Correlation- 
Adjusted T (CAT) scores were used to select predictors, includ
ing the final set of SNPs (11 for escitalopram and 20 for 
nortriptyline) from an initial pool of over 500,000. Remission 
was defined as a HAMD-17 score of ≤7 at the last observation 
after at least 4 weeks. For escitalopram, the LR/EN models 
achieved high predictive performances for remission in both 
the training (AUC 0.80, Sensitivity 0.71, Specificity 0.77) and 
testing datasets (AUC 0.77, Sensitivity 0.69, Specificity 0.71). 
For the nortriptyline model, there were similarly high predic
tive performances for remission in the training (AUC 0.83, 
Sensitivity 0.70, Specificity 0.83) and testing datasets (AUC 
0.77, Sensitivity 0.68, Specificity 0.87). However, the model 
for escitalopram achieved an AUC, sensitivity, and specificity 
of 0.57, 0.46, and 0.67, respectively, when applied to nortripty
line-treated patients in cross-drug sensitivity analyses. The 
performance of the nortriptyline model was similarly poor for 
predicting remission in escitalopram-treated patients.
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Shumake et al. [68] used a stacked ensemble machine 
learning model to predict response to citalopram using data 
from 1,257 STAR*D participants. MDD diagnoses were verified 
using a symptom checklist. All subjects were followed for up 
to 14 weeks. Genomic predictors included 11 SNPs (rs1392611, 
rs10812099, rs1891943, rs151139256, rs11002001, rs62182022, 
rs28373080, rs7757702, rs76557116, rs9557363, rs2704022) 
that were selected a priori based on literature review. 
Additional genomic predictors were selected using LR/EN 
from an initial pool of over 350,000 candidate SNPs. Clinical 
predictors included sociodemographic and baseline depres
sion symptom measures. Adequate treatment response was 
defined as a QIDS score ≤5. Performance measures were cal
culated for models that included: (a) only clinical and socio
demographic predictors; (b) a priori SNPs in addition to clinical 
and sociodemographic predictors; and (c) elastic net SNPs 
combined with clinical and sociodemographic predictors. The 
best-performing model combined a priori SNPs with clinical 
and sociodemographic predictors (Accuracy 63%, AUC 0.66); 
however, the remaining models performed nearly as well 
(Accuracy 61%–62%, AUC 0.66). A model that included only 
genetic variants (without clinical and sociodemographic pre
dictors) did not outperform chance predictions. None of the 
models were further validated in external datasets.

Bi and coauthors tested an RF algorithm for predicting response 
and remission in a dataset that consisted of 610 patients with MDD 
who received 6 weeks of treatment with SSRIs, SNRIs, and other 
antidepressants [69]. Machine learning models focused on predict
ing treatment outcomes with SSRIs and SNRIs. Genomic predictors 
included 127 markers that were selected a priori by the investiga
tors based on their possible involvement in the pharmacodynamic 
activities of antidepressants; however, the final prediction models 
included only three SNPs (rs13353402, rs17289304, and rs32897). 
Additional predictors included anxiety symptoms, cognitive fac
tors, and peripheral blood neuroendocrine markers, although neu
roendocrine markers included only in the final SNRI models and 
not the SSRI models. Response was defined as >50% reduction in 
HAMD-17 scores and remission was defined as a HAMD-17 score 
<8 during follow-up. The AUCs of the SSRI and SNRI models were 
0.77 and 0.75, respectively. Internal validation methods for these 
models were unspecified, and there was no further validation in 
a separate dataset.

Pei et al. [70] used an SVM algorithm to predict early response 
to treatment with SSRIs or SNRIs in a prospective sample of 98 
hospitalized patients with MDD. Predictors included SNPs chosen 
a priori by the investigators based on literature review (narrowed 
to 13 SNPs using logistic regression), sociodemographic measures, 
and neuroimaging (resting functional connectivity) data. Early 
response was defined as a ≥ 50% reduction in 6-item HAMD 
(HAMD-6) total scores from baseline to 2 weeks. The SVM algo
rithm was trained using leave-one-out cross-validation, and there 
was no validation of the trained model using an external dataset. 
The investigators compared the predictive performances of SVM 
models that included: (a) only neuroimaging + sociodemographic 
data; (b) only genomic + sociodemographic data, and (c) com
bined neuroimaging data + genomic data + sociodemographic 
data. The predictive performance of the model that included 
neuroimaging + genomic + sociodemographic data (Accuracy 

86%, Sensitivity 87%, Specificity 84%) was slightly higher than 
models with only neuroimaging + sociodemographic data 
(Accuracy 81%, Sensitivity 78%, Specificity 84%) and only genomic 
+ sociodemographic data (Accuracy 73%, Sensitivity 74%, 
Specificity 71%).

Fabbri et al. [71] leveraged a GBM algorithm to predict lack 
of response to two or more adequate trials of various anti
depressants in a cohort of patients with MDD who partici
pated in the GSRD project. In the training dataset, genomic, 
clinical, and sociodemographic predictors were trained using 
5-fold cross-validation with 20 repeats (for genomic data) and 
100 repeats (for pathway-based scores). Predictors were 
selected for the GBM algorithm inclusion based on a local 
false discovery rate <0.8 in at least 50% of the repeats. The 
GBM algorithm was then trained using 5-fold cross-validation, 
with further validation in a hold-out sample and external 
STAR*D and GENDEP datasets. Response was defined as 
a MADRS score <22 and >50% reduction in MADRS scores 
from the baseline. Models that combined genomic predictors 
with clinical and demographic predictors, with AUC 0.65–0.75 
in the testing sample, and AUC 0.60–0.62 and 0.55–0.72, 
respectively, in GENDEP and STAR*D datasets.

Lim et al. [72] trained and tested an LR model with l2 penalty 
that used a combination of demographic variables and genomic 
variants related to serotonin synthesis, serotonin transport, gluta
mate receptor function, and GABA synthesis to predict response to 
SSRIs in a naturalistic cohort of patients with MDD after 6 weeks of 
treatment. MDD diagnoses were all confirmed using a structured 
clinical interview. Response was defined as >50% reduction in 
HAMD-17 scores from baseline. The 155 SNPs in this study were 
selected a priori based on literature review. The trained LR model 
was validated externally in a separate group of 176 patients who 
were treated with SSRIs. For the 60% of the total cases where the 
model gave a prediction, the predictive accuracy for response was 
87%, compared with the posterior probability of 66% for response. 
However, these results were not validated in a dataset consisting of 
depressed patients who were treated with non-SSRI 
antidepressants.

Yin and colleagues developed an LR model with l2 penali
zation for predicting remission and response to SSRIs in 
a naturalistic cohort of 290 depressed patients who were 
treated for 6 weeks [73]. Model predictors included clinical 
and demographic factors, neuroendocrine markers, and 19 
SNPs selected by the investigators in or near TH, DRD2, 
DRD4, SLC6A2, and SLC6A3 genes. Response was defined as 
>50% reduction in HAMD-17 scores from baseline; remission 
was defined as a HAMD-17 score ≤7 at week 6. The model 
combining all four groups of factors predicted 75% of the 
variation in response to SSRIs and 66% of variation in remis
sion. There was no external validation.

4.5. Models with multi-omics (genomic and other -omics) 
predictors and clinical/demographic predictors

To our knowledge, only one study combined genomic, other - 
omics, and clinical/demographic predictors of antidepressant 
effects within a machine learning framework. Joyce et al. [74] 
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leveraged supervised machine learning (LR/I2 and XGBoost 
ensembles) with 5-fold cross validation-based training to pre
dict response and remission in 298 citalopram- and escitalo
pram-treated patients with MDD who participated in the 
PGRN-AMPS trial and the Combining Medications to Enhance 
Outcomes of Antidepressant Therapy (CO-MED) study [75]. 
The validation cohort consisted of a separate subgroup of 77 
depressed CO-MED patients who were treated with antide
pressant combinations. Genomic predictors included six func
tionally validated SNPs located in or near TSPAN5, ERICH3, 
DEFB1, and AHR. Additional predictors included baseline clin
ical and sociodemographic measures as well as 153 targeted 
metabolites that met quality-control criteria in both the PGRN- 
AMPS and CO-MED datasets [76–78]. In the training dataset, 
XGBoost and LR/I2 models achieved accuracies of 67% and 
65%, respectively, and AUCs of 0.68 and 0.72, respectively, for 
predicting response after 8 weeks of treatment with citalo
pram or escitalopram. In the validation dataset, the models 
yielded accuracies of 76% and 75%, respectively, and AUCs of 
0.83 and 0.86, respectively, for predicting response to 
a combination of antidepressant treatments. The perfor
mances of both the XGBoost and LR/I2 algorithms were higher 
than the NIR.

5. Expert opinion

5.1. Current state and future needs

Artificial intelligence/machine learning (AI/ML) approaches 
using clinical and biological data collected over the past two 
decades are helping the field to take important steps toward 
the goal of accurately predicting outcomes of treatment with 
antidepressants in depressed patients [79]. For clinicians, the 
accurate prediction of antidepressant treatment outcomes at 
the individual patient level is challenging given the complex 
interactions of contributing genetic, non-genetic, psychologi
cal, and/or environmental factors [24,25,80]. This reality pre
sents both opportunities and challenges for clinicians and 
researchers. At no point in history has there been available 
such powerful computing infrastructures and access to such 
vast repositories of clinical, social, and biological data [39]. As 
a result, AI/ML can be used to analyze high-dimensional geno
mic and non-genomic predictors and clinical variables simul
taneously in hopes of achieving quantitative, rule-based 
decision systems with sufficient validity for clinical use 
[19,81]. Such technological advances can augment clinicians’ 
contextual assessment of symptom severity of the disease and 
individualize treatment for the patient. This represents an 
important step toward biologically driven individualized treat
ment decision-making in psychiatry.

In summary, this review highlights the promise of combin
ing pharmacogenomics data with statistical and AI/ML 
approaches for predicting short-term treatment outcomes 
with antidepressants in patients with MDD. The methodologi
cal features and results of the reviewed studies varied widely 
but may be summarized along three general lines: types of 
features selected for prediction, types of AI/ML approaches 
used, and the approaches to feature selection. In terms of 
the types of features selected for prediction, AI/ML algorithms 

that incorporated only pharmacogenomic biomarkers to pre
dict therapeutic outcomes with antidepressants yielded levels 
of predictive performance that are similar to AI/ML algorithms 
that use only clinical/demographic variables as predictors, 
generally falling in the AUC range of 0.54–0.67 [34–37]. On 
the other hand, the performance of AI/ML algorithms 
appeared to improve substantially when a combination of 
clinical, demographic, and pharmacogenomic variables was 
used, generally exceeding an AUC threshold of 0.70 despite 
varying approaches to feature selection and the types of 
machine learning algorithms used. As of this writing, it is 
unclear if an integrative pharmacogenomics approach (i.e. 
combining pharmacogenomics with other -omics data such 
as epigenomics, transcriptomics, proteomics, and metabolo
mics with clinical/demographic information) deployed within 
an AI/ML framework leads to even better response prediction – 
a question that will be addressed in future studies. Regarding 
the relative performances of the different AI/ML algorithms in 
the reviewed studies, relatively few reports provided a direct 
comparison of approaches within the same cohort. Among 
studies that provided such comparisons, the performance 
measures were similar across AI/ML approaches and no single 
machine learning approach appeared to be clearly superior to 
the others. The predictive accuracies of the machine learning 
models also did not vary substantially according to the meth
ods by which pharmacogenomic and other predictive features 
were selected. Given important differences in the mathemati
cal underpinnings of the different supervised learning and 
feature selection methods, more comparative studies are 
needed.

Though promising, the use of AI/ML for the prediction of 
therapeutic response to antidepressants is still in its relative 
infancy [82], with or without the use of genomic markers, and 
many caveats exist that can impact the validity and clinical 
utility of model predictions. Although very high predictive 
accuracies can be achieved using machine learning 
approaches, the performances of the algorithms are highly 
dependent on clinical context [33,83]. The ‘clinical context’ of 
the data is defined by many ‘seen’ (the actual input data) and 
‘unseen’ factors (unmeasured factors that are not specifically 
accounted for in the datasets, e.g. active psychosocial factors 
in patients). Although both types of contextual elements 
determine the accuracy of machine learning algorithms [83], 
the ‘unseen’ elements cannot be ‘learned’ by the algorithms, 
which may influence the treatment outcomes more than 
genetic factors alone. Moreover, the ‘seen’ data used in 
machine learning algorithms often undergo multiple transfor
mations, leading to unpredictable behaviors that can be diffi
cult to detect and interpret [84]. Under these conditions, the 
predictions from machine learning algorithms may become 
biased or uninterpretable [85], highlighting the importance 
of both detailed transparency when reporting methods and 
results and rigorous validation of algorithm performance with 
replication in independent samples or datasets, as discussed 
further below.

There are also inherent limitations associated with the use 
of genomic data for generating valid machine learning models 
for antidepressant response prediction. Individual genetic loci 
discovered thus far can explain only a small proportion of the 
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heritability or variation in antidepressant responses [86]. 
Therefore, even with powerful machine learning algorithms 
and high-dimensional genomic data, reliable and valid 
response prediction at a level considered sufficient for clinical 
decision-making cannot be achieved using genomic SNPs 
alone [59]. Using genomics and ‘other -omics’ together (inte
grative -omics) to predict the outcomes of antidepressant 
treatment is one potential solution [87,88]. However, very 
few groups have taken this approach [74]; therefore, it is not 
yet clear if an integrative -omics approach results in better 
prediction than the more common approach of combining 
clinical measures with selected genomic data. A promising 
alternative approach is the leveraging of targeted functional 
genomics, wherein the SNPs used in predictive models are 
identified using GWAS based on clinically relevant phenotypes 
followed by functional validation in experimental models. 
A targeted functional approach was applied in one study 
that used SNPs in the DEFB1, AHR, TSPAN5, and ERICH3 genes 
as predictors [26]. These genes were identified using GWAS for 
serotonin or kynurenine biosynthesis [53,54] – both of which 
are important factors in determining MDD disease risk and 
response to antidepressants [89]. These genes were function
ally validated in experimental models which showed that 
knocking down the expression of TSPAN5 and ERICH3 in neu
ronally derived cell lines decreased serotonin concentrations 
[53] and that the DEFB1 gene encodes a protein that can 
inhibit inflammation and kynurenine synthesis [54].

There are other pragmatic considerations and challenges 
for future research of algorithm-based prediction of antide
pressant treatment outcomes. First, as alluded to earlier, future 
studies are needed that focus on integrating symptom-based 
factors with wider arrays of predictive biomarkers to facilitate 
an integrative-omics machine learning approach to predicting 
clinical outcomes in depressed patients. This will require large- 
scale efforts at collecting data of sufficient quality to enable 
the systematic investigation of genomic and other -omic pre
dictors of response to antidepressants. Fortunately, the exist
ing array of high-quality data collected in research 
environments will be supplemented by similar types of data 
collected from routine care environments that may be simi
larly well suited for this purpose [90–92]. However, to date, 
a unifying framework for conducting future studies of machine 
learning algorithms for treatment response prediction in 
depressed patients is lacking, and the field has not yet 
achieved meaningful consensus on the best means of conso
lidating existing samples and datasets and standardizing 
approaches to future data collection efforts.

Second, the clinical datasets used to train and validate 
integrated machine learning-genomic models reviewed here 
included predominantly depressed individuals of European or 
East Asian ancestry. For the potential of genomics and 
machine learning-informed response prediction to be shared 
equitably, greater inclusion of under-represented racial and 
ethnic groups in genomic and other -omics studies is needed 
[93].

Third, the studies reviewed herein focused on the predic
tion of response and remission. Both are reasonably validated 
dichotomous antidepressant response phenotypes. However, 
in addition to these phenotypes, future studies should include 

the prediction of other response phenotypes that may be 
more meaningful to clinicians, patients, and their caregivers, 
such as recovery and sustained recovery [12,94].

Fourth, all of the reviewed studies focused on the use of AI/ 
ML and genomics to predict outcomes of antidepressant treat
ment in non-elderly adults. As of this writing, we are unaware 
of any such studies focused on the prediction of antidepres
sant effects in depressed children/adolescents or geriatric 
adults using AI/ML and genomics.

And finally, none of the machine learning models reviewed 
here were developed for the purposes of antidepressant selec
tion, given a set of baseline factors. Instead, the machine 
learning models reviewed in this report were developed to 
predict outcomes of treatment with antidepressants that were 
already initiated. Future studies will be needed to address 
these important, pragmatic knowledge gaps.

5.2. Translation to practice: beyond validation

The limitations described above and threats to external valid
ity posed by model overfitting [95] highlight the importance 
of both validating and replicating the performances of ML 
prediction models, especially for complex phenotypes like 
antidepressant response. Even though a ‘hold-out’ segment 
of the validation sample may be previously ‘unseen’ by the ML 
algorithm, it is still a randomly selected subset of the same 
dataset from where training data are drawn, thus limiting its 
rigor as a validation approach. Validation in a separate, exter
nal dataset is a more rigorous test of algorithm performance, 
as it represents a truer test of external validity. Independent 
replication is a gold standard for validating genetic biomarkers 
for psychiatric disease risk and response phenotypes, and we 
suggest that a similar standard for validation may apply ana
logously to ML algorithms for antidepressant response predic
tion. However, to date, only a small number of machine 
learning studies on the prediction of therapeutic outcomes 
of antidepressant treatment have used external datasets for 
algorithm validation [52,64,65,71,72,74].

As a related matter, no studies, to our knowledge, have 
subjected machine learning models developed retrospectively 
to subsequent prospective validation. Like retrospective vali
dation using a dataset that exists independently of the train
ing data, prospective validation has the advantage of testing 
the algorithm in a new and independent cohort of depressed 
patients. However, prospective validation adds an important 
level of rigor since machine learning-based predictive algo
rithms would be used prospectively in actual practice, where 
treatment outcomes are not yet known and where exclusion 
criteria are less-stringent than those of clinical trials. Moreover, 
retrospective validation only focuses on replication predictive 
accuracy, whereas prospective validation enables the exami
nation of additional outcomes, such as clinical utility (from the 
patient and practitioner perspective) and ease-of- 
implementation (from the health-care systems perspective). 
Furthermore, the clinical utility of predictive models will 
depend on both their absolute performance (i.e. the accuracy 
of predictions) and their relative performance (the accuracy of 
predictions relative to an appropriate comparator condition) 
[96]. Hence, prospective validation enables comparisons 

EXPERT REVIEW OF CLINICAL PHARMACOLOGY 939



between model performance and a clinician’s best estimate as 
to the eventual outcome of interest and/or how well 
a predictive algorithm compliments clinical guesswork. In our 
view, these are more clinically meaningful standards than 
random chance or the NIR since a clinician’s guess incorpo
rates important predictive information in-and-of-itself and 
because machine learning-based tools compliment–but do 
not replace–clinical judgment, as discussed below.

5.3. Translation to practice: the need for novel 
architectures

A common theme across all studies was the use of next- 
generation sequencing data from research studies, as opposed 
to using clinical laboratory generated gene panel data for 
training/testing AI/ML methods. Looking to the future, the 
adoption of validated machine learning approaches using 
genomics for predicting antidepressant response will likely 
require both clinical inputs (e.g. basic demographics, indivi
dual-item scores on depression rating scale, etc.) and labora
tory-based inputs (e.g. SNP panel results). Therefore, novel 
architectures will need to be considered to run the machine 
learning algorithms in clinical care environments. There are at 
least three possible architectures suitable for this purpose: (1) 
a laboratory-based workflow for ordering and billing (Figure 3 
(a)); (2) a Clinical Decision Support electronic health record 
(EHR) application designed to interface directly with the order
ing clinician’s EHR (Figure 3(b)); and (3) a custom platform or 
application that clinicians interact with directly, via a provider- 
facing application programming interface (API) (Figure 3(C)). 
Each of these architectures presents its own unique challenges 
to implementation, billing for service, and ongoing use by 
providers. Important factors to consider when selecting 

a model will include ordering clinicians’ requirements, regula
tory concerns, timelines, information technology (IT) build 
complexity, the desired market, and scalability to future 
machine learning approaches using genomics for predicting 
other treatment response phenotypes for other disease 
groups.

With these factors in mind, each architecture possesses its 
own pros and cons. Option 1 follows traditional ordering and 
resulting mechanisms, which may appeal to clinicians. The 
relative complexity of implementation would be simple and, 
on that basis, would be expected to require a shorter time
line to operationalize and would allow for billing in 
a traditional fee-for-service manner. However, Option 1 
(Figure 3A) requires burdensome data entry by the ordering 
provider, their staff, or patients and would still require 
a custom interface build to pass data between the laboratory 
and the algorithm itself. Option 2 (Figure 3B) offers the most 
seamless workflow integration for clinicians, eliminating the 
need for manual and double entry of assessment scores. This 
option would require an extensive IT build of the platform 
and a high level of engagement with new external organiza
tions to verify that external EHR data would be available in 
the format required by the algorithm. Option 3 (Figure 3C) 
would allow for the addition of future AI prediction algo
rithms for other medications and disease states. However, 
Option 3 would require a relatively complex IT build that 
would allow for the direct interface with external providers, 
would carry a high level of regulatory concerns, and may 
create access/utilization concerns with providers unwilling to 
navigate to a platform external to the EHR. Overall, health- 
care organizations that are planning to implement a new 
technology will need to consider their resource availability 
and weigh the factors indicated in selecting the right-system 
architecture.

Figure 3. Novel architectures. The diagram in Figure 3 illustrates three different approaches to building infrastructures that can facilitate the use of 
pharmacogenomic and clinical inputs to translate machine learning algorithms for antidepressant response prediction to clinical practice.
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5.4. Toward machine learning ‘augmented’ decision- 
making

The disruptive potential of genomic testing was recognized 
well before the launch of the Human Genome Project [97]. As 
a result, innovations in genomic medicine have often included 
embedded research studies assessing the psychosocial impact 
of genomic results [98]. These studies have generated impor
tant insights into how best to limit the potential burdens of 
genetic knowledge, improve patient understanding of geno
mic results, and integrate genomic results into patient care 
more effectively. Nonetheless, few studies have examined the 
impact of preemptive genomic testing, including clinician 
views of pharmacogenomics [99–102]. A significant limitation 
of these studies is that they have tended to focus on a highly 
abstract concepts of pharmacogenomic testing that is discon
nected to a specific test, test result, or personal experience 
with pharmacogenomic testing. As pharmacogenomic testing 
is increasingly integrated into patient care activities, there 
remains a significant need to understand clinicians’ percep
tions of the value of machine learning/AI-enhanced pharma
cogenomic prescribing information. Clinicians who treat 
depressed patients will have multiple concerns regarding the 
use of genomics data, including its integration with machine 
learning for guiding treatment decisions. On the genomics 
side, this will include concerns about the accuracy and rele
vance of genomic information to specific clinical decisions in 
caring for depressed patients [103–105]. On the AI/ML side, 
additional concerns may also include perceptions of liability, 
limited transparency, or even concerns about reaching erro
neous decisions [106,107], given the complexity of machine 
learning-informed clinical decision support and clinicians’ per
ceptions of professional duties when elements of their prac
tice are guided by sophisticated predictive models that are 
based on mathematical algorithms that may be largely inscru
table. Patients, in turn, may also question exactly who or what 
is driving decisions about their treatment. Given the limita
tions and constraints outlined in this review, we conclude that 
even the most sophisticated of machine learning algorithms 
incorporating the best possible sets of predictors will not–and 
should not–replace the judgment of clinicians. Instead, vali
dated machine learning algorithms will be best viewed as 
tools that can augment clinical judgment when it comes to 
predicting the outcomes of treatment in depressed patients.

Finally, the systematic development and implementation 
of predictive models for drug response in clinical practice is 
a multidisciplinary effort. In our view, the development of 
predictive models with sufficient validity for clinical use 
requires close collaborations between computer scientists, 
informaticians, biostatisticians, genomics experts, and clini
cians. The implementation of validated predictive models 
will warrant similar collaborations further downstream 
between these same disciplines, health system engineers, 
and experts in laboratory medicine. Integrating prediction 
models at point of care will continue to involve the complex 
operation of homogenizing data formats from laboratory 
tests/sequencing panels, creating intuitive order sets and 
easily interpretable reports within the electronic health 
records, and most importantly, training the health-care 

provider workforce on the basics of the methods and the 
proper interpretations of model outputs. Therefore, under
standing the needs and preferences of the clinician end- 
users prior to the design, implementation, and adoption of 
technologies is likely to improve the trust and uptake of 
predictive tools in busy clinical practices. We thus assert that 
the successful development and adoption of predictive meth
ods utilizing genomic and clinical measures will hinge on the 
shared vision and mission of team science and education 
efforts spanning multiple disciplines.
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