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ABSTRACT

Introduction: The efficacy of antidepressants for patients with major depressive disorder (MDD) varies
from individual to individual, making the prediction of therapeutic outcomes difficult. Better methods
for predicting antidepressant outcomes are needed. However, complex interactions between biological,
psychological, and environmental factors affect outcomes, presenting immense computational chal-
lenges for prediction. Using machine learning (ML) techniques with pharmacogenomics data provides
one pathway toward individualized prediction of therapeutic outcomes of antidepressants.

Areas covered: This report systematically reviews the methods, results, and limitations of individual
studies of ML and pharmacogenomics for predicting response and/or remission with antidepressants in
patients with MDD. Future directions for research and pragmatic considerations for the clinical imple-
mentation of ML-based pharmacogenomic algorithms are also discussed.

Expert opinion: ML methods utilizing pharmacogenomic and clinical data demonstrate promising
results for predicting short-term antidepressant response. However, predictions of antidepressant
treatment outcomes depend on contextual factors that ML algorithms may not be able to capture.
As such, ML-driven prediction is best viewed as a companion to clinical judgment, not its replacement.
Successful implementation and adoption of methods predicting antidepressant response warrants
provider education about ML and close collaborations between computing scientists, pharmacoge-
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nomic experts, health system engineers, laboratory medicine experts, and clinicians.

1. Introduction

Major depressive disorder (MDD) affects over 264 million people
worldwide [1], making it one of the most prevalent illnesses in
medicine [2]. MDD is traditionally described as an episodic illness;
however, many patients continue to experience persisting symp-
toms between syndromal relapses that are associated with poor
quality of life and functioning in nearly every domain [3,4].
Depression is considered the leading cause of disability asso-
ciated with chronic illness worldwide and is a leading cause of
early mortality due to general medical iliness and suicide [5-7].
Not surprisingly, the societal costs associated with MDD are
staggering [8], totaling over $210 billion USD in 2010 [9].

For many patients, the symptoms of MDD can be managed
with evidence-based psychosocial treatment and appropriate
pharmacotherapy. Unfortunately, only one-third of depressed
patients who receive antidepressants achieves remission
[10,11], which is considered the goal of treatment by both
clinicians and patients [12]. Additionally, multiple therapeutic
trials, each lasting several weeks, are often required before
achieving a good outcome from treatment [13]. Given the lack
of a robust evidence base for selecting initial and next-step
antidepressants for depressed patients, the pharmacological
treatment of depression often resembles an ‘artisanal’ or ‘try-
and-try-again’ approach [14]. That is, treatment selection and

management are based mainly on intuition and experience
rather than quantitative predictive factors that serve as
a companion to clinical judgment.

These challenges highlight the importance of developing
better methods for predicting outcomes of treatment with
a given antidepressant based on an individual patient’s unique
biological and clinical characteristics. Decades of research has
identified clinical predictors of poor response to selective
serotonin reuptake inhibitors (SSRIs) and other antidepres-
sants, but, with few exceptions, these are only minimally pre-
dictive of outcomes [15]. Historically, better responses to
certain types of antidepressants have been suggested to
occur for specific clinical subtypes of depressed patients
[16,17]. However, these results have been difficult to replicate
due, in part, to the considerable overlap between depressive
subtypes [18]. Similarly, symptom clustering approaches have
identified groups of patients with differential antidepressant
response trajectories, but they are less useful for predicting
discrete treatment outcomes at the individual patient level.
Although a personalized treatment approach is desirable, no
single set of assessments can yet predict antidepressant out-
come with sufficient validity for clinical use [19].

In the last decade, an increasing body of research has
shown that integrating pharmacogenomic markers of
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Article highlights

¢ Pharmacogenomic data have been used to predict short-term clinical
responses to treatment with antidepressants in people with depres-
sion using a variety of machine learning methods.

o The results of most studies show that high and generally comparable
levels of predictive performance can be achieved using these meth-
ods; however, individual studies vary widely regarding the machine
learning methods, pharmacogenomic features, non-
pharmacogenomic features, validation methods, and study drugs
that were used, making direct comparisons between the reviewed
studies difficult to conduct.

o Few studies included an independent dataset, separate from the
original dataset(s) used for algorithm development, for validation of
algorithm performance.

o Several factors may limit both the validity and clinical utility of the
predictions achieved by machine learning models for the treatment
of depression with antidepressants, including hidden biases in the
data, unpredictable transformations of the data within the algorithms
themselves, and the inability of machine learning algorithms to
consider important but ‘unseen’ factors that are not specifically
accounted for in the input data.

o For the treatment of depression with antidepressants, machine learn-
ing-based tools may be best viewed as companions to clinical judg-
ment within a shared decision-making framework, as opposed to
being a driver of clinical decisions.

response to antidepressants with machine learning prediction
models may lead, in some cases, to robust predictions of
therapeutic outcome [20]. Such approaches constitute an
important step toward achieving the goal of individualized
treatment selection of antidepressants in depressed patients.
Here, we systematically review published studies focused on
the integration of machine learning algorithms and pharma-
cogenomics for purposes of predicting the response to anti-
depressants in people with MDD. Directions for future
research and integration into practice are also discussed.

2. Predicting response to antidepressants in
depressed patients: the problem of heterogeneity

The ability to develop reliable (replicable) and valid models for
predicting therapeutic responses to antidepressants in
depressed patients is limited by several factors, including
heterogeneity in disease manifestation and treatment
response. Like most psychiatric disorders, MDD is a complex
phenotype that is almost certainly not the result of a single
etiological factor [21]. The clinical diagnosis of MDD is derived
from a set of symptoms that, together, are required to meet
diagnostic criteria [22]. There are more than 220 combinations
of depressive symptoms [23], each with their own biological
foundations and psychosocial interactions [24,25], which can
lead to the diagnostic criteria for MDD being met. The severity
of individual depressive symptoms can differ widely between
patients who meet the same diagnostic criteria for MDD [26],
adding an additional layer of complexity in disease presenta-
tion. Not surprisingly, there are hundreds - if not thousands -
of ways in which individual depressive symptoms can change
over time after the initiation of antidepressant treatment in
patients who all share the same clinical diagnosis, even with
only short-term follow-up [27]. These sources of heterogeneity
and the mélange of inter-weaving biological, psychological,

and social/environmental factors that are likely underlying
pose significant challenges for achieving - let along predict-
ing - antidepressant treatment response in one group of
patients and replicating those results in independent groups
(or datasets) [26,28].

3. Machine learning, statistical learning, and
pharmacogenomics

Heterogeneity in disease manifestation and treatment response
creates immense computational challenges for achieving reliable
and valid prediction of outcomes with antidepressant treatment
and other phenotypes within psychiatry [29]. Consequently, the
application of machine learning techniques for predicting the
response to treatment with antidepressants has gained traction
as a compliment to traditional regression-based statistical
approaches [20]. Although the terms ‘machine learning’ and ‘arti-
ficial intelligence’ are often used interchangeably, machine learn-
ing may be best regarded as a set of methodologies under the
broader umbrella of artificial intelligence that seek to learn pat-
terns associated with types within a given dataset. Unsupervised
machine learning methods use data without labels to infer sub-
types (clusters) based on statistical properties (e.g. Euclidean dis-
tances) [30]. Supervised machine learning methods use labeled
data (e.g. treatment outcomes) from a ‘training’ cohort to derive
models for predicting labels in separate ‘testing/validation’ (with
no overlap from training samples) cohort [31]. Several common (if
not exhaustive) supervised machine learning techniques are sum-
marized in Table 1 [31-33].

Previous studies have shown that machine learning
approaches that used sociodemographic and clinical measures
to predict response to various antidepressants performed sig-
nificantly better than chance, with areas under the receiver
operating curve (AUCs) falling generally in the range of 0.54-
0.67 [34-37]. Although some classification models using these
predictors yielded higher accuracies for predicting antidepres-
sant treatment outcome phenotypes [38], clinical and socio-
demographic measures alone have not generally proven to be
sufficiently useful as clinical outcome predictors for individua-
lizing treatment decisions for patients with MDD.

To enable individualized antidepressant treatment selec-
tion, analytic approaches that can integrate clinical measures
with multiple types of biological response predictors at the
individual patient level are needed [37]. The utilization and
continuous refinement of predictive approaches utilizing -
omic biomarkers (e.g. genomics, metabolomics, and proteo-
mics) are of interest given the increasing knowledge of their
associations with mechanisms of antidepressant drug
response or MDD pathophysiology or both. Furthermore,
advances in high-throughput biological assays are enabling
researchers to generate large-scale data at ever-decreasing
costs to researchers and health-care systems [39]. These scien-
tific advances will facilitate the opportunity of developing
laboratory-based biomarker panels that can be augmented
with clinical measures for predicting the clinical effects of
antidepressants and individualizing antidepressant treatment
selection, even if relatively few predictive biomarkers have
made their way into routine clinical practice today [19].
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Table 1. Supervised machine and statistical learning approaches and their potential relevance to the prediction of response and remission in people with major
depressive disorder who are treated with antidepressants.

Machine learning
approach

Definition

Potential relevance for predicting antidepressant response or
remission

Supervised learning methods

Decision tree (DT)
methods

Gradient boosting
machines (GBM)

Random forests
(RF)

Deep learning

Ensemble machine
learning

K-nearest neighbor
(kNN)

Logistic regression
with elastic net

Non-parametric approaches that have a flowchart-like appearance
whereby data are continuously split according to specified
parameters to perform a prediction task.

An approach whereby new DT models are fit consecutively; errors
from ‘earlier’ trees are used to improve predictions in the
‘subsequent’ trees.

An approach that creates several decision trees that, together, are
used to perform a prediction task.

Algorithms that learn patterns or data representation through the
construction of large neural networks (algorithms that work in
multiple layers). Neural networks are often used for unsupervised
learning tasks as well as supervised learning tasks.

An approach that creates or combines multiple base models to
produce a single optimal model to yield more accurate predictions
than would be possible with a single base model.

A non-parametric approach to classification whereby a test object
(data point) is compared to the other data points that are most
proximal to determine its classification.

Logistic regression with regularization to avoid overfit — in this case,
by intentionally biasing the data by adding penalties equal to the

DT generally has good interpretability but is prone to over-fitting.
Tree pruning heuristics are needed to generate compact trees.

Theoretically designed to achieve near perfect predictions in
training samples. Extensive cross-validation required to learn
optimal model parameters. Since multiple decision trees are used
for prediction, GBMs are considered a subtype of ensemble
machine learning as well as a subtype of DT methods.

RFs offer good bias-variance tradeoffs and are less prone to overfit.
Since multiple decision trees are used for prediction, RF is
considered a subtype of ensemble machine learning as well as
a subtype of DT methods.

Deep learning methods can derive predictions from large volumes
of complex data and can learn on its own but requires high
computing power and may still rely on significant experimenter
input to select optimal parameters for the learning algorithm for
best predictive performance. Deep learning models offer little
interpretability of the results or predictors.

Provides the ability to overcome the biases of individual learners
and reduce error rates based on aggregated results across
multiple learners. Computationally expensive due to the need to
learn and optimize multiple models.

Easy to implement and fast learner based on distance and number
of neighbors. May not always be sensitive to outliers, high-
dimensional feature space, and imbalanced data.

Easy to implement algorithms with interpretable model parameters.
Prediction performance is high for linearly separable data.

penalty (EN)
coefficients.
Logistic regression
with 12 penalty
square of the magnitude of regression coefficients.

Support vector
machine (SVM)
optimally divides these observations into classes.

A non-parametric approach to classification that separates complex
observations (data points) by identifying a hyperplane that

absolute value and square of the magnitude of regression

Logistic regression with regularization to avoid overfit — in this case,
by intentionally biasing the data by adding a penalty equal to the

Provides the flexibility to achieve predictions in higher-dimensions
wherein samples classes could be separated by linear or non-
linear planes.

Response to antidepressants is partially influenced by heri-
table factors [40]. Pharmacogenomics is the study of the con-
tribution of genomics to variation in drug response
phenotypes. Therefore, pharmacogenomics has been an
essential discipline in the field’s attempts to identify biomar-
kers and associated mechanisms that are capable of distin-
guishing depressed patients who respond positively or poorly
to treatment [41,42]. Although not all studies are in agreement
[43,44], pharmacogenomic tailoring of antidepressant selec-
tion has shown promise for improving treatment outcomes
for antidepressant-treated patients with MDD [45-47]. When
combined with machine learning, the complex interactions
between genetic variants, non-pharmacogenomic biomarkers,
clinical measures, and sociodemographic characteristics may
be identified (learned) and, if validated, may be exploited for
purposes of response prediction in real-world practice [32].

4. Integration of machine learning and
pharmacogenomics: methodology and review of the
evidence

4.1. Methodology

We conducted a Medical Subject Heading (MeSH) search in
PubMed using the following strategy: (major depressive dis-
order OR depression*) AND (antidepressants) AND (artificial

intelligence OR machine learning OR deep learning OR statis-
tical learning OR prediction) AND (response OR outcome) AND
(genomics* OR pharmacogenomics* OR genetics*). The initial
search yielded 482 reports. This initial list was narrowed to the
16 reports reviewed below, after excluding articles that did
not present the results of original research (e.g. systematic
reviews, commentaries, perspectives, and opinions); did not
include machine learning or Al methods; were unrelated to
antidepressant treatment of MDD; and were published only in
abstract or protocol form (Figure 1). WVB and APA screened
the articles independently, and a consensus list was derived by
adjudicating on any differences in the classification of articles
to be included.

4.2. Machine learning and pharmacogenomics for
antidepressant response prediction: general overview

A variety of machine learning methods have been applied to
longitudinal clinical datasets that generally include a rich array
of clinical and sociodemographic variables and pharmacoge-
nomic markers (Table 2). Despite the variety in machine learn-
ing approaches across individual studies, all studies involved
cohorts of patients with MDD who received short-term treat-
ment with antidepressants and followed a similar general
approach (Figure 2). Genomic SNPs used for the prediction
of antidepressant treatment responses were either selected
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Figure 1. PRISMA flow diagram. The flow chart in Figure 1 shows the steps taken to locate individual studies that met criteria for inclusion in this review according
to procedures outlined in Guideline of the Preferred Reporting Items for Systematic Reviews and Meta-Analyzes (PRISMA).

a priori by the investigators or by using an unsupervised
learning algorithm (or a combination of the two). The cohorts
were typically split into ‘training’ data used to develop pre-
dictive models with cross-validation used for optimizing pre-
diction performance and for minimizing over-fitting of the
models to the training data. Toward demonstrating general-
izability, some predictive models were further validated using
a second or even third independent dataset. The differences in
methodological approaches for predicting antidepressant
response across studies did not permit a quantitative synthesis
of findings. Hence, we review the key methodological charac-
teristics of (Table 2) and the principal findings from each study
(Table 3). Outcomes of interest were response, generally
defined as a =50% reduction (improvement) from baseline in
total scores on a depression rating scale, or remission, defined
as achieving a certain threshold of improvement in depressive
symptom scores during or at the end of follow-up. We will
formally define the outcomes of the studies summarized in the
next section.

4.3. Models with only genomic predictors

Maciukiewicz and colleagues leveraged support vector
machines (SVMs) and classification and regression trees
(CARTs) with genomic data to predict response and remission
after 8 weeks of treatment with duloxetine in a cohort of 186
patients with MDD [48]. The single nucleotide polymorphisms
(SNPs) for this study were selected using logistic regression
and Least Absolute Shrinkage and Selection Operator (LASSO)
from an initial pool of over 500,000 candidate SNPs. SVM and
CART models were trained with nested cross-validation, and
there was no validation of trained models in an external
dataset. Response was defined as achieving a = 50% reduction
in Montgomery Asberg Depression Rating Scale (MADRS)
scores and remission was defined as achieving a MADRS
score <10 at the end of follow-up [49]. The average predictive
accuracies of the SVM and CART models (with originally gen-
otyped and imputed variants) were 64% and 57%, respec-
tively, for response and 52% and 51%, respectively, for
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Figure 2. A general machine learning workflow. Data from clinical trials or observational studies are converted to feature tables (e.g. individual patients in rows,
predictor variables in columns, etc.). Predictive methods are then trained using training data and the training prediction performance metrics are reported. The
prediction performance of trained methods is then validated in an independent validation cohort (consisting of either a ‘hold out’ segment of the original dataset or
a separate cohort of patients in another dataset). The prediction performance metrics in the validation cohort are also reported.

remission and not significantly better than chance. Adding
baseline depressive symptom scores to the SNP data did not
significantly improve the predictive accuracies of the models
for response or remission.

Bao et al. [50] compared the performances of six machine
learning algorithms that included genomic data for predicting
response in 83 patients with MDD who received 2 weeks of
treatment with low-dose intravenous (IV) ketamine. All
included patients had responded poorly to two or more ade-
quate trials of antidepressants and had active suicidal idea-
tions. The algorithms of interest included SVMs, random
forests (RF), k-nearest neighbor (kNN), logistic regression with
12 penalty (LR/I2), decision trees, and logistic regression with
elastic net penalty (LR/EN). Genomic SNPs were selected using
logistic regression and RFs. All models were trained using
nested cross-validation, and there was no validation of predic-
tion models in an external dataset. Response was defined as
a =50% reduction from baseline in Hamilton Depression
Rating Scale (HAMD) scores [51]. Remission was defined as
a HAMD score <7 at the end of follow-up. The average pre-
dictive accuracies for response and remission were generally
higher with SVM, kNN, LR/I2, and LR/EN (62%-63%) than with
RF and decision trees (56%-57%). The most accurate predic-
tive model was the SVM in fold 6, which had an accuracy of
85% and AUC of 0.86. All of the models tested in this study
performed better than a comparator model that used rando-
mized labeled data for responders.

4.4. Models with genomic predictors and clinical/
demographic measures

Athreya et al. [52] used unsupervised (clustering) and RFs to
predict response and remission in outpatients with MDD who
were treated with citalopram or escitalopram for 8 weeks.
Psychiatric diagnoses in the testing dataset were confirmed
using the Structured Clinical Interview for Diagnostic and
Statistical Manual of Mental Disorders (SCID), 4™ Edition. The
RFs were trained using baseline depression scores and six
SNPs in or near TSPAN5 (rs10516436), ERICH3 (rs696692),
DEFB1 (rs5743467, rs2741130, and rs2702877), and AHR
(rs17137566). Each of these SNPs were previously selected
using genome-wide association studies (GWASs) with plasma
serotonin and kynurenine concentrations as phenotypes,

followed by functional validation in experimental models
[53,54]. Data from the Mayo Clinic Pharmacogenomics
Research Network Antidepressant Medication
Pharmacogenomic Study (PGRN-AMPS [55]) was used to train
the models on two separate depression rating scales (the 17-
item Hamilton Depression Rating Scale [HAMD-17] and the
Quick Inventory of Depressive Symptomatology [QIDS])
[51,56]. The random forest models were trained using nested
cross-validation. Data from the Sequenced Treatment
Alternatives to Relieve Depression (STAR*D) trial and the
International SSRI Pharmacogenomics Consortium (ISPC) pro-
ject were used for external validation [57,58]. Across datasets,
response was defined as a > 50% reduction in depression scale
total scores and remission was defined as a QIDS score <5 or
HAMD-17 score <7 at either 4- or 8 weeks. The study results
were stratified by sex. The predictive model trained using
PGRN-AMPS data achieved comparable predictive accuracies
for response (75%-77% with the HAMD-17 and 66%-69% with
the QIDS) and remission (74%-76% with the HAMD-17 and
66%-75% with the QIDS) in the STAR*D and ISPC datasets. The
accuracies of the predictive models were higher than the null
information rate (NIR), particularly for remission. The NIR,
defined as the fraction of the larger class of patients that
achieved the outcome of interest (e.g. if 60% of patients
were responders, then NIR is 0.60), served as a proxy for
chance.

Kautzky and colleagues similarly leveraged clustering and
RFs to predict response after 4 weeks of treatment with anti-
depressants or electroconvulsive therapy (ECT) using 12 SNPs
in or near HTR2A (rs643627, rs6313), COMT (rs4680), ST8SIA2
(rs8035760, rs3784723), PPP3CC (rs7430, rs10108011), and
BDNF (rs6265, rs11030101, rs11030104, and rs12273363) in
225 depressed participants in the Group for the Study of
Resistant Depression (GSRD) cohort [59,60]. MDD diagnoses
were confirmed using a modified version of the Mini-
International Neuropsychiatric Interview (MINI), version 5.0.0
[61]. SNPs were selected based on literature review. Study
drugs included selective serotonin reuptake inhibitors (SSRIs),
serotonin-norepinephrine reuptake inhibitors (SNRIs), noradre-
naline reuptake inhibitors (NARIs), tricyclic and tetracyclic anti-
depressants, and monoamine reuptake inhibitors (MAOIs).
There was no stratification based on antidepressants or inter-
vention types. Response to treatment was defined as achiev-
ing a HAMD score <17 after one or two adequate trials of
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antidepressants. The RF model was trained using 10-fold cross-
validation, and the trained models were not validated in an
external dataset. A four-factor RF model incorporating three
SNPs (rs6265, rs6313, and rs7430) and melancholic depressive
subtype was associated with a 4-fold higher chance of positive
treatment response compared with other patients (OR 4.22,
95% Cl 1.43-12.49).

Lin et al. [62] and coauthors tested the performance of
supervised deep learning using multi-layer feedforward neural
networks (MFNNs) for predicting response and remission after
8 weeks of treatment with SSRIs in a prospective cohort of
outpatients with an investigator-confirmed diagnosis of MDD.
Predictor variables for these models included clinical and
demographic characteristics and SNPs in or near ABCA13
(rs4917029), BNIP3 (rs9419139), CACNATE (rs704329), EXOC4
(rs6978272), GRIN2B (rs7954376), LHFPL3 (rs4352778), NELL1
(rs2139423), NUAK1 (rs2956406), PREX1 (rs4810894), and SLIT3
(rs139863958). Response was defined as >50% reduction from
baseline in 21-item HAMD (HAMD-21) scores, and remission
was defined as a HAMD-21 score <7 at week 8. MFNNs con-
taining 1-3 hidden layers and MFNNs with logistic regression
were trained using 10-fold cross-validation, and the trained
models were not validated in an external dataset. MFNNs
containing two hidden layers achieved the highest AUC
(0.82), sensitivity (0.75), and specificity (0.69), although all
models performed almost equally well.

These investigators subsequently compared a variety of
supervised learning models for predicting response (=50%
reduction in HAMD-21 score) and remission (HAMD-21 score
<7) after 8 weeks of treatment with SSRIs using a similar
cohort of depressed patients [63]. The predictive models
included boosted ensemble machine learning, neural net-
works (MFNNs), logistic regression, SVMs, decision trees, RFs,
and naive Bayes models. The clinical, demographic, and geno-
mic predictors used in this study were similar to the predictors
used in their previous study [62]. Of the models tested, the
boosting ensemble algorithm with feature selection achieved
the highest AUC (0.81-0.83), sensitivity (0.77-0.78), and speci-
ficity (0.66-0.71) for predicting both response and remission,
although all models generally performed well (minimum AUCs
for predicting response and remission were 0.68 and 0.63,
respectively). None of these models were further validated
using an external dataset.

Taliaz et al. [64] also compared several supervised learning
models for predicting response to 14 weeks of treatment with
citalopram, sertraline, or venlafaxine using clinical and demo-
graphic variables and genomic predictors. Genomic predictors
were initially selected a priori based on literature review and
were then used as predictors in elastic net logistic regression
with Least Absolute Shrinkage and Selection Operator (LASSO)
for feature selection. The training sample included 1,953
patients with MDD who participated in the STAR*D trial. An
external validation sample included 529 patients from the
PGRN-AMPS trial. Since the PGRN-AMPS trial included only
citalopram as a study drug, only the citalopram algorithm
from STAR*D was validated using PGRN-AMPS data.
Supervised learning methods included SVMs, extreme gradi-
ent-boosted decision tree-based ensembles (XGBoost), RFs,
and Adaptive Boosting (AdaBoost). Of these, SVMs with

a linear kernel achieved the best prediction performance in
the STAR*D training dataset (average balanced accuracy 73%
across medications) and in the PGRN-AMPS validation dataset
(average balanced accuracy 72%). The balanced accuracy for
the algorithm’s citalopram model was similar in the STAR*D
(60.5%) and PGRN-AMPS datasets (61.3%).

Fabbri and colleagues investigated the accuracies of
machine learning models that combined genomic, clinical,
and sociodemographic factors for predicting response, remis-
sion, and treatment-resistance in patients with MDD after
4 weeks of treatment with SSRIs or SNRIs [65]. The study
datasets included patients with MDD from pooled European
samples and a separate dataset consisting of STAR*D partici-
pants for external validation. Genomic predictors included 44
SNPs in or near CACNATC, CACNB2, ANK3, GRM7, TCF4, ITIH3,
SYNE1, and FKBP5 that were chosen by the investigators.
Machine learning models included neural networks, recursive
partitioning, learning vector quantization, gradient boosted
machines (GBMs), and RFs. When combined with clinical and
demographic characteristics, the best-performing candidate
genes (ANK3, CADNB2, FKBP5, and CACNA1(C) for predicting
response (=50% reduction in HAMD-21 or MADRS scores at
weeks 4 or 6), remission (score <7 on the HAMD-21 or <10 on
the MADRS), or treatment resistance (poor response to at least
two consecutive antidepressant trials of adequate design) in
the European datasets were tested for associations with
response and remission in treatment-resistant STAR*D
patients. Neural networks and GBMs had the highest predic-
tive accuracies among the models tested in STAR*D (mean
Accuracy 73%, Sensitivity 0.83, Specificity 0.56), although pre-
dictive performances did not differ greatly across all machine
learning algorithms.

Iniesta et al. [66] used supervised learning (LR/EN) with
genomic predictors, sociodemographic variables, baseline
depressive symptom measures, and other clinical variables to
predict remission after 12 weeks of treatment with escitalo-
pram or nortriptyline. Data for this study were from 430
patients with MDD who participated in the Genome-based
Therapeutic Drugs for Depression (GENDEP) study [67].
Variable selection was conducted using 5-fold cross-
validation in the training data, with further validation in a non-
overlapping group of GENDEP participants. Correlation-
Adjusted T (CAT) scores were used to select predictors, includ-
ing the final set of SNPs (11 for escitalopram and 20 for
nortriptyline) from an initial pool of over 500,000. Remission
was defined as a HAMD-17 score of <7 at the last observation
after at least 4 weeks. For escitalopram, the LR/EN models
achieved high predictive performances for remission in both
the training (AUC 0.80, Sensitivity 0.71, Specificity 0.77) and
testing datasets (AUC 0.77, Sensitivity 0.69, Specificity 0.71).
For the nortriptyline model, there were similarly high predic-
tive performances for remission in the training (AUC 0.83,
Sensitivity 0.70, Specificity 0.83) and testing datasets (AUC
0.77, Sensitivity 0.68, Specificity 0.87). However, the model
for escitalopram achieved an AUC, sensitivity, and specificity
of 0.57, 0.46, and 0.67, respectively, when applied to nortripty-
line-treated patients in cross-drug sensitivity analyses. The
performance of the nortriptyline model was similarly poor for
predicting remission in escitalopram-treated patients.



Shumake et al. [68] used a stacked ensemble machine
learning model to predict response to citalopram using data
from 1,257 STAR*D participants. MDD diagnoses were verified
using a symptom checklist. All subjects were followed for up
to 14 weeks. Genomic predictors included 11 SNPs (rs1392611,
rs10812099, rs1891943, rs151139256, rs11002001, rs62182022,
rs28373080, rs7757702, rs76557116, rs9557363, rs2704022)
that were selected a priori based on literature review.
Additional genomic predictors were selected using LR/EN
from an initial pool of over 350,000 candidate SNPs. Clinical
predictors included sociodemographic and baseline depres-
sion symptom measures. Adequate treatment response was
defined as a QIDS score <5. Performance measures were cal-
culated for models that included: (a) only clinical and socio-
demographic predictors; (b) a priori SNPs in addition to clinical
and sociodemographic predictors; and (c) elastic net SNPs
combined with clinical and sociodemographic predictors. The
best-performing model combined a priori SNPs with clinical
and sociodemographic predictors (Accuracy 63%, AUC 0.66);
however, the remaining models performed nearly as well
(Accuracy 61%-62%, AUC 0.66). A model that included only
genetic variants (without clinical and sociodemographic pre-
dictors) did not outperform chance predictions. None of the
models were further validated in external datasets.

Bi and coauthors tested an RF algorithm for predicting response
and remission in a dataset that consisted of 610 patients with MDD
who received 6 weeks of treatment with SSRIs, SNRIs, and other
antidepressants [69]. Machine learning models focused on predict-
ing treatment outcomes with SSRIs and SNRIs. Genomic predictors
included 127 markers that were selected a priori by the investiga-
tors based on their possible involvement in the pharmacodynamic
activities of antidepressants; however, the final prediction models
included only three SNPs (rs13353402, rs17289304, and rs32897).
Additional predictors included anxiety symptoms, cognitive fac-
tors, and peripheral blood neuroendocrine markers, although neu-
roendocrine markers included only in the final SNRI models and
not the SSRI models. Response was defined as >50% reduction in
HAMD-17 scores and remission was defined as a HAMD-17 score
<8 during follow-up. The AUCs of the SSRI and SNRI models were
0.77 and 0.75, respectively. Internal validation methods for these
models were unspecified, and there was no further validation in
a separate dataset.

Pei et al. [70] used an SVM algorithm to predict early response
to treatment with SSRIs or SNRIs in a prospective sample of 98
hospitalized patients with MDD. Predictors included SNPs chosen
a priori by the investigators based on literature review (narrowed
to 13 SNPs using logistic regression), sociodemographic measures,
and neuroimaging (resting functional connectivity) data. Early
response was defined as a > 50% reduction in 6-item HAMD
(HAMD-6) total scores from baseline to 2 weeks. The SVM algo-
rithm was trained using leave-one-out cross-validation, and there
was no validation of the trained model using an external dataset.
The investigators compared the predictive performances of SVM
models that included: (a) only neuroimaging + sociodemographic
data; (b) only genomic + sociodemographic data, and (c) com-
bined neuroimaging data + genomic data + sociodemographic
data. The predictive performance of the model that included
neuroimaging + genomic + sociodemographic data (Accuracy
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86%, Sensitivity 87%, Specificity 84%) was slightly higher than
models with only neuroimaging + sociodemographic data
(Accuracy 81%, Sensitivity 78%, Specificity 84%) and only genomic
+ sociodemographic data (Accuracy 73%, Sensitivity 74%,
Specificity 71%).

Fabbri et al. [71] leveraged a GBM algorithm to predict lack
of response to two or more adequate trials of various anti-
depressants in a cohort of patients with MDD who partici-
pated in the GSRD project. In the training dataset, genomic,
clinical, and sociodemographic predictors were trained using
5-fold cross-validation with 20 repeats (for genomic data) and
100 repeats (for pathway-based scores). Predictors were
selected for the GBM algorithm inclusion based on a local
false discovery rate <0.8 in at least 50% of the repeats. The
GBM algorithm was then trained using 5-fold cross-validation,
with further validation in a hold-out sample and external
STAR*D and GENDEP datasets. Response was defined as
a MADRS score <22 and >50% reduction in MADRS scores
from the baseline. Models that combined genomic predictors
with clinical and demographic predictors, with AUC 0.65-0.75
in the testing sample, and AUC 0.60-0.62 and 0.55-0.72,
respectively, in GENDEP and STAR*D datasets.

Lim et al. [72] trained and tested an LR model with 12 penalty
that used a combination of demographic variables and genomic
variants related to serotonin synthesis, serotonin transport, gluta-
mate receptor function, and GABA synthesis to predict response to
SSRIs in a naturalistic cohort of patients with MDD after 6 weeks of
treatment. MDD diagnoses were all confirmed using a structured
clinical interview. Response was defined as >50% reduction in
HAMD-17 scores from baseline. The 155 SNPs in this study were
selected a priori based on literature review. The trained LR model
was validated externally in a separate group of 176 patients who
were treated with SSRIs. For the 60% of the total cases where the
model gave a prediction, the predictive accuracy for response was
87%, compared with the posterior probability of 66% for response.
However, these results were not validated in a dataset consisting of
depressed patients who were treated with non-SSRI
antidepressants.

Yin and colleagues developed an LR model with 12 penali-
zation for predicting remission and response to SSRIs in
a naturalistic cohort of 290 depressed patients who were
treated for 6 weeks [73]. Model predictors included clinical
and demographic factors, neuroendocrine markers, and 19
SNPs selected by the investigators in or near TH, DRD2,
DRD4, SLC6A2, and SLC6A3 genes. Response was defined as
>50% reduction in HAMD-17 scores from baseline; remission
was defined as a HAMD-17 score <7 at week 6. The model
combining all four groups of factors predicted 75% of the
variation in response to SSRIs and 66% of variation in remis-
sion. There was no external validation.

4.5. Models with multi-omics (genomic and other -omics)
predictors and clinical/demographic predictors

To our knowledge, only one study combined genomic, other -
omics, and clinical/demographic predictors of antidepressant
effects within a machine learning framework. Joyce et al. [74]
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leveraged supervised machine learning (LR/I2 and XGBoost
ensembles) with 5-fold cross validation-based training to pre-
dict response and remission in 298 citalopram- and escitalo-
pram-treated patients with MDD who participated in the
PGRN-AMPS trial and the Combining Medications to Enhance
Outcomes of Antidepressant Therapy (CO-MED) study [75].
The validation cohort consisted of a separate subgroup of 77
depressed CO-MED patients who were treated with antide-
pressant combinations. Genomic predictors included six func-
tionally validated SNPs located in or near TSPANS5, ERICH3,
DEFB1, and AHR. Additional predictors included baseline clin-
ical and sociodemographic measures as well as 153 targeted
metabolites that met quality-control criteria in both the PGRN-
AMPS and CO-MED datasets [76-78]. In the training dataset,
XGBoost and LR/I2 models achieved accuracies of 67% and
65%, respectively, and AUCs of 0.68 and 0.72, respectively, for
predicting response after 8 weeks of treatment with citalo-
pram or escitalopram. In the validation dataset, the models
yielded accuracies of 76% and 75%, respectively, and AUCs of
0.83 and 0.86, respectively, for predicting response to
a combination of antidepressant treatments. The perfor-
mances of both the XGBoost and LR/I2 algorithms were higher
than the NIR.

5. Expert opinion
5.1. Current state and future needs

Artificial intelligence/machine learning (Al/ML) approaches
using clinical and biological data collected over the past two
decades are helping the field to take important steps toward
the goal of accurately predicting outcomes of treatment with
antidepressants in depressed patients [79]. For clinicians, the
accurate prediction of antidepressant treatment outcomes at
the individual patient level is challenging given the complex
interactions of contributing genetic, non-genetic, psychologi-
cal, and/or environmental factors [24,25,80]. This reality pre-
sents both opportunities and challenges for clinicians and
researchers. At no point in history has there been available
such powerful computing infrastructures and access to such
vast repositories of clinical, social, and biological data [39]. As
a result, AI/ML can be used to analyze high-dimensional geno-
mic and non-genomic predictors and clinical variables simul-
taneously in hopes of achieving quantitative, rule-based
decision systems with sufficient validity for clinical use
[19,81]. Such technological advances can augment clinicians’
contextual assessment of symptom severity of the disease and
individualize treatment for the patient. This represents an
important step toward biologically driven individualized treat-
ment decision-making in psychiatry.

In summary, this review highlights the promise of combin-
ing pharmacogenomics data with statistical and Al/ML
approaches for predicting short-term treatment outcomes
with antidepressants in patients with MDD. The methodologi-
cal features and results of the reviewed studies varied widely
but may be summarized along three general lines: types of
features selected for prediction, types of AI/ML approaches
used, and the approaches to feature selection. In terms of
the types of features selected for prediction, Al/ML algorithms

that incorporated only pharmacogenomic biomarkers to pre-
dict therapeutic outcomes with antidepressants yielded levels
of predictive performance that are similar to Al/ML algorithms
that use only clinical/demographic variables as predictors,
generally falling in the AUC range of 0.54-0.67 [34-37]. On
the other hand, the performance of AI/ML algorithms
appeared to improve substantially when a combination of
clinical, demographic, and pharmacogenomic variables was
used, generally exceeding an AUC threshold of 0.70 despite
varying approaches to feature selection and the types of
machine learning algorithms used. As of this writing, it is
unclear if an integrative pharmacogenomics approach (i.e.
combining pharmacogenomics with other -omics data such
as epigenomics, transcriptomics, proteomics, and metabolo-
mics with clinical/demographic information) deployed within
an AlI/ML framework leads to even better response prediction —
a question that will be addressed in future studies. Regarding
the relative performances of the different Al/ML algorithms in
the reviewed studies, relatively few reports provided a direct
comparison of approaches within the same cohort. Among
studies that provided such comparisons, the performance
measures were similar across Al/ML approaches and no single
machine learning approach appeared to be clearly superior to
the others. The predictive accuracies of the machine learning
models also did not vary substantially according to the meth-
ods by which pharmacogenomic and other predictive features
were selected. Given important differences in the mathemati-
cal underpinnings of the different supervised learning and
feature selection methods, more comparative studies are
needed.

Though promising, the use of AI/ML for the prediction of
therapeutic response to antidepressants is still in its relative
infancy [82], with or without the use of genomic markers, and
many caveats exist that can impact the validity and clinical
utility of model predictions. Although very high predictive
accuracies can be achieved using machine learning
approaches, the performances of the algorithms are highly
dependent on clinical context [33,83]. The ‘clinical context’ of
the data is defined by many ‘seen’ (the actual input data) and
‘unseen’ factors (unmeasured factors that are not specifically
accounted for in the datasets, e.g. active psychosocial factors
in patients). Although both types of contextual elements
determine the accuracy of machine learning algorithms [83],
the ‘unseen’ elements cannot be ‘learned’ by the algorithms,
which may influence the treatment outcomes more than
genetic factors alone. Moreover, the ‘seen’ data used in
machine learning algorithms often undergo multiple transfor-
mations, leading to unpredictable behaviors that can be diffi-
cult to detect and interpret [84]. Under these conditions, the
predictions from machine learning algorithms may become
biased or uninterpretable [85], highlighting the importance
of both detailed transparency when reporting methods and
results and rigorous validation of algorithm performance with
replication in independent samples or datasets, as discussed
further below.

There are also inherent limitations associated with the use
of genomic data for generating valid machine learning models
for antidepressant response prediction. Individual genetic loci
discovered thus far can explain only a small proportion of the



heritability or variation in antidepressant responses [86].
Therefore, even with powerful machine learning algorithms
and high-dimensional genomic data, reliable and valid
response prediction at a level considered sufficient for clinical
decision-making cannot be achieved using genomic SNPs
alone [59]. Using genomics and ‘other -omics’ together (inte-
grative -omics) to predict the outcomes of antidepressant
treatment is one potential solution [87,88]. However, very
few groups have taken this approach [74]; therefore, it is not
yet clear if an integrative -omics approach results in better
prediction than the more common approach of combining
clinical measures with selected genomic data. A promising
alternative approach is the leveraging of targeted functional
genomics, wherein the SNPs used in predictive models are
identified using GWAS based on clinically relevant phenotypes
followed by functional validation in experimental models.
A targeted functional approach was applied in one study
that used SNPs in the DEFB1, AHR, TSPAN5, and ERICH3 genes
as predictors [26]. These genes were identified using GWAS for
serotonin or kynurenine biosynthesis [53,54] — both of which
are important factors in determining MDD disease risk and
response to antidepressants [89]. These genes were function-
ally validated in experimental models which showed that
knocking down the expression of TSPAN5 and ERICH3 in neu-
ronally derived cell lines decreased serotonin concentrations
[53] and that the DEFB1 gene encodes a protein that can
inhibit inflammation and kynurenine synthesis [54].

There are other pragmatic considerations and challenges
for future research of algorithm-based prediction of antide-
pressant treatment outcomes. First, as alluded to earlier, future
studies are needed that focus on integrating symptom-based
factors with wider arrays of predictive biomarkers to facilitate
an integrative-omics machine learning approach to predicting
clinical outcomes in depressed patients. This will require large-
scale efforts at collecting data of sufficient quality to enable
the systematic investigation of genomic and other -omic pre-
dictors of response to antidepressants. Fortunately, the exist-
ing array of high-quality data collected in research
environments will be supplemented by similar types of data
collected from routine care environments that may be simi-
larly well suited for this purpose [90-92]. However, to date,
a unifying framework for conducting future studies of machine
learning algorithms for treatment response prediction in
depressed patients is lacking, and the field has not yet
achieved meaningful consensus on the best means of conso-
lidating existing samples and datasets and standardizing
approaches to future data collection efforts.

Second, the clinical datasets used to train and validate
integrated machine learning-genomic models reviewed here
included predominantly depressed individuals of European or
East Asian ancestry. For the potential of genomics and
machine learning-informed response prediction to be shared
equitably, greater inclusion of under-represented racial and
ethnic groups in genomic and other -omics studies is needed
[93].

Third, the studies reviewed herein focused on the predic-
tion of response and remission. Both are reasonably validated
dichotomous antidepressant response phenotypes. However,
in addition to these phenotypes, future studies should include
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the prediction of other response phenotypes that may be
more meaningful to clinicians, patients, and their caregivers,
such as recovery and sustained recovery [12,94].

Fourth, all of the reviewed studies focused on the use of Al/
ML and genomics to predict outcomes of antidepressant treat-
ment in non-elderly adults. As of this writing, we are unaware
of any such studies focused on the prediction of antidepres-
sant effects in depressed children/adolescents or geriatric
adults using AlI/ML and genomics.

And finally, none of the machine learning models reviewed
here were developed for the purposes of antidepressant selec-
tion, given a set of baseline factors. Instead, the machine
learning models reviewed in this report were developed to
predict outcomes of treatment with antidepressants that were
already initiated. Future studies will be needed to address
these important, pragmatic knowledge gaps.

5.2. Translation to practice: beyond validation

The limitations described above and threats to external valid-
ity posed by model overfitting [95] highlight the importance
of both validating and replicating the performances of ML
prediction models, especially for complex phenotypes like
antidepressant response. Even though a ‘hold-out’ segment
of the validation sample may be previously ‘unseen’ by the ML
algorithm, it is still a randomly selected subset of the same
dataset from where training data are drawn, thus limiting its
rigor as a validation approach. Validation in a separate, exter-
nal dataset is a more rigorous test of algorithm performance,
as it represents a truer test of external validity. Independent
replication is a gold standard for validating genetic biomarkers
for psychiatric disease risk and response phenotypes, and we
suggest that a similar standard for validation may apply ana-
logously to ML algorithms for antidepressant response predic-
tion. However, to date, only a small number of machine
learning studies on the prediction of therapeutic outcomes
of antidepressant treatment have used external datasets for
algorithm validation [52,64,65,71,72,74].

As a related matter, no studies, to our knowledge, have
subjected machine learning models developed retrospectively
to subsequent prospective validation. Like retrospective vali-
dation using a dataset that exists independently of the train-
ing data, prospective validation has the advantage of testing
the algorithm in a new and independent cohort of depressed
patients. However, prospective validation adds an important
level of rigor since machine learning-based predictive algo-
rithms would be used prospectively in actual practice, where
treatment outcomes are not yet known and where exclusion
criteria are less-stringent than those of clinical trials. Moreover,
retrospective validation only focuses on replication predictive
accuracy, whereas prospective validation enables the exami-
nation of additional outcomes, such as clinical utility (from the
patient and  practitioner perspective) and ease-of-
implementation (from the health-care systems perspective).
Furthermore, the clinical utility of predictive models will
depend on both their absolute performance (i.e. the accuracy
of predictions) and their relative performance (the accuracy of
predictions relative to an appropriate comparator condition)
[96]. Hence, prospective validation enables comparisons
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between model performance and a clinician’s best estimate as
to the eventual outcome of interest and/or how well
a predictive algorithm compliments clinical guesswork. In our
view, these are more clinically meaningful standards than
random chance or the NIR since a clinician’s guess incorpo-
rates important predictive information in-and-of-itself and
because machine learning-based tools compliment-but do
not replace—clinical judgment, as discussed below.

5.3. Translation to practice: the need for novel
architectures

A common theme across all studies was the use of next-
generation sequencing data from research studies, as opposed
to using clinical laboratory generated gene panel data for
training/testing AlI/ML methods. Looking to the future, the
adoption of validated machine learning approaches using
genomics for predicting antidepressant response will likely
require both clinical inputs (e.g. basic demographics, indivi-
dual-item scores on depression rating scale, etc.) and labora-
tory-based inputs (e.g. SNP panel results). Therefore, novel
architectures will need to be considered to run the machine
learning algorithms in clinical care environments. There are at
least three possible architectures suitable for this purpose: (1)
a laboratory-based workflow for ordering and billing (Figure 3
(@)); (2) a Clinical Decision Support electronic health record
(EHR) application designed to interface directly with the order-
ing clinician’s EHR (Figure 3(b)); and (3) a custom platform or
application that clinicians interact with directly, via a provider-
facing application programming interface (API) (Figure 3(Q)).
Each of these architectures presents its own unique challenges
to implementation, billing for service, and ongoing use by
providers. Important factors to consider when selecting

a model will include ordering clinicians’ requirements, regula-
tory concerns, timelines, information technology (IT) build
complexity, the desired market, and scalability to future
machine learning approaches using genomics for predicting
other treatment response phenotypes for other disease
groups.

With these factors in mind, each architecture possesses its
own pros and cons. Option 1 follows traditional ordering and
resulting mechanisms, which may appeal to clinicians. The
relative complexity of implementation would be simple and,
on that basis, would be expected to require a shorter time-
line to operationalize and would allow for billing in
a traditional fee-for-service manner. However, Option 1
(Figure 3A) requires burdensome data entry by the ordering
provider, their staff, or patients and would still require
a custom interface build to pass data between the laboratory
and the algorithm itself. Option 2 (Figure 3B) offers the most
seamless workflow integration for clinicians, eliminating the
need for manual and double entry of assessment scores. This
option would require an extensive IT build of the platform
and a high level of engagement with new external organiza-
tions to verify that external EHR data would be available in
the format required by the algorithm. Option 3 (Figure 3C)
would allow for the addition of future Al prediction algo-
rithms for other medications and disease states. However,
Option 3 would require a relatively complex IT build that
would allow for the direct interface with external providers,
would carry a high level of regulatory concerns, and may
create access/utilization concerns with providers unwilling to
navigate to a platform external to the EHR. Overall, health-
care organizations that are planning to implement a new
technology will need to consider their resource availability
and weigh the factors indicated in selecting the right-system
architecture.

a. Laboratory-based ordering and billing.

Provider
diagnoses patient with 3
depression, selects P(L()e‘cdv%l?l?::yt:tsr: :rs Lab receives sample Lab returns SNP panel
algonthm-ba§ed pharmacogenomic test and runs SNP panel, results and algo_mhm
pharmacogenomics test, e and feeds results to response prediction on
and completes symptom = e algorithm one lab report

score assessment with
patient

b. Electronic health record (EHR) application.

Provider
diagnoses patient with All required inputs are
depression, selects Provider orders SNP Lab receives sample pulled from EHR
algorithm-based panel as they would and runs SNP panel (assessment scores, Prediction is automatically
pharmacogenomics test, any other and retumns results to SNP panel results, retumed to EHR
and c( ymp ph ic test EHR demographics) and
score assessment with fed to algorithm
patient

C. Machine learning/artificial intelligence (Al) custom platform.
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Figure 3. Novel architectures. The diagram in Figure 3 illustrates three different approaches to building infrastructures that can facilitate the use of
pharmacogenomic and clinical inputs to translate machine learning algorithms for antidepressant response prediction to clinical practice.



5.4. Toward machine learning ‘augmented’ decision-
making

The disruptive potential of genomic testing was recognized
well before the launch of the Human Genome Project [97]. As
a result, innovations in genomic medicine have often included
embedded research studies assessing the psychosocial impact
of genomic results [98]. These studies have generated impor-
tant insights into how best to limit the potential burdens of
genetic knowledge, improve patient understanding of geno-
mic results, and integrate genomic results into patient care
more effectively. Nonetheless, few studies have examined the
impact of preemptive genomic testing, including clinician
views of pharmacogenomics [99-102]. A significant limitation
of these studies is that they have tended to focus on a highly
abstract concepts of pharmacogenomic testing that is discon-
nected to a specific test, test result, or personal experience
with pharmacogenomic testing. As pharmacogenomic testing
is increasingly integrated into patient care activities, there
remains a significant need to understand clinicians’ percep-
tions of the value of machine learning/Al-enhanced pharma-
cogenomic prescribing information. Clinicians who treat
depressed patients will have multiple concerns regarding the
use of genomics data, including its integration with machine
learning for guiding treatment decisions. On the genomics
side, this will include concerns about the accuracy and rele-
vance of genomic information to specific clinical decisions in
caring for depressed patients [103-105]. On the AI/ML side,
additional concerns may also include perceptions of liability,
limited transparency, or even concerns about reaching erro-
neous decisions [106,107], given the complexity of machine
learning-informed clinical decision support and clinicians’ per-
ceptions of professional duties when elements of their prac-
tice are guided by sophisticated predictive models that are
based on mathematical algorithms that may be largely inscru-
table. Patients, in turn, may also question exactly who or what
is driving decisions about their treatment. Given the limita-
tions and constraints outlined in this review, we conclude that
even the most sophisticated of machine learning algorithms
incorporating the best possible sets of predictors will not-and
should not-replace the judgment of clinicians. Instead, vali-
dated machine learning algorithms will be best viewed as
tools that can augment clinical judgment when it comes to
predicting the outcomes of treatment in depressed patients.
Finally, the systematic development and implementation
of predictive models for drug response in clinical practice is
a multidisciplinary effort. In our view, the development of
predictive models with sufficient validity for clinical use
requires close collaborations between computer scientists,
informaticians, biostatisticians, genomics experts, and clini-
cians. The implementation of validated predictive models
will warrant similar collaborations further downstream
between these same disciplines, health system engineers,
and experts in laboratory medicine. Integrating prediction
models at point of care will continue to involve the complex
operation of homogenizing data formats from laboratory
tests/sequencing panels, creating intuitive order sets and
easily interpretable reports within the electronic health
records, and most importantly, training the health-care
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provider workforce on the basics of the methods and the
proper interpretations of model outputs. Therefore, under-
standing the needs and preferences of the clinician end-
users prior to the design, implementation, and adoption of
technologies is likely to improve the trust and uptake of
predictive tools in busy clinical practices. We thus assert that
the successful development and adoption of predictive meth-
ods utilizing genomic and clinical measures will hinge on the
shared vision and mission of team science and education
efforts spanning multiple disciplines.
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