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Abstract

Previous partial permutation synchronization (PPS) algo-
rithms, which are commonly used for multi-object matching,
often involve computation-intensive and memory-demanding
matrix operations. These operations become intractable for
large scale structure-from-motion datasets. For pure permuta-
tion synchronization, the recent Cycle-Edge Message Passing
(CEMP) framework suggests a memory-efficient and fast solu-
tion. Here we overcome the restriction of CEMP to compact
groups and propose an improved algorithm, CEMP-Partial, for
estimating the corruption levels of the observed partial permu-
tations. It allows us to subsequently implement a nonconvex
weighted projected power method without the need of spectral
initialization. The resulting new PPS algorithm, MatchFAME
(Fast, Accurate and Memory-Efficient Matching), only involves
sparse matrix operations, and thus enjoys lower time and space
complexities in comparison to previous PPS algorithms. We
prove that under adversarial corruption, though without addi-
tive noise and with certain assumptions, CEMP-Partial is able
to exactly classify corrupted and clean partial permutations. We
demonstrate the state-of-the-art accuracy, speed and memory
efficiency of our method on both synthetic and real datasets.

1. Introduction
The problem of partial permutation synchronization (PPS)

naturally arises from the task of multi-object matching (MOM).
MOM assumes multiple objects (e.g. images), where each sin-
gle object contains some keypoints associated with underlying
distinct labels. The set of all distinct labels is called the universe.
Ideally, any two keypoints, from different objects, that share a
common label should be matched. Given partially observed and
corrupted pairwise keypoint matches, MOM asks to recover
the ground truth labels of each keypoint, or equivalently, the
keypoint-to-universe matches. In structure from motion (SfM),
where the objects are images, MOM is often referred to as multi-
image matching. Here a keypoint is characterized by a specific
location in the image and its associated label is the index of its
corresponding 3D point, which can be viewed at this location of

the image. In this case, the initial pairwise keypoint matches are
typically obtained by SIFT [12] and the MOM problem asks
to identify the corresponding 3D point index for each keypoint
in each image, up to an arbitrary permutation of the indices.

The mathematical formulation of PPS represents the images
in the latter problem as nodes of an unweighted and undirected
graph, which is commonly referred to as the viewing graph, and
further represents both “relative” keypoint-to-keypoint matches
among pairs of images and the “absolute” keypoint-to-universe
matches as partial permutation matrices. We recall that a partial
permutation matrix is binary with at most one nonzero element
at each row and column. PPS thus asks to recover the “absolute”
partial permutations (which are associated with nodes of the
graph) given possibly corrupted and noisy measurements of the
“relative” partial permutations (which are associated with edges
of the graph). We remark that when restricting the partial per-
mutation matrices to be full permutations (bi-stochastic, binary
and square), PPS reduces to permutation synchronization (PS),
which is a special case of the group synchronization problem.
Probably, the most well-known group synchronization problem
is rotation averaging [4,8,19] where the group isSO(3). Various
approaches from rotation averaging, such as the spectral method
[22] and SDP relaxation [24], can be similarly employed to
PS [9,16]. However, when considering PS for image matching,
all images must share the same set of keypoints. This is restric-
tive, since images taken from different viewing directions may
share very few (or even no) keypoints. Therefore, PPS is more
realistic for image matching, and in particular, SfM, than PS.

The PPS problem is challenging for three different reasons.
First of all, the corruption of pairwise measurements in real data
can be highly nonuniform, which violates the common assump-
tions of uniform corruption in [6, 16]. Indeed, as is pointed
out in [20], the corruption in keypoint matches in real data can
concentrate at local regions of the viewing graph. Second, the
number of rows or columns of each partial permutation can be
in the order of hundreds or even higher, which is much larger
than dimension 3 in rotation averaging. This makes PPS a
computationally-intensive task in comparison to rotation aver-
aging. Finally, the relative partial permutations in PPS are no
longer square matrices, as in PS, and can have very different
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sizes and sparsity levels. Consequently, they may introduce addi-
tional bias and numerical instability to common PPS algorithms.

This work addresses the above challenges and develops a
fast, accurate and memory efficient PPS algorithm that works
well for nontrivial corruption models and large scale real data.

1.1. Related Works

The first PS algorithm [16], which is commonly referred
to as Spectral, computes the top m eigenvectors of the block
matrix of relative permutations, where m is the universe size.
It then obtains the absolute partial permutations by projecting
the blocks of the eigenmatrix to full permutations using the
Hungarian algorithm [14]. It can be easily adapted to PPS tasks
by using other heuristic projection methods [2,25]. A similar
PPS algorithm is MatchEig [13], which applies a faster heuristic
projection to partial permutations, and an additional hard thresh-
olding step. Although it achieves slight speedup in comparison
to Spectral, the hard thresholding can result in overly sparse key-
point matches on some datasets. A theoretically guaranteed SDP
relaxation method for PPS, MatchLift [6], was proposed for near-
optimal handling of the uniform corruption model. However,
the SDP relaxation suffers from high computational complexity
and is often several orders of magnitude slower than spectral-
based methods. MatchALS [28] replaces the SDP constraint
of MatchLift by linear ones, which yield significant speedup.
However, it is still much slower than spectral-based methods
and is not scalable to even medium-size datasets. Moreover, the
accuracy of [6,28] are not competitive on some real datasets as
reported in [13]. For PS, [3] relaxes the space of permutations
to the Birkhoff polytope and solves the maximum a-posteriori
(MAP) problem on this relaxed manifold. This method relies
on a special probabilistic model for permutations, but it has no
convergence guarantees and is restricted to PS.

Most importantly, all the aforementioned PS/PPS methods
are memory demanding and thus cannot handle large scale SfM
datasets such as Photo Tourism [23]. For spectral and MatchEig,
the topm eigenvectors form a denseM×mmatrix. For Photo
Tourism,m>104 andM≈106 and thus Spectral and MatchEig
require at least 80 GB memory and cannot be implemented on
a personal computer. MatchALS and MatchLift further require
eigenvalue computation of an M ×M dense matrix. These
dense matrix operations also increase the time complexity.

A faster and more memory-efficient algorithm (excluding its
initialization stage) is the projected power method (PPM). PPM
is a nonconvex method based on blockwise power iterations
followed by a projection onto the permutation matrices [5]. It
can be equivalently viewed as a special case of the projected
block coordinate descent algorithm assuming the least squares
objective function. It was applied for PS, but as we show it
can be easily extended to PPS. We note that in PPS each power
iteration only storesM×m sparse binary matrices for estimat-
ing the absolute partial permutations. The number of nonzero
elements in these sparse matrices is at most m, thus PPM is

at least 10,000 times more memory-efficient than spectral and
MatchEig on large SfM data. Moreover, since the above power
iterations only operate on sparse matrices, its time complexity is
also significantly smaller than those of spectral-based methods.
However, as far as we know, PPM was only tested in [5,10,20]
on both Zm-synchronization and PS, and was never applied to
the PPS problem. We remark that there are a couple of limita-
tions that prevent the application of PPM to large-scale real SfM
datasets. First of all, as a nonconvex method, it is very sensitive
to the initialization of the absolute permutations. A common
initializer for PPM is Spectral, which makes PPM memory de-
manding, regardless how memory-efficient the power iteration
is, and also slower. Second, same as Spectral and SDP methods,
PPM minimizes the least squares energy, making it nonrobust
under nonuniform and adversarial corruption as shown in [20].

The recent theoretically-guaranteed cycle-edge message
passing (CEMP) algorithm [11] opens the door for fast, memory
efficient, and outlier-robust implementation for compact group
synchronization without spectral initialization. Different from
the previous cycle-consistency-based methods [1, 7, 18, 27],
it uses a fast iterative message passing scheme to globally
estimate the corruption levels of the given pairwise measure-
ments. It is numerically demonstrated in [11] that CEMP
is memory-efficient and fast for SO(d)-synchronization,
especially for large d. For permutation synchronization, [20]
proposed an efficient implementation of CEMP. In particular,
it iteratively reweighted the edges of the viewing graph using
CEMP-estimated corruption levels, and simultaneously applied
a weighted spectral/PPM method. However, these frameworks
were only fully developed for compact group synchronization.
The extension of CEMP to partial permutations is nontrivial,
since partial permutations do not form a group and the theory
of CEMP to date no longer holds in this new regime.

FCC [21], which was published after the submission of this
work, assigns for each keypoint match a confidence score for
being a correct match. It is fast, accurate and memory efficient,
and seems to comparably perform to the proposed method. Its
different graph model might be more tolerant to additive noise.
However, our method has several advantages. First, it enjoys
some theoretical guarantees. Second, its refined matches are
automatically cycle-consistent. Last, its space complexity is
lower than that of FCC with default parameters.

1.2. Contributions of This Work

The main contributions of this work are as follows:
• We overcome the restriction of CEMP to compact groups,

and extend it to PPS. The new CEMP-Partial algorithm
can be applied to general SfM matching data, and is
theoretically guaranteed under adversarial corruption.

• We propose MatchFAME (Fast, Accurate and Memory-
Efficient Matching) for PPS. It combines CEMP-Partial
with weighted PPM. It only involves sparse matrix
operations and thus enjoys significantly lower time and
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space complexities than previous PPS methods.
• We demonstrate the accuracy and efficiency of Match-

FAME on synthetic and real datasets in comparison to the
current state-of-the-art PPS methods.

2. Partial Permutation Synchronization
Recall that a partial permutation matrix is a binary matrix

that has at most one nonzero element at each row and column.
We note that it is different from a full permutation whose rows
and columns have exactly one nonzero element. A partial
permutation can be rectangular, whereas the full one has to
be a square. We denote by Pl1,l2 the space of l1× l2 partial
permutations, and by PmF the space ofm×m full permutations.
We also denote [n] = {1,2,...,n} for n∈N. Using the above
notation, we formally state the PPS problem as follows. The
problem assumes a graph G= ([n],E) with n nodes and un-
derlying unknown ground-truth partial permutations {P ∗

i }i∈[n]
of sizemi×m associated with the nodes, wherem is fixed and
m≥mi for all i. It further assumes that for each edge ij∈E, a
pairwise partial permutation Xij is observed, which is viewed
as a measurement of the ground-truth partial permutation,
X∗
ij :=P ∗

i P
∗T
j . The PPS problem asks to recover {P ∗

i }i∈[n]
from {Xij}ij∈E. In practice, PPS algorithms often operate on
the block matrix X=(Xij)1≤i,j≤n, where Xij=0 for ij 6∈E.

The adversarial corruption model partitions the edge set
E into a set of clean (good) edges, Eg, and a set of corrupted
(bad) edges,Eb, where for ij∈Eg, Xij=X∗

ij, and for ij∈Eb,
Xij 6=X∗

ij. It is adversarial since it does not make assumptions
on the distribution of the corrupted partial permutations and the
graph topology; though we may add some assumptions.

In multi-image matching,G([n],E) is referred to as the view-
ing graph,m is the number of 3D points and n is the number of
images. Each graph node i is associated with an image withmi

keypoints, and P ∗
i encodes its ground truth keypoint-universe

matches. Specifically, P ∗
i (k,l)=1 if and only if the k-th key-

point in image i corresponds to the l-th point in the 3D point
cloud. For each edge ij∈E, the partial permutation Xij rep-
resents the observed keypoint matches between images i and j
(obtained by e.g., SIFT). We note thatXij(k,l)=1 if and only if
we observe a match between the k-th keypoint in image i and the
l-th keypoint in the j-th image. We denoteM :=

∑n
i=1mi and

note that the block matrix X is of sizeM×M . At last we com-
ment that in multi-image matching one mainly cares about im-
proving the keypoint matches. Therefore instead of the estimates
{P̂i}i∈[n] of absolute permutations, it is common to output the
estimates of relative permutations, Zij=P̂iP̂

>
j for any ij∈E.

3. Proposed Method
3.1. Brief Review of CEMP

We focus on the case of PS with the distance

d(X1,X2)=1−〈X1,X2〉/m, for X1,X2∈PmF . (1)

For ij∈E, we define the ground-truth corruption level by

s∗ij=d(Xij,X
∗
ij).

CEMP uses cycle-consistency information to estimate these
corruption levels. Recall that a 3-cycle, ijk, is a path in
G([n],E) containing the nodes i, j, k∈ [n]. In our previous and
current work we focus on 3-cycles for simplicity and efficient
computation and refer to them just as cycles. One can extend
our methods to higher-order cycles. In PS, a cycle ijk ⊆ E
is consistent if and only if XijXjk = Xik (equivalently,
XijXjkXki = I, where I denotes the identity matrix). We
define the cycle inconsistency of the cycle ijk as

dCEMP
ijk :=d(Xij,XikXkj)=1−〈Xij,XikXkj〉/m.

CEMP iteratively approximates the corruption levels as follows

s∗ij≈
∑
k

wijkd
CEMP
ijk , (2)

where the weights are updated at each iteration using improved
estimates of the corruption levels (we omit their formulas).

The bi-invariance property of the distance in (1) implies [11]

dCEMP
ijk =s∗ij whenever ik, jk∈Eg. (3)

CEMP chooses specific weights in (2) that aim to highlight the
case in (3). That is, for ij∈E, they are ideally close to 1 when
ik ∈Eg and jk ∈Eg, and close to 0 otherwise. Under some
conditions, CEMP exactly recovers the corruption levels [11].

3.2. A Cycle Inconsistency Measure for PPS

For PPS, we say that a cycle ijk is consistent whenever
XijXjk ≤ Xik, XjkXki ≤ Xji and XkiXij ≤ Xkj (the
notation A≤B corresponds to the component-wise inequality,
i.e., Aij ≤Bij for all indices i, j). We further motivate this
definition in the supplemental material.

In order to define an inconsistency measure for PPS, we
make several observations. We first formally generalize (1)
and define the following conditional dissimilarity function, or
divergence, where X1, X2∈Pl1,l2:

d(X1|X2):=1−〈X1,X2〉/nnz(X2),

where nnz(X2) is the number of nonzero elements in the matrix
X2. We note that d(X1|X2)=0 if and only if X2≤X1 and
therefore XikXkj≤Xij if and only if

Tr(XjiXikXkj)≡〈Xij,XikXkj〉=nnz(XikXkj).

Thus, for a cycle ijk, we define ni = nnz(XkiXij), nj =
nnz(XkjXji), nk = nnz(XikXkj), n∆ = Tr(XijXjkXki),
and conclude that ijk is cycle-consistent if and only if
3n∆ =ni+nj+nk. In view of this observation, we suggest
the following cycle inconsistency measure for PPS:

dijk=1−3n∆/(ni+nj+nk). (4)

We further interpret this measure in the supplemental material.
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3.3. The CEMP-Partial Algorithm

The CEMP algorithm for PS is motivated by (2) and (3). By
replacing dCEMP

ijk in the the CEMP algorithm by our new dijk in
(4), one can obtain the CEMP-Partial algorithm for PPS, which
is sketched in Algorithm 1. This algorithm iteratively updates
the corruption levels according to (7) below, where the weights
w

(t)
ijk will be clarified below and Nij := {k∈ [n] : ik,jk∈E},

ij ∈E, is the set of nodes that form cycles with the edge ij.
Note that (7) is analogous to (2) in the case of PS. While in
PS the aim of such a formula is to eventually yield a good
estimate for the corruption levels, in PPS we only aim to cluster
uncorrupted and corrupted edges with low (close to zero) and
sufficiently high corruption levels, respectively; we show that
this is indeed possible in §4. Before the iterations, the corruption
levels are initialized in (5) as a similar average but with uniform
weights. Given the corruption levels of the previous iteration,
the weights of the current iteration are computed by (6), where
βt is a fixed parameter at iteration t. This formula aims to
assure that w(t)

ijk is large (close to 1) whenever both ik and jk
are good and close to zero otherwise, so that the estimated
s
(t+1)
ij in (6) is approximately an average of only those dijk’s

with good edges ik and jk. Such a behavior of w(t)
ijk occurs

when the estimates of the corruption levels sij is close to
zero when ij is a good edge and sufficiently far from zero
otherwise. In fact, alternatively updating both the weights and
the corruption levels aims to result in such a property (see §4).

Algorithm 1 CEMP-Partial

Input: {dijk}ij∈E,k∈Nij
(see (4)), number of iterations T ,

increasing {βt}Tt=1

Steps:
s
(0)
ij =

1

|Nij|
∑
k∈Nij

dijk for ij∈E (5)

for t=0:T−1 do

w
(t)
ijk=exp

(
−βt

(
s
(t)
ik +s

(t)
jk

))
, k∈Nij, ij∈E (6)

s
(t+1)
ij =

1

Z
(t)
ij

∑
k∈Nij

w
(t)
ijkdijk for ij∈E (7)

where Z(t)
ij =

∑
k∈Nij

w
(t)
ijk is a normalization factor

end for
Output: ŝij :=s

(T)
ij for ij∈E

3.4. MatchFAME

We propose MatchFAME that aims to address the main chal-
lenges of PPS (see §1). MatchFAME combines CEMP-Partial
with a weighted PPM method. The original (unweighted) PPM
is an iterative procedure that aims to minimize the least squares
energy

∑
ij∈E‖PiP>

j −Xij‖2F , under the constraint Pi∈PmF

for i∈ [n]. Given the estimated absolute permutations for the
different nodes at the t-th iteration, {P (t)

i }i∈[n], PPM estimates
each permutation on node i in the next iteration as

P
(t+1)
i =Proj

∑
j∈Ni

XijP
(t)
j /|Ni|

, (8)

where Ni denotes the neighboring nodes of i, and Proj is
the projection onto the space of permutations, which can be
computed by the Hungarian algorithm [14]. Intuitively, at
iteration t of PPM, each j∈Ni proposes the “local” estimate
of P ∗

i : XijP
(t)
j , and Pi in the new iteration is updated by

the average of these local estimates followed by a projection.
However, these local estimates are only accurate when
Xij ≈X∗

ij and P
(t)
j ≈P ∗

j for all j ∈Ni. This makes PPM
sensitive to both initialization and edge corruption, and thus
a naive generalization of PPM to partial permutations is not
sufficient to handle the PPS challenges described in §1.

To address the first PPS challenge of nonuniform corruption
(see §1), we assign a weight wij to each ij ∈ E, where wij
depends on ŝij, the estimated corruption level by CEMP-Partial,
and a parameter γ, which measures the confidence of the
estimated corruption levels, as follows: wij=exp(−γŝij). We
can thus implement a weighted PPM iteration for each i∈ [n]:

P
(t+1)
i =Proj

∑
j∈Ni

w̃ijXijP
(t)
j

, (9)

where P
(t)
i ,P

(t+1)
i ∈ Pmi,m, w̃ij = wij/

∑
j∈Ni

wij are the
normalized weights and Proj is the heuristic and fast projection
onto partial permutations described in [13]. In such a way, the
projected power iterations will focus on the clean edges and
thus largely mitigate the sensitivity of standard PPM towards
nonuniform topology of the corrupted subgraph, and nonuni-
form distribution of the corrupted partial permutations [20].
We remark that given the ideal weights wij=1{ij∈Eg}, where
1 is the indicator function, the ground truth permutations,
{P ∗

i }i∈[n], form a fixed point of our weighted PPM.
The second PPS challenge of highly-demanding compu-

tation (see §1) arises in PPM if it is initialized by Spectral or
another standard PPS algorithm. In order to resolve this issue,
we follow [19] and initialize our solution using a minimum
spanning tree (MST), which depends on the output of CEMP-
Partial. Specifically, we build a weighted graph where edge
weights are the estimated corruption levels by CEMP-Partial.
An MST is then extracted from the weighted graph. Note
that it has the lowest average corruption levels among all
other spanning trees. We then use it to initialize the absolute
permutations. We first arbitrarily assign to the root node the
partial permutation Imi×m, which is anmi×mmatrix whose
diagonal elements are 1 and the rest are 0. We subsequently
multiply relative permutations along the MST, namely applying
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P
(t)
j =Proj(XjiP

(t)
i ) from the root to the leaves. We note that

computation of the MST only uses the small n×n adjacency
matrix of the graph, unlike spectral initialization that involves
the eigenvalue decomposition of a huge M ×M matrix. As
a result, our initialization is much faster and memory efficient,
which breaks the computational bottleneck of standard PPM.

The last challenge of PPS is the uneven dimension and
sparsity level of partial permutations. The main hurdle was
the generalization of CEMP to PPS (see §3.3). This way,
the weights for our weighted PPM can be reliably estimated.
Another issue that arises due to this challenge is that the MST
initialization may be too sparse at the end of the spanning tree if
some partial relative permutations in {Xij}ij∈E are extremely
sparse. In some extreme cases, some columns of the estimated
absolute permutations are zero. Therefore, after initializing the
absolute permutations, we check if there is a zero column for
the block column matrix of the estimated absolute permutations.
If it is the case, we randomly fill one of the elements with 1.
In some special cases, where denser matrices are needed, one
may fill instead zero rows (see supplemental material).

The full description of MatchFAME is in Algorithm 2. As
is common in SfM, MatchFAME outputs refined and consistent
keypoint matches: Zij :=P̂iP̂

>
j for any ij∈E.

Algorithm 2 MatchFAME

Input: CEMP-Partial output, {ŝij}ij∈E, pairwise matching
matrix X, parameter γ, number of iterations t0
Steps:
Form weights onE: wij= ŝij for ij∈E
Find the MST of the weighted graphG([n],E,{wij}ij∈E)
For the root of tree at node i0∈ [n]: P (0)

i0
=Umi×m

Propagate along MST: P (0)
j =Proj(XjiP

(0)
i ); if a column

of [P (0)
j ]j∈[n] is 0, randomly assign 1 to one of its elements

Reset graph weights: wij=e−γsij for ij∈E
Set t=0
while t<t0 and P

(t)
i 6=P

(t−1)
i do

Compute P (t+1)
i by (9) for i∈ [n]

t=t+1
end while

Output: Zij=P
(t0+1)
i P

(t0+1)
j

>
for ij∈E

The default parameters for CEMP-Partial are T = 25 and
βt=min{1.2t,40}. The default parameters for MatchFAME
are t0=60 and γ=4 (for the noiseless synthetic data we use
γ=20 to approach exact recovery).

3.5. Time and Space Complexity

Recall that n is the number of images and M is the total
number of 2D keypoints (which is different from m), so that
the average number of 2D keypoints in each image is M/n.
Let anE denote the number of edges in the viewing graph. The

time and space complexities of CEMP-Partial are O(MnE)
and O(nnE) respectively. Let P be the M×m block matrix
whose i-th block is Pi, X be theM×M block matrix whose
(i,j)-th block is Xij. The power iterations in (9), considering
all i ∈ [n], can be equivalently viewed as a multiplication
between a weighted sparse matrix X and a sparse matrix P .
Using the facts that there are at most n nonzero elements in
each column of P and each row of X and each row of P has at
most 1 nonzero element, the time and space complexities for the
power iterations are O(nM) and O(nm), respectively. Note
that PPM requires an additional projection onto the set of partial
permutations, whose time complexity is O(Mm) and space
complexity O(nm). The time complexity for finding MST
is O(nE logn) and its space complexity is O(n). The time
complexity of multiplying matrices along the spanning tree is
O(n2) and it requires no additional memory. To sum up, since
n<nE, MatchFAME requires O(M ·max(m,nE)) time and
O(n·max(m,nE)) memory. In comparison, Spectral computes
the topm eigenvectors of X, which is commonly solved by the
power method. This method requires the iterative multiplication
of X with the updated M ×m dense eigenmatrix, whose
time and space complexities are O(Mmn) and O(Mm),
respectively, which is much larger than that of MatchFAME.

4. Theoretical Guarantees for CEMP-Partial

We assume the adversarial corruption model for PPS (see
§2). We show that the estimated corruption levels by CEMP-
Partial at good edges converge to 0 linearly and uniformly.
Moreover, we show that the estimated corruption levels at the
bad edges, can be separated from the ones at the good edges.
Definitions: For ij ∈E, define Gij := {k∈ [n] : ik,jk ∈Eg}
and associate k ∈ Gij with the cycle ijk. We refer to the
elements ofGij as good cycles (with respect to ij). Let

λ :=1−min
ij

|Gij|/|Nij|.

Some of the following definitions, which lead to the notion
of s∗ij, are demonstrated in Figure 1. For any image i, let Ii=
{pi,j}mi

j=1 denote the set of its 2D keypoints. Let h :∪ni=1Ii→
[m] map 2D keypoints to universal keypoints such that for any
i∈ [n] and pi,i′ ∈ Ii, h(pi,i′) is the index of the 3D keypoint,
i.e., P∗

i (i
′,h(pi,i′)) = 1. For ij ∈ E, let Uij = h(Ii)∪h(Ij).

We partition Uij into Ugood
ij and Ubad

ij . The set Ugood
ij contains

the keypoints in Uij that match the ground-truth keypoints or
match no keypoint when no ground-truth matching exists. That
is, k∈h(Ii)∩h(Ij) is in Ugood

ij whenever there exists pi,a∈Ii
and pj,b ∈ Ij such that P ∗

i (a,k) = P ∗
j (b,k) =Xij(a,b) = 1.

Furthermore, k ∈ h(Ii) \ h(Ij) (or k ∈ h(Ij) \ h(Ii)) is in
Ugood
ij whenever there are no pi,a ∈ Ii and pj,b ∈ Ij such that

P ∗
i (a,k)=Xij(a,b)=1 (or P ∗

j (b,k)=Xij(a,b)=1). Simi-
larly,Ubad

ij :=Uij\Ugood
ij is the set of keypoints inUij that match

wrong keypoints in the other image, or match no keypoint if a
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Figure 1. An illustration of s∗ij and related definitions. The sets Ii
and Ij are of 2D keypoints in images i and j, respectively, and the
set Uij is of the corresponding universal keypoints in images i and j.
Green lines denote the good keypoint matches, red lines denote the bad
keypoint matches, dashed orange lines denote the missing keypoint
matches, and black dotted lines denote the correspondence between
2D and 3D keypoints (i.e., the h function). Green dots in Uij represent
elements of Ugood

ij and red dots in Uij represent elements of Ubad
ij . We

note that mij=5, mgood
ij =2, mbad

ij =3 and s∗ij=
3
5

.

ground-truth match exists. For any ij∈E, define mij= |Uij|,
mbad
ij = |Ubad

ij | and note that s∗ij=m
bad
ij /mij.

In order to guarantee that the separation problem is
well-posed, we need to ensure two different types of conditions.
The first is that there are sufficiently many good cycles. We
ensure this condition by bounding λ (similarly to [11]). The
second is that sufficiently many good matches exist. Indeed,
since partial permutations can be very sparse and even zero
matrices such a condition is necessary. For this purpose, we
formulate the following cycle-verfiability condition (we further
interpret it and clarify its name in the supplemental material). It
uses a parameter pv that expresses the proportion of verifiability.

Definition 1. Given pv ∈ (0,1], a graph (V,E) is pv-cycle
verifiable if for any ij ∈ E there are at least pv|Gij| good
cycles w.r.t. ij such that for each such cycle, ijk, the following
property holds: if a ∈ Ii ∪ Ij, then there exists b ∈ Ik that
matches a (i.e., if a=pi,r and b=pk,t, then Xik(r,t)=1).

Formulation of the Main Theorem:
Theorem 1. If G is pv-cycle verifiable and s(t)ij is computed
by CEMP-Partial with β0 ≤ 1

2λ and βt+1 = rβt, where λ <

1+ 3em
pv

−
√

3em
pv

(2+ 3em
pv

) and 1<r< (1−λ)2pv
6emλ , then ∀t>0

∀ij∈Eg s(t)ij ≤ 1

2β0rt
and ∀ij∈Eb s(t)ij ≥ pv

3e
(1−λ)s∗ij.

Theorem 1 guarantees exact separation between clean
and corrupted edges in a worst-case scenario setting. Unlike
previous PPS works [6,16], our theory is completely determin-
istic and does not rely on the assumptions of the underlying
distribution of partial permutations. Its deterministic conditions
guarantee well-posedness of the separation problem.

5. Numerical Experiments
5.1. Synthetic Data Experiments

We test MatchFAME, MatchEIG [13], Spectral [16], and
PPM [5] on synthetic datasets generated by two different
models described in §5.1.1 and §5.1.2. The underlying graph
in both cases is generated by an Erdös-Rényi model, G(n,p),
with probability of edge connection p = 0.5. The inclusion
of a keypoint in an image I is an independent event from the
rest of the keypoints that occurs with probability pI =0.8. In
both cases, the number of images is n=100 and the universe
size is m=20 (except for the runtime experiments in §5.1.2).
Sincem is typically unknown in practice, all algorithms use the
following estimate for it: m̂=2dM/ne. In order to demonstrate
near exact separation, we use γ = 20 for the synthetic data,
where the rest of the default parameters are as specified in §3.4.

After generating the graph G([n], E) by the G(n, p)
model, we also randomly generate an nm×m ground truth
image-universe matching matrix P full. Each of its n blocks
is obtained by randomly permuting columns of Im×m. We
further compute Xfull=P fullP full>. The models below further
corrupt Xfull and result in modified matrix X̂full. We then
generate the keypoint indices, {Ii}ni=1, as follows: For each
i∈ [n], we independently generatem i.i.d. ∼B(1,0.8) random
variables and let Ii be the set of indices of random variables
with output 1. For each i ∈ [n] and the ith m×m block of
P full, we keep the rows with indices in Ii and discard the rest.
This results in a block P ∗

i of sizemi×m. The resulting block
matrix of all modified blocks is of sizeM×m and denoted by
P ∗. We further set X∗=P ∗P ∗T . For the ij-thm×m block
of X̂full, we keep its rows that appear in Ii and columns that
appear in Ij and discard the rest. This results in a block of size
mi×mj. We stack these blocks to form theM×M matrix X.

Let � denote the element-wise product and Zij denote
the ij-th block of the output Z. Precision and recall were
respectively computed as follows:∑

ij∈Eb

〈X∗
ij�Xij,Zij�Xij〉/

∑
ij∈Eb

‖Zij�Xij‖2F and

∑
ij∈Eb

〈X∗
ij�Xij,Zij�Xij〉/

∑
ij∈Eb

‖X∗
ij�Xij‖2F .

Since in SfM precision is more important than recall [13], we
find an algorithm superior to another if it achieves significantly
higher precision with almost equal or higher recall.

5.1.1 Data Generated by the LBC and LAC Models

We extend the Local Biased Corruption (LBC) and Local
Adversarial Corruption (LAC) models of [20] to PPS. Both
models introduce nonuniform corruption concentrated in some
clusters, where for some nodes, most of their neighboring
edges are corrupted. LBC assumes that bad edges are also
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Figure 2. Average precision and recall for the LBC model
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Figure 3. Average precision and recall for the LAC model

cycle-consistent, so they behave like good edges. In addition,
it uses a sample-rejection procedure so that the distribution of
the corrupted partial permutations deviates from the uniform
distribution. LAC is even more malicious, it corrupts edges in a
way that would seem the absolute permutations of the selected
nodes are perturbed versions of Imi,m.

We let {P c
i }i∈[n] be i.i.d. sampled from the Haar measure

on Pm×m
full . Starting from X̂full =Xfull, for both models we

independently sample nc nodes as our corruption seed nodes.
For each corruption seed node, we independently corrupt its
associated edges with probability 0.9 for LBC and 0.6 for LAC.
Each ij∈Eb in LBC is corrupted as follows:

X̂full
ij =

{
X̂full
ij ∼Haar(Pm×m

full ), if 〈P c
i P

c
j
>,Xfull

ij 〉>1;

P c
i P

c
j
>, otherwise.

In LAC, for ij∈Eb, X̂full
ij =Qc

ijP
full
j

>, where Qc
ij is obtained

by randomly permuting 3 of the columns of Im×m.
The resulting precision and recall are reported in Figure 2

for the LBC model and Figure 3 for the LAC model. We note
that for both models, MatchFAME recovers almost exactly all
bad edges, where other algorithms have lower errors and are not
sufficiently close to exact recovery. MatchFAME also obtains
the highest recall scores, which are close to 1.

5.1.2 Data Generated by the Uniform Corruption Model

We test MatchFAME and competing models on data generated
from the uniform corruption model (UCM). In this model, an
edge is randomly selected with probability q and then corrupted
as follows: X̂full

ij ∼ Haar(Pm×m
full ). For unselected edges:

X̂full
ij =Xfull

ij . We let q range between 0.5 and 0.9. Figure 4
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Figure 4. Average precision and recall for UCM

Algorithm m=500 m=1000 m=2000
MatchFAME 1 2 27

MatchEIG 19 194 1297

Table 1. Runtime (seconds) for UCM with n=20.

Algorithm n=300 n=500 n=700
MatchFAME 86 304 826

MatchEIG 116 1099 >5000

Table 2. Runtime (seconds) for UCM with m=20.

reports the precision and recall of the different methods. We
observe that for UCM, the precision of MatchFAME decreases
the slowest among all algorithms. We observe that MatchFAME
and PPM have similar high recall, while MatchEIG and Spectral
have relatively lower recall.

For runtime comparison, we compared MatchFAME with
MatchEIG, which is the fastest PPS method. Table 1 fixes
n=20 and reports results for different values of m and Table
2 fixes m = 20 and reports results for different values of n
(experiments stopped when the time was larger than 5000
seconds). Clearly, MatchFAME is significantly faster than
MatchEIG for largem and sufficiently large n.

5.2. Real Data Experiments

We test MatchFAME on the Photo Tourism dataset [26].
This large-scale dataset contains 14 sets of images for stereo re-
construction. The number of images in each dataset ranges from
230 to 2226. Given initial keypoint matches obtained by [17],
we form our pairwise matching matrix and estimate the universe
size with m̂=16dM/ne. We apply MatchFAME with its de-
fault parameters. After getting the output keypoint matching,
we use RANSAC to estimate the fundamental matrices for each
edge. If an edge has less than 16 remaining keypoint matches,
we remove this edge. Then we decompose the resulting funda-
mental matrices and feed the estimated rotations and translations
to the LUD [15] camera pose solver to obtain the final estimate
of absolute rotations and translations. Note that LUD extracts the
largest parallel rigid component of the remaining graph, there-
fore removing edges can cause loss of cameras. We compare
the average and median translation error, average and median
rotation error, and runtime to the original pipeline of LUD. We

15720

Authorized licensed use limited to: University Of Minnesota Duluth. Downloaded on August 30,2023 at 03:01:47 UTC from IEEE Xplore.  Restrictions apply. 



Algorithms LUD MatchFAME+LUD

Dataset n M nLUD êR ẽR êT ẽT Ttotal,LUD nFAME êR ẽR êT ẽT TFAME Ttotal

Alamo 570 606963 557 20.81 16.88 8.00 5.23 7945.9 494 17.50 14.19 6.99 4.58 6272.0 16523.0

Ellis Island 230 178324 223 2.14 1.15 22.99 22.82 1839.2 216 1.79 1.02 22.63 21.57 341.5 2115.7

Gendarmenmarkt 671 338800 652 40.14 9.30 38.55 18.33 3527.7 574 40.20 9.20 42.29 21.65 662.2 3960.2

Madrid Metropolis 330 187790 315 13.49 9.58 14.10 6.81 1579.8 266 10.21 6.18 9.90 4.42 179.7 1663.2

Montreal N.D. 445 643938 439 2.55 1.06 1.51 0.66 5078.9 389 1.45 0.79 1.16 0.60 4021.0 8666.4

Notre Dame 547 1345766 545 3.72 1.44 1.45 0.41 11315.2 526 3.19 1.48 1.27 0.40 27222.4 39189.5

NYC Library 313 259302 306 3.99 2.14 6.89 2.72 1495.9 270 2.96 1.94 6.40 2.43 219.9 2112.5

Piazza Del Popolo 307 157971 300 7.04 4.05 6.68 2.33 1989.9 241 1.39 0.83 2.26 1.33 309.6 2519.3

Piccadilly 2226 1278612 2015 8.05 3.82 5.47 2.98 21903.3 1479 4.96 2.86 3.96 2.16 26170.1 48157.3

Roman Forum 995 890945 971 6.64 5.02 12.67 5.60 4858.0 733 5.63 4.29 11.73 5.55 1548.3 6955.3

Tower of London 440 474171 431 6.89 4.29 21.47 6.85 1759.2 359 7.13 4.19 13.54 6.32 282.5 2040.4

Union Square 733 323933 663 10.40 6.70 15.27 11.14 1950.6 451 8.26 5.29 10.71 8.66 224.9 2064.9

Vienna Cathedral 789 1361659 758 6.45 3.10 14.18 8.12 10866.0 631 4.21 2.02 11.90 6.90 21082.7 30066.5

Yorkminster 412 525592 407 4.25 2.71 6.45 3.68 2267.3 359 4.26 2.56 6.41 3.37 586.4 2936.5

Table 3. Performance on the Photo Tourism database: n and M are the number of nodes and keypoints, respectively; nLUD and nFAME are the
remaining number of cameras after the LUD pipeline and our pipeline, respectively; êR ẽR indicate mean and median errors of absolute camera
rotations in degrees, respectively; êT ẽT indicate mean and median errors of absolute camera translations in meters, respectively; TFAME, Ttotal,LUD

and Ttotal are the runtime of MatchFAME, the total runtime of LUD pipeline and the total runtime of our pipeline, respectively (in seconds).

remark that we did not compare with other PPS algorithms as
the ones that were available at the time of the submission were
not scalable and could not handle the Photo Tourism dataset.

Table 3 reports results for both the LUD pipeline and the
incorporation of MatchFAME within the LUD pipeline. We
consider improvement over the LUD result when we obtain a
smaller error on at least 3 of the 4 error statistics. MatchFAME is
successful in improving the estimates of translation and rotation
without significant loss of cameras in 13 of the 14 datasets. The
most significant improvement is on Piazza Del Popolo, where
our mean and median rotation error decreased by 80.3% and
79.5% respectively. For most other datasets, the improvement
was not marginal. Indeed, in 12 of these 13 datasets, at least one
error statistic decreased by more than 15%. The only dataset
we didn’t improve is Gendarmenmarkt, which has very high
error because of its symmetric buildings. MatchFAME removes
at most 32.0% of the total cameras. The remaining cameras
are sufficient for 3D reconstruction since the Photo Tourism
cameras are sampled densely. Therefore our pipeline will not
cause significant loss of quality of 3D reconstruction. That
is, MatchFAME is able to remove cameras with erroneous
keypoints without losing the stereo reconstruction power.

On larger datasets, the total time of MatchFAME is 2 to 3
times larger than that of the original LUD pipeline. We thus
find MatchFAME scalable. On smaller datasets, such as Union
Square and Madrid Metropolis, MatchFAME consumes much
less time in comparison to the original LUD pipeline.

6. Conclusion
We develop MatchFAME, a robust, fast, accurate and mem-

ory efficient PPS method. For this purpose we first developed

CEMP-Partial for corruption estimation in PPS and theoretically
guaranteed it under adversarial corruption. In doing this, we
were able to overcome nontrivial challenges of the PPS problem.
We also proposed an efficient weighted PPM method that
utilizes the output of CEMP-Partial and, in particular, does not
require spectral initialization. MatchFAME overcomes the three
major challenges of PPS: nonuniform corruption, uneven dimen-
sions and sparsity levels, and the large problem size. Synthetic
and real data experiments demonstrate the superior precision of
MatchFAME over existing standard methods and its scalability
to large datasets due to sparse matrix operations. Our method
also has some limitations. For example, our MST initialization
is quite heuristic and may produce very sparse initialization.
Instead, one may consider using minimum-K spanning trees
and initialize the solutions by aggregating the initialization from
the different spanning trees. Moreover, our weights for PPM
depend on a parameter γ and we plan to explore in future work
the optimal assignment of this parameter, using the estimates of
the corruption levels. Furthermore, our theory is currently lim-
ited to CEMP-Partial and to adversarial corruption with certain
assumptions. Nevertheless, it demonstrates how to handle some
challenges that are unique to PPS. We plan to further extend
it. We will first explore other corruption models, such as UCM,
where we expect stronger convergence guarantees. We also plan
to further develop theory for PPM, in particular, for UCM, and
hopefully establish a more complete theory for MatchFAME.
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Supplemental Material
A. Additional Experiments on the EPFL dataset

We test MatchFAME on the 6 EPFL datasets following
the experimental setup of [13]. Each dataset includes 8 to 30
images, unlike the large number of images in the Photo Tourism
datasets. Given each dataset, we generate and refine the initial
keypoint matches with the same procedure introduced in [13].
We follow their convention and estimate the universe size with
m̂=2dM/ne. We implement MatchFAME with its default pa-
rameters, though with two changes described below. Indeed, the
EPFL dataset contains a lot of noisy edges and thus the weights
produced by PPM within the original MatchFAME algorithm
are often small. Furthermore, note that Proj in (9) is not scale
invariant and that the resulting small weights may lead to overly
sparse refined matches. Therefore, we slightly changed the
implementation of MatchFAME to overcome this issue. First,
in order to obtain a dense initialization of partial permutations
using MST, instead of assigning 1 to a random element for
each zero column, we assign 1 to a random element for each
zero row. Since the number of rows is larger than the number
of columns, this modification results in a denser initialization
of [P (0)

j ]j∈[n] than that of the original MatchFAME. Second,
to make sure that the final output is also sufficiently dense, we
drop the step of the weights’ normalization within the PPM
iterations, which is described below (9) (this will increase the
overall scale of the edge weights and thus the projected matrix
is expected to be denser). We remark that these two changes
help alleviate the over-sparseness of the final output and ends
up with a higher ratio between the number of refined matches
and the number of initial matches, which we denote by #M .

In addition to this version of MatchFAME, we also test
Spectral, MatchEIG and MatchALS with the same setting
as [13]. Note that the ’ground truth’ is obtained by estimating
the projection distance of key points on the epipolar line instead
of labeling by hand. Therefore the recall score is not a good
benchmark on real data. We thus only report the resulting
precision, number of remaining edges and runtime in Table 4.

MatchFAME achieves the highest precision of all methods
in all datasets. Observing #M , we note that MatchFAME
has around 20% fewer matches remaining compared to all
algorithms, but as long as there are enough matches for
each edge, one can reliably compute relative rotations and
translations for SfM tasks. We believe removing around 20%
more matches is not an essential drawback. Furthermore,
MatchFAME is faster than the other methods. In conclusion,
MatchFAME can achieve a reasonable estimate of matches
within a significant short amount of time.

B. Clarifications
We clarify some definitions and expand on various claims

mentioned in the paper.

B.1. More on Cycle Consistency and Inconsistency

We referred to a cycle ijk as consistent wheneverXijXjk≤
Xik, XjkXki≤Xji and XkiXij≤Xkj. Note that XijXjk

is a binary matrix with ones whenever there are paths of lengths
2 between keypoints of images i and k and Xik is binary matrix
with ones whenever there are paths of lengths 1 (single edges)
between keypoints of image i and k. That is, XijXjk≤Xik

means that if keypoints ti ∈ [mi] and tk ∈ [mk] (in images i
and k, respectively) are both matched to a keypoint tj in image
j, then they are matched to each other. Therefore, any cycle
ijk with corresponding partial permutations Xij, Xjk, Xki

is consistent if and only if for any ti ∈ [mi], tj ∈ [mj] and
tk∈ [mk]: If two of the events Xij(ti,tj)=1, Xjk(tj,tk)=1,
Xki(tk,ti)=1 hold true, then the third one holds true as well.

This equivalent reformulation of cycle consistency
further clarifies the definition of dijk in (4). For fixed
Xij,Xjk,Xki∈Pl1,l2 , the denominator of the fraction in (4)
can be viewed as the number of combinations of three keypoints
a, b, c, such that at least two of the three events

Xij(a,b)=1,Xjk(b,c)=1, and Xki(c,a)=1 (10)

hold. Furthermore, the numerator of the fraction in (4) can be
viewed as the total number combinations of three keypoints
a, b, c, such that all the three events in (10) hold. Thus, the
fraction in (4) indeed measures the level of cycle consistency,
and consequently dijk measures the cycle inconsistency.

We remark that an inequality of two full permutation matrices
must be an equality. Therefore, for permutation synchroniza-
tion the above definition of cycle consistency is equivalent with
XijXjk=Xik (or equivalently, XjkXki=Xji or XkiXij=
Xkj or XkiXijXjk=I). That is, our definition of cycle con-
sistency is a direct extension of the one in group synchronization.

B.2. Cycle-verifiability Helps in Verifying Matches
in Cycles

We further interpret the cycle-verifiable condition and clar-
ify its name. We claim that if ijk is a good cycle (w.r.t. ij)
ensured by Definition 1 with a∈ Ii and c∈ Ij, then one can
verify whether a and c correctly match (i.e., h(a)=h(c)) using
b∈Ik. Indeed, since b matches a and k∈Gij, h(a)=h(b). If
b and cmatch then since k∈Gij h(b)=h(c) and consequently
h(a) = h(c). Assume on the other hand that b and c do not
match. If bmatches another point c′, then since k∈Gij, h(b)=
h(c′) 6=h(c). If b does not match any point in Uj, then since
k∈Gij, h(b) 6∈h(Uj) (otherwise there exists c′∈Uj such that
h(c′)=h(b) and since k∈Gij there has to be a match between
b and c′.). Since h(c)∈h(Uj) and h(b) 6∈h(Uj), h(b) 6=h(c).

C. Proof of Theorem 1

The proof establishes two lemmas, Lemmas 1 and 2, and
then uses them to conclude Theorem 1. It is rather technical



Algorithms
Initial MatchEig Spectral MatchALS PPM MatchFAME

Dataset (ours)

n m̂ PR PR #M T PR #M T PR #M T PR #M T PR #M T

Herz-Jesu-P25 25 517 89.6 94.2 73 72 92.2 81 125 93.3 83 9199 92.5 88 125 95.0 78 15

Herz-Jesu-P8 8 386 94.3 95.2 97 1 95.3 92 4 95.9 76 155 95.4 94 5 95.9 83 3

Castle-P30 30 445 71.8 84.7 55 64 80.6 72 99 80.4 76 13583 80.2 77 112 87.9 61 15

Castle-P19 19 314 70.1 79.7 57 23 76.3 76 21 77.0 74 1263 77.5 76 33 83.0 56 4

Entry-P10 10 432 75.4 79.9 78 11 82.1 78 30 77.3 77 322 80.7 83 34 83.1 69 5

Fountain-P11 11 374 94.2 95.4 81 8 95.4 93 14 95.7 82 333 95.6 94 18 96.7 81 5

Table 4. Performance on the EPFL datasets. n is the number of cameras; m̂, the approximated m, is twice the averaged mi over i∈ [n]; PR refers
to the precision |Ê∩Eg|/|Ê|, which is expressed in percentage (the higher the better); #M is the ratio (expressed in percentage) between the
number of refined matches and the number of initial matches; T is runtime in seconds.

and not so easy to motivate. In order to provide more intuition,
we added some clarifying figures.

Convention for figures: In all of these figures, we designate
by green lines good keypoint matches, by red lines bad keypoint
matches and by dashed orange lines missing keypoint matches.
All of these occur between keypoints of two different images.
On the other hand, matches between keypoints in an image
and universal 3D keypoints are designated by black dotted lines
(these correspond to our formal h function). We further color
the universal 3D keypoints (in Uij), which represent elements
of Ugood

ij , by green. We also color the universal 3D keypoints,
which represent elements ofUbad

ij , in red. In Figure 5, we slightly
extend the latter convention and explain it in its caption.

Terminology Review: Recall that n∆ =Tr(XijXjkXki),
m is the number of all 3D keypoints,mij is the number of 3D
keypoints that correspond to the 2D keypoints of images i or j
and among these, mbad

ij is the number of keypoints that match
wrong keypoints in the other image, or match no keypoint if a
ground-truth match exists. We also denote the number of the
rest of points bymgood

ij (that is,mgood
ij =mij−mbad

ij ) and recall
that these keypoints match the ground-truth keypoints or, do not
match any keypoint, if no ground-truth matches exist.

C.1. Upper Bound for the Cycle Inconsistency of
Good Edges

This section includes the proof of the following lemma:
Lemma 1. For any ij∈Eg, dijk≤m(s∗ik+s

∗
jk).

We remark that in the case of group synchronization,
in particular, PS, one can easily show that for any ij ∈ E,
|dijk−s∗ij|≤ s∗ik+s∗jk (see Lemma 1 of [11]). Consequently
for ij ∈Eg, dijk ≤ s∗ik+s∗jk. However, in PPS, without the
full group structure with a bi-invariant metric, it is harder to
prove the weaker bound of Lemma 1. The proof below involves
various discrete combinatorial arguments.

Proof. Assume first that n∆ = 0 and note that (4) implies
dijk = 1. Since dijk 6= 0 and ij ∈Eg, s∗ik and s∗jk cannot be

both zero (otherwise this and the fact that ij ∈Eg imply that
ijk is cycle-consistent and thus dijk = 0). Without loss of
generality, assume s∗jk>0. We note that

s∗jk=
mbad
jk

mjk
≥ 1

m
,

which implies the desired bound:

dijk=1=m· 1
m
≤ms∗jk≤m(s∗ik+s

∗
jk).

Assume next that n∆>0, or equivalently,

n∆≥1. (11)

The next arguments require additional definitions and ob-
servations. We recall that any element of Ii represents a 2D
keypoint in image i. This keypoint is associated with the index
vector (i,j), where j=1,...,mi and we can thus view Ii as the
set ofmi index vectors. For cycle ijk, (a,b,c)∈Ii×Ij×Ik is an
(i,jk) tuple if there is a match between a and both b and c (the
match can be either good or bad). If (a,b,c) is an (i,jk) tuple
and there is no match between b and c, then we refer to (a,b,c)
as a bad (i,jk) tuple, otherwise, it is a good (i,jk) tuple. For ex-
ample, in Figure 5, there are three (i,jk) tuples: (pi,2,pj,1,pk,1),
(pi,3,pj,3,pk,2) and (pi,4,pj,2,pk,3). We note that (pi,2,pj,1,pk,1)
and (pi,4,pj,2,pk,3) are bad (i,jk) tuples and (pi,3,pj,3,pk,2) is
a good (i,jk) tuple. For cycle ijk, we denote by Ai,jk the set
of (i,jk) tuples in Ii×Ij×Ik, by Abad

i,jk the set of bad (i,jk)

tuples and byAgood
i,jk the set of good (i,jk) tuples.

Recall that for a cycle ijk, ni= nnz(XkiXij), nj and nk
are analogously defined, and n∆ = Tr(XijXjkXki). Also
recall the notation pi,j for elements of Ii. We note that (a,b,c)
is an (i,jk) tuple if and only if (iff) a=pi,u, b=pj,v, c=pk,w
and both Xki(w,u) = 1 and Xij(u,v) = 1 (so pi,u matches
to both pj,v and pk,w). We further note that the latter two
requirements are equivalent with XkiXij(w,v) = 1. Indeed,



since XkiXij(w, v) =
∑
u′∈[mi]

Xki(w, u
′)Xij(u

′, v) and
XkiXij is a partial permutation, then XkiXij(w,v) = 1 iff
Xki(w,u)=Xij(u,v)=1 for some u∈ [mi]. Therefore

|Ai,jk|=ni.

By the same way we note that

|Aj,ki|=nj and |Ak,ij|=nk.

Similarly, note that (a, b, c) is a good (i, jk) tuple iff
a=pi,u, b=pj,v, c=pk,w, Xki(w,u)=1, Xij(u,v)=1 and
Xjk(v,w) = 1. The latter three requirements are equivalent
with XijXjkXki(u,u)=1. Indeed, the following equation

XijXjkXki(u,u)=∑
v′∈[mj],w′∈[mk]

Xij(u,v
′)Xjk(v

′,w′)Xki(w
′,u)

and the fact that XijXjkXki is a partial permutation imply
this equivalence. Therefore,

|Agood
i,jk |=n∆ and |Abad

i,jk|=ni−n∆.

Similarly, we conclude that

|Abad
j,ki|=nj−n∆ and |Abad

k,ij|=nk−n∆.

Using these observations and (4), one can rewrite dijk as follows

dijk=
|Abad
i,jk|+|Abad

j,ki|+|Abad
k,ij|

|Abad
i,jk|+|Abad

j,ki|+|Abad
k,ij|+3n∆

. (12)

Let us assume that (a,b,c)∈Abad
i,jk and show that

h(c)∈Ubad
ik ∪Ubad

jk . (13)

The assumption ij ∈ Eg implies that there is a good match
between a and b.

We claim that if there is also a good match between a
and c, then h(b) = h(a) = h(c) ∈ Uij ∩Uik ∩Ujk. Indeed,
assume a = pi,u, b = pj,v, c = pk,w and h(a) = l, i.e.,
P ∗i (u, l) = 1. Because there exists a good match between
a and b, X∗ij(u, v) = Xij(u, v) = 1. Since X∗ij(u, v) =

P ∗i P
∗T
j (u,v)=

∑
d∈[m]P

∗
i (u,d)P

∗
j (v,d) and P ∗j is a partial

permutation, P ∗j (v,l) = 1 and thus h(b) = l. Similarly, since
there exists a good match between a and c, P ∗k (w,l)=1 and
h(c)=l. Therefore h(a)=h(b)=h(c)=l∈Uij∩Uik∩Ujk.

Since (a,b,c)∈Abad
i,jk, there is no match between b and c and

thus h(c)∈Ubad
jk , which implies (13).

If on the other hand, there is a bad match between a and c,
then h(c)∈Ubad

ik , which also implies (13).
In view of (13), the function f(a, b, c) = h(c) maps

Abad
i,jk to Ubad

ik ∪Ubad
jk . We note that this function is injective.

Indeed, since Xik and Xjk are partial permutations, for any

Figure 5. A demonstration for clarifying the definition of (i,jk) tuples,
good (i,jk) tuples, bad (i,jk) tuples as well as the function f . The
actual use of the figure is clarified when it is referred to. Unlike other
figures (that focus on points in Uij and not in Uij∪Ujk∪Uki), the
red dots correspond to keypoints in Ubad

ij ∪Ubad
jk ∪Ubad

ik and the green
dots correspond to the rest of keypoints in Uij∪Ujk∪Uki. We note
that Ubad

ik ={5}, Ubad
jk ={2} and Ubad

ij =∅.

h(c)∈Ubad
ik ∪Ubad

jk , where c∈Ik, if there are a and b in Ii and
Ij, respectively, such that there are matches between them and
c and f(a,b,c)=h(c), then a and b are unique. Figure 5 demon-
strates f and its proven injectivity in a special case. In this case,
Abad
i,jk = {(pi,4,pj,2,pk,3),(pi,2,pj,1,pk,1)}, f(pi,4,pj,2,pk,3) =

h(pk,3)=5∈Ubad
ik and f(pi,2,pj,1,pk,1)=h(pk,1)=2∈Ubad

jk .
By the cardinality property of an injective map,

|Abad
i,jk|≤|Ubad

ik ∪Ubad
jk |≤|Ubad

ik |+|Ubad
jk |=mbad

ik +mbad
jk .

Similarly, the same bound holds for |Abad
j,ki| and |Abad

k,ij| and
consequently,

|Abad
i,jk|+|Abad

j,ki|+|Abad
k,ij|≤3(mbad

ik +mbad
jk ). (14)

Therefore the combination of (11) and (14) with the definition
of s∗ik as well as s∗jk (i.e., noting that s∗ik = mbad

ik /mik =

1−mgood
ik /mik and s∗jk=m

bad
jk /mjk=1−mgood

jk /mjk) yields

dijk=
|Abad
i,jk|+|Abad

j,ki|+|Abad
k,ij|

|Abad
i,jk|+|Abad

j,ki|+|Abad
k,ij|+3n∆

≤
3(mbad

ik +mbad
jk )

3(mbad
ik +mbad

jk )+3

≤ 3mbad
ik

3mbad
ik +3

+
3mbad

jk

3mbad
jk +3

=
3s∗ik

3s∗ik+
3
mik

+
3s∗jk

3s∗jk+
3
mjk

≤miks
∗
ik+mjks

∗
jk

≤m(s∗ik+s
∗
jk).



C.2. Lower Bound for the Averaged Cycle Incon-
sistency Among Good Cycles

This section includes the proof of the following lemma:

Lemma 2. IfG=(V,E) is pv-cycle verifiable, then

1

3
pvs
∗
ij≤

1

|Gij|
∑
k∈Gij

dijk ∀ij∈E. (15)

Proof. We assume several cases.
Case I: ij∈Eg. The left hand side of (15) is zero and its right
hand side (RHS) is also zero since for any ij∈Eg and k∈Gij,
dijk=0.
Case II: ij∈Eb and k∈Gij. Denote

Nbad
ijk= |Abad

i,jk|+|Abad
j,ki|+|Abad

k,ij|,

and note that in view of (12)

∑
k∈Gij

dijk=
∑
k∈Gij

Nbad
ijk

Nbad
ijk+3n∆

. (16)

We thus need to lower bound the RHS of (16) in order to
conclude (15).

We first derive the boundn∆≤mgood
ij . Figure 6 demonstrates

the definitions below and the desired bound in a very special
case. Let Dijk denote the set of indices of diagonal entries of
XijXjkXki that equal 1. Note that |Dijk|= n∆ due to the
fact that n∆=Tr(XijXjkXki). Also, since XijXjkXki is of
size mi×mi, Dijk ⊆ [mi]. We can thus assign for d∈Dijk,
pi,d = a ∈ Ii. Because XijXjkXki(d,d) = 1, there exists
1≤u≤mj and 1≤v≤mk such that Xij(d,u)=Xjk(u,v)=
Xki(v,d) = 1. Therefore, we note that for b := pj,u ∈ Ij and
c := pk,v ∈ Ik, there exist matches between a and b, b and c,
as well as c and a. Since k ∈Gij, jk ∈Eg and ki∈Eg and
thus h(b) = h(c) = h(a) (see the same argument in the para-
graph below (13), where it is enough to just assume that either
jk∈Eg or ki∈Eg); we denote the latter common value by l.
Therefore P ∗i (a,l) =P ∗j (b,l) =Xij(a,b) = 1. By definition
of Ugood

ij , l∈Ugood
ij . Let fijk be a function from Dijk to Ugood

ij

such that fijk(d)= l. We note that it is injective since for any
d 6=d′∈Dijk, pi,d 6=pi,d′ , therefore h(pi,d) 6=h(pi,d′). By the
cardinality property of an injective map, n∆≤|Ugood

ij |=m
good
ij .

Next, We prove an upper bound of Nbad
ijk . We assume

without loss of generality that (a,b,c)∈Abad
i,jk. Since ik,jk∈Eg,

the matches from a to c and from b to c are correct. Therefore,
the match from a to b is wrong and h(a)∈Ubad

ij . Denote by
gi : A

bad
i,jk → Ubad

ij the function which maps (a,b,c) ∈ Abad
i,jk

to h(a)∈Ubad
ij . Figure 7 illustrates gi in a special case. This

function is injective since for any x ∈ Ubad
ij , g−1

i (x) contains
at most one element (a,b,c)∈Abad

i,jk. Indeed, if gi(a,b,c)=x,
then there must exist a∈Ii such that h(a)=x, c in Ik such that
there is a match between a and c, and b in Ij such that there is

Figure 6. An illustration of n∆, Dijk, fijk and mgood
ij . Note that n∆ is

equal to the number of green triangles with vertices in Ii,Ij,Ik. Since
there is only one such triangle, n∆=1. This triangle (with keypoints
pi,4,pj,2,pk,3) is associated with the keypoint in Ii with index 4 and
thus Dijk={4}. Since it is also associated with the universal keypoint
with index 4, the function fijk maps 4 to 4∈Ugood

ij . At last, note that
mgood

ij = |Ugood
ij |=2.

Figure 7. An illustration of gi, gij,k and the injectivity of both functions
in a very special case. In this example, the only element of Abad

i,jk is
(pi,2,pj,1,pk,1). Since we defined gi(a,b,c) = h(a), we obtain that
gi(pi,2,pj,1,pk,1) = h(pi,2) = 2 ∈ Ubad

ij . Note that Ubad
ij ∩h(Ik) =

{2,3}. Recall that the function gij,k maps x∈Ubad
ij ∩h(Ik) to the bad

(j,ki) tuple or bad (k,ij) tuple that involves c∈Ik with h(c)=x. In
this example, the function gij,k maps 2∈Uij to the bad (i,jk) tuple
(pi,2,pj,1,pk,1). It maps 3∈Uij to the bad (k,ij) tuple (pk,2,pi,3,pj,3).

a match between a and b (and no match between b and c). Note
that there is a match between at most one keypoint in Ik and a
and thus there is at most one such c. Similarly, there is at most
one such b. Since there is at most one keypoint in Ii which
corresponds to the 3D keypoint x, there is at most one such a.
The injectivity of gi implies |Abad

i,jk|≤|Ubad
ij |=mbad

ij . Similarly,
|Abad
j,ki|≤mbad

ij and |Abad
k,ij|≤mbad

ij . Thus, for any k∈Gij

0≤Nbad
ijk≤3mbad

ij . (17)

Next, we establish a lower bound of Nbad
ijk . For this

purpose, we construct an injective map gij,k from Ubad
ij ∩h(Ik)

to Abad
i,jk ∪ Abad

j,ki ∪ Abad
k,ij. It will allow us to lower bound

Nbad
ijk = |Abad

i,jk| + |Abad
j,ki| + |Abad

k,ij| by the cardinality of



Ubad
ij ∩h(Ik). Note that Ubad

ij ⊆Uij=h(Ii)∪h(Ij). Therefore
any element of Ubad

ij ∩h(Ik) is either in h(Ii) or h(Ij)\h(Ii).
In the case where x∈Ubad

ij ∩h(Ik) and x∈h(Ii), we will
show that there exist either (a,b,c)∈Abad

i,jk or (c,a,b)∈Abad
k,ij

such that h(c)=x. In the case where x∈Ubad
ij ∩h(Ik) and x∈

h(Ij)\h(Ii), then one can similarly show that there exists either
(b,c,a)∈Abad

j,ki or (c,a,b)∈Abad
k,ij such that h(c)=x. These argu-

ments induce a map gij,k from Ubad
ij ∩h(Ik) to Abad

i,jk∪Abad
j,ki∪

Abad
k,ij which mapsx to its corresponding bad tuple. Sinceh(c)=

x, gij,k is injective. Figure 7 illustrates gij,k in a special case.
We thus assume that x∈Ubad

ij ∩h(Ik) and x∈h(Ii). Note
that the latter requirement implies the existence of a∈Ii such
that h(a) = x. Since x ∈ h(Ik), there exists c ∈ Ik such that
h(c)=x and since ik∈Eg there is a good match between a and
c. Note that there cannot be a good match between a and any
b∈Ij, otherwise x 6∈Ubad

ij . Therefore, there are two cases to con-
sider. In the first case there exists b∈Ij such that there is a wrong
match between a and b. This implies that h(b) 6=h(a) and since
we showed above that h(a) = h(c), we conclude that h(b) 6=
h(c). The latter observation and the fact that jk∈Eg imply that
there is no match between b and c and thus (a,b,c) is a bad (i,jk)
tuple, that is, (a,b,c)∈Abad

i,jk. In the second case, there exists
b∈Ij such that h(b)=h(a), but there is no match between b and
a (the previous case considered the scenario where there exists
b∈Ij such that a and bmatch; furthermore, ifh(a) 6=h(b) for all
b∈Ij, then x∈Ugood

ij ). Since h(a)=h(c)=h(b) and jk∈Eg,
there is a match between b and c. Therefore, (c,a,b) is a bad
(k,ij) tuple, that is, (c,a,b)∈Abad

k,ij. Following the above ideas,
this concludes the injectivity of gij,k. This injectivity implies∑

x∈Ubad
ij

1{x∈h(Ik)}= |Ubad
ij ∩h(Ik)|≤|Abad

i,jk∪Abad
j,ki∪Abad

k,ij|

≤|Abad
i,jk|+|Abad

j,ki|+|Abad
k,ij|=Nbad

ijk. (18)

In order to apply (18) we lower bound a certain sum of
1{x∈h(Ik)}. Our argument assumes that x∈Ubad

ij . Since x∈Uij,
we conclude WLOG that x∈h(Ii). Therefore there exists a∈Ii
such that h(a)=x. By the pv-cycle verifiability condition, a
is verifiable w.r.t. ij in at least pv|Gij| good cycles. For any
such cycle ijk that a is verifiable in, let b ∈ Ik match a (for
convenience, we demonstrate x, a and b in Figure 8). Since
ik∈Eg, the match between a and b is a good match and thus
x=h(a)=h(b). Since b∈Ik, h(b)∈h(Ik) and thus x∈h(Ik).
That is, we have proved that if k ∈Gij and a is verifiable in
ijk, then x∈h(Ik). We have at least pv|Gij| such k’s and thus∑

k∈Gij

1{x∈h(Ik)}≥pv|Gij| for any x∈Uij. (19)

We combine the above two inequalities as follows. Summing
both sides of (18) over k ∈ Gij, exchanging the order of

Figure 8. Visual demonstration of keypoints involved in the argument
for bounding

∑
k∈Gij1{x∈h(Ik)}.

summation and applying (19) result in

pv|Gij|mbad
ij =pv|Gij||Ubad

ij |≤
∑
k∈Gij

Nbad
ijk. (20)

Using the above bound we will bound from below

∑
k∈Gij

Nbad
ijk

Nbad
ijk+3mgood

ij

and we will then use (16) to conclude the desired inequality.
We denote

F(x)=
x

x+γ
where γ=3mgood

ij . (21)

Note that F(0)=0,

F(3mbad
ij )=

3mbad
ij

3mbad
ij +3mgood

ij

=s∗ij

and F(x) is concave. Applying the definition of F , Jensen’s
inequality, (20) and (21) yield

∑
k∈Gij

Nbad
ijk

Nbad
ijk+3mgood

ij

=
∑
k∈Gij

F(Nbad
ijk)

≥
∑
k∈Gij

((1−
Nbad
ijk

3mbad
ij

)F(0)+
Nbad
ijk

3mbad
ij

F(3mbad
ij ))

=
∑
k∈Gij

Nbad
ijk

3mbad
ij

F(3mbad
ij )

≥ 1

3
pv|Gij|F(3mbad

ij )=
1

3
pv|Gij|s∗ij.

The combination of this inequality with (16) concludes the
proof of the lemma.



C.3. Conclusion of Theorem 1

We prove the main theorem by induction, using Lemmas
1 and 2. For t= 0, the definition of s(0)

ij , Lemma 2 and the
definition of λ imply that for all ij∈E:

s
(0)
ij =

∑
k∈Nijdijk

|Nij|
≥
∑
k∈Gijdijk

|Nij|
≥ pv

3

|Gij|
|Nij|

s∗ij≥
pv
3
(1−λ)s∗ij.

We further note by using again the above definitions and the
fact that for all ij∈E 0≤dijk≤1 that for ij∈Eg,

s
(0)
ij =

∑
k∈Nijdijk

|Nij|
=

∑
k∈Bijdijk

|Nij|
≤
∑
k∈Bij1

|Nij|
≤λ≤ 1

2β0
.

Therefore, the theorem is proved when t=0.

Next, we assume that the theorem holds for iterations
0,1,···,t and show that it also holds for iteration t+1. Applying
the definition of s(t+1)

ij , the positivity of the terms in the sum,

the induction assumption 1
2βt
≥maxij∈Egs

(t)
ij , Lemma 2 and

the definition of λ, we obtain for any ij∈Eb

s
(t+1)
ij =

∑
k∈Nije

−βt(s(t)ik +s
(t)
jk )dijk∑

k∈Nije
−βt(s(t)ik +s

(t)
jk )

≥
∑
k∈Gije

−βt(s(t)ik +s
(t)
jk )dijk∑

k∈Nije
−βt(s(t)ik +s

(t)
jk )

≥
∑
k∈Gije

−1dijk

|Nij|
(22)

≥ pv
3e

|Gij|
|Nij|

s∗ij

≥ (1−λ)pv
3e

s∗ij.

Note that xe−αx≤ 1
αe for any α> 0 and x≥ 0. In particular,

for α=βt(1−λ)pv/3e and x=s∗ik+s
∗
jk,

e−βt(s
∗
ik+s∗jk)(1−λ)pv/3e(s∗ik+s

∗
jk)≤

3

βt(1−λ)pv
. (23)

Applying the definition of s(t+1)
ij , the fact that dijk = 0 for

any ij∈Eg and k∈Gij, Lemma 1, the induction assumption
s
(t)
ij ≥

(1−λ)pv
3e s∗ij for ij ∈ Eb (for the numerator) and the

positivity of the relevant terms (for the denominator), the
induction assumption s(t)

ij ≤ 1/(2βt) for all ij ∈Eg, (23) and

the definition of λ, we obtain for all ij∈Eg

s
(t+1)
ij =

∑
k∈Nije

−βt(s(t)ik +s
(t)
jk )dijk∑

k∈Nije
−βt(s(t)ik +s

(t)
jk )

=

∑
k∈Bije

−βt(s(t)ik +s
(t)
jk )dijk∑

k∈Nije
−βt(s(t)ik +s

(t)
jk )

≤
∑
k∈Bije

−βt(s(t)ik +s
(t)
jk )m(s∗ik+s
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2βt

.

We note that the assumption λ<1+ 3em
pv
−
√

3em
pv

(2+ 3em
pv

) is

equivalent with 6emλ
(1−λ)2pv

<1. Therefore by taking βt+1=rβt

with 1 < r < (1−λ)2pv
6emλ , we guarantee that for any ij ∈ Eg,

s
(t+1)
ij ≤ 1

2βt+1
, that is, maxij∈Egs

(t+1)
ij ≤ 1

2βt+1
= 1

2β0rt
. This

implication and (22) conclude the proof of the theorem.

D. Discussion of a Possible Theoretical Extension
Although our current analysis assumes no noise on the set of

good edges, one can relax this assumption. Indeed, one can as-
sume sufficiently small noise on good edges so that for all cycles
ijk and a sufficiently small positive constant δ: |d′ijk−dijk|<δ,
where dijk and d′ijk are respectively the cycle inconsistencies
with and without noise on good edges. Using a basic pertur-
bation analysis, similarly as in the proof of Theorem 1, with
a carefully chosen set of the reweighting parameters βt, one can
prove approximate separation of good and bad edges. In partic-
ular, the maximum value of the estimated sij on good edges is
proportional to δ. Removing the bad edges (with estimated sij
larger than this threshold), one can then approximately solve the
PPS problem with a subsequent spectral solver. An approximate
recovery theorem for the absolute partial permutations using
the filtered edges can be established using spectral graph theory.


