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Abstract.

In this work, we develop a deep neural network model of reaction rate of oxidative
coupling of methane from published high throughput experimental catalysis data. The
neural network is formulated so that the rate model satisfies the plug flow reactor design
equation. The model is then employed to understand the variation of reactant and
product composition within the reactor for the reference catalyst Mn—NasWO4/SiO4
at different temperatures and to identify new catalysts and combination of known
catalysts that would increase yield and selectivity relative to the reference catalyst.
The model revealed that methane is converted in the first half of the catalyst bed
while the second part largely consolidates the products (i.e. increases ethylene to
ethane ratio). A screening study of > 3400 combinations of pairs of previously
studied catalysts of the form M1(M2),_oM30z/support (where M1, M2, and M3
are metals) revealed that a reactor configuration comprising of two sequential catalyst
beds lead to synergistic effects resulting in increased yield of C2 compared to the
reference catalyst at identical conditions and contact time. Finally, an expanded
screening study of 7400 combinations (comprising of previously studied metals but
with several new permutations) revealed multiple catalyst choices with enhanced yields
of C2 products. This study shows the value of learning a deep neural network model
of the instantaneous reaction rate directly from high throughput data and represents a
first step in constraining a data-driven reaction model to satisfy domain information.

1. Introduction

Recent decades have witnessed a burgeoning growth in catalysis data, enabling the
application of “catalysis informatics", viz. using tools from data science and machine
learning to infer the underlying reaction mechanism, making quick predictions of
conversion and selectivity at new process conditions or catalyst compositions, and
ultimately proposing new catalytic materials |1, 2, 3]. Several recent works show that
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datasets comprising of thousands of combinations of catalysts and process conditions,
either taken from high throughput experimentation[4, 5] or via data collation from
the literature|6, 7], can be used to build machine learned models that can then be
interrogated to find novel combinations of catalysts|8, 9, 10, 11|. Most of these models,
however, compute the overall conversion, yield, or selectivity; such models do not take
into account domain constraints and may not provide any insights into the chemistry
or the variations along the reactor. In a plug (or a packed bed) flow reactor, the
overall conversion or selectivity depends on how the rate (and therefore the flow of
the reactants and products) changes along the reactor. In principle, experimental data
comprising only the overall conversion and selectivity at the end of the reactor can still
be employed to learn a data-driven model of the instantaneous reaction rate at any
point in the reactor; the learning process, however, must take into account that the
net conversion depends on the integration of the instantaneous rate along the reactor
(catalyst bed).

In this work, we develop a deep neural network model of the reaction rate, for the
first time, using high throughput experimental data. Our formulation ensures that the
reaction rate model satisfies the reactor design equation; as a result, we posit this model
is more robust to extrapolations. Therefore, we apply this model to (1) understand
how the composition of the reactants and products changes along the reactor and,
thereby, the potential reaction network connections, and (2) predict yields for new
catalysts (or catalyst combinations) and conditions. We specifically apply this approach
to the problem of oxidative coupling of methane (OCM), which is a reaction to convert
methane, prevalent in natural gas, to two valuable products, viz., ethane (CyHg) and
ethylene (CoHy) [12, 13, 14, 15, 16]. A challenge in this chemistry is that unselective
reactions can lead to the production of carbon monoxide (CO) and carbon dioxide
(COs); therefore, developing catalysts that are active and selective to Cy products over
C; oxides is key to deploying this technology. Developing a data-driven model for the
reaction rate from high throughput data is a first step to this end.

2. Background and related work

2.1. Reactor design equation

High throughput experimental studies typically collect overall conversion of the reactant
and selectivities of the products for a range of catalysts (often belonging to a similar
class of materials) at different process conditions (temperature, inlet composition, and
pressure). Since only the inlet and the effluent are measured, data-driven models
are typically trained to predict the effluent composition (from which conversion and
selectivities are obtained) given the inlet conditions and the catlayst information.
In our previous work[17|, we developed a neural network model for this chemistry
based on publicly available high throughput experimentation dataset [4]; the model
was formulated to ensure that the atom balance constraints of a plausible reaction
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network was satisfied, i.e. it was informed by chemistry. The model allowed us to
compute apparent activation barriers and orders which in turn indicated that they were
consistent with both Langmuir Hinshelwood model and a Mars van Krevelen model
possibly because of a more complex underlying mechanism. Our goal here is to leverage
this experimental data to learn, instead, the local rate of the reaction (and thereby
the composition) at any point within the reactor. To do this, we begin by invoking the
simple plug flow reactor model that can describe the reactor set up in these experiments.
In particular, we can say:

dF;
aQ (1)

where F;, Q, and r; are the molar flow (moles per unit time) of species i, the

total moles of catalytic sites distributed uniformly (both radially and axially) within
the reactor, and the rate of production of species i (positive for production, negative
for consumption, with units of moles produced per mole of catalyst sites per unit time).
This equation can be rewritten as

ark;
dr

where Fj is the initial molar flow rate of the reactant (a reference such as methane in

= T’Z'FO (2)

Iz
time the reactant molecule spends in the reactor passing through the catalyst bed, also

this case) and 7 = % is the contact time of the reactor (roughly representing the average

known as the residence time). Therefore, the outlet flow rate of species ¢, Fyye 4, is given
by

cr
Fouwti = Fin; +/ riFodr (3)
0

where 7 = CT is the total contact (or residence) time, and F;,; is the molar inlet
flow rate of species 1.

Since a plug flow (or tubular packed bed) reactor can be written as an infinite sum
of differential continuous stirred tank reactors, to a first approximation, we can rewrite
the equation above as a discrete summation:

N
Fouti = Fing + Z TijAT (4)

j=1

where 7; ; is the average value of r;Fy in the j™ element and Ar = % Effectively,
we seek to learn 7; ;A7 for a discrete element j from the high throughput data (that
contains Fy, ;, Fo,:; information for various catalysts and process conditions) such that

equation 4 is satisfied.



2.2. Using deep neural networks for differential equations

Deep neural networks have never been reported for handling differential equations in
the context of catalysis; in this section, therefore, we briefly discuss the application of
deep learning in systems governed by differential equations in general.

Partial differential equations (PDEs) are extensively used for modeling the
underlying behavior of complex dynamical systems as well as their adaptability. Several
studies [18, 19, 20, 21| have employed deep learning to learn the governing differential
equations from data or solve a set of known differential equations. In [18, 22| to
approximate the unknown nonlinear responses of diffusion and convection processes,
the authors introduced PDE-Net, which was influenced by Wavelet theory. PDE-
Net [18, 22| is a deep feed-forward network that operates on the principle of learning
differential operators by learning convolution kernels (filters) and then using neural
networks to approximate unknown nonlinear responses. PDE-Net structure made of 4t
blocks resembles residual blocks of ResNet [23].

FD-Net [19] is a finite difference inspired network that uses only a few trainable
parameters to learn the underlying governing PDEs from trajectory data and iteratively
estimate future dynamical behavior. FD-Net is made by multiple FD-Blocks similar to
residual blocks introduced in ResNet [23], that are stack sequentially in order to pro-
duce an estimated solution of the PDE at ¢ + ¢ given a solution at ¢. For a constant
input/output shape, FD-Net uses the same amount of FD-Filters through all convolu-
tional layers. In contrast from our approach, FD-Net establishes the parameters of each
layer without bias terms, as well as the outputs of the layers without using nonlinear
activation functions, in order to capture the behavior of linear equations.

The hybrid NN-PDE [24] model demonstrates how neural networks can be used to
learn partial PDE solver completion in the setting of reactive flows of laminar flames.
When compared to a purely data-driven method, the incomplete PDE description as-
sists the neural network model in recovering the target simulation with much higher
accuracy. The authors employ a fully convolutional neural network model consisting
of ResBlocks with skip connections, analogous to residual blocks [23], to overcome the
problem of vanishing gradients.

DynNet [25] is a network motivated by implicit equation of motion solvers into a
recurrent cell for full response prediction of nonlinear multi degrees of freedom (MDOF)
systems. The architecture of the model is based on ResNet [23] and the residual block
is the only component of the network capable of learning the nonlinear behavior of the
dynamic system.

All the above mentioned methods [18, 22, 19, 24, 25| use different approaches to learn
PDEs from data, but all of them including our approach are based on residual blocks.
The main reason for this is that ResNet [23] outperform other architectures in learning
differential equations from data due to their inherited similarity to the Euler’s method.
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The key difference of our work is exploiting such efforts in the field of catalysis us-
ing high throughput experimentation data. Further, as we discuss below, the ResNet
architecture naturally allows for representing the summation in equation 4.

3. Methods

3.1. Deep neural network to capture the local rate within the reactor

A deep neural network resembling the reactor model (equation 4) was developed as
shown in the figure 1. The input layer consists of seven neurons which represent the
flows of seven species in this reaction system: (1) the inert carrier gas argon (Fa,.), (2) the
main reactants, viz., methane (Frg,) and oxygen (Fp,), (3) the desired Cy products,
namely, ethane (Fr,p,) and ethylene (Fe,p,), and (4) the chief C; byproducts, viz.,
carbon monoxide (Fgp) and carbon dioxide (Fro,). These seven neurons represents the
values of the flows before entering the reactor at 7 = 0, while the output values indicate
the amount of flows leaving the reactor after a given contact time (CT) that species
spend inside the reactor. The inlet values of products flows, i.e., Fe,u,, Foyn,, Foo and
Feo, are respectively set to zero at 7 = 0. Apart from the input features, we introduce
the global features which are temperature T'(°C') and the catalyst descriptors (see next
subsection). The input flows are concatenated with global features and fed to the
module of the deep neural network as shown in figure 1. Our model consists of modules
which are identical deep neural network blocks, arranged sequentially, so the output
of one module becomes the input of the successive module (akin to the summation in
equation 4 or the physical inference of approximating a tubular flow reactor as a series
of continuous stirred tank reactors). The modules are identical, as each subsequent
module has the same weights as before. Each module corresponds to a A7 timestep.
We employ identity mapping z in our model, to build a deeper neural network and
avoid vanishing gradients while training the model. The identity mapping does not
have any parameter, while the function F(z) is the residual mapping the model should
learn. The residual is the amount by which the model’s prediction must be adjusted
to match the actual result. The combination of input « and F(z) as y = F(z) + « are
given as input to the successive module. Using this architecture for the model helps
to save the history of how the flows of the given species change inside the model for
a given timestep (check suplementary information for more details). To interpret this
architecture physically, one can consider each block to represent a discrete elementss of
the numerical integration in equation 4 or that each block is effectively a local, smaller,
stirred tank reactor model.

Module. The module consists of one embedding layer, where input flows (7 neurons)
are concatenated with global features (64 neurons) in a total of 71 neurons which are
fed forward to the first hidden linear layer. The module has four hidden linear layers
each is made up of 64 neurons, chosen after extensive evaluation of different structures.
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Scaled Exponential Linear Unit(SELU) [26] is used as activation function which is given
by

selu(z) = Az, if z>0 (5)
selu(z) = Aa(exp(z) — 1) if 2 <0, (6)
where A = 1.05070 and a ~ 1.673263.

Adam optimizer with default learning rate of 0.01 is used to optimize the model. The
dataset is split randomly on training set (80%) and testing set (20%). The training is
done on batches with size 64. We use mean squared error (MSE) to evaluate the loss of
the model, which is given by:

L Ony ) i Fri i Fri i Fri i
L= EZ[(FAT —Fh) + (Fem, — FCH4>2 + (Fo, — F02)2 + (Feym, —
i—1
—Flon,)’ 4 (Fiyny — Foomy)® + (Foo — Foo)* + (Fio, — Fio,)’] (7)

where n denotes the number of data points used to train the model, F' denotes the flows
of the seven species pertaining to this chemistry (Ar, CHy, Oy, CyHg, CoHy, CO and
C'Os) in moles of the molecule per unit time and F' are the predicted flows form the
model.

Flows. The dataset has the inlet flow rates of methane (Frp, ), oxygen (Fo,) and
argon (F4,¢) as well as the yields of ethane (yc,m,), ethylene (yc,m,), carbon monoxide
(yco) and carbon dioxide (yco,). The yields of the carbon-containing products are
defined as the percentage of carbon atoms of methane converted to that molecule
(resulting in 19). We assume that the OCM chemistry is captured by the following
overall reactions which, indeed, are sufficient to carry out atom balance at any point:

2CH, + 0.505 — CyHg + HyO (8)
CyHg + 0.505 — CoHy + Hy0 (9)
CH, +1.50, — CO + 2H,0 (10)
CH, + 205 — COy + 2H50 (11)

At a given time-step in the model, the flow rate of the different species is computed
based on basic carbon and oxygen balance emanating from these reactions.

Far = Farp (12)
For, = For,o(1 — (Yoo ms + Yours + Yco + Ycos)) (13)
Fo, = Fo,0 — For,000.25(yc,ms) + 0.25(yey ) + 1.5(yco) + 2(yeo,)](14)
Feorng = 0.5Fcm, 0 * (Yoo Hg) (15)



Feyn, = 0.5Fcm, 0 % (Youm,)

Feo = Fen,o * (Yco)

Feo, = Fom, 0 * (Yco,)

Xcn, = YorHy + Yo, He + Yoo + Ycos,

where X¢p, is the methane conversion.
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3.2. Data and descriptors

We used a high-throughput OCM dataset [4] which consists of 12,708 data points
encompassing 59 catalysts and support combinations. The catalyst is a supported
mixed metal oxide consisting of three metals or fewer and having the general formula
M1—(M2),_9M30z/support. M1 is mainly a variety of transition metals or lanthanide
elements. Molybdenum and tungsten are the two possible choices for M3 and M2
is any metal that can form a molybdate or tungstate; a variety of commonly used
supports are also considered in the catalyst space. Methane conversion (X¢op,) and
yields (and selectivity) of all main carbon-containing products, viz. ethane (CyHy),
ethylene (CoH6), carbon monoxide (CO), and carbon dioxide (C'O,), are included in
the dataset. Through data preprocessing we discovered that not all data points satisfied
carbon and oxygen balance. As a result we filtered out the data points that had a
negative computed oxygen flow at the outlet. The methane conversion is calculated as
sum of the yields given on the dataset as shown in (Eq.19). The remaining dataset
comprises 9271 data points, which are sufficient for further data-driven analysis. We
represent each data point by descriptors, including catalyst composition and process
conditions. The moles of metals M1, M2, and M3 per unit gram of support describe
the catalyst’s composition, while the support is represented as integer value. Reaction
condition’s descriptors are temperature Temp(°C), argon flow (Fly,), methane flow
(Fon,) and oxygen flow (Fp,). All the data points are grouped by the contact time
(CT) of 0.75 , 0.50 and 0.38 (seconds) given on the dataset.

4. Results and discussion

4.1. Performance of the neural network model

Mean absolute error (MAE), the root mean square error (RMSE) and (R3) score on the
testing dataset are shown in Table 1. The parity plots are in the supporting information
(Figure S1). As we can note, the Ry score for all the predicted yields and conversion is
higher than 0.85, indicating that our deep neural network model is able to capture the
relation between descriptors sufficiently. The benefit of developing this model is that it
can be used to evaluate the reaction kinetics of a catalyst of interest for a given CT, as
well as the effect of various material components on the reaction rate. We note that we
use four blocks to train data points with CT = 0.38s, five blocks for data points with
CT= 0.5s and seven blocks for CT= 0.75s (i.e., each block roughly corresponds to 0.1s;
there is a small discrepancy for the smallest and largest CTs but this does not seem to
substantially affect our model performance).

4.2. Understanding intra-reactor variations

We then used this model to analyze one of the most promising OCM -catalysts,
Mn — NayW04/Si0,, which has attracted a lot of attention due to its relatively high
stability and selectivity for Cy products, viz. ethane (CyH,) and ethylene (CyHg)[13].
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Table 1: Results of the model on testing dataset. Mean absolute error(MAE), Root mean
squared error(RMSE) and R, score which represents the coefficient of determination.

Predicted variables MAE RMSE R; score
Methane conversion (z¢p,) 1.6754  2.53 0.93
Ethylene vield (yc, s, ) 0.7056  1.02  0.89
Ethane yield (yc,m,) 0.3006  0.44 0.87

Carbon monoxide yield (yco) 1.2940  1.91 0.88
Carbon dioxide yield ( yco,) 0.6637  1.15 0.88

Figure 2 shows the variation of conversion of methane and the yields of the different
products along the reactor for this reference catalyst at various temperatures (Figures
S2/S3 show the flows of these species on two different catalysts). Clearly, the majority
of the conversion occurs in the first one-third of the reactor; therefore, the system
likely reaches near equilibrium early on. The conversion of methane increases with
temperature as expected while the behavior of the yield curves are not all monotonous.
For instance, the yield of ethane increases going from 700°C' to 800 °C', however, it
drops significantly upon increasing the temperature to 900 °C', indicating that ethane
is getting further converted. On the other hand, while ethylene yield also increases
from 700 °C' to 800 °C' and then drops at the higher temperature, the reduction is
rather small indicating that some of the ethane is undergoing oxidative dehydrogenation
to produce ethylene. The oxidation product CO increases substantially with increase
in temperature, indicating clearly that methane gets converted into CO directly or
indirectly (i.e., via combustion of ethane and ethylene). The formation of carbon dioxide
increases from 700 to 800 °C' but then drops at higher temperature perhaps because of a
decrease in oxygen concentration in the reactor (consumed due to the production of CO
and ethylene). This nonlinear behavior of the yields is clearly due to the complicated
network of reactions involved in oxidative coupling.

Figure 3 plots C2 selectivity (0 = 100(yc,n, + Ycons)/Xcn,)) and the ratio of
ethylene to total C2 (p = 100yc, a1,/ (Ycwm, + Yoo hs)) Within the reactor for the reference
catalyst. At 750 °C, we can note that the C2 selectivity remains largely constant at
around 55% although there is a small increase in the middle of the reactor (and a
subsequent decrease). On the other hand, the ratio of ethylene to C2 keeps increasing
along the reactor to reach 62%, indicating that more ethylene is formed via oxidative
dehydrogenation of ethane along the reactor. Therefore, while the bulk of the conversion
of methane to Cy occurs early on, the second half of the reactor enables consolidation
of the products and, thereby, the production of more olefin. Similar plots for other
catalysts are shown in the supporting information (Figure S4-9); it can be noted that p
keeps increasing in all cases while o often remains constant or drops (the drop specifically
indicates potential oxidation of C2 products). While these observations offer mechanistic
insights, we can further posit that inclusion of a dehydrogenation catalyst that is not
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poisoned by gas phase byproducts of OCM at the end of the reactor may further increase
selectivity to the olefin.

4.3. Catalyst screening

The advantage of a neural network model for the rate is that we can use the model
to consider the effect of changing the catalyst and operating conditions on the product
yield and selectivity. To this end, we considered three case studies.

First, considering Mn — NasW0O,/SiO, as a reference catalyst, we investigated
the local sensitivity of the catalyst to changes in the metal (M1, M2, and M3) and the
support, changed one at a time. Note that not all combinations considered in the local
sensitivity analysis were actually experimentally examined. The reaction condition is:
1123.15 K(850°C'), 10.5 ml/min methane C'Hy flow rate, 0.75 ml/min oxygen O, flow,
10 ml/min Argon Ar, and CT = 0.1 (i.e. one neural network block). For this setting,
the reference methane conversion Xcp, is 6.4% and the C2 yield is 5.5%, with the rest
being oxidation products.

Figures 4 and 5 show the effect of varying the metals and the support of the catalyst
on methane conversion and C2 yield respectively. It can be seen that the reference
catalyst is pretty robust to local variations. However, our results indicate that changing
M1 from Mn to Ti will slightly improve methane conversion but will not affect C2
yield (indicating that the selectivity will be lower). Changing M2 will have significant
negative effect on methane conversion and C2 yield, indicating that Na is a the local
optimal choice. Finally, changing the support to TiO, seems to improve both conversion
of methane and the yield of C2 products.

Second, having looked at local sensitivities of the reference catalyst, we considered
the effect of having two catalyst beds in a reactor to identify potential cases of synergies
between catalysts. Only 59 choices considered in the high throughput data set were
considered; therefore, we looked at about 59 - 59 = 3481 combinations. The reaction
conditions are essentially same as before (except for CT): 1123.15 K(850°C'), 10.5
ml/min methane C'Hy flow rate, 0.75 ml/min oxygen O, flow, 10 ml/min Argon Ar,
and CT = 0.1 of each catalyst (i.e. two neural network blocks, one for each catalyst one
after the other). We consider the case of only having Mn— Nay;W0,/SiO, catalyst with
CT = 0.2 as the reference. Figure 6 shows a scatter plot of the predicted conversion and
C2 yield for these combinations. The red box encompasses all combinations that lead
to higher yield than the reference. The table 2 shows the top performing candidates
(vis-a-vis the reference at the bottom) in terms of the yield of the Cy products. Clearly,
there are a few combinations involving the reference catalyst that can improve the
yield compared to the case with only one catalyst; indeed, while some of the catalysts
individually perform worse than Mn — NaysW0O,/SiOs with regard to C2 yield (e.g.
Mn — NaysW0O,/SiCnf), they can, in combination with other catalysts, actually lead
to improved yields than the reference; this indicates potential reaction engineering
optimizations with exiting catalysts. To understand this synergy, we report the C2
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yield and methane conversion for each of the individual catalysts at CT=0.2. For the
first combination shown in Table 2, viz. Mn—NasWO4/TiOy+Mn—Nay;W0O,/SiCnf,
the methane conversion of the first catalyst (12.68%) is higher than that of the second
catalyst (11.07%) and the combined system (11.65%), however, its selectivity (i.e., the
ratio Xy%;) is 75%, which is lower than that of the second catalyst and the combined
bed (both about 83%). That is, combining a more active catalyst with one that is
more selective leads to better performing catalytic system than using either catalyst
would allow. A similar explanation can be provided for the other combinations in
Table 2). This promising strategy of mixing catalysts to exploit synergies need further
experimental validation. The complete list of 3481 catalysts considered here is given in

the supporting information.

Table 2: Top performing catalyst combinations for a two-bed catalyst system (the
reference catalyst at the end provides a baseline). The operating condition is: 1123.15
K(850°C"), 10.5 ml/min methane (C'H4) flow rate, 0.75 ml/min oxygen (Os) flow, and
10 ml/min Argon (Ar) and for each catlayst (for a total contact time of 0.2). For easy
comparison, the values of the Cy yield (yc2) and methane conversion (Xcp,) for each
of the catalysts are reported at the same conditions and CT= 0.2

Catalyst 1 Catalyst 2
Catalyst 1 Catalyst 2 yoce Xcu, vyo2 Xcm, Yc2 XcH,

Mn — NagWO4/TiOs Mn — NaaWO,/SiCnf 9.72 11.65 9.47 12.68 9.16 11.07
Mn — NagWO4/TiOy Mn — NagWOy/SiC 9.56 12.02 9.47 1268 8.54 10.14
Mn — NCL2W04/TiOQ Mn — Na2W04/SiOQ 9.54 12.31 9.47 12.68 8.72 11.51
Ti— NaWOy4/SiO Mn — NaaW0O,4/SiCnf 9.41 11.85 9.04 11.55 9.16 11.07
Mn — NagW04/Si0Oy Mn — NagW0O,/Si02 872 11.51 - - - -

Third, we expanded our search for optimal catalysts to compositions outside those
considered in the high throughput data set but using the same space of materials for
M1-M3 and the support. Specifically, we considered all permutations of catalysts within
our space of metals and supports (1951 - 10as2 - 3ps3 - 13support = 7410), keeping the same
relative concentration of M1, M2, and M3 as the reference catalyst. We evaluated
their predicted conversion and C2 yield at the same operating condition as above (but
assuming just one catalyst and a CT = 0.1). Figure 7 plots the yield and conversion of
all these catalyst choices. Clearly, there is substantial scatter in the data; while there
are some catalysts that seem to be significantly more active than the reference, their C2
yields are much lower indicating that these catalysts tend to lead to overoxidation. Few
catalysts showed higher C2 yield than the reference. These are in the region bounded by
the red box in figure 7 and the top five are tabulated in table 3. However, it is important
to note that all of these (except Nd — NasWO,/SiC) have C2 selectivity equal to or
lower than the reference catalyst Nevertheless, these are promising candidates that can
be explored further in experiments. Furthermore, some combinations not containing
a support or one of the metals showed high activity, however, the reliability of these
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predictions is unclear. The complete list of 7410 catalysts considered here is given in
the supporting information.

Table 3: Top performing catalysts from the expanded single catalyst search (the
reference catalyst is listed at the end). The operating condition: 1123.15 K(850°C),
10.5 ml/min methane (C'H,) flow rate, 0.75 ml/min oxygen (Os) flow, and 10 ml/min
Argon (Ar) and CT = 0.1(i.e., 1 prediction block)

Catalyst Cy yield Xep,
Ti— NasW0O,/SiC 6.18 7.23
Ti— KWO0O,/SiC 5.97 7.27
Nd — NaysW0,4/SiC 5.96 6.84
Mn — KWO,/TiO, 5.95 7.47
Ti— KWO,/TiO 5.93 8.09
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Figure 2: (a) Conversion of methane X, 4, (b) Ethylene yield yc,m,, (c) Ethane
yield yo,m,, (d) Carbon monoxide yield yoo and (e) Carbon dioxide yield yco, for
three different temperatures(700°C, 800°C, 900°C') on the reference catalyst (Mn —
NayW04/Si05). The operating conditions for all the above temperatures are 4.8
ml/min methane (CH,) flow rate, 1.2 ml/min oxygen(O;) flow and 4 ml/min Argon
(Ar). CT =0.75 in all cases(7 residual blocks for each temperature).
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Figure 3: Ratio CoH,/Cy and Cy selectivity (both in percentage) at temperature
750°C' for the reference catalyst (Mn — NayW0O4/Si0,).For the given temperature the
operating conditions are 4.8 ml/min methane (C'H,) flow rate, 1.2 ml/min oxygen(Oz)
flow and 4 ml/min Argon (Ar). CT = 0.75 in all cases(7 residual blocks).
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Figure 4: The effect of varying metals M1,M2,M3 and support individually on the
methane conversion. The red line represents the reference point (Mn—Na2W04/5i02).
The reaction condition is: 1123.15 K(850°C'), 10.5 ml/min methane C'H, flow rate, 0.75
ml/min oxygen Oy flow, 10 ml/min Argon Ar, and CT = 0.1 (i.e. one neural network
block).
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Figure 6: Scatter plot of predicted conversion and yield of all combinations of the
two-catalyst beds using only those catalysts considered in the high throughput data set.
The red box encompasses those catalysts with higher C2 yield compared to the reference
Mn — NasW0O4/SiO, (red point). The operating specs are: 1123.15 K(850°C"), 10.5
ml/min methane (C'H,) flow rate, 0.75 ml/min oxygen (O) flow, and 10 ml/min Argon
(Ar) and CT = 0.2 in total for both catalysts (1 block for each catlayst ).
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Figure 7: A scatter plot of the predicted C2 yield and methane conversion of all
possible catalyst combinations but using only those metals and supports considered
in the original high throughput experimentation data set. The reference catalyst, Mn-
NayWO,/SiOs, is marked in red and the red box shown encompasses the space of higher-
yielding catalysts. The operating specs are: 1123.15 K(850°C'), 10.5 ml/min methane

(CHy) flow rate, 0.75 ml/min oxygen (O,) flow, and 10 ml/min Argon (Ar) and CT =
0.1.
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5. Conclusion & Future Work

Our work differs from previous models in the literature in that we employ high
throughput experimental data to learn a deep neural network model of the reaction
rate (as opposed to just the effluent composition) that is further constrained to satisfy
plug flow design equation. Using this model allowed us to understand how the conversion
of the reactant and the yield of the products changes along the reactor. This allowed
us to determine that, for the reference catalyst (Mn — NasW04/Si0s), most of the
methane that gets converted in the reactor does so in the first one-third of the reactor;
subsequently, the yield of ethylene increases while selectivity remains about the same.
This indicates that ethylene is formed from the dehydrogenation of ethane (through
oxidative conversion). The combustion products can arise from both methane and
C2 products. Local and global catalyst screening studies pointed out that while the
reference catalyst is locally near optimum, there are potentially other catalysts and
catalyst combinations (comprising of two catalyst beds) that can lead to better yields.
We posit that since the rate model was learned to satisfy basic underlying physics
of the reactor: (1) it is robust enough to be used to explore catalysts beyond those
considered in the experiments but within the larger space of material choices and (2) it
can be employed to consider novel catalyst combinations or different process conditions
that were not considered in the experiments. This work, therefore, represents a first
approach to developing domain informed deep learning models of reaction rate from
high throughput experiments; we posit that the domain information can further include
physical, chemical, and thermodynamic constraints that the model must additionally
intrinsically satisfy beyond the reactor design equation.
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