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Abstract. Numerous organismal traits, particularly at the cellular level, are likely to be under
persistent directional selection across phylogenetic lineages. For such traits, unless all mutations
affecting such traits have large enough effects to be efficiently selected in all species, gradients in
mean phenotypes are expected to arise as a consequence of differences in the power of random
genetic drift, which varies by approximately five orders of magnitude across the Tree of Life.
Prior theoretical work examining the conditions under which such gradients can arise focused
on the simple situation in which all genomic sites affecting the trait have identical and constant
mutational effects. Here, we extend this theory to incorporate the more biologically realistic
situation in which mutational effects on a trait differ among nucleotide sites. Pursuit of such
modifications lead to the development of semi-analytic expressions for the ways in which selective
interference arises via linkage effects in single-effect models, which then extend to more complex
scenarios. The theory developed clarifies the conditions under which mutations of different
selective effects mutually interfere with each others’ fixation, and shows how variance in effects
among sites can substantially modify and extend the expected scaling relationships between

mean phenotypes and effective population sizes.
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Much of evolutionary biology relies on comparisons of mean phenotypes from distantly related
species, followed by downstream attempts to develop plausible hypotheses for the observed
patterns, almost always in the context of adaptive explanations. As phylogenetic lineages become
isolated, their mean phenotypes are expected to diverge as a consequence of varying selection
pressures. However, under many circumstances substantial divergence can be expected even in
the face of identical selection pressures, owing to the vagaries of mutation and random genetic
drift. In particular, by altering the accessibility of mutations to selection, a change in effective
population size (N.) modifies the fixation probabilities of alternative alleles, with small N,
reducing the accumulation of beneficial alleles and increasing that of detrimental alleles. This
leads to the expectation that there can be gradients in the performance of traits across species
experiencing identical selection pressures, provided that the effects of all mutations are not so

large as to be equally visible to natural selection at all population sizes (Lynch 2018, 2020).

Here we explore the consequences of a key determinant of the drift barrier to the mean
performance of traits that has been ignored in prior theory development — the effects of a
distribution of sites with varying effects on the phenotype. A substantial fraction of earlier work
on the evolution of mean phenotypes assumes an infinite-alleles and/or infinite-sites model,
whereby each newly arising mutation arrives at a site previously fixed in the population, while
also assuming an absence of limits to the potential range of phenotypic variation (Kimura and
Crow 1964; Kimura 1969; Latter 1970; Lande 1975; Bulmer 1980; Lynch and Hill 1986). Owing
to its relative mathematical tractability, this model has played a central role in many areas
of population genetics, including the development of theory on the maintenance of variation,
the long-term response to selection, and the accumulation of deleterious mutations in various

contexts (reviewed in Walsh and Lynch 2018).

However, for a wide variety of problems, the infinite-sites model is unrealistic biologically,
and its utility as an approximation remains unclear. The concerns are numerous. First, the
mutational target sizes of the molecular/cellular constituents of phenotypic traits are quite
constrained in size. For example, an average protein is of order 1 kb in length, and specific
functional domains generally encompass < 20 amino acids. Many elements at the level of DNA
(e.g., transcription-factor binding sites) and RNA (e.g., microRNAs, and stems and loops of
larger RNAs) are substantially smaller. The sizes of effectively nonrecombining linkage groups

are often in the range of a few bp to several kb depending on the recombination rate. Second,
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the mutation rate is sufficiently high that in large populations, multiple independent mutations
will often cosegregate at individual nucleotide sites, which can confer no more than four allelic
types. Finally, the infinite-sites model has the undesirable property that the mutation spectrum
is independent of the genetic background, resulting in a situation in which mean phenotypes
can diverge without limits by either drift or directional selection. In reality, as more nucleotide
sites in a stretch of DNA are occupied by deleterious mutations, the segment-wide deleterious

and beneficial mutation rates must, respectively, decline and increase.

The approach taken here assumes a finite number of genomic sites contributing to the
expression of a trait, with mutations at different sites potentially having different magnitudes
of phenotypic/fitness effects, e.g., amino-acid replacement sites with different functional conse-
quences for the encoded protein, silent sites under varying levels of selection owing to effects on
mRNA folding and/or translational speed or accuracy, and noncoding sites with varying effects
on gene expression. There has been growing interest in this type of model (Cockerham 1984;
Charlesworth and Jain 2014; John and Jain 2015; Lynch 2018, 2020), but many problems remain

to be solved.

Linked sites with differing mutational effects can be expected to play a significant role in
phenotypic divergence owing to the multiple ways in which they interfere with each other in the
selective process. For example, beneficial mutations at sites with small effects will be unavailable
to selection if they arise in tight linkage with a segregating deleterious mutation at a site with
large effects (Nguyen Ba et al. 2019). On the other hand, if sites with small effects greatly exceed
the number of major-effect loci, beneficial mutations at the latter positions will have reduced
visibility to selection if they happen to arise on a relatively poor linked background associated
with segregating minor-effect sites. More generally, one can expect moderate-effect sites to
experience both types of problems, particularly if there is an inverse relationship between the
numbers of sites and their contributing effects. The overall process is further complicated by the
fact that recurrent purging of deleterious mutations has general effects on effective population
sizes, thereby influencing all other aspects of the efficiency of selection. There has been much
research on these matters as well (Gerrish and Lenski 1998; Johnson and Barton 2002; Campos
and Wahl 2010; Desai and Fisher 2007; Charlesworth 2013a; Good et al. 2014; Pénisson et al.
2017; Jain 2019), but almost all analyses have been restricted to the infinite-sites model, and

often to populations that are effectively infinite in size with all mutations having equal effects.
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The Model

We start with a simple model with L linked sites (factors), each with two alternative allelic
states, + and —, contributing positively and negatively to the trait, but with the magnitude of
+/— effects allowed to vary among sites (Figure 1). Such a model would apply, for example, to
a situation in which there is one optimal nucleotide at a site, with the remaining three having
equivalent fitness effects. Because the stretch of nucleotide sites under consideration is assumed
to be completely linked, the positions of the sites are irrelevant, and there can be a multiplicity
of functionally equivalent haplotypes (i.e., with identical numbers of + alleles) in each effect
class, which alters their ease of mutational accessibility (Lynch 2018, 2020). The site-specific
per-generation mutation rates from the — to the + states, and vice versa, denoted as ug; and

u19, respectively, will be assumed to be identical at all sites.

As a central goal is to determine the conditions under which gradients in mean phenotypes
can be expected under persistent directional selection in populations of different sizes, it is
desirable to perform analyses with biologically realistic combinations of parameter values. Across
the Tree of Life, N, generally falls in the range of 10* to 10°, and the mutation rate per nucleotide
site scales negatively with the ~ 0.76 power of N, (Lynch et al. 2016; Long et al. 2017; Walsh
and Lynch 2018). Thus, where computational work was involved, the following analyses were
performed under the assumption of a deleterious-mutation rate per site (which might be a
cluster of adjacent nucleotides) of 10~7 at an adult population size of N = 10*, such that
u1p = 0.00011N =076 which is approximately 10x the known rate per nucleotide site. With
this scaling, for the full range of population sizes employed here (N = 10* to 10°), the product
Nuqg then ranges from ~ 0.01 mutations/population/site/generation at the lowest to 0.10 at
the highest population sizes. It should be noted that the negative scaling of the mutation rate
with absolute population size (N) is likely shallower than that assumed here, as N./N for large
multicellular species (small N,) is likely on the order of 0.1, whereas that for microbial species
can be orders of magnitude smaller. In the end, we provide analytical approximations that make
no assumptions about the relationship between mutation rates and population sizes.

We evaluate the consequences of a wide range of linkage-block lengths, from 1 (free re-
combination) to 108, selection coefficients from s = 10~® to 10~*, and mutation biases towards

beneficial alleles 8 = wugp1/u10 = 0.10 to 1.00. Under this finite-sites model, the deleterious
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mutation rate per haplotype increases linearly with the number of sites harboring advantageous
alleles, whereas the beneficial rate scales in the opposite direction.

The absolute population size consists of N haploid individuals, so that de novo mutations
have initial frequencies of 1/N. Assuming independent fitness effects within and between loci (i.e.,
no dominance or epistasis), as done below, all results should extend to diploids by substituting
2N for N and 2N, for N,. As noted below, the effective population size (N.), which is < N,
governs the magnitude of random genetic drift, and is a natural outcome of the structure of the
linkage group, the strength of selection, and NV itself.

The following work is performed under the assumptions of a classical Wright-Fisher discrete-
generation model with sequential episodes of mutation, selection, and random genetic drift.
Under this model, allele frequencies fluctuate in time, but because mutations are reversible,
the system always eventually evolves to a quasi-steady-state distribution, provided the fitness
function remains constant. Our particular focus is on how long-term average frequencies of
beneficial alleles at various site types depend on the number and distribution of site types
within linkage groups, on the joint forces of selection and mutation bias, and in particular on
the population size. Related analyses have been performed by John and Jain (2015), Jain and
John (2016), and Jain (2019), but mostly under the assumptions of either an effectively infinite
population and/or an infinite-sites framework, and even in these cases, achieving reasonably
simple expressions has been difficult.

Owing to the stochastic nature of the underlying processes, computer simulations of these
processes must proceed for very large numbers of generations to achieve stable estimates of
means and variances. To obtain greater computational speed, for large population sizes, we
scaled the input parameters so as to keep Nujg, Nugr, and Ns constant, by reducing N and
increasing the mutation and selection parameters by the same factor, with constraints such that
N was always > 102, and s and Luo always < 0.1. Burn-in periods before compiling statistics
were typically at least 10° N generations, with the populations then being assayed every N/10
generations for 10 to 10® intervals. Simulations, which often extended for several days, were
carried out with a program written in C++ (freely available from the authors), in a form that
allows parallel analysis of multiple population sizes. Although we have evaluated a broad range
of population-genetic environments extensively by computer simulation, throughout we attempt

to provide heuristic semi-analytical expressions to address more general issues.
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Results

Sites with single effects. For baseline comparisons, we start with simplest situation of
sites with single effects, such that all beneficial mutations compete maximally with each other.
Expanding on prior work (Lynch 2020), new expressions are presented to explain the gen-
eral consequences of this extreme setting. The fitness function is assumed to be of the form
W(Lg) = (1 — s)le, where Ly is the number of deleterious mutations carried in a haplotype,
such that a maximum fitness of 1.0 occurs in individuals free of deleterious alleles, whereas with
L equivalent sites, (1 — s)” is the minimum fitness (for a haplotype containing only deleterious
alleles). Under this multiplicative fitness model, selection operates on each site independently,
and there is no epistasis. Although this leads to the expectation of no linkage disequilibrium
in populations that are infinite in size (Eshel and Feldman 1970), this is not the case in finite
populations.

The case of linkage blocks of length L = 1 is of special interest, as it represents the limiting
situation of free recombination, where selection is most efficient. For this situation, an analytical
expression for the long-term mean frequency of the + allele, here denoted p, has already been
developed by Kimura et al. (1963), and will not be repeated here, except to say that the fit to
simulated data is excellent across the full range of population sizes, selection coefficients, and
mutation rates. Although highly accurate, two undesirable features of the Kimura et al. (1963)
solution are the need to solve a confluent hypergeometric function by a series expansion and
the rather nontransparent interpretation of the formulations, and various approximations for
particular domains of Nujg and Ns have been given by Charlesworth and Jain (2014).

An alternative expression, which is quite accurate over the full range of parameter space
explored herein and extends to larger linkage blocks, can be obtained in the following way. In
Lynch (2020; Equation S10), it was noticed that if the within-population variance in numbers
of mutant alleles per individual is known from simulations, the long-term average frequency of
+ alleles is accurately described by

~_ ﬂ + (SAUi}/ulo) .

P 1+8-s L

Here, 02 is the mean within-population variance per locus (i.e., the total variance in number

of + alleles per individual divided by L), and A = 1 — (1/N,) is a measure of the resistance of
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the population to random genetic drift, with N, being the effective population size (Lynch et
al. 1993). Derived from a quantitative-genetic perspective, this expression evaluates p as the
mean allele frequency at which the selection advance per generation (a function of the genetic
variance) is matched by the decline associated with mutation. Others have used such a matching
approach to estimate the position of the leading edge of the full distribution (Goyal et al. 2012;
John and Jain 2015).

Letting S = 2N,s, by extension from McVean and Charlesworth (1999) and Long et al.

(2019),
s on (181 —e¥)
Ow = S(B + 6,5) ) (23.)
where
2 2Neu10ﬂ

In = 1+ B4 Neuio(1+ 68+ 32) (2b)

(from Lynch 2020; Equation S9) is the expected variance under neutrality (equivalent to half
the expected neutral heterozygosity per site). A key remaining issue is that unless Noujg < 1,
the effective population size (N, ), will be depressed below the absolute population size (N), by
selective interference among simultaneously segregating mutations. As a consequence, Equation
1 cannot be solved by substituting N, = IV, and a separate expression is needed for N..

There are many ways to define an effective population size, depending on the allelic behavior
of interest. One common consideration is the variance effective population size, i.e., the degree to
which nucleotide diversity is depressed at neutral sites linked to other sites under selection (e.g.,
Charlesworth et al. 1995; Kim and Stephan 2000; Good et al. 2014; Campos and Charlesworth
2019). However, application of estimates of N, obtained from simulations of standing levels of
variation at linked neutral sites to the preceding formulae yields a less than satisfactory fit to
observed levels of variation and mean allele frequencies.

An alternative approach starts with a consideration of the expected mean frequency of
beneficial alleles over sites under the assumption of no interference (Li 1987; Bulmer 1991), and
given the selection and mutation pressure (s and (), estimates the /N, necessary to account for

an observed equilibrium beneficial-allele frequency, p (Lynch 2020). The ratio N./N is then

o= (o) (57 ?

Using estimates of p from simulated data to solve for ¢, and substituting N, = ¢N in

the preceding expressions, Equations 2a,b provide excellent fits to observed within-population
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variances for the full range of parameters explored here, usually well within 10% of observed
values (Supplemental Figure 1), whereas Equation 1 yields estimates of p that are always within
3% of observed values (Figure 2). Notably, this approach was found to be valid for all linkage-

block lengths explored, from L = 1 to 10°. Note also that as Ns — oo,

5 —a+ Va2 +4sugg

02 ~
w 2s

(4)

where o = s + ug1 + u1p. In this case, provided s exceeds the site-specific mutation rates (ug;
and u1g), 02 also closely approximates the equilibrium frequency of a deleterious allele in an
infinite haploid (fully recombining) population, and more generally p(1 — p).

Although these observations justify the use of the correction factor ¢ to transform N into
the fixation effective population size relevant to equilibrium allele frequencies, validation of this
approach required the use of estimates of ¢ derived by computer simulations. For more practical
applications, we require an expression for ¢ from first principles. An excellent approximation
to ¢, as a function of the mutation rates, selection coefficient, number of loci, and absolute
population size, was obtained by inspection in Lynch (2020), albeit with a particular scaling
between the mutation rate and population size. In the Supplemental Text, we derive more
general expressions, accounting for the amount of selective interference imposed on the fixation
probability for beneficial mutations by linked sites.

Despite the complexity of the underlying issues, the derived expressions for ¢ generally
yield estimates that are within 30% (often considerably closer) of simulation results (Figure 3).
Although this is not a fully satisfactory outcome, given that ¢ varies 10,000-fold over the full
range of parameter space, the essence of the system is captured. This provides an upgrade to the
visual-fit interpretation of Lynch (2020), yielding insight into the scaling relationships between

¢ and the underlying population-genetic parameters. For example, for L > 10%,

oe (43(1 + ﬁ)¢max>1/3 |

(Ns)ZLu(n (5a)

with
1
1+ [2Ns/In{l + [s/(uo1)]}]

This expression shows that the reduction in N, caused by linkage scales inversely with the cube

(bmax = (5b)

root of the number of sites. It also shows that ¢ is a function of two other key composite

parameters: the ratio of the selection strength to the mutation rate to beneficial alleles, and
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the ratio of the selection strength to the power of drift in the absence of interference, i.e., for
large L,, ¢ scales with the ~ 1/3 power of s/ug1, and with the —2/3 to —1 power of N's with
increasing N's.

Summing up for the simplest situation in which all sites within a linkage block have equiva-
lent effects on fitness, contrary to the single-site expectations (Kimura et al. 1963), where there
is a quantum shift in the frequency of beneficial alleles with increasing population size around a
pivot point of Ns = 1, linkage reduces the gradient of response of p to N (Figure 2). Instead of a
shift from the neutral expectation of p to that expected under deterministic selection-mutation
balance over a window of just an order of magnitude of N, linkage can extend the gradient
to several orders of magnitude of N, with the effect becoming increasingly pronounced with
larger L. On the other hand, when viewed as a function of N, where the latter is derived from
the heterozygosity segregating at linked neutral sites, p is largely (but not entirely) a stepwise
function of N.s, as N, subsumes the influence of linkage interference. There is, however, some
additional influence of L in the region of N.s ~ 1 (Figure 4).

Finally, note that the preceding expressions also yield descriptions of the expected standing
levels of variation for quantitative traits under persistent directional selection (in this case an
exponential fitness function) with reversible mutation, a problem of long-standing interest in
quantitative genetics (Walsh and Lynch 2018). For example, simplifying from Equations 2a,b,
assuming unbiased mutation (8 = 1), the average genetic variance for a trait with L equivalent

loci with average squared allelic effect F(a?) is

A (125 ()
0% =L E(a®)- (%Ljr 3> , (6b)

for u = w19 = up1, and S < 4 and S > 4, respectively. These expressions show that under
selection, the genetic variance reaches a maximum at the point where N.s ~ 1, where the power
of drift and selection are essentially equivalent (Supplemental Figure 1). The genetic variance
initially grows with NV owing to the increase in number of mutating individuals in the population,
but beyond the peak, the deterministic force of selection overwhelms drift.

Even in the case of neutrality, there is a natural upper bound on the genetic variance,
owing to the finite number of effects per nucleotide site (here assumed to be two), with the

neutral variance in the case of = 1 being simply proportional to 2Nwu/(1 4+ 4Nw). Although it
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might be assumed that increased efficiency of selection (higher Ns) will always reduce standing
levels of variation, in fact when mutation is biased in the opposite direction of selection, the
genetic variance increases at an accelerating rate with .S up to ~ 4. This is because the conflict
between mutation towards — alleles and selection towards + alleles pulls the latter towards more

intermediate frequencies.

Sites with two effects. Having arrived at a reasonable understanding of the factors determin-
ing the mean and variance of traits in the simplest case of L equivalent sites, we now explore the
consequences of sites with variable fitness effects, starting with the case of just two site types to
help illuminate the general complexities that arise. Some prior work has been done in this area
(e.g., Johnson and Barton 2002; Desai and Fisher 2007; Pénisson et al. 2017; Jain 2019), but
again in the context of an effectively infinite population size and an infinite-sites model. Here,
we assume that the two site types have identical mutational features, while allowing for different
site numbers.

Results described in the preceding section show that when linked sites have single effects,
there is a smooth gradient in the expected frequency of favorable alleles with increasing popula-
tion size. For any particular s, the gradient with N becomes increasingly shallow with increasing
numbers of linked loci, owing to enhanced levels of selective interference, which causes an in-
creasing fractional reduction in the effective population size. This gradient becomes steeper and
is almost independent of L when reformulated as a function of N, rather than N.

However, when sites with two effects contribute to the expression of a trait, a qualitative
shift in the response of the mean phenotype to N, is expected, as the sites with larger fitness
effects will make a transition to high frequencies at a lower N, than those with small effects.
Moreover, a shift in the scaling of the fixation N, with respect to N can be anticipated owing
to the fact that once NN is high enough to enable all major-effect sites to approach fixation for
+ alleles, these sites no longer contribute much to selective interference.

Consider, for example, a trait having an underlying additive-genetic basis with two types of
sites: L) sites with major phenotypic and fitness effects ap; and sps, and L, sites with minor

effects a,, and s,,. The mean genotypic value is then
Z=c+ Lypmay + Linpmam, (7)

where pys and p,, denote the mean frequencies of the + alleles at the major and minor loci,
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and c is an arbitrary baseline constant. If s;; is substantially larger than s,,, beneficial alleles
at the major-effect sites will achieve near fixation at relatively low N, before the minor-effect
sites begin to respond to selection.

An example is shown in Figure 5, where the response of mean performance to the effective
population size in the single-effects case (equivalent to pys) is compared to that for cases in which
there are ten-fold additional minor-effect sites for each major-effect site, each with ten-fold lower
selection coefficients, i.e., L,, = 10Ly;, and sp; = 10s,,. In this figure, IV, is the variance effective
size inferred by the average level of nucleotide diversity at linked neutral markers, as this would
typically be the measure used in a population-genetics analysis. Assuming the phenotypic effects
are proportional to the selection coefficients, mean performance in the two-effects case is defined
by Equation 7, normalized by Lj;sy + LySm to give a maximum performance of 1.0 when
all sites are fixed for + alleles. In this example, with Ly;sps = LySm, half of the maximum
performance is determined by each class of sites. With a ten-fold difference in s between classes,
as N, increases to the point at which N.sj; exceeds 1.0, a shoulder appears in the response
profile because most major-effect loci are near fixation for + alleles, whereas the minor-effect
loci do not start to significantly respond to selection until N,s,, approaches 1. As a consequence,
whereas the dynamic range of performance extends over just one order of magnitude of N, under
the single-effects case, the gradient extends for two orders of magnitude of N, when substantial
numbers of minor-effect sites are present.

All of the issues raised in the preceding section on selective interference effects between
linked loci apply here, except that there is an asymmetry in the degree of selective interference
that depends on the relative abundance of the two site types. Most notably, from the standpoint
of major-effect sites, there is a remarkable simplicity with respect to the interference caused by
minor-effect loci (Supplemental Text). The interference of a single minor-effect locus imposed
on major-effect loci is equivalent to the influence of (s,,/sn)? of the latter (Figure 6). This
yields an overall level of interference operating on major-effect loci equivalent to that resulting
from

Ly~ L+ (8m/80m)* L, (8)
sites in the single-effects model. In other words, from the standpoint of a major-effect site, if
Sm/sy = 1/10, the addition of 100 linked minor-effect sites is required to shift the effective

amount of interference from that associated with Lj; to Ly + 1 major-effect sites. All of the
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machinery just introduced for estimating the behavior of linked major-effect loci can then still
be relied upon by substituting L3, for L. This scaling with the squared effect of the selection
coefficient can be roughly understood by noting that the probability of an establishment of
beneficial mutation of effect s is also proportional to s.

More generally, the overall fixation effective size of the population (which must be the same
for both site types within linkage blocks) is dominated by the sites for which the product L,s,
is highest, provided the population size is not so great that the categories in question are in near
selection-mutation balance (i.e., no longer influenced by the vagaries of random genetic drift or
selective interference). This will now be illustrated by considering three alternative domains of
relative values of Lyssp and Ly, s, (Figure 7).

First, for the extreme situation in which Lpssps > Ly, 8., mutations at the minor-effect
sites are subject to strong hitchhiking effects associated with the major-effect backgrounds upon
which they arise. However, the major-effect sites behave in accordance with the predictions
from the single-effects model, as they experience essentially no interference from minor-effect
sites. With complete linkage, the behavior of the major-effect sites then dictates the N, for the
entire linkage block. As noted above for the single-effect model, the fixation effective N, for
major-effect sites steadily increases with IV, to a degree that depends on L, but upon reaching
a critical N levels off as all such sites are close to pure mutation-selection balance, and then
enters into a pseudo-N. domain.

This pseudo-N, domain is purely a mathematical feature of the use of Equation 3 to de-
fine the fixation N.. As N reaches high enough levels that p approximates the level expected
under pure selection-mutation balance, absolute fixation of 4 alleles never occurs, although ge-
nealogical fixation does. As a consequence, the fixation N, levels off, as ¢max (Equation 5a)
declines. Although this pseudo N, is not a reflection of the actual N, in the large-N domain,
its deployment in the preceding mathematical expressions is required to obtain an acceptable
overall expression for pys;. The behavior of the variance N, shown in the right panels of Figure
7, yields some insight into the stochastic features of the population, as it qualitatively tracks
the behavior of the fixation N. (outside of the pseudo-N. domain), although overestimating
the latter. The variance N, always starts out as N, = N at Nsjp; < 1, is reduced relative to
N at intermediate N by selective interference, and then asymptotically returns to N, = N for

Ns,, > 1.
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In the example shown, because s,,, = s37/10, the minor-effect sites do not begin to respond
to selection until NV is an order of magnitude beyond the point at which the major-effect sites
are subject to selection. At this point, the governing fixation N, is reflected in the behavior of
the minor-effect sites, until they too enter their pseudo-N, domain at very large N. We have
not been able to achieve a fully mathematical description of this transitional behavior in the
minor-effect sites in this limiting case of Ly;spr > LySm, but an intuitive understanding of the

processes involved can be understood as follows.

One might expect the fixation N, for minor-effect alleles to increase to /N once the determin-
istic regime for major effects has been reached, as in this case there is a just a single minor-effect
site. However, from the behavior of the variance N, it can be seen that the system does not
return to N, = N until N is well beyond the point of entry of the major-effect sites into the
deterministic regime. Selective interference from the major-effect sites still occurs (to a degree
that increases with Lys), owing to the background variation among individuals with respect to
major-effect alleles. For example, at N ~ 10°, in this particular set of simulations, the mutation
rate to deleterious alleles ~ 1078, so with sy; = 1072, the equilibrium frequency of deleteri-
ous alleles ~ 1073, With Lj; = 103, there is then an average of 1.0 deleterious major-effect
mutations per individual, and as the distribution among individuals is expected to be Poisson,
~ 37% of individuals will be free of deleterious major-effect mutations. Only in this subset of
individuals are beneficial minor-effect mutations able to progress towards fixation, as all lineages
containing major-effect deleterious alleles will be subject to purging from the population (unless
a reversion mutation is acquired), and even then on a large Lj; background, some of these
can become victims of subsequently arriving linked major-effect deleterious mutations. Thus,
if Ly is sufficiently large, trapping of beneficial minor-effect mutations can impose selective

interference effects even in the deterministic regime for major-effect sites.

We next consider the situation in which L,,s,, = LasSy, such that there is an inverse
relationship between the number and selective effects associated with the two site types. In this
case, at sufficiently small IV such that the minor-effect sites are effectively neutral, the fixation
effective population size is a function of Ljssy;. A departure between the estimates of ¢ using
major- vs. minor-effect sites only arises at larger N as the major-effect sites enter the pseudo-N,
domain (Pmax < 1), while the minor-effect sites remain under the stochastic effects of drift. At

this point, the fixation N, of the minor-effects sites is primarily a function of L,,s,,, until they
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themselves enter their pseudo-IN. domain. This kind of domain shift will become more blurred
as Sy, — S, in the limit becoming equivalent to the single-effects model with L = Ly; + L,.
Finally, for the case in which the minor-effect sites greatly outnumber those for major
effects, such that L,,s,, > Lj;sy, the former are largely unaffected by interference from the
major-effect sites, rendering the behavior of the minor-effect sites very close to that observed in
the single-effects situation as defined by L,, and s,,. In this case, the behavior of the major-
effect sites is also essentially defined by the minor-effect loci, as L, = Las + (Sm/sm)?Lim ~
($m/$3r)* L. In both this and the prior case, background trapping of minor-effect alleles plays
a negligible role in the pseudo-N. domain for the major-effect sites because much to most of the

background variation is associated with the minor-effect sites.

Generalization to multiple site types. With sites with additional effects, one can anticipate
an extension of the features noted above. From the standpoint of the major-effect loci, the
preceding logic can be extended to an arbitrary number of effects, yielding an interference

effective number of major sites equivalent to

Ly =Ly + > (si/sm)*Li (9)
i=1

where L; is the number loci with effect size s; < sps, and n is the number of effect classes. For
many polygenic traits, the distribution of site types may be nearly continuous in form, in which
case this expression could be replaced by an integration over the full spectrum of site types.
Examples are given in Figure 8 for the case of three effects with an inverse relationship
between site numbers and effects, such that L,s, is constant, and with ten-fold differences
in s; between site types. In this situation, the summed effects of sites within each of three
classes contribute equally to the total performance of the trait (assuming additive phenotypic
effects across sites). As the population size declines, the site types with smaller s progressively
accumulate deleterious mutations, yielding a gradient for mean total performance that is nearly
continuous over several orders of magnitude of N. Increasing the number of sites within linkage
blocks (while keeping the ratios of numbers of site types constant) has a greater effect on the
sites with small effects, reducing the steepness of the performance gradient. The precise form of
the scaling would be altered with different distributions of effects, which would shift the relative

contributions of the three types to mean performance.


https://doi.org/10.1101/2022.09.27.509694

bioRxiv preprint doi: https://doi.org/10.1101/2022.09.27.509694; this version posted September 28, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

14

DISCUSSION

The primary motivation for this work is the idea that quantitative traits under persistent direc-
tional selection of the same form in different phylogenetic lineages should exhibit gradients in
mean phenotypes associated with differences in effective population sizes. Such an expectation
arises for the simple reason that N, dictates the efficiency of natural selection, and should hold
generally provided that a significant fraction of mutations with phenotypic effects have selection
coefficients within the lower and upper bounds of 1/N, across phylogenetic lineages. The fact
that N, ranges from 10* to 10° among phylogenetic lineages, scaling negatively with the ~ 0.2
power of body mass (Lynch and Trickovic 2020), indicates that the complete absence of the
effects of drift on mean phenotypes requires an absence of mutations with fitness effects in the

range of 1072 to 10~%, which seems highly implausible.

Prior theoretical work provided a framework for considering the fundamental population-
genetic processes influencing the generation of such gradients, including the effects of linkage
block size (an analog of the level of recombination), but under the restriction that all mutations
have comparable effects on phenotypes and fitness (Lynch 2020). Here, we have provided more
general mathematical approximations for the single-effects model, and used these to further un-
derstand the more biologically realistic situation in which genomic sites have different effects.
Ultimately, we would like to make statements on the quantitative scaling of mean phenotypes
with N, based on first principles, but this will require detailed information on the distribution
of mutational effects summarized over different site types. Unfortunately, the fraction of this
distribution that is of most relevance resides within the 1/N,. bounds noted above. Although
likely quite abundant, mutations with such small effects are highly impenetrable to direct enu-
meration (Walsh and Lynch 2018; Lynch and Ho 2020). For now, we at least have a framework

within which to derive predictions under specified genomic and population-genetic conditions.

For example, although a fully general description of the steady-state distribution of mean
phenotypes under a variable-effects model remains to be developed, the preceding results provide
the basis for a heuristic argument as to how mean phenotypes under persistent directional
selection should scale with N,. To clarify the main points, the following qualitative discussion

relies on order-of-magnitude arguments, and starts with a simple additive genotype-to-phenotype
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mapping,
z= c+kZL+7isi, (10)

i=1

such that the expected trait value is a linear function of the number of plus alleles at each of n
types of sites, each weighted by the selective advantage, with ¢ and k being arbitrary constants.
We wish to determine how the mean genoytpic value Z scales with N.

As noted above, N, will be largely governed by the sites with the largest fitness effects,
unless there is a much stronger than exponential increase in the numbers of sites with diminishing
effects. Supposing the sites with the strongest effects have s = 107, then below N, = 104, all
such sites will have expected + allele frequencies at the neutral expectations defined by the level
of mutation bias. Above N, = 109, all such sites will be essentially fixed for + alleles, with most
of the gradient residing in the vicinity of N, ~ 10°. Likewise, sites with s on the order of 10~°
will exhibit a gradient in the vicinity of N, = 10°, with + alleles just starting to accumulate
at N. ~ 10° and becoming essentially fixed at N, ~ 107. The same argument applies to sites
with all lower-order effects, with each order-of-magnitude effect exhibiting a gradient roughly
corresponding to where the prior and subsequent ones exhibit maximum responses to N..

The precise form of the gradient of Z will depend on the relative incidences of site types and
on the form of the genotype-to-phenotype map. For example, for the linear mapping in Equation
10, if the number of sites of type i is inversely proportional to s; (i.e., an essentially exponential
distribution of site types), then the contribution of each site type to total performance will be
equal over all site types, as in Figure 8, and there will be a continuous gradient over N, in
the range of 1/S40 t0 1/Smin. (The small wobbles in the gradient shown in Figure 8 would
become essentially invisible with the inclusion of more fine-grained effects). Deviations from an
exponential distribution of site types would alter the gradient accordingly, as would a different
weighting scheme for the genotype-phenotype map. For example, if there was a paucity of
intermediate-effect sites, there would be a shoulder in the response to N., as nearly all large-
effect sites would become fixed before N, reaches a high enough level for small-effect sites to
respond to selection.

While not a formal mathematical statement, this heuristic argument provides a roadmap
for thinking about how phenotypic gradients should scale with effective population sizes for
traits under similar forms of directional selection across species. If, for example, there was an

exponential distribution of sites with different fitness effects over five orders of magnitude of s,
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a gradient in performance would be expected over five orders of magnitude of N.. The actual
“power-law” scaling would depend on the scale upon which performance is measured and on the
genotype-phenotype map. For a multiplicative mapping function, on a logarithmic scale (the
usual procedure in studies of allometry), the expected slope might approach +1, but could be
shallower in the case of large linkage blocks, which would enhance the level of selective inter-
ference. In contrast, the linear mapping function used above might lead to nonlinear allometric
scaling, depending on the distribution of site types.

There is considerable room for more theoretical work in this area. For example, as a
surrogate for the level of recombination, we have relied on the concept of a linkage block (Good
et al. 2014), which greatly facilitates computational study in the domain of large L, and also eases
a number of aspects of the mathematical analysis. Although we do not expect qualitative changes
in the conclusions to result from a more fully implemented recombinational model, work of this
nature is desirable. Most notably, we have focused on a single fitness function (albeit a common
one used in studies of deleterious-mutation accumulation), the exponential (or multiplicative)
model, wherein there are no epistatic effects of mutations, as each additional deleterious mutation
reduces fitness by a fractional amount s regardless of the genetic background. Variants of this
model have been invoked to explain how drift barriers may influence the phylogenetic distribution
of mutation rates (Lynch 2011; Lynch et al. 2016) and maximum growth rates (Lynch et al.
2022), both of which are plausibly under persistent directional selection in most lineages. Other
types of traits that might be explored in this regard are cell biochemical and/or physiological
processes shared across the Tree of Life.

Future exploration will need to consider Gaussian and mesa fitness functions, which do
introduce epistatic effects. The mesa fitness function (with a plateau) imposes pure directional
selection with diminishing fitness increments as the trait approaches the asymptotic optimum,
whereas the Gaussian fitness function provides a setting in which traits can be under stabilizing
selection for an intermediate optimum. In the limit, as the optimum falls far out of the range of
obtainable phenotypes, the Gaussian fitness function converges on the exponential model used
herein.

Notably, although a substantial body of work in evolutionary quantitative genetics has
been developed under the assumption of a Gaussian fitness function, and many evolutionary

biologists operate under the assumption that such stabilizing selection is pervasive, a broad
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survey of estimated fitness functions raises questions about the generality of this model and
certainly leaves open the possibility that persistent directional selection is a common force
(Kingsolver and Diamond 2011). In the field of evolutionary ecology, arguments for suboptimal
performance traditionally invoke limitations owing to constraints / tradeoffs between traits,
which are typically assumed but seldom verified empirically. Here, we have shown that persistent
under-performance can be expected whenever a significant fraction of genomic sites contributing
to a trait harbor preferred alleles with small selective advantages, and that this effect will become
more pronounced when mutation is biased in the direction of deleterious alleles. Some progress
has been made on the study of the expected evolution of mean phenotypes under these alternative
models (Charlesworth 2013b; Lynch 2018, 2020), but again under the assumption of mutations
with fixed effects. Our results show that substantially different conclusions may arise under

more biologically realistic scenarios when genomic sites are variable in their effects.
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Figure 1. Schematic for the general approach. Here, there is a linkage block (experiencing no
recombination) containing 22 sites, with an approximately exponential distribution of numbers
of sites with three effects (one site with major effects, surrounded by five of medium effects, and
16 of small effects). Three of the many possible haplotypes are shown, with solid and open balls
denoting + and — alleles. Given the assumption of complete linkage, the ordering of site-specific
haplotypes is irrelevant, and in this case, haplotypes 2 and 3 are functionally equivalent, as they
contain identical numbers of sites with + alleles for the three types of effects. The pattern of
mutation is haplotyvpe dependent, being a function of the numbers of + and — alleles at each
type of site; the rates of the total set of possible mutations for haplotype 1 are given in the
bottom panel, with ug, and w9 being the mmtation rates from — to + allelic states, and vice
versa. It is assumed that the site-specific mutation rates are low enough that individuals incur

no more than a single mutation per generation.
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Figure 2. Relationship between the average frequency of advantageous alleles and the popula-
tion size N (x axis), selection coefficient s (different panels), and linkage-block length L (colored
lines within panels) under the assumption of equal fitness effects across loci. The lines associated
with each set of points are the theoretical predictions obtained with Equations 1, 2a, and 2b,
using the fixation N, derived from computer simulations. The mutation bias in all panels is

3 = 0.33, so the neutral expectation at small N is p = 0.25.
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Figure 3. ¢ = N./N as a function of Ns for three different linkage-block lengths (L = 102,
10%, and 10°%; columns) and three levels of mutation bias (3 = 1.0, 0.33, and 0.1; rows). The
data points were obtained after applying estimates of § from computer simulations to Equation
3, whereas the colored lines (for three values of s in each panel) were obtained using expressions
derived in the Supplemental Text; here solid lines are the full solutions to a transcendental equa-

tion, whereas the dashed lines are obtained from first-order approximations (closed expressions)

— Equation A1l for L = 100 and Equation A10 for L = 10* and 10°.
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Figure 4. Response of the mean frequency of the beneficial allele as a funetion of the variance

effective population size (N. as determined from the long-term average diversity of variation

at linked neutral sites) and of the product N.s, over a six order-of-magnitude range for L (the

number of linked sites) and a four order-of-magnitude range of s.
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Figure 5. Response of mean performance to N. (as determined from the nucleotide diversity
at a linked neutral site) for the case of one- and two-effect models. In the two-effects case,
the minor-effect loei have one-tenth the selection coefficient as that for the major-effect sites
(sar = 10s,,) but are 10x more abundant (L,, = 10Lys), such that the total potential selective

load is the same for both types of sites, i.e., Lyrsy = LS.
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Figure 6. Demonstration that the effects of selective interference of a minor-effect site on the
equilibrium frequencies of beneficial alleles at major-effect sites is equivalent to adding (s, /s1r)?
major-effect sites to the genome. The values on the o axis refer to results under the single-effects
model with various numbers of loci with major effects (Ljs in the insets) and no background
minor-effect sites. The values on the y axis refer to results when a single major-effect site
is surrounded by L,, minor-effect sites. Each point denotes the equilibrium mean frequency
of + alleles under both conditions. In all cases here, s, /sy = 0.1, and the prediction is
that (spr/sm)? = 100 minor sites have the same influence on the equilibrium + major allele
frequency as the addition of one more major-effect site. Computer simulation results are given
for 21 different population sizes for each set of conditions. For every set of points on the = axis
with Ly major-effects sites alone, there is a parallel set of points on the y axis with 100L

minor-effect sites but just a single actual major-effect site.
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Figure 7. Relationship between fixation (left) and variance (right) effective population sizes to
absolute population sizes, for three relative conditions involving Lassy and Lysm. Left) Open
and closed points denote results for major- and minor-effect sites, substituting in the mean
frequencies of allelic types obtained by computer simulations into Equation 3 and multiplying
hy N. Dashed lines denote results obtained with Equation 3, using: L = Ljs and s = sj7 in
the top panel; L = Ly; and s = sy in the lower left and L = L, and s = s, in the upper
right in the middle panel; and L = L,, and s = s, in the hottom panel. Solid lines simply
join the connecting points. Note that regions of the plots where the fixation N, levels off are
within the pseudo-N, domain, where sites have nonzero equilibrium frequencies of deleterious
alleles defined by selection-mutation balance. Right) Solid points give the variance effective
population sizes obtained from simulations of linked neutral sites and factoring out the mutation
rate from the mean observed neutral heterozygosity to obtain N.. Dashed lines are taken from
the right panels to compare the variance and fixation effective sizes. In all eases, the black

dashed line denotes N, = N.
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Figure 8. Response of mean + allele frequencies to population size (N) for the case of the three
site types, with an inverse relationship between the number of sites and the selective effects
within a class, such that L.s, = constant, with a ratio of 1:10:100 for major:medinm:minor-
effect sites. The mutation bias towards + alleles is set to 3 = 0.33. Two situations are shown,
with the major site type being present in one (solid points) or ten (open points) copies. Mean
performance is obtained by extension of Equation 7 to three site types, normalized by the value

expected when all sites are fixed for + alleles.
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SUPPLEMENTAL MATERIAL

Reduction in N, by selective interference: single-effects case. Observations reported
in the text justify the use of a correction factor ¢ = N./N to transform N into a fization
effective population size relevant to the evolution of mean allele frequencies, validation of this
approach required the use of estimates of ¢ derived by computer simulations. For more practical
applications, we require an expression for ¢ from first principles. A heuristic approximation can
be obtained by considering the number (I) of competing mutations that a mutation destined to
fixation must contend with during its sojourn through the population. Gerrish and Lenski (1998)
and Campos and Wahl (2009, 2010) used such an approach to evaluate the number of newly
arising mutations with advantages exceeding that of a target mutation, under the assumption
of an exponential distribution of mutational fitness effects, but here all newly arising beneficial
mutations have identical effects.

We start with the Li-Bulmer equation for the expected frequency of a beneficial allele under

sequential fixations
BGQNGS
b= 1 +562Ne87 (Al)
where 8 = wg1/uio is the ratio of mutational pressure towards the beneficial relative to the
deleterious allele, s is the selective advantage of the beneficial allele, and N, is the effective

population size. Rearrangement of Equation Al leads to

o= %= () m (57) "

Although Equation A1l implies that p asymptotically approaches 1.0 as the population size

approaches infinity, in this extreme, deleterious alleles will actually be maintained at a low

frequency by mutation-selection balance, such that

. (1 —+ B)ulo + S(]. — U()l) — \/[(1 —+ 6)U10 + 8(1 — U()l)P — 47.1,105.

p=1 A
p 55 (A3a)
Provided the strength of selection exceeds uig,
~ Ug1 + S
~—_— A3b
P Upr +uip + 8 ( )
Substituting Equation A3b into A2 then yields an upper bound to ¢,
1
Pmax = (A4)

1+ [2Ns/In{1 + [s/(Bu10)]} ]’
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where a slight modification has been made by adding 1 to the denominator to account for the fact
that ¢max must asymptotically approach 1 as N — 1 declines (as this eliminates interference).
Consistent with this expression, the simulation results show that once Ns exceeds 10, ¢ becomes
inversely proportional to Ns, and only weakly dependent on the composite selection-mutation
parameters subsumed into s/(Buig) (Figure 4). To allow for the further depressive effects of

selective interference from linked mutations, we use

' Gunax

¢_1+I,

(A5)

where it is assumed that when combined with I interfering mutations, a target mutation destined
to fixation in the absence of interference has its probability of fixation reduced by factor 1/(1+1).
This approach ignores the possibility that mutations interfering with the fixation of a focal
beneficial mutation can also interfere with themselves.

We now proceed towards the development of an estimator for I, progressively accounting for
the number of potentially interfering mutations arising during a focal mutation’s sojourn through
the population, along with the magnitude of the effect per interfering mutation. Let 7 be the
mean time to fixation of a beneficial allele in the absence of competition from other segregrating
mutations. During this period, additional beneficial mutations will arise in individuals outside of
the focal lineage at average rate LBu1o(1 — p*), where p* denotes the expected mean frequency
of + alleles. The average per-generation number of individuals in the target lineage is N/2
because the frequency of the lineage under consideration (assuming it does indeed fix) increases
from essentially zero to one. Only a fraction ps(s) of all newly arisen beneficial mutations are
destined to fixation, and it is this subset that presents the most potential interference to the
focal mutation. Moreover, the strength of selection operating on a mutation must be on the
order of the magnitude of genetic drift or greater if it is to compete for fixation; and to account
for this, we use the weighting term N.s/(1 4+ N.s), which asymptotically approaches zero as
N.,s — 0 and 1.0 as N.s — oo.

Taking all of these factors into consideration, the expected number of competing mutations

is then proportional to the product of terms,

N,s

.. N
I~7-LBu(l—p )'*-pf(S)'m' ,

. (46)

where
1— e—QNes/N
ps(s) = 1 _ o—2Nes (AT)


https://doi.org/10.1101/2022.09.27.509694

bioRxiv preprint doi: https://doi.org/10.1101/2022.09.27.509694; this version posted September 28, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

32

is the probability of fixation of a newly arisen mutation with fitness benefit s (Kimura 1983),
and k is a correction term to account for the fact that only a fraction of newly arising mutations

emerge in backgrounds with high enough fitness to compete with the target mutation.

Although k£ must depend on the distribution of fitness in the population, a rough starting
point is £ = 0.25, as any mutant haplotype destined to fixation by positive selection must
almost certainly be in the upper half of the distribution, and to be a successful competitor,
any outside mutant clone must then be in the upper half of the upper half. Previous workers
(Gerrish and Lenski 1998; Campos and Wahl 2009, 2010) have let & = 1, which applies if
prior to the emergence of competing mutations, the population consists of just two haplotypes,
one with and the other without the target mutation. In principle, a more rigorous approach
might be possible if the form of the equilibrium distribution were known, but although this is
often assumed to be Poisson, there are subtle and significant deviations from such behavior in
numerous contexts (Gessler 1995; Goyal et al. 2012; Jain and John 2016), and k ~ 0.25 will
be shown to be a reasonable approximation for an equilibrium population. Note also that the
matter of lineage contamination, i.e., the addition of secondary mutations to lineages en route
to fixation (Pénisson et al. 2017) has been ignored here, as the population is in equilibrium, and
all competing mutant lineages are presumably confronted with the same secondary-mutation
issues; in effect, as N — oo, all mutant lineages approach selection-mutation balance, rendering

a near neutral situation with respect to lineage competition.

Aside from the inclusion of the factor k&, our computation of I differs in several significant
ways from prior applications. First, rather than approximating the fixation probability as 2s,
we implement the full formulation for py(s), as the former yields inappropriate estimates when
N.s < 1 and ignores the fact that N, < N, the very issue that we are exploring. Second, prior
applications have not included the weighting term noted above, which also seems essential for
N.s < 1, for which the magnitude of individual interference must be small. Third, the estimation
of ¢ is quantitatively quite sensitive to the definition of 7, and whereas previous authors have
used the deterministic approximation 7 = 2In(N)/s, this can give wildly unrealistic values in
certain domains of parameter space, including times in excess of the neutral expectation of N,
generations. Charlesworth (2020) provides a broad overview of estimators of 7, and offers a
measure that explicitly accounts for the stochastic and deterministic phases of the process, but

implementation of his method in Equation A6 consistently led to significant underestimates of
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I, whereas a derivation of Gale (1990), modified for haploids, was more suitable,
3.927 + 21In(N,s/2 2
_. +2WNes/2) o, 2 (A8)
S Ns

Note that the expressions of Gale (1990) and Charlesworth (2020) can yield negative estimates
of 7 when N.s < 1, in which case we assumed the neutral expectation of 7 = 2N, generations.
Finally, Equation A6 requires an expression for p* (a concern given that p* is the allele frequency
that we are ultimately trying to determine), but here we utilize Equation Al as a first-order
approximation.

Equation A5 is a transcendental function, as several of terms entering I are complex func-
tions of N, = ¢ N — the fixation probability and time, the weighting factor, and p*, although
the equation can be solved by iteration. Despite the complexity of the underlying issues and
the approximate nature of the derivation, Equation A5 generally yields estimates of ¢ that are
within 30% (often considerably closer) of simulation results (Figure 4). Although this is not a
fully satisfactory outcome, given that ¢ varies 10,000-fold over the full range of parameter space,
this heuristic solution appears to capture the essence of the system, is an upgrade to the visual-
fit interpretation of Lynch (2020), and provides insight into the regions of parameter space that
merit further consideration. Major discrepancies appear to be restricted to very large linkage
blocks (of order L = 10°) with Ns < 1, where ¢ is underestimated up to two-fold, and with N's
in the range of 10 to 1000, where ¢ is overestimated up to five-fold. As can be seen in Figure
4, the primary determinant of ¢ is Ns, with ¢ only responding in a significant way after Ns
exceeds a threshold value near 1 for small L and 0.01 for very large L. Not surprisingly, larger
L leads to stronger interference, but in all cases, mutational bias () has a secondary effect.

A simpler approximate solution is obtainable under the assumption of N.s < 1, which
allows the approximations 7 ~ 2N, and p(s) = (2N.s/N)/[1 — e~2Nes ], and thus to

I 2kB3(N,s)3
T g(14 Nes)(1 — e=2Nes)(1 + Be2Nes)’

where g = s/(Lujg). Letting * = N.s and referring back to Equation A5, this rearranges to

(A9)

another transcendental equation

2kBx* B
T A )1 e B (1§ pemn) N SPmex (A10)

For small x, Taylor’s-series expansion of the left side of Equation A10 leads to

kBx3 ( 28z (1 —4B+178%)2?

o\ TTr 8T 30

+-- ) = NsGmax. (A11)
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For small L and u19/s < 1, the parameter g > 1, and hence the above equation simplifies to

N S¢max, and hence

X
d) = m = (bmax- (A12a)

In the other limit, as L — oo, the parameter g — 0, so the second term in the left side of
Equation A1l dominates, leading to the approximation,

~ g(1+6)¢max 1/3
o= (") A

This expression yields scaling relationships that are fairly similar to those generated by less
formal methods in Lynch (2020; Equation 11), which suggested ¢ to be an approximately inverse
function of ~ Ns3/4L1/351/4u}(/)3 over the full domain of Vs, noting that here there are additional
terms in @y ax. Although Equation A13 can yield ¢ > 1 at small Ns, this can be accommodated
by simply setting ¢ = 1 at this point.

For N.s ~ 1, retaining the assumption of 7 >~ 2N,, using Equation A10, and performing a

Taylor’s-series expansion around N.s = 1 leads to
a+br ~ Nsomax, (Alda)

where

. kBe?[9 —5(1 — B)e? — Bet]

Ta— )it gy (A14b)
B kBe?[11 — 7(1 — B)e? — 3Be*]
P TR A p) By (Alde)
Equation Al4a then yields
g — Gmax = (@/Ns) (A15)

b )
which converges to ¢ = @max, as g — 0.

Over the full range of parameter space for L = 105, Equation A13 performs as well as (in
some cases better than) the direct solution of the transcendental function (Figure 4). Equation
A13 also performs reasonably well with L as low as 10%. For smaller L, Equation A13 tends to
overestimate ¢, whereas Equation A15 yields results that are nearly indistinguishable from the
solution of the transcendental equation, which maps well to the simulation results. Note that

in all evaluations here, we have retained the use of k = 0.25.
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Reduction in N, by selective interference from minor-effect loci: two-effects case.
A large body of literature in the concurrent mutation regime is based on a semi-deterministic
approach where the bulk of the distribution of frequency classes follows a deterministic equation
and the stochastic noise enters only at the nose of the distribution (Rouzine et al. 2008; Goyal
et al. 2012; John and Jain 2015). However, these studies consider uniform sites with single
mutational effects. Here, we try to understand the connection between the single-effects model
and the two-effects case using the deterministic equation for the frequency class P; ; containing
1 and j number of deleterious loci summed over all Ly; and L,, major and minor-effect sites,

respectively,

P,
ot

=wo[Lar — (1 = 1)|Pi—1 5 + Buro(i + 1) Py j + uio[Lin — (J — 1) P j—1
+ Buio(j + 1) P; jy1 — [Luto + (i + 5)(B — Duio + (isamr + jsm — £)] Pi 5, (A16)

where L = Ly; + L,, and k = Zfzj‘é jL’"O(st +Jjsm)Pij.
Letting isar + jsm = (i +7j)sym = ks, where y = s,,, /sy < 1, then by setting k = i + 7,
the two-effects equation can be reduced to an effective one-effect equation with the frequency

class P; ; becoming P} with associated selection ks,

0P

v wio(Lay — 4 1) Pyt + Buro(i + 1) Peg1 4+ wio(Lim — j + 1) Pr—y

+ ,B’ulo(j + 1)Pk+’Y — [Lulo + (Z —‘r])(ﬁ — 1)u10 + ksp — K]Pk, (Al?)

Dividing by Lujg everywhere,

P,
78; =nm (1 = a;i—1)Pe—1 + Bnni@ip1 Py + 0 (1 — bj—1) Pe—y + B1imaj1 Pity

[1+ (marai + 1mbi) (B — 1) + nargar (k — k)] Py, (A18)

where T = 7f/[/u107 nyv = LM/L7 Nm = Lm/L7 a; = l/LM7 b] = j/Lmv gm = SM/LMUIOa and
k=r/sn.
When the joint distribution P;; is far from the edges, the approximations a; = qm =
1 Lnm

L m
L—py = 22 S S iP;j and by = gy = 1 — :lezi:lv(]) JOJP”hold Here, we

follow the similar approach as in (Rouzine et al. 2008) and assume that the logarithm of the
frequency is a smooth function, and use the approximation In(Px1p) ~ In(Py) + h%. In

the steady-state, the above equation then becomes

dln( P ) ’ydln(Pk)
dk

I L
0=nm(l—qum)e + Bnmque 7 4+ N (1 —gm)e

d1n(Py,)

+ BGme 7 —mrgnr (k= k) + (1 — B)(ardns + D) — 1, (A19a)
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which after letting = k — k and ¢'(z) = dIn(P;)/dk can be rewritten as

mugme — (1= B)aidar + @) +1 = mar(1 — Gar)e™ @ + Bnargare?’ @

+ (1= Gn)e ™Y@ 4 B Gne?’ @ (A19b)

Although the above equation is not exactly solvable, by expanding the exponentials for

small ¢'(z), we get

—n Ny gm
) =1 ¢ o ) — (L1 B @ + 73]

2
_ nvgmr (A20a)

2[(nar + 1) — (14 B)(@ar +vGm)]

The first term on the right side is obtained from the normalization condition, f e?@dy =1,

assuming x is continuous. Equation A20a can be rewritten as

2

1 p B p
Yo =t~ (T 200

with p = gn/(1+¢), ¢ = LinSm/Lasu, and @ = (Gar + (Gm) /(1 + ¢). Since we have assumed
the width of the distribution is large, this implies that the above calculation is valid for p < 1.

The above distribution yields a bivariate Gaussian distribution for k = i + ~j,

I Y S S ey ) )
Pk_\/%[l—(lw)&] p< 2[1—(1+6)<ﬂ>’ (A20c)

with mean k = L@y + vLnGrm and variance ¢o = (LI;’A;“O +2 L’;’““ ) 1-(1+ ﬂ)ki] where

kmaz = Ly + vLy,. Note that previous studies have also found this Gaussian distribution in
the single-effects case both for infinite and finite loci models (Rouzine et al. 2008; Goyal et al.
2012; Jain and John 2016).

We can reproduce the single effects distribution by putting sj; = s, or taking the number
of major or minor loci to zero in (A20c). Here, the variance produced by the minor effects in
the distribution of number of deleterious major loci is 2 times smaller than that it can produce
in the distribution of number of deleterious minor loci in the absence of major effects. In the
presence of major effects, the variance caused by the minor loci in the distribution of number
of deleterious major loci reduced by a factor of 72, suggests that the influence of minor loci on
the major effect is v2 times its influence on itself. The major loci has the same influence on the

major effects in the presence and absence of minor loci.
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This variance in the distribution increases the interference effect which decreases the effec-
tive population size in a finite population due to linkage. We observe that the interference effect
caused by the minor loci on the major loci follows the above discussion. We can also write the
variance as ¢y = %(1 +O)[1-(1+ B)%] which indicates that the effective population size
will be dominated by the major effects when ¢ < 1 or Lasspy > Ly, Sy and by minor effects in

the opposite regime.
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Supplemental Figure 1. Scaling of the steady-state average single-locus within-population
variance for presence of + alleles as a function of the scaled intensity of selection (Ns). Each
row gives the results for three different levels of mutation bias, 8 = 1.0, 0.33, and 0.10. The case
of free recombination (L = 1) is given in the first row, and then each row thereafter increases L
by a factor of 10, up to L = 105, Within each panel, there are five sets of results for different
selection coefficients ranging in orders of magnitude from s = 107% (top leftmost curves) to
s = 10~* (bottom rightmost curves). The dots denote simulated data, whereas the black lines

give the theoretical predictions hased on Equations 2a.b.
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