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Abstract. Numerous organismal traits, particularly at the cellular level, are likely to be under

persistent directional selection across phylogenetic lineages. For such traits, unless all mutations

affecting such traits have large enough effects to be efficiently selected in all species, gradients in

mean phenotypes are expected to arise as a consequence of differences in the power of random

genetic drift, which varies by approximately five orders of magnitude across the Tree of Life.

Prior theoretical work examining the conditions under which such gradients can arise focused

on the simple situation in which all genomic sites affecting the trait have identical and constant

mutational effects. Here, we extend this theory to incorporate the more biologically realistic

situation in which mutational effects on a trait differ among nucleotide sites. Pursuit of such

modifications lead to the development of semi-analytic expressions for the ways in which selective

interference arises via linkage effects in single-effect models, which then extend to more complex

scenarios. The theory developed clarifies the conditions under which mutations of different

selective effects mutually interfere with each others’ fixation, and shows how variance in effects

among sites can substantially modify and extend the expected scaling relationships between

mean phenotypes and effective population sizes.
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Much of evolutionary biology relies on comparisons of mean phenotypes from distantly related

species, followed by downstream attempts to develop plausible hypotheses for the observed

patterns, almost always in the context of adaptive explanations. As phylogenetic lineages become

isolated, their mean phenotypes are expected to diverge as a consequence of varying selection

pressures. However, under many circumstances substantial divergence can be expected even in

the face of identical selection pressures, owing to the vagaries of mutation and random genetic

drift. In particular, by altering the accessibility of mutations to selection, a change in effective

population size (Ne) modifies the fixation probabilities of alternative alleles, with small Ne

reducing the accumulation of beneficial alleles and increasing that of detrimental alleles. This

leads to the expectation that there can be gradients in the performance of traits across species

experiencing identical selection pressures, provided that the effects of all mutations are not so

large as to be equally visible to natural selection at all population sizes (Lynch 2018, 2020).

Here we explore the consequences of a key determinant of the drift barrier to the mean

performance of traits that has been ignored in prior theory development – the effects of a

distribution of sites with varying effects on the phenotype. A substantial fraction of earlier work

on the evolution of mean phenotypes assumes an infinite-alleles and/or infinite-sites model,

whereby each newly arising mutation arrives at a site previously fixed in the population, while

also assuming an absence of limits to the potential range of phenotypic variation (Kimura and

Crow 1964; Kimura 1969; Latter 1970; Lande 1975; Bulmer 1980; Lynch and Hill 1986). Owing

to its relative mathematical tractability, this model has played a central role in many areas

of population genetics, including the development of theory on the maintenance of variation,

the long-term response to selection, and the accumulation of deleterious mutations in various

contexts (reviewed in Walsh and Lynch 2018).

However, for a wide variety of problems, the infinite-sites model is unrealistic biologically,

and its utility as an approximation remains unclear. The concerns are numerous. First, the

mutational target sizes of the molecular/cellular constituents of phenotypic traits are quite

constrained in size. For example, an average protein is of order 1 kb in length, and specific

functional domains generally encompass < 20 amino acids. Many elements at the level of DNA

(e.g., transcription-factor binding sites) and RNA (e.g., microRNAs, and stems and loops of

larger RNAs) are substantially smaller. The sizes of effectively nonrecombining linkage groups

are often in the range of a few bp to several kb depending on the recombination rate. Second,
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the mutation rate is sufficiently high that in large populations, multiple independent mutations

will often cosegregate at individual nucleotide sites, which can confer no more than four allelic

types. Finally, the infinite-sites model has the undesirable property that the mutation spectrum

is independent of the genetic background, resulting in a situation in which mean phenotypes

can diverge without limits by either drift or directional selection. In reality, as more nucleotide

sites in a stretch of DNA are occupied by deleterious mutations, the segment-wide deleterious

and beneficial mutation rates must, respectively, decline and increase.

The approach taken here assumes a finite number of genomic sites contributing to the

expression of a trait, with mutations at different sites potentially having different magnitudes

of phenotypic/fitness effects, e.g., amino-acid replacement sites with different functional conse-

quences for the encoded protein, silent sites under varying levels of selection owing to effects on

mRNA folding and/or translational speed or accuracy, and noncoding sites with varying effects

on gene expression. There has been growing interest in this type of model (Cockerham 1984;

Charlesworth and Jain 2014; John and Jain 2015; Lynch 2018, 2020), but many problems remain

to be solved.

Linked sites with differing mutational effects can be expected to play a significant role in

phenotypic divergence owing to the multiple ways in which they interfere with each other in the

selective process. For example, beneficial mutations at sites with small effects will be unavailable

to selection if they arise in tight linkage with a segregating deleterious mutation at a site with

large effects (Nguyen Ba et al. 2019). On the other hand, if sites with small effects greatly exceed

the number of major-effect loci, beneficial mutations at the latter positions will have reduced

visibility to selection if they happen to arise on a relatively poor linked background associated

with segregating minor-effect sites. More generally, one can expect moderate-effect sites to

experience both types of problems, particularly if there is an inverse relationship between the

numbers of sites and their contributing effects. The overall process is further complicated by the

fact that recurrent purging of deleterious mutations has general effects on effective population

sizes, thereby influencing all other aspects of the efficiency of selection. There has been much

research on these matters as well (Gerrish and Lenski 1998; Johnson and Barton 2002; Campos

and Wahl 2010; Desai and Fisher 2007; Charlesworth 2013a; Good et al. 2014; Pénisson et al.

2017; Jain 2019), but almost all analyses have been restricted to the infinite-sites model, and

often to populations that are effectively infinite in size with all mutations having equal effects.
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The Model

We start with a simple model with L linked sites (factors), each with two alternative allelic

states, + and −, contributing positively and negatively to the trait, but with the magnitude of

+/− effects allowed to vary among sites (Figure 1). Such a model would apply, for example, to

a situation in which there is one optimal nucleotide at a site, with the remaining three having

equivalent fitness effects. Because the stretch of nucleotide sites under consideration is assumed

to be completely linked, the positions of the sites are irrelevant, and there can be a multiplicity

of functionally equivalent haplotypes (i.e., with identical numbers of + alleles) in each effect

class, which alters their ease of mutational accessibility (Lynch 2018, 2020). The site-specific

per-generation mutation rates from the − to the + states, and vice versa, denoted as u01 and

u10, respectively, will be assumed to be identical at all sites.

As a central goal is to determine the conditions under which gradients in mean phenotypes

can be expected under persistent directional selection in populations of different sizes, it is

desirable to perform analyses with biologically realistic combinations of parameter values. Across

the Tree of Life, Ne generally falls in the range of 104 to 109, and the mutation rate per nucleotide

site scales negatively with the ∼ 0.76 power of Ne (Lynch et al. 2016; Long et al. 2017; Walsh

and Lynch 2018). Thus, where computational work was involved, the following analyses were

performed under the assumption of a deleterious-mutation rate per site (which might be a

cluster of adjacent nucleotides) of 10−7 at an adult population size of N = 104, such that

u10 = 0.00011N−0.76, which is approximately 10× the known rate per nucleotide site. With

this scaling, for the full range of population sizes employed here (N = 104 to 109), the product

Nu10 then ranges from ' 0.01 mutations/population/site/generation at the lowest to 0.10 at

the highest population sizes. It should be noted that the negative scaling of the mutation rate

with absolute population size (N) is likely shallower than that assumed here, as Ne/N for large

multicellular species (small Ne) is likely on the order of 0.1, whereas that for microbial species

can be orders of magnitude smaller. In the end, we provide analytical approximations that make

no assumptions about the relationship between mutation rates and population sizes.

We evaluate the consequences of a wide range of linkage-block lengths, from 1 (free re-

combination) to 106, selection coefficients from s = 10−8 to 10−4, and mutation biases towards

beneficial alleles β = u01/u10 = 0.10 to 1.00. Under this finite-sites model, the deleterious
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mutation rate per haplotype increases linearly with the number of sites harboring advantageous

alleles, whereas the beneficial rate scales in the opposite direction.

The absolute population size consists of N haploid individuals, so that de novo mutations

have initial frequencies of 1/N. Assuming independent fitness effects within and between loci (i.e.,

no dominance or epistasis), as done below, all results should extend to diploids by substituting

2N for N and 2Ne for Ne. As noted below, the effective population size (Ne), which is ≤ N ,

governs the magnitude of random genetic drift, and is a natural outcome of the structure of the

linkage group, the strength of selection, and N itself.

The following work is performed under the assumptions of a classical Wright-Fisher discrete-

generation model with sequential episodes of mutation, selection, and random genetic drift.

Under this model, allele frequencies fluctuate in time, but because mutations are reversible,

the system always eventually evolves to a quasi-steady-state distribution, provided the fitness

function remains constant. Our particular focus is on how long-term average frequencies of

beneficial alleles at various site types depend on the number and distribution of site types

within linkage groups, on the joint forces of selection and mutation bias, and in particular on

the population size. Related analyses have been performed by John and Jain (2015), Jain and

John (2016), and Jain (2019), but mostly under the assumptions of either an effectively infinite

population and/or an infinite-sites framework, and even in these cases, achieving reasonably

simple expressions has been difficult.

Owing to the stochastic nature of the underlying processes, computer simulations of these

processes must proceed for very large numbers of generations to achieve stable estimates of

means and variances. To obtain greater computational speed, for large population sizes, we

scaled the input parameters so as to keep Nu10, Nu01, and Ns constant, by reducing N and

increasing the mutation and selection parameters by the same factor, with constraints such that

N was always ≥ 103, and s and Lu10 always ≤ 0.1. Burn-in periods before compiling statistics

were typically at least 105N generations, with the populations then being assayed every N/10

generations for 106 to 108 intervals. Simulations, which often extended for several days, were

carried out with a program written in C++ (freely available from the authors), in a form that

allows parallel analysis of multiple population sizes. Although we have evaluated a broad range

of population-genetic environments extensively by computer simulation, throughout we attempt

to provide heuristic semi-analytical expressions to address more general issues.
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Results

Sites with single effects. For baseline comparisons, we start with simplest situation of

sites with single effects, such that all beneficial mutations compete maximally with each other.

Expanding on prior work (Lynch 2020), new expressions are presented to explain the gen-

eral consequences of this extreme setting. The fitness function is assumed to be of the form

W (Ld) = (1 − s)Ld , where Ld is the number of deleterious mutations carried in a haplotype,

such that a maximum fitness of 1.0 occurs in individuals free of deleterious alleles, whereas with

L equivalent sites, (1− s)L is the minimum fitness (for a haplotype containing only deleterious

alleles). Under this multiplicative fitness model, selection operates on each site independently,

and there is no epistasis. Although this leads to the expectation of no linkage disequilibrium

in populations that are infinite in size (Eshel and Feldman 1970), this is not the case in finite

populations.

The case of linkage blocks of length L = 1 is of special interest, as it represents the limiting

situation of free recombination, where selection is most efficient. For this situation, an analytical

expression for the long-term mean frequency of the + allele, here denoted p̃, has already been

developed by Kimura et al. (1963), and will not be repeated here, except to say that the fit to

simulated data is excellent across the full range of population sizes, selection coefficients, and

mutation rates. Although highly accurate, two undesirable features of the Kimura et al. (1963)

solution are the need to solve a confluent hypergeometric function by a series expansion and

the rather nontransparent interpretation of the formulations, and various approximations for

particular domains of Nu10 and Ns have been given by Charlesworth and Jain (2014).

An alternative expression, which is quite accurate over the full range of parameter space

explored herein and extends to larger linkage blocks, can be obtained in the following way. In

Lynch (2020; Equation S10), it was noticed that if the within-population variance in numbers

of mutant alleles per individual is known from simulations, the long-term average frequency of

+ alleles is accurately described by

p̃ =
β + (sλσ2

w/u10)

1 + β − s
. (1)

Here, σ2
w is the mean within-population variance per locus (i.e., the total variance in number

of + alleles per individual divided by L), and λ = 1 − (1/Ne) is a measure of the resistance of
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the population to random genetic drift, with Ne being the effective population size (Lynch et

al. 1993). Derived from a quantitative-genetic perspective, this expression evaluates p̃ as the

mean allele frequency at which the selection advance per generation (a function of the genetic

variance) is matched by the decline associated with mutation. Others have used such a matching

approach to estimate the position of the leading edge of the full distribution (Goyal et al. 2012;

John and Jain 2015).

Letting S = 2Nes, by extension from McVean and Charlesworth (1999) and Long et al.

(2019),

σ2
w '

σ2
n · (1 + β)(1− e−S)

S(β + e−S)
, (2a)

where

σ2
n =

2Neu10β

1 + β +Neu10(1 + 6β + β2)
(2b)

(from Lynch 2020; Equation S9) is the expected variance under neutrality (equivalent to half

the expected neutral heterozygosity per site). A key remaining issue is that unless Neu10 � 1,

the effective population size (Ne), will be depressed below the absolute population size (N ), by

selective interference among simultaneously segregating mutations. As a consequence, Equation

1 cannot be solved by substituting Ne = N, and a separate expression is needed for Ne.

There are many ways to define an effective population size, depending on the allelic behavior

of interest. One common consideration is the variance effective population size, i.e., the degree to

which nucleotide diversity is depressed at neutral sites linked to other sites under selection (e.g.,

Charlesworth et al. 1995; Kim and Stephan 2000; Good et al. 2014; Campos and Charlesworth

2019). However, application of estimates of Ne obtained from simulations of standing levels of

variation at linked neutral sites to the preceding formulae yields a less than satisfactory fit to

observed levels of variation and mean allele frequencies.

An alternative approach starts with a consideration of the expected mean frequency of

beneficial alleles over sites under the assumption of no interference (Li 1987; Bulmer 1991), and

given the selection and mutation pressure (s and β), estimates the Ne necessary to account for

an observed equilibrium beneficial-allele frequency, p̃ (Lynch 2020). The ratio Ne/N is then

φ =

(
1

2Ns

)
ln

(
p̃

β(1− p̃)

)
. (3)

Using estimates of p̃ from simulated data to solve for φ, and substituting Ne = φN in

the preceding expressions, Equations 2a,b provide excellent fits to observed within-population
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variances for the full range of parameters explored here, usually well within 10% of observed

values (Supplemental Figure 1), whereas Equation 1 yields estimates of p̃ that are always within

3% of observed values (Figure 2). Notably, this approach was found to be valid for all linkage-

block lengths explored, from L = 1 to 106. Note also that as Ns→∞,

σ2
w '

−α+
√
α2 + 4su10
2s

, (4)

where α = s + u01 + u10. In this case, provided s exceeds the site-specific mutation rates (u01

and u10), σ
2
w also closely approximates the equilibrium frequency of a deleterious allele in an

infinite haploid (fully recombining) population, and more generally p̃(1− p̃).

Although these observations justify the use of the correction factor φ to transform N into

the fixation effective population size relevant to equilibrium allele frequencies, validation of this

approach required the use of estimates of φ derived by computer simulations. For more practical

applications, we require an expression for φ from first principles. An excellent approximation

to φ, as a function of the mutation rates, selection coefficient, number of loci, and absolute

population size, was obtained by inspection in Lynch (2020), albeit with a particular scaling

between the mutation rate and population size. In the Supplemental Text, we derive more

general expressions, accounting for the amount of selective interference imposed on the fixation

probability for beneficial mutations by linked sites.

Despite the complexity of the underlying issues, the derived expressions for φ generally

yield estimates that are within 30% (often considerably closer) of simulation results (Figure 3).

Although this is not a fully satisfactory outcome, given that φ varies 10,000-fold over the full

range of parameter space, the essence of the system is captured. This provides an upgrade to the

visual-fit interpretation of Lynch (2020), yielding insight into the scaling relationships between

φ and the underlying population-genetic parameters. For example, for L > 104,

φ '
(
4s(1 + β)φmax

(Ns)2Lu01

)1/3

, (5a)

with

φmax =
1

1 + [ 2Ns/ ln{1 + [s/(u01)]} ]
. (5b)

This expression shows that the reduction in Ne caused by linkage scales inversely with the cube

root of the number of sites. It also shows that φ is a function of two other key composite

parameters: the ratio of the selection strength to the mutation rate to beneficial alleles, and
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the ratio of the selection strength to the power of drift in the absence of interference, i.e., for

large L,, φ scales with the ∼ 1/3 power of s/u01, and with the −2/3 to −1 power of Ns with

increasing Ns.

Summing up for the simplest situation in which all sites within a linkage block have equiva-

lent effects on fitness, contrary to the single-site expectations (Kimura et al. 1963), where there

is a quantum shift in the frequency of beneficial alleles with increasing population size around a

pivot point of Ns = 1, linkage reduces the gradient of response of p̃ to N (Figure 2). Instead of a

shift from the neutral expectation of p̃ to that expected under deterministic selection-mutation

balance over a window of just an order of magnitude of N , linkage can extend the gradient

to several orders of magnitude of N , with the effect becoming increasingly pronounced with

larger L. On the other hand, when viewed as a function of Ne, where the latter is derived from

the heterozygosity segregating at linked neutral sites, p̃ is largely (but not entirely) a stepwise

function of Nes, as Ne subsumes the influence of linkage interference. There is, however, some

additional influence of L in the region of Nes ' 1 (Figure 4).

Finally, note that the preceding expressions also yield descriptions of the expected standing

levels of variation for quantitative traits under persistent directional selection (in this case an

exponential fitness function) with reversible mutation, a problem of long-standing interest in

quantitative genetics (Walsh and Lynch 2018). For example, simplifying from Equations 2a,b,

assuming unbiased mutation (β = 1), the average genetic variance for a trait with L equivalent

loci with average squared allelic effect E(a2) is

σ2
A = L · E(a2) ·

(
2Neu

1 + 4Neu

)(
1− e−S

S(1 + e−S)

)
, (6a)

σ2
A = L · E(a2) ·

(
u

2u+ s

)
, (6b)

for u = u10 = u01, and S < 4 and S > 4, respectively. These expressions show that under

selection, the genetic variance reaches a maximum at the point where Nes ' 1, where the power

of drift and selection are essentially equivalent (Supplemental Figure 1). The genetic variance

initially grows with N owing to the increase in number of mutating individuals in the population,

but beyond the peak, the deterministic force of selection overwhelms drift.

Even in the case of neutrality, there is a natural upper bound on the genetic variance,

owing to the finite number of effects per nucleotide site (here assumed to be two), with the

neutral variance in the case of β = 1 being simply proportional to 2Nu/(1 + 4Nu). Although it
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might be assumed that increased efficiency of selection (higher Ns) will always reduce standing

levels of variation, in fact when mutation is biased in the opposite direction of selection, the

genetic variance increases at an accelerating rate with S up to ' 4. This is because the conflict

between mutation towards − alleles and selection towards + alleles pulls the latter towards more

intermediate frequencies.

Sites with two effects. Having arrived at a reasonable understanding of the factors determin-

ing the mean and variance of traits in the simplest case of L equivalent sites, we now explore the

consequences of sites with variable fitness effects, starting with the case of just two site types to

help illuminate the general complexities that arise. Some prior work has been done in this area

(e.g., Johnson and Barton 2002; Desai and Fisher 2007; Pénisson et al. 2017; Jain 2019), but

again in the context of an effectively infinite population size and an infinite-sites model. Here,

we assume that the two site types have identical mutational features, while allowing for different

site numbers.

Results described in the preceding section show that when linked sites have single effects,

there is a smooth gradient in the expected frequency of favorable alleles with increasing popula-

tion size. For any particular s, the gradient with N becomes increasingly shallow with increasing

numbers of linked loci, owing to enhanced levels of selective interference, which causes an in-

creasing fractional reduction in the effective population size. This gradient becomes steeper and

is almost independent of L when reformulated as a function of Ne rather than N .

However, when sites with two effects contribute to the expression of a trait, a qualitative

shift in the response of the mean phenotype to Ne is expected, as the sites with larger fitness

effects will make a transition to high frequencies at a lower Ne than those with small effects.

Moreover, a shift in the scaling of the fixation Ne with respect to N can be anticipated owing

to the fact that once N is high enough to enable all major-effect sites to approach fixation for

+ alleles, these sites no longer contribute much to selective interference.

Consider, for example, a trait having an underlying additive-genetic basis with two types of

sites: LM sites with major phenotypic and fitness effects aM and sM , and Lm sites with minor

effects am and sm. The mean genotypic value is then

z = c+ LM p̃MaM + Lmp̃mam, (7)

where p̃M and p̃m denote the mean frequencies of the + alleles at the major and minor loci,
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and c is an arbitrary baseline constant. If sM is substantially larger than sm, beneficial alleles

at the major-effect sites will achieve near fixation at relatively low Ne, before the minor-effect

sites begin to respond to selection.

An example is shown in Figure 5, where the response of mean performance to the effective

population size in the single-effects case (equivalent to p̃M ) is compared to that for cases in which

there are ten-fold additional minor-effect sites for each major-effect site, each with ten-fold lower

selection coefficients, i.e., Lm = 10LM , and sM = 10sm. In this figure, Ne is the variance effective

size inferred by the average level of nucleotide diversity at linked neutral markers, as this would

typically be the measure used in a population-genetics analysis. Assuming the phenotypic effects

are proportional to the selection coefficients, mean performance in the two-effects case is defined

by Equation 7, normalized by LMsM + Lmsm to give a maximum performance of 1.0 when

all sites are fixed for + alleles. In this example, with LMsM = Lmsm, half of the maximum

performance is determined by each class of sites. With a ten-fold difference in s between classes,

as Ne increases to the point at which NesM exceeds 1.0, a shoulder appears in the response

profile because most major-effect loci are near fixation for + alleles, whereas the minor-effect

loci do not start to significantly respond to selection until Nesm approaches 1. As a consequence,

whereas the dynamic range of performance extends over just one order of magnitude of Ne under

the single-effects case, the gradient extends for two orders of magnitude of Ne when substantial

numbers of minor-effect sites are present.

All of the issues raised in the preceding section on selective interference effects between

linked loci apply here, except that there is an asymmetry in the degree of selective interference

that depends on the relative abundance of the two site types. Most notably, from the standpoint

of major-effect sites, there is a remarkable simplicity with respect to the interference caused by

minor-effect loci (Supplemental Text). The interference of a single minor-effect locus imposed

on major-effect loci is equivalent to the influence of (sm/sM )2 of the latter (Figure 6). This

yields an overall level of interference operating on major-effect loci equivalent to that resulting

from

L∗M ' LM + (sm/sM )2Lm (8)

sites in the single-effects model. In other words, from the standpoint of a major-effect site, if

sm/sM = 1/10, the addition of 100 linked minor-effect sites is required to shift the effective

amount of interference from that associated with LM to LM + 1 major-effect sites. All of the
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machinery just introduced for estimating the behavior of linked major-effect loci can then still

be relied upon by substituting L∗M for L. This scaling with the squared effect of the selection

coefficient can be roughly understood by noting that the probability of an establishment of

beneficial mutation of effect s is also proportional to s.

More generally, the overall fixation effective size of the population (which must be the same

for both site types within linkage blocks) is dominated by the sites for which the product Lxsx

is highest, provided the population size is not so great that the categories in question are in near

selection-mutation balance (i.e., no longer influenced by the vagaries of random genetic drift or

selective interference). This will now be illustrated by considering three alternative domains of

relative values of LMsM and Lmsm (Figure 7).

First, for the extreme situation in which LMsM � Lmsm, mutations at the minor-effect

sites are subject to strong hitchhiking effects associated with the major-effect backgrounds upon

which they arise. However, the major-effect sites behave in accordance with the predictions

from the single-effects model, as they experience essentially no interference from minor-effect

sites. With complete linkage, the behavior of the major-effect sites then dictates the Ne for the

entire linkage block. As noted above for the single-effect model, the fixation effective Ne for

major-effect sites steadily increases with N , to a degree that depends on LM , but upon reaching

a critical N levels off as all such sites are close to pure mutation-selection balance, and then

enters into a pseudo-Ne domain.

This pseudo-Ne domain is purely a mathematical feature of the use of Equation 3 to de-

fine the fixation Ne. As N reaches high enough levels that p̃ approximates the level expected

under pure selection-mutation balance, absolute fixation of + alleles never occurs, although ge-

nealogical fixation does. As a consequence, the fixation Ne levels off, as φmax (Equation 5a)

declines. Although this pseudo Ne is not a reflection of the actual Ne in the large-N domain,

its deployment in the preceding mathematical expressions is required to obtain an acceptable

overall expression for p̃M . The behavior of the variance Ne, shown in the right panels of Figure

7, yields some insight into the stochastic features of the population, as it qualitatively tracks

the behavior of the fixation Ne (outside of the pseudo-Ne domain), although overestimating

the latter. The variance Ne always starts out as Ne = N at NsM � 1, is reduced relative to

N at intermediate N by selective interference, and then asymptotically returns to Ne = N for

Nsm � 1.
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In the example shown, because sm = sM/10, the minor-effect sites do not begin to respond

to selection until N is an order of magnitude beyond the point at which the major-effect sites

are subject to selection. At this point, the governing fixation Ne is reflected in the behavior of

the minor-effect sites, until they too enter their pseudo-Ne domain at very large N . We have

not been able to achieve a fully mathematical description of this transitional behavior in the

minor-effect sites in this limiting case of LMsM � Lmsm, but an intuitive understanding of the

processes involved can be understood as follows.

One might expect the fixation Ne for minor-effect alleles to increase to N once the determin-

istic regime for major effects has been reached, as in this case there is a just a single minor-effect

site. However, from the behavior of the variance Ne, it can be seen that the system does not

return to Ne = N until N is well beyond the point of entry of the major-effect sites into the

deterministic regime. Selective interference from the major-effect sites still occurs (to a degree

that increases with LM ), owing to the background variation among individuals with respect to

major-effect alleles. For example, at N ' 106, in this particular set of simulations, the mutation

rate to deleterious alleles ' 10−8, so with sM = 10−5, the equilibrium frequency of deleteri-

ous alleles ' 10−3. With LM = 103, there is then an average of 1.0 deleterious major-effect

mutations per individual, and as the distribution among individuals is expected to be Poisson,

∼ 37% of individuals will be free of deleterious major-effect mutations. Only in this subset of

individuals are beneficial minor-effect mutations able to progress towards fixation, as all lineages

containing major-effect deleterious alleles will be subject to purging from the population (unless

a reversion mutation is acquired), and even then on a large LM background, some of these

can become victims of subsequently arriving linked major-effect deleterious mutations. Thus,

if LM is sufficiently large, trapping of beneficial minor-effect mutations can impose selective

interference effects even in the deterministic regime for major-effect sites.

We next consider the situation in which Lmsm = LMsM , such that there is an inverse

relationship between the number and selective effects associated with the two site types. In this

case, at sufficiently small N such that the minor-effect sites are effectively neutral, the fixation

effective population size is a function of LMsM . A departure between the estimates of φ using

major- vs. minor-effect sites only arises at larger N as the major-effect sites enter the pseudo-Ne

domain (φmax < 1), while the minor-effect sites remain under the stochastic effects of drift. At

this point, the fixation Ne of the minor-effects sites is primarily a function of Lmsm, until they
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themselves enter their pseudo-Ne domain. This kind of domain shift will become more blurred

as sm → sM , in the limit becoming equivalent to the single-effects model with L = LM + Lm.

Finally, for the case in which the minor-effect sites greatly outnumber those for major

effects, such that Lmsm � LMsM , the former are largely unaffected by interference from the

major-effect sites, rendering the behavior of the minor-effect sites very close to that observed in

the single-effects situation as defined by Lm and sm. In this case, the behavior of the major-

effect sites is also essentially defined by the minor-effect loci, as L∗M = LM + (sm/sM )2Lm '

(sm/sM )2Lm. In both this and the prior case, background trapping of minor-effect alleles plays

a negligible role in the pseudo-Ne domain for the major-effect sites because much to most of the

background variation is associated with the minor-effect sites.

Generalization to multiple site types. With sites with additional effects, one can anticipate

an extension of the features noted above. From the standpoint of the major-effect loci, the

preceding logic can be extended to an arbitrary number of effects, yielding an interference

effective number of major sites equivalent to

L∗M = LM +

n∑
i=1

(si/sM )2Li (9)

where Li is the number loci with effect size si < sM , and n is the number of effect classes. For

many polygenic traits, the distribution of site types may be nearly continuous in form, in which

case this expression could be replaced by an integration over the full spectrum of site types.

Examples are given in Figure 8 for the case of three effects with an inverse relationship

between site numbers and effects, such that Lxsx is constant, and with ten-fold differences

in sx between site types. In this situation, the summed effects of sites within each of three

classes contribute equally to the total performance of the trait (assuming additive phenotypic

effects across sites). As the population size declines, the site types with smaller s progressively

accumulate deleterious mutations, yielding a gradient for mean total performance that is nearly

continuous over several orders of magnitude of N. Increasing the number of sites within linkage

blocks (while keeping the ratios of numbers of site types constant) has a greater effect on the

sites with small effects, reducing the steepness of the performance gradient. The precise form of

the scaling would be altered with different distributions of effects, which would shift the relative

contributions of the three types to mean performance.
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DISCUSSION

The primary motivation for this work is the idea that quantitative traits under persistent direc-

tional selection of the same form in different phylogenetic lineages should exhibit gradients in

mean phenotypes associated with differences in effective population sizes. Such an expectation

arises for the simple reason that Ne dictates the efficiency of natural selection, and should hold

generally provided that a significant fraction of mutations with phenotypic effects have selection

coefficients within the lower and upper bounds of 1/Ne across phylogenetic lineages. The fact

that Ne ranges from 104 to 109 among phylogenetic lineages, scaling negatively with the ∼ 0.2

power of body mass (Lynch and Trickovic 2020), indicates that the complete absence of the

effects of drift on mean phenotypes requires an absence of mutations with fitness effects in the

range of 10−9 to 10−4, which seems highly implausible.

Prior theoretical work provided a framework for considering the fundamental population-

genetic processes influencing the generation of such gradients, including the effects of linkage

block size (an analog of the level of recombination), but under the restriction that all mutations

have comparable effects on phenotypes and fitness (Lynch 2020). Here, we have provided more

general mathematical approximations for the single-effects model, and used these to further un-

derstand the more biologically realistic situation in which genomic sites have different effects.

Ultimately, we would like to make statements on the quantitative scaling of mean phenotypes

with Ne based on first principles, but this will require detailed information on the distribution

of mutational effects summarized over different site types. Unfortunately, the fraction of this

distribution that is of most relevance resides within the 1/Ne bounds noted above. Although

likely quite abundant, mutations with such small effects are highly impenetrable to direct enu-

meration (Walsh and Lynch 2018; Lynch and Ho 2020). For now, we at least have a framework

within which to derive predictions under specified genomic and population-genetic conditions.

For example, although a fully general description of the steady-state distribution of mean

phenotypes under a variable-effects model remains to be developed, the preceding results provide

the basis for a heuristic argument as to how mean phenotypes under persistent directional

selection should scale with Ne. To clarify the main points, the following qualitative discussion

relies on order-of-magnitude arguments, and starts with a simple additive genotype-to-phenotype
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mapping,

z = c+ k
n∑
i=1

L+,isi, (10)

such that the expected trait value is a linear function of the number of plus alleles at each of n

types of sites, each weighted by the selective advantage, with c and k being arbitrary constants.

We wish to determine how the mean genoytpic value z scales with Ne.

As noted above, Ne will be largely governed by the sites with the largest fitness effects,

unless there is a much stronger than exponential increase in the numbers of sites with diminishing

effects. Supposing the sites with the strongest effects have s = 10−5, then below Ne = 104, all

such sites will have expected + allele frequencies at the neutral expectations defined by the level

of mutation bias. Above Ne = 106, all such sites will be essentially fixed for + alleles, with most

of the gradient residing in the vicinity of Ne ' 105. Likewise, sites with s on the order of 10−6

will exhibit a gradient in the vicinity of Ne = 106, with + alleles just starting to accumulate

at Ne ' 105 and becoming essentially fixed at Ne ' 107. The same argument applies to sites

with all lower-order effects, with each order-of-magnitude effect exhibiting a gradient roughly

corresponding to where the prior and subsequent ones exhibit maximum responses to Ne.

The precise form of the gradient of z will depend on the relative incidences of site types and

on the form of the genotype-to-phenotype map. For example, for the linear mapping in Equation

10, if the number of sites of type i is inversely proportional to si (i.e., an essentially exponential

distribution of site types), then the contribution of each site type to total performance will be

equal over all site types, as in Figure 8, and there will be a continuous gradient over Ne in

the range of 1/smax to 1/smin. (The small wobbles in the gradient shown in Figure 8 would

become essentially invisible with the inclusion of more fine-grained effects). Deviations from an

exponential distribution of site types would alter the gradient accordingly, as would a different

weighting scheme for the genotype-phenotype map. For example, if there was a paucity of

intermediate-effect sites, there would be a shoulder in the response to Ne, as nearly all large-

effect sites would become fixed before Ne reaches a high enough level for small-effect sites to

respond to selection.

While not a formal mathematical statement, this heuristic argument provides a roadmap

for thinking about how phenotypic gradients should scale with effective population sizes for

traits under similar forms of directional selection across species. If, for example, there was an

exponential distribution of sites with different fitness effects over five orders of magnitude of s,
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a gradient in performance would be expected over five orders of magnitude of Ne. The actual

“power-law” scaling would depend on the scale upon which performance is measured and on the

genotype-phenotype map. For a multiplicative mapping function, on a logarithmic scale (the

usual procedure in studies of allometry), the expected slope might approach +1, but could be

shallower in the case of large linkage blocks, which would enhance the level of selective inter-

ference. In contrast, the linear mapping function used above might lead to nonlinear allometric

scaling, depending on the distribution of site types.

There is considerable room for more theoretical work in this area. For example, as a

surrogate for the level of recombination, we have relied on the concept of a linkage block (Good

et al. 2014), which greatly facilitates computational study in the domain of large L, and also eases

a number of aspects of the mathematical analysis. Although we do not expect qualitative changes

in the conclusions to result from a more fully implemented recombinational model, work of this

nature is desirable. Most notably, we have focused on a single fitness function (albeit a common

one used in studies of deleterious-mutation accumulation), the exponential (or multiplicative)

model, wherein there are no epistatic effects of mutations, as each additional deleterious mutation

reduces fitness by a fractional amount s regardless of the genetic background. Variants of this

model have been invoked to explain how drift barriers may influence the phylogenetic distribution

of mutation rates (Lynch 2011; Lynch et al. 2016) and maximum growth rates (Lynch et al.

2022), both of which are plausibly under persistent directional selection in most lineages. Other

types of traits that might be explored in this regard are cell biochemical and/or physiological

processes shared across the Tree of Life.

Future exploration will need to consider Gaussian and mesa fitness functions, which do

introduce epistatic effects. The mesa fitness function (with a plateau) imposes pure directional

selection with diminishing fitness increments as the trait approaches the asymptotic optimum,

whereas the Gaussian fitness function provides a setting in which traits can be under stabilizing

selection for an intermediate optimum. In the limit, as the optimum falls far out of the range of

obtainable phenotypes, the Gaussian fitness function converges on the exponential model used

herein.

Notably, although a substantial body of work in evolutionary quantitative genetics has

been developed under the assumption of a Gaussian fitness function, and many evolutionary

biologists operate under the assumption that such stabilizing selection is pervasive, a broad
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survey of estimated fitness functions raises questions about the generality of this model and

certainly leaves open the possibility that persistent directional selection is a common force

(Kingsolver and Diamond 2011). In the field of evolutionary ecology, arguments for suboptimal

performance traditionally invoke limitations owing to constraints / tradeoffs between traits,

which are typically assumed but seldom verified empirically. Here, we have shown that persistent

under-performance can be expected whenever a significant fraction of genomic sites contributing

to a trait harbor preferred alleles with small selective advantages, and that this effect will become

more pronounced when mutation is biased in the direction of deleterious alleles. Some progress

has been made on the study of the expected evolution of mean phenotypes under these alternative

models (Charlesworth 2013b; Lynch 2018, 2020), but again under the assumption of mutations

with fixed effects. Our results show that substantially different conclusions may arise under

more biologically realistic scenarios when genomic sites are variable in their effects.
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SUPPLEMENTAL MATERIAL

Reduction in Ne by selective interference: single-effects case. Observations reported

in the text justify the use of a correction factor φ = Ne/N to transform N into a fixation

effective population size relevant to the evolution of mean allele frequencies, validation of this

approach required the use of estimates of φ derived by computer simulations. For more practical

applications, we require an expression for φ from first principles. A heuristic approximation can

be obtained by considering the number (I) of competing mutations that a mutation destined to

fixation must contend with during its sojourn through the population. Gerrish and Lenski (1998)

and Campos and Wahl (2009, 2010) used such an approach to evaluate the number of newly

arising mutations with advantages exceeding that of a target mutation, under the assumption

of an exponential distribution of mutational fitness effects, but here all newly arising beneficial

mutations have identical effects.

We start with the Li-Bulmer equation for the expected frequency of a beneficial allele under

sequential fixations

p̃ =
βe2Nes

1 + βe2Nes
, (A1)

where β = u01/u10 is the ratio of mutational pressure towards the beneficial relative to the

deleterious allele, s is the selective advantage of the beneficial allele, and Ne is the effective

population size. Rearrangement of Equation A1 leads to

φ =
Ne
N

=

(
1

2Ns

)
ln

(
p̃

β(1− p̃)

)
. (A2)

Although Equation A1 implies that p̃ asymptotically approaches 1.0 as the population size

approaches infinity, in this extreme, deleterious alleles will actually be maintained at a low

frequency by mutation-selection balance, such that

p̃ = 1−
(1 + β)u10 + s(1− u01)−

√
[(1 + β)u10 + s(1− u01)]2 − 4u10s

2s
. (A3a)

Provided the strength of selection exceeds u10,

p̃ ' u01 + s

u01 + u10 + s
. (A3b)

Substituting Equation A3b into A2 then yields an upper bound to φ,

φmax '
1

1 + [ 2Ns/ ln{1 + [s/(βu10)]} ]
, (A4)
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where a slight modification has been made by adding 1 to the denominator to account for the fact

that φmax must asymptotically approach 1 as N → 1 declines (as this eliminates interference).

Consistent with this expression, the simulation results show that once Ns exceeds 10, φ becomes

inversely proportional to Ns, and only weakly dependent on the composite selection-mutation

parameters subsumed into s/(βu10) (Figure 4). To allow for the further depressive effects of

selective interference from linked mutations, we use

φ =
φmax

1 + I
, (A5)

where it is assumed that when combined with I interfering mutations, a target mutation destined

to fixation in the absence of interference has its probability of fixation reduced by factor 1/(1+I).

This approach ignores the possibility that mutations interfering with the fixation of a focal

beneficial mutation can also interfere with themselves.

We now proceed towards the development of an estimator for I, progressively accounting for

the number of potentially interfering mutations arising during a focal mutation’s sojourn through

the population, along with the magnitude of the effect per interfering mutation. Let τ be the

mean time to fixation of a beneficial allele in the absence of competition from other segregrating

mutations. During this period, additional beneficial mutations will arise in individuals outside of

the focal lineage at average rate Lβu10(1− p∗), where p∗ denotes the expected mean frequency

of + alleles. The average per-generation number of individuals in the target lineage is N/2

because the frequency of the lineage under consideration (assuming it does indeed fix) increases

from essentially zero to one. Only a fraction pf (s) of all newly arisen beneficial mutations are

destined to fixation, and it is this subset that presents the most potential interference to the

focal mutation. Moreover, the strength of selection operating on a mutation must be on the

order of the magnitude of genetic drift or greater if it is to compete for fixation; and to account

for this, we use the weighting term Nes/(1 + Nes), which asymptotically approaches zero as

Nes→ 0 and 1.0 as Nes→∞.

Taking all of these factors into consideration, the expected number of competing mutations

is then proportional to the product of terms,

I ' τ · Lβu10(1− p∗ ) ·
N

2
· pf (s) ·

Nes

1 +Nes
· k, (A6)

where

pf (s) =
1− e−2Nes/N

1− e−2Nes
(A7)
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is the probability of fixation of a newly arisen mutation with fitness benefit s (Kimura 1983),

and k is a correction term to account for the fact that only a fraction of newly arising mutations

emerge in backgrounds with high enough fitness to compete with the target mutation.

Although k must depend on the distribution of fitness in the population, a rough starting

point is k = 0.25, as any mutant haplotype destined to fixation by positive selection must

almost certainly be in the upper half of the distribution, and to be a successful competitor,

any outside mutant clone must then be in the upper half of the upper half. Previous workers

(Gerrish and Lenski 1998; Campos and Wahl 2009, 2010) have let k = 1, which applies if

prior to the emergence of competing mutations, the population consists of just two haplotypes,

one with and the other without the target mutation. In principle, a more rigorous approach

might be possible if the form of the equilibrium distribution were known, but although this is

often assumed to be Poisson, there are subtle and significant deviations from such behavior in

numerous contexts (Gessler 1995; Goyal et al. 2012; Jain and John 2016), and k ' 0.25 will

be shown to be a reasonable approximation for an equilibrium population. Note also that the

matter of lineage contamination, i.e., the addition of secondary mutations to lineages en route

to fixation (Pénisson et al. 2017) has been ignored here, as the population is in equilibrium, and

all competing mutant lineages are presumably confronted with the same secondary-mutation

issues; in effect, as N →∞, all mutant lineages approach selection-mutation balance, rendering

a near neutral situation with respect to lineage competition.

Aside from the inclusion of the factor k, our computation of I differs in several significant

ways from prior applications. First, rather than approximating the fixation probability as 2s,

we implement the full formulation for pf (s), as the former yields inappropriate estimates when

Nes < 1 and ignores the fact that Ne < N, the very issue that we are exploring. Second, prior

applications have not included the weighting term noted above, which also seems essential for

Nes < 1, for which the magnitude of individual interference must be small. Third, the estimation

of φ is quantitatively quite sensitive to the definition of τ, and whereas previous authors have

used the deterministic approximation τ = 2 ln(N)/s, this can give wildly unrealistic values in

certain domains of parameter space, including times in excess of the neutral expectation of Ne

generations. Charlesworth (2020) provides a broad overview of estimators of τ, and offers a

measure that explicitly accounts for the stochastic and deterministic phases of the process, but

implementation of his method in Equation A6 consistently led to significant underestimates of
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I, whereas a derivation of Gale (1990), modified for haploids, was more suitable,

τ ' 3.927 + 2 ln(Nes/2)

s
− 2φ− 2

Ns
. (A8)

Note that the expressions of Gale (1990) and Charlesworth (2020) can yield negative estimates

of τ when Nes < 1, in which case we assumed the neutral expectation of τ = 2Ne generations.

Finally, Equation A6 requires an expression for p∗ (a concern given that p∗ is the allele frequency

that we are ultimately trying to determine), but here we utilize Equation A1 as a first-order

approximation.

Equation A5 is a transcendental function, as several of terms entering I are complex func-

tions of Ne = φN – the fixation probability and time, the weighting factor, and p∗, although

the equation can be solved by iteration. Despite the complexity of the underlying issues and

the approximate nature of the derivation, Equation A5 generally yields estimates of φ that are

within 30% (often considerably closer) of simulation results (Figure 4). Although this is not a

fully satisfactory outcome, given that φ varies 10,000-fold over the full range of parameter space,

this heuristic solution appears to capture the essence of the system, is an upgrade to the visual-

fit interpretation of Lynch (2020), and provides insight into the regions of parameter space that

merit further consideration. Major discrepancies appear to be restricted to very large linkage

blocks (of order L = 106) with Ns� 1, where φ is underestimated up to two-fold, and with Ns

in the range of 10 to 1000, where φ is overestimated up to five-fold. As can be seen in Figure

4, the primary determinant of φ is Ns, with φ only responding in a significant way after Ns

exceeds a threshold value near 1 for small L and 0.01 for very large L. Not surprisingly, larger

L leads to stronger interference, but in all cases, mutational bias (β) has a secondary effect.

A simpler approximate solution is obtainable under the assumption of Nes � 1, which

allows the approximations τ ' 2Ne and pf (s) = (2Nes/N)/[ 1− e−2Nes ], and thus to

I ' 2kβ(Nes)
3

g(1 +Nes)(1− e−2Nes)(1 + βe2Nes)
, (A9)

where g = s/(Lu10). Letting x = Nes and referring back to Equation A5, this rearranges to

another transcendental equation

x+
2kβx4

g(1 + x)(1− e−2x)(1 + βe2x)
= Nsφmax. (A10)

For small x, Taylor’s-series expansion of the left side of Equation A10 leads to

x+
kβx3

g(1 + β)

(
1− 2βx

1 + β
− (1− 4β + 7β2)x2

3(1 + β2)
+ · · ·

)
= Nsφmax. (A11)
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For small L and u10/s � 1, the parameter g � 1, and hence the above equation simplifies to

Nsφmax, and hence

φ =
x

Ns
= φmax. (A12a)

In the other limit, as L → ∞, the parameter g → 0, so the second term in the left side of

Equation A11 dominates, leading to the approximation,

φ '
(
g(1 + β)φmax

kβ(Ns)2

)1/3

. (A13)

This expression yields scaling relationships that are fairly similar to those generated by less

formal methods in Lynch (2020; Equation 11), which suggested φ to be an approximately inverse

function of∼ Ns3/4L1/3β1/4u
1/3
10 over the full domain ofNs, noting that here there are additional

terms in φmax. Although Equation A13 can yield φ > 1 at small Ns, this can be accommodated

by simply setting φ = 1 at this point.

For Nes ' 1, retaining the assumption of τ ' 2Ne, using Equation A10, and performing a

Taylor’s-series expansion around Nes = 1 leads to

a+ bx ' Nsφmax, (A14a)

where

a =
kβe2[ 9− 5(1− β)e2 − βe4 ]

2[ (1− e2)(1 + βe2) ]2g
, (A14b)

b = 1− kβe2[ 11− 7(1− β)e2 − 3βe4 ]

2[ (1− e2)(1 + βe2) ]2g
, (A14c)

Equation A14a then yields

φ =
φmax − (a/Ns)

b
, (A15)

which converges to φ = φmax, as g →∞.

Over the full range of parameter space for L = 106, Equation A13 performs as well as (in

some cases better than) the direct solution of the transcendental function (Figure 4). Equation

A13 also performs reasonably well with L as low as 104. For smaller L, Equation A13 tends to

overestimate φ, whereas Equation A15 yields results that are nearly indistinguishable from the

solution of the transcendental equation, which maps well to the simulation results. Note that

in all evaluations here, we have retained the use of k = 0.25.
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Reduction in Ne by selective interference from minor-effect loci: two-effects case.

A large body of literature in the concurrent mutation regime is based on a semi-deterministic

approach where the bulk of the distribution of frequency classes follows a deterministic equation

and the stochastic noise enters only at the nose of the distribution (Rouzine et al. 2008; Goyal

et al. 2012; John and Jain 2015). However, these studies consider uniform sites with single

mutational effects. Here, we try to understand the connection between the single-effects model

and the two-effects case using the deterministic equation for the frequency class Pi,j containing

i and j number of deleterious loci summed over all LM and Lm major and minor-effect sites,

respectively,

∂Pi,j
∂t

= u10[LM − (i− 1)]Pi−1,j + βu10(i+ 1)Pi+1,j + u10[Lm − (j − 1)]Pi,j−1

+ βu10(j + 1)Pi,j+1 − [Lu10 + (i+ j)(β − 1)u10 + (isM + jsm − κ)]Pi,j , (A16)

where L = LM + Lm and κ =
∑LM

i=0

∑Lm

j=0(isM + jsm)Pi,j .

Letting isM + jsm = (i+ γj)sM = ksM , where γ = sm/sM ≤ 1, then by setting k = i+ γj,

the two-effects equation can be reduced to an effective one-effect equation with the frequency

class Pi,j becoming Pk with associated selection ksM ,

∂Pk
∂t

= u10(LM − i+ 1)Pk−1 + βu10(i+ 1)Pk+1 + u10(Lm − j + 1)Pk−γ

+ βu10(j + 1)Pk+γ − [Lu10 + (i+ j)(β − 1)u10 + ksM − κ]Pk, (A17)

Dividing by Lu10 everywhere,

∂Pk
∂T

= ηM (1− ai−1)Pk−1 + βηMai+1Pk+1 + ηm(1− bj−1)Pk−γ + βηmaj+1Pk+γ

[1 + (ηMai + ηmbj)(β − 1) + ηMgM (k − k̄)]Pk, (A18)

where T = t/Lu10, ηM = LM/L, ηm = Lm/L, ai = i/LM , bj = j/Lm, gM = sM/LMu10, and

k̄ = κ/sM .

When the joint distribution Pi,j is far from the edges, the approximations ai ≡ qM =

1 − pM = 1
LM

∑LM

i=0

∑Lm

j=0 iPi,j and bj ≡ qm = 1 − pm = 1
Lm

∑LM

i=0

∑Lm

j=0 jPi,j hold. Here, we

follow the similar approach as in (Rouzine et al. 2008) and assume that the logarithm of the

frequency is a smooth function, and use the approximation ln(Pk±h) ' ln(Pk) ± h∂ ln(Pk)
∂k . In

the steady-state, the above equation then becomes

0 = ηM (1− q̃M )e−
d ln(P̃k)

dk + βηM q̃Me
d ln(P̃k)

dk + ηm(1− q̃m)e−γ
d ln(P̃k)

dk

+ βq̃me
γ

d ln(P̃k)

dk − ηMgM (k − k̃) + (1− β)(ηM q̃M + ηmq̃m)− 1, (A19a)
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which after letting x = k − k̃ and ψ′(x) = d ln(P̃k)/dk can be rewritten as

ηMgMx− (1− β)(ηM q̃M + ηmq̃m) + 1 = ηM (1− q̃M )e−ψ
′(x) + βηM q̃Me

ψ′(x)

+ ηm(1− q̃m)e−γψ
′(x) + βηmq̃me

γψ′(x).(A19b)

Although the above equation is not exactly solvable, by expanding the exponentials for

small ψ′(x), we get

ψ(x) = ln

√
ηMgM

2π[(ηM + γηm)− (1 + β)(q̃M + γq̃m)]

− ηMgMx
2

2[(ηM + γηm)− (1 + β)(q̃M + γq̃m)]
. (A20a)

The first term on the right side is obtained from the normalization condition,
∫
eψ(x)dx = 1,

assuming x is continuous. Equation A20a can be rewritten as

ψ(x) = ln

√
ρ

2π[1− (1 + β)ϕ̃]
− ρx2

2[1− (1 + β)ϕ̃]
, (A20b)

with ρ = gM/(1 + ζ), ζ = Lmsm/LMsM , and ϕ̃ = (q̃M + ζq̃m)/(1 + ζ). Since we have assumed

the width of the distribution is large, this implies that the above calculation is valid for ρ� 1.

The above distribution yields a bivariate Gaussian distribution for k = i+ γj,

Pk =

√
ρ

2π[1− (1 + β)ϕ̃]
· exp

(
− ρ(k − k̃)2

2[1− (1 + β)ϕ̃]

)
, (A20c)

with mean k̃ = LM q̃M + γLmq̃m and variance c̃2 =
(
LMu10

sM
+ γ2 Lmu10

sm

)
[1− (1 + β) k̃

kmax
] where

kmax = LM + γLm. Note that previous studies have also found this Gaussian distribution in

the single-effects case both for infinite and finite loci models (Rouzine et al. 2008; Goyal et al.

2012; Jain and John 2016).

We can reproduce the single effects distribution by putting sM = sm or taking the number

of major or minor loci to zero in (A20c). Here, the variance produced by the minor effects in

the distribution of number of deleterious major loci is γ2 times smaller than that it can produce

in the distribution of number of deleterious minor loci in the absence of major effects. In the

presence of major effects, the variance caused by the minor loci in the distribution of number

of deleterious major loci reduced by a factor of γ2, suggests that the influence of minor loci on

the major effect is γ2 times its influence on itself. The major loci has the same influence on the

major effects in the presence and absence of minor loci.
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This variance in the distribution increases the interference effect which decreases the effec-

tive population size in a finite population due to linkage. We observe that the interference effect

caused by the minor loci on the major loci follows the above discussion. We can also write the

variance as c̃2 = LMu10

sM
(1+ ζ)[1− (1+β) k̃

kmax
] which indicates that the effective population size

will be dominated by the major effects when ζ � 1 or LMsM � Lmsm and by minor effects in

the opposite regime.
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