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Abstract
We provide the rigorous derivation of the wave kinetic equation from the cubic non-
linear Schrödinger (NLS) equation at the kinetic timescale, under a particular scaling
law that describes the limiting process. This solves a main conjecture in the theory of
wave turbulence, i.e. the kinetic theory of nonlinear wave systems. Our result is the
wave analog of Lanford’s theorem on the derivation of the Boltzmann kinetic equa-
tion from particle systems, where in both cases one takes the thermodynamic limit as
the size of the system diverges to infinity, and as the interaction strength of waves/ra-
dius of particles vanishes to 0, according to a particular scaling law (Boltzmann-Grad
in the particle case).

More precisely, in dimensions d ≥ 3, we consider the (NLS) equation in a large
box of size L with a weak nonlinearity of strength α. In the limit L→∞ and α→ 0,
under the scaling law α ∼ L−1, we show that the long-time behavior of (NLS) is
statistically described by the wave kinetic equation, with well justified approxima-
tion, up to times that are O(1) (i.e. independent of L and α) multiples of the kinetic
timescale Tkin ∼ α−2. This is the first result of its kind for any nonlinear dispersive
system.
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1 Introduction

The kinetic theory of nonlinear wave systems is the formal basis of the non-
equilibrium statistical physics of such systems. It is an extension of the kinetic frame-
work, first laid out by Boltzmann in the context of particle systems, to nonlinear dis-
persive systems. The wave kinetic theory can be traced back to the work of Peierls in
1928 on anharmonic crystals [58], which exhibited the very first wave kinetic equa-
tion (the phonon Boltzmann equation). Soon after, the kinetic framework for waves
was widely adopted in plasma theory [15, 32, 68, 70], water waves [3, 4, 48, 49], and
later formalized into a systematic approach to understand the effective long-time be-
havior of large systems of interacting waves undergoing weak nonlinear interactions
[56, 64, 72]. This kinetic theory for waves came to be known as wave turbulence
theory, due to its surprising and profound implications on the spectral energy dynam-
ics and cascades for nonlinear wave systems, similar to those made in Kolmogorov’s
theory of hydrodynamic turbulence.

The central object in wave turbulence theory is the wave kinetic equation (WKE),
which plays the analogous role of Boltzmann’s kinetic equation for particles. The
(WKE) was derived, at a heuristic level, in the physics literature to describe the ef-
fective behavior of the normal frequency amplitudes of solutions in some statistically
averaged sense. The analogy to Boltzmann’s theory also comes from the thermody-
namic limit involved in both theories: The number of particles N →∞ in Boltz-
mann’s theory is paralleled by the size L→∞ of the dispersive system in the wave
kinetic theory, and the particle radius r→ 0 is paralleled by the strength of nonlinear
wave interactions, which we shall denote by α→ 0. A scaling law is a rule that dic-
tates how these two limits are taken; for example the well-known Boltzmann-Grad
limit corresponds to the scaling law Nrd−1 ∼ 1 as N→∞ and r→ 0 [37].

From the mathematical viewpoint, the fundamental problem is to give a rigorous
justification or derivation of the wave kinetic equation starting from the nonlinear
dispersive equation that governs the wave system as a first principle. This is Hilbert’s
Sixth Problem for the statistical theory of wave systems. It should be said, though,
that this question is far from being a mere mathematical curiosity. In fact, it is a ques-
tion that was posed by physicists as a means to better understand the exact regimes
and limitations of the wave kinetic theory [56]. The particle analog of this problem
is the rigorous derivation of the Boltzmann equation starting from the Newtonian
dynamics of particles as a first principle. This was given by Lanford’s celebrated the-
orem [9, 33, 54], which justifies the derivation in the above-mentioned Boltzmann-
Grad scaling law where the particle number N →∞ and the particle size r→ 0 in
such a way that Nrd−1 ∼ 1.
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Despite being open for quite some time, progress on this problem for wave sys-
tems only started in the past twenty years. In part, this is due to the fact that it relied
on techniques that didn’t mature until then, like progress in the analysis of probabilis-
tic nonlinear PDE, combinatorics of Feynman diagrams, and in some cases analytic
number theory, all of which are components that address various facets of the prob-
lem. We shall survey the previous results leading up to this work in Sect. 1.2.1. In
another part, as we shall see and explain below (see Sect. 1.2.2), the full resolution
of this problem is a probabilistically-critical problem, and prior to this work, no such
result existed even in the parabolic setting.

We consider the nonlinear Schrödinger (NLS) equation as a fundamental and pro-
totypical system in nonlinear wave theory. This is partly due its unique universal-
ity property in this class, in the sense that any Hamiltonian dispersive system gives
(NLS) in an appropriate scaling limit (see [67]). Our main result is a full rigorous
derivation of the wave kinetic equation (WKE) up to O(1) timescales. This means
timescales that are independent of the asymptotic parameters involved in the thermo-
dynamic limit, namely the size L of the domain and the strength α of the nonlinearity.
For the sake of definiteness, this will be done under the scaling law αL∼ 1, which is
of particular mathematical interest as we shall explain later. However, our approach is
fairly general and allows treating some other scaling laws with minor modifications
(cf. Sect. 1.2.3).

1.1 Statement of the main result

1.1.1 (NLS) as the microscopic system

In dimension d ≥ 3, consider the cubic nonlinear Schrödinger equation

(i∂t −�)w+ |w|2w = 0

on a generic irrational torus of size L� 1. For convenience, we will adjust by dila-
tions and work equivalently on the square torus TdL = [0,L]d of size L, but with the
twisted Laplacian

�β = (2π)−1(β1∂2
1 + · · · + βd∂2

d ). (1.1)

Here (2π)−1 is a normalizing constant, and β = (β1, . . . , βd) ∈ (R+)d represents the
aspect ratios of the torus. We assume β is generic, i.e. belongs to the complement of
some Lebesgue null set Z, which is fixed by a set of explicit Diophantine conditions,
stated precisely in Lemma A.1. We will comment in Sect. 1.2.3 below in more detail
on the necessity of this genericity condition, but roughly speaking, it is necessary for
some scaling laws, including the one we impose in this paper, due to some number
theoretic considerations. Other scaling laws, some of which can also be covered by
our proof, do not require this genericity condition as we shall discuss later.

As mentioned above, the strength of the nonlinearity is the other asymptotic pa-
rameter in the wave kinetic theory. Of course, this strength is intimately tied to the
size of solutions (say in terms of L2 norm). To emphasize this size, we adopt the
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ansatz w = λu where λ can be thought of as the conserved L2 norm of w. This leads
us to study the equation

{

(i∂t −�β)u+ λ2|u|2u= 0, x ∈ T
d
L = [0,L]d,

u(0, x)= uin(x).
(NLS)

The defocusing sign of the nonlinearity adopted here is merely for concreteness pur-
poses. The same results hold for the focusing case; this is due to the weak nonlinearity
setting inherent in the wave kinetic theory we study here.

The kinetic theory seeks to give the effective dynamics of frequency amplitudes
E|̂u(t, k)|2 where1

û(t, k)=
ˆ
T
d
L

u(t, x)e−2πik·x dx, u(t, x)= 1

Ld

∑

k∈ZdL
û(t, k)e2πik·x, (1.2)

and the averaging happens over a random distribution of the initial data. Such random
distribution is chosen in a way that allows for the kinetic description; we call such
data well-prepared. More precisely, we consider random homogeneous initial data
given by

uin(x)= 1

Ld

∑

k∈ZdL
ûin(k)e

2πik·x, ûin(k)=
√

nin(k)ηk(ω), (DAT)

where Z
d
L := (L−1

Z)d , and nin :Rd→[0,∞) is a given Schwartz function, {ηk(ω)}
is a collection of i.i.d. random variables. We assume that each ηk is either a centered
normalized complex Gaussian, or uniformly distributed on the unit circle of C. This is
sometimes called the random phase assumption in the literature [56]. For simplicity,
in the proof below, we will only consider the Gaussian case; the unimodular case can
be treated with minor modifications (see for example Lemma 3.1 of [18]).

Given such random solutions, we define the strength of the nonlinearity parameter
to be α := λ2L−d . This nomenclature can be justified, heuristically at this point,
by noting that if u is a randomly chosen L2(TdL) function with norm O(1), then
with high probability one has that ‖u‖L∞(TdL) � L

−d/2, which makes the nonlinearity

λ2|u|2u of size∼ λ2L−d = α in L2(Td). This heuristic can be directly verified for the
well-prepared initial data uin using Gaussian hypercontractivity estimates, but it will
follow from our proof that it is also true for the solution u(t) itself at later timescales
of interest to us.

Finally, we define the kinetic timescale

Tkin := 1

2α2
= 1

2
· L

2d

λ4
,

1Here we note that one has freedom to choose a different normalization of the Fourier transform. We
caution that, while this has no effect on the theory, it does change the expression for the strength of the
nonlinearity α below, and hence the kinetic timescale Tkin = 1/2α2, in terms of λ and L. For example,
another common normalization is the one that puts L−d/2 in front of the Fourier integral; there α would
be λ2 and Tkin = 1/2α2 = 1/2λ4.
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which will be the timescale at which the kinetic behavior will start exhibiting itself
for (NLS).

1.1.2 The wave kinetic equation for NLS

Under the homogeneity assumption on the initial data in (DAT) (i.e. the independence
of ûin(k) for different k), the relevant wave kinetic equation is also homogeneous (i.e.
has no transport term) and is given by:

{

∂tn(t, k)=K(n(t), n(t), n(t))(k),

n(0, k)= nin(k),
(WKE)

where the nonlinearity

K(φ1, φ2, φ3)(k)=
ˆ
(Rd )3

{

φ1(k1)φ2(k2)φ3(k3)− φ1(k)φ2(k2)φ3(k3)

+ φ1(k1)φ2(k)φ3(k3)− φ1(k1)φ2(k2)φ3(k)
}

× δ(k1 − k2 + k3 − k) · δ(|k1|2β − |k2|2β + |k3|2β
− |k|2β)dk1dk2dk3. (KIN)

Here and below δ denotes the Dirac delta, and we define

|k|2β := 〈k, k〉β, 〈k, �〉β := β1k1�1 + · · · + βdkd�d,
where k = (k1, . . . , kd) and �= (�1, . . . , �d) are Z

d
L or Rd vectors.

Note that the initial data of (WKE) matches that for (NLS) in (DAT) in the sense
that E|ûin(k)|2 = nin(k), hence the description well-prepared for (DAT). We shall
show as part of our proof (Proposition 7.9; see also an optimal local well-posedness
result in [35]) that given such initial data nin(k), there exists δ > 0 small enough
depending on nin, such that there exists a unique local solution n= n(t, k) (k ∈ R

d)

of (WKE) on the interval [0, δ].
1.1.3 The main result

The main result of this manuscript is the rigorous and quantitative justification of
(WKE) over all the existence interval [0, δ], as the limit of the averaged (NLS) dy-
namics under the scaling law αL= 1.

Theorem 1.1 Let d ≥ 3, and consider the Lebesgue null set Z ⊂ (R+)d defined in
Lemma A.1. The followings hold for any fixed β ∈ (R+)d\Z.

Fix A≥ 40d , a Schwartz function nin ≥ 0, and fix δ� 1 depending on (A,β,nin).
Consider the equation (NLS) with random initial data (DAT), and assume λ =
L(d−1)/2 so that α = L−1 and Tkin = L2/2. Then, for sufficiently large L (depending
on δ), the equation has a smooth solution up to time

T = δL
2

2
= δ · Tkin,
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with probability ≥ 1−L−A. Moreover we have (here û is as in (1.2))

lim
L→∞ sup

τ∈[0,δ]
sup
k∈ZdL

∣

∣

∣E |̂u(τ · Tkin, k)|2 − n(τ, k)
∣

∣

∣= 0, (1.3)

where n(τ, k) is the solution to (WKE).

A few remarks about this result are in order. First, we understand that the expected
value E in (1.3) is taken only when (NLS) has a smooth solution on [0, δ · Tkin],
and the quantity that we take expectation of is defined to be 0 otherwise. As stated
in Theorem 1.1, this is a set of probability ≥ 1 − L−A, and hence its complement
has no effect on (1.3) (using the mass conservation of u). Second, the convergence
as L→∞ is actually quantitative in the sense that there exists ν = ν(d) > 0 and a
constant C independent of L such that

sup
τ∈[0,δ]

sup
k∈ZdL

∣

∣

∣E |̂u(τ · Tkin, k)|2 − n(τ, k)
∣

∣

∣≤ CL−ν .

We also point out that the requirement that nin be Schwartz is an overkill, and the
proof only requires control on finitely many Schwartz semi-norms of nin.

Finally, we remark that Theorem 1.1 extends, with essentially the same proof, to
scaling laws of the form α = L−κ for κ smaller than and sufficiently close to 1. For
such scaling laws, we do not need the genericity assumption for β , and (1.3) holds
independent of the shape of the torus. We shall discuss this in some more detail in
Sect. 1.2.3 below.

1.2 Comments on Theorem 1.1

1.2.1 Background work

Starting from the middle of the past century, wave turbulence has become a signif-
icant component in the study of nonlinear wave theory, and a vibrant field of sci-
entific study in plasma theory [15], oceanography [51, 69], crystal thermodynamics
[63] to mention only a few. We refer to [56, 72] for textbook treatments. Mathemat-
ically speaking, problems related to wave turbulence theory have attracted consider-
able attention in the last couple of decades. The focus was initially on constructing
solutions to nonlinear dispersive equations that exhibited some form of energy cas-
cade2 [5, 11, 34, 38–42, 45–47, 52, 53]. This is one of the important conclusions
of the wave kinetic theory, which predicates the presence of stationary power-like
solutions to (WKE), called the forward and backward cascade spectra. These are
the wave-analogues of Kolmogorov spectra in hydrodynamic turbulence [56, 71, 72].
The rigorous study of such solutions of the (WKE) has been initiated in [28, 29]. The
wide range of applicability of this kinetic theory, combined with its profound turbu-
lence implications, emphasized the importance of setting it on rigorous mathematical
foundations.

2Upper bounds on this cascades, measured in terms of the growth of high Sobolev norms was also inves-
tigated in [6, 8, 10, 12, 17, 59, 62, 65].



550 Y. Deng, Z. Hani

In terms of justifying the kinetic formalism, several works addressed certain as-
pects of the problem [24, 25, 30, 55] (see also [26, 27] for related results on the
linear Schrödinger equation with random potential). The full question of deriving
the (WKE) starting from the unperturbed dispersive system was first treated in [7].
There, the authors justify the derivation of (WKE) for (NLS) up to timescales that are
vanishingly small relative to the kinetic timescale, namely up to L−γ Tkin for some
γ > 0. The later works in [13, 18] were able to substantially improve such timescales
of approximation all the way to L−εTkin for arbitrarily small ε and for some partic-
ular scaling laws. We shall elaborate a bit more on these works given their relevance
to this manuscript, and the fact that they were the first to showcase the importance of
the scaling law to this problem.

The result in [18] suggested that the rigorous derivation of the wave kinetic equa-
tion depends on the scaling law at which L diverges to ∞ and α vanishes to 0. More
precisely, it is shown that for two favorable scaling laws, including the one studied in
this manuscript, one can justify the approximation as in (1.3) but up to times scales of
the form L−ε for arbitrarily small ε. The main difficulty in such a result is in proving
the existence of solutions to the (NLS) equation as a Feynman diagram expansion up
to times T ∼ L−εTkin. This time T plays the role of the radius of convergence of this
power series expansion. When it comes to absolute convergence, the result in [18]
gives optimal, up to Lε loss, estimates on this radius of convergence T , and proves
that (1.3) holds for such timescales. This is done for all admissible scaling laws (cf.
Sect. 1.2.3), and outside the two favorable scaling laws mentioned above, the time
T is much shorter than the conjectured kinetic timescale. In fact, we show that the
expansion diverges absolutely in a certain sense for times longer than T , which raised
the question whether one can justify the kinetic equation at the kinetic timescales out-
side the two scaling laws identified in [18]. This issue was also investigated in [14]
which further analyzed this divergence.

Of course, the central question, for any scaling law, is whether one can justify the
approximation (1.3) up to times that areO(1)multiples of the kinetic timescale. Such
a result, regardless of the scaling law, would allow transferring the rich set of behav-
iors exhibited by the wave kinetic equation (such as energy cascade or formation of
condensate [28, 29]) on the interval of approximation into long-time behaviors of
the cubic NLS equation. This includes NLS set on the unit torus by rescaling. Our
main theorem provides such quantitative approximation, for the scaling law α ∼ L−1.
Moreover, as we shall discuss in Sect. 1.2.3 below, the proof extends with minor mod-
ifications to some close-by scaling laws.

Finally, we mention a recent deep work [66] of Staffilani-Tran, which was sub-
mitted to arXiv shortly after the completion of this manuscript. It concerns a higher
dimensional KdV-type equation under a time-dependent Stratonovich stochastic forc-
ing, which effectively randomizes the phases without injecting energy into the sys-
tem. The authors derive the corresponding wave kinetic equation up to the kinetic
timescale, for the specific scaling law α ∼ L−0 (i.e. first taking L→∞ and then
taking α→ 0).
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1.2.2 Criticality of the problem

Criticality is one of the fundamental concepts in the study of nonlinear PDE. While
the classical scaling criticality plays a central role in the study of deterministic
equations, a different type of scaling takes the spotlight for probabilistic problems
as showcased in several recent works both in the parabolic and dispersive setting
[22, 23, 44]. To explain the difference, it is worth recalling the following robust def-
inition of criticality: A problem is subcritical if subsequent (Picard) iterates of the
solution get better and better compared to previous ones; it is critical if the iter-
ates neither exhibit an improved nor worse behavior compared to previous ones, and
supercritical if the iterates successively deteriorate. For instance, the classical (deter-
ministic) scaling criticality for the cubic (NLS) equation i∂t v+�v =±|v|2v can be
defined as the minimum regularity s for which the first iterate of an Hs -normalized

rescaled bump function of the form uin := N−s+ d
2 ϕ(Nx) is better behaved than the

zeroth iterate. This can be easily seen by comparing |uin|2uin and �uin to obtain that
the problem is critical if s = sc := d

2 − 1 and subcritical (resp. supercritical) if s > sc
(resp. s < sc).

The more relevant notion of criticality for us is that of probabilistic scaling crit-
icality. This can be formulated in terms of the Hs regularity of the initial data for
(NLS) on the unit torus as above, (see [22, 23]), but for our problem (NLS) it trans-
lates (or rescales) into the trichotomy of whether the time interval [0, T ] on which we
study the solutions satisfies T � Tkin (subcritical regime), T ∼ Tkin (critical regime),
or T � Tkin (supercritical regime). To see this, we note that the first iterate of (NLS)
is given in Fourier space by

û(1)(t, k) := i λ
2

L2d

∑

S(k)

ûin(k1)ûin(k2)ûin(k3)
eπi�t − 1

πi�
,

�= |k1|2β − |k2|2β + |k3|2β − |k|2β, (1.4)

where S(k) = {(k1, k2, k3) ∈ Z
d
L : k1 − k2 + k3 = k}. A deterministic analysis us-

ing the fact that ûin(k) decays like a Schwartz function (think of it as compactly
supported in B(0,1)) shows that this term is bounded (up to logarithmic losses) by
λ2

L2d supm |ST,m| where ST,m = {(k1, k2, k3) ∈ S(k) : |�−m| ≤ T −1}. It’s not too hard

to see that supm |ST,m| ∼ L2dT −1 (at least when T � Ld , see Lemma A.9 or Lemma
3.2 in [18]). However, with random data uin and using Gaussian hypercontractivity
estimates, a major cancellation happens in the sum over S(k) above, and with over-
whelming probability, one has the much improved central-limit-theorem-type bound

|̂u(1)(t, k)| ∼ λ2

L2d

(

sup
m
|ST,m|

)1/2

∼ λ
2T 1/2

Ld
. (1.5)

From this it is clear that the iterate û(1)(t, k) is much better behaved compared to the

zeroth iterate ûin(k) on timescales T � L2d

λ4 ∼ Tkin, and does not feature any improve-
ment for times T ∼ Tkin. For this reason, all previous works [7, 13, 14, 18] on this
subject deal with the probabilistically subcritical setting, albeit the results in [13, 18]
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cover the full subcritical regime T < L−εTkin for the scaling law αL= 1, which we
also adopt in this paper. Consequently, obtaining the rigorous derivation of the wave
kinetic equation at the kinetic timescale Tkin as in Theorem 1.1 is a quintessential
probabilistically critical problem. In fact, Theorem 1.1 seems to be the first solution
of a probabilistically critical problem, both in the dispersive and parabolic setting
(here we should note that recent developments in the parabolic setting allow covering
the full subcritical range [43, 44]).

1.2.3 On scaling laws and the torus genericity condition

Theorem 1.1 justifies the kinetic approximation under the scaling law αL= 1, i.e. α
goes to zero like L−1. This is one of the two favorable scaling laws identified in [18],
and is also the one treated in [13]. Moreover, it also holds a particular mathematical
importance. In fact, Theorem 1.1 scales back, in this scaling law, to time ∼ 1 results
(i.e. local well-posedness with precise description of statistical properties) for the
cubic (NLS) equation on the unit torus, in the probabilistically critical space H−1/2,
which is linked to a main open problem raised in [23]. A particularly interesting
case happens when d = 3. There, for an appropriate choice of nin (namely ϕ(ξ)|ξ |−1

for some ϕ ∈ S(R3) vanishing near 0 and infinity), Theorem 1.1 rescales into a local
existence result for the Littlewood-Paley projection of data in (essentially) the support
of the Gibbs measure for the (NLS) equation on T

3. Such local existence results
for Gibbs measure initial data would be a central part of a potential proof of the
invariance of the Gibbs measure. As is well-known, the Gibbs measure invariance
problem for (NLS) on T

3 is another outstanding probabilistically critical problem.
In fact, after the work [22] which solves the two-dimensional case, it is the only
remaining Gibbs measure invariance problem for (NLS), given that the question of
existence (or lack thereof) of such measures is now well understood in constructive
quantum field theory [1, 2, 31, 36, 61].

As explained in [18], not all scaling laws are admissible for the kinetic theory, and
the admissibility of the scaling law depends on the whether the torus is generic or not.
In fact, suppose one adopts the scaling law α = L−κ for κ ≥ 0. Here κ = 0 means that
one takes the L→∞ limit followed by the α→ 0 limit, which incidentally was the
other favorable scaling law identified in [18]. Since the kinetic timescale is given by
Tkin ∼ α−2 = L2κ , restrictions on the admissible κ come from any restriction posed
by the kinetic theory on the time interval of approximation. The relevant restriction
here is that the exact resonances, for which � = 0, in a sum like (1.4) should not
overwhelm the quasi-resonances for which 0 < |�| � T −1. The latter interactions
are the ones responsible for the emergence of the kinetic equation in the large box
limit. For an arbitrary torus (including the rational or square torus), the exact reso-
nances can have a contribution of (L2d−2)1/2 to the sum in (1.4) (taking into account
the Gaussian �2 cancellation), which should be compared to the (L2d/T )1/2 estimate
used above. This means that if the torus is rational, then the limitation of the kinetic
theory is given by Tkin � L2. This translates into the requirement that κ < 1 on a
rational torus. On the other hand, on a generic torus, the contribution of exact res-
onances is much less, namely (Ld)1/2, which when compared to (L2d/T )1/2 yields
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the requirement that Tkin � Ld , and hence κ has to < d/2 on a generic torus. Note
that our scaling law α = L−1 lies just outside the range of admissible scaling laws
for a rational torus, but well within the range for a generic torus. This explains why
Theorem 1.1 is stated for a generic torus.

Scaling Law α = L−κ Tkin = 1/2α2 Torus type

0≤ κ < 1 Tkin ∼ L2κ � L2 Any torus
1≤ κ < Ld/2 L2 � Tkin � Ld generic torus

That being said, our proof extends with minor modifications to scaling laws
α = L−κ for κ smaller than but sufficiently close to 1. This is within the admissi-
ble range of scaling laws on an arbitrary torus, and as such our result can be extended
to such scaling laws which require no restrictions on the shape of the torus. Given the
complexity of the proof, we chose to focus the discussion here to the single scaling
law α = L−1. We will address the remaining scaling laws κ < 1 (on the arbitrary
torus) in a separate forthcoming note. Note that some challenges are apparent in the
case κ > 1, and new ideas seem to be needed there.

Remark 1.2 After the submission of this paper, the authors have completed the sub-
sequent works [19–21]. In particular [21] addresses the full range of scaling laws
0< κ < 1 without genericity assumption; see also discussions in [21] regarding the
endpoint case γ = 0, which is in fact not compatible with the continuum setting (the
difficulty comes from the remainder terms RN in (1.6) below). Moreover, [19] es-
tablishes important results including propagation of chaos and non-Gaussian density
evolution, which are again true for the full range of scaling laws [21].

1.3 A high-level sketch of the proof

A proper overview of the proof requires introducing quite a bit of notation and setup.
We shall do this in Sect. 3 after we set up the problem in Sect. 2. Here, we shall be
content with a zoomed-out overview of the proof. As in our previous work in [18] on
the subcritical timescales, the idea is to expand the (NLS) solution as a power series
(Feynman diagram expansion) of its iterates

u= u(0) + u(1) + · · · + u(N) +RN, (1.6)

for sufficiently largeN . Here, the j -th iterates uj can be written as a sum over ternary
trees of scale j (cf. Sect. 2) and RN is the remainder. In the subcritical problem in
which T ≤ L−εTkin, it is sufficient to do a finite (but O(ε−1) long) expansion to
prove an approximation result like (1.3). Roughly speaking, the reason for that is that
each iterate exhibits at least a L−ε improvement over the previous one. In particular,
one does not need to keep track of any factorial dependences on N when estimating
the iterates and the remainder RN . Such factorial growth appear when one computes
the correlations, like E

(

u(k)u(�)
)

, and hence in the estimates on the iterates and the
remainder.
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This becomes one of the major difficulties in the critical problem. In fact, in our
critical setting here where T = δTkin, the only improvement in the successive iterates
is ∼ √δ (cf. (1.5)), and as such the best estimates one can dream of for RN is to
control it by (

√
δ)N . For the contribution of RN in (1.3) to vanish in the limit L→

∞, one has to allow N to diverge as L→∞. This means that one has to track
carefully the factorial divergences in N in the correlations E

(

u(k)u(�)
)

. In fact, such
correlations can be represented as sums over pairs of ternary trees whose leaves are
paired to each other. We call those such objects couples, and the number of those
couples is factorial in n := k + �, which is called the scale of the couple. This brings
us to the central idea in the proof: can one classify the couples into groups, such that
those saturating or almost saturating the worst-case-scenario estimates are relatively
few and do not lead to factorial losses in n= k + �, while the remaining (factorially
many) couples satisfy much better estimates than the worst-case scenario, i.e. feature
a gain of powers of L, which is sufficient to offset the factorial loss?

The positive answer to this question constitutes the bulk of the proof. However,
the answer is not as straightforward as one might first hope. In fact, one would hope
that the couples with almost saturated estimates would be small perturbations of the
“leading” ones that converge to the iterates of the wave kinetic equation. Unfortu-
nately, these are not the only ones. In our proof we will actually identify three fami-
lies of couples with almost saturated estimates. The first family, which we call regular
couples, are essentially the leading ones that converge to the iterates of the wave ki-
netic equation, plus some similar couples whose contribution cancel out in the limit.
The second family, which we call irregular chains, can also lead to almost saturated
estimates and is dealt with in Sect. 8. The last family, which we call Type II (molec-
ular) chains, satisfy an L1 bound that makes its contribution acceptable. This is dealt
with in Sect. 10.

The good news is that there are only O(Cn) couples that lead to almost saturated
estimates, whereas the remaining (factorial in n) number of couples all feature a gain
in L. This is the content of our main rigidity theorem in Sect. 9. In fact, we show that
if one performs a type of surgery on an arbitrary couple to remove all its regular sub-
couples, all its irregular chains, and all its Type II molecular chains (which are exactly
the structures that lead to almost saturated estimates), then we are left with a reduced
structure whose estimate features a gain L−r where r is comparable to the size of
this structure! This is enough to offset the factorial divergence r! that comes from the
possibilities of these size r structures, provided that r is small enough relative to L.
Since r ≤N , this is more than guaranteed if we pick N ∼ logL.

We should mention that the analysis of each of the couple families mentioned
above requires a different genre of argument, ranging from sophisticated combinato-
rial constructions in Sects. 7, 8 and 9, to analytic ones in Sect. 5 and 10, and number
theoretic ones in Sect. 6. Once this picture is made clear, the estimate on the re-
mainder term is relatively easier and can be derived from the analysis above. There
are some subtleties involved, which will be treated in Sect. 11. For a more detailed
discussion of the proof, see Sect. 3.
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2 Basic setup

2.1 Preliminary reductions

Consider the equation (NLS). Let M = ffl |u|2 be the conserved mass of u (whereffl
takes the average on T

d
L), and define v := e−2iλ2Mt · u, then v satisfies the Wick

ordered equation

(i∂t −�β)v + λ2
(

|v|2v− 2
 
|v|2 · v

)

= 0. (2.1)

By switching to Fourier space, rescaling in time and taking back the linear flow, we
can define

ak(t)= e−δπiL2|k|2β t · v̂(δTkin · t, k), (2.2)

with v̂ as in (1.2). By the same calculations as in Sect. 2.1 of [18], we obtain that
a := ak(t) satisfies the equation

{

∂tak = C+(a, a, a)k(t),

ak(0)= (ak)in =
√

nin(k)ηk(ω),
(2.3)

with the nonlinearity

Cζ (f, g,h)k(t)

:= δ

2Ld−1
· (iζ )

∑

k1−k2+k3=k
εk1k2k3e

ζδπiL2�(k1,k2,k3,k)t fk1(t)gk2(t)hk3(t),

(2.4)

for ζ ∈ {±}. Here in (2.4) and below, the summation is taken over (k1, k2, k3) ∈
(ZdL)

3, and

εk1k2k3 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1, if k2 /∈ {k1, k3};
−1, if k1 = k2 = k3;

0, otherwise,

(2.5)

and the resonance factor

�=�(k1, k2, k3, k) := |k1|2β − |k2|2β + |k3|2β − |k|2β = 2〈k1 − k, k − k3〉β; (2.6)

the last equality in (2.6) requires k1 − k2 + k3 = k. Note that εk1k2k3 is always sup-
ported in the non-resonant set

S := {

(k1, k2, k3) : either k2 /∈ {k1, k3}, or k1 = k2 = k3
}

. (2.7)

The rest of this paper is focused on the system (2.3)–(2.4), with the relevant terms
defined in (2.5)–(2.7), in the time interval t ∈ [0,1].
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Fig. 1 An example of a tree
with + sign (Definition 2.1)

2.2 Trees and couples

Throughout the proof we will make extensive use of ternary trees and pairs of ternary
trees, to characterize the expressions appearing in the formal expansion of solutions
to (NLS). These are alternative formulations of the classical Feynman diagrams.

Definition 2.1 A ternary tree T (see Fig. 1, we will simply say a tree below) is a
rooted tree where each non-leaf (or branching) node has exactly three children nodes,
which we shall distinguish as the left, mid and right ones. We say T is trivial (and
write T = •) if it consists only of the root, in which case this root is also viewed as a
leaf.

We denote generic nodes by n, generic leaves by l, the root by r, the set of leaves
by L and the set of branching nodes by N . The scale of a tree T is defined by
n(T )= |N |, so if n(T )= n then |L| = 2n+ 1 and |T | = 3n+ 1.

A tree T may have sign + or −. If its sign is fixed then we decide the signs of
its nodes as follows: the root r has the same sign as T , and for any branching node
n ∈N , the signs of the three children nodes of n from left to right are (ζ,−ζ, ζ ) if
n has sign ζ ∈ {±}. Once the sign of T is fixed, we will denote the sign of n ∈ T by
ζn. Define the conjugate T of a tree T to be the same tree but with opposite sign.

Definition 2.2 A couple Q (see Fig. 2) is an unordered pair (T +,T −) of two trees
T ± with signs + and − respectively, together with a partition P of the set L+ ∪L−
into (n+ 1) pairwise disjoint two-element subsets, where L± is the set of leaves for
T ±, and n= n+ + n− where n± is the scale of T ±. This n is also called the scale of
Q, denoted by n(Q). The subsets {l, l′} ∈P are referred to as pairs, and we require
that ζl′ = −ζl, i.e. the signs of paired leaves must be opposite. If both T ± are trivial,
we call Q the trivial couple (and write Q=×).

For a couple Q = (T +,T −,P) we denote the set of branching nodes by N ∗ =
N+ ∪ N−, and the set of leave by L∗ = L+ ∪ L−; for simplicity we will abuse
notation and write Q = T + ∪ T −. We also define a paired tree to be a tree where
some leaves are paired to each other, according to the same pairing rule for couples.
We say a paired tree is saturated if there is only one unpaired leaf (called the lone
leaf ). In this case the tree forms a couple with the trivial tree •.

Remark 2.3 Our notions about trees and couples will be fixed throughout, for example
L± will always mean the set of leaves for the tree T ±, and N ∗

j will always mean the
N ∗ set for a couple Qj , etc.
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Fig. 2 An example of a couple (Definition 2.2). Here and below two nodes of same color (other than black)
represent a pair of leaves

Definition 2.4 A decoration D of a tree T (see Fig. 3) is a set of vectors (kn)n∈T ,
such that kn ∈ Z

d
L for each node n, and that

kn = kn1 − kn2 + kn3, or equivalently ζnkn = ζn1kn1 + ζn2kn2 + ζn3kn3,

for each branching node n ∈N , where ζn is the sign of n as in Definition 2.1, and n1,
n2, n3 are the three children nodes of n from left to right. Clearly a decoration D is
uniquely determined by the values of (kl)l∈L. For k ∈ Z

d
L, we say D is a k-decoration

if kr = k for the root r.3

Given a decoration D , we define the coefficient

εD :=
∏

n∈N
εkn1kn2kn3

(2.8)

where εk1k2k3 is as in (2.5). Note that in the support of εD we have that (kn1 ,kn2,kn3)∈
S for each n ∈N . We also define the resonance factor �n for each n ∈N by

�n =�(kn1, kn2, kn3 , kn)= |kn1 |2β − |kn2 |2β + |kn3 |2β − |kn|2β. (2.9)

A decoration E of a couple Q = (T +,T −,P), see Fig. 4, is a set of vectors
(kn)n∈Q, such that D± := (kn)n∈T ± is a decoration of T ±, and moreover kl = kl′
for each pair {l, l′} ∈P . We define εE := εD+εD− , and define the resonance factors
�n for n ∈N ∗ as in (2.9). Note that we must have kr+ = kr− where r± is the root
of T ±; again we say E is a k-decoration if kr+ = kr− = k. Finally, we can define
decorations D of paired trees, as well as εD and �n etc., similar to the above.

2.2.1 Multilinear Gaussians associated with trees

For any tree T , define the expression JT inductively by

(JT )k(t)=
{

(ak)
ζ
in, if T = •,

ICζ (JT1 ,JT2,JT3)k(t), otherwise,
(2.10)

3Note that our notion of decoration is different from some earlier literature, in which vectors k are assigned
not to the nodes of the couple but to the edges connecting nodes to its children. These differences are of
course non-essential.
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Fig. 3 An example of a
decorated tree (Definition 2.4).
It satisfies k = a − b+ c and
a = d − e+ f etc

Fig. 4 An example of a decorated couple (Definition 2.4). It satisfies k = l − e+m and l = a − d + c etc

where T1, T2 and T3 are subtrees of T from left to right, ζ is the sign of T , Cζ is
defined as in (2.4), and linear Duhamel operator I is given by

IF(t)=
ˆ t

0
F(s)ds. (2.11)

Denote z+ = z and z− = z for complex numbers z (note that similar expressions like
m± or α±j that occur later may also have different meanings; this will depend on the
context). By induction, we can show that if T has scale n, then JT has the expression

(JT )k(t)=
(

δ

2Ld−1

)n
∏

n∈N
(iζn)

∑

D

εD ·AT (t, δL
2 ·�[N ])

∏

l∈L

√

nin(kl)η
ζl
kl
(ω),

(2.12)
where�[N ] represents (�n)n∈N , and the sum is taken over all k-decorations D of T
(or equivalently, all choices of (kl)l∈L). In (2.12) the coefficient AT =AT (t, α[N ])
is defined inductively by

A•(t, α[N ])= 1; AT (t, α[N ])=
ˆ t

0
eζπiαrt

′
3
∏

j=1

ATj (t
′, α[Nj ])dt ′, (2.13)

where T1, T2 and T3 are subtrees of T from left to right so that N =N1 ∪N2 ∪N3 ∪
{r}, and ζ is the sign of T . Finally, for n≥ 0 we define

Jn =
∑

n(T +)=n
JT + , (2.14)

where the sum is taken over all trees T + of scale n that have + sign.
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2.2.2 The ansatz and the remainder term

Define N := �logL�. With the definition of JT and Jn in Sect. 2.2.1 we may intro-
duce the ansatz

ak(t)=
N
∑

n=0

(Jn)k(t)+ bk(t)=
∑

n(T +)≤N
(JT +)k(t)+ bk(t), (2.15)

where again the sum is taken over all trees T + of scale at most N that have + sign.
The remainder term b := bk(t) then satisfies the equation

b=R+L b+B(b, b)+C (b, b, b), (2.16)

see for example Sect. 2.2 of [18], where the terms on the right hand side are defined
by

R=
∑

(0)

IC+(u, v,w), L b=
∑

(1)

IC+(u, v,w),

B(b, b)=
∑

(2)

IC+(u, v,w), C (b, b, b)= IC+(b, b, b).
(2.17)

The above summations are taken over (u, v,w), each of which being either b or Jn
for some 0≤ n≤N ; moreover in the summation

∑

(j) for 0≤ j ≤ 2, exactly j inputs
in (u, v,w) equals b, and in the summation

∑

(0) we require that the sum of the three
n’s in the Jn’s is at least N . Note that L , B and C are R-linear, R-bilinear and
R-trilinear operators respectively, and (2.16) is equivalent to

b= (1−L )−1(R+B(b, b)+C (b, b, b)), (2.18)

provided 1−L is invertible in a suitable space.

2.2.3 Correlations associated with couples

Given t, s ∈ [0,1] and k ∈ Z
d
L, we want to calculate the correlation E(ak(t)ak(s)).

Neglecting the remainder b for the moment, we obtain the main contribution

E :=
∑

(T +,T −)
E[(JT +)k(t)(JT −)k(s)], (2.19)

where the sum is taken over all pairs of trees (T +,T −) where T ± has sign ± and
scale at most N . For fixed (T +,T −), by (2.12) we get that

E[(JT +)k(t)(JT −)k(s)]

=
(

δ

2Ld−1

)n
∏

n∈N ∗
(iζn)

∑

(D+,D−)
εD+εD− ·AT +(t, δL

2 ·�[N+])
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×AT −(s, δL
2 ·�[N−]) ·E

[

∏

l∈L∗

√

nin(kl)η
ζl
kl
(ω)

]

, (2.20)

where n equals the sum of scales of T + and T −. By using the complex version of
a specific case of the Isserlis’ theorem, which is proved in Lemma A.2, we conclude
that

E[(JT +)k(t)(JT −)k(s)]

=
(

δ

2Ld−1

)n

ζ ∗(Q)
∑

P

∑

E

εE ·BQ(t, s, δL
2 ·�[N ∗]) ·

(+)
∏

l∈L∗
nin(kl),

(2.21)

where ζ ∗(Q) and BQ are defined by

ζ ∗(Q)=
∏

n∈N ∗
(iζn), (2.22)

BQ(t, s, α[N ∗])=AT +(t, α[N+]) ·AT −(s,α[N−]). (2.23)

Here in (2.21) the first summation is taken over all possible sets of pairings P that
make a couple Q := (T +,T −,P), and the second summation is taken over all k-
decorations E of the couple Q. The product

∏(+)
l∈L∗ is taken over l ∈ L∗ that have

sign +.
By summing over all (T +,T −), we conclude that E =∑

QKQ(t, s, k), where the
summation is taken over all couples Q= (T +,T −,P) with both T± having scale at
most N , and KQ is defined by

KQ(t, s, k) :=
(

δ

2Ld−1

)n

ζ ∗(Q)
∑

E

εE ·BQ(t, s, δL
2 ·�[N ∗]) ·

(+)
∏

l∈L∗
nin(kl).

(2.24)
Here n is the scale of Q.

2.3 Notations and estimates

Here we state the main notations, norms and estimates.

2.3.1 Parameters and norms

From now on we fix β ∈ (R+)d\Z with Z defined in Lemma A.1. Let C denote
any large constant that depends only on the dimension d , and C+ denote any large
constant that depends only on (d,β,nin). These constants may vary from line to line.
The notations X � Y and X =O(Y) will mean X ≤ C+Y , unless otherwise stated.

Recall that A≥ 40d is fixed in Theorem 1.1. We will fix ν = (100d)−1 � 1, and
fix an even integer p that is sufficiently large depending on A and ν, abbreviated as
p�A,ν 1 (same below). Then fix the value of δ in Theorem 1.1, such that δ�p,C+ 1
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(so δ is sufficiently small depending on p and C+). Finally assume L�δ 1 and fix
N = �logL�.

Let χ0 = χ0(z) be a smooth even function for z ∈R that equals 1 for |z| ≤ 1/2 and
equals 0 for |z| ≥ 1; define also χ0(z

1, . . . , zd)= χ0(z
1) · · ·χ0(z

d) and χ∞ = 1−χ0.
By abusing notation, sometimes we may also use χ0 to denote other cutoff functions
with slightly different supports. These functions, as well as the other cutoff functions,
will be in Gevrey class 2 (i.e. the k-th order derivatives are bounded by (2k)!). For
a multi-index ρ = (ρ1, . . . , ρm), we adopt the usual notations |ρ| = ρ1 + · · · + ρm
and ρ! = (ρ1)! · · · (ρm)!, etc. For an index set A, we use the vector notation α[A] =
(αj )j∈A and dα[A] =∏

j∈A dαj , etc.
Define the time Fourier transform (the meaning of ·̂ later may depend on the con-

text)

û(λ)=
ˆ
R

u(t)e−2πiλt dt, u(t)=
ˆ
R

û(λ)e2πiλt dλ.

Define the Xκ norm for functions F = F(t, k) or G=G(t, s, k) by

‖F‖Xκ =
ˆ
R

〈λ〉 1
9 sup
k

〈k〉κ |̂F(λ, k)|dλ,

‖G‖Xκ =
ˆ
R2
(〈λ〉 + 〈μ〉) 1

9 sup
k

〈k〉κ |̂F(λ,μ, k)|dλdμ,

where ·̂ denotes the Fourier transform in t or (t, s). If F = F(t) or G=G(t, s) does
not depend on k, the norms are modified accordingly; they do not depend on κ so we
simply call it X. Define the localized version Xκloc (and similarly Xloc) as

‖F‖Xκloc
= inf

{‖˜F‖Xκ : ˜F = F for 0≤ t ≤ 1
};

‖G‖Xκloc
= inf

{‖˜G‖Xκ : ˜G=G for 0≤ t, s ≤ 1
}

.

If we will only use the value of G in some set (for example {t > s} in Proposition
6.10), then in the above definition we may only require ˜G=G in this set. Define the
Z norm for function a = ak(t),

‖a‖2
Z = sup

0≤t≤1
L−d

∑

k∈ZdL
〈k〉10d |ak(t)|2. (2.25)

2.3.2 Key estimates

In this section we state the key estimates of the paper. The rest of the paper until
Sect. 11 is devoted to the proof of these estimates, and in Sect. 12 we use them to
prove Theorem 1.1.

Proposition 2.5 Let JT and Jn be defined as in Sect. 2.2.1. Then, for each 0 ≤ n≤
N3, k ∈ Z

d
L and t ∈ [0,1] we have

E|(Jn)k(t)|2 � 〈k〉−20d(C+
√
δ)n. (2.26)
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Proposition 2.6 Let L be defined as in (2.17), note that L n is an R-linear operator
for n≥ 0. Define its kernels (L n)

ζ
k�(t, s) for ζ ∈ {±} by

(L nb)k(t)=
∑

ζ∈{±}

∑

�

ˆ t

0
(L n)

ζ
k�(t, s)b�(s)

ζ ds.

Then for each 1≤ n≤N and ζ ∈ {±}, we can decompose

(L n)
ζ
k� =

∑

n≤m≤N3

(L n)
m,ζ
k� , (2.27)

such that for any n≤m≤N3 and k, � ∈ Z
d
L and t, s ∈ [0,1] with t > s we have

E|(L n)
m,ζ
k� (t, s)|2 � 〈k − ζ�〉−20d(C+

√
δ)mL40d . (2.28)

Proposition 2.7 Recall the nonlinearity K(φ1, φ2, φ3) defined in (KIN). Define

M0(t, k)= nin(k);

Mn(t, k)= δ
∑

n1+n2+n3=n−1

ˆ t

0
K(Mn1(t

′),Mn2(t
′),Mn3(t

′))(k)dt ′, (2.29)

which form the Taylor expansion of the solution to (WKE), see Proposition 7.9, then
for each 0≤ n≤N3, k ∈ Z

d
L and t ∈ [0,1], we have that

∣

∣

∣

∣

∑

n(Q)=2n

KQ(t, t, k)−Mn(t, k)

∣

∣

∣

∣

� 〈k〉−20d(C+
√
δ)nL−ν,

where the summation is taken over all couples Q of scale n, and KQ is defined in
(2.24). If 2n is replaced by 2n+ 1, then the same result holds without the Mn(t, k)

term.

3 Overview of the proof

3.1 The main challenge

We will focus on the analysis of the correlations KQ, since they also control the sizes
of JT and Jn in the ansatz (2.15) in view of (2.21). Recall that we have divided the
proof of Theorem 1.1 into three sub-tasks: Proposition 2.5—to obtain upper bounds
for KQ, Proposition 2.6—to control the R-linear operator L appearing in (2.16), and
Proposition 2.7—to evaluate the leading contributions of KQ and match them with
the Taylor expansion of n(τ, k). To demonstrate the main challenge of the problem,
let us compare the current situation with the subcritical situation which was solved
in [18], i.e. when one restricts t ≤ L−ε in these propositions.
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In the subcritical situation, it can be shown that each term in the expansion in
(2.15) gains a power L−ε compared to the previous one, with high probability, in
particular we have

|KQ(t, s, k)|� 〈k〉−20dCnL
−nε, (3.1)

for any couple Q of scale 2n. Here for simplicity we only consider couples of even
scale; the case of odd scale is treated in the same way. Note that (3.1) becomes neg-
ligible when n is sufficiently large depending on ε, so the expansion (2.15) can be
done to a finite order N independent of L, and any constant factors one may lose that
depends on N will be negligible compared to L. Of course it is still highly nontrivial
to analyze KQ for Q with large scale, but this can be done using the combinatorial
structure of Q, see [18].

In the current critical situation, however, the best estimate one can hope for is that

|KQ(t, s, k)|� 〈k〉−20d(C+δ)n (3.2)

for couples Q of scale 2n (in reality we will have C+
√
δ instead of C+δ due to a

technical reason, see Proposition 10.1, but this is not important here). This means
that, in order for the remainder b in (2.15) to behave significantly better than the
main terms, the expansion has to be done at least to order N ≥ logL

log(1/δ) ; in fact as in
Sect. 2.3.1 we have set N = �logL�. Therefore the order of expansion grows with L,
which brings the fundamental difficulty of the problem.

One consequence of the largeness of N is that, in many parts of the proof, one
is not allowed to lose logL type factors; on the contrary, for (3.1), any logarithmic
factors are negligible. This means that one needs to make every single estimate as
sharp as possible, which is a main source of technical difficulties appearing in the
proofs below.

A much more significant challenge, which also suggests our main proof strategy,
is as follows. For fixed n, it is well known that the number of ternary trees is at
most CN ; however the number of couples Q of scale 2n will grow like n!, due to the
possibilities of pairings between leaves. This factorial loss, though negligible in the
subcritical case (3.1), easily overwhelms the δn gain coming from (3.2) and seems to
completely destroy the convergence.

However, there is one crucial observation that allows us to avoid this fate. Namely,
although the total number of couples of scale 2n grows factorially on n, the number
of couples that actually saturate (3.2) is in fact bounded by Cn. In other words, even
though the whole problem is critical, the vast majority of couples Q are actually of
“sub-critical” nature and satisfy much better estimates than (3.2). This fact seems to
be unique for the dispersive equation (NLS), and we have not found a counterpart for
stochastic heat equations.

With this observation, it is now clear what we should do with the couples Q.
We shall divide them into different classes, depending on whether they saturate the
estimate (3.2), or nearly saturate it, or neither. This will be controlled by an index
r = r(Q), which plays the central role in the proof. We explain this in more detail in
Sect. 3.2 below.
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3.2 Classification of couples

The fundamental objects in our classification of couples are what we call regular
couples, see Definition 4.2. These couples have relatively simple structure, and can
be constructed by repeating two basic steps (which we call steps A and B, see Figs. 10
and 11) starting from the trivial couple ×. As a result, the number of regular couples
of a fixed scale 2N is bounded by CN for some absolute constant C (Corollary 4.9).
Moreover, these couples are exactly the ones that (formally) saturate (3.2); in fact
a subset of these couples, called the dominant couples (Definition 4.17), constitute
exactly the leading contributions in Proposition 2.7.

With the notion of regular couples, it is natural to define the index r as the “dis-
tance” of a given couple to the set of regular couples, roughly as follows:

r(Q)= the remaining size of Q, after repeatedly reverting

the steps A and B, until no longer possible. (3.3)

Note that the actual definition of r , see (3.15), is slightly different from (3.3), due to
the presence of particular structures called the irregular chains and Type II) molec-
ular chains, which will be discussed in Sects. 3.4.1 and 3.4.2 below. Here we will
temporarily ignore the difference, and note that a couple of index 2r is essentially a
regular couple up to “perturbations” of size ≤ 2r .

It is now intuitively clear that the number of couples of scale 2n and index 2r
is at most Cnr! instead of n!. This is because a couple of size 2r has at most r!Cr
possibilities, while reverting steps A and B at most n times leads to at most Cn

possible choices (Corollary 4.16). Therefore, it remains to show that a couple of scale
2n and index 2r satisfies the following improvement to (3.2), namely

|KQ(t, s, k)|� 〈k〉−20d(C+δ)nL−νr (3.4)

for some absolute constant ν > 0. In the rest of this section we will briefly explain
why (3.4) is intuitively plausible, and how we shall prove it.

First, recall the definition (2.24) of KQ. It is easy to show that the function
BQ(t, s, α[N ∗]) is bounded by a product of factors of form 〈ρ〉−1 where each ρ
is a suitable linear combination of the αj variables for j ∈N ∗; see for example [18],
Proposition 2.3. As such, for each fixed (t, s), the function BQ(t, s, α[N ∗]), as a
function of α[N ∗], is almost L1 integrable. Note that we do need to carefully distin-
guish between genuine and almost integrability (see Sect. 3.3.2 below), but here we
will temporarily ignore this and simply assume BQ ∈ L1. Assuming also nin is sup-
ported in the unit ball, then (2.24) is controlled by the upper bound for the following
counting problem

{

E = (kn)n∈Q : |kl| ≤ 1 (∀l ∈ L∗), |�n − αn| ≤ (δL2)−1 (∀n ∈N ∗)
}

(3.5)

for k-decorations E , where k is fixed, and αn ∈R are fixed real numbers.
Accurately estimating the number of solutions to (3.5) is a major component of

this work (see Sect. 3.4.2); for demonstration we will use a naive dimension counting
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Fig. 5 An example of a
decorated regular couple. It
satisfies k =m− e+ d and
k = a − b+ c etc

argument here (which may not be precise but usually provides the correct heuristics).
For example, the decorated couple in Fig. 4 corresponds to the counting problem for
(a, b, c, d, e, l,m) ∈ Z

7d
L such that

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

l − e+m= k, |l|2β − |e|2β + |m|2β − |k|2β = α1 +O(δ−1L−2);
a − d + c= l, |a|2β − |d|2β + |c|2β − |l|2β = α2 +O(δ−1L−2);
d − b+ e=m, |d|2β − |b|2β + |e|2β − |m|2β = α3 +O(δ−1L−2);
a − b+ c= k, |a|2β − |b|2β + |c|2β − |k|2β = α4 +O(δ−1L−2).

(3.6)

Thus dimension counting yields a possible upper bound, which is L4d(δ−1L−2)3 =
δ−3L4d−6 (note that the last line of equations in (3.6) follows from the first three).

Now, a key feature of regular couples is that, all its branching nodes can be paired
such that for any decoration E and any two paired branching nodes n and n′, one must
have �n′ = ±�n (see Proposition 4.3), i.e. each variable �n occurs twice in the BQ
function, and in the counting problem. For example, the following decorated couple
(Fig. 5) which is regular, corresponds to the counting problem for (a, b, c, d, e,m) ∈
Z

6d
L such that

⎧

⎨

⎩

m− e+ d = k, |m|2β − |e|2β + |d|2β − |k|2β = α1 +O(δ−1L−2);
a − b+ c= k, |a|2β − |b|2β + |c|2β − |k|2β = α4 +O(δ−1L−2).

(3.7)

Thus dimension counting yields a possible upper bound, which is L4d(δ−1L−2)2 =
δ−2L4d−4.

It is clear that in both systems, the dimensions of the submanifolds determined by
the linear parts are the same (which is 4d here and 2nd if Q has scale 2n) The reason
why the non-regular couple Q in Fig. 4 enjoys better estimates than the regular couple
in Fig. 5, is that the corresponding system contains one more independent quadratic
equation, due to the fact that each �n occurs twice for regular couples, but not for
non-regular couples.

As such, it is natural to believe that KQ for regular couples Q, which involve
the least number of quadratic equations in the counting problem, will be the worst
in terms of upper bounds and will saturate (3.2), while KQ for non-regular couples
Q will enjoy better estimates. Moreover, if a couple Q has “distance” at least 2r
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to regular couples, i.e. it is obtained by making a size 2r perturbation to a regular
couple, then it will contain at least r extra quadratic equations in the corresponding
counting problem, and thus satisfies the improved bound (3.4).

A major part of this paper is to make the above heuristics rigorous. In addition,
one has to calculate the asymptotics of KQ for regular couples Q, and deal with the
R-linear operator L . In the next section we start by considering regular couples.

3.3 Regular couples

Let Q be a regular couple. Our goal is to calculate the asymptotics of KQ, then
combine and match them with Mn(t, k) in Proposition 2.7; in this process we also
obtain uniform bounds for KQ, as in (3.2), that lead to Proposition 2.5.

Note that in all previous works [7, 13, 14, 18], only the correlations KQ for couples
Q up to scale 2 are calculated, and they are matched with only the first order term
M1(t, k) in the expansion of n(τ, k). In subcritical situations this is enough, as each
term gains at least L−ε compared to the previous one; in the current work, however,
it is necessary to calculate the correlations KQ for couples Q of any scale. These
correlations have much richer structure than Mn(t, k) which are obtained by simply
iterating the nonlinearity (KIN), so the fact that they still match the higher order
iterations Mn(t, k) is quite remarkable.

3.3.1 Approximation using circle method

The formal calculation of the asymptotics of KQ is not difficult. In fact in the limit
L→∞ the sum in (2.24) can be viewed as a Riemann sum, which is then approxi-
mated by an integral, and we also have

BQ(t, s, δL
2�[N ∗])≈ (δL2)−n

ˆ
BQ ·

∏

n

δ(�n), (3.8)

where the product is taken over all different variables �n, and there are in total n of
them (half of the scale of Q). Thus heuristically we have (see Proposition 6.7 for the
actual version)

KQ(t, s, k)≈ 2−2nδnζ ∗(Q)
ˆ

BQ ·
ˆ

∏

n

δ(�n)

(+)
∏

l∈L∗
nin(kl)dσ, (3.9)

where dσ is the surface measure for a suitable linear submanifold of (kl). Here note
that the vectors involved in different variables �n can be separated, for example for
Fig. 5 and (3.7), the two different �n variables are

|m|2β − |e|2β + |d|2β − |k|2β = 2〈m− k, k − d〉β and

|a|2β − |b|2β + |c|2β − |k|2β = 2〈a − k, k− c〉β,
and the vectors they involve are (m− k, k − d, a − k, k − c), which are independent
variables. This is crucial for (3.8) to be valid, as products like δ(x ·y)δ(x · z) etc. may
not be well-defined in general.
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In order to make the approximation (3.9) rigorous, one first needs to perform a
change of variables, so that the different �n become 〈xj , yj 〉β (1 ≤ j ≤ n) for the
new independent variables (xj , yj ). In the simple case n= 1, we essentially need to
prove

∑

x,y∈ZdL
ψ(x, y) ·B(δL2〈x, y〉β)≈ L2d−2δ−1

ˆ
B ·

ˆ
R2d
ψ(x, y) · δ(〈x, y〉β)dxdy

for a Schwartz function ψ and an L1 function B, which was achieved in earlier works
[7, 18] etc. by applying the circle method and exploiting the genericity of β . The case
of general n, which can be as large as N = �logL�, follows from applying the circle
method for the integration in each of the variables (xj , yj ), see Proposition 6.1.

There is one main new ingredient, though, compared to previous works. Assuming
nin is supported in the unit ball, we know that each of the variables (xj , yj ) belongs
to a ball of size at most n. If n is independent of L, as in previous works, then any loss
in terms of n is negligible; however for n∼ logL this bound is not good enough, as a
polynomial loss in n for each variable (xj , yj ) will lead to a factorial net loss, which
is not acceptable. The idea here is to make this restriction more precise, namely that
each (xj , yj ) belongs to a ball of size λj centered at some point determined by the
previous (x�, y�), after fixing some strict partial ordering in j . Moreover individual
λj can be as large as n, but the product of all these λj is bounded by Cn, which is
then acceptable, see Lemma 6.6. In addition, since each (xj , yj ) is supported in a
ball not centered at the origin, one needs to apply a translation-invariant version of
the circle method. This is mostly straightforward, but requires a new argument when
dealing with major arcs, see Lemma 6.2.

3.3.2 Analysis of BQ

In order to apply Proposition 6.1, one needs to obtain L1 bounds for the function
BQ = BQ(t, s, α[N ∗]) defined in (2.23). Here the rough bound in [18], Proposition
2.3 is not enough, as 〈x〉−1 is not inL1 and one cannot afford to lose logL type factors
in the L1 norm. Fortunately, since each variable �n occurs twice in the function
BQ, it in principle should also occur twice in the denominators, which allows one to
recover L1 boundedness, in view of the elementary inequality

ˆ
R

〈x − a〉−1〈x − b〉−1 dx � 1 (3.10)

uniformly in a and b.
To make the above heuristics precise, we will perform an inductive argument ex-

ploiting the structure of regular couples. First note that by induction, BQ can be
written as a multi-dimensional integral in the time variables tn in a domain E = EQ
defined by Q, see (5.4). Next, we apply the structure theorem for regular couples,
which is proved in Proposition 4.8, to construct Q from a specific couple Q0, by re-
placing each of its leaf pairs with a smaller regular couple Qj . We will assume this
Q0 is a so-called regular double chain, see Definition 4.6. Then, by considering the
time domains E associated with Q, Q0 and each Qj , we can essentially express BQ
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in terms of BQ0 and BQj
. Applying the induction hypothesis for each BQj

, we can
reduce the study of BQ to that of BQ0 ; since Q0 has an explicit form, the correspond-
ing function BQ0 is also explicit and in fact equals the product of two functions of
the form

K(t,α1, . . . , αm)=
ˆ
t>t1>···>t2m>0

eπi(β1t1+···+β2mt2m) dt1 · · ·dt2m, (3.11)

see (5.12). Here t is replaced by s in the other function, and {β1, . . . , β2m} is a per-
mutation of {±α1, . . . ,±αm} corresponding to a legal partition (Definition 4.4).

The analysis of the functionK is done in Sect. 5.2, where we show that it is essen-
tiallyL1 in (α1, . . . , αm) for any t , except it may contain a few factors 1/πiαj (j ∈Z)
where Z is a subset of {1, . . . ,m}, but then it will be L1 in the remaining vari-
ables, see Lemma 5.10. Using this result, we can proceed with the inductive step
and finally prove Proposition 5.1, which states that for each fixed (t, s), the function
BQ(t, s, α[N ∗]) is the product of

∏

n∈Z 1/(πiαn) for some subset Z of branching
nodes, with an L1 function of the remaining αn variables. This then allows us to ap-
ply Proposition 6.1 and calculate the asymptotics of KQ as in Sect. 3.3.1. Note that
the factors

∏

n∈Z 1/(πiαn) are not in L1 but have the correct parity so that the circle
method still applies, provided one treats the singularities using the Cauchy principal
value.

Finally we need to calculate the integrals of (the integrable parts of) BQ, see
(6.39). These values can again be calculated inductively; in fact we can identify
a special class of regular couples, called dominant couples (Definition 4.17), such
that this integral vanishes for any non-dominant regular couple (Proposition 7.4). For
dominant couples, the above induction process yields a recurrence relation for the
integrals JBQ of BQ. Such a recurrence relation then uniquely determines these
integrals, which happen to be independent of Z. See Proposition 7.5.

3.3.3 Combinatorics of leading terms

As in Sects. 3.3.1 and 3.3.2, we are able to calculate the leading term of KQ for each
regular couple Q, and it just remains to put them altogether. Note that each of these
leading terms has the form

(KQ)app(t, s, k)∼ δn
∑

Z

∏

n∈Z
ζn ·JBQ(t, s) ·M∗

Q,Z(k),

see (6.7). Here Z is a subset of branching nodes, JBQ(t, s) is a function of (t, s)
only that is also independent of Z, and M∗

Q,Z(k) is an explicit multilinear integral
expression of the initial data nin depending on Q and Z, see (6.32). Since JBQ
vanishes for non-dominant couples we just need to consider dominant Q.

The natural idea is then to classify all these terms according to the form of the ex-
pression M∗

Q,Z , and combine the coefficients JBQ(t, s). This leads to the definition
of enhanced dominant couples which depends on Z, and the notation of equivalence
between enhanced dominant couples which asserts that the forms of M∗

Q,Z are the
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same. See Definition 4.18 and Proposition 7.7. As such, we need to calculate the
combinations of coefficients

∑

Q∈X

∏

n∈Z
ζn ·JBQ(t, t)

where the sum is taken over all enhanced dominant couples (Q,Z) in a fixed equiv-
alence class X , and we restrict to t = s as this is the case of interest in Proposition
2.7. It turns out, see Proposition 7.8, that for equivalence classes in which Z �=∅, the
above combinations again vanish due to delicate cancellations involving the signs ζn.

Finally, Proposition 7.10 establishes that the combinations of coefficients corre-
sponding to Z = ∅ exactly coincide with the coefficients occurring in Mn(t, k).
As the corresponding multilinear expressions M∗

Q,∅(k) also match precisely, see
Propositions 7.7 and 7.9, this then completes the regular couple part of the proofs of
Propositions 2.5 and 2.7.

3.4 Non-regular couples

We now turn to the non-regular couples. Compared to the regular couple case, here
we only need to obtain upper bounds instead of asymptotics, but the structures of
couples are much more complicated.

First, we reduce a general couple Q by reverting the steps A and B as in (3.3)
whenever possible. The result, say Qsk , of these operations is called the skeleton of
Q (Proposition 4.13), and is prime in the sense that it is not obtained from any other
couple by performing A and B. Now by Proposition 4.14, Q can be obtained from
Qsk by attaching regular sub-couples (as well as regular trees, see Remark 4.15,
which behave similarly). This allows us to express KQ in terms of KQj

for these
regular couples Qj , and an expression similar to KQsk

, see (8.2).
Thanks to Sect. 3.3 we have enough information about KQj

; in particular they
can be divided into a remainder term which gains an extra L−ν power, and a leading
term which satisfies (3.2) as well as differentiability in k as in (6.38). For simplicity
we only consider the leading terms below, which can be viewed effectively as nin
multiplied by a power of C+δ.

3.4.1 Irregular chains

Now we have effectively reduced KQ to KQsk
. Since Qsk is a prime couple which

does not have any regular sub-couple, it is tempting to guess that

|KQsk
(t, s, k)|� 〈k〉−20(C+δ)nL−νn (3.12)

for constant ν > 0, where 2n is the scale of Qsk . Clearly (3.12) would imply the
desired (3.4), in view of the definition (3.3), but unfortunately it is not true.

A main obstacle that prevents (3.12) is the so-called irregular chains (we denote
them by H). These are chains of branching nodes, such that each one is the parent of
the next one, and each one has a child leaf paired to a child of the next node, and a
child leaf paired to a child of the previous node (see Fig. 6 below).
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Fig. 6 An example of an irregular chain, and another irregular chain congruent to it; see Sect. 8. We also
include the vectors k and k′ in a decoration. Here a white leaf may be paired with a leaf in the omitted part

The irregular chains were already discussed in the earlier works [14, 18]. In [18]
it was noted that these chains create terms that diverge absolutely, which is a main
challenge in reaching the sharp time scale for scaling laws α ∼ L−κ when 0< κ < 1.
Here we are in the κ = 1 case, and it can still be shown that if Qsk contains long
irregular chains then KQsk

violates (3.12). More seriously, if the decoration in Fig. 6
satisfies |k − k′| ∼ L−1 (i.e. the small gap case in Sect. 8.3.1), then even the δn gain
in (3.12) will be absent, and one can only hope for

|KQsk
(t, s, k)|� 〈k〉−20L−ν (3.13)

with a constant ν < 1 independent of n, which is clearly not sufficient.
Note, however, that such bad behavior is only for a single irregular chain. In the

small gap case, one can in fact group together different irregular chains, such that the
quantities KQ for the corresponding couples Q exhibit exact cancellations. This leads
to the definition of congruence between different irregular chains and, by straightfor-
ward extensions, congruence between prime couples Qsk and general couples Q, see
Definitions 8.2 and 8.4.

For two congruent irregular chains (or couples), there is a one-to-one correspon-
dence between their sets of decorations, such that for any two decorations in cor-
respondence, the values of ζn�n are exactly the same, see Proposition 8.3. The in-
put functions in KQsk

for the two chains, which are either nin or functions of sim-
ilar form that come from regular sub-couples, differ only by a translation of length
|k − k′|� L−1, and the different signs

ζ ∗(Q)=
∏

n

(iζn)

for different chains in the same congruence class then leads to the desired cancella-
tion, see (8.5) and (8.6). This effectively improves the power L−ν in (3.13) to L−qν
where q is the length of the chain (with also the gain from other chains), which is
then more than acceptable.
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The above cancellation works only for the small gap case. For the complementary
large gap case such cancellation is not available, but a direct calculation allows one
to retain the δn gain in (3.12). It is still not possible, though, to achieve the negative
powers of L in (3.12), which means we need to modify the definition of r in (3.3), see
Sect. 3.4.2. In either case the calculation involving irregular chains are done similar
to [18], Sect. 3.4, using Poisson summation. See Sects. 8.3.1 and 8.3.2.

With the above analysis and by exploiting the cancellation in the small gap case,
we can then reduce KQsk

to some expression similar to KQ#
sk

, where Q#
sk is the couple

formed by deleting all irregular chains in Qsk , see (8.27). For simplicity we will
denote it by Q′ below.

3.4.2 Molecules

Now we proceed to analyze Q′, which is a prime couple and does not contain any
irregular chains. At this point we will be able to accommodate logarithmic losses, so
we may exploit the almost integrability of BQ′(t, s, α[(N ′)∗]) in the αn variables and
reduce to the counting problem (3.5) described in Sect. 3.2.

In order to bound the number of solutions to (3.5), we notice that any such system,
such as (3.6) and (3.7), consists of a number of quadruple equations of the form

a − b+ c− d = 0, |a|2β − |b|2β + |c|2β − |d|2β = α +O(δ−1L−2)

which involves four vectors (a, b, c, d).
The natural idea is to gradually reduce the size of the system by solving for the

quadruples (a, b, c, d) one at a time. Note that some quadruples will have nonempty
intersection with others, hence by solving for one quadruple one may also decide
some components of later quadruples. Therefore the order in which we choose the
quadruples is crucial, and we need to design a specific algorithm depending on the
structure of the couple Q′.

Before describing this algorithm, however, we need to make one shift in the point
of view. Note that after solving for a quadruple and fixing some unknown vectors,
we reduce to a smaller counting problem, but the new counting problem may not be
coming from another couple (unless in special cases). Thus to validate the induction
process, we need to shift to a structure more flexible than couples.

Note that each quadruple corresponds to a branching node and its three children in
the couple Q′, and the only properties we need from Q′ are the pairwise intersections
of these 4-element subsets. We then define these 4-element subsets as atoms and
their intersections as bonds, to form a (non-simple) graph with maximum degree 4,
which we refer to as a molecule (Definitions 9.1, 9.3). Our counting problem for a
couple then reduces to the counting problem for a molecule, where each unknown
vector corresponds to a bond and each quadruple system corresponds to an atom; for
example the system (3.6) is represented by Fig. 7. As such, solving for a quadruple
corresponds to deleting an atom from the molecule, which simply results in a smaller
molecule.

We then design a particular molecule reduction algorithm, by applying some
specifically defined operations called steps (Sect. 9.3), following some particular rule
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Fig. 7 The molecule associated
with (3.6) and the couple in
Fig. 4. The arrows represent the
signs of the corresponding
vectors in the system, see
Definition 9.8 and Remark 9.9

(Sect. 9.4). In each step we remove (or in some cases add) a finite number of bonds as-
sociated with some (at most 4) atoms to reduce to a smaller molecule, and solve the
local counting problem involving the corresponding quadruples. The upper bounds
for such counting problems are provided by Lemma A.9.

Note that the couple Q′ is prime, consequently the corresponding molecule M

does not contain triple bonds. For such molecules, the application of the algorithm
allows us to bound the number of solutions to (3.5) by (essentially)

D � (δ−1L2d−2)nL−νr1, (3.14)

where 2n is the scale of Q, and 2r1 is the number of remaining atoms after removing
(all copies of) the two specific structures—which we call type I and II (molecular)
chains (see Definition 9.7)—from the molecule. This is proved in a rigidity theorem,
Proposition 9.10, which is perhaps the single most important estimate in this paper.

Since the counting bound D � (δ−1L2d−2)n corresponds to the bound (3.2) for
KQ′ , we see from (3.14) that this r1 should be defined as the index r , replacing the
naive definition (3.3), to make (3.4) valid. More precisely, we redefine

r(Q)= the remaining size of Q, after reverting all steps A and B, removing all

irregular chains, and removing all type I and II chains in the resulting molecule.
(3.15)

Although this r is smaller than (3.3), we still have the upper bound Cn(Cr)! for
the number of couples with index r , because type I and II molecular chains and
irregular chains are all explicit objects and inserting copies of them only leads to Cn

possibilities. Note also that a couple can be reconstructed from the corresponding
molecule, again with at most Cn possibilities (Proposition 9.6).

The last piece of the puzzle is to guarantee the genuine L1 integrability of the BQ′
function in the variables associated with the type I and II chains, as we can only afford
losses of (logL)Cr with the new definition (3.15). As it turns out, type I chains in the
molecule only come from irregular chains in the couple, which are already treated in
Sect. 3.4.1. As for type II chains, we can verify that each variable αn associated with
such chains again occurs twice in BQ′ (same as regular couples in Sect. 3.3.2), thus
integrability can be proved in a similar manner. See Proposition 10.1.

Remark 3.1 Some concepts introduced in this work have also been discussed in earlier
mathematical and physical literature such as [27, 55], under different names. For
clarity we list some of the correspondences below:
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• The trees, couples and molecules are different but equivalent ways to represent the
standard Feynman diagrams in the literature (though the couples and molecules
focus on different aspects of the structure, which is important for this paper);

• The dominant couples, non-dominant regular couples and irregular chains are
closely related to the leading diagrams, nested diagrams and necklace diagrams
in earlier literature;

• The (1,1) mini-couples and mini-trees correspond to the gain and loss terms de-
scribed in earlier literature;

• The atomic counting bounds in Lemma A.9 is conceptually related to the crossing
bounds in earlier literature; in particular the rigidity theorem, Proposition 9.10,
achieves the same “gain per crossing” effect as in [27], but now in the nonlinear
setting.

3.5 Operator L , and the endgame

We now discuss the R-linear operator L , which appears in the equation (2.16) satis-
fied by the remainder b. Since b will be assumed to have tiny norm in a high regular-
ity space (Proposition 12.3), the quadratic and cubic (in b) terms in (2.16) are not a
problem, and the only difficulty is the linear term L .

Usually, to invert 1−L one would like to construct a function space X and prove
that L is a contraction mapping from X to itself. However in the current situation
this seems to be problematic due to the critical nature of the problem. Indeed, in [18]
the standard Xs,b norm for b > 1/2 is used, which certainly cannot be applied in the
critical setting. One may try to use the critical Up and V p norms as in [50], but even
they seem to be not precise enough; moreover they are Lp based norms, while the
classical T T ∗ argument (see [18], Sect. 3.3), which is the main tool in establishing
norm bounds for random matrices or operators, works best in L2.

In this paper we have found an interesting alternative to the above approach, which
might be of independent interest. Namely, in order to invert 1−L we do not really
need L to have small norm from some space to itself, all we need is that L has small
spectral radius.4 Note that the spectral radius of L is basically

ρ(L )= lim
n→∞‖L

n‖1/n,

where the norm can be chosen as the operator norm between any two reasonable
spaces, and ρ(L ) does not really depend on any specific choice of norms. Therefore,
the idea is to consider the powers L n, instead of (L L ∗)n which depends on the
specific choice of the Hilbert norm. This provides the motivation for Proposition 2.6.

Now, by (2.17), we can write (L b)k(t) as an expression that is R-linear in b and
R-multilinear in the Gaussians; moreover this expression involves a summation over
decorations of specific trees, which are obtained by attaching two sub-trees T1 and
T2 to a single node. Repeating this n times, we see that the kernels (L n)

ζ
k�(t, s) of

L n, and the corresponding homogeneous components (L n)
m,ζ
k� (t, s), are given by

4This is well-known in the context of matrix analysis (see [16], Example 4.1.5), however we have not seen
any prior example where it is applied to PDEs.
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expressions associated with specific trees (or more precisely a modified version of
trees called flower trees, see Definition 11.1), which have similar form as JT with
only minor and manageable modifications, see (11.3). In the same way, the correla-
tions E|(L n)

m,ζ
k� (t, s)|2 will have similar form as KQ with minor modifications, see

(11.2). Therefore, the estimate for L n, as in Proposition 2.6, can be done without
paying too much extra effort, by adapting the above proof for the estimates of KQ
and making only small changes. See Sect. 11.

Finally, to pass from Propositions 2.5–2.7 to Theorem 1.1 we simply apply Lemma
A.3, exploiting the multilinear Gaussian form for JT to control the Lp moments by
L2 moments for free. In controlling the operators L n (Proposition 12.2) one encoun-
ters a problem of reducing to finitely many values of k, which is more subtle than the
similar problem occurring in [18], but it still can be resolved by applying a refined
version of Claim 3.7 in [18]. See Lemma A.6.

3.6 The rest of this paper

In Sect. 4 we examine the structure of trees and couples and prove some basic results
that will be important in later proofs.

Then, Sects. 5–7 are devoted to the analysis of regular couples. In Sect. 5 we study
the integrability properties of the coefficients BQ, in Sect. 6 we prove the number
theoretic approximation lemma (Lemma 6.1) and apply it to KQ, and in Sect. 7 we
collect the asymptotics obtained in Sect. 6 and match them with Mn(t, k).

Sections 8–10 are devoted to non-regular couples. In Sect. 8 we introduce the no-
tion of irregular chains and exhibit the cancellation structure, in Sect. 9 we analyze
the structure of the molecule obtained from the given couple Q and use it to solve
the counting problem associated with KQ, and in Sect. 10 we recover the L1 inte-
grability of BQ in the type I and II chain variables, which finally allows us to prove
Propositions 2.5 and 2.7.

Finally, in Sect. 11 we apply similar arguments as above to control the kernels of
L n and prove Proposition 2.6, and in Sect. 12 we put everything together to prove
Theorem 1.1.

4 Structure of couples

The central part in the proofs of Propositions 2.5–2.7 is the analysis of the correla-
tions KQ(t, s, k) for different couples Q, and superpositions thereof. Therefore the
structure of couples will play a key role in the arguments. This will be analyzed in
the current section.

4.1 Regular couples

We start with the notion of regular couples.

Definition 4.1 A (1,1)-mini couple is a couple formed by two ternary trees of scale
1 with no siblings paired. It has two possibilities, shown in Fig. 8. We assign the
two-digit code 00 to the top one, and code 01 to the bottom one in Fig. 8.
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Fig. 8 Two possibilities of
(1,1)-mini couples (Definition
4.1)

Fig. 9 Six possibilities of mini trees (Definition 4.1)

A mini tree is a saturated paired tree of scale 2 with no siblings paired. It has six
possibilities, shown in Fig. 9; as in the figure we also assign them the two-digit codes
in {10, . . . ,31}. We define a (2,0)-mini couple to be the couple formed by a mini tree
and a single node •.

Definition 4.2 We define the regular couples as follows. First the trivial couple × is
regular. Suppose Q is regular, then
(1) The couple Q+, formed by replacing a pair of leaves in Q (which may or may

not be in the same tree) with a (1,1)-mini couple, is regular (see Fig. 10).
(2) The couple Q+, formed by replacing a node in Q with a mini tree, is regular (see

Fig. 11).
(3) All regular couples are of form (1) or (2).
Note that the scale of a regular couple must be even. The operations described in (1)
and (2) will be referred to as step A (acting at a pair of leaves) and step B (acting at
a node) below.

Proposition 4.3 Given any regular couple Q, there is a unique way to pair branching
nodes n ∈N ∗ to each other, such that for any pair {n,n′} and any decoration E of Q
we have ζn′�n′ = −ζn�n.
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Fig. 10 Step A of building regular couples (Definition 4.2). There are two possibilities depending on the
mini couple. The ends A and B represent the rest of the couple, which is unaffected by the step

Fig. 11 Step B of building
regular couples (Definition 4.2).
There are six possibilities
depending on the mini tree. The
ends A and B represent the rest
of the couple, which is
unaffected by the step

Fig. 12 A new pair of branching nodes (connected by a pink dotted curve) formed by step A or B; see
Proposition 4.3

Proof This is easily proved by induction. When Q = × there is nothing to prove.
Suppose the result holds for Q, then let Q+ be formed from Q by step A or B. In
either case, we simply make the two new branching nodes into a pair (for step A, these
are the two roots of the (1,1)-mini couple which are also two leaves in Q; for step B,
these are the two branching nodes of the mini tree). See Figs. 12 for a description of
the corresponding decoration. It is easy to verify that the pairings obtained this way
does not depend on the order of applications of A and B, hence the uniqueness. �

4.2 Structure of regular couples

We next analyze the structure of general regular couples.

Definition 4.4 Given m ≥ 0, consider a partition P of {1, . . . ,2m} into m pairwise
disjoint two-element subsets (or pairs). We say P is legal if there do not exist a <
b < c < d such that {a, c} ∈ P and {b, d} ∈ P . For example, when m= 3, then P =
{{1,2}, {3,6}, {4,5}} is legal, while P = {{1,6}, {2,4}, {3,5}} is not. We say P is
dominant if P = {{1,2}, . . . , {2m− 1,2m}}.
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Proposition 4.5 (1) A legal partition can be obtained by inserting a pair of adjacent
elements into a smaller legal partition. More precisely, P is legal if and only if either
(i) m= 0 and P =∅, or (ii) m≥ 1 and

P = {{a, b} : a < b < j, {a, b} ∈ P1
}∪ {{a, b+ 2} : a < j ≤ b, {a, b} ∈P1

}

∪ {{a + 2, b+ 2} : j ≤ a < b, {a, b} ∈P1
}∪ {{j, j + 1}}

for some 1≤ j ≤ 2m− 1 and some P1 associated with m− 1 which is legal.
(2) Alternatively, a legal partition can be obtained by concatenating two smaller

legal partitions, or enclosing a smaller legal partition in a new pair. More precisely,
P is legal if either (i) m= 0 and P =∅, or (ii) m≥ 2 and

P ={{a, b} : a < b ≤ 2k, {a, b} ∈ P1
}

∪ {{a + 2k, b+ 2k} : a < b ≤ 2(m− k), {a, b} ∈P2
}

for some 1≤ k ≤m− 1 and some P1 associated with k and some P2 associated with
m− k which are legal, or (iii) m≥ 1 and

P = {{a + 1, b+ 1} : a < b ≤ 2m− 2, {a, b} ∈ P1
}∪ {{1,2m}}

for some P1 associated with m− 1 which is legal.

Proof This is easily proved by induction. �

Definition 4.6 A regular chain is a saturated paired tree, obtained by repeatedly ap-
plying step B at either a branching node or the lone leaf, as described in Definition
4.2, starting from the trivial tree •. A regular double chain is a couple consisting of
two regular chains (where, of course, the lone leaves of the two regular chains are
paired). It can also be obtained by repeatedly applying step B at either a branching
node or a lone leaf, starting from the trivial couple ×.

Proposition 4.7 The scale of a regular chain T is always an even number 2m. The
2m branching nodes are naturally ordered by parent-child relation; denote them by
nj (1 ≤ j ≤ 2m) from top to bottom. Then, see Fig. 13, T is associated with a le-
gal partition P of {1, . . . ,2m}, and a code in {10, . . . ,31} (as in Definition 4.1)
for each pair, such that (i) the lone leaf is a child of n2m, and (ii) for any pair
{a, b} ∈ P (a < b), the two children leaves of na are paired with the two children
leaves of nb respectively, and the exact positions (relative to na and nb) and pairings
of these nodes are just like in the mini tree (in which the root represents na and the
other branching node represents nb) having the code of {a, b}. We also define T to
be dominant if the partition P is dominant in the sense of Definition 4.4.

Proof This is a direct consequence of Proposition 4.5 (1) and Definition 4.6, because
the trivial tree corresponds to m= 0 and P =∅, and applying step B at a branching
node or lone leaf, i.e. replacing it with a mini tree, just corresponds to inserting a pair
of adjacent elements into P . �
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Fig. 13 A regular double chain (as described in Proposition 4.7). The lone leaves are colored in orange.
The left chain is dominant; the right chain is not, as the partition P ′ contains {1,2m} and {2,2m− 1}. The
code of each mini tree is indicated beside the node na and n′a as in Proposition 4.7

The following proposition describes (inductively) the structure of all regular cou-
ples.

Proposition 4.8 (Structure theorem for regular couples) For any nontrivial regular
couple Q �= ×, there exists a regular couple Q0 �= × which is either a (1,1)-mini
couple or a regular double chain, such that Q is formed by replacing each pair of
leaves in Q0 with a regular couple. Clearly each such couple has scale strictly smaller
than that of Q, see Fig. 14.

Proof In the base case n(Q)= 2, so Q is either a (1,1)-mini couple or a (2,0)-mini
couple (which is a regular double chain), so the result is true. Suppose the result is
true for Q, with associated Q0 and the leaf-pairs in Q0 replaced by regular couples
Qj (1≤ j ≤ n). Let Q+ be obtained from Q by step A or B in Definition 4.2. Then:

(1) If Q0 is any couple and one applies step A, then this step A must be applied
at a leaf-pair belonging to some regular couple Qi (i ≥ 1). In this case the same Q0
works for Q+, the regular couples Qj (1 ≤ j �= i) also remain the same, and the
regular couple Qi is replaced by AQi .

(2) If Q0 is any couple and one applies step B at a node which belongs to some
Qi (i ≥ 1), then the same result holds as in (1) except that Qi is now replaced by
BQi .

(3) If we are not in case (1) or (2), and Q0 is a (1,1)-mini couple, then the node
where one applies step B must be one of the roots. In this case for Q+ we may replace
Q0 by Q1 which is a (2,0)-mini couple. Two leaf pairs in Q1 remain leaf-pairs (note
that a leaf pair can be viewed as the trivial couple), and the third leaf-pair in Q1 is
replaced by Q.

(4) If we are not in case (1) or (2), and Q0 is a regular double chain, then the node
where one applies step B must be a branching node of Q0. In this case for Q+ we
may replace Q0 by BQ0. The regular couples Qj (j ≥ 1) remain the same, while the
two new leaf-pairs in BQ0 (which do not belong to Q0) remain leaf-pairs.

In any case we have verified the result for Q+, which completes the inductive
proof due to Definition 4.2. �
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Fig. 14 A regular couple with structure as described in Proposition 4.8. Here and below two circles of
same color represent a regular couple Qj . If we require Qm to have type 1, as in Proposition 4.10, then
this representation is unique

Corollary 4.9 The number of regular couples of scale n is at most Cn.

Proof Let the number of regular couples of scale n be An, then A0 = 1. By Proposi-
tion 4.8, any regular couple Q of scale n ≥ 1 can be expressed in terms of a couple
Q0 (say of scale 1≤m≤ n) and regular couples Qj (1≤ j ≤m+1) of scale nj such
that n1+· · ·+nm+1 = n−m. Notice that Q0 has at most 5m choices, sincem= 2m1
must be even, and the number of choices for the legal partition P in Proposition 4.7
is the Catalan number

(2m1
m1

)

/(m1 + 1) < 4m1 , and that Q0 has 6m1 choices, due to
the codes in {10, . . . ,31}, once P is fixed (there are two possibilities of (1,1)-mini
couples for m1 = 1 but this does not affect the result), leading to 24m1 < 5m. This
implies that

An ≤
n
∑

m=1

5m
∑

n1+···+nm+1=n−m
An1 · · ·Anm+1 .

Let Bn be such that B0 = 1 and equality holds in the above inequality for Bn, then
An ≤ Bn. Moreover the generating function f (z)=∑

n≥0Bnz
n satisfies that

f (z)= 1+
∑

n≥1

∑

1≤m≤n
(5z)m

∑

n1+···+nm+1=n−m
Bn1 · · ·Bnm+1z

n−m

= 1+
∞
∑

m=1

(5z)m(f (z))m+1 = 1+ 5z(f (z))2

1− 5zf (z)
.

Note that for |z| � 1 the equation

f = 1+ 5zf 2

1− 5zf
⇐⇒ f = 1− 5zf + 10zf 2

has unique solution near f = 1 which is an analytic function of z, we conclude that
Bn ≤ Cn for some absolute constant C (for example C = 100), hence An ≤ Cn. �

Note that in Proposition 4.8, the choice of Q0 may not be unique; however we can
recover uniqueness under some extra assumptions.



580 Y. Deng, Z. Hani

Proposition 4.10 For any regular couple Q �= ×, we say it has type 1 if Q0 is a (1,1)-
mini couple in Proposition 4.8, and has type 2 if Q0 is a regular double chain. Now,
if Q has type 2, then the choice of Q0, as well as the whole representation, is unique,
if we require that the regular couple replacing the pair of lone leaves in Q0 is trivial
or has type 1 (see Fig. 14).

Proof First, the type is well-defined, because if Q0 is a (1,1)-mini couple, then for
each child n of the root of each tree, at least one of its descendant leaves is paired
with a leaf in the other tree (we shall call this property L in the proof below). However
this is not true if Q0 is a regular double chain.

Now suppose Q has type 2. The roots of the chains of Q0 are the roots of trees in
Q. For each root, only one of its three children nodes has property L, and this must be
the next branching node in Q0. In the same way, all the subsequent branching nodes
(and lone leaves) in Q0 can be uniquely determined. The pairing structure of leaves in
Q0 is also uniquely determined by the pairing structure of Q. Moreover, the regular
couple replacing the pair of lone leaves in Q0 does not have type 2 (i.e. it is either
trivial of has type 1), if and only if neither of the chains in Q0 can be further extended
by the above process (i.e. by selecting the unique child which has property L). Thus
the choice of Q0 is unique. Once Q0 is fixed, it is easy to see that the regular couples
Qj in Q replacing the leaf pairs in Q0 are also uniquely determined. This completes
the proof. �

4.2.1 Relevant notations

For later use, let us introduce some notations related to regular couples with structure
as in Proposition 4.8.

Definition 4.11 Given a regular couple Q, recall that the branching nodes in N ∗ are
paired as in Proposition 4.3. We shall fix a choice of N ch ⊂ N ∗ (here ch means
“choice”), which contains exactly one branching node in each pair, as follows. First
if Q=× then N ch contains the single root of + sign. If Q �= ×, let Q0 be uniquely
fixed as in Propositions 4.8 and 4.10.

Case 1. If Q has type 1, then Q0 is a (1,1)-mini couple. Let Qj (1≤ j ≤ 3) be the
regular couples in Q replacing the leaf-pairs of Q0, counted from left to right in the
tree whose root has + sign (i.e. in the order red, green, blue in Fig. 8, assuming the
left tree has + root). Then we have N ∗ =N ∗

1 ∪N ∗
2 ∪N ∗

3 ∪ {r, r′}, where r and r′ are
the two root nodes which are also paired; in particular define N ch =N ch

1 ∪N ch
2 ∪

N ch
3 ∪ {r}, where r is the root with + sign.
Case 2. If Q has type 2, then Q0 is a (nontrivial) regular double chain, which is

formed by two regular chains T + and T − of scales 2m+ and 2m− respectively. Let
the branching nodes of T ± be n

±
1 , . . . ,n

±
2m± from top to bottom, and let the legal

partition of {1, . . . ,2m±} associated with T ± be P± (see Proposition 4.7). Let the
pair of lone leaves in Q0 (which is a pair between a child leaf of n+2m+ and a child
leaf of n−2m− ) be replaced by a regular couple Qlp (which is trivial or has type 1; here
lp means “lone pair”). If we list the pairs {a, b} ∈P+ (a < b) in the increasing order
of a, then the j -th pair {a, b}, where 1 ≤ j ≤m+, corresponds to a branching node
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Fig. 15 An example of the notations in Definition 4.11. Here m+ = 1 and m− = 2, P+ = {{1,2}} and
P− = {{1,4}, {2,3}}, and Qlp has type 1. The code of each mini tree is indicated beside the node n

±
a as

in Definition 4.11

pair {n+a ,n+b } in the sense of Proposition 4.3. This also corresponds to a mini tree
in Fig. 9 (in which the root represents n+a and the other branching node represents
n
+
b ) and two leaf-pairs in Q0, see Proposition 4.7. We define the regular couple in Q

replacing the pair of red leaves in Fig. 9 by Qj,+,1, and define the regular couple in
Q replacing the pair of green leaves in Fig. 9 by Qj,+,2 (see Fig. 15 for an example).
The same is done for the other regular chain T −. Then we have

N ∗ =
(

⋃

j,ε,ι

N ∗
j,ε,ι

)

∪N ∗
lp ∪

{

n
+
1 , . . . ,n

+
2m+

}∪ {n−1 , . . . ,n−2m−
}

(4.1)

and then define

N ch =
(

⋃

j,ε,ι

N ch
j,ε,ι

)

∪N ch
lp ∪

{

n
+
a : a < b

}∪ {n−a : a < b
}

. (4.2)

Here in (4.1) and (4.2), the couples Qj,ε,ι, where ε ∈ {±} and ι ∈ {1,2}, are the ones
described above, and N ∗

j,ε,ι (and N ch
j,ε,ι) are defined correspondingly; similarly for

Qlp , N ∗
lp and N ch

lp . Moreover in (4.2) the n±a are the nodes chosen above, such that
a < b for the pair {a, b} ∈ P±.

4.3 Structure of general couples

We now turn to the structure of arbitrary couples.

Definition 4.12 A prime couple is a couple that cannot be formed from any other
couple by applying steps A or B as in Definition 4.2. For example the couple in
Fig. 2 is prime.

Proposition 4.13 For any couple Q, there exists a unique prime couple Qsk such that
Q is obtained from Qsk by performing the operations in Definition 4.2; moreover Q
is regular if and only if Qsk =×. We call this Qsk the skeleton of Q.
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Proof Recall the steps A and B defined in Definition 4.2, and denote the correspond-
ing inverse operations by A (where a (1,1)-mini sub-couple collapses to a leaf-pair)
and B (where a mini tree collapses to a single node). Note that it is possible that a
(1,1)-mini sub-couple or a mini tree appears only after an operation A or B, allowing
for further operations that are not possible before this operation.

Now, starting from a couple Q, we may repeatedly apply A and B whenever possi-
ble until obtaining a couple Qsk where no more operation can be done. This Qsk will
then be prime and satisfies the requirement. Now we need to prove the uniqueness of
Qsk . We first make a simple observation: if D1 and D2 each represents a (1,1)-mini
sub-couple or a mini tree in Q, and let D1 and D2 be the corresponding inverse oper-
ations (A or B) performed at D1 and D2 respectively, then the operations D1 and D2
commute. This can be easily verified using the definition of these inverse operations,
as they are easily seen not to affect each other.

Now we can prove the uniqueness of Qsk . In fact, the base case Q = × is obvi-
ous; suppose Qsk is unique for all Q with smaller scale, then starting with any Q,
we look for (1,1)-mini sub-couples and mini trees in Q. If there is none then Q is
already prime and we are done. Suppose there is at least one of them, then for each
one, say D, if the first inverse operation (say D) is performed at D, then the resulting
(DQ)sk is uniquely fixed (but may depend on D), by applying the induction hypoth-
esis for the smaller couple DQ. Now, let D1 and D2 be arbitrary, and let D1 and D2
be corresponding inverse operations, and let Q1 = D1D2Q= D2D1Q, then we must
have (D1Q)sk = (D2Q)sk = (Q1)sk . This proves the uniqueness of Qsk . Clearly by
definition, Q is regular if and only if Qsk =×. �

Proposition 4.14 (Structure theorem for general couples) Let Q be any couple with
skeleton Qsk . Then, see Figs. 16 and 17, Q can be obtained from Qsk by (i) first
replacing each branching node with a regular chain, and then (ii) replacing each
pair of leaves in the resulting couple with a regular couple. This representation (i.e.
the chain (i) and the couple in (ii) at each position) is also unique.

Proof By Proposition 4.13, Q can be obtained from Qsk by applying steps A and
B. We induct on the scale of Q. The base case Q = Qsk is obvious by definition.
Suppose the result is true for Q, and let Q+ be obtained from Q by applying A or B.
We know that Q is obtained from Qsk by (i) first replacing each branching node with
a regular chain, say T ◦j (1≤ j ≤ n), resulting in a couple Qint , and then (ii) replacing
each leaf-pair in Qint by a regular couple, say Qj (1≤ j ≤m). Then:

(1) If one applies step A, then this step A must be applied at a leaf-pair belonging
to some regular couple Qi (1 ≤ i ≤ m). In this case the T ◦j (1 ≤ j ≤ n) remain the
same for Q+, the regular couples Qj (j �= i) also remain the same, and the regular
couple Qi is replaced by AQi .

(2) If one applies step B at a node which belongs to some Qi (1≤ i ≤m), then the
same result holds as in (1) except that Qi is now replaced by BQi .

(3) If we are not in case (1) or (2), then the node where one applies step B must
be a branching node of Qint , hence it must be a branching node or the lone leaf of
some regular chain T ◦i (1≤ i ≤ n). In this case the regular chains T ◦j (j �= i) remain
the same for Q+, and the regular couples Qj (1≤ j ≤m) also remain the same. The
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Fig. 16 An example of a couple, with structure as described in Proposition 4.14, whose skeleton is the
couple in Fig. 2. Here a black square represents a regular tree

regular chain T ◦i is replaced by BT ◦i , while the two new leaf-pairs in BT ◦i (which do
not belong to T ◦i ) remain leaf-pairs. In any case we have verified the result for Q+,
which proves existence.

Now to prove uniqueness of the representation, let Qint be the couple formed after
performing step (i). Given Qsk , clearly Qint uniquely determines the regular chains
in step (i) replacing the branching nodes in Qsk , so it suffices to show that Q uniquely
determines Qint (once Qint is given, it is also clear that Q uniquely determines the
regular couples in step (ii) replacing the leaf pairs in Qint ). However we can show,
via a case-by-case argument, that Qint contains no nontrivial regular sub-couple (i.e.
no two subtrees rooted at two nodes in Qint form a nontrivial regular couple). Since
Q is formed from Qint by replacing each leaf pair with a regular couple, we see that
Qint can be reconstructed by collapsing each maximal regular sub-couple (under
inclusion) in Q to a leaf pair (because any regular sub-couple of Q must be a sub-
couple of one of the regular couples in Q replacing a leaf pair in Qint ). Clearly,
this collapsing process is commutative as explained in Proposition 4.13, hence the
resulting couple Qint is unique. This completes the proof. �

Remark 4.15 We will call a saturated paired tree, which is a regular chain with each
leaf pair replaced by a regular couple, a “regular tree”. Thus in Proposition 4.14, Q
can also be formed from Qsk by replacing each branching node with a regular tree
and each leaf pair with a regular couple; see Figs. 16 and 17. This representation is
also unique.

Corollary 4.16 Fix any Qsk , the number of couples Q with skeleton Qsk such that
n(Q)≤ n is at most Cn.

Proof Let the couple formed after performing step (i) in the statement of Proposition
4.14 be Qint . If n(Qsk) = m, then Qint is determined by m regular chains of total
scale at most n, so the number of choices for Qint is at most

∑

n1+···+nm≤n
C
n1
0 · · ·Cnm0 ≤ (2C0)

n
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Fig. 17 An example of a regular
tree in Fig. 16, as defined in
Remark 4.15. The bottom black
node is the lone leaf

for some constant C0. For each fixed Qint , let n(Qint ) = r , then Q is formed from
Qint by performing step (ii) in the statement of Proposition 4.14, so it is determined
by r + 1 regular couples of total scale at most n, so the number of choices for Q is at
most

∑

n1+···+nr+1≤n
C
n1
1 · · ·Cnr+1

1 ≤ (2C1)
n

for some other constant C1. Therefore the total umber of choices for Q is at most
(4C0C1)

n. �

4.4 Dominant couples

We will identify a subclass of regular couples, namely the dominant couples, which
give rise to the nonzero leading terms.

Definition 4.17 We define a regular couple Q to be dominant inductively as follows.
First the trivial couple× is dominant. Suppose Q �= ×, let Q0 be uniquely determined
by Propositions 4.8 and 4.10, and let Qj (j ≥ 1) be the regular couples in Q replacing
leaf pairs in Q0. Then we define Q to be dominant, if (i) Q0 is either a (1,1)-mini
couple or a regular double chain formed by two dominant regular chains, and (ii)
each regular couple Qj is dominant.

4.4.1 An equivalence relation

Given a dominant couple Q, recall that N ∗ is the set of branching nodes, and
N ch ⊂ N ∗ is defined in Definition 4.11. Let Z be a special subset of N ch, which
will be defined inductively in Definition 4.18 below; we call Q := (Q,Z) an en-
hanced dominant couple, and when Z =∅, we will also denote Q = (Q,∅) just by
Q for convenience.

Definition 4.18 We inductively define special subsets Z ⊂N ch, and an equivalence
relation ∼ between enhanced dominant couples Q := (Q,Z), as follows. First ∅ is
a special subset and the enhanced trivial couple (×,∅) is only equivalent to itself,
moreover two enhanced dominant couples where the Q have different types are never
equivalent.
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Fig. 18 An example of two equivalent dominant couples with (m+,m−) = (1,2) and
((m+)′, (m−)′) = (2,1). Here we assume that (i) couples represented by the same color are
equivalent (with the corresponding Z sets, which are omitted), and (ii) the symbol [Z] means the value of
j corresponding to this branching node belongs to the suitable Z± or (Z±)′ set. The code of each mini
tree is indicated beside the node n

±
a and (n±a )′ , and Qlp and Q′

lp
have type 1

Next, if Q = (Q,Z) and Q′ = (Q′,Z′), where Q and Q′ have type 1 (recall the
definition of type in Proposition 4.10), then we have N ch =N ch

1 ∪N ch
2 ∪N ch

3 ∪ {r}
where r is the root with + sign, see Definition 4.11. Then Z is special if and only if
Z = Z1 ∪ Z2 ∪ Z3 (i.e. r is not in Z) where Zj ⊂N ch

j is special, and similarly for
Q′. Let Qj = (Qj ,Zj ), we define Q ∼Q′ if and only if Qj ∼Q′

j for 1≤ j ≤ 3.
Now let Q and Q′ be as before, but suppose Q and Q′ have type 2. Let Q0 be

associated with Q as in Proposition 4.10, and similarly for Q′ (same for the other
objects appearing below). Suppose the two regular chains of Q0 have scale 2m+ and
2m− respectively, and let the branching nodes in Q0 be n±a (1 ≤ a ≤ 2m±), where
n
±
2j−1 is paired with n

±
2j for 1 ≤ j ≤ m±, see Fig. 18. We will use the notations in

Definition 4.11, and note that Q is dominant and Qlp is trivial or has type 1. Recall
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that

N ch =
(

⋃

j,ε,ι

N ch
j,ε,ι

)

∪N ch
lp ∪

{

n
+
2j−1 : 1≤ j ≤m+

}∪ {n−2j−1 : 1≤ j ≤m−
}

(4.3)

as in (4.2); then Z is special if and only if

Z =
(

⋃

j,ε,ι

Zj,ε,ι

)

∪Zlp ∪
{

n
+
2j−1 : j ∈ Z+

}∪ {n−2j−1 : j ∈Z−
}

(4.4)

for some special subsets Zj,ε,ι ⊂ N ch
j,ε,ι and Zlp ⊂ N ch

lp , and some subsets Z± ⊂
{1, . . . ,m±}. Similar representations are defined for Q′. For ε ∈ {±} and each
1 ≤ j ≤ mε , consider the tuple (Ij,ε,cj,ε,Xj,ε,1,Xj,ε,2). Here Ij,ε = 1 if j ∈ Zε
and Ij,ε = 0 otherwise, cj,ε ∈ {1,2,3} is the first digit of the code of the mini tree
associated with the pair {2j − 1,2j} ∈ Pε (see Definition 4.11; this code is also the
code assigned for the pair {2j − 1,2j} ∈ Pε as in Proposition 4.7). Moreover Xj,ε,ι

is the equivalence class of the enhanced dominant couple Qj,ε,ι = (Qj,ε,ι,Zj,ε,ι)
for ι ∈ {1,2}, and let Y be the equivalence class of the enhanced dominant couple
Qlp = (Qlp,Zlp).

We now define Q ∼Q′, if and only if (i) m+ + m− = (m+)′ + (m−)′, and (ii)
the tuples coming from Q0 (there are total m+ +m− of them) form a permutation of
the corresponding tuples coming from Q′0 (there are total (m+)′ + (m−)′ of them),
and (iii) Y = Y ′. Finally, note that if Q = (Q,Z) and Q′ = (Q′,Z′) are equivalent
then n(Q)= n(Q′) and |Z| = |Z′|. When Q ∼Q′ with Z = Z′ =∅, we also say that
Q∼Q′.

4.5 Encoded trees

Let T be a tree, we will assign to each of its branching nodes n ∈N a code c= cn ∈
{0,1,2,3} to form an encoded tree.

Given a encoded tree T , define the canonical path to be the unique path γ starting
from the root r and ending at either a leaf or a branching node with code 0, such that
any non-terminal node n ∈ γ is a branching node with code cn ∈ {1,2,3}, and the
next node n′ in γ is the cn-th child of n counting from left to right.

Definition 4.19 An encoded chain is an encoded tree whose canonical path γ ends at
a leaf, and for any non-terminal node n ∈ γ , the two children of n other than n′ are
both leaves, where n′ is the next node in γ . We call the endpoint of γ , which is a leaf,
the tail leaf of T .

Proposition 4.20 Given an encoded tree T �= •, we say T has type 1 if its root r has
code cr = 0, otherwise we say it has type 2. Now, for any type 2 encoded tree T , there
is a unique encoded chain T0 �= •, such that T is obtained from T0 by replacing each
leaf with an encoded tree, and that the tail leaf is replaced by either • (i.e. remains a
leaf) or an encoded tree of type 1.
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Proof This is straightforward from the definition. In fact T has type 1 if and only if
cr = 0 for the root r; suppose cr ∈ {1,2,3}, then T0 must have the same canonical
path γ as T . Thus T0 must be the encoded tree formed by selecting each node in γ
and collapsing the subtree rooted at this node to a leaf. Such T0 is clearly unique, and
is nontrivial when cr ∈ {1,2,3}. �

Definition 4.21 We define the equivalence relation between encoded trees as follows.
First the trivial tree • is only equivalent to itself, and encoded trees of different type
are not equivalent. Now suppose T and T ′ are two encoded trees of type 1, then
define T ∼ T ′ if and only if Tj ∼ T ′j for 1≤ j ≤ 3, where Tj and T ′j are the subtrees
of T and T ′ respectively, from left to right.

Now suppose T and T ′ are two encoded trees of type 2, then by Proposition 4.20
there exists a unique encoded chain T0 such that T is formed by replacing each leaf
of T0 with an encoded tree, and the same holds for T ′. Let the branching nodes of T0
from top to bottom be nj (1 ≤ j ≤m). For each 1 ≤ j ≤m, let Tj,1 and Tj,2 be the
two encoded trees that replace the two children of nj other than nj+1 (or the tail leaf),
counted from left to right; moreover let Tta be the encoded tree replacing the tail leaf,
which is either trivial or has type 1. Consider the triples (cj ,Zj,1,Zj,2) for each j ,
where cj is the code of nj , and Zj,ι is the equivalence class of Tj,ι for ι ∈ {1,2}.
Then the encoded trees T and T ′ are equivalent, if and only if (i) m=m′ where m′
is defined similarly for T ′, (ii) the triples (cj ,Zj,1,Zj,2) form a permutation of the
corresponding triples coming from T ′0 , and (iii) Tta is equivalent to T ′ta .

4.5.1 Dominant couples and encoded trees

Given any dominant couple Q, we can inductively define a unique encoded tree T
associated to Q, as follows.

Definition 4.22 Let Q be a dominant couple, we define the encoded tree T associated
with Q as follows. First if Q=× then define T = •. Suppose Q has type 1, then let
Qj (1≤ j ≤ 3) be defined as in Definition 4.11, then define T to be the encoded tree
such that the root has code 0, and the three subtrees are Tj (1 ≤ j ≤ 3) which are
associated with Qj , from left to right.

Now suppose Q is a dominant couple of type 2. Let the relevant notations like
Qj,ε,ι and Qlp be as in Definition 4.11. Let m = m+ + m−, consider the triples
(cj,ε,Qj,ε,1,Qj,ε,2) for ε ∈ {±} and 1 ≤ j ≤mε , where cj,ε is the first digit of the
code of the mini-tree associated with the pair {2j −1,2j} ∈Pε as in Definition 4.18;
we rearrange them putting the ε =+ triples before the ε =− ones, and in increasing
order of j for fixed sign. Let the rearranged tuples be (ci ,Qi,1,Qi,2) for 1≤ i ≤m,
then T is defined as follows. First let T0 be the encoded chain which hasm branching
nodes ni (1 ≤ i ≤ m) from top to bottom with code ci , then for each i, replace the
two children leaves of ni other than ni+1 (or the tail leaf) with Ti,1 and Ti,2 which
are the encoded trees associated to Qi,1 and Qi,2 by induction hypothesis. Finally the
tail leaf is replaced by Tta which is the encoded tree associated with Qlp .

Proposition 4.23 The mapping from dominant couples Q to encoded trees T , as de-
fined in Definition 4.22, is surjective. Moreover two dominant couples Q and Q′ are
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equivalent in the sense of Definition 4.18, if and only if the associated encoded trees
T and T ′ are equivalent in the sense of Definition 4.21. In particular this mapping
induces a bijection between the equivalence classes of dominant couples and equiva-
lence classes of encoded trees.

Proof The mapping is surjective because for any T one can always construct Q by re-
verting the construction in Definition 4.22, following the same induction process us-
ing Proposition 4.20. Now recall that equivalence between dominant couples Q is de-
fined as a special case in Definition 4.18 withZ =∅, thus in Definition 4.18 for type 2
(type 1 is similar), the first component Ij,± of the tuple (Ij,±,cj,±,Xj,±,1,Xj,±,2)
is always 0. Therefore, part (ii) of the equivalence relation between Q and Q′ can
be described as the triples (cj,±,Xj,±,1,Xj,±,2) coming from Q being a permuta-
tion of the triples coming from Q′ (as well as other similar conditions). By induction
hypothesis, this is equivalent to the triples (ci ,Zi,1,Zi,2) coming from Q being a
permutation of the triples coming from Q′, where Zi,ι is the equivalence class of the
encoded tree associated to Qi,ι, and the triples (ci ,Qi,1,Qi,2) are rearranged from
the triples (cj,ε,Qj,ε,1,Qj,ε,2) as in Definition 4.22. Then, using Definition 4.21, we
see that this is equivalent to part (ii) of the equivalence relation between T and T ′.
Similarly the other parts also match, therefore Q being equivalent to Q′ is equivalent
to T being equivalent to T ′. �

4.5.2 A summary

We will be using the equivalence relations between enhanced dominant couples
Q = (Q,Z) (say ∼1), between dominant couples Q (say ∼2), and between encoded
trees (say ∼3). Clearly ∼2 is a special case of ∼1, and Proposition 4.23 establishes
a bijection between equivalence classes under ∼2 and equivalence classes under ∼3.
By abusing notation, below we will use the notation X (and similarly Y etc.) to
denote an equivalence class in each of these cases; the precise meaning will be clear
from the context. For later use, we list a few easily verified facts about these equiva-
lence classes below.

(1) We know that equivalent (enhanced) dominant couples and encoded trees must
have the same scale and |Z|, and the same type. The bijection in Proposition 4.23
also preserves the type; moreover, if Q has scale 2n, then the associated T has scale
n. If X denotes the equivalence class for both objects, we will define the half-scale
of X to be n.

(2) If the net sign ζ ∗(Q) of a dominant couple Q is defined by (2.22), and we
define the net sign ζ ∗(T ) of an encoded tree T by

ζ ∗(T )=
∏

n∈N
(−1)cn (4.5)

where cn is the code of n, then these signs are preserved under equivalence (including
∼1), and also under the bijection in Proposition 4.23 (so ζ ∗(Q) = ζ ∗(T ) if T is
associated to Q).

(3) Let X be an equivalence class of enhanced dominant couples. Then, if X has
type 1, it can be uniquely determined (bijectively) by an ordered triple (X1,X2,X3)
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of equivalence classes of enhanced dominant couples. If X has type 2, it can be
uniquely determined (bijectively) by the following objects:

• A positive integer m≥ 1;
• An unordered collection of (ordered) tuples (Ij ,cj ,Xj,1,Xj,2) for 1 ≤ j ≤ m,

where each Ij ∈ {0,1}, each cj ∈ {1,2,3} and each Xj,1 and Xj,2 is an equiva-
lence class of enhanced dominant couples;

• An equivalence class Y of enhanced dominant couples that is trivial or has type 1.

(4) Let X be an equivalence class of dominant couples (with Z = ∅) or
encoded trees. Then the same description in (3) is valid, except that the tuple
(Ij ,cj ,Xj,1,Xj,2) should be replaced by the triple (cj ,Xj,1,Xj,2).

5 Regular couples I: the A and B coefficients

We start with the analysis of KQ associated to the regular couples Q, which will
occupy up to Sect. 7. The first step is to obtain suitable estimates for the coefficients
BQ occurring in (2.24), which is based on AT occurring in (2.12).

5.1 Properties of the coefficients BQ

Recall the coefficients AT = AT (t, α[N ]) and BQ = BQ(t, s, α[N ∗]) defined in
(2.13) and (2.23). By induction, we can also write

AT (t, α[N ])=
ˆ
D

∏

n∈N
eζnπiαntn dtn, (5.1)

where the domain

D = {

t[N ] : 0< tn′ < tn < t, whenever n′ is a child node of n
}

, (5.2)

and similarly

BQ(t, s, α[N ∗])=
ˆ
E

∏

n∈N ∗
eζnπiαntn dtn, (5.3)

where the domain

E = {

t[N ∗] : 0< tn′ < tn, whenever n′ is a child node of n;
tn < t whenever n ∈N+ and tn < s whenever n ∈N−}. (5.4)

Now suppose Q is a regular couple. If we fix the pairing of branching nodes as in
Proposition 4.3, then for any decoration E of Q, we must have ζn′�n′ = −ζn�n for
any pair {n,n′} of branching nodes. Let N ch be defined as in Definition 4.11, then
we may define ˜BQ = ˜BQ(t, s, α[N ch]) by

˜BQ(t, s, α[N ch])= BQ(t, s, α[N ∗]), (5.5)

assuming that α[N ∗\N ch] is defined such that ζn′αn′ = −ζnαn for each pair {n,n′}.
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5.1.1 Structure of ˜BQ

For a regular couple Q �= ×, let Q0 be uniquely determined by Propositions 4.8 and
4.10, which is either a (1,1)-mini couple, or a nontrivial regular double chain, such
that Q is obtained from Q0 by replacing each leaf-pair with a regular couple. We will
use the notations of Definition 4.11, including for example P±, m± and Qj,ε,ι, Qlp
and N ch

j,ε,ι, N ch
lp etc.

Case 1. If Q has type 1, then by (5.3) and (5.5), we deduce that

˜BQ(t, s, α[N ch])=
ˆ t

0

ˆ s

0
eπiαr(t1−s1)

3
∏

j=1

˜BQj
(t1, s1, α[N ch

j ])dt1ds1. (5.6)

We remark that in (5.6), the variables (t1, s1) appearing in ˜BQj
may be replaced by

(s1, t1) for some j , depending on the signs of the leaves of Q0.
Case 2. Suppose Q has type 2. For each 1 ≤ j ≤ m±, let {a, b} be the j -th pair

in P± where a < b, then n+a ∈N ch; we shall rename α
n
+
a
:= α+j , and define β+a :=

ζ
n
+
a
α
n
+
a
= ε+j α+j where ε+j = ζn+a ∈ {±} and β+b := ζn+b αn+b =−ε

+
j α

+
j . The same is

done for the other regular chain T −. Then, by these definitions, and (5.3) and (5.5),
we deduce that

˜BQ(t, s, α[N ch])

=
ˆ
t>t1>···>t2m+>0

e
πi(β+1 t1+···+β+2m+ t2m+ )

m+
∏

j=1

2
∏

ι=1

˜BQj,+,ι
(

ta, tb, α[N ch
j,+,ι]

)

×
ˆ
s>s1>···>s2m−>0

e
πi(β−1 s1+···+β−2m− s2m− )

m−
∏

j=1

2
∏

ι=1

˜BQj,−,ι
(

sa, sb, α[N ch
j,−,ι]

)

× ˜BQlp

(

t2m+ , s2m− , α[Qchlp ]
)

m+
∏

j=1

dtj

m−
∏

j=1

dsj .

(5.7)
As in Case 1, we remark that in some factors (ta, tb) may be replaced by (tb, ta), and
similarly for (sa, sb) and (t2m+ , s2m−), depending on the signs of the relevant leaves.
Note also that Qlp is trivial (in which case ˜BQlp

≡ 1) or has type 1; this is not needed
here, but will be useful later.

5.1.2 Estimates for ˜BQ

The goal of this section is to prove the following

Proposition 5.1 Let Q be a regular couple of scale 2n. Then, the function

˜BQ
(

t, s, α[N ch])
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is the sum of at most 2n terms. For each term there exists a subset Z ⊂ N ch, such
that this term has form

∏

n∈Z

χ∞(αn)
ζnπiαn

·
ˆ
R2

C
(

λ1, λ2, α[N ch\Z])eπi(λ1t+λ2s) dλ1dλ2 (5.8)

for t, s ∈ [0,1], where χ∞ is as in Sect. 2.3.1. In (5.8) the function C satisfies the
estimateˆ

〈λ1〉1/4〈λ2〉1/4
∣

∣∂ραC
(

λ1, λ2, α[N ch\Z])∣∣dα[N ch\Z]dλ1dλ2 ≤ Cn(2|ρ|)! (5.9)

for any multi-index ρ, and we also have the weighted estimate
ˆ
〈λ1〉1/8〈λ2〉1/8 · max

n∈N ch\Z
〈αn〉1/8

∣

∣C
(

λ1, λ2, α[N ch\Z])∣∣dα[N ch\Z]dλ1dλ2 ≤ Cn.
(5.10)

We will denote the (λ1, λ2) integral in (5.8) by ˜BQ,Z = ˜BQ,Z(t, s, α[N ch\Z]), so we
have

˜BQ(t, s, α[N ch])=
∑

Z⊂N ch

∏

n∈Z

χ∞(αn)
ζnπiαn

· ˜BQ,Z(t, s, α[N ch\Z]). (5.11)

The proof of Proposition 5.1 is done by induction, using the recursive description
in (5.6) and (5.7). Clearly the hardest case is Case 2, where Q0 is a regular double
chain. Therefore, before proving Proposition 5.1 in Sect. 5.3 below, we first need to
analyze the expressions associated with regular chains. This will be done in Sect. 5.2.

5.2 Regular chain estimates

Let P be a legal partition of {1, . . . ,2m}. As in Sect. 5.1.1, we list the pairs {a, b} ∈
P (a < b) in the increasing order of a. If the j -th pair is {a, b}, we define βa = εjαj
and βb =−εjαj , where 1≤ j ≤m and εj ∈ {±}. For this section, we also introduce
the parameters λa (1 ≤ a ≤ 2m) and λ0, and define μj = λa + λb if the j -th pair is
{a, b}. Define now

K(t,α1, . . . , αm,λ0, (λa)1≤a≤2m)

:=
ˆ
t>t1>···>t2m>0

eπi[(β1+λ1)t1+···+(β2m+λ2m)t2m]+πiλ0t2m dt1 · · ·dt2m. (5.12)

If we define the operator

Iβf (t)=
ˆ t

0
eπiβsf (s)ds,

then we have

K(t,α1, . . . , αm,λ0, (λa)1≤a≤2m)= Iβ1+λ1 · · · Iβ2m+λ2m(e
πiλ0s)(t). (5.13)
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By definition, if we replace αj by α̃j = αj + εjλa , where {a, b} (a < b) is the j -the
pair in P , and replace λa by ˜λa = 0 and replace λb by ˜λb = λa + λb = μj , it is easily
seen that

K(t,α1, . . . , αm,λ0, λ1, . . . , λ2m)=K(t, α̃1, . . . , α̃m,λ0, ˜λ1, . . . ,˜λ2m). (5.14)

Therefore, in this section we will assume λa = 0 and λb = μj for the j -th pair
{a, b} (a < b).

For the purpose of Sect. 5.2.1 below, we also define the operators

Jα;γ1,γ2f (t)=
ˆ t

0
eπiα(t−s)eπi(γ1t+γ2s)f (s)ds

and

Rα,β;γ1,γ2,γ3f (t)=
ˆ t

0

χ∞(α + γ3)

α+ γ3
eπiβ(t−s)eπi(γ1t+γ2s)f (s)ds.

Given variables (αa, . . . , αb), we define a bundle to be any linear combination yaαa+
· · · + ybαb where yj ∈ {−1,0,1}. Moreover, below we always view the operators as
mapping functions on [0,1] to functions on [0,1].
5.2.1 Class J and R operators

Definition 5.2 Let E be a finite set of positive integers, and A ⊂ E. We define an
operator J = Jα[A],μ[E], which depends on the variables α[A] and μ[E], to have
class J (and norm ‖J ‖ = 1), if we have

Jα[A],μ[E] =
ˆ
m(α[A],μ[E], γ1, γ2)J�;γ1,γ2 dγ1 dγ2, (5.15)

where � is a bundle of α[A], and m=m(α[A],μ[E], γ1, γ2) is a function such that

ˆ (

1+
∑

j∈A
|αj | + |γ1|

)1/4

|∂ραm(α[A],μ[E], γ1, γ2)|dα[A]dγ1dγ2 ≤ (2|ρ|)!,
(5.16)

for all μ[E] and multi-index ρ. Note that the weight on the left hand side of (5.16)
does not involve |γ2|.

We also define an operator R=Rα[A],μ[E], which again depends on the variables
α[A] and μ[E], to have class R (and norm ‖R‖ = 1), if 1 ∈ A (called the special
index), and we have

Rα[A],μ[E] =
ˆ
m(α[A\{1}],μ[E], γ1, γ2, γ3)R�1+εα1,�2+εα1;γ1,γ2,γ3 dγ1dγ2dγ3

(5.17)
where ε ∈ {±}, �1 and �2 are two bundles of α[A\{1}], and m=m(α[A\{1}],μ[E],
γ1, γ2, γ3) is a function such that

ˆ (

1+
∑

j∈A\{1}
|αj | + |γ1| + |γ3|

)1/4
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×|∂ραm(α[A\{1}],μ[E], γ1, γ2, γ3)|dα[A\{1}]dγ1dγ2dγ3 ≤ (2|ρ|)!,
(5.18)

for all μ[E] and multi-index ρ. Note that m = m(α[A\{1}],μ[E], γ1, γ2, γ3) does
not depend on α1, and the weight on the left hand side of (5.18) also does not involve
|γ2|.

More generally, we also define an operator J to have class J (or R) if it can
be written as a linear combination (say J =∑

� α�J�) of operators J� satisfying
(5.15)–(5.16) (or (5.17)–(5.18)) for different choices of � (or (�1, �2)); define the
norm ‖J ‖ and ‖R‖ to be the infimum of

∑

� |α�| over all such representations. Below
we will study compositions of class J and R operators, and compositions of them
with other explicit operators; when doing so we always understand that the variables
αj and μj involved in different operators are different.

5.2.2 Compositions of class J and R operators

Lemma 5.3 The composition of two class J operators is of class J , and the norms
satisfy that ‖J (1)J (2)‖ ≤ C‖J (1)‖ · ‖J (2)‖ (the same will be true for subsequent
lemmas).

Proof Let J (1)
α[A],μ[E] and J (2)

α[B],μ[F ] be of class J ; we may assume that each satisfies

(5.15)–(5.16). Let J (3) be their composition, which is an operator depending on the
variables (α[A∪B],μ[E ∪ F ]), of form

J (3)
α[A∪B],μ[E∪F ]

=
ˆ
m(1)(α[A],μ[E], γ1, γ2)m

(2)(α[B],μ[F ], γ3, γ4)J�1;γ1,γ2J�2;γ3,γ4 dγ1dγ2dγ3dγ4,

where �1 is a bundle of α[A], and �2 is a bundle of α[B].
Now look at the operator J := J�1;γ1,γ2J�2;γ3,γ4 , we have

Jf (t)=
ˆ t

0
eπi�1(t−z)+πiγ1t+πiγ2z dz

ˆ z

0
eπi�2(z−s)+πiγ3z+πiγ4sf (s)ds

=
ˆ t

0
f (s)ds

ˆ t−s

0
eπi�1(t−s−u)+πi�2u+πi(γ1t+γ4s)+πi(γ2+γ3)(s+u) du

=
ˆ t

0
eπi�1(t−s)+πiγ1t+πi(γ2+γ3+γ4)sf (s)ds

ˆ t−s

0
eπi(�2−�1+γ2+γ3)u du.

We decompose J = J ′ +J ′′ where in J ′ we multiply the kernel by χ0(�2− �1+γ2+
γ3) and in J ′′ we multiply by χ∞(�2 − �1 + γ2 + γ3).

To deal with J ′, notice that χ0(γ )
´ v

0 e
πiγ u du equals a compactly supported

Gevrey 2 function in γ and v for v ∈ [0,1] (which can be explicitly written down,
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say by multiplying by χ0(v − 1/2)), so we may rewrite

J ′f (t)=
ˆ t

0
eπi�1(t−s)+πiγ1t+πi(γ2+γ3+γ4)sf (s)ds

×
ˆ
R

M(�2 − �1 + γ2 + γ3, σ )e
πiσ (t−s) dσ

=
ˆ
R

M(�2 − �1 + γ2 + γ3, σ )dσ

×
ˆ t

0
eπi�1(t−s)+πi(γ1+σ)t+πi(γ2+γ3+γ4−σ)sf (s)ds

whereM is a fixed decaying Gevrey 2 function in two real variables. We refer to [60]
for basic properties of Gevrey functions. Therefore, the contribution of J ′ to J (3)

equals

ˆ
m(1)(α[A],μ[E], γ1, γ2)m

(2)(α[B],μ[F ], γ3, γ4)

×M(�2 − �1 + γ2 + γ3, σ )J�1;γ1+σ,γ2+γ3+γ4−σ dγ1dγ2dγ3dγ4dσ.

Note that �1 is also a bundle of α[A∪B], we can choose (note that the γj associated
with the composition m(3) are called γ ′j ; this will be assumed for subsequent lemmas
as well)

m(3)(α[A∪B],μ[E ∪ F ], γ ′1, γ ′2)

=
ˆ
γ1+σ=γ ′1

ˆ
γ2+γ3+γ4=σ+γ ′2

m(1)(α[A],μ[E], γ1, γ2)

×m(2)(α[B],μ[F ], γ3, γ4)M(�2 − �1 + γ2 + γ3, σ )dγ2dγ3dγ1,

which takes care of the contribution of J ′. Then, if we do not take derivatives and
do not count the weight in (5.16), the norm for m(3) is easily bounded using the
corresponding norms for m(1) and m(2). If we do not take derivatives but include the
weight

(

1+
∑

j∈A∪B
|αj | + |γ ′1|

)1/4

in (5.16), we may decompose it into three parts (1+∑

j∈A |αj |)1/4, (
∑

j∈B |αj |)1/4
and |γ ′1|1/4. The first two parts can be estimated using the corresponding norms for
m(1) or m(2), while for |γ ′1|1/4 we may use |γ ′1| ≤ |γ1| + |σ |, together with the corre-
sponding norms for m(1) and the decay in σ .

Next consider the higher order derivative estimates. The argument will be the same
for the subsequent lemmas, so we will not repeat this later. Note thatm(3) is a trilinear
expression of the functions m(1), m(2) and M ; in subsequent lemmas we may have
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higher degrees of multilinearity, but they will never exceed 9. Now by Leibniz rule
we have

∂ραm
(3)(α[A∪B],μ[E ∪ F ], γ ′1, γ ′2)

=
∑

ρ1+ρ2+ρ3=ρ

ρ!
(ρ1)!(ρ2)!(ρ3)!

ˆ
γ1+σ=γ ′1

ˆ
γ2+γ3+γ4=σ+γ ′2

∂ρ
1

α m
(1)(α[A],μ[E], γ1, γ2)

·∂ρ2

α m
(2)(α[B],μ[F ], γ3, γ4)∂

ρ3

α M(�2 − �1 + γ2 + γ3, σ )dγ2dγ3dγ1,

so the norm of ∂ραm(3) can be bounded in the same way as above, but using the norms

of ∂ρ
1

α m
(1), ∂ρ

2

α m
(2) and ∂ρ

3

α M . Compared to the versions without the derivatives, we
now have extra factors (2|ρ1|)!, (2|ρ2|)! and (2|ρ3|)! in view of (5.16) and the fact
that M is Gevrey 2. Therefore it suffices to show that

∑

ρ1+ρ2+ρ3=ρ

ρ!
(ρ1)!(ρ2)!(ρ3)! (2|ρ

1|)!(2|ρ2|)!(2|ρ3|)! ≤ C(2|ρ|)!,

which follows from Lemma A.4.
Now for J ′′, we continue to calculate

J ′′f (t)=
ˆ t

0
eπi�1(t−s)+πiγ1t+πi(γ2+γ3+γ4)sf (s)

× χ∞(�2 − �1 + γ2 + γ3)

πi(�2 − �1 + γ2 + γ3)
(eπi(�2−�1+γ2+γ3)(t−s) − 1)ds

= χ∞(�2 − �1 + γ2 + γ3)

πi(�2 − �1 + γ2 + γ3)

ˆ t

0
(eπi�2(t−s)+πi(γ1+γ2+γ3)t+πiγ4s

− eπi�1(t−s)+πiγ1t+πi(γ2+γ3+γ4)s)f (s)ds.

Note that both �1 and �2 are bundles of (α1, . . . , αB), just like the above, we can
choose either

m(3)(α[A∪B],μ[E ∪ F ], γ ′1, γ ′2)=
ˆ
γ1+γ2+γ3=γ ′1

m(1)(α[A],μ[E], γ1, γ2)

×m(2)(α[B],μ[F ], γ3, γ
′
2)
χ∞(�2 − �1 + γ2 + γ3)

πi(�2 − �1 + γ2 + γ3)
dγ2dγ3, or (5.19)

m(3)(α[A∪B],μ[E ∪ F ], γ ′1, γ ′2)=
ˆ
γ2+γ3+γ4=γ ′2

m(1)(α[A],μ[E], γ ′1, γ2)

×m(2)(α[B],μ[F ], γ3, γ4)
χ∞(�2 − �1 + γ2 + γ3)

πi(�2 − �1 + γ2 + γ3)
dγ2dγ3, (5.20)

which settles the contribution of J ′′ if we do not take derivatives and do not count the
weight. As for the weight, notice that for (5.19) we need to use |γ ′1| ≤ |γ1| + |γ2| +
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|γ3|, which seemingly involves γ2; however in view of the denominator �2 − �1 +
γ2 + γ3 in (5.19), we may replace |γ2|1/4 by either |�2 − �1 + γ2 + γ3|1/4, which is
estimated using this denominator, or |�2 − �1 + γ3|1/4, which is estimated using the
corresponding norms for m(1) and m(2). Similarly, one can treat (5.20). The higher
order derivatives can be treated in the same way as J ′ above. �

Lemma 5.4 The composition of a class J operator and a class R operator is of
class J .

Proof Let J (1)
α[A],μ[E] be of class J and R(2)

α[B],μ[F ] be of class R with special index

1 ∈ B . We first consider J (3) = J (1)R(2). Similar to Lemma 5.3, we only need to
look at J := J�1;γ1,γ2R�2+εα1,�3+εα1;γ3,γ4,γ5 , where �1 is a bundle of α[A], �2 and �3
are two bundles of α[B\{1}]. We have

Jf (t)=
ˆ t

0
eπi�1(t−z)+πiγ1t+πiγ2z dz

×
ˆ z

0

χ∞(�2 + εα1 + γ5)

�2 + εα1 + γ5
eπi(�3+εα1)(z−s)eπi(γ3z+γ4s)f (s)ds

= χ∞(�2 + εα1 + γ5)

�2 + εα1 + γ5

ˆ t

0
f (s)ds

×
ˆ t−s

0
eπi�1(t−s−u)+πi(�3+εα1)u+πiγ1t+πi(γ2+γ3+γ4)s+πi(γ2+γ3)u du

= χ∞(�2 + εα1 + γ5)

�2 + εα1 + γ5

ˆ t

0
eπi�1(t−s)+πiγ1t+πi(γ2+γ3+γ4)sf (s)ds

×
ˆ t−s

0
eπi(�3−�1+εα1+γ2+γ3)u du.

Again decompose J = J ′ + J ′′ where for J ′ and J ′′ we multiply by χ0(�3 − �1 +
εα1+ γ2+ γ3) and χ∞(�3− �1+ εα1+ γ2+ γ3) respectively, then as in Lemma 5.3,
the contribution of the J ′ term to J (3) will be

ˆ
m(1)(α[A],μ[E], γ1, γ2)m

(2)(α[B\{1}],μ[F ], γ3, γ4, γ5)

×M(�3 − �1 + εα1 + γ2 + γ3, σ )
χ∞(�2 + εα1 + γ5)

�2 + εα1 + γ5

× J�1;γ1+σ,γ2+γ3+γ4−σ dγ1dγ2dγ3dγ4dγ5dσ,

which can be rewritten in the form of J (3)
α[A∪B],μ[E∪F ] with

m(3)(α[A∪B],μ[E ∪ F ], γ ′1, γ ′2)

=
ˆ
γ1+σ=γ ′1

ˆ
γ2+γ3+γ4=σ+γ ′2

m(1)(α[A],μ[E], γ1, γ2)
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×m(2)(α[B\{1}],μ[F ], γ3, γ4, γ5)M(�3 − �1 + εα1 + γ2 + γ3, σ )

×χ∞(�2 + εα1 + γ5)

�2 + εα1 + γ5
dγ2dγ3dγ1dγ5.

This m(3) can be controlled if we do not take derivatives and do not count the weight,
using the fact that

ˆ
R

|M(ζ1 + εα1, σ )| ·
∣

∣

∣

∣

χ∞(ζ2 + εα1)

ζ2 + εα1

∣

∣

∣

∣

dα1 ≤ C〈σ 〉−10 (5.21)

uniformly in (σ, ζ1, ζ2). As for the weight, we can again decompose it into different
parts; compared to Lemma 5.3, the new part that needs consideration is |α1|1/4. But
we may replace it by either |�2+ εα1+ γ5|1/4, which does not affect (5.21), or |�2+
γ5|1/4, which can be estimated using the weighted norm for m(1) or m(2). The higher
order derivatives are also treated in the same way as in Lemma 5.3.

As for J ′′, similarly we have

J ′′f (t)= χ∞(�2 + εα1 + γ5)

�2 + εα1 + γ5
· χ∞(�3 − �1 + εα1 + γ2 + γ3)

πi(�3 − �1 + εα1 + γ2 + γ3)

×
ˆ t

0
(eπi(�3+εα1)(t−s)+πi(γ1+γ2+γ3)t+πiγ4s − eπi�1(t−s)+πiγ1t+πi(γ2+γ3+γ4)s)f (s)ds,

(5.22)

so similar arguments as above imply that the corresponding contribution is of class
J , where we have used the fact that both �3 + εα1 and �1 are bundles of α[A ∪ B],
and that

ˆ
R

∣

∣

∣

∣

χ∞(ζ1 + εα1)

ζ1 + εα1

∣

∣

∣

∣

·
∣

∣

∣

∣

χ∞(ζ2 + εα1)

ζ2 + εα1

∣

∣

∣

∣

dα1 ≤ C

uniformly in (ζ1, ζ2). The part |α1|1/4 of the weight can be treated in the same way
as above, while the part |γ2|1/4 of the weight (which is part of |γ ′1|1/4 in one of
the two terms in (5.22)) can be replaced by either |�3 − �1 + εα1 + γ2 + γ3|1/4 or
|�3 − �1 + εα1 + γ3|1/4 and treated in the same way either as above or as |α1|1/4.

Now we look at R(2)J (1). The proof is similar, where we now have J :=
R�2+εα1,�3+εα1;γ3,γ4,γ5J�1;γ1,γ2 . Similar calculations yield that

Jf (t)=
ˆ t

0

χ∞(�2 + εα1 + γ5)

�2 + εα1 + γ5
eπi(�3+εα1)(t−z)+πiγ3t+πiγ4z dz

×
ˆ z

0
eπi�1(z−s)eπi(γ1z+γ2s)f (s)ds

= χ∞(�2 + εα1 + γ5)

�2 + εα1 + γ5

ˆ t

0
f (s)ds

×
ˆ t−s

0
eπi(�3+εα1)(t−s−u)+πi�1u+πiγ3t+πi(γ4+γ1+γ2)s+πi(γ4+γ1)u du
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= χ∞(�2 + εα1 + γ5)

�2 + εα1 + γ5

ˆ t

0
eπi(�3+εα1)(t−s)+πiγ3t+πi(γ4+γ1+γ2)sf (s)ds

×
ˆ t−s

0
eπi(�1−�3−εα1+γ4+γ1)u du.

We proceed in basically the same way as for J (1)R(2), except that (i) the roles of �1
and �3 + εα1 are switched, but both are still bundles of α[A ∪ B]; (ii) we now need
to deal with the weight |γ4|1/4, but also γ4 will be a part of the denominator so this
will not affect the proof. �

Lemma 5.5 The composition of two class R operators is of class J .

Proof Let R(1)
α[A],μ[E] and R(2)

α[B],μ[F ] be of class R, with special indices 1 ∈ A
and 2 ∈ B . Again we first consider the operator J := R�1+ε1α1,�2+ε1α1;γ1,γ2,γ3 ×
R�3+ε2α2,�4+ε2α2;γ4,γ5,γ6 , where �1 and �2 are bundles of α[A\{1}], and �3 and �4
are bundles of α[B\{2}]. We have

Jf (t)=
ˆ t

0

χ∞(�1 + ε1α1 + γ3)

�1 + ε1α1 + γ3
eπi(�2+ε1α1)(t−z)+πiγ1t+πiγ2z dz

×
ˆ z

0

χ∞(�3 + ε2α2 + γ6)

�3 + ε2α2 + γ6
eπi(�4+ε2α2)(z−s)+πiγ4z+πiγ5sf (s)ds

= χ∞(�1 + ε1α1 + γ3)

�1 + ε1α1 + γ3

χ∞(�3 + ε2α2 + γ6)

�3 + ε2α2 + γ6

ˆ t

0
f (s)ds

×
ˆ t−s

0
eπi(�2+ε1α1)(t−s−u)+πi(�4+ε2α2)u+πiγ1t+πi(γ2+γ4+γ5)s+πi(γ2+γ4)u du

= χ∞(�1 + ε1α1 + γ3)

�1 + ε1α1 + γ3

χ∞(�3 + ε2α2 + γ6)

�3 + ε2α2 + γ6

×
ˆ t

0
eπi(�2+ε1α1)(t−s)+πiγ1t+πi(γ2+γ4+γ5)sf (s)ds

×
ˆ t−s

0
eπi(�4−�2+ε2α2−ε1α1+γ2+γ4)u du.

Now, we make the decomposition again by multiplying

χ0(�4 − �2 + ε2α2 − ε1α1 + γ2 + γ4) or χ∞(�4 − �2 + ε2α2 − ε1α1 + γ2 + γ4),

and denote the resulting terms by J ′ and J ′′. Then repeating the same arguments
before we can show that the contribution of both J ′ and J ′′ are class J operators. The
key points here are that (i) both �2 + ε1α1 and �4 + ε2α2 are bundles of α[A] and
α[B] respectively, and that (ii) the bound

ˆ
R2
|M(ζ1 + ε2α2 − ε1α1, σ )| ·

∣

∣

∣

∣

χ∞(ζ2 + ε1α1)

ζ2 + ε1α1

∣

∣

∣

∣

·
∣

∣

∣

∣

χ∞(ζ3 + ε2α2)

ζ3 + ε2α2

∣

∣

∣

∣

dα1dα2
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≤ C〈σ 〉−10

holds uniformly in (σ, ζ1, ζ2, ζ3), and similarly

ˆ
R2

∣

∣

∣

∣

χ∞(ζ1 + ε2α2 − ε1α1)

ζ1 + ε2α2 − ε1α1

∣

∣

∣

∣

·
∣

∣

∣

∣

χ∞(ζ2 + ε1α1)

ζ2 + ε1α1

∣

∣

∣

∣

·
∣

∣

∣

∣

χ∞(ζ3 + ε2α2)

ζ3 + ε2α2

∣

∣

∣

∣

dα1dα2 ≤ C

holds uniformly in (ζ1, ζ2, ζ3), which follow from elementary calculus. The parts of
the weight that need consideration are (i) |α1|1/4 and |α2|1/4, which can be treated
using the denominators �1 + ε1α1 + γ3 and �3 + ε2α2 + γ6 respectively, and (ii)
|γ2|1/4 (which is part of |γ ′1|1/4 in one of the terms), which can be treated using the
denominator �4 − �2 + ε2α2 − ε1α1 + γ2 + γ4. �

Lemma 5.6 Suppose J is an operator of class J , then the operator Iεα1J Iμ1−εα1 ,
where ε ∈ {±}, can be decomposed into an operator of class J and an operator of
class R (with special index 1).

Proof Let J = J (1)
α[A],μ[E] be of class J , where we assume 1 /∈ E. Again we first

consider the operator X := Iεα1J�;γ1,γ2Iμ1−εα1 , where � is a bundle of α[A]. Then

Xf (t)=
ˆ t

0
eεπiα1z dz

ˆ z

0
eπi�(z−v)+πiγ1z+πiγ2v dv

ˆ v

0
e−επiα1s+πiμ1sf (s)ds

=
ˆ t

0
eπi(γ1+γ2+μ1)sf (s)ds

ˆ t−s

0
eπi(γ1+γ2+εα1)u du

×
ˆ t−s−u

0
eπi(�+εα1+γ1)w dw.

Our estimates will be uniform in μ1 due to the only position it appears, and the fact
that the left hand side of (5.16) does not involve γ2. When s is fixed, by making the
(χ0, χ∞) decomposition twice, we can reduce the inner (u,w) integral to 6 different
terms, namely:

I :=
ˆ
R2
M(γ1 + γ2 + εα1 − σ1, σ2)M(�+ εα1 + γ1, σ1) · eπi(σ1+σ2)(t−s) dσ1dσ2,

II :=
ˆ
R

M(�+ εα1 + γ1, σ ) · χ∞(γ1 + γ2 + εα1 − σ)
πi(γ1 + γ2 + εα1 − σ)

× (eπi(γ1+γ2+εα1)(t−s) − eπiσ (t−s)),

III := −
ˆ
R

M(γ1 + γ2 + εα1, σ )
χ∞(�+ εα1 + γ1)

πi(�+ εα1 + γ1)
· eπiσ (t−s) dσ,

IV := −χ∞(�+ εα1 + γ1)

πi(�+ εα1 + γ1)
· χ∞(γ1 + γ2 + εα1)

πi(γ1 + γ2 + εα1)
(eπi(γ1+γ2+εα1)(t−s) − 1),

V :=
ˆ
R

M(γ2 − �,σ )χ∞(�+ εα1 + γ1)

πi(�+ εα1 + γ1)
eπi(�+εα1+γ1+σ)(t−s) dσ,
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VI := χ∞(�+ εα1 + γ1)

πi(�+ εα1 + γ1)
· χ∞(γ2 − �)
πi(γ2 − �) (e

πi(γ1+γ2+εα1)(t−s) − eπi(�+εα1+γ1)(t−s)).

Now, the terms I∼ IV will give rise to class J operators; for example, consider the
term IV where we choose the term eπi(γ1+γ2+εα1)(t−s) from the last parenthesis, then
we may express the contribution of this term as a class J operator with coefficient

m(2)(α[A∪ {1}],μ[E ∪ {1}], γ ′1, γ ′2)= δ(γ ′2 −μ1)

×
ˆ
γ1+γ2=γ ′1

χ∞(�+ εα1 + γ1)

πi(�+ εα1 + γ1)
· χ∞(γ1 + γ2 + εα1)

πi(γ1 + γ2 + εα1)
m(1)(α[A],μ[E], γ1, γ2)dγ1.

Here m(1) is the coefficient associated with J (1), and the Dirac δ function can be
removed by using the fact that

eπiμ1s =
ˆ
R

M(σ)eπi(μ1+σ)s dσ (5.23)

for some analytic function M and all s ∈ [0,1], which allows to replace δ(γ ′2 − μ1)

by M(γ ′2 − μ1); moreover the integral in α1 is uniformly bounded given the other
variables.

Finally, terms V∼VI lead to class R operators. For example, consider the term VI
where we choose the term eπi(�+εα1+γ1)(t−s) from the last parenthesis, then we may
express the contribution of this term as a class R operator with �1 and �2 replaced by
�, and the coefficient

m(2)(α[A],μ[E], γ ′1, γ ′2, γ ′3)=
1

πi
δ(γ ′1 − γ ′3) ·

χ∞(γ ′2 −μ1 − �)
πi(γ ′2 −μ1 − �) m

(1)

× (α[A],μ[E], γ ′1, γ ′2 −μ1).

The Dirac δ function can again be removed using (5.23), and in all cases (both for
I ∼ IV and V ∼ VI) the weight can be treated in the same way as before, using the
denominator �+ εα1 + γ1 to estimate |α1|1/4, and using the denominator γ1 + γ2 +
εα1 or γ2 − � to estimate |γ2|1/4 (which may appear as part of |γ ′1|1/4 for some
terms). �

Lemma 5.7 Suppose R is an operator of class R, then the operator Iεα1RIμ1−εα1 ,
where ε ∈ {±}, can be decomposed into an operator of class J and an operator of
class R (with special index 1).

Proof Let R=R(1)
α[A],μ[E] be of class R with special index 2, where 1 /∈E. Consider

X = Iεα1R�1+ε2α2,�2+ε2α2;γ1,γ2,γ3Iμ1−εα1 , where �1 and �2 are bundles of α[A\{2}].
Our estimates will be uniform in μ1 as in Lemma 5.6. We proceed in basically the
same way as in Lemma 5.6, and obtain the same expressions I∼VI, except that here
� is replaced by �2 + ε2α2, and that we have an extra factor χ∞(�1+ε2α2+γ3)

�1+ε2α2+γ3
. The
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terms I ∼ IV still give rise to class J operators, since the factors in the coefficients
that depend on (α1, α2), which are bounded by

1

〈γ1 + γ2 + εα1〉 ·
1

〈�2 + εα1 + ε2α2 + γ1〉 ·
1

〈�1 + ε2α2 + γ3〉 ,

are integrable in (α1, α2) uniformly in the other variables.
As for terms V∼VI, they will give rise to class R operators with special index 1.

For this we only need the integrability in α2 (uniformly in the other variables) of the
factors in the coefficients that depend on α2, which follows from the upper bound

1

〈�1 + ε2α2 + γ3〉 ·
1

〈γ2 − ε2α2 − �2〉 .

Again, in all cases the weight can be treated in the same way as before, where for
terms I ∼ IV we use the denominator �1 + ε2α2 + γ3 to estimate |α2|1/4, use the
denominator �2+ εα1+ ε2α2+ γ1 to estimate |α1|1/4, and use the denominator γ1+
γ2 + εα1 to estimate |γ2|1/4 which may appear as part of |γ ′1|1/4 for some terms. For
terms V∼VI we use the denominator �1+ ε2α2+ γ3 to estimate |α2|1/4, and use the
denominator γ2 − ε2α2 − �2 to estimate |γ2|1/4. �

Lemma 5.8 The operator Iεα1Iμ1−εα1 , where ε ∈ {±}, can be decomposed as

Iεα1Iμ1−εα1 =
χ∞(α1)

επiα1
Jα[ ],μ1 +Jα1,μ1 +Rα1,μ1,

where J(··· ) and R(··· ) are of class J and R (with special index 1) respectively, and
α[ ] indicates the corresponding set A=∅ in (5.15).

Proof We directly calculate X = Iεα1Iμ1−εα1 such that

Xf (t)=
ˆ t

0
eεπiα1z dz

ˆ z

0
eπi(μ1−εα1)sf (s)ds =

ˆ t

0
eπiμ1sf (s)ds

ˆ t−s

0
eεπiα1u du,

note that the estimates are again uniform in μ1. NowX can be decomposed into three
terms,

I :=
ˆ
R

M(εα1, σ )J0;σ,μ1−σ dσ,

II := −χ∞(εα1)

επiα1
J0;0,μ1 ,

III :=Rεα1,εα1;0,μ1,0.

Clearly I = Jα1,μ1 has class J , as we can always convolve by a decaying analytic
function as in (5.23); likewise II= χ∞(α1)

επiα1
·Jα[ ],μ1 with the operator also having class

J . Now looking at III, we can introduce the integration in (γ1, γ2) by convolution; to
see it is of class R, which involves γ3 integration, we simply rewrite

χ∞(εα1)

επiα1
=
ˆ
R

M(σ)
χ∞(εα1)

επiα1
dσ
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with some fixed compactly supported Gevrey 2 function M ; then we replace χ∞(εα1)
επiα1

by χ∞(σ+εα1)
πi(σ+εα1)

to produce the γ3 integral (which is just the σ integral here), noticing
that

ˆ
R

∣

∣

∣

∣

χ∞(εα1)

επiα1
− χ∞(σ + εα1)

πi(σ + εα1)

∣

∣

∣

∣

dα1 ≤ C

for |σ | ≤ 1, so the error term introduced in this way is of form Jα1,μ1 which has class
J . �

5.2.3 Regular chain expressions

Lemma 5.9 Let P be a legal partition of {1, . . . ,2m}, where m≥ 1, and consider the
operator

I :=X0Iβ1+λ1X1Iβ2+λ2 · · ·X2m−1Iβ2m+λ2mX2m,

again assume λa = 0 and λb = μj for the j -th pair {a, b} (a < b). Suppose that
each Xa (0 ≤ a ≤ 2m) is either of class J or R, or Xa = Id, such that Xa �= Id
if {a, a + 1} ∈ P . Then I can be decomposed into an operator of class J and an
operator of class R (with special index 1). Moreover the norms of these operators
are at most

Cm
2m
∏

a=0

‖Xa‖,

with ‖Xa‖ = 1 if Xa = Id.

Proof First note that we may always assume X0 = X2m = Id in view of Lemmas
5.3–5.5. Now we induct on m (for convenience of induction we may replace the
power Cm by C2m−1). When m= 1 we may assume I = Iεα1

˜IIμ1−εα1 where ˜I has
class J orR, so the result follows from Lemmas 5.6–5.7. Suppose the result is true for
m′ <m, and consider any legal partition P of {1, . . . ,2m}. We know that P is formed
either by concatenating two smaller legal partitions P ′ and P ′′, or by enclosing a legal
partition P ′ into the pair {1,2m}. In the first case we have I = I ′I ′′ where I ′ and I ′′
are the operators corresponding to P ′ and P ′′ respectively (with obvious choices
of the Xa’s), so the result follows from Lemmas 5.3–5.5. In the second case we have
I = Iεα1I

′Iμ1−εα1 where I ′ is the operator corresponding to P ′ (with obvious choices
of the Xa’s), so the result follows from Lemmas 5.6–5.7. �

Lemma 5.10 Consider now the operator I = Iβ1+λ1 · · · Iβ2m+λ2m with λa satisfying
the same conditions as in Lemma 5.9. Then, I is a sum of at most 2m terms: for each
term there exists a set Z ⊂ {1, . . . ,m}, such that this term has form

∏

j∈Z

χ∞(αj )
εjπiαj

·˜I ,
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where ˜I is another operator that depends only on the variables (μ1, . . . ,μm) and
α[W ] with W = {1, . . . ,m}\Z, and has either class J or class R, with norm ‖˜I‖ ≤
Cm.

Proof We first consider all adjacent pairs {a, a + 1} ∈ P . For such pairs we have a
factor in I that is Iεj αj Iμj−εj αj for some j , so by Lemma 5.8 we can decompose it

into
χ∞(αj )
εj πiαj

Jα[ ],μj +Jαj ,μj +Rαj ,μj . Now if we select the term
χ∞(αj )
εj πiαj

Jα[ ],μj we

already get one factor
χ∞(αj )
εj πiαj

, while the remaining part of the operator will no long
depend on αj ; if we select Jαj ,μj or Rαj ,μj we will leave it as is, and note that in
any case our operator has class J or class R.

Now, after removing all adjacent pairs {a, a + 1} we can reduce P to a smaller

legal partition P ′. Then, apart from the possible
χ∞(αj )
επ iαj

factors, the remaining part of

the operator, denoted by ˜I , will be of form I described in Lemma 5.9. Note that if
P ′ =∅, then ˜I is already a composition of at most m class J or R operators, so the
result follows directly from Lemmas 5.3–5.5. If P ′ �= ∅, applying Lemma 5.9 then
yields that ˜I has class J or R, and that the norm

‖˜I‖ ≤ Cm′
2m′
∏

a=0

‖Xa‖.

Here we assume that (after relabeling form smallest to largest) P ′ is a legal partition
of {1, . . . ,2m′}, and each Xa is in fact a composition of class J and R operators ap-
pearing in Lemma 5.8, and the number na of such operators is the number of adjacent
pairs in P between the elements a and a + 1 (again after relabeling) of P ′ (note that
na ≥ 1 if {a, a + 1} ∈ P ′). Therefore ‖Xa‖ ≤ Cna by iterating Lemmas 5.3–5.5, and
since n0 + · · · + n2m′ = m−m′, we conclude that ‖˜I‖ ≤ Cm, which completes the
proof. �

5.3 Proof of Proposition 5.1

In this section we prove Proposition 5.1. The proof is done by induction on the scale
of Q, and Lemma 5.10 plays a key role in the inductive step.

Proof of Proposition 5.1 We induct on n. The base case n= 0 is trivial as ˜B×(t, s)≡ 1.
Suppose the result is true for regular couples of smaller scales, and consider a regular
couple Q of scale 2n. By the discussion in Sect. 5.1.1, we know that ˜BQ can be
expressed as in either (5.6) or (5.7), such that the regular couples appearing on the
right hand sides all have scale strictly less than 2n.

Case 1. Suppose we have (5.6), then by induction hypothesis we have

˜BQ(t, s, α[N ch])=
∑

Z1,Z2,Z3

3
∏

j=1

∏

n∈Zj

χ∞(αn)
ζnπiαn

ˆ
R6

3
∏

j=1

Cj (λ2j−1, λ2j , α[N ch
j \Zj ])
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×
6
∏

j=1

dλj

ˆ t

0

ˆ s

0
eπiαr(t1−s1)eπi(λ∗t1+λ∗∗s1) dt1ds1. (5.24)

Here in (5.24), each Zj is a subset of N ch
j , each Cj = Cj (λ2j−1, λ2j , α[N ch

j \Zj ]) is
a function satisfying (5.9), and (λ∗, λ∗∗)= (λ1+λ3+λ5, λ2+λ4+λ6). Note that Cj
is either the function C associated with Qj and Zj as in (5.8), or is the same function
with the variables (λ2j−1, λ2j ) replaced by (λ2j , λ2j−1). The same is true in Case 2
below.

By integrability in (λ1, . . . , λ6), we may fix the choices of these parameters, and
also exploit the weight 〈λ1〉1/4 · · · 〈λ6〉1/4 from (5.9) if needed. We then explicitly
calculate the expression

ˆ t

0

ˆ s

0
eπiαr(t1−s1)eπi(λ∗t1+λ∗∗s1) dt1ds1 = e

πi(αr+λ∗)t − 1

πi(αr + λ∗) · e
πi(−αr+λ∗∗)s − 1

πi(−αr + λ∗∗) .
(5.25)

By inserting the cutoffs χ0(αr + λ∗) or χ∞(αr + λ∗), and χ0(−αr + λ∗∗) or
χ∞(−αr + λ∗∗) as in Sect. 5.2.1, we can easily show that the above expression, as a
function of (t, s, αr), can be written in the form

ˆ
R2

C′(λ′1, λ′2, αr)eπi(λ
′
1t+λ′2s) dλ′1dλ′2, (5.26)

where C′ is such thatˆ
〈λ′1〉1/4〈λ′2〉1/4|∂ραrC′(λ′1, λ′2, αr)|dλ′1dλ′2dαr ≤ C(2|ρ|)! (5.27)

uniformly in the choices of λj . For example, if we insert the cutoffs χ∞(αr + λ∗)
and χ∞(−αr + λ∗∗), and choose the terms eπi(αr+λ∗)t and eπi(−αr+λ∗∗)s from the
numerators in (5.25), then by using (5.23) we can write

C′(λ′1, λ′2, αr)=M(λ′1−αr−λ∗)M(λ′2+αr−λ∗∗) ·
χ∞(αr + λ∗)
πi(αr + λ∗) ·

χ∞(−αr + λ∗∗)
πi(−αr + λ∗∗) ,

for which (5.27) is easily verified, noticing also that χ∞ is Gevrey 2. The other terms
can be treated similarly.

Now, for the regular couple Q and the associated ˜BQ, we may choose Z = Z1 ∪
Z2 ∪ Z3. Using (5.24), and rewriting (5.25) as the form (5.26), we can then easily
prove that it has the form (5.8) and satisfies (5.9); in fact, assume Qj has scale nj ,
then the induction hypothesis together with (5.27) bounds the left hand side of (5.9)
without derivatives by

Cn1 ·Cn2 ·Cn3 ·C = Cn1+n2+n3+1 = Cn.
As for the higher order derivatives estimate, notice that the whole expression (5.24) is
a linear combination of terms that are factorized as a product of functions of α[N ch

j ]
for 1≤ j ≤ 3 and a function of αr. For any multi-index ρ, suppose we want to control
the ∂ρα derivative of the relevant quantity, and let the multi-index of derivatives falling
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on each of the above four sets of variables be ρj (1 ≤ j ≤ 4), then by induction
hypothesis and (5.27), the left hand side of (5.9) is at most

Cn(2|ρ1|)! · · · (2|ρ4|)! ≤ Cn(2|ρ|)!,
which is what we need.

Case 2. Suppose we have (5.7), again by induction hypothesis we have

˜BQ(t, s, α[N ch])

=
∑

(Zj,ε,ι)

∏

ε∈{±}

mε
∏

j=1

2
∏

ι=1

∏

n∈Zj,ε,ι

χ∞(αn)
ζnπiαn

·
∏

n∈Zlp

χ∞(αn)
ζnπiαn

×
ˆ

∏

ε∈{±}

mε
∏

j=1

2
∏

ι=1

Cj,ε,ι
(

λa,ε,ι, λb,ε,ι, α[N ch
j,ε,ι\Zj,ε,ι]

)

dλa,ε,ιλb,ε,ι

×
ˆ

Clp(λlp,+, λlp,−, α[N ch
lp \Zlp])dλlp,+dλlp,−

×
ˆ
t>t1>···>t2m+>0

e
πi[(β+1 +λ+1 )t1+···+(β+2m++λ

+
2m+ )t2m+]+πiλ

+
0 t2m+ dt1 · · ·dt2m+

×
ˆ
s>s1>···>s2m−>0

e
πi[(β−1 +λ−1 )s1+···+(β−2m−+λ

−
2m− )s2m−]+πiλ

−
0 s2m− ds1 · · ·ds2m−

(5.28)
Here in (5.28) each Zj,ε,ι is a subset of N ch

j,ε,ι and Zlp is a subset of N ch
lp , each Cj,ε,ι

and Clp is a function satisfying (5.9), and λ±a = λa,±,1 + λa,±,2 for 1 ≤ a ≤ 2m±,
λ±0 = λlp,±.

By integrability in (λa,ε,ι) and (λlp,±), we may fix the choices of these parameters.
Note that we can also exploit the weight

∏

j,ε,ι

〈λa,ε,ι〉1/4〈λb,ε,ι〉1/4 · 〈λlp,+〉1/4〈λlp,−〉1/4 (5.29)

from (5.9), whenever needed. Once these parameters are fixed, the relevant term in
(5.28) is then reduced to the product of a function of (t, α+1 , . . . , α

+
m+), and a function

of s and (s,α−1 , . . . , α
−
m−). Let us look at the function depending on t , since the other

can be treated in the same way.
As in (5.12), this function can be written as

K(t,α+1 , . . . , α
+
m+ , λ

+
0 , λ

+
1 , . . . , λ

+
2m+). (5.30)

For 1 ≤ j ≤ m+, as in (5.14), define α̃j = α+j + ε+j λ+a and μ+j = λ+a + λ+b where
(a, b) is the j -th pair, then using (5.13) and Lemma 5.10, we can write

K(t,α+1 , . . . , α
+
m+ , λ

+
0 , λ

+
1 , . . . , λ

+
2m+)=

∑

Z+⊂{1,...,m+}

∏

j∈Z+

χ∞(α̃j )
ε+j πiα̃j

·˜I (eπiλ+0 s)(t),

(5.31)
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where Z+ is a subset of {1, . . . ,m+}, ˜I is an operator depending on the variables
(μ+1 , . . . ,μ

+
m+) and α̃[W+] := (α̃j )j∈W+ where W+ := {1, . . . ,m+}\Z+, that is the

sum of a class J operator and a class R operator in the sense of Definition 5.2. There
are then two sub cases.

Case 2.1. Suppose ˜I is of class J , then ˜I has form (5.15). The point is that, when
the variables (λ+0 , γ1, γ2,μ

+
1 , . . . ,μ

+
m+) and α̃[W+] are fixed, and � is a bundle of

α̃[W+], then we can write

J�;γ1,γ2(e
πiλ+0 s)(t)=

ˆ
R

G(λ)eπitλ dλ (5.32)

for t ∈ [0,1], where (viewing α̃[W+] as parameters)

ˆ
R

〈λ〉1/4|∂ραG(λ)|dλ≤ C(2|ρ|)!
(

1+
∑

j∈W+
|α̃j | + |γ1|

)1/4

. (5.33)

This is in fact obvious by calculating

J�;γ1,γ2(e
πiλ+0 s)(t)= eπi(�+γ1)t

ˆ t

0
eπi(γ2+λ+0 −�)s ds

and inserting the cutoffs χ0(γ2 + λ+0 − �) or χ∞(γ2 + λ+0 − �) as in Case 1 above,
noticing that if part of the weight is |γ2 + λ+0 − �|1/4, it can be treated by exploiting
the denominator which contains the same expression γ2 + λ+0 − �. Now using (5.15)
to expand ˜I as a linear combination of J�;γ1,γ2 , and combining (5.33) with (5.16)
(using Leibniz rule and Lemma A.4 if necessary), we obtain that

˜I (eπiλ
+
0 s)(t)=

ˆ
R

H(λ,λ+0 ,μ
+
1 , . . . ,μ

+
m+ , α̃[W+])eπitλ dλ (5.34)

for t ∈ [0,1], where
ˆ
〈λ〉1/4|∂ραH(λ,λ+0 ,μ+1 , . . . ,μ+m+, α̃[W+])|dα̃[W+]dλ≤ Cm+(2|ρ|)!. (5.35)

Case 2.2. Suppose ˜I is of class R, then ˜I has form (5.17), say with special index
1. The arguments are similar to Case 2.1, except that now we are considering the
function

R�1+εα̃1,�2+εα̃1;γ1,γ2,γ3(e
πiλ+0 s)(t)

= χ(�1 + εα̃1 + γ3)

�1 + εα̃1 + γ3
eπi(�2+εα̃1+γ1)t

ˆ t

0
eπi(γ2+λ+0 −�2−εα̃1)s ds.

By inserting the cutoffs χ0(γ2+λ+0 −�2−εα̃1) or χ∞(γ2+λ+0 −�2−εα̃1) as above,
and using the fact that the resulting coefficient depending on α̃1 is bounded by

1

〈�1 + εα̃1 + γ3〉 ·
1

〈γ2 + λ+0 − �2 − εα̃1〉
(5.36)
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which is integrable in α̃1 uniformly in other variables, we can conclude that, similar
to (5.32) and (5.33), we have

R�1+εα̃1,�2+εα̃1;γ1,γ2,γ3(e
πiλ+0 s)(t)=

ˆ
R

G1(λ, α̃1)e
πitλ dλ (5.37)

for t ∈ [0,1], where (again viewing α̃[W+\{1}] as parameters)

ˆ
R2
〈λ〉1/4|∂ραG1(λ, α̃1)|dλdα̃1 ≤ C(2|ρ|)!

(

1+
∑

1�=j∈W+
|α̃j | + |γ1| + |γ3|

)1/4

.

(5.38)
Note that in deducing (5.38) we have used the fact that the integrability of (5.36)
remains true uniformly in the other variables, even if one of the denominators is
raised to the 3/4-th power. Here if part of the weight is |γ2 + λ+0 − �2 − εα̃1|1/4,
it can be estimated using the denominator which contains the same expression
γ2 + λ+0 − �2 − εα̃1; if part of the weight is |α̃1|1/4, it can be estimated using the
denominator �1 + εα̃1 + γ3. Now using (5.17) to expand ˜I as a linear combination
of R�1+εα̃1,�2+εα̃1;γ1,γ2,γ3 , and combining (5.38) with (5.18) as in Case 2.1 above, we
obtain that (5.34) and (5.35) remain true in this case.

Now, in either case, we have obtained the formula (5.34) and the estimate (5.35),
which are enough to treat the ˜I (eπiλ

+
0 s) part of K in (5.31), noticing that α̃j is a

translation of α+j given the (λa,ε,ι) and (λlp,±) variables. However, for j ∈ Z+, we

still have α̃j = α+j + ε+j λ+a instead of α+j in (5.31). But this is easily resolved using
the simple fact that

ˆ
R

∣

∣

∣

∣

χ∞(α+j + ε+j λ+a )
ε+j πi(α

+
j + ε+j λ+a )

− χ∞(α
+
j )

ε+j πiα
+
j

∣

∣

∣

∣

dα+j ≤ C log(2+ |λ+a |)≤ C〈λ+a 〉1/12. (5.39)

Therefore, if we encounter the difference term
χ∞(α+j +ε+j λ+a )
ε+j πi(α

+
j +ε+j λ+a )

− χ∞(α+j )
ε+j πiα

+
j

for some j ,

we simply move this j from Z+ toW+ and exploit the integrability of this difference
in α+j . The higher order derivatives can be treated in the same way as in Case 1, and
the total loss caused by the right hand sides of (5.39) is bounded by

Cm
+ ∏

j∈Z+

∏

ι

〈λa,+,ι〉1/12〈λb,+,ι〉1/12 (5.40)

(where Z+ is the set before moving the elements j ). Clearly 5.40 can be controlled
by the part in (5.29) with sign +, up to a Cm

+
factor.

Now we can return to the formula (5.28). Clearly the arguments for the functions
depending on t can be repeated for the function depending on s, obtaining a set Z−.
By combining these arguments, as well as the arguments moving some of the j ∈ Z±
to W±, we can write ˜BQ in the form of (5.8), where

Z =
(

⋃

j,ε,ι

Zj,ε,ι

)

∪Zlp ∪
{

n
+
a : a < b, j ∈Z+

}∪ {n−a : a < b, j ∈Z−
};



608 Y. Deng, Z. Hani

note also that ε+j = ζn+a for j ∈ Z+ (hence n+a ∈ Z) as in Sect. 5.1.1, and that the
sets Z± may have been modified after moving the elements j as described above.
The bound (5.9) without derivatives then follows from the estimates obtained above
including (5.35) and (5.39); in fact, if the regular couples Qj,ε,ι has scale nj,ε,ι etc.,
then the induction hypothesis together with the above estimates bounds the left hand
side of (5.9) without derivatives by

∏

j,ε,ι

Cnj,ε,ι ·Cnlp ·Cm+ ·Cm− = Cn,

noticing that

∑

j,ε,ι

nj,ε,ι + nlp +m+ +m− = n.

The higher order derivative estimates in (5.9) can be proved in the same way as in
Case 1 using the factorized structure. This completes the proof of (5.8) and (5.9).

Finally we prove (5.10) using a modification of the above inductive arguments.
The proof scheme is the same, except that we induct (5.10) in addition to (5.9). In
the inductive step, if n∗ := argmax〈αn〉 belongs to one of N ch

j,ε,ι\Zj,ε,ι or N ch
lp \Zlp ,

then we repeat the above arguments using (5.10) for Cj,ε,ι or Clp , and noticing that
changing the exponent 1/4 to 1/8 does not affect any part of the above proof.

Now suppose n∗ = n±a with a < b and j ∈W± (in Case 2, or n∗ = r in Case 1
which is similar), then for the functions Cj,ε,ι and Clp we do not need to gain the αn
weight, so we can use the bound (5.9) for them. We shall replace the weight 〈λ〉1/4 in
(5.33) and (5.38) by 〈λ〉1/8〈αn∗〉1/8. For example, if n∗ = n+a in Case 2.1 then instead
of (5.35) we now have

ˆ
〈λ〉1/8〈αn∗〉1/8|H(λ,λ+0 ,μ+1 , . . . ,μ+m+ , α̃[W+])|dα̃[W+]dλ≤ Cm+〈λ+a 〉1/8,

using also that α̃j = αn∗ ±λ+a ; the other cases are similar. Since λ+a = λa,+,1+λa,+,2,
we know that the factor 〈λ+a 〉1/8 can be added to (5.40) which is then still controlled
by the part in (5.29) with sign +. This means that we can insert the power 〈αn∗〉1/8
at the price of weakening 〈λ〉1/4 to 〈λ〉1/8. Finally, if n∗ occurs in the process of
moving j from Z+ to W+, then the same result is true because (5.39) is still true,
with the right hand side replaced by C〈λ+a 〉1/7, if the integrand on the left hand side
is multiplied by 〈α+j 〉1/8. This proves (5.10). �

6 Regular couples II: approximation by integrals

With the properties of BQ obtained in Sect. 5, we now calculate the asymptotics of
KQ as in (2.24) for regular Q, using number theoretic methods.
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6.1 A general approximation result

We prove here a general approximation result, which we apply to KQ in Sect. 6.2.

Proposition 6.1 Fix β ∈ (R+)d\Z. Consider the following expression

I :=
∑

(x1,...,xn)

∑

(y1,...,yn)

W(x1, . . . , xn, y1, . . . , yn)·�(L2δ〈x1, y1〉β, . . . ,L2δ〈xn, yn〉β),
(6.1)

where (x1, . . . , xn, y1, . . . , yn) ∈ (ZdL)2n in (6.1). Assume there is a (strict) partial
ordering ≺ on {1, . . . , n}, and that the followings hold for the functions W and �:

(1) The function W satisfies the bound (here ̂W denotes the Fourier transform in
(Rd)2n)

‖̂W‖L1 + ‖̂∂W‖L1 ≤ (C+)n. (6.2)

(2) This W is supported in the set

E := {

(x1, . . . , xn, y1, . . . , yn) : |x̃j − aj |, |ỹj − bj | ≤ λj , ∀1≤ j ≤ n}, (6.3)

where 1≤ λj ≤ (logL)4 are constants, aj and bj are constant vectors. Each x̃j is a
linear function that equals either xj , or xj ±xj ′ or xj ±yj ′ for some j ′ ≺ j , similarly
each ỹj equals either yj , or yj ± xj ′′ or yj ± yj ′′ for some j ′′ ≺ j .

(3) For some set J ⊂ {1, . . . , n}, the function � has the expression

�(�1, . . . ,�n)=
∏

j∈J

χ∞(�j )
�j

·�1(�[J c]), (6.4)

where χ∞ is as in Sect. 2.3.1, and for any |ρ| ≤ 10n we have

‖∂ρ�1‖L1 ≤ Cn(4|ρ|)!, ∥

∥max
j∈J c〈�j 〉

1/8 ·�1
∥

∥

L1 ≤ Cn. (6.5)

Assume n≤ (logL)3. Then we have
∣

∣

∣

∣

I −L2dn
ˆ
(Rd )2n

W(x1, . . . , xn, y1, . . . , yn)

×�(L2δ〈x1, y1〉β, . . . ,L2δ〈xn, yn〉β)dx1 · · ·dxndy1 · · ·dyn
∣

∣

∣

∣

≤ (λ1 · · ·λn)C(C+L2d−2δ−1)nL−2ν . (6.6)

Here we recall that the choice of ν, and the convention for C and C+, are fixed in
Sect. 2.3.1. Moreover, defining

Iapp = (L2d−2δ−1)n
ˆ
�1d�[J c] ·

ˆ
(Rd )2n

W(x1, . . . , xn, y1, . . . , yn)
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×
∏

j∈J

1

〈xj , yj 〉β
∏

j /∈J
δ(〈xj , yj 〉β)dx1 · · ·dxndy1 · · ·dyn, (6.7)

where the singularities 1/〈xj , yj 〉β are treated using the Cauchy principal value, we
have

|Iapp| ≤ (λ1 · · ·λn)C(C+L2d−2δ−1)n,

|I − Iapp| ≤ (λ1 · · ·λn)C(C+L2d−2δ−1)nL−2ν .
(6.8)

Before proving Proposition 6.1, we first need to establish a few auxiliary results.
In these results we will use the notation e(z) = e2πiz, and fix λ such that 1 ≤ λ ≤
(logL)4; moreover we will set υ = 1/40, so that ν� υ by our choice.

Lemma 6.2 Suppose � :R×R
d ×R

d→C is a function satisfying the bounds

sup
s,x,y

|∂αx ∂βy �(s, x, y)| ≤D (6.9)

for all multi-indices |α|, |β| ≤ 10d . Then we have:
(1) The following bound
∣

∣

∣

∣

ˆ
R

ˆ
R2d
χ0
(x − a
λ

)

χ0
(y − b
λ

)

�(s, x, y) · e(ξ · x + η · y + s〈x, y〉β)dxdyds

∣

∣

∣

∣

�Dλ2d (6.10)

holds uniformly in (ξ, η, a, b) ∈R
4d .

(2) Suppose, in addition, that � satisfies one of the following two requirements:
(a) �(s, x, y) = χ0(

s
K
)̂ψ( s

δL2 )�
′(x, y), where ψ := χ∞(t)

t
and �′ satisfies (6.9)

without s, or
(b) �(s, x, y) = χ0(

s
K
)�′( s

δL2 , x, y), where �′ satisfies (6.9), and Fs�′(·, x, y) is
supported on an interval of length O(1) in R which does not depend on (x, y) ∈
R

2d .
Here K := λ−1L1−υ � 1. Then, there holds

∣

∣

∣

∣

∑

0�=(g,h)∈Z2d

ˆ
R

ˆ
R2d
χ0
(x − a
λ

)

χ0
(y − b
λ

)

�(s, x, y)

×e[(Lg + ξ) · x + (Lh+ η) · y + s〈x, y〉β ]
∣

∣

∣

∣

�Dλ2d min
[

(1+ |ξ | + |η|)L− 4
10υ,1

]

(6.11)

uniformly in (a, b) ∈R
2d . In particular, we have

∣

∣

∣

∣

∑

(g,h)∈Z2d

ˆ
R

ˆ
R2d
χ0
(x − a
λ

)

χ0
(y − b
λ

)

�(s, x, y)
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×e[(Lg + ξ) · x + (Lh+ η) · y + s〈x, y〉β ]
∣

∣

∣

∣

�Dλ2d (6.12)

uniformly in (ξ, η, a, b) ∈R
4d .

Proof (1) By translating x and y, it is enough to consider the case a = b = 0. The
result then follows by an application of the stationary phase lemma (or direct inte-
gration of the Gaussian phase) to bound the integral in (x, y) by λ2d〈s〉−d which is
integrable.

(2) Let us denote the left hand side of (6.11) without absolute value by M(ξ,η)
and also �= 〈x, y〉β . Here, we split the discussion into two cases depending on the
size of a and b:

Case 1: if max(|a|, |b|) ≤ λLυ/2. Here, we argue via a stationary phase analysis
for the phase function ϕ(x, y)= (Lg + ξ) · x + (Lh+ η) · y + s�. Noting that

∇xϕ = Lg+ ξ + s(β1y1, . . . , βdyd), ∇yϕ = Lh+ η+ s(β1x1, . . . , βdxd),

and using our assumption on the s support of �, we can bound the norms of
s(β1y1, . . . , βdyd) and s(β1x1, . . . , βdxd) by L/10 if L is large enough. If |Lg +
ξ | + |Lh+ η| ≥ L/5 (which happens for all but one value of (g,h)), we integrate by
parts at most 2d times in x or y in the dxdy integral, and gain a denominator that
is bounded below by (L+ |Lg + ξ | + |Lh+ η|)2d . For the only remaining value of
(g,h), we use a stationary phase estimate similar to part (1). In the end we get

|M(ξ,η)|�Dλ2d
∑

(g,h)�=0

ˆ
|s|≤λ−1L1−υ

[

(L+ |Lg + ξ | + |Lh+ η|)−2d

+ 〈s〉−d1|Lg+ξ |+|Lh+η|<L/5
]

�Dλ2d
[

L−υ +
∑

(g,h)�=0

1|Lg+ξ |+|Lh+η|<L/5
]

�Dλ2d
(

L−υ + 1|ξ |+|η|�L
)

�Dλ2d min
(

1, (1+ |ξ | + |η|)L−υ) ,

as needed.
Case 2: if max(|a|, |b|) ≥ λLυ/2. Here the analysis is slightly more delicate, and

we will obtain the estimate

|M(ξ,η)|�Dλ2d min
[

1, (1+ |ξ | + |η|)L− 4
10υ

]

(6.13)

uniformly in (a, b), which finishes the proof of the lemma.
We start by splitting the integral appearing in M(ξ,η) into two parts: one with

|∇xϕ| + |∇yϕ| ≤ L1−2υ giving a contribution M1(ξ, η) and the complementary re-
gion giving a contribution M ′

1(ξ, η). More precisely, define

M1(ξ, η)=
∑

0�=(g,h)∈Z2d

ˆ
R

ˆ
R2d
χ0
(x − a
λ

)

χ0
(y − b
λ

)

�(s, x, y)χ0
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×
( ∇xϕ
L1−2υ

)

χ0

( ∇yϕ
L1−2υ

)

(6.14)

× e[(Lg + ξ) · x + (Lh+ η) · y + s�]dxdyds,

M ′
1(ξ, η)=M(ξ,η)−M1(ξ, η).

The contribution ofM ′
1(ξ, η) can be bounded easily by integrating by parts 10d times

in either x or y (depending on whether |∇xϕ| or |∇yϕ| is � L1−2υ ) and estimated by
(λ−1L1−υ)λ2dL−9d which is more than acceptable. As such, we reduce to obtaining
the bound (6.13) for M1(ξ, η).

Next, we would like to localize in �. For this let J := max(|a|, |b|) ≥ λLυ/2.
Here, the analysis is different depending on whether we make the assumption (a) or
(b) on�(s, x, y). Under assumption (a), we note that ̂ψ(s) is odd and fastly decaying
at infinity, and has a jump discontinuity at 0; all its derivatives are also uniformly
bounded and decaying, except at 0 where they are not defined. We would like to

integrate by parts in s once, in the region when |�| � JL−1+ 21
10υ . Such integration

by parts produces a new s-integrand which has the same form and is bounded as

� |�|−1
(

δ−1L−2 + 1

K
+ J

L1−2υ

)

�|�|−1
(

λ

L1−υ +
JLυ

L1−υ

)

� JL2υ

|�|L � L−υ/10,

and a boundary term (due to the discontinuity of ̂ψ(s) at 0) that gives a contribution
of

∑

0�=(g,h)∈Z2d

χ0

(

Lg + ξ
L1−2υ

)

χ0

(

Lh+ η
L1−2υ

)

ˆ
|�|�JL−1+21υ/10

�−1χ∞(δL2�)χ0
(x − a
λ

)

χ0
(y − b
λ

)

×�′(x, y) · e[(Lg + ξ) · x + (Lh+ η) · y]dxdy

(note χ∞(δL2�)= 1 with the given lower bound of�), which can be estimated using
Lemma 6.3 below by

�Dλ2d
∑

(g,h)�=0

1|Lg+ξ |+|Lh+η|<L/10 �Dλ2d min
(

1, (1+ |ξ | + |η|)L−υ) ,

as needed. Repeating this integration by parts Cυ−1 times, we are reduced to obtain-
ing the bound (6.13) for

M2(ξ, η)=
∑

0�=(g,h)∈Z2d

ˆ
R

ˆ
R2d
χ0
(x − a
λ

)

χ0
(y − b
λ

)

�(s, x, y)χ0

×
( ∇xϕ
L1−2υ

)

χ0

( ∇yϕ
L1−2υ

)

χ0

(

�

JL−1+ 21υ
10

)

× e[(Lg + ξ) · x + (Lh+ η) · y + s ·�]dxdyds.
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Now, under assumption (b) on �(s, x, y), we have, for some p ∈R, �′(s, x, y)=
e−2πisp�′′(s, x, y) where Fs�′′(·, x, y) is supported in (say) [−1,1] for any (x, y) ∈
R

2d . As before, we split M1(ξ, η) in two parts depending on the size of |�− p

δL2 |.
Let ˜M2(ξ, η) denote the contribution of the region where |�− p

δL2 | ≤ JL−1+ 21
10υ and

˜M ′
2(ξ, η) the contribution of the complementary region, namely

˜M2(ξ, η)=
∑

0�=(g,h)∈Z2d

ˆ
R

ˆ
R2d
χ0
(x − a
λ

)

χ0
(y − b
λ

)

χ0
( s

K

)

�′′
( s

δL2
, x, y

)

× χ0

( ∇xϕ
L1−2υ

)

χ0

( ∇yϕ
L1−2υ

)

χ0

(

�− p

δL2

JL−1+ 21υ
10

)

e
[

(Lg + ξ) · x

+ (Lh+ η) · y + s(�− p

δL2

)]

dxdyds,

˜M ′
2(ξ, η)=M1(ξ, η)− ˜M2(ξ, η).

The contribution of ˜M ′
2 can be bounded by integrating sufficiently many times in

s: Each integration by parts produces a factor of (�− p

δL2 )
−1 at the expense of having

an s derivative fall on either χ0(s/K) or �′′(s/(δL2), x, y) (giving a factor bounded
by D(δL2)−1 given the Fourier support assumption on �′′) or the ∇ϕ factors in the
other spatial cutoffs (which gives a factor bounded by JLυ

L1−υ ). In effect, the net gain of
this integration by part step is

�
∣

∣�− p

δL2

∣

∣

−1
(

1

δL2
+ 1

K
+ J

L1−2υ

)

� JL2υ

|�− p

δL2 |L
� L−υ/10,

using the lower bound on |�− p

δL2 | in ˜M ′
2. As such, we can integrate by parts Cυ−1

times in s to obtain that the contribution of ˜M ′
2 is acceptable as well.

As such, in both cases (a) and (b), we are left with the contribution of M2(ξ, η)

and ˜M2(ξ, η) respectively, which we will estimate in the same way (thanks to the
bounds |�′|, |�′′|�D) by

D

ˆ
R2d
χ0
(x − a
λ

)

χ0
(y − b
λ

)

χ0

(

�− p

δL2

JL−1+ 21υ
10

)

×
ˆ
R

χ0
( s

K

)
∑

0�=(g,h)∈Z2d

χ0

( ∇xϕ
L1−2υ

)

χ0

( ∇yϕ
L1−2υ

)

dsdxdy.

Now notice that the volume of the set of (x, y) satisfying |x − a|� λ, |y − b|� λ
and |�− p

δL2 |� JL−1+ 21υ
10 is bounded by λ2d−1L−1+ 21υ

10 since |∇x,y�| ∼ J (using
the coarea formula or change of variables). Furthermore, for fixed (ξ, η, x, y), when
(g,h) varies, we claim that the measure of the set S(x, y) on which the s integrand
is supported is bounded by L1−2υ · (1+JL−υ)

J
. To see this, suppose without loss of
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generality that |y1| ∼ J for example, then s ∈ S(x, y) implies that

∣

∣

∣

∣

sβ1y1

L
+ g1 + ξ

1

L

∣

∣

∣

∣

� L−2υ⇒
{

sβ1y1

L
+ ξ

1

L

}

≤ L−2υ,

where {·} denotes the distance to the nearest integer. Since also | sβ1y1

L
|� JKL−1�

JL−υ , we conclude that sβ
1y1

L
belongs to an interval of length � JL−υ , intersected

by the L−2υ neighborhood of the lattice ξ1
L
+Z. Thus sy

1

L
belongs to a set of measure

at most (1+ JL−υ)L−2υ and hence

|S(x, y)|� L

J
(1+ JL−υ)L−2υ,

as claimed. With this estimate in hand, we can bound both M2 and ˜M2 by

�D
ˆ
R2d
χ0
(x − a
λ

)

χ0
(y − b
λ

)

χ0

(

�− p

δL2

JL−1+ 21υ
10

)

×
ˆ
S(x,y)

∑

0�=(g,h)∈Z2d

χ0

( ∇xϕ
L1−2υ

)

χ0

( ∇yϕ
L1−2υ

)

dsdxdy

�D
ˆ
R2d
χ0
(x − a
λ

)

χ0
(y − b
λ

)

χ0

(

�− p

δL2

JL−1+ 21υ
10

)

|S(x, y)|dxdy

�Dλ2d−1L−1+ 21υ
10 × L

J
(1+ JL−υ)L−2υ =Dλ2d−1Lυ/10(J−1 +L−υ)

�Dλ2d−1L−
4υ
10 .

This finishes the proof of (6.13), and hence that of (6.11). �

Lemma 6.3 Suppose that �=�(x,y) satisfies (6.9) without s.
(1) The following bound holds
∣

∣

∣

∣

ˆ
R2d
�−1χ∞(μ�)χ0

(x − a
λ

)

χ0
(y − b
λ

)

�(x,y)e(ξ · x + η · y)dxdy

∣

∣

∣

∣

�Dλ2d,

uniformly in μ> 1 and (a, b, ξ, η) ∈R
4d . In addition, the following limit of principal

value type

lim
μ→∞

ˆ
R2d
�−1χ∞(μ�)χ0

(x − a
λ

)

χ0
(y − b
λ

)

�(x,y)e(ξ · x + η · y)dxdy

exists and is �Dλ2d uniformly in (a, b, ξ, η) ∈R
4d .

(2) The following estimate holds for the difference
∣

∣

∣

∣

ˆ
R2d
�−1χ0(μ�)χ0

(x − a
λ

)

χ0
(y − b
λ

)

�(x,y)e(ξ · x + η · y)dxdy

∣

∣

∣

∣
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�Dλ2dμ−1(1+ |ξ | + |η|),
uniformly in (a, b).

Proof (1) It is enough to consider the region |�|� 1. Also, without loss of general-
ity we only need to consider the region with |x1| ∼ max(|x|, |y|). Recall that χ0 is
extended to R

d as in Sect. 2.3.1; by abusing notation we may also use some χ0 of
different support. Let x = (x1, x′), and β = (β1, β ′) etc., it is enough to consider

N(μ, ξ, η) :=
ˆ
R2d
�−1χ∞(μ�)χ0(�)χ0

(x − a
λ

)

χ0
(y − b
λ

)

�(x,y)χ0
( x′

|x1|
)

× χ0
( y

|x1|
)

e(ξ · x + η · y)dxdy

=
ˆ
Rd

χ0
(x − a
λ

)

χ0
( x′

|x1|
)

e(ξ · x)dx
ˆ
Rd

�−1χ∞(μ�)χ0(�)χ0
(y − b
λ

)

×�(x,y)χ0
( y

|x1|
)

e(η · y)dy.

We change variables in the y1 integral by setting u= �= β1x1y1 + 〈x′, y′〉β ′ , and
write

N(μ, ξ, η)=
ˆ
Rd

|β1x1|−1χ0
(x − a
λ

)

χ0
( x′

|x1|
)

e(ξ · x)dx

×
ˆ
Rd−1

χ0
(y′ − b′

λ

)

e

[

η′ · y′ − η
1〈x′, y′〉β ′
β1x1

]

dy′

×
ˆ
R

χ∞(μu)χ0(u)

u
χ0

(

u− 〈x′, y′〉β ′ − β1x1b1

β1x1λ

)

× ˜�(x,u, y′)e
( η1u

β1x1

)

du, (6.15)

where ˜�(x,u, y′)=�(x,y)χ0(
y

|x1| ) evaluated at y1 = u−〈x′,y′〉β′
β1x1 .

Now, we write the integral over u as
ˆ ∞

0

χ∞(μu)χ0(u)

u
�(u,y′, x)du,

where

�(u,y′, x)= χ0

(

u− 〈x′, y′〉β ′ − β1x1b1

β1x1λ

)

˜�(x,u, y′)e
( η1u

β1x1

)

− χ0

(−u− 〈x′, y′〉β ′ − β1x1b1

β1x1λ

)

˜�(x,−u,y)e(−η
1u

β1x1

)

= 2iχ0

(

u− 〈x′, y′〉β ′ − β1x1b1

β1x1λ

)

˜�(x,u, y′) sin
(

2π
η1u

β1x1

)
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+D ·O
( |u|
β1|x1| +

|u|
β1|x1|2

)

.

Noting that the above integral is actually supported on the interval [(2μ)−1,2], the
contribution of the terms O( u

β1|x1| + u
β1|x1|2 ) is acceptable. Hence, we are left with

bounding

ˆ ∞

0
χ∞(μu)χ0(u)χ0

(

u− 〈x′, y′〉β ′ − β1x1b1

β1x1λ

)

˜�(x,u, y′) sin
(

2π
η1u

β1x1

)du

u

=±
ˆ ∞

0
χ∞

(μβ1|x1|u
|η1|

)

χ0
(β1|x1|u
|η1|

)

χ0
(u−Q
λ|η1|

)

˜�
(

x,
β1x1u

η1
, y′

)

sin(2πu)
du

u

for someQ depending on x, y′, β , λ. The integral for 0≤ u≤ 5 is bounded by O(1),
so we may use a smooth cutoff ϕ(u) to restrict to u≥ 5. Then we integrate by parts
in u once. If the derivative falls on 1/u or ϕ(u) the resulting contribution is bounded
by O(1). If the derivative falls on anything but the first factor, then the new integrand

is bounded by β1|x1|
|η1| (1 + 1

|x1| + 1
|x1|2 ), so the resulting contribution is bounded by

1 + 1
|x1| + 1

|x1|2 even without using the 1/u factor, as u belongs to an interval of

length |η1|
β1|x1| due to the second factor. If the derivative falls on the first factor, then

in the new integrand we will have μβ1|x1|
|η1| instead of β1|x1|

|η1| , but u also belongs to a

smaller interval of length |η1|
μβ1|x1| , so the conclusion will be the same.

This leads to an acceptable contribution to N(μ, ξ, η) in (6.15), and gives a bound
that is uniform in μ, ξ , η. The statement about the limμ→∞ follows directly from the
above argument and dominated convergence.

(2) Arguing exactly as above, it is enough to bound

ˆ ∞

0

χ0(μu)

u
�(u,y′, x)du�

ˆ ∞

0

χ0(μu)

u
u

(

1

β1|x1| +
1

β1|x1|2 +
|η1|
β1|x1|

)

du

� μ−1
(

1

β1|x1| +
1

β1|x1|2 +
|η1|
β1|x1|

)

which gives the needed bound when substituted in (6.15). �

Lemma 6.4 Suppose that�(s, x, y) :R×R
d×R

d→C is a function satisfying (6.9).
(1) If � is supported on |s| < L2, then the following bound holds uniformly in

(a, b, ξ, η) ∈R
4d :

ˆ
R

∣

∣

∣

∣

∑

(x,y)∈Z2d
L

�(s, x, y)χ0
(x − a
λ

)

χ0
(y − b
λ

)

e(x ·ξ+y ·η+s〈x, y〉β)
∣

∣

∣

∣

ds �Dλ4dL2d .

(6.16)
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(2) If �(s, x, y) is supported on the set |s| � L1−υ , then the following improved
estimate holds uniformly in (a, b, ξ, η) ∈R

4d :
ˆ
R

〈 s

δL2

〉−2
∣

∣

∣

∣

∑

(x,y)∈Z2d
L

�(s, x, y)χ0
(x − a
λ

)

χ0
(y − b
λ

)

e(x · ξ + y · η+ s〈x, y〉β)
∣

∣

∣

∣

ds

�Dλ4dL2d−υ. (6.17)

Proof Recall that,�(x,y)=∑d
j=1 β

jxjyj where xj , yj ∈ ZL. We make the change
of variables

L−1pj = xj + yj , L−1qj = xj − yj , pj ≡ qj (mod 2).

The sum in (xj , yj ) ∈ Z
2
L then becomes the linear combination of four sums, which

are taken over (pj , qj ) ∈ Z
2, or (pj , qj ) ∈ 2Z × Z, or (pj , qj ) ∈ Z × 2Z, or

(pj , qj ) ∈ (2Z)2. We will only consider the first sum, and it will be obvious from
the proof that the other sums are estimated similarly. Define

ϒ(s, z,w)=�(s, z+w
2

,
z−w

2

)

χ0
(z+w− 2a

2λ

)

χ0
(z−w− 2b

2λ

)

,

which has all derivatives in (z,w) up to order 10d uniformly bounded, and is sup-
ported in the set {gj ≤ Lzj ≤ gj + 2λL, hj ≤ Lwj ≤ hj + 2λL}, where (gj , hj ) ∈
Z

2 are determined by (a, b).
Now, by possibly redefining (s, ξ, η), we need to show that the function

B(ξ, η)=
ˆ
R

∣

∣

∣

∣

∑

(p,q)∈Z2d

ϒ
(

s;pL−1, qL−1)e
[

sL−2(|p|2β − |q|2β)+ p · ξ + y · η
]

∣

∣

∣

∣

ds

=
ˆ
R

∣

∣

∣

∣

∑

(p,q)∈Z2d

ϒ
(

s,pL−1, qL−1)
d
∏

j=1

e
[

sL−2βj (pj )2 + pjξj ]

× e[−sL−2βj (qj )2 + qjηj ]
∣

∣

∣

∣

ds

satisfies the bounds in (6.16) when ϒ is supported on |s| < L2, and that the cor-
responding integral with 〈s/δL2〉−2 (which we denote by ˜B(ξ, η)) satisfies (6.17)
when ϒ is supported on |s| � L1−υ . Note that in the above sum we must have
pj ∈ [gj , gj + 20λL] and qj ∈ [hj ,hj + 20λL].

Recall the Gauss sums Gh(s, r, n) and Gh(s, r, x) defined in (A.8). Notice that
since ∂xGh(s, r;x)=∑

p∈N e(s(h+ p)2 + r(h+ p))δ(x − p), we can write

B(ξ, η)=
ˆ
R

∣

∣

∣

∣

ˆ
(u,v)∈R2d+

ϒ
(

s, (u+ g)L−1, (v+ h)L−1)
d
∏

j=1

∂ujGgj (β
j sL−2, ξ j , uj )

× ∂vjGhj (−βj sL−2, ηj , vj )dudv

∣

∣

∣

∣

ds
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≤ L−2d
ˆ
R

ˆ
(u,v)∈R2d+

∣

∣Dαϒ
(

s, (u+ g)L−1, (v+ h)L−1)
∣

∣

×
d
∏

j=1

∣

∣Ggj (β
j sL−2, ξ j , uj )Ghj (−βj sL−2, ηj , vj )

∣

∣dudvds,

where g = (g1, . . . , gd) etc., and Dαϒ is obtained from ϒ by taking one derivative
in each of the variables uj , vj (and hence has the same support properties).

(1) We first note that if �, and hence ϒ , is supported on the set |s|<L2, then we
have the bound (upon rescaling in s by L2)

|B(ξ, η)|�DL−2d+2
ˆ
(u,v)∈R2d+

χ0
( u

100λL

)

χ0
( v

100λL

)

×
ˆ
R

χ0(s)

d
∏

j=1

∣

∣

∣Ggj (β
j s, ξ j , uj )Ghj (−βj s, ηj , vj )

∣

∣

∣dudvds.

Now, we use Lemma A.5 (and that 2d ≥ 6) to get the needed bound, namely

|B(ξ, η)|�DL−2d+2
ˆ
(u,v)∈R2d+

χ0
( u

100λL

)

χ0(
v

100λL
)

d
∏

j=1

(uj )1−1/d(vj )1−1/d dudv

�DL−2d+2(λL)2d+2d−2 �Dλ4dL2d .

(2) To obtain the improved bound in (6.17) for ˜B(ξ, η), we argue a bit differently.
Without loss of generality, we can assume β1 = 1 and β2 ∈ [1,2]. We start by writing
the product of Gauss sums in ˜B(ξ, η) as

d
∏

j=1

Ggj (β
j sL−2, ξ j , uj )Ghj (−βj sL−2, ηj , vj )

=
2
∏

j=1

Ggj (β
j sL−2, ξ j , uj )

∗
∏

Ggj (· · · )Ghj (· · · )

=M(s, ξ, η,u)

∗
∏

Ggj (· · · )Ghj (· · · )

where M(s, ξ, η,u) = Gg1(sL−2, ξ1, u1)Gg2(β2sL−2, ξ2, u2) and
∏∗ is the prod-

uct of the remaining 2d − 2 Gauss sums. We claim that, for L1−υ � |s| ≤ L2+5υ , the
following estimate holds for M:

sup
s,ξ,η,u

|M(s, ξ, η,u)|� (λL)2−10υ . (6.18)

Before proving this claim, let us see why it implies (6.17). Using (6.18), we have

|˜B(ξ, η)|
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�DL−2d+2
ˆ
(u,v)∈R2d+

χ0
( u

100λL

)

χ0
( v

100λL

)

×
(

(λL)2−10υ
ˆ
L−1−υ�|s|≤L5υ

∗
∏

|Ggj (βj s, ξ j , uj )||Ghj (−βj s, ηj , vj )|ds

+
ˆ
|s|≥L5υ

〈δ−1s〉−2
d
∏

j=1

∣

∣

∣Ggj (β
j s, ξ j , uj )Ghj (−βj s, ηj , vj )

∣

∣

∣ds

)

dudv.

Splitting the s region into intervals of length 1, and using Lemma A.5 again on each
subinterval we obtain that

|˜B(ξ, η)|�DL2L−2d
ˆ
(u,v)∈R2d+

χ0
( u

100λL

)

χ0
( v

100λL

)

×
[

(λL)2−10υL6υ(λL)2d−4 +
∑

|k|≥L5υ

〈δ−1k〉−2(λL)2d−2
]

dudv

�Dλ4dL2d−υ.

Thus, it remains to prove (6.18). We may assume without loss of generality that
L−1−υ � sL−2 ≤ L5υ (since G(−s, r;n) =G(s,−r;n) and the estimates we shall
use for G are independent of r). To bound the Gauss sums, we write

sL−2 = n+ τ 1, β2sL−2 =m+ τ 2; n,m ∈N∪ {0}, τ 1, τ 2 ∈ [0,1),
and use Dirichlet’s approximation to find, for j ∈ {1,2}, integers 0 ≤ aj < qj ≤ uj
such that (aj , qj )= 1 and

∣

∣

∣

∣

τj − a
j

qj

∣

∣

∣

∣

<
1

qjuj
, j = 1,2.

By periodicity of sum G(s, r, x) in s and the Gauss lemma for such sums we have
∣

∣

∣Gg1(sL
−2, ξ1, u1)Gg2(β

2sL−2, ξ2, u2)

∣

∣

∣

≤ u1u2logL
√

q1q2(1+ u1|τ 1 − a1

q1 |1/2)(1+ u2|τ 2 − a2

q2 |1/2)
. (6.19)

We start by dealing with the case n= 0 (i.e. when sL−2 = τ 1 < 1). Note that this
implies m ∈ {0,1}. Here we will use the fact that L−1−υ � τ 1 < 1. First note that if
a1 = 0, then we have

∣

∣

∣Gg1(sL
−2, ξ1, u1)Gg2(β

2sL−2, ξ2, u2)

∣

∣

∣≤ u1u2logL

1+ u1|τ 1|1/2 � u2logL

|τ 1|1/2
� λLL 1+υ

2 logL� λL7/4,
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which satisfies (6.18). Therefore, we now consider the case a1 �= 0. Computing

q1q2(β2
∣

∣τ 1 − a
1

q1

∣

∣+ ∣

∣τ 2 − a
2

q2

∣

∣

)

= q1q2(
∣

∣β2sL−2 − β
2a1

q1

∣

∣+ ∣

∣β2sL−2 −m− a
2

q2

∣

∣

)≥ q1q2
∣

∣

β2a1

q1
−m− a

2

q2

∣

∣

= |β2a1q2 − (mq1q2 + a2q1)|� log−4(2q1q2)

a1q2 +mq1q2 + a2q1
� 1

(q1q2)1.01
,

where we have used the diophantine condition (A.1) and the fact that 0 < aj < qj

and m ∈ {0,1}. Therefore, we obtain

max
(∣

∣τ 1 − a
1

q1

∣

∣,
∣

∣τ 2 − a
2

q2

∣

∣

)

� 1

(q1q2)2.01
,

which when plugged into (6.19) gives the bound

� u1u2logL
√

q1q2[1+min(u1, u2) 1
(q1q2)1.01 ]

� min

(

u1u2

√

q1q2
,max(u1, u2)(q1q2)0.51

)

logL

� (λL) 7
4 , (6.20)

since qj ≤ uj � λL, which is better than (6.18).
It remains to consider the case when 1 ≤ n ≤ L5υ . Here, we argue similar to the

above, to obtain

q1q2(β2
∣

∣τ 1 − a
1

q1

∣

∣+ |τ 2 − a
2

q2 |
)

= q1q2(
∣

∣β2sL−2 − β2n− β2 a
1

q1

∣

∣+ ∣

∣β2sL−2 −m− a
2

q2

∣

∣

)

≥ q1q2
∣

∣β2 a
1

q1
+ β2n−m− a

2

q2

∣

∣= |β2(nq
1q2 + a1q2)− (mq1q2 + a2q1)|

� log−4(2nq1q2)

nq1q2 + a1q2 +mq1q2 + a2q1
� 1

(nq1q2)1.01
.

Since n ≤ L5υ , we can repeat the same estimates as above and obtain the needed
bound (notice the room in (6.20) compared to needed bound in (6.18)). �

Lemma 6.5 Suppose that �(x,y) is a function satisfying (6.9) without s. Let
�(x,y)= 〈x, y〉β .

(1) Suppose μ≥ 1 and ψ is a function such that ‖ψ‖L1(R) ≤D, then

∣

∣

∣

∣

μ

ˆ
R2d
ψ(μ�)χ0

(x − a
λ

)

χ0
(y − b
λ

)

�(x,y)e(x · ξ + y · η)dxdy

∣

∣

∣

∣

�Dλ2d (6.21)
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uniformly in (a, b, ξ, η) ∈ R
4d . The same holds if ψ(μ�)�(x, y) is replaced by

�(μ�,x, y) where � =�(u,x, y) satisfies
∥

∥ supx,y |∂αx ∂βy �|
∥

∥

L1
u
≤D for all multi-

indices |α|, |β| ≤ 10d .

(2) Suppose further that ‖〈y〉 1
8ψ‖L1(R) ≤D, then

∣

∣

∣

∣

μ

ˆ
R2d
ψ(μ�)χ0

(x − a
λ

)

χ0
(y − b
λ

)

�(x,y)e(x · ξ + y · η)dxdy−
(ˆ

ψ

)ˆ
R2d

δ(�)χ0
(x − a
λ

)

χ0
(y − b
λ

)

�(x,y)e(x · ξ + y · η)dxdy

∣

∣

∣

∣

�Dλ2dμ−
1
9 (1+ |ξ | + |η|), (6.22)

uniformly in (a, b) ∈R
2d .

Proof Using a smooth partition of unity, it is enough to consider the region when
|x1| ∼max(|x|, |y|) (other regions are treated symmetrically). In this case, we do the
same change of variables as in the proof of Lemma 6.3, replacing the variable y1 by
u=� to write the corresponding integral in (6.21) as

ˆ
Rd

|β1x1|−1χ0
(x − a
λ

)

χ0
( x′

|x1|
)

e(x · ξ)
ˆ
Rd−1

χ0
(y′ − b′

λ

)

χ0
( y′

|x1|
)

e(y′ · η′)dy′dx

ˆ
R

μψ(μu)χ0

(

u− 〈x′, y′〉β ′ − β1x1b1

β1x1λ

)

˜�(x,u, y′)e
(

uη1 − 〈x′, y′〉β ′η1

β1x1

)

du,

where ˜�(x,u, y′)=�(x,y1, y′)χ0(
y

|x1| ) evaluated at y1 = u−〈x′,y′〉β′
β1x1 . From this one

can directly obtain (6.21), as well as the extension with ψ · � replaced by � . To
obtain (6.22), we look at the difference

ˆ
R

μψ(μu)χ0

(

u− 〈x′, y′〉β ′ − β1x1b1

β1x1λ

)

˜�(x,u, y′)e
(

uη1 − 〈x′, y′〉β ′η1

β1x1

)

du

−
ˆ
R

μψ(μu)χ0

(−〈x′, y′〉β ′ − β1x1b1

β1x1λ

)

˜�(x,0, y′)e
(−〈x′, y′〉β ′η1

β1x1

)

du,

which can be written as
´
R
μψ(μu)˜�(u;x, y′)du, where

˜�(u;x, y′)= χ0

(

u− 〈x′, y′〉β ′ − β1x1b1

β1x1λ

)

˜�(x,u, y′)e
(

uη1 − 〈x′, y′〉β ′η1

β1x1

)

− χ0

(−〈x′, y′〉β ′ − β1x1b1

β1x1λ

)

˜�(x,0, y′)e
(−〈x′, y′〉β ′η1

β1x1

)

.

It is easy to see that |˜�|�D ·min
[

1, u · ( |η1|
β1|x1| + 1

β1|x1|min(1,|x1|)
)]

. Using this, we

split the u integral into two regions. If |u| ≤ μ−1/9, we can use the second of the
two bounds on ˜� to obtain a contribution Dμ−1/9|η1|λ2d to (6.22); if u≥ μ−1/9, we
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can use the first bound and the weighted norm ‖〈y〉1/8ψ‖L1 to obtain a contribution
μ−1/9Dλ2d to (6.22). This finishes the proof. �

With the help of Lemmas 6.2–6.5, we can now prove Proposition 6.1.

Proof of Proposition 6.1 We start with some simplifying notation and reductions. Set
x := (x1, . . . , xn) ∈ R

dn, y := (y1, . . . , yn) ∈ R
dn, s := (s1, . . . , sn) ∈ R

n, � =
(�1, . . . ,�n) ∈ R

n where �j = 〈xj , yj 〉β , and μ = L2δ. We will also use the no-
tations like x≤j := (x1, . . . , xj ) ∈R

dj and similarly for the other variables y and �.
Write W(x,y)=W(x,y)ϒ(x,y) where ϒ is a smooth function supported in the

set described in (6.3), namely

ϒ(x,y)=
n
∏

j=1

χ0
( x̃j − aj

λj

)

χ0
( ỹj − bj

λj

)

(6.23)

where x̃j and ỹj are as in (6.3), and we may use a different χ0 as said in Sect. 2.3.1.
Also note that we can assume (by rearranging the indices) that if j ′ ≺ j then j ′ < j .

Set K := (10dmaxλj )−1L1−υ , and write (with ̂� being the Fourier transform on
R
n)

S =
∑

(x,y)∈Z2dn
L

W(x,y)�(μ�)=
ˆ
Rn

μ−n̂�(μ−1s)

[

∑

(x,y)∈Z2dn
L

W(x,y)e(s ·�)
]

ds

=
ˆ
Rn

μ−n̂�(μ−1s)

n
∏

j=1

χ0
( sj

K

)

[. . .] ds

+
ˆ
Rn

μ−n̂�(μ−1s)

(

1−
n
∏

j=1

χ0
( sj

K

)

)

[. . .] ds

=: Imajor + Iminor.

• Major arc contribution: By Poisson summation, there holds

Imajor =
ˆ
Rn

μ−n̂�(μ−1s)

n
∏

j=1

χ0
( sj

K

)

[

∑

(g,h)∈Z2dn

ˆ
R2dn

W
( x

L
,
y

L

)

e(g · x + h · y

+L−2s ·�)dxdy

]

ds

= L2dnμ−n
ˆ
Rn

̂�(μ−1s)

n
∏

j=1

χ0
( sj

K

)

[

∑

(g,h)∈Z2dn

ˆ
R2dn

W(x,y)e(Lg · x

+Lh · y + s ·�)dxdy

]

ds

= L2dnμ−n
(ˆ

Rn

̂�(μ−1s)

[ˆ
R2dn

W(x,y)e(s ·�)dxdy

]

ds



Full derivation of the wave kinetic equation 623

−
ˆ
Rn

̂�(μ−1s)

(

1−
n
∏

j=1

χ0
( sj

K

)

)[ˆ
R2dn

W(x,y)e(s ·�)dxdy

]

ds

+
ˆ
Rn

̂�(μ−1s)

n
∏

j=1

χ0
( sj

K

)

[

∑

0�=(g,h)∈Z2dn

ˆ
R2dn

W(x,y)e(Lg · x +Lh · y

+ s ·�)dxdy

]
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)

=: Imajor-A + Imajor-B + Imajor-C.

Noticing that Imajor-A is nothing but the integral in (6.6), it remains to show that
Imajor-B, Imajor-C and Iminor can all be bounded by the right hand side of (6.6).

To bound Imajor-B, we use the following bound:

∣

∣

∣

∣

ˆ
R2dn
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∣

∣

∣

∣

≤ C
n(λ1 . . . λn)

2d

〈s1〉d . . . 〈sn〉d ‖
̂W‖L1(R2dn). (6.24)

This bound is obtained by writing
ˆ
R2dn

W(x,y)e(s ·�)dxdy

=
ˆ
R2dn

̂W(ξ ,η)

[ˆ
R2dn

ϒ(x,y)e(ξ · x + η · y + s ·�)dxdy

]

dξdη,

and applying stationary phase (when |sj | ≥ 1) in the inner integral (or using the
Fourier transform of the Gaussian since the phase is essentially the difference of
two Gaussians). Using this bound, we can estimate

Imajor-B ≤ (C+)n(λ1 . . . λn)
2dL2dnμ−n

n
∑

j=1

ˆ
|sj |≥K

〈sj 〉−d dsj
∏

k �=j

ˆ
R

〈sk〉−d dsk

≤ (C+)n(λ1 . . . λn)
2dL2dnμ−nK−(d−1) � (C+)n(λ1 . . . λn)

dL2dnμ−nL−υ.

Moving to Imajor-C, we write

Imajor-C =L2dnμ−n
ˆ
R2dn

̂W(ξ ,η)H(ξ ,η)dξdη,

H(ξ ,η) :=
∑

0�=(g,h)∈Z2dn
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n
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ˆ
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ϒ(x,y)e[(Lg + ξ) · x

+ (Lh+ η) · y + s ·�]dxdyds.

Recalling the form of � in (6.4), it will be enough to show that

|H(ξ ,η)| ≤ (C+)n(1+ |ξ | + |η|)(λ1 · · ·λn)CL− 4
10υ‖�1‖L1 . (6.25)



624 Y. Deng, Z. Hani

For each j /∈ J , we use a partition of unity of Rn−|J | subordinate to cubes of size
1 in order to write:

�1(�[J c])=
∑

κ∈Zn−|J |
�
(κ)
1 (�[J c]),

where each �(κ)1 is supported in a unit cube of Rn−|J |. Since �1 ∈ L1(Rn−|J |), it is

enough to obtain the bound (6.25) with �1 replaced by �(κ)1 . In what follows, we
will omit the superscript (κ) and just assume that �1 is supported on a unit cube of
R
n−|J |.
Since the sum is over (g,h) �= 0, let 1 ≤ � ≤ n be the largest integer such that

(g�, h�) �= 0. It is enough to estimate the contribution for each fixed 1≤ �≤ n since
polynomial losses in (6.25) can be absorbed by modifying the (C+)n factor. As such,
by abusing notation, we may assume in the definition of H(ξ ,η) above that for some
fixed 1≤ �≤ n, the sum in H(ξ ,η) is over (g,h)<� ∈ Z

2d(�−1), (g�, h�) ∈ Z
2d \ {0},

and (g,h)>� = 0. Hence,

H(ξ ,η) :=
∑
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ˆ
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ˆ
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F<�(s<�,x<�,y<�) · e[(Lg<� + ξ<�) · x<� + (Lh<� + η<�) · y<�
+ s<� ·�<�],

where

ϒ<�(x<�,y<�)=
�−1
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χ0
( x̃j − aj
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)
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( ỹj − bj

λj

)

, (6.26)
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∑
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ˆ
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)
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K
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G≤�(s≤�,x≤�,y≤�)

e[(Lc� + ξ�) · x� + (Ld� + η�) · y� + s� ·��],
and

G≤�(s≤�,x≤�,y≤�)

:=
ˆ
Rn−�

ds>�

n
∏

j=�+1

χ0
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K
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ˆ
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n
∏

j=�+1
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χ0
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e(ξ>� · x>� + η>� · y>� + s>� ·�>�).
Notice thatG≤�(s≤�,x≤�,y≤�) only depends on the variables (x≤�,y≤�) through

the possible occurrences of these variables in x̃j and ỹj in the χ0 factors when j ≥
�+ 1.
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We start by bounding G≤� by applying Lemma 6.2 (n − �) times starting with
the last integration variables (sn, xn, yn). Indeed, by induction, one can show that
after integrating in (sk+1, xk+1, yk+1) for some � ≤ k ≤ n − 1, we end up with an
expression of the form given in (6.10), with a ∈ ak + {0,±xk′,±yk′ } and b ∈ bk +
{0,±xk′′,±yk′′ } (cf. (6.3)) and �(sk, xk, yk) given by

�= χ0
( sk

K

)

ˆ
Rn−k

ds>k

ˆ
R2d(n−k)

n
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j=k+1
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( sj

K
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n
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)

e(ξ>k · x>k + η>k · y>k + s>k ·�>k)

which satisfies the bound in (6.9) with

D ≤ (C+)n−k(λk+1 . . . λn)
2d‖�1‖L1 ,

uniformly in the parameters (s<k,x<k,y<k) and together with all derivatives in the
parameters (x<k,y<k). Note that, if we differentiate � in xk and yk at most 10d
times in (6.9), these derivatives may fall on some of the χ0 factors; however even
if we do this at every step of induction, each single χ0 factor will be differentiated
at most 20d times in total, because x̃j (and similarly ỹj ) depends only on xj and at
most one other variable.

This gives that χ0(
s�
K
)G≤�(s≤�,x≤�,y≤�) satisfies the conditions of part (2) of

Lemma 6.2 in the (s�, x�, y�) integration (with condition 2(a) holding if � ∈ J and
2(b) if � /∈ J ). Thus, for any multi-indices α<�, β<� satisfying |αk|, |βk| ≤ 10d for
each 1≤ k < �, it holds that

sup
s<�

∣

∣

∣∂
α<�
x<�
∂

β<�
y<� F<�(s<�,x<�,y<�)

∣

∣

∣

≤ (1+ |ξ�| + |η�|)L− 4υ
10 (C+)n−�+1(λ� . . . λn)

2d‖�1‖L1

which allows us to start applying estimate (6.12) inductively starting with the
(s�−1, x�−1, y�−1) integral all the way to the integral over (s1, x1, y1) giving the de-
sired bound in (6.25).
• Minor arc contribution: Now we move to bound the contribution of the minor

arc. This can be written as a sum of 2n − 1 terms of the following form: For any set
F ⊂ {1, . . . , n} such that |F | = f ≥ 1, we consider
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ˆ
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]
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ˆ
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̂W(ξ ,η)B(ξ ,η)dξdη
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B(ξ ,η) :=
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×
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]

ds,

where ϒ is as defined in (6.23). We shall show that:

|B(ξ ,η)|� (C+)nL2dn−υf (λ1 . . . λn)
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∥
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∥

∥

∥

∥

L∞
, (6.27)

uniformly in ξ , η, aj , and bj (1 ≤ j ≤ n). Once this estimate is established, we use
the bound

∥

∥

∥

∥

∏

j∈F
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∥

∥

∥

∥

L∞
≤ Cn(8f )!

by (6.4)–(6.5) and that 1 ≤ f ≤ n ≤ (logL)3, to conclude that |B(ξ ,η)| can be
bounded by the right hand side of (6.6) as needed.

To prove (6.27), we can bound
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∏
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δL2
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.

Afterwards, we apply n times Lemma 6.4, going backwards in n, using part (1) for
j /∈ F and part (2) for j ∈ F . Each application gives a factor of λ4d

j L
2d for j /∈ F and

λ4d
j L

2d−υ for j ∈ F , which gives (6.27) and finishes the proof of (6.6).
• Deducing (6.8) from (6.6): We again start by writing

μn
ˆ
R2dn

W(x,y)�(μ�)dxdy

=
ˆ
R2dn

̂W(ξ ,η)

[

μn
ˆ
R2dn

�(μ�)ϒ(x,y)e(x · ξ + y · η)dxdy
]

dξdη, (6.28)

where ϒ is defined in (6.23) and recall that we have rearranged indices so if j ′ ≺ j
then j ′ < j . Next, we start applying part (2) of either Lemma 6.3 or Lemma 6.5
for the dxjdyj integral (depending on whether j ∈ J or not) backwards in n start-
ing with the dxndyn integral. At the first application, we replace either χ∞(μ�n)

�n

by p.v. 1
�n

or μ�(μ�<n,μ�n) by
[´

R
�(μ�<n,ωn)dωn

] · δ(〈xn, yn〉β) plus an

additive error term that can be bound by λ2dL− 1
6 (1 + |ξn| + |ηn|) uniformly in

(an, bn,x<n,y<n, ξ<n,η<n). The contribution of this additive error term to (6.28)
can be bounded by repeatedly applying part (1) of either Lemma 6.3 or Lemma 6.5
(using the more general form of part (1) of Lemma 6.5 if needed) and gives a total
contribution

≤ (C+)n(λ1 . . . λn)
2dL−

1
6

ˆ
R2dn

|̂W(ξ ,η)|(1+ |ξn| + |ηn|)dξdη
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≤ (C+)n(λ1 . . . λn)
2dL−

1
6
(‖̂W‖L1 + ‖̂∂W‖L1

)

. (6.29)

This leaves us only with the main part contribution which corresponds to replacing
(6.28) by
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where ϒ<n is as in (6.26),
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⎪
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⎪
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Rd×Rd
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( x̃n − an

λn

)

χ0
( ỹn − bn

λn

)

e(xn · ξn + yn · ηn)dxndyn,

if n /∈ J,

p.v.
ˆ
Rd×Rd

1

〈xn, yn〉β χ0
( x̃n − an

λn

)

χ0
( ỹn − bn
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)

e(xn · ξn + yn · ηn)dxndyn,

if n ∈ J.

This allows to repeat the above argument n−1 times, each time producing an additive
error term bounded by (6.29), until finally (6.28) is replaced by Iapp in (6.7). This
allows us to bound I − Iapp as in (6.8), but the bound of Iapp follows from the same
arguments, so the proof of Proposition 6.1 is complete. �

6.2 Asymptotics of KQ for regular couples Q

Using Proposition 5.1 and Proposition 6.1, we can calculate the leading term in the
asymptotic expression for the correlation KQ(t, s, k) defined in (2.24), as well as
upper bounds for the error term.

Lemma 6.6 Let T be a tree of scale n. For any node n ∈ T define μn to be the number
of leaves in the subtree rooted at n. Then, for any n ∈N , consider the values of μm

where m is a child of n, and let the second maximum of these values be μ◦n. Then we
have

∏

n∈N
μ◦n ≤

3n

2n+ 1
. (6.30)
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Proof We prove by induction. If n= 0 the result is obvious. Suppose the result holds
for smaller n, for any tree T , let the subtrees be T1, T2 and T3 from left to right,
with scale n1, n2 and n3. If the root of T is r and root of Tj is rj , then by induction
hypothesis we know that

∏

n∈N
μ◦n = μ◦r ·

3
∏

j=1

∏

n∈Nj

μ◦n ≤
3n1+n2+n3

(2n1 + 1)(2n2 + 1)(2n3 + 1)
μ◦r ≤

3n

2n+ 1
. (6.31)

In the last inequality we have used that n = n1 + n2 + n3 + 1, which also implies
2n+1≤ 3 ·max(2n1+1,2n2+1,2n3+1), and that μ◦r equals the second maximum
of 2nj + 1 (1≤ j ≤ 3). This completes the proof. �

Proposition 6.7 Let Q be a regular couple of scale 2n where n ≤ N3, then we have
KQ(t, s, k)=

∑

ZKQ,Z(t, s, k), where Z ⊂N ch is the set that appears in Proposi-
tion 5.1, and

KQ,Z(t, s, k)

= 2−2nδnζ ∗(Q)
∏

n∈Z

1

ζnπi
·
ˆ

˜BQ,Z
(

t, s, α[N ch\Z])dα[N ch\Z] ·M∗
Q,Z(k)

+R,

where the error term R satisfies ‖R‖X40d
loc

� (C+δ)nL−2ν . The expression M∗
Q,Z(k)

is defined by

M∗
Q,Z(k)=

ˆ
"

(+)
∏

l∈L∗
nin(kl) ·

∏

n∈N ch\Z
δ(�n)

∏

n∈Z

1

�n

dσ. (6.32)

Here kn ∈ R
d for each node n, and " denotes the linear submanifold defined by the

equations kr± = k and kn = kn1 − kn2 + kn3 for each branching node n (where n1,
n2 and n3 are children nodes of n from left to right), and kl = kl′ for each pair of
leaves {l, l′}. If we choose all the leaves of sign + and list them as l1, . . . , l2n+1, then
there is a linear bijection (up to a permutation of indices) from" to some hyperplane
{(kl1, . . . , kl2n+1) : ±kl2m+1 · · ·±kl2n+1 = k} where 0≤m≤ n. The measure dσ is then

defined by dσ = dkl1 · · ·dkl2n . The product
∏(+)

l∈L∗ is taken over all l ∈ {l1, . . . , l2n+1},
and �n =�(kn1, kn2, kn3 , kn). The singularities 1/�n are treated using the Cauchy
principal value.

Proof We start with the summation in (2.24). Since for any decoration we must have
ζn′�n′ = −ζn�n for any branching node pair {n,n′} as in Proposition 4.3, in (2.24)
we can replace the factor BQ(t, s, δL2 ·�[N ∗]) by ˜BQ(t, s, δL2 ·�[N ch]). Then, by
Proposition 5.1, we may write (2.24) as a sum in Z of terms

KQ,Z(t, s, k)=
(

δ

2Ld−1

)2n

ζ ∗(Q)
∏

n∈Z

1

ζnπi
·
∑

E

εE

∏

n∈Z

χ∞(δL2�n)

δL2�n
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× ˜BQ,Z(t, s, δL
2�[N ch\Z]) ·

(+)
∏

l∈L∗
nin(kl). (6.33)

To analyze KQ,Z , we can use the formula (5.8) to write ˜BQ,Z as an integral in
(λ1, λ2), and apply Proposition 6.1 for fixed (λ1, λ2). For simplicity of presentation
we will not explicitly show this step below, but notice that this allows us to estimate
the error term in L1

λ1,λ2
type norms such as Xκ . We carefully note here that the bound

(5.9) involves different choices of ρ; however for Proposition 6.1 we only need (5.9)
for |ρ| ≤ 10n, so this leads to at most Cn loss, since the number of such multi-indices
ρ is at most Cn.

Before applying Proposition 6.1, we need a few preparation steps. First, for any
n ∈ N ch we define xn = kn1 − kn and yn = kn − kn3 , so we have �n = 2〈xn, yn〉
by (2.6). It is easy to check by induction that (xn, yn), where n ∈N ch (there are n
such nodes n), are free variables and uniquely determine a point on ", and the linear
mapping

(xn, yn)n∈N ch ↔ (kl1 , . . . , kl2n) (6.34)

is volume preserving and preserves the lattice (ZdL)
2n. Therefore, we can rewrite the

sum in (6.33) as

∑

(xn,yn):n∈N ch

ε ·
∏

n∈Z

χ∞(2δL2〈xn, yn〉β)
2δL2〈xn, yn〉β · ˜BQ,Z(t, s,2δL

2〈xn, yn〉β : n ∈N ch\Z)

×W(x[N ch], y[N ch]), (6.35)

where ε = εE and

W(x[N ch], y[N ch])=
2n
∏

j=1

nin(klj ) · nin(±k ± kl2m+1 · · · ± kl2n). (6.36)

Next we will replace the ε in (6.35) by 1; the difference caused will be an error
term that can be handled in the same way as the main term, and will be left to the
end. Then, we decompose (6.36) into functions supported in |klj − a∗j | ≤ 1, where

a∗j ∈ Z
d
L for 1≤ j ≤ 2n, and | ± k ± kl2m+1 · · · ± kl2n − a∗2n+1| ≤ 1, using a partition

of unity. Since nin is Schwartz, for such a term we can freely gain the decay factors
∏2n+1
j=1 〈a∗j 〉−80d ; this easily allows us to sum in (a∗j ), and also addresses the weight

〈k〉40d in the X40d norm, as |k| ≤ (2n+ 1)maxj |a∗j |.
Now we can apply Proposition 6.1. First (6.2) is true, because it is true if W is

regarded as a function of (klj )1≤j≤2n. Moreover the change of variables (6.34) is
volume preserving, so it also preserves the Fourier L1 norm, and similarly the Fourier
L1 norm with one derivative gets amplified by at most O(n) under this change of
variables. Second, the function � here clearly satisfies (6.4)–(6.5) due to Proposition
5.1, so we only need to verify the support condition (6.3).

Since the condition (6.3) allows for translation, we may assume a∗j = 0 in the

previous reduction. Then we have |kl| ≤ 1 for any leaf l. For any n ∈N ch, let n′ be
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the branching node paired with n, and let d(n) be the maximum depth, counting from
the root node(s), of n and n′. Define the partial order ≺ such that n1 ≺ n2 if and only
if d(n1) > d(n2). Now for any n ∈N ch, consider the variable xn (the other one yn
is the same). We may assume d(n) equals the depth of n, since otherwise we have
xn ∈ {±xn′,±yn′ } and we can perform the same argument for n′. Let nj (1≤ j ≤ 3)
be the children nodes of n, then xn = kn1 − kn. Using the notations in Lemma 6.6, if
μn1 =max(μn1,μn2 ,μn3), then

|xn| = |kn2 − kn3 | ≤ 2 max(μn2 ,μn3)= 2μ◦n.

Suppose now max(μn1 ,μn2,μn3) is not μn1 , say it is μn2 (the case of μn3 being sim-
ilar), then n2 is not a leaf. Let its children be n21, n22 and n23 from left to right, then
consider max(μn21 ,μn22 ,μn23); we assume this maximum is not μn21 (otherwise it
is not μn23 and we can argue similarly replacing xn2 by −yn2 ), then

|xn + xn2 | = |kn21 − kn3 | ≤ μn21 +μn3 ≤ μ◦n2
+μ◦n.

Moreover, since n2 is a child of n, by definition we know that either n2 ≺ n (if
n2 ∈ N ch) or n′2 ≺ n (if n2 is paired with some n′2 ∈ N ch, note also that xn2 ∈{±xn′2,±yn′2}). Summarizing, in any case we get (6.3) with λn = 2 max{μ◦n,μ◦nj }
where nj is a child of n that is not a leaf. Note that by (6.30) we also have

∏

n∈N ch

λn ≤ Cn+1.

By translation, the same bound is true for any (a∗j ), with suitable choices of (aj ) and
(bj ) in (6.3).

With all the preparations, we can apply Proposition 6.1 to get

(6.35)= (L2d−2δ−1)n
ˆ

˜BQ,Z
(

t, s, α[N ch\Z])dα[N ch\Z] ·
ˆ
W(x[N ch], y[N ch])

×
∏

n∈Z

1

2〈xn, yn〉β
∏

n∈N ch\Z
δ(2〈xn, yn〉β)dx[N ch]dy[N ch] +R0 (6.37)

with ‖R0‖X40d
loc

� (C+L2d−2δ−1)nL−2ν . Note that in the X40d norm we are taking
supremum in k for fixed (λ1, λ2), which is allowed because the bounds obtained
by applying Proposition 6.1 are uniform in k. Then, reversing the change of variables
(6.34), we can rewrite the dx[N ch]dy[N ch] integral in (6.37) as dσ integral in (6.32),
so this integral becomes M∗

Q,Z(k), noticing also that 2〈xn, yn〉β =�n. This already
proves the desired result, provided we replace the εE factor by 1.

Finally, consider the case when εE �= 1. By definition (2.8) we know that εE �=
1 only when some xn = 0 or yn = 0 (or both). If this happens, say xn = 0, then
�n = 0. Also yn ∈ Z

d
L satisfies |yn| ≤ Cn ≤ C(logL)3 up to translation, so it has

at most Ld(logL)3d choices. Then in the summation (6.35) we may first fix (xn, yn)
which has at most Ld(logL)3d choices, then treat the remaining sum in the same way
as above. We can easily verify (for example by using Sobolev embedding) that the
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assumptions of Proposition 6.1 are preserved upon fixing some of the variables xn,
yn or�n. Since the summation in (xn, yn) only gives Ld(logL)3d ≤ L2d−2δ ·L−1/2,
we can see that the bound satisfied by any such difference term will put it in the
remainder term R. �

Remark 6.8 The main term M∗
Q,Z(k) defined by (6.32) satisfies the bound

sup
|ρ|≤40d

|∂ρM∗
Q,Z(k)|� (C+)n〈k〉−40d . (6.38)

In fact, if without derivatives, this bound follows the same argument as in the proof of
Proposition 6.1 (the decay in k can be included using that nin is Schwartz as above).
Suppose one takes a ∂k derivative in (6.32), then since the dσ integral can be rewritten
as dx[N ch]dy[N ch], the corresponding result will have the same form as (6.32),
except that one of the input functions nin is replaced by its partial derivative. Iterating
this fact we can obtain control for ∂ρM∗

Q,Z for |ρ| ≤ 40d .

Remark 6.9 The integral

J ˜BQ,Z(t, s) :=
ˆ

˜BQ,Z(t, s, α[N ch\Z])dα[N ch\Z] (6.39)

will be studied in detail in Sect. 7. For now we just note that it satisfies the simple
bound ‖J ˜BQ,Z‖Xloc � (C+)n, which easily follows from (5.9). This, together with
Proposition 6.7 and (6.38), implies that ‖KQ(t, s, k)‖X40d

loc
� (C+δ)n for each regular

couples Q of scale 2n.

We conclude this section with a similar asymptotic formula for regular trees.

Proposition 6.10 Let T be a regular tree of scale 2n with lone leaf l∗. Let N be the
set of branching nodes, and L the set of leaves. Define the function (slightly different
from (5.1)–(5.3))

A∗T (t, s, α[N ]) :=
ˆ
D

∏

n∈N
eζnπiαntn dtn, (6.40)

where the domain

D = {

t[N ] : t(l∗)p > s; 0< tn′ < tn < t, whenever n′ is a child node of n
}

,

with (l∗)p being the parent of l∗. For t > s, consider the expression

K∗T (t, s, k)=
(

δ

2Ld−1

)2n
˜ζ (T )

∑

D

εD ·A∗T (t, s, δL2 ·�[N ]) ·
(+)
∏

l∈L\{l∗}
nin(kl).

(6.41)
Here the sum is taken over all k-decorations D of the regular tree T , ˜ζ (T ) is de-
fined similar to (2.22) but with N ∗ replaced by N , and the product is taken over
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l ∈ L\{l∗} that has sign +. Then, we can decompose K∗T = (K∗T )app +R∗, where
(K∗T )app(t, s, k) is the sum of at most 2n terms each having form δn · JA∗(t, s) ·
M∗(k), and we have the bounds

‖JA∗‖Xloc � (C+)n, sup
|ρ|≤40d

|∂ρM∗(k)|� (C+)n, ‖R∗‖X0
loc

� (C+δ)nL−2ν;
(6.42)

Proof Note that Q= (T ,•) is a regular couple of scale 2n. A k-decoration D can be
viewed as a k-decoration of Q, and we always have kl∗ = k. We can pair the branch-
ing nodes of T as in Proposition 4.3, such that ζn′�n′ = −ηn�n, and define N ch as
in Definition 4.11, so in particular A∗T (t, s, δL

2�[N ])= ˜AT (t, s, δL2�[N ch]) is a
function of t , s and �[N ch] only.

Since T is formed from a regular chain by replacing each leaf pair with a reg-
ular couple, by using Proposition 5.1 for these regular couples, and analyzing the
regular chain similar to Sect. 5.2, we can show that ˜AT (t, s, α[N ch]) has form (5.8)
that satisfies (5.9)–(5.10), for t > s, with some choice of Z ⊂N ch. Here the weights

〈λ1〉 1
4 〈λ2〉 1

4 and 〈λ1〉 1
8 〈λ2〉 1

8 in (5.9) and (5.10) will be replaced by the weaker ones

(〈λ1〉 + 〈λ2)〉 1
4 and (〈λ1〉 + 〈λ2)〉 1

8 , but they still suffice to prove the desired Xloc

and X0
loc bounds. Moreover, the product

∏(+)
l∈L\{l∗} in (6.41), compared to the product

∏(+)
l∈L∗ in (6.33), only misses one factor nin(k). Therefore, we can define the approx-

imation (K∗T )app similar to Proposition 6.7 and prove (6.42) using Proposition 6.1,
similar to the proof of Proposition 6.7. Here, due to the absence of the nin(k) factor,
we can no longer control the weight 〈k〉40d , so the second inequality in (6.42) does
not have the same weight as (6.38), and the third inequality only involves the X0

loc
norm instead of X40d

loc . Other than these, the proof is basically the same so we omit
the details. �

7 Regular couples III: full asymptotics

In this section we further analyze the asymptotics obtained in Proposition 6.7. Clearly
the main goal is to evaluate the integral (6.39). Like Proposition 5.1, this will be done
by inducting on the scale of Q, so the operators and K functions associated with
regular chains, which are studied in Sect. 5.2, will also play a key role here. Once this
is done, we will combine these terms in Sect. 7.4 to calculate the full asymptotics.

7.1 Regular chain calculations

For any function F = F(α[W ]) we define

[G]
ˆ
F = lim

θ→0

ˆ
F(α[W ])

∏

j∈W
e
−πθ2α2

j dαj , (7.1)

if the limit exists. This can be seen as a Gaussian version of principal value integral;
clearly if F ∈ L1 then [G]´ coincides with the usual Lebesgue integration.
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Lemma 7.1 Let

I :=X0Iβ1+λ1X1Iβ2+λ2 · · ·X2m−1Iβ2m+λ2mX2m

be as in Lemma 5.9, for a legal partition P of {1, . . . ,2m} withm≥ 1; in particular it
depends on (α1, . . . , αm) and (μ1, . . . ,μm), and also on the α[A] and μ[E] variables
appearing in the Xa (0 ≤ a ≤ 2m) operators. Denote the collection of all these αj
variables by α[W ]. For any λ∗, consider the expression K = I (eπiλ∗s)(t). If we fix
(λ∗, t) and all the μj variables, and view K as a function of α[W ], then K ∈ L1 and

ˆ
K(α[W ])dα[W ] = 0. (7.2)

Proof By Lemma 5.9 we know that I is a sum of an operator of class J and an
operator of class R. By repeating the proof of Proposition 5.1, we know that K ∈ L1.
LetW1 =W\{1}, we will fix αj = α∗j for j ∈W1, and view K =K(α1) as a function

of α1. Clearly for a.e. α∗[W1] := (α∗j )j∈W1 we have K(α1) ∈ L1, so it suffices to
prove that

[G]
ˆ
K(α1)dα1 = 0 (7.3)

holds for each α∗[W1]. Now once α∗[W1] is fixed, we can simply write

K(α1)= Y0Iεα1Y1Iμ1−εα1G(t),

where Y1 have bounded kernel, i.e. Y1f (t)=
´ t

0 Y1(t, s)f (s)ds with Y1 ∈ L∞, Y0 is
either Id or has bounded kernel, and G is a bounded function. This gives that

K(α1)=
ˆ
t>u>v>w>s>0

Y0(t, u)e
επiα1vY1(v,w)e

πi(μ1−εα1)sG(s)dudvdwds;

here Y0(t, s) may be replaced by δ(t − s). We calculate
ˆ
R

e−πθ2α2
1K(α1)dα1 =

ˆ
t>u>v>w>s>0

Y0(t, u)Y1(v,w)e
πiμ1sG(s)dudvdwds

×
ˆ
R

eεπi(v−s)α1−πθ2α2
1 dα1.

The last integral in α1 can be calculated explicitly and equals θ−1e−π(v−s)2/4θ2
, hence

∣

∣

∣

∣

ˆ
R

e−πθ2α2
1K(α1)dα1

∣

∣

∣

∣

� θ−1
ˆ
t>v>w>s>0

e
− π(v−s)2

4θ2 dvdwds

= θ−1
ˆ
t>v>s>0

e
− π(v−s)2

4θ2 (v − s)dvds→ 0,

which proves (7.3). �
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Lemma 7.2 Let

I := Iβ1+λ1Iβ2+λ2 · · · Iβ2m+λ2m

be as in Lemma 5.10, for a legal partition P of {1, . . . ,2m} that is not dominant, and

letK = I (eπiλ0s)(t). We decompose I into
∏

j∈Z
χ∞(αj )
εj πiαj

·˜I as in Lemma 5.10, where

Z ⊂ {1, . . . ,m} and ˜I depends only on the variables (μ1, . . . ,μm) and α[W ] with
W = {1, . . . ,m}\Z, and define ˜K =˜I (eπiλ0s)(t). Then, for any choice of Z, if we fix
(t, λ0,μ1, . . . ,μm) and view ˜K as a function of α[W ], then ˜K ∈ L1 and

ˆ
˜K(α[W ])dα[W ] = 0. (7.4)

Proof This is a direct consequence of Lemma 7.1. Namely, if we carry out the con-
struction process of ˜I in the proof of Lemma 5.10, then this ˜I will have the form
described in Lemma 5.9; moreover as P is not dominant, there will be at least one
pair left after removing all adjacent pairs (which corresponds to m≥ 1 in Lemma 5.9
and Lemma 7.1), so Lemma 7.1 will be applicable. �

Lemma 7.3 Let

I := Iβ1+λ1Iβ2+λ2 · · · Iβ2m+λ2m

be as in Lemma 5.10, where P = {{1,2}, . . . , {2m− 1,2m}} is the dominant parti-
tion in the sense of Definition 4.4. Then we have β2j−1 = εjαj and β2j = −εjαj
where εj ∈ {±} for 1 ≤ j ≤ m. Given also λ0, define ˜I and ˜K associated with
Z ⊂ {1, . . . ,m} as in Lemma 7.2. Then for any Z we have ˜K ∈ L1, and

ˆ
˜K(α[W ])dα[W ] =

ˆ
t>t1>···>tm>0

eπi(μ1t1+···+μmtm)+πiλ0tm dt1, . . .dtm. (7.5)

Proof For 1≤ j ≤m, by Lemma 5.8 we decompose

Iεj αj Iμj−εj αj =
χ∞(αj )
εjπiαj

Iμj +Jαj ,μj +Rαj ,μj ,

therefore ˜I is the composition ofm operators, where the j -th operator is Iμj if j ∈ Z,
and is Jαj ,μj +Rαj ,μj if j ∈W . Thus ˜I is of class J or R, so ˜K ∈ L1.

Now, let I ∗ be the operator where Jαj ,μj +Rαj ,μj is replaced by Iεj αj Iμj−εj αj for
each j ∈W in ˜I , and define K∗ accordingly. Then I ∗ can be expanded into finitely
many terms, one of them being ˜I ; the other terms have form

∏

j∈Z1

χ∞(αj )
εjπiαj

· I ∗∗

for some ∅ �= Z1 ⊂W , where I ∗∗ depends on (μ1, . . . ,μm) and α[W\Z1], and has
class J or R; define K∗∗ accordingly. By the factorized structure and symmetry, we
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trivially have

[G]
ˆ

∏

j∈Z1

χ∞(αj )
εjπiαj

·K∗∗(α[W\Z1])dα[W ] = 0

for any fixed (t, λ0,μ1, . . . ,μm), noticing also K∗∗ ∈ L1. Therefore, to calculate´
˜K(α[W ])dα[W ], it suffices to calculate [G]´ K∗(α[W ]); by switching signs we

may assume εj = 1. Now K∗ can be written in the following form (with t0 = t)

K∗ =
ˆ
t>t1>···>tm>0

eπi(μ1t1+···+μmtm)+πiλ0tm dt1 · · ·dtm

×
∏

j∈W

ˆ
tj<sj<tj−1

eπiαj (sj−tj ) dsj ;

therefore, for θ > 0, we have
ˆ
K∗(α[W ])

∏

j∈W
e
−πθ2α2

j dαj

=
ˆ
t>t1>···>tm>0

eπi(μ1t1+···+μmtm)+πiλ0tm dt1 · · ·dtm

×
∏

j∈W

ˆ
tj<sj<tj−1

θ−1e
− π(sj−tj )2

4θ2 dsj .

For each fixed (t1, . . . , tm), the integral in sj is uniformly bounded; moreover for any
τ > 0 we have

lim
θ→0

ˆ
0<η<τ

θ−1e
− πη2

4θ2 dη= 2
ˆ
ξ>0

e−πξ2
dξ = 1, (7.6)

so (7.5) follows. �

7.2 Non-dominant couples

For any regular but non-dominant couples, the leading term in the asymptotics ob-
tained in Proposition 6.7 simply vanishes.

Proposition 7.4 Let Q be a regular couple that is not dominant, then for anyZ ⊂N ch

that appears in Proposition 5.1 and any (t, s) we have (recall (6.39) for definition)

J ˜BQ,Z(t, s)= 0. (7.7)

Proof We induct on the scale of Q. Suppose (7.7) is true for all regular couples with
smaller scales (the base case will follow in the same way), and consider a regular
couple Q of scale 2n. As in Sect. 5.1.1, let Q be obtained from Q0 and by replacing
the leaf-pairs with regular couples Qj (j ≥ 1) with n(Qj ) < 2n.
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Case 1. If Qj is non-dominant for some j ≥ 1, then by (5.6) and (5.7), we know
that the only way in which ˜BQ depends on the variables α[N ch

j ] is via ˜BQj
, thus we

can write

˜BQ(t, s, α[N ch])=
ˆ
R2

W(t, s, t ′, s′, α[N ch\N ch
j ]) · ˜BQj

(t ′, s′, α[N ch
j ])dt ′ds′

for some kernel W . For any Z ⊂N ch, let Z1 = Z ∩N ch
j and Z2 = Z\N ch

j , then the
component

∏

n∈Z

χ∞(αn)
ζnπiαn

· ˜BQ,Z(t, s, α[N ch\Z])

of ˜BQ must come from the components

∏

n∈Z1

χ∞(αn)
ζnπiαn

· ˜BQj ,Z1(t, s, α[N ch
j \Z1]) and

∏

n∈Z2

χ∞(αn)
ζnπiαn

·WZ2(t, s, t
′, s′, α[(N ch\N ch

j )\Z2])

of ˜BQj
and W respectively (with at most a ± sign), where WZ2 is a suitable kernel,

and that we must have

˜BQ,Z(t, s, α[N ch\Z])

=
ˆ
R2

WZ2(t, s, t
′, s′, α[(N ch\N ch

j )\Z2]) · ˜BQj ,Z1(t
′, s′, α[N ch

j \Z1])dt ′ds′.

This, together with the induction hypothesis (7.7) for ˜BQj ,Z1 , clearly implies that

(7.7) also holds for ˜BQ,Z .
Case 2. If Qj is dominant for each j ≥ 1, since Q is not dominant, by Definition

4.17, we know that Q0 must be a regular double chain with at least one of the regular
chains being non-dominant, say T + is non-dominant. Following the proof of Propo-
sition 5.1 in Sect. 5.3, we see that the only way in which ˜BQ depends on the vari-
ables (α+1 , . . . , α

+
m+) is via the function K = K(t,α+1 , . . . , α+m+ , λ+0 , λ+1 , . . . , λ+2m+)

in (5.30); in the same way as in Case 1 above, we have

˜BQ,Z(t, s, α[N ch\Z])=
ˆ

˜KZ+
(

t, λ+0 ,μ
+
1 , . . . ,μ

+
m+ , α̃[W+])

×W
(

s, λ+0 , λ
+
1 , . . . , λ

+
2m+ , α[W1]

)

dλ+0
∏

j /∈Z+
dλ+a dλ+b . (7.8)

Here we assume that Z+ is the subset of {1, . . . ,m+} appearing in (5.31), W+ =
{1, . . . ,m+}\Z+, and Z ⊂ N ch is determined (among other things) by Z+, W1 =
(N ch\Z)\{n+a : a < b} where the set {n+a : a < b} is the one appearing on the right
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hand side of (4.2), ˜KZ+ is the function ˜I (eπiλ
+
0 s)(t) appearing on the right hand side

of (5.31), and W is some function. Note that μ+j = λ+a + λ+b and α̃j = α+j + ε+j λ+a
is a translation of α+j , it will suffice to prove that for any fixed (t, λ+0 ,μ

+
1 , . . . ,μ

+
m+),

we must have ˆ
˜KZ+ (̃α[W+])dα̃[W+] = 0. (7.9)

However, this ˜KZ+ is just the function ˜K defined in Lemma 7.2, so (7.9) follows
directly from (7.4). Note that, should any modification procedure described in the
proof of Proposition 5.1 be needed, where some j ∈ Z+ is moved to W+ and α̃j =
α+j + ε+j λ+a is replaced by α+j in the factor

χ∞(α̃j )
ε+j πiα̃j

, this would not affect the above

equality due to the factorized structure. In addition we also have

ˆ
R

(

χ∞(α+j + ε+j λ+a )
ε+j πi(α

+
j + ε+j λ+a )

− χ∞(α
+
j )

ε+j πiα
+
j

)

dα+j = 0. (7.10)

This completes the inductive proof. �

7.3 Dominant couples

For a dominant couple Q, the corresponding leading term, which contains the integral
of ˜BQ,Z , will be nonzero due to Lemma 7.3. Moreover, in this situation it is easy to
check that any set Z that appears in Proposition 5.1 must be special as in Definition
4.18.

Proposition 7.5 Let Q be a dominant couple and Z ⊂ Qch be special. Then the
function J ˜BQ,Z(t, s) defined in (6.39) is independent of Z and may be denoted
J ˜BQ(t, s). Moreover, these functions satisfy some explicit recurrence relation, de-
scribed as follows. First J ˜BQ(t, s)≡ 1 for the trivial couple.

Suppose Q has type 1, then it is formed from the (1,1)-mini couple by replacing
its three leaf pairs by dominant couples Qj (1≤ j ≤ 3). Then we have

J ˜BQ(t, s)= 2
ˆ min(t,s)

0

3
∏

j=1

J ˜BQj
(τ, τ )dτ. (7.11)

In particular J ˜BQ = J ˜BQ(min(t, s)) is a function of min(t, s) for type 1 dominant
couples Q.

Suppose Q has type 2, then Q is formed from a regular double chain Q0, which
consists of two dominant regular chains, by replacing each leaf pair in Q0 with a
dominant couple. Using the notations in Definition 4.11, we now have that the j -th
pair in P± is {2j − 1,2j}, and that Qlp is trivial or has type 1. Then we have

J ˜BQ(t, s)=
ˆ
t>t1>···>tm+>0

ˆ
s>s1>···>sm−>0

m+
∏

j=1

J ˜BQj,+,1(tj , tj )J ˜BQj,+,2(tj , tj )
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×
m−
∏

j=1

J ˜BQj,−,1(sj , sj )J ˜BQj,−,2(sj , sj ) ·J ˜BQlp
(min(tm+ , sm−))

m+
∏

j=1

dtj

m−
∏

j=1

dsj .

(7.12)

Here we understand that t0 = t and s0 = s.
Proof We induct on the scale of Q. The base case Q=× is obvious. Now suppose
the result is true for dominant couples of scale smaller than n(Q), it suffices to prove
for Q and any Z ⊂N ch that J ˜BQ,Z(t, s) is given by (7.11) if Q has type 1 and by
(7.12) if Q has type 2.

Case 1. Assume Q0 is a (1,1)-mini couple, and that the three leaf pairs are re-
placed by Qj (1≤ j ≤ 3) in Q. Then by (5.24) we have

˜BQ,Z(t, s, α[N ch\Z])=
ˆ
R6

3
∏

j=1

Cj (λ2j−1, λ2j , α[N ch
j \Zj ])

6
∏

j=1

dλj

×
ˆ t

0

ˆ s

0
eπiαr(t1−s1)eπi(λ∗t1+λ∗∗s1) dt1ds1 (7.13)

where (λ∗, λ∗∗)= (λ1+ λ3+ λ5, λ2+ λ4+ λ6). Here Cj are the functions defined in
(5.8) associated with the couple Qj ; note that some Cj may actually be the functions
defined in (5.8) after switching the variables λ2j−1 and λ2j , but this will not affect
the final result as will be clear later.

When (λ1, . . . , λ6) are fixed, we know that the (t1, s1) integral in (7.13) gives an
L1 function K(αr), and we can calculate that

ˆ
K(αr)dαr = [G]

ˆ
K(αr)dαr = lim

θ→0

ˆ
K(αr)e

−πθα2
r dαr

= lim
θ→0

ˆ t

0

ˆ s

0
eπi(λ

∗t1+λ∗∗s1) dt1ds1

ˆ
R

eπi(t1−s1)αr−πθα2
r dαr

= lim
θ→0

θ−1
ˆ t

0

ˆ s

0
eπi(λ

∗t1+λ∗∗s1)e−
π(t1−s1)2

4θ2 dt1ds1. (7.14)

Like in (7.6), with fixed t1, the s1 integral tends to 0 if t1 > s, and to 2eπiλ
∗∗t1 if

t1 < s. This gives

ˆ
K(αr)dαr = 2

ˆ min(t,s)

0
eπi(λ1+···+λ6)t1 dt1.

Now we plug this into (7.13), and integrate in (λ1, . . . , λ6). Note that by definition
(cf. (5.8))

ˆ
R2

Cj (λ2j−1, λ2j , α[N ch
j \Zj ])eπi(λ2j−1+λ2j )t1 dλ2j−1dλ2j

= ˜BQj ,Zj (t1, t1, α[N ch
j \Zj ]), (7.15)
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and this expression does not change even if the variables λ2j−1 and λ2j are switched.
Thus

ˆ
˜BQ,Z(t, s, α[N ch\Z])dαr = 2

ˆ min(t,s)

0

3
∏

j=1

˜BQj ,Zj (t1, t1, α[N ch
j \Zj ])dt1,

so after integrating in α[N ch
j \Zj ] (1≤ j ≤ 3) and applying the induction hypothesis

we get (7.11).
Case 2. Now assume Q0 is a regular double chain. We fix Q and Z, and define

the relevant variables and objects, such as α±j , Zj,ε,ι, Z± and others, in the same
way as in Sect. 5.1.1 and the proof of Proposition 5.1 in Sect. 5.3. As in the proof of
Proposition 7.4, we may neglect any modification procedure described in the proof
of Proposition 5.1, where some j ∈ Z+ is moved to W+ and α̃j = α+j + ε+j λ+a is

replaced by α+j in the factor
χ∞(α̃j )
ε+j πiα̃j

, because the difference produced will contribute

0 to J ˜BQ,Z upon integrating in all the αj variables, thanks to (7.10). Therefore, we

may omit the
χ∞(α̃j )
ε+j πiα̃j

factors and focus on the function ˜BQ,Z(t, s, α[N ch\Z]). By

(5.28) we have

˜BQ,Z(t, s, α[N ch\Z])

=
ˆ

∏

ε∈{±}

mε
∏

j=1

2
∏

ι=1

Cj,ε,ι
(

λ2j−1,ε,ι, λ2j,ε,ι, α[N ch
j,ε,ι\Zj,ε,ι]

)

dλ2j−1,ε,ιλ2j,ε,ι

×
ˆ

Clp(λlp,+, λlp,−, α[N ch
lp \Zlp])dλlp,+dλlp,−

× ˜K+(t, λ+0 ,μ
+
1 , . . . ,μ

+
m+ , α̃

+[W+])˜K−(s, λ−0 ,μ−1 , . . . ,μ−m− , α̃−[W−]).
(7.16)

Here Zj,ε,ι and Zlp are subsets of N ch
j,ε,ι and N ch

lp respectively, and Cj,ε,ι and Clp are
the functions defined in (5.8) associated with the couples Qj,ε,ι and Qlp; again note
that the order of the two λ variables involved in each C function may be switched, but
this will not affect the final result. Moreover, ˜K±, which depends on t (or s), λ±0 and
(μ±1 , . . . ,μ

±
m±) and α̃±[W±], are the functions defined in Lemma 7.2 and Lemma

7.3; here we have α̃j± = α±j + ε±j λ±2j−1 (where ε±j = ζn±2j−1
) and μ±j = λ±2j−1 + λ±2j

for 1≤ j ≤m±, and λ±a = λa,±,1+λa,±,2 for 1≤ a ≤ 2m±, and λ±0 = λlp,±. Now, by
applying Lemma 7.3 to the functions ˜K±, and using the equality (7.15) with (Qj ,Zj )
replaced by (Qj,ε,ι,Zj,ε,ι) and (Qlp,Zlp) to integrate over the (λa,ε,ι) and (λlp,±)
variables, we get that

ˆ
˜BQ,Z(t, s, α[N ch\Z])dα+[W+]dα−[W−]

=
ˆ
t>t1>···>tm+>0

ˆ
s>s1>···>sm−>0

m+
∏

j=1

dtj

m−
∏

j=1

dsj
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×
m+
∏

j=1

˜BQj,+,1(tj , tj , α[N ch
j,+,1\Zj,+,1])˜BQj,+,2(tj , tj , α[N ch

j,+,2\Zj,+,2])

× ˜BQlp
(tm+ , sm− , α[N ch

lp \Zlp])

×
m−
∏

j=1

˜BQj,−,1(sj , sj , α[N ch
j,−,1\Zj,−,1])˜BQj,−,2(sj , sj , α[N ch

j,−,2\Zj,−,2]).

(7.17)

Now by integrating over α[N ch
j,ε,ι\Zj,ε,ι] and α[N ch

lp \Zlp] and applying the induction

hypothesis, and noticing that J ˜BQlp
(t, s)= J ˜BQlp

(min(t, s)) because Qlp is trivial

or has type 1, we obtain (7.12). Note that in the factor ˜BQlp
in (7.17) the variables

tm+ and sm− may be switched, but this has no effect on the final result due to the
symmetry of J ˜BQlp

(t, s) in t and s. �

7.4 Combinatorics of enhanced dominant couples

Finally we put everything together to obtain the full asymptotics. We use Q = (Q,Z)
to denote enhanced dominant couples, where Z is s special subset of N ch.

Proposition 7.6 We have

∑

n(Q)=2n
Q regular

KQ(t, t, k)=
∑

Q

2−2nδnζ ∗(Q)
∏

n∈Z

1

ζnπi
·J ˜BQ(t, t) ·M∗

Q(k)+R,

(7.18)
where ‖R‖X40d

loc
� (C+δ)nL−2ν . Here in (7.18), the first summation is taken over all

regular couples Q of scale 2n, and the second summation is taken over all enhanced
dominant couples Q = (Q,Z) of scale 2n. The quantity M∗

Q(k)=M∗
Q,Z(k) is de-

fined as in (6.32).

Proof This follows from combining Propositions 6.7, 7.4 and 7.5. Note that the num-
ber of choices for (Q,Z) is at most Cn, so the accumulate error term R still satisfies
the same bound as in Proposition 6.7. �

Proposition 7.7 Let Q = (Q,Z) be an enhanced dominant couple. Let M∗
Q(k) =

M∗
Q,Z(k) be defined as in (6.32). Then, the expression M∗

Q(k) depends only on the
equivalence class X of Q, so we can denote it by M∗

X (k). Moreover, it satisfies the
recurrence relation described as follows. If X is an equivalence class of type 1, then
it is uniquely determined by (X1,X2,X3), see Sect. 4.5.2. In this case we have

M∗
X (k)=

ˆ
(Rd )3

3
∏

j=1

M∗
Xj
(kj )δ(k1 − k2 + k3 − k)

× δ(|k1|2β − |k2|2β + |k3|2β − |k|2β)dk1dk2dk3. (7.19)
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Next, if X is an equivalence class of type 2, then it is uniquely determined by m ≥
1, the tuples (Ij ,cj ,Xj,1,Xj,2) for 1 ≤ j ≤ m, and Y trivial or of type 1, see
Sect. 4.5.2. Then we have

M∗
X (k)=M∗

Y (k) ·
m
∏

j=1

M∗
(j)(k), (7.20)

where for each 1≤ j ≤m, if (Ij ,cj )= (0,1) we have

M∗
(j)(k)=

ˆ
(Rd )3

M∗
Xj,1

(k2)M∗
Xj,2

(k3) · δ(k1 − k2 + k3 − k)

× δ(|k1|2β − |k2|2β + |k3|2β − |k|2β)dk1dk2dk3; (7.21)

if (Ij ,cj )= (0,2) we have

M∗
(j)(k)=

ˆ
(Rd )3

M∗
Xj,1

(k1)M∗
Xj,2

(k3) · δ(k1 − k2 + k3 − k)

× δ(|k1|2β − |k2|2β + |k3|2β − |k|2β)dk1dk2dk3; (7.22)

if (Ij ,cj )= (0,3) we have

M∗
(j)(k)=

ˆ
(Rd )3

M∗
Xj,1

(k1)M∗
Xj,2

(k2) · δ(k1 − k2 + k3 − k)

×δ(|k1|2β − |k2|2β + |k3|2β − |k|2β)dk1dk2dk3. (7.23)

If Ij = 1 then the corresponding formulas are the same as above, except that the
factor

δ(|k1|2β − |k2|2β + |k3|2β − |k|2β)
should be replaced by

1

|k1|2β − |k2|2β + |k3|2β − |k|2β
.

Proof We prove by induction. The integral (6.32) has two parts: the measure dσ , and
the integrand

I (Q)=
(+)
∏

l∈L∗
nin(kl) ·

∏

n∈N ch\Z
δ(�n)

∏

n∈Z

1

�n

.

It is easy to see that if Q is formed by the smaller couples Qj as in Definition 4.11,
then I (Q) is equal to the product of I (Qj ), multiplied by the product of the δ(�)
(if the corresponding Ij = 0) or 1/� (if Ij = 1) factors appearing in (7.19)–(7.23),
where �= |k1|2β − |k2|2β + |k3|2β − |k|2β . Therefore, to verify the recurrence relation
we just need to consider the measure part dσ .
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Recall the linear submanifold " and the definition of dσ in (6.32), which we shall
denote by dσQ here. If we choose one leaf from each leaf pair to form a set X (the
exact choice can be arbitrary and does not affect the formula), then, as described in
Proposition 6.7, there is a set Y ⊂X of odd cardinality, such that

dσQ = δ

(

∑

l∈Y
(±kl)− k

)

dk[X ].

Now, suppose Q has type 1, which is composed of three dominant couples Qj (1≤
j ≤ 3); let (Xj ,Yj ) be associated with Qj , then we have X = X1 ∪ X2 ∪ X3 and
Y = Y1 ∪Y2 ∪Y3. Then

δ(k1 − k2 + k3 − k)dk1dk2dk3

3
∏

j=1

dσQj

= δ(k1 − k2 + k3 − k)
3
∏

j=1

[

δ

(

∑

l∈Yj
(±kl)− kj

)

dk[Xj ]
]

dk1dk2dk3

= δ

(

∑

l∈Y
(±kl)− k

)

dk[X ] = dσQ.

This can be verified, for example, by integrating any function against the measures.
Suppose Q has type 2, we will only consider the case m = 1, since the gen-

eral case follows from iteration. Using the notations of Definitions 4.11 and 4.18,
suppose (m+,m−) = (1,0) and c1 = 1 (the other cases are similar), and denote
(Qlp,Q1,+,1,Q1,+,2)= (Q1,Q2,Q3), then X =X1 ∪X2 ∪X3 and Y = Y1, hence

dk2dk3

3
∏

j=1

dσQj

=
3
∏

j=2

[

δ

(

∑

l∈Yj
(±kl)− kj

)

dk[Xj ]
]

dk2dk3 · δ
(

∑

l∈Y1

(±kl)− k
)

dk[X1]

= δ

(

∑

l∈Y
(±kl)− k

)

dk[X ] = dσQ.

Therefore the measure dσQ satisfies the desired recurrence relation, so the result is
proved. �

Proposition 7.8 Let X be an equivalence class of enhanced dominant couples such
that for Q = (Q,Z) ∈X we have Z �=∅. Then we have

∑

Q=(Q,Z)∈X

(

∏

n∈Z

1

ζnπi

)

·J ˜BQ(t, t)= 0. (7.24)
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Proof First |Z| is constant for all Q ∈X , so we may replace the product in (7.24)
by

∏

n∈Z ζn. Denote this reduced sum by GX (t). We prove (7.24) by induction. The
base case is simple. Suppose (7.24) is true for X of smaller half-scale. Let X be
composed from smaller equivalence classes Xj as in Sect. 4.5.2, then by definition
of equivalence, the summation over Q = (Q,Z) ∈X must contain (among other
things) a sub summation over Qj = (Qj ,Zj ) ∈Xj , so in particular GX equals a
multilinear expression of the quantities GXj

(see also (7.25) below). Therefore, by
induction hypothesis, we may assume thatZj =∅ for each Xj , andZ �=∅. In partic-
ular, X must have type 2. By the structure of dominant double chains, it is easy to see
that ζn = ε if n ∈ Z ∩ T ε with ε ∈ {±}. Let m ≥ 1, the tuples (Ij ,cj ,Xj,1,Xj,2),
and Y be fixed as in Sect. 4.5.2.

If Q ∈ X , then Qlp ∈ Y , and we may decompose m = m+ + m−, such that
the tuples (Ij,ε,cj,ε,Xj,ε,1,Xj,ε,2) where ε ∈ {±}, 1 ≤ j ≤ mε and Xj,ε,ι is the
equivalence class of Qj,ε,ι, form a permutation of (Ij ,cj ,Xj,1,Xj,2) where 1 ≤
j ≤ m. Moreover, since cj,ε are just the first digits of the codes of the mini trees
appearing in the structure of Q, the corresponding second digits can be arbitrary (and
BQ does not depend on this second digit) which results in a 2m factor. Apart from this,
we apply Proposition 7.5 and sum over all possible Q’s—which means summing over
all permutations of the tuples and then summing over all possible Qj,ε,ι and Qlp—to
get

GX (t)

= 2m
∑

m++m−=m

∑

(A1,...,Am+ ,B1,...,Bm− )

ˆ
t>t1>···>tm+>0

ˆ
t>s1>···>sm−>0

m−
∏

j=1

(−1)I
′
j,−

×
m+
∏

j=1

M (Aj )(tj )

m−
∏

j=1

M (Bj )(sj ) · GY (min(tm+ , sm−))dt1 · · ·dtm+ds1 · · ·dsm− .
(7.25)

Here in (7.25) the summation is taken over all permutations (A1, . . . ,Am+ ,B1, . . . ,

Bm−) of the tuples (Ij ,cj ,Xj,1,Xj,2). Moreover I′j,− represents the first compo-
nent of Bj , the function M (Aj ) is GX ′

j,+,1 · GX ′
j,+,2 where (X ′

j,+,1,X ′
j,+,2) repre-

sents the last two components of Aj , and M (Bj ) is defined similarly.
Now fix m+ and m−, and consider the m variables t1, . . . , tm+ , s1, . . . , sm− ∈

[0, t]. If we fix a total ordering to these variables, then under the assumptions
t1 > · · · > tm+ and s1 > · · · > sm− , each total ordering can be uniquely represented
by a partition (A,B) of {1, . . . ,m} into an m+ element subset A and an m− ele-
ment subset B . Once this total ordering is fixed, we may rearrange these variables as
t > u1 > · · ·> um > 0, then this term on the right hand side of (7.25) becomes

∑

(C1,...,Cm)

ˆ
t>u1>···>um>0

∏

j∈B
(−1)I

′
j

m
∏

j=1

M (Cj )(uj ) · GY (um)du1 · · ·dum, (7.26)

where the summation is taken over all permutations (C1, . . . ,Cm) of the tuples
(Ij ,cj ,Xj,1,Xj,2), I′j represents the first component of Cj , and the function
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M (Cj ) is GX ′
j,1
· GX ′

j,2
where (X ′

j,1,X
′
j,2) represents the last two components of

Cj . After summing over (A,B) and (m+,m−), we obtain that

GX (t)= 2m
∑

(C1,...,Cm)

ˆ
t>u1>···>um>0

m
∏

j=1

M (Cj )(uj ) · GY (um)du1 · · ·dum

×
[

∑

B

∏

j∈B
(−1)I

′
j

]

, (7.27)

where the inner summation is taken over all subsets B ⊂ {1, . . . ,m}. Since Z �= ∅,
we know that at least one 1≤ j ≤m is such that I′j = 1, which implies that

∑

B⊂{1,...,m}

∏

j∈B
(−1)I

′
j =

m
∏

j=1

(1+ (−1)I
′
j )= 0,

where we understand the product is 1 if B =∅. Therefore GX (t)= 0 and the proof
is complete. �

7.4.1 Expansions of the solution to (WKE)

Now we can match the nonzero leading correlations, which come from the (enhanced)
dominant couples with Z =∅, with the terms in the Taylor expansion of the solution
to (WKE).

Proposition 7.9 Let δ be small enough depending on nin. Then the equation (WKE)
has a unique solution n= n(t, k) for t ∈ [0, δ]. The solution has a convergent Taylor
expansion

n(δt, k)=
∞
∑

n=0

Mn(t, k), |Mn(t, k)|� (C+δ)n (7.28)

for t ∈ [0,1], where Mn(t, k) is defined by (2.29). This Mn(k) can be expanded as

Mn(t, k)= δn
∑

n(T )=n
ζ ∗(T ) · gT (t) · ˜MT (k), (7.29)

where the summation is taken over all encoded trees of scale n. The sign ζ ∗(T ) is
defined in (4.5), the function gT (t) is defined inductively by

g•(t)= 1, gT (t)=
ˆ t

0
gT1(t

′)gT2(t
′)gT3(t

′)dt ′, (7.30)

and the expression ˜MT (k) is defined inductively as follows. First if T = • then define
˜M•(k) = nin(k). Now let (T1,T2,T3) be the three subtrees of T from left to right.
Then, if cr = 0 where r is the root of T , we define

˜MT (k)=
ˆ
(Rd )3

˜MT1(k1)˜MT2(k2)˜MT3(k3)δ(k1 − k2 + k3 − k)
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× δ(|k1|2β − |k2|2β + |k3|2β − |k|2β)dk1dk2dk3. (7.31)

If cr = 1, we define

˜MT (k)=
ˆ
(Rd )3

˜MT1(k)
˜MT2(k2)˜MT3(k3)δ(k1 − k2 + k3 − k)

× δ(|k1|2β − |k2|2β + |k3|2β − |k|2β)dk1dk2dk3. (7.32)

If cr = 2 we define

˜MT (k)=
ˆ
(Rd )3

˜MT1(k1)˜MT2(k)
˜MT3(k3)δ(k1 − k2 + k3 − k)

× δ(|k1|2β − |k2|2β + |k3|2β − |k|2β)dk1dk2dk3. (7.33)

If cr = 3 we define

˜MT (k)=
ˆ
(Rd )3

˜MT1(k1)˜MT2(k2)˜MT3(k)δ(k1 − k2 + k3 − k)

× δ(|k1|2β − |k2|2β + |k3|2β − |k|2β)dk1dk2dk3. (7.34)

The expression ˜MT (k) depends only on the equivalence class of T , so we may de-
note it by ˜MX (k). For any X , if X has type 1 and is determined by (X1,X2,X3)

as above, then we have

˜MX (k)=
ˆ
(Rd )3

3
∏

j=1

˜MXj
(kj ) · δ(k1 − k2 + k3 − k)

× δ(|k1|2β − |k2|2β + |k3|2β − |k|2β)dk1dk2dk3. (7.35)

If X has type 2 and is determined by a positive integer m, triples (cj ,Xj,1,Xj,2)

where 1≤ j ≤m, and Y , then we have

˜MX (k)= ˜MY (k) ·
m
∏

j=1

˜M(j)(k), (7.36)

where for each 1≤ j ≤m, if cj = 1 we have

˜M(j)(k)=
ˆ
(Rd )3

˜MXj,1(k2)˜MXj,2(k3) · δ(k1 − k2 + k3 − k)

× δ(|k1|2β − |k2|2β + |k3|2β − |k|2β)dk1dk2dk3; (7.37)

if cj = 2 we have

˜M(j)(k)=
ˆ
(Rd )3

˜MXj,1(k1)˜MXj,2(k3) · δ(k1 − k2 + k3 − k)
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× δ(|k1|2β − |k2|2β + |k3|2β − |k|2β)dk1dk2dk3; (7.38)

if cj = 3 we have

˜M(j)(k)=
ˆ
(Rd )3

˜MXj,1(k1)˜MXj,2(k2) · δ(k1 − k2 + k3 − k)

× δ(|k1|2β − |k2|2β + |k3|2β − |k|2β)dk1dk2dk3. (7.39)

Moreover, for any equivalence class X of dominant couples or encoded trees, we
have ˜MX (k)=M∗

X (k).

Proof This follows from direct calculation. First, let Mn(t, k) be defined by (2.29),
then the formula (7.29) follows from induction. Here one notes that (i) the four cases
in the recurrence relation (7.31)–(7.34) defining ˜MT (k) exactly correspond to iter-
ating the four different terms in the nonlinearity (KIN), (ii) the recurrence definition
(7.30) of gT (t) corresponds to applying the Duhamel formula for (WKE), and (iii)
the sign ζ ∗(T ) is uniquely determined by iterating the signs of the four terms in
(KIN).

Next, with the inductive definition (7.31)–(7.34) of ˜MT (k), it is easy to see that
(7.35)–(7.39) hold. In fact, (7.35) is just (7.31), and (7.36) for general m follows
from iterating the m = 1 case, while the three possibilities (7.37)–(7.39) are just
(7.32)–(7.34). Since the expression (7.36) is invariant under permuting the differ-
ent indices 1≤ j ≤m, we can inductively prove that ˜MT (k) does not change if T is
replaced by an equivalent encoded tree, so we can replace ˜MT by ˜MX .

Next, let X be an equivalence class of dominant couples or encoded trees. For
dominant couples Q we assume Z = ∅, so in particular all the Ij variables (as in
Sect. 4.5.2) appearing in the inductive step will be 0. As a result, the recurrence rela-
tions (7.19)–(7.23) for M∗

X (k) do not contain any 1/� factor (only δ(�)), and thus
coincide with (7.31)–(7.35). This shows ˜MX (k)=M∗

X (k). Finally, as in Remark
6.8 we have |˜MT (k)| � (C+)n〈k〉−40d if T has scale n. Since the number of en-
coded trees of scale n is at most Cn, and gT (t) is homogeneous in t and can easily be
bounded in some smooth norm, we see that ‖Mn(t, k)‖X40d

loc
� (C+δ)n, which proves

the convergence of (7.28). �

Proposition 7.10 Let X be as in Proposition 7.8, but assume Z = ∅ for Q =
(Q,Z) ∈X ; for simplicity we write Q = (Q,∅) simply as Q. Then for any equiva-
lence class X of half-scale n we have

∑

Q∈X
J ˜BQ(t, t)= 22n

∑

T ∈X
gT (t). (7.40)

Proof Define

GX (t)=
∑

T ∈X
gT (t),
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then by definition of equivalence and the recurrence relation (7.30) of gT (t), we can
show that if X has type 1, then

GX (t)=
ˆ t

0

3
∏

j=1

GXj
(t ′)dt ′. (7.41)

If X has type 2, then

GX (t)=
∑

(A1,...,Am)

ˆ
t>t1>···>tm>0

m
∏

j=1

GX ′
j,1
(tj )GX ′

j,2
(tj ) ·GY (tm)dt1 · · ·dtm,

(7.42)
where the sum is taken over all permutations (A1, . . . ,Am) of the triples (cj ,Xj,1,

Xj,2)1≤j≤m (in particular the number of terms in this summation varies, depending
on whether some of the triples coincide or not), and (X ′

j,1,X
′
j,2) represents the last

two components of Aj .
In order to prove (7.40), as the base case is easily verified, it will suffice to show

that the quantity

GX (t) :=
∑

Q∈X
J ˜BQ(t, t)

satisfies the same recurrence relation (7.41)–(7.42), but with an extra factor of 22 on
the right hand side of (7.41), and an extra factor of 22m on the right hand side of
(7.42).

The case when X is type 1 is in fact quite easy, as the recurrence relation satisfied
by J ˜BQ(t, t), namely (7.11), has the same form as (7.41) assuming t = s. If one sums
over all Q ∈X , which is equivalent to summing over all Qj ∈Xj for 1 ≤ j ≤ 3,
one gets the same recurrence relation for GX (t) in place of J ˜BQ(t, t). The factor
of 22—instead of 2 on the right hand side of (7.11)—comes from the two possible
codes (i.e. 00 or 01) for the (1,1)-mini couple forming the structure of Q.

From now on we assume X has type 2. Let m ≥ 1, the triples (cj ,Xj,1,Xj,2)

where 1 ≤ j ≤m, and Y be fixed as in Sect. 4.5.2. We can argue in essentially the
same way as in the proof of Proposition 7.8, except that (i) now the Aj , Bj and Cj
only contain three components, for example Cj = (c′j ,X ′

j,1,X
′
j,2) as I′j is always 0,

and (ii) we do not have the factors (−1)I
′
j,− in (7.25) or (−1)I

′
j in (7.26). Therefore,

we do not have the cancellation as in Proposition 7.8, instead we have

GX (t)= 2m
∑

(C1,...,Cm)

ˆ
t>u1>···>um>0

m
∏

j=1

M (Cj )(uj ) ·GY (um)du1 · · ·dum ·
(

∑

B

1

)

,

where again the inner summation is taken over all subsets B ⊂ {1, . . . ,m}. In this way
we get GX (t)= 22mK , where K is exactly the right hand side of (7.42) with the G
quantities replaced by G quantities. This verifies the recurrence relation satisfied by
G, and completes the proof. �
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Proposition 7.11 For n≤N3, we have
∥

∥

∥

∥

∑

n(Q)=2n
Q regular

KQ(t, t, k)−Mn(t, k)

∥

∥

∥

∥

X40d
loc

� (C+δ)nL−2ν.

Proof This follows from Propositions 7.6, 7.7, 7.8, 7.9 and 7.10. �

8 Non-regular couples I: cancellation of irregular chains

We now turn to the study of non-regular couples, until the end of Sect. 10. Since
regular couples have been studied in Sect. 5–7, in view of Proposition 4.14, we can
reduce any non-regular couple Q to its skeleton Qsk , which is a nontrivial prime
couple. Then, we will focus on the study of prime couples.

8.1 From general to prime couples

Let Q be a non-regular couple with skeleton Qsk , then Qsk �= × is a prime couple. By
Proposition 4.14, Q is formed from Qsk in a unique way by replacing each branching
node m with a regular tree T (m) and each leaf pair {m,m′} with a regular couple
Q(m,m′). Using the results of Sect. 5, we shall reduce KQ(t, s, k) to an expression
that has similar form with KQsk

(t, s, k).
In fact, by (2.24) and (5.3) we have

KQ(t, s, k)=
(

δ

2Ld−1

)n

ζ ∗(Q)
∑

E

ˆ
E
εE

∏

n∈N ∗
eζnπi·δL2�ntn dtn

(+)
∏

l∈L∗
nin(kl),

(8.1)
where n is the scale of Q, E is the domain defined in (5.4), E is a k-decoration and
other objects are defined as before, all associated to the couple Q. By definition,
the restriction of E to nodes in Qsk forms a k-decoration of Qsk , and the relevant
quantities such as�n are the same for both decorations (i.e. each�n in the decoration
of Qsk uniquely corresponds to some �n in the corresponding decoration of Q).

Now, let {m,m′} be a leaf pair in Qsk , which becomes the roots of the regular
sub-couple Q(m,m′) in Q. We must have km = km′ . In (8.1), consider the summation
in the variables kn, where n runs over all nodes in Q(m,m′) other than m and m′
(these variables, together with km and km′ , form a km-decoration of Q(m,m′)), and the
integration in the variables tn, where n runs over all branching nodes in Q(m,m′), with
all the other variables fixed. By definition, this summation and integration equals,
up to some sign ζ ∗(Q(m,m′)) and some power of δ(2Ld−1)−1, the exact expression
KQ(m,m′) (tmp , t(m′)p , km). Here we assume ζm =+ and ζm′ = −, and mp is the parent
of m (if m is the root then tmp should be replaced by t ; similarly for (m′)p).

Similarly, let m be a branching node in Qsk , which becomes the root p and lone
leaf q of a regular tree T (m) in Q. We must have kp = kq. In (8.1), consider the
summation in the variables kn, where n runs over all nodes in T (m) other than p

and q (these variables, together with kp and kq, form a km-decoration of T (m), where
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km = kp = kq), and the integration in the variables tn, where n runs over all branching
nodes in T (m), with all the other variables fixed. In the same way, this summation
and integration equals, up to some sign˜ζ (T (m)) and some power of δ(2Ld−1)−1, the
exact expression K∗T (m) (tpp , tq, kp). Here pp is the parent of p (again, if p is the root
then tpp should be replaced by t or s) and the relevant notations are defined as in
Proposition 6.10.

After performing this reduction for each leaf pair and branching node of Qsk , we
can reduce the summation in (8.1) to the summation in km for all leaves and branching
nodes m of Qsk , i.e. a k-decoration of Qsk . Moreover, we can reduce the integration
in (8.1) to the integration in tm for all branching nodes m of Qsk (for a regular tree,
the time variables tpp and tq for Q correspond to tmp and tm for Qsk where mp is the
parent of m). This implies that

KQ(t, s, k)=
(

δ

2Ld−1

)n0

ζ ∗(Qsk)
∑

Esk

ˆ
Esk
εEsk

∏

n∈N ∗
sk

eζnπi·δL2�ntn dtn

×
(+)
∏

m∈L∗sk
KQ(m,m′) (tmp , t(m′)p , km)

∏

m∈N ∗
sk

K∗T (m) (tmp , tm, km), (8.2)

where n0 is the scale of Qsk , Esk is the domain defined in (5.4), Esk is a k-decoration,
the other objects are as before but associated to the couple Qsk . Moreover in (8.2),
the first product is taken over all leaves m of sign + with m′ being the leaf paired to
m, the second product is taken over all branching nodes m, and mp is the parent of
m.

Using Propositions 6.7 and 6.10, in (8.2) we can decompose

KQ(m,m′) = (KQ(m,m′) )app +RQ(m,m′) , K∗T (m) = (K∗T (m) )app +R∗
T (m) . (8.3)

Here (KQ(m,m′) )app is the leading term in Proposition 6.7, and is a linear combination
of functions of (t, s) multiplied by functions of k, which in turn satisfy (6.38) and
the Xloc bound in Remark 6.9; the remainder RQ(m,m′) is bounded in X40d

loc with extra
gain L−ν as in Proposition 6.7. The terms (K∗T (m) )app and R∗

T (m) are as in Proposition
6.10, and satisfy the bound (6.42).

We may fix a mark in {L,R} for each leaf pair and each branching node in Qsk
which indicates whether we select the leading term (· · · )app or the remainder term R
or R∗; for a general couple Q we can do the same but only for the nodes of its skele-
ton Qsk . In this way we can define marked couples, which we still denote by Q, and
expressions of form (8.2) but with KQ(m,m′) and K∗T (m) replaced by the corresponding
leading or remainder terms, which we still denote by KQ. By definition, any sum of
KQ over unmarked couples Q equals the corresponding sum over marked couples Q
for all possible unmarked couples and all possible markings.

Using the relevant X40d
loc and X0

loc bounds (which control weighted L1 norms in
time Fourier variables), we can expand the (· · · )app and R (or R∗) factors as a Fourier
integral in (tmp , t(m′)p ) (or (tmp , tm)), which reduces (8.2) to a formula of form sim-
ilar to (2.24) for Qsk , but with the �n variables appearing in BQsk

suitably shifted,
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Fig. 19 An irregular chain, as in
Definition 8.1. Here mj and
nj+1 are required to have
opposite signs. A white leaf may
be paired with a leaf in the
omitted part

nin replaced by factors coming from (KQ(m,m′) )app or RQ(m,m′) , and with extra fac-
tors coming from (K∗T (m) )app or R∗

T (m) included. Before doing so, however, we need
to exploit the cancellation between KQ for some different couples Q with specific
symmetries. Such cancellation is linked to the notion of irregular chains, which we
now introduce.

8.2 Irregular chains and congruence

We now introduce the main object that causes difficulty in the analysis of Qsk , namely
the irregular chains.

Definition 8.1 (Irregular chains) Given a couple Q (or a paired tree T ), we define an
irregular chain to be a sequence of nodes (n0, . . . ,nq), such that (i) nj+1 is a child
of nj for 0 ≤ j ≤ q − 1, and the other two children of nj are leaves, and (ii) for
0 ≤ j ≤ q − 1, there is a child mj of nj , which has opposite sign with nj+1, and is
paired (as a leaf) to a child pj+1 of nj+1. We also define p0 to be the child of n0 other
than n1 and m0. See Fig. 19.

Definition 8.2 (Congruence and a relabeling) Consider any irregular chain H =
(n0, . . . ,nq). By Definition 8.1, we know pj is the child of nj other than nj+1 and
mj for 0≤ j ≤ q − 1, thus pj has the same sign with nj (hence it is either its first or
third child). Now for two irregular chains H = (n0, . . . ,nq) and H′ = (n′0, . . . ,n′q),
with pj and p′j etc. defined accordingly, we say they are congruent, if ζn0 = ζn′0 , and
for each 0 ≤ j ≤ q − 1, either pj is the first child of nj and p′j is the first child of
n′j , or pj is the third child of nj and p′j is the third child of n′j , counting from left to
right. See Fig. 20.

In particular, if q and the congruence class (and hence ζn0 ) are fixed, then an
irregular chain H is uniquely determined by the signs ζnj for 1≤ j ≤ q . We relabel
the nodes nj ,pj (0≤ j ≤ q) by defining {bj , cj } = {nj ,pj }, and that bj = nj if and
only if ζnj = +. Further, we label the two children of nq other than pq as e and f,
with ζe =+ and ζf =−.
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Fig. 20 Three congruent irregular chains H, H′ and H′′, as in Definition 8.2; here each pj (or p′
j

etc.) is

the third child of nj (or n′
j

etc.). For convenience, we have included the sign of each node. As for the re-
labeling, we represent the case (bj , cj )= (nj ,pj ) by round points, and the other case (bj , cj )= (pj ,nj )
by diamond shaped points. Points of the same color are still paired regardless of their shapes

Fig. 21 Decorations of irregular chains in Fig. 20 with sign of each node included. For the nodes bj , cj
etc. see Definition 8.2

Proposition 8.3 Let H = (n0, . . . ,nq) be an irregular chain. For any decoration D
(or E ), its restriction to nj (0≤ j ≤ q) and their children is uniquely determined by
2(q + 2) vectors kj , �j ∈ Z

d
L (0 ≤ j ≤ q + 1), such that kbj = kj and kcj = �j for

0≤ j ≤ q , and ke = kq+1 and kf = �q+1. See Fig. 21 for an example corresponding
to the irregular chains in Fig. 20. These vectors satisfy

k0 − �0 = k1 − �1 = · · · = kq+1 − �q+1 := h,
and for each 0≤ j ≤ q we have ζnj �nj = 2〈h, kj+1−kj 〉β . Moreover εknj1knj2knj3

=
εkj+1�j+1�j , where (nj1,nj2,nj3) are the children of nj from left to right. We say
this decoration has small gap, large gap or zero gap with respect to H, if we have
0< |h| ≤ 1

100δL , |h| ≥ 1
100δL or h= 0.

Proof We can verify that (knj , knj1 , knj2 , knj3) ∈ {(kj , kj+1, �j+1, �j ),

(kj , �j , �j+1, kj+1)} if ζnj = +, and (knj , knj1 , knj2 , knj3) ∈ {(�j , �j+1, kj+1, kj ),

(�j , kj , kj+1, �j+1)} if ζnj = −. Moreover by pairing we know kmj
= kpj+1 for

0≤ j ≤ q − 1. The result then follows. �
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Definition 8.4 Let H= (n0, . . . ,nq) be an irregular chain contained in a couple Q or
a paired tree T . If we replace H by a congruent irregular chain H′ = (n′0, . . . ,n′q),
then we obtain a modified couple Q′ or paired tree T ′ by (i) attaching the same
subtree of e and f in Q (or T ) to the bottom of e′ and f′, and (ii) assigning to n′0 the
same parent of n0 and keeping the rest of the couple unchanged.

Given a marked prime couple Qsk , we identify all the maximal irregular chains
H= (n0, . . . ,nq), such that q ≥ 103d , and all nj and their children have mark L. For
each such maximal irregular chain H, consider H◦ = (n5, . . . ,nq−5) formed by omit-
ting 5 nodes at both ends (so that it does not affect other possible irregular chains).
We define another marked prime couple ˜Qsk to be congruent to Qsk , if it can be ob-
tained from Qsk by changing each of the irregular chains H◦ to a congruent irregular
chain, as described above.

Given a marked couple Q, we define ˜Q to be congruent to Q, if it can be formed as
follows. First obtain the (marked) skeleton Qsk and change it to a congruent marked
prime couple ˜Qsk . Then, we attach the regular couples Q(m,m′) and regular trees
T (m) from Q to the relevant leaf pairs and branching nodes of ˜Qsk . Note that if an
irregular chain H◦ = (n0, . . . ,nq) in Qsk is replaced by (H◦)′ = (n′0, . . . ,n′q) in ˜Qsk ,
with relevant nodes mj , pj etc. as in Definition 8.1, then for 0≤ j ≤ q − 1, the same
regular couple Q(mj ,pj+1) is attached to the leaf pair {m′j ,p′j+1} in ˜Qsk . Similarly, for

1 ≤ j ≤ q , if ζn′j = ζnj then the same regular tree T (nj ) is placed at the branching

node n′j in ˜Qsk ; otherwise the conjugate regular tree T (nj ) is placed at n′j . See Fig. 22
for a description of two congruent couples.

8.3 Expressions associated with irregular chains

Given one congruence class F of marked couples as in Definition 8.4, the goal of
this section is to analyze the sum

∑

Q∈F
KQ(t, s, k), (8.4)

where the sum is taken over all marked couples Q ∈F . Let the lengths of all the
irregular chains H◦ involved in the congruence class F , as in Definition 8.4, be
q1, . . . , qr , then |F | = 2Q where Q= q1 + · · · + qr . Since these irregular chains do
not affect each other, we may focus on one individual chain, say H◦ = (n0, . . . ,nq);
that is, we only sum over Q ∈F obtained by altering this irregular chain H◦.

In the summation and integration in (8.2), we will first fix all the variables kn and
tn, except kn with n ∈ {nj ,pj ,mj−1} (1≤ j ≤ q) and tn with n= nj (1≤ j ≤ q−1),
and sum and integrate over these variables. Note that we are fixing kn0 and kp0 as well
as ke and kf, in the notation of Definition 8.2, and are thus fixing (k0, �0, kq+1, �q+1)

and k0 − �0 = kq+1 − �q+1 = h as in Proposition 8.3. It is easy to see that in the
summation and integration in (8.2) over the fixed variables (i.e. those kn and tn not
in the above list), the summand and integrand does not depend on the way H◦ is
changed, because the rest of the couple is preserved under the change of H◦, by
Definition 8.4.
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Fig. 22 Two congruent couples Q and Q′ as in Definition 8.4 (formed by altering one irregular chain
H◦ in Qsk ; of course the actual H◦ is much longer). Here each circle (labeled by Qj or Sj ) represents
a paired tree, two circles of the same color (labeled by the same Qj ) in the same couple form a regular
sub-couple, and each black box (labeled by Tj ) represents a regular tree. Two circles in different couples
of the same color and same labeling (including signs) represent the same paired tree, two boxes of the
same labeling represent the same regular tree (if they have the same sign) or two conjugate regular trees
(if they have opposite signs). Finally, the signs represent the signs of the corresponding nodes in Qsk and
Q′
sk

We thus only need to consider the sum and integral over the variables listed above.
By Proposition 8.3, this is the same as the sum over the variables kj (1≤ j ≤ q), with
�j := kj −h, and integral over the variables tj := tnj (1≤ j ≤ q− 1), which satisfies
t0 > t1 > · · ·> tq−1 > tq with t0 := tn0 and tq := tnq . For any possible choice of H◦
(there are 2q of them), the sum and integral can be written, using (8.2) and Proposition
8.3, as

∑

k1,...,kq

ˆ
t0>t1>···>tq−1>tq

(

δ

2Ld−1

)q q
∏

j=1

(iζnj )

q
∏

j=0

εkj+1�j+1�j

×
q
∏

j=0

e2πiδL2〈h,kj+1−kj 〉β tj
q
∏

j=1

Kj,H◦ ·K∗j,H◦ dt1 · · ·dtq−1. (8.5)

Here in (8.5), we have

Kj,H◦ =Kj (tj , tj−1, kj − h), K∗j,H◦ =K∗j (tj−1, tj , kj )

if ζnj =+, and

Kj,H◦ =Kj (tj−1, tj , kj ), K∗j,H◦ =K∗j (tj−1, tj , kj − h)
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if ζnj =−, where Kj = (KQ(pj ,mj−1) )app and K∗j = (K∗T (nj )
)app where T (nj ) is cho-

sen to have sign +; note that if T is the regular tree conjugate to T then K∗T =K∗T ,
and the same holds for the leading contribution (· · · )app.

In what follows we shall study the expression (8.5), where we also sum over all
possible choices of H◦, i.e. all possible choices of ζnj (1≤ j ≤ q). We will view it as
a function of (k0, �0, kq+1, �q+1, t0, tq). Depending on the value of h we have three
possibilities. However, the zero gap case h= 0 is very easy, as we have kj = �j , so
in view of the εkj+1�j+1�j factors we must have k1 = · · · = kq = k0, so the expression
(8.5) is bounded by L−(d−1)q/q!, which is a large negative power of L when q is
large (we have at least q ≥ 103d− 10 by Definition 8.4). This term can then be easily
treated, in the same way as the small gap term below.

8.3.1 Small gap case

Assume the small gap condition 0< |h| ≤ 1/(100δL). Summing over all choices of
ζnj in (8.5), we get the expression

∑

k1,...,kq

ˆ
t0>t1>···>tq−1>tq

(

iδ

2Ld−1

)q q
∏

j=0

εkj+1�j+1�j

q
∏

j=0

e2πiδL2〈h,kj+1−kj 〉β tj

×
q
∏

j=1

[

Kj (tj , tj−1, kj − h)K∗j (tj−1, tj , kj )

−Kj (tj−1, tj , kj )K∗j (tj−1, tj , kj − h)
]

dt1 · · ·dtq−1. (8.6)

Recall that Kj and K∗j are of form (· · · )app, by Propositions 6.7 and 6.10, they can
be decomposed into terms which are products of functions of time variables tj and
functions of frequency variables kj . Due to bilinearity of (8.6), we may thus assume

Kj (t, s, k)= (C+δ)mjJAj (t, s)Mj (k), K∗j (t, s, k)= (C+δ)m
′
jJA∗j (t, s)M∗

j (k),

(8.7)
where 2mj and 2m′j are the scales of Q(pj ,mj−1) and T (nj ), the functions JAj , JA∗j
and Mj , M∗

j satisfy that

‖JAj‖Xloc , ‖JA∗j‖Xloc � 1; sup
|ρ|≤40d

(〈k〉40d |∂ρMj (k)| + |∂ρM∗
j (k)|

)

� 1.

(8.8)
After extracting the factor (C+δ)mj+m

′
j , we can write the difference factor in (8.6) as

JAj (tj , tj−1)JA∗j (tj−1, tj ) ·Mj (kj − h)M∗
j (kj )

−JAj (tj−1, tj )JA∗j (tj−1, tj ) ·Mj (kj )M∗
j (kj − h)

= [

JAj (tj , tj−1)JA∗j (tj−1, tj )−JAj (tj−1, tj )JA∗j (tj−1, tj )
]·Mj (kj−h)M∗

j (kj )
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+JAj (tj−1, tj )JA∗j (tj−1, tj ) ·
[

Mj (kj − h)M∗
j (kj )−Mj (kj )M∗

j (kj − h)
]

,

(8.9)

since Mj and M∗
j are real valued.

For any |h| ≤ 1/(100δL), by (8.8) we get

sup
|ρ|≤30d

〈kj 〉30d |∂ρ[Mj (kj −h)M∗
j (kj )−Mj (kj )M∗

j (kj −h)
]|� δ−1L−1, (8.10)

which we shall use to control the second term on the right hand side of (8.9). To deal
with the first term, we notice that both factors

JAj (t, s)−JAj (s, t) and JA∗j (t, s)−JA∗j (t, s) (8.11)

vanish at t = s. In fact, if T (nj ) is formed from a regular chain of scale 2m′
(see Remark 4.15), then we may apply similar arguments as in Sect. 7, and cal-
culate JA∗j (t, s) in the same way as J ˜BQ(t, s), so that it is either 0 or is given
(up to a constant multiple) by (7.12), except that the domain of integration is now
t > t1 > · · · > tm′ > s (as the regular tree T (nj ) only has one regular chain), and
the irrelevant factors in the integrand are omitted. This shows that JA∗j (t, t) = 0 if

m′ ≥ 1; if m′ = 0 then T (nj ) is trivial so JA∗j (t, t)= 1, so in either case the desired
vanishing of (8.11) is true. Since JAj and JA∗j are bounded in Xloc as in Remark
6.9 and (6.42), we can write the functions in (8.11) in the form

(8.11)= |t − s| 1
18

ˆ
R2
G(λ,μ)eπi(λs+μt) dλdμ, ‖(〈λ〉 + 〈μ〉) 1

18G‖L1 � (C+)mj ,
(8.12)

for s, t ∈ [0,1] (and also t > s for the latter term in (8.11)). Here the bound in (8.12)
follows from the simple fact that the Fourier L1 norm of |x|−γ χ0(x)(e

πiλx − 1) is
bounded by 〈λ〉γ for 0 < γ < 1. By (8.10), (8.12), and making further decomposi-
tions if necessary, we can rewrite (8.9) as a linear combination (in the form of an
integral in λj and μj ) of

|tj−1 − tj |κj eπi(λj tj+μj tj−1) ·Nj (kj ), (8.13)

where either κj = 0 and Nj satisfies (8.10), or κj = 1/18 and Nj satisfies (8.10) with
right hand side replaced by 1. The coefficient of this linear combination is a function
of (λj ,μj ) that satisfies the weighted bounds in (8.12).

By performing the above reduction for all j , we can rewrite (8.6) as a linear com-
bination (in the form of an integral in (λj ,μj ) variables) of terms, where the coef-
ficient of this linear combination is a function of these (λj ,μj ), and is bounded in
some weighted L1 norm which is a tensor power of the one in (8.12). The term then
has the following form:

Z := (C+δ)mtot

(

iδ

2Ld−1

)q ˆ
t0>t1>···>tq−1>tq

dt1 · · ·dtq−1
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×
q
∏

j=1

|tj−1 − tj |κj eπi(λj tj+μj tj−1)e2πiδL2(tq 〈h,kq+1〉β−t0〈h,k0〉β )

×
∑

k1,...,kq

q
∏

j=0

1kj �=kj+1 ·
q
∏

j=1

e2πiδL2(tj−1−tj )〈h,kj 〉βNj (kj ), (8.14)

where (λj ,μj ) are parameters as above, and mtot is the sum of all the half-scales mj
and m′j .

We will first fix the tj variables and sum in kj in (8.14). In this sum we
may ignore the factors 1kj �=kj+1 , because if any kj = kj+1 then in (8.14) we have

e2πiδL2(tj−1−tj+1)〈h,kj 〉β (NjNj+1)(kj ), which can be treated in the same way with
much better estimates as we are summing over fewer variables. Thus, up to lower
order error terms which have the same form, we have

Z := (C+δ)mtot(iδ/2)qe2πiδL2(tq 〈h,kq+1〉β−t0〈h,k0〉β )

×
ˆ
t0>t1>···>tq−1>tq

q
∏

j=1

|tj−1 − tj |κj Fj (h, tj−1 − tj )eπi(λj tj+μj tj−1) dt1 · · ·dtq−1,

(8.15)

where Fj is defined to be

Fj (h, t)= L−(d−1)
∑

k

e2πiδL2t〈h,k〉βNj (k).

By Poisson summation we have (here ̂Nj denotes the Fourier transform in R
d )

Fj (h, t)= L
∑

y∈Zd
̂Nj

(

L(y − δLt(β1h1, . . . , βdhd))
)

(8.16)

where hj (1 ≤ j ≤ d) are coordinates of h, and we assume βj ∈ [1,2]. Note that
by assumption, see (8.10), we have |̂Nj (ξ)|� 〈ξ 〉−40d , and also |δLtβjhj | ≤ 1/50,
so the sum corresponding to y �= 0 in the above formula contributes at most L−30d ,
hence

|Fj (h, t)|� L−30d +L(1+ δL2t · |h|)−40d � L−30d +L(1+ δLt)−40d (8.17)

using also that |h| ≥ L−1. Moreover, for j with κj = 0, we have an extra δ−1L−1

factor in the above bound, due to (8.10). In particular, for each j , we have
ˆ
|t |≤1

|t |κj |Fj (h, t)|dt � L− 1
20 . (8.18)

Now, let t0 − tq := σ , using (8.15) we can rewrite, for fixed parameters (λj ,μj ),
that

Z =Z(k0, �0, kq+1, �q+1, t0, tq)
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= (C+δ)mtot(iδ/2)qe−2πiδL2σ 〈h,k0〉β · eπiδL2�∗tq eπiλ
∗
q tq · P(σ,h).

Here �∗ := |kq+1|2β − |�q+1|2β + |�0|2β − |k0|2β , and λ∗q is the last component of the
vector (λ∗0, . . . , λ∗q) that satisfies

q−1
∑

j=0

λ∗j (tj+1 − tj )+ λ∗q tq ≡
q
∑

j=1

(λj tj +μj tj−1)

(in particular each λ∗j is a linear combination of λj and μj ). Moreover P is defined
by

P(σ,h)=
ˆ
σ>t1>···>tq−1>0

q−1
∏

j=0

|tj+1 − tj |κj Fj (h, tj+1 − tj )eπiλ
∗
j (tj+1−tj ),

where we replace t0 by σ and tq by 0 in the above integral. By (8.18) and our choice
of q we have

sup
|h|≤(100δL)−1

ˆ
|σ |≤1

|P(σ,h)|dσ � L−
q
20 � L−40d . (8.19)

In summary, we get that

(8.6)= (C+δ)mtot(iδ/2)q

×
ˆ
R

ˆ 1

0
G(λ)P(λ,σ, k0, �0) · δ(t0 − tq − σ)eπiδL2�∗tq eπiλtq dσdλ,

(8.20)

where �∗ is as above, and the functions G and P satisfies

‖〈λ〉 1
18G‖L1 � (C+)mtot , sup

λ,k0,�0

ˆ 1

0
|P(λ,σ, k0, �0)|dσ � L−40d , (8.21)

where the supremum in (k0, �0) is taken here over |k0 − �0| ≤ (100δL)−1.
Now, define the new marked couple Q<sk by removing the irregular chain H◦ from

Qsk ; namely we set (p0, e, f) (see Definition 8.2) to be the three children nodes of n0,
with the order determined by their signs and the relative position of p0, and remove
the other nodes (i.e. (nj ,pj ) for 1 ≤ j ≤ q and mj for 0 ≤ j ≤ q − 1). See Fig. 23.
Denote the scale of Q<sk by n<0 . Note that Q<sk does not depend on the choice of H◦ in
the fixed congruence class, and for the decoration of Q<sk coming from the decoration
of Qsk , we have ζn0�n0 =�∗ for each choice of H◦.

We now consider the sum

∑

Q
Ksg
Q(t, s, k), (8.22)
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Fig. 23 An example of (parts of) Qsk and Q<
sk

, where q = 2. For simplicity, we have also included a
decoration of Qsk and the corresponding decoration for Q<

sk

where Q ranges over all marked couples formed by altering the irregular chain H◦ in
Qsk , and the superscript sg represents the small gap case. With (8.20), we can rewrite
it as

(8.22)= (C+δ)mtot(iδ/2)q ·
(

δ

2Ld−1

)n<0

ζ ∗(Q<sk)
ˆ
R

G(λ)dλ
ˆ 1

0
dσ

×
∑

E <sk

ˆ
˜E<sk
ε̃E <sk

·P(λ,σ, k0, �0)

× eπiλtn0
∏

n∈(N<
sk)
∗
eζnπi·δL2�ntn dtn

(+)
∏

m∈(L<sk)∗
KQ(m,m′) (tmp , t(m′)p , km)

×
∏

m∈(N<
sk )
∗
K∗T (m) (tmp , tm, km). (8.23)

Here in (8.23) the sum is taken over all k-decorations E <sk of Q<sk , and the other
notations are all associated with Q<sk , except ˜E<sk and ε̃E <sk ; instead, for ˜E<sk we add

the one extra condition tnp0
> tn0 + σ (where n

p

0 is the parent of n0) to the original
definition (5.4), and for ε̃E <sk we remove the one factor εkn01kn02kn03

(where n0j are
the children of n0 from left to right) from the original definition (2.8). The functions
G and P , and variables (k0, �0) etc. are as in (8.20), and we may also insert the
small gap restriction 0< |h| ≤ 1/(100δL) in (8.23). Finally, in the functions K∗T (n0)

and KQ(m,m′) for the leaf pair {m,m′} containing p0, the input variable tn0 should be
replaced by tn0 + σ .

Remark 8.5 Due to the absence of εkn01kn02kn03
in ε̃E <sk , in the summation in (8.23), the

decoration (kn) may be resonant at the node n0 (i.e. (kn01 , kn02 , kn03) /∈S, see (2.7)),
but it must not be resonant at any other branching node. This resonance may lead
to an (at most) L4d loss in the counting estimates in Sect. 9, but this can always be
covered by the L−40d gain from P in (8.21). See Remark 9.11 for further explanation.
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8.3.2 Large gap case

Now consider the large gap case |h|> 1/(100δL). Here we will not need a big L−40

power gain as in Sect. 8.3.1, and it is also not necessary to exploit the cancellation.
Therefore, we may fix a single choice for the irregular chain H◦.

We proceed as in Sect. 8.3.1, and in the proof below we may assume k0 �= kq+1 in
the decoration of Qsk . In fact, if k0 = kq+1 then we must have k0 �= kq (as kq �= kq+1
in view of the factor εkq+1�q+1�q in (8.5)), so we may apply the same analysis to the
shorter chain (n0, . . . ,nq−1), which will not make a difference in the proofs in later
sections, as we leave out only one node for this chain.

We now repeat the calculations in Sect. 8.3.1 for (8.5), using again (8.8). The main
difference is that we do not have (8.10). By Poisson summation formula, we still have
(8.16), but now the contribution of y �= 0 is not negligible. Still we may assume |y| ≤
CδL|h|, as the remaining contribution is at most C+L−40d when |t | ≤ 1. Assume
|h1| ≥ C−1|h|, then replacing (8.18) we have

ˆ
|t |≤1

|Fj (h, t)|dt

� L
∑

|y1|�δL|h|

ˆ
R

dt

(1+L|y1 − δLtβ1h1|)40

∑

y′

d
∏

j=2

1

(1+L|yj − δLtβjhj |)40

� 1, (8.24)

where y′ = (y2, . . . , yd). This is because in (8.24), the inner sum over y′ is trivially
bounded by 1, so the integral over t is bounded by C+(δL|h|)−1L−1, and the final
sum over y1 is bounded by C+(δL|h|)−1L−1 · δL|h| = C+L−1, noting also that
δL|h| ≥ C−1.

With (8.24) and the same arguments as before, in the end we can still write (8.5) in
the form of (8.20), together with (8.21), except that the right hand side of the second
inequality of (8.21) will be 1 instead of L−40d . We then define the marked couple
Q<sk in the same way as in Fig. 23, which also does not depend on the choice of H◦
in the fixed congruence class (except when k0 = kq+1 and we remove the chain with
one less node, where Q<sk may depend on the last digit ζnq ; however this is obviously
acceptable and we will ignore it below), so that from (8.20) we can again deduce
(8.23) for (8.22), except that the small gap condition in (8.22) should be replaced by
the large gap condition. Moreover the assumption k0 �= kq+1 means we can recover
the factor εkn01kn02kn03

in (8.23), hence instead of ε̃E <sk we have the original factor
εE −sk

from (2.8) in Definition 2.4. This means (kn1 , kn2, kn3) ∈S for any n ∈ (N<
sk)
∗

and any decoration appearing in (8.23), which will allow us to apply the appropriate
counting estimates in Sect. 9.

In summary, in both small gap and large gap cases we have arrived at the formula
(8.23), possibly with minor differences indicated above.

8.4 Conclusion

In Sect. 8.3 we have fixed a single irregular chain H◦ in Qsk . Since different irregular
chains do not affect each other, we can combine them and get an expression for the
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full sum (8.4). Namely, let Q#
sk be the marked couple obtained by removing all the

irregular chains H◦ from Qsk as described in Fig. 23 (perhaps with minor modifica-
tion in the large gap case as described in Sect. 8.3.2 above, which we will ignore).
This does not depend on the choice of Qsk in the fixed congruence class, nor on the
choice of Q ∈F . We then have

(8.4)= (C+δ)n1

(

δ

2Ld−1

)n′0
ζ ∗(Q#

sk)

×
ˆ
R$

G(λ)dλ

ˆ
[0,1]$

dσ
∑

E #
sk

ˆ
˜E#
sk

εE #
sk
P(λ,σ , k[Q#

sk])
∏

n∈$
eπiλntn

×
∏

n∈(N #
sk)
∗
eζnπi·δL2�ntn dtn

(+)
∏

m∈(L#
sk)
∗
KQ(m,m′) (tmp , t(m′)p , km)

×
∏

m∈(N #
sk)
∗
K∗T (m) (tmp , tm, km). (8.25)

Here in (8.25), n′0 is the scale of Q#
sk and n1 is the sum of all the mtot and q in (8.23),

the summation is taken over all k-decorations E #
sk of Q#

sk , and the other notations
are all associated with Q#

sk , except ˜E#
sk ; instead, for ˜E#

sk we add the extra conditions
tnp > tn + σn (where np is the parent of n) to the original definition (5.4), for n ∈$,
where $ is a subset of the set (N #

sk)
∗ of branching nodes. The vector parameters are

λ= λ[$] ∈ R
$ and σ = σ [$] ∈ [0,1]$ respectively, and k[Q#

sk] is the vector of all
the kn’s. The functions G(λ) and P(λ,σ , k[Q#

sk]) satisfy the bounds

∥

∥

∥

∥

∏

n∈$
〈λn〉 1

18G

∥

∥

∥

∥

L1
� (C+)n, sup

λ,k[Q#
sk]

ˆ
[0,1]$

|P(λ,σ , k[Q#
sk])|dσ � 1. (8.26)

We may also insert various small gap or large gap conditions (including the ones
coming from k0 �= kq+1 in Sect. 8.3.2), and some input variables in some of the
KQ(m,m′) or K∗T (m) functions may be translated by σn, as in (8.23) in Sect. 8.3.1.
Finally, the function εE #

sk
may miss a few εknkn1kn2kn3

factors compared to the original

definition (2.8), but for each such missing factor we can gain a power L−40d on the
right hand side in the second inequality in (8.26).

At this point, we may expand the functions KQ(m,m′) and K∗T (m) (or their leading

or remainder contributions) using their Fourier L1 (or Xκloc) bounds, and combine the
K factors and the P factor in (8.25), to further reduce to the expression

(8.4)= (C+δ)
n−n′0

2

(

δ

2Ld−1

)n′0
ζ ∗(Q#

sk)

×
ˆ
R%×R2

G(λ) · eπi(λt+μs) dλ

ˆ
[0,1]$

dσ
∑

E #
sk

ˆ
˜E#
sk

εE #
sk
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×
∏

n∈%
eζnπi·δL2�ntn

∏

n∈%
eπiλntn dtn ·Xtot(λ,σ , k[Q#

sk]). (8.27)

Here in (8.27) the set % = (N #
sk)
∗ and λ = (λ[%], λ,μ) ∈ R

% × R
2, the function

G is different from the one in (8.25), but still satisfies the same first inequality in

(8.26) (with $ replaced by %, and the extra factor 〈λ〉 1
18 〈μ〉 1

18 on the left hand side).
Using the second bound in (8.26), the Xκloc bounds for KQ(m,m′) and K∗T (m) and their
components, and the definition of markings L and R, we deduce that the function
Xtot satisfies

ˆ
[0,1]$

|Xtot(λ,σ , k[Q#
sk])|dσ �

(+)
∏

l∈(L#
sk)
∗
〈kl〉−40d ·L−2νr0 (8.28)

uniformly in λ, where r0 is the total number of branching nodes and leaf pairs that
are marked R in the marked couple Q#

sk . In (8.28) we can also gain a power L−40d

per missing factor εknkn1kn2kn3
in εE #

sk
, as described above.

Note that the couple Q#
sk is still prime. Moreover by definition, it does not contain

an irregular chain of length > 103d with all branching nodes and leaf pairs marked
L. In particular, if r0 is the number of branching nodes and leaf pairs that are marked
R, rirr is the number of maximal irregular chains, and Q is the total length of these
irregular chains, then we have

Q≤ C(r0 + rirr). (8.29)

Based on this information, as well as the first inequality in (8.26) and (8.28), we will
establish an absolute upper bound for the expression (8.27). This will be done in
Sects. 9 and 10.

9 Non-regular couples II: improved counting estimates

We shall reduce the estimate of (8.27) to bounding the number of solutions to some
counting problem, see (10.17). In this section we first introduce and study this count-
ing problem, and then use it to control (8.27) in Sect. 10.

9.1 Couples and molecules

To study the counting problem, we introduce the notion of molecules, which is more
flexible than couples.

Definition 9.1 A molecule M is a directed graph, formed by vertices (called atoms)
and edges (called bonds), where multiple and self-connecting bonds are allowed. We
will write v ∈M and � ∈M for atoms v and bonds � in M; we also write � ∼ v if
v is one of the two endpoints of �. We further require that (i) each atom has at most
2 outgoing bonds and at most 2 incoming bonds (a self-connecting bond counts as
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outgoing once and incoming once), and (ii) there is no saturated (connected) com-
ponent, where a component is saturated means that it contains only degree 4 atoms.
Here and below connectedness is always understood in terms of undirected graphs.

It is clear that a subgraph of a molecule is still a molecule. We will be interested
in certain special subgraphs (or types of subgraph) of molecules, which we will refer
to as functional groups. We introduce the following notation for molecules M, which
will be used throughout this section: V is the number of atoms, Vj (0≤ j ≤ 4) is the
number of degree j atoms (V0 is the number of isolated atoms), E is the number of
bonds, F is the number of components. We also define

χ :=E − V + F, η := V3 + 2V2 + 3V1 + 4V0 − 4F,

η∗ := V3 + 2V2 + 2V1 + 2V0 − 2F.
(9.1)

This χ is called the circuit rank of M and represents the number of independent
cycles; η and η∗ are auxiliary quantities designed to control several types of steps in
the algorithm, see Sect. 9.5.

Proposition 9.2 In a molecule any self-connecting bond must be single, and between
any two atoms there is at most a triple bond. A molecule of n≥ 1 atoms has at most
2n− 1 bonds; if it has exactly 2n− 1 bonds we will call it a base molecule. Then, a
base molecule must be connected. It either has two degree 3 atoms or one degree 2
atom, while all other atoms have degree 4.

Proof In a molecule each atom has degree ≤ 4, so the number of bonds is at most 2n.
Equality cannot hold when n > 0 because otherwise each atom would have degree
4, contradicting (ii) in Definition 9.1. For the same reason there cannot be quadruple
bonds or self-connecting double bonds. For a base molecule, the degrees of atoms
have to be as stated because the total degree is 4n− 2. If it is not connected, then it
has at least two components, so at least one of them will contain only degree 4 atoms,
contradiction. �

Definition 9.3 Let Q be a nontrivial couple, we will define a directed graph M as-
sociated with Q as follows. The atoms are all 4-node subsets of Q that contain a
branching node n ∈N ∗ and its three children nodes. For any two atoms, we connect
them by a bond if either (i) a branching node is the parent in one atom and a child
in the other, or (ii) two leaves from these two atoms are paired with each other. We
call this bond a PC (parent-child) bond in case (i) and a LP (leaf-pair) bond in case
(ii). Note that multiple bonds are possible, and a self-connecting bond occurs when
two sibling leaves are paired. This definition applies even if one of the trees of Q is
trivial; note that in this case the root of the trivial tree is regarded as a leaf instead of
a branching node.

We fix a direction of each bond as follows. If a bond corresponds to a leaf pair,
then it goes from the atom containing the leaf with − sign to the atom containing
the leaf with + sign. If a bond corresponds to a branching node n that is not a root,
suppose n is the parent in the atom v1 and is a child in the atom v2, then the bond
goes from v1 to v2 if n has + sign, and go from v2 to v1 otherwise. See Fig. 24 for
an example.
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Fig. 24 A base molecule (Definition 9.3), which comes from the couple in Definition 2.2. Here each atom
has the same label as its parent node in the couple

Proposition 9.4 The directed graph M defined in Definition 9.3 is a base molecule.

Proof Let n ≥ 1 be the scale of Q, then M has n atoms and 2n− 1 bonds, because
the atoms are in one-to-one correspondence with branching nodes, and the bonds are
in one-to-one correspondence with non-root branching nodes and non-root leaf pairs.
The statements about outgoing and incoming bonds follow directly from Definition
9.3, and it is also easy to check that M is connected. Therefore M is a base molecule.

�

Remark 9.5 In the proof below (for example in some figures), we may omit the di-
rections of some bonds, if these directions do not play a significant role; however
they still need to satisfy the conditions in Definition 9.1. In the convention we use,
arrows indicate bonds with fixed direction, segments without arrow indicate bonds
with uncertain direction, and dashed segments indicate possible bond(s) connecting
the given atom(s) to the rest of the molecule. Boxes with dashed boundary indicate
components after removing certain bonds or atoms.

Proposition 9.6 Given a base molecule M with n atoms as in Definition 9.1, the
number of couples Q such that the corresponding molecule equals M is at most Cn.

Proof For each atom v ∈M, each bond � ∼ v corresponds to a unique node n ∈ v.
We may assign a code to this pair (v, �) indicating the relative position of n in v (say
code 0 if n is the parent in this atom, and codes 1, 2 or 3 if n is the left, mid or
right child in this atom). In this way we get an encoded molecule which has a code
assigned to each pair (v, �) where �∼ v. Clearly if M is fixed then the corresponding
encoded molecule has at most Cn possibilities, so it suffices to show that Q can be
reconstructed from the encoded molecule.
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Fig. 25 The two types of
molecular chains. For type II,
the single bonds of the same
color are paired single bonds,
and must have opposite
directions. The directions of the
double bonds are not drawn
here, but they must satisfy the
conditions in Proposition 9.2

In fact, if the encoded molecule is fixed, then the branching nodes of Q uniquely
correspond to the atoms of M. Moreover, the branching node corresponding to v2 is
the α-th child of the branching node corresponding to v1, if and only if v1 and v2
are connected by a bond � such that the codes of (v1, �) and (v2, �) are α and 0 re-
spectively. Next, we can determine the leaves of Q by putting a leaf as the α-th child
for each branching node and each α, as long as this position is not occupied by an-
other branching node; moreover, the α-th child of the branching node corresponding
to v1 and the β-th child of the branching node corresponding to v2 are paired, if and
only if v1 and v2 are connected by a bond � such that the codes of (v1, �) and (v2, �)

are α and β respectively. Therefore Q can be uniquely reconstructed (if one of the
trees in Q is trivial the reconstruction will be slightly different but this does affect the
result). �

Definition 9.7 We define two functional groups, which we call type I and type II
(molecular) chains, as in Fig. 25. Note that type I chains are formed by double bonds,
and type II chains are formed by double bonds and pairs of single bonds. For type I
chains, we require that the two bonds in any double bond have opposite directions.
For type II chains, we require that any pair of single bonds have opposite directions,
see Fig. 25.

We now define the counting problem associated with a molecule (or a couple, see
Remark 9.9), which is the main thing we study in the rest of this section.

Definition 9.8 Given a molecule M and a set S of atoms. Suppose we fix (i) a� ∈ Z
d
L

for each bond � ∈M, (ii) cv ∈ Z
d
L for each non-isolated atom v ∈M, assuming cv = 0

if v has degree 4, (iii) !v ∈R for each non-isolated atom v, and (iv) fv ∈ Z
d
L for each

non-isolated v ∈ S with d(v) < 4. Define D(M) to be the set of vectors k[M] :=
(k�)�∈M, such that each k� ∈ Z

d
L and |k� − a�| ≤ 1, and

∑

�∼v
ζv,�k� = cv,

∣

∣

∣

∣

∑

�∼v
ζv,�|k�|2β − !v

∣

∣

∣

∣

≤ δ−1L−2 (9.2)

for each non-isolated atom v. Here in (9.2) the sum is taken over all bonds �∼ v, and
ζv,� equals 1 if � is outgoing from v, and equals −1 otherwise. We also require that
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(a) the values of k� for different �∼ v are all equal given each non-isolated v ∈ S, and
this value equals fv if also d(v) < 4, and (b) for any non-isolated v /∈ S and any bonds
�1, �2 ∼ v of opposite directions (viewing from v), we have k�1 �= k�2 . Note that this
actually makes D depending on S, but we will omit this dependence for simplicity.
We say an atom v is degenerate if v ∈ S, and is tame if moreover d(v) < 4.

In addition, we may add some extra conditions to the definition of D(M). These
conditions are independent of the parameters, and have the form of (combinations of)
(k�1 − k�2 ∈ E) for some bonds �1, �2 ∈M and fixed subsets E ⊂ Z

d
L. Let Ext be

the set of these extra conditions, and denote the corresponding set of vectors k[M] be
D(M,Ext). We are interested in the quantities sup #D(M,Ext), where the supre-
mum is taken over all possible choices of parameters (a�, cv,!v, fv).

Remark 9.9 The vectors k[M] will come from decorations of the couple Q from
which M is obtained. In fact, if k[Q] is a k-decoration of Q, then it uniquely cor-
responds to a vector k[M]. It is easy to check, using Definitions 2.4 and 9.8, that
∑

�∼v ζv,�k� equals 0 if d(v) ∈ {2,4} and equals ±k if d(v)= 3, and
∑

�∼v ζv,�|k�|2β
equals 0 if d(v) = 2, equals −ζn�n if d(v) = 4 (where n is the parent node in the
atom v), and equals −ζn(�n ± |k|2β) if d(v) = 3. Moreover, if (kn1 , kn2 , kn3) ∈S,
then either the values of k� for different �∼ v are all equal (and this value equals k
if d(v) < 4), or for any bonds �1, �2 ∼ v of opposite directions we have k�1 �= k�2 .
Note that a degenerate atom corresponds exactly to a branching node n for which
εkn1kn2kn3

=−1.

Proposition 9.10 (A rigidity theorem) Let M be a base molecule of n atoms, where
1 ≤ n≤ (logL)3, that does not contain any triple bond. Then, D(M) is the union of
at most Cn subsets. Each subset has the form D(M,Ext), and there exists 1≤ r ≤ n,
and a collection of at most Cr molecular chains of either type I or type II in M, such
that (i) the number of atoms not in one of these chains is at most Cr , and (ii) for any
type II chain in the collection and any two paired single bonds (�1, �2) in this chain
(see Fig. 25), the set Ext includes the condition (k�1 = k�2). Moreover we have the
estimate that

sup #D(M,Ext)≤ (C+)nδ− n+m
2 L(d−1)n−2νr , (9.3)

where m is the number of atoms in the union of type I chains.

Remark 9.11 In view of Remark 8.5, in Definition 9.8 we may also fix some set S∗ of
atoms such that neither (a) nor (b) is required for v ∈ S∗, but we are allowed to mul-
tiply the left hand side of (9.3) by L−40d·|S∗|. In this way we can restate Proposition
9.10 appropriately, and the new result can be easily proved with little difference in
the arguments, due to the large power gains. For simplicity we will not include this
in the proof below.

9.2 The general framework

The framework of proving Proposition 9.10 is as follows. We will perform a sequence
of operations on M, following some specific algorithm, until reducing M to isolated
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atoms only. The operations are usually removing bonds or atoms from M, but in
some cases may also add new bonds to M. As is standard in graph theory, whenever
we remove some atoms, we also automatically remove all bonds connected to them.

Together with each operation we also specify an extra condition, which has the
form appearing in Ext and will be denoted by �Ext. This is usually ∅ but in some
cases may be nontrivial. The operation and the extra condition together is called a
step. A sequence of steps ending at isolated atoms is called a track. In each track,
the time immediately after a step and before the next step is called a timespot. In our
algorithm, there are timespots, which we call checkpoints, where the next step has
two choices, leading to different tracks. Any track will contain at most Cn steps, and
the total number of tracks is at most Cn.

For each step, we use the subscript (·)pre to denote any object before this step,
and use (·)pos to denote the object after this step. If X is a real-valued variable we
define �X = Xpos −Xpre. During each track we will monitor the values of various
quantities associated with M, such as χ , η, etc. We will also retrospectively (i.e. in
the opposite direction of the steps) define two variables (γ, κ) and a set Ext of extra
conditions. In the end state with only isolated atoms, we set γ = κ = 0 and Ext=∅.
For each step we will fix the value of �γ and �κ , and will determine Extpre from
Extpos and �Ext. Given a track and a timespot t∗, consider all the possible tracks
that coincide with the given track up to t∗; these different tracks lead to different
values of γ and Ext calculated at t∗, and we define ϒ to be the collection of all such
possible Ext’s.

We will set our steps and algorithm in such a way that, for any timespot in any
track, the following conditions are always satisfied:

• Condition 1: M is always a molecule;
• Condition 2: any vector k[M] must satisfy one of the conditions Ext ∈ϒ ;
• Condition 3: if M consists of components Mj , then Ext is the union of Extj

which only involves bonds in Mj ;
• Condition 4: sup #D(M,Ext) ≤ (C+)n0δ−κL(d−1)γ , where n0 is the number of

remaining steps in this track.

The above conditions are trivially satisfied in the end state, so we only need to ver-
ify that they are preserved during the execution of the algorithm (Conditions 2–4 will
be verified retrospectively). Now Condition 3 is easy to verify as the operation in each
step will be restricted to one component of M, and so will the extra condition �Ext.
Condition 1 will be preserved if an operation only removes bonds or atoms; in the
exceptional cases where new bonds are added, we only need to show that the (outgo-
ing or incoming) degree of each atom does not increase, and no saturated component
is created, which will be done within the definition of steps. Condition 2 depends on
the algorithm, but at each non-checkpoint where the next step has only one choice,
we will always set Extpre = Extpos, which preserves Condition 2; checkpoints will
only appear in specific places where we will verify Condition 2 within the definition
of the algorithm. Finally, for Condition 4, we only need to show that

sup #D(Mpre,Extpre)≤ C+δ�κL−(d−1)�γ · sup #D(Mpos,Extpos), (9.4)

which will be one of the key components of the proof.
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Fig. 26 A bridge and a special single bond (see Definition 9.12). The bridge can also be seen as a special
case of Lemma 9.14 below with r = 1

In Sect. 9.3 we define all the steps together with (�γ,�κ) and �Ext, then prove
(9.4), and study some properties of these steps which will be used in analyzing the
algorithm. The algorithm is described in Sect. 9.4, and we use it to prove Proposition
9.10 in Sect. 9.5.

9.2.1 Some useful facts

We record some definitions and facts which will be frequently used below.

Definition 9.12 Given a molecule M, we say a single bond � is a bridge if removing
� adds one new component, see Fig. 26. We say � is special if both atoms connected
by � have degree 3, and each of them has a double edge, connected to two different
atoms.

Lemma 9.13 Suppose M has no bridge. Suppose we remove a set Y of atoms from M

together with all the bonds connecting to them, and consider the possible new compo-
nents generated by this operation. Then in M, the total number of bonds connecting
each component to Y is at least 2. In particular, the number of such components is at
most h/2, where h is the total number of bonds connecting Y to Y c .

Proof If Z is one of the components and there is only one bond � connecting Z to Y ,
then since Z cannot be connected to any other component, we know that � is a bridge
in the original M. The second statement follows immediately. �

Lemma 9.14 Suppose X and X′ form a partition of atoms in (some component of)
M, and �1, . . . , �r are all the bonds connecting X to X′. Then for any k[M] ∈D(M)

we have

r
∑

j=1

ζj k�j = c0,

∣

∣

∣

∣

r
∑

j=1

ζj |k�j |2β − !0

∣

∣

∣

∣

≤ nδ−1L−2 (9.5)

where n is the number of atoms in M (note that n ≤ (logL)3), ζj equals 1 or −1
depending on whether �j goes from X to X′ or otherwise, c0 is a constant vector
depending only on the parameters (cv), and !0 is a constant depending only on (!v).
In particular, if r = 1 (which means �1 is a bridge) then k�1 is uniquely determined
by (cv).

Proof This follows from summing (9.2) for all v ∈ X, and noticing that k�, where �
is a bond connecting two atoms in X, appears exactly twice with opposite signs. �
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9.3 The steps

We start by defining all different types of steps. Recall the quantities defined in (9.1).
We will always have either �γ =�χ or �γ ≥�χ + 1

6(d−1) . In these two cases we
call the step normal or good; good steps will be indicated by the letter “G” appearing
in the names.

9.3.1 Degenerate atoms

In this step, assume v is a non-isolated degenerate atom. Note that any atom with
self-connecting bond must be degenerate, otherwise D(M)=∅ trivially.

• Step (DA): we remove the atom v, and all bonds connecting to it, and set �Ext=
∅.

Suppose j ∈ {0,1} is the number of self-connecting bonds at v, and h is the num-
ber of other atoms having bond(s) with v. Then for (DA) we have �E =−d(v)+ j ,
�V = −1 and �F ≤ h − 1. We define �γ = 0 if d(v) ≤ 3 or if d(v) = 4 and
�F + j ≥ 2; otherwise let �γ = −2 + 1

4 . We also define �κ = 0, and Extpre =
Extpos.

Proposition 9.15 The step (DA) is either normal or good, and it satisfies (9.4). If
d(v)≥ 2 and the step is normal we must have �η∗ ≤ −2.

Proof First, by counting the degree of v we know h+ 2j ≤ d(v), so �χ ≤−d(v)+
j + h ≤ 0. If �γ = 0, then we have a normal or good step; if �γ = −2+ 1

4 , then
d(v)= 4 and �F + j ≤ 1, so �χ =−4+ j +�F + 1 ≤ −2, and we have a good
step. Now suppose d(v)≥ 2 and the step is normal, then�χ = 0, hence�F = h− 1
and d(v)= j + h, which means that j = 0, d(v)= h, and each bond connecting to v
is a single bond. We then have�F = d(v)− 1. As for the quantity ρ∗ := V3+ 2V2+
2V1 + 2V0, the contribution to ρ∗ of each of the d(v) atoms connected to v changes
from 0 to 1, or 1 to 2, or 2 to 2 after the removal of v. The contribution of v itself to ρ∗
is 4− d(v) as d(v)≥ 2. We conclude that �η∗ ≤ d(v)− 2(d(v)− 1)− (4− d(v))=
−2, as desired.

Now we prove (9.4). Recall that v is a degenerate atom, so k� are all equal for �∼
v, let this value be k∗. If k[Mpre] ∈D(Mpre,Extpre) and k∗ is fixed, then k[Mpos],
which is the restriction of k[Mpre] to the bonds in Mpos, belongs to D(Mpos,Extpos)

with some new parameters that depend on the original parameters as well as k∗ (note
that, if a degenerate atom v′ that is not tame in Mpre becomes tame in Mpos, then v′
must be adjacent to v, so the value of k�′ for �′ ∼ v′ must be fixed, once k∗ is fixed).
This implies that

sup #D(Mpre,Extpre)≤N · sup #D(Mpos,Extpos)

where N is the number of choices for k∗. If �γ = −2 + 1
4 , this already implies

(9.4), since N � Ld and (d − 1)(2− 1
4 ) > d . If �γ = 0, we only need to show that

k∗ is uniquely determined. This is true by definition if d(v) ≤ 3; if d(v) = 4 then
1+�F > 2− j , but the number of non-self-connecting bonds at v is 2(2− j), so
Lemma 9.13 implies that some bond �1 connecting to v must be a bridge. By Lemma
9.14 we know that k�1 is constant, hence k∗ is also constant and (9.4) is still true. �
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9.3.2 Triple bonds

From now on, in all subsequent steps, we assume Mpre has no degenerate atom (and
hence no self-connecting bond). In the current step, assume there is a triple bond
between two atoms v1 and v2 in Mpre, such that d(v1) and d(v2) are not both 4. In
(TB-1) we assume d(v1) = d(v2) = 3, so the triple bond is separated from the rest
of the molecule; in (TB-2) we assume d(v1) = 3 and d(v2) = 4, so v2 has an extra
single bond.

• Steps (TB-1)–(TB2): we remove atoms v1, v2 and all bonds connecting to them,
and set �Ext=∅.

For (TB-1) we have (�V,�E,�F) = (−2,−3,−1), and for (TB-2), we have
(�V,�E,�F) = (−2,−4,0). For both steps we define �γ = −2, �κ = −1 and
Extpre = Extpos.

Proposition 9.16 The steps (TB-1) and (TB-2) are normal, and satisfy (9.4).

Proof These steps are normal by definition, as�χ =−2. To prove (9.4), let the bonds
in the triple bond be �j (1≤ j ≤ 3), and let the extra single bond in the case of (TB-2)
be �4. For (TB-2) we have that k�4 is constant due to Lemma 9.14, and in both cases
(k�1 , k�2, k�3) satisfies the system (A.14) in Lemma A.9, thanks to (9.2). By Lemma
A.9 (2) we have at most C+δ−1L2(d−1) choices for these (k�j ); by fixing their values
and reducing to k[Mpos] as in the proof of Proposition 9.15 we can prove (9.4). �

9.3.3 Bridge removal

In all subsequent steps, we assume Mpre has no triple bonds. In the current step, we
assume Mpre contains a bridge �, which is a single bond connecting atoms v1 and v2.

• Step (BR): we remove the bond �, and set �Ext=∅.

For (BR) we have (�V,�E,�F)= (0,−1,1) because removing a bridge adds one
component. We also define �γ =�κ = 0 and Extpre = Extpos.

Proposition 9.17 The step (BR) is normal, and satisfies (9.4). Moreover we have
�η=−2 and �V3 ≥−2, with equality holding only when d(v1)= d(v2)= 3.

Proof The step is normal because �χ = 0. Let the bridge be �, then the value of k�
must be fixed by Lemma 9.14. Once k� is fixed, we can reduce to k[Mpos] as before
and this leads to (9.4).

The effect of (BR) reduces the degrees of two atoms each by 1, and adds one new
component. By definition of η we have�η= 2−4=−2, because the contribution to
ρ := V3+ 2V2+ 3V1+ 4V0 of each of the two atoms connected by � changes from 0
to 1, or 1 to 2, or 2 to 3, or 3 to 4 after the removal of �. Moreover �V3 ≥−2 is clear
from definition, and equality holds only when both vj before removal of the bridge
have degree 3. �
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Fig. 27 The functional group involved in steps (3S3-1)–(3S3-4G). In the first two pictures {v3, v5} are
{v4, v6} are not in the same component after removing v1 and v2, while in the third picture they are

Fig. 28 The functional groups involved in step (3S3-5G). In total there are 6 scenarios

9.3.4 Degree 3 atoms connected by a single bond

In all subsequent steps, we assume there is no bridge in Mpre. In the current step,
we assume that there are two degree 3 atoms v1 and v2, connected by a single bond
�1. Then Mpre must contain one of the functional groups shown in Figs. 27 and 28.
Recall the definition of good and bad vectors in Lemma A.8.

In steps (3S3-1)–(3S3-4G) we assume that v1 and v2 each has two more single
bonds �2, �3 and �4, �5, connecting to four different atoms v3, v4 and v5, v6 labeled
as in Fig. 27. In (3S3-1)–(3S3-3G) we assume that (i) after removing {v1, v2} and
all bonds connecting to them, {v3, v5} is in one new component, and {v4, v6} is in
the other new component, and that (ii) the bonds �2 and �4 have opposite directions
(viewing from {v1, v2}), and the bonds �3 and �5 also have opposite directions. In
(3S3-4G) we assume either (i) or (ii) is false. Moreover, in (3S3-1) we assume that
d(v3) = · · · = d(v6) = 4, and in (3S3-3G) we assume that d(v3) and d(v5) are not
both 4. Finally, in (3S3-5G) we assume the functional groups around v1 and v2 are
like the ones shown in Fig. 28.

• Step (3S3-1): we remove the atoms {v1, v2} and all (five) bonds connecting to them.
In this step we set�Ext to be the condition “k�2 = k�4 and k�3 = k�5 and k�1 − k�3

is a good vector” if �1 and �3 have opposite directions (viewing from v1), and to
be the condition “k�2 = k�4 and k�3 = k�5 ” if �1 and �3 have the same direction.
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• Step (3S3-2G): we remove {v1, v2} and all bonds connecting to them, but set�Ext
to be the negation (i.e. logical NOT) of the condition in (3S3-1).

• Step (3S3-3G): we remove {v1, v2} and all bonds connecting to them, but add a
new bond �6 between v3 and v5 (not drawn in Fig. 27), which goes from v3 to v5 if
�2 goes from v3 to v1 and vice versa. We set �Ext to be the condition in (3S3-1).

• Step (3S3-4G)–(3S3-5G): we remove {v1, v2} and all bonds connecting to them,
and set �Ext=∅.

We remark that (3S3-1)–(3S3-5G) are just the possible steps one can perform;
the exact choice of steps and order of performing will be fixed in the algorithm in
Sect. 9.4 below. For (3S3-1) and (3S3-2G) we have (�V,�E,�F)= (−2,−5,1),
and for (3S3-3G) we have (�V,�E,�F)= (−2,−4,1). For (3S3-4G), if (i) is not
violated, then we still have (�V,�E,�F)= (−2,−5,1); if (i) is violated then we
must have (�V,�E,�F)= (−2,−5,0). This is because �F ≤ 1 by Lemma 9.13,
and if�F = 1 then we may assume {v3, v5} is in one component and {v4, v6} is in the
other component after the removing {v1, v2}, since otherwise �1 would be a bridge.
As for (3S3-5G), the calculation depends on the scenario. For Scenarios 1 and 2, we
have (�V,�E,�F) equals either (−2,−5,0) or (−2,−5,1), while for Scenarios
3–6 we must have (�V,�E,�F)= (−2,−5,0); these can be verified basically by
using Lemma 9.13.

We define �γ =−2 for (3S3-1), and �γ =�χ + 1
6(d−1) for all other steps. We

also define �κ =−1 for (3S3-1) and (3S3-3G), and�κ =−2 for all other steps. For
the four steps other than (3S3-3G), we define Extpre = Extpos ∪�Ext, while for
(3S3-3G) we define

Extpre = Ext′pos ∪�Ext, (9.6)

where Ext′pos is obtained by replacing each occurrence of k�6 in Extpos with k�2 .

Proposition 9.18 Each of the five steps verifies Condition 1 and satisfies (9.4). More-
over (3S3-1) is normal and satisfies �η=−2 and �V3 = 2, while the other four are
good.

Proof We only need to verify Condition 1 for (3S3-3G), which adds a new bond to
the molecule. This is true because the new bond is added in the component containing
v3 and v5, and this component does not become saturated because d(v3) and d(v5)

are not both 4. Moreover (3S3-1) is normal and the other four steps are good by
definition, and for (3S3-1) we have �η =−2 and �V3 = 2 since originally d(v3)=
· · · = d(v6)= 4. Now we need to prove (9.4).

For (3S3-1), as part of Extpre we have k�2 = k�4 and k�3 = k�5 , and (k�1 , k�2, k�3)

satisfies the system (A.14) in Lemma A.9 due to (9.2). Therefore we have at most
C+δ−1L2(d−1) choices for these due to Lemma A.9 (2), and if (k�1, k�2, k�3) is fixed,
we can reduce to k[Mpos] and prove (9.4).

For (3S3-2G), (3S3-4G) and (3S3-5G) the argument is the same, except that now
(k�1 , . . . , k�5) satisfies the system (A.17) for some choice of signs (ζ1, . . . , ζ5). If

�χ =−3 then the number of choices for (k�1, . . . , k�5) is at most C+δ−2L3(d−1)− 1
4

by Lemma A.9 (5), which proves (9.4); so we only need to consider �χ = −2. In
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(3S3-2G) and (3S3-4G), by using Lemma 9.14 we know that in addition to (A.17)
we also have (A.19); in (3S3-5G), if �χ =−2 then we must be in Scenarios 1 or 2,
and it is easy to check that (A.19) also holds. As such, Lemma A.9 (7) bounds the

number of choices for (k�1, . . . , k�5) by C+δ−2L3d−3− 1
6 , which proves (9.4), unless

(ζ2, ζ3) = (ζ4, ζ5) and (k�2 , k�3) = (k�4 , k�5). This last case cannot happen in (3S3-
4G) due to the directions of �2 and �4, nor in (3S3-5G) as v3 cannot be degenerate,
so we only need to consider (3S3-2G), where Extpre implies that �1 and �3 have
opposite directions, and k�1 − k�3 is a bad vector. By Lemma A.8, we know k�2 has

at most C+Ld−1− 1
4 choices, and when k�2 = k�4 is fixed, the number of choices

for (k�1, k�3, k�5) is at most C+δ−1Ld−1 using Lemma A.9 (1). Thus the number of

choices for (k�1, . . . , k�5) is at most C+δ−1L2(d−1)− 1
4 , which proves (9.4).

Finally consider (3S3-3G). Note that Mpos has two components (assuming Mpre is
connected; otherwise consider the current component of Mpre), namely M

′ containing
{v3, v5}, and M

′′ containing {v4, v6}. Moreover by Condition 3, Extpos is the union
of Ext′ and Ext′′, which only involve bonds in M

′ and M
′′ respectively. For any

k[Mpre] ∈D(Mpre,Extpre) and assuming k�2 = k�4 , we can define

k′[Mpos] = (k′�)�∈Mpos , k′� =
{

k�, � �= �6,

k�2, �= �6.
(9.7)

Note that k′[Mpos] can be divided into k′[M′] and k′[M′′], the latter being the restric-
tion of k[Mpre] to M

′′. Moreover, we can check that k′[M′] belongs to D(M′,Ext′)
with essentially the original parameters (where in the place of a�6 we have a�2 ). Once
k′[M′] is fixed, in particular k�2 = k�4 = k′�6

is fixed, then k�1 and k�3 = k�5 satisfy the
system (A.13) in Lemma A.9. If �1 and �3 have the same direction, then the number

of choices for (k�1 , k�3) is at most C+δ−1Ld−1− 1
3 by Lemma A.9 (1); if they have

opposite directions, then k�1 − k�3 must be a good vector due to Extpre. Repeating
the argument in the proof of Lemma A.9 (1), and using the definition of good vectors
(decomposing intervals of length δ−1L−2 into intervals of length L−2 if necessary),

we see that the number of choices for (k�1 , k�3) is at most C+δ−1Ld−1− 1
4 . In either

case, once k�3 = k�5 is fixed, k′[M′′] will belong to D(M′′,Ext′′) with some new
parameters that depend on the original parameters as well as k�3 . This implies that

sup #D(Mpre,Extpre)≤ sup #D(M′,Ext′) ·C+δ−1Ld−1− 1
4 · sup #D(M′′,Ext′′),

however since Mpos is the disjoint union of M′ and M
′′ and Extpos is the union of

Ext′ and Ext′′, it is easy to see that

sup #D(M′,Ext′) · sup #D(M′′,Ext′′)= sup #D(Mpos,Extpos),

which proves (9.4). �

9.3.5 Degree 3 atoms connected by a double bond

In this step, we assume there are two degree 3 atoms v1 and v2, connected by a double
bond (�1, �2), which are also connected to two other atoms v3 and v4 by two single
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Fig. 29 The functional groups involved in steps (3D3-1)–(3D3-5G)

Fig. 30 The functional group involved in step (3D3-6G). In the left picture �5 becomes a bridge after
removing {v1, v2}, while in the right picture it does not

bonds �3 and �4, see Figs. 29 and 30. In (3D3-1)–(3D3-3G) and (3D3-6G) we assume
v3 �= v4 and �3 and �4 are in opposite directions (viewing from {v1, v2}); in (3D3-1)
we assume d(v3)= d(v4)= 4, and in (3D3-3G) we assume that not all atoms in the
current component other than {v1, v2} have degree 4. In (3D3-4G) we assume v3 �= v4
and �3 and �4 are in the same direction, and in (3D3-5G) we assume v3 = v4. Finally,
in (3D3-6G) we assume that v3 is connected to v4 via a single bond �5, and v3 and
v4 are each connected to different atoms v5 and v6 via double bonds (�6, �7) and
(�8, �9), see Fig. 30. Recall the definition of good and bad vectors in Lemma A.8.

• Step (3D3-1): we remove the atoms {v1, v2} and all (four) bonds connecting to
them. In this step we set �Ext to be the condition that “k�3 = k�4 and k�1 − k�2

is a good vector” if �1 and �2 have opposite directions, and to be the condition
“k�3 = k�4 ” if �1 and �2 have the same direction.

• Step (3D3-2G): we remove {v1, v2} and all bonds connecting to them, but set
�Ext to be the negation (i.e. logical NOT) of the condition in (3D3-1).

• Step (3D3-3G): we remove {v1, v2} and all bonds connecting to them, but add a
new bond �5 between v3 and v4 (not drawn in Fig. 29), which goes from v4 to v3 if
�3 goes from v1 to v3 and vice versa. We set �Ext to be the condition in (3D3-1).

• Steps (3D3-4G)–(3D3-5G): we remove v1 and v2 and all bonds connecting to
them, and set �Ext=∅.

• Step (3D3-6G): we remove the atoms {v1, . . . , v4} and all (nine) bonds connecting
to them, and set �Ext=∅.

For the four steps other than (3D3-3G) and (3D3-6G) we have (�V,�E,�F)=
(−2,−4,0), where�F = 0 due to Lemma 9.13, since Mpre has no bridge. For (3D3-



674 Y. Deng, Z. Hani

3G) we have (�V,�E,�F) = (−2,−3,0) for the same reason. Finally for (3D3-
6G) we have (�V,�E,�F) equals either (−4,−9,0) (if �5 does not become a
bridge after removing {v1, v2}) or (−4,−9,1) (if it does).

Define (�γ,�κ) = (−2,−1) for (3D3-1), (�γ,�κ) = (−1 + 1
4(d−1) ,−1) for

(3D3-3G), (�γ,�κ) = (�χ + 1
6(d−1) ,−4) for (3D3-6G), and (�γ,�κ) = (−2 +

1
4(d−1) ,−2) for the other three steps. For the five steps other than (3D3-3G), which
do not add new bonds, we define Extpre = Extpos ∪�Ext; for (3D3-3G) we define
Extpre as in (9.6), but in Ext′pos we replace each occurrence of k�5 by k�3 .

Proposition 9.19 Each of the six steps verifies Condition 1 and satisfies (9.4). More-
over (3D3-1) is normal and satisfies �η=�V3 = 0, while the other five are good.

Proof We only need to verify Condition 1 for (3D3-3G). This is because the opera-
tion does not add any new component, and the existing component does not become
saturated, because by assumption at least one atom in the current component other
than v1 and v2 does not have degree 4. Moreover (3D3-1) is normal and the other
four steps are good, which follows directly from definition, and in (3D3-1) we are
assuming d(v3)= d(v4)= 4 before the operation, so it is clear that �η =�V3 = 0.
Thus it suffices to prove (9.4).

For (3D3-1), as part of Extpre we have k�3 = k�4 , and (k�1, k�2, k�3) satisfies the
system (A.14) in Lemma A.9 due to (9.2). Therefore we have at most C+δ−1L2(d−1)

choices for these due to Lemma A.9, and if (k�1, k�2 , k�3) is fixed, we can reduce to
k[Mpos] and prove (9.4).

For (3D3-2G), (3D3-4G) and (3D3-5G) the argument is the same, except that now
(k�1 , . . . , k�4) has to satisfy the system (A.16) with some choice of signs (ζ1, . . . , ζ4).

By Lemma A.9 (4), we get at most C+δ−2L2(d−1)− 1
4 choices for (k�1 , . . . , k�4),

which proves (9.4), unless ζ3 = ζ4 and k�3 = k�4 . The latter case cannot happen in
(3D3-4G) due to the directions of �3 and �4, nor in (3D3-5G) because v3 cannot be
degenerate. If it happens in (3D3-2G), then due to Extpre, we know that the direc-
tions of �1 and �2 must be opposite, and k�1 − k�2 is a bad vector. Then, just like in

the proof of Proposition 9.18, we know k�3 has at most C+Ld−1− 1
4 choices, and the

number of choices for (k�1, . . . , k�4) is at most C+δ−1L2(d−1)− 1
4 , which proves (9.4).

Next consider (3D3-6G). By the same argument, we only need to bound the num-
ber of choices for (k�1 , . . . , k�9). If �5 does not become a bridge after removing v1 and
v2, then �χ = −5. By repeating the proof above and the proof of Proposition 9.18
(see (3S3-5G), Scenario 3), we know that (i) the number of choices for (k�1 , . . . , k�4)

is at most C+δ−1L2(d−1), and (ii) once (k�1 , . . . , k�4) is fixed, the number of choices

for (k�5, . . . , k�9) is at most C+δ−2L3(d−1)− 1
4 . Therefore the number of choices for

(k�1 , . . . , k�9) is at most C+δ−3L5(d−1)− 1
4 , which implies (9.4).

Now, if �5 does become a bridge after removing v1 and v2, then �χ = −4.
By Lemma 9.14, we know that (k�3, k�5) satisfies the system (A.13) in Lemma
A.9, but with nδ−1L−2 replacing δ−1L−2. Since (k�1 , k�2, k�3) also satisfies (A.14),
we can apply Lemma A.9 (3), with a further division of intervals if necessary,

to bound the number of choices for (k�1, k�2 , k�3, k�5) by nC+δ−2L2(d−1)− 1
4 .

Once (k�1 , k�2, k�3, k�5) is fixed, then k�4 is also fixed, and number of choices for
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Fig. 31 The functional groups involved in step (3D4G). In total there are 4 scenarios

(k�6 , . . . , k�9) is bounded by C+δ−2L2(d−1) by Lemma A.9 (1). Therefore the num-

ber of choices for (k�1 , . . . , k�9) is at most C+δ−4L4(d−1)− 1
6 (recall n ≤ (logL)3),

which implies (9.4).
Finally consider (3D3-3G). Given any k[Mpre] ∈D(Mpre,Extpre) and assuming

k�3 = k�4 , we define k′[Mpos] as (9.7), but with k�′5 = k�3 . By the same observation,
we see that k′[Mpos] belongs to D(Mpos,Extpos) with essentially the original param-
eters (where in the place of a�5 we have a�3 ). Once k′[Mpos] is fixed, then (k�1, k�2)

satisfies the system (A.13) in Lemma A.9; moreover by Extpre we know that ei-
ther �1 and �2 have the same direction or k�1 − k�2 is a good vector. Just like in the
proof of Proposition 9.18, we see that the number of choices for (k�1 , k�2) is at most

C+δ−1Ld−1− 1
4 . This implies that

sup #D(Mpre,Extpre)≤ sup #D(Mpos,Extpos) ·C+δ−1Ld−1− 1
4 ,

which proves (9.4). �

9.3.6 Degree 3 and 4 atoms connected by a double bond

In this step, we assume there is an atom v1 of degree 3, and another atom v2 of degree
4, that are connected by a double bond (�1, �2). Then Mpre must contain one of the
functional groups shown in Fig. 31.

• Step (3D4G): we remove the atoms {v1, v2} and all (five) bonds connecting to
them, and set �Ext=∅.

For (3D4G), we can check using Lemma 9.13 that, in each scenario, we always
have (�V,�E,�F) = (−2,−5,0). We define �γ = −3 + 1

4(d−1) , �κ = −2 and
Extpre = Extpos.

Proposition 9.20 The step (3D4G) is good, and satisfies (9.4).

Proof The step is good by definition. Now by (9.2) we know that (k�1, . . . , k�5) sat-
isfies the system (A.18) in Lemma A.9 with some choice of signs (ζ1, . . . , ζ5). By

Lemma A.9 (6) they have at most C+δ−2L3(d−1)− 1
4 choices, and once they are fixed

we can reduce to k[Mpos] and prove (9.4). �
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Fig. 32 The functional groups involved in step (3S2G). In total there are 4 scenarios

Fig. 33 The functional group
involved in step (3R-2G). Here
v1, v2, v3 are not drawn; some
of them may coincide with some
v′
j

. Also we only draw the

scenario where �′1 becomes a
bridge after removing v, but the
other scenario is also possible

9.3.7 Degree 3 and 2 atoms connected

In this step, we assume there is an atom v1 of degree 3, and another atom v2 of degree
2, that are connected. Note that they must be connected by a single bond �1, otherwise
there would be a bridge. Then, Mpre must contain one of the functional groups shown
in Fig. 32.

• Step (3S2G): we remove the atoms {v1, v2} and all (four) bonds connecting to
them, and set �Ext=∅.

For (3S2G), we can check using Lemma 9.13 that, in each scenario, we always
have (�V,�E,�F) = (−2,−4,0). We define �γ = −2 + 1

4(d−1) , �κ = −2 and
Extpre = Extpos.

Proposition 9.21 The step (3S2G) is good, and satisfies (9.4).

Proof The step is good by definition. Now by (9.2) we know that (k�1, . . . , k�4) sat-
isfies the system (A.15) in Lemma A.9, with some choice of signs (ζ1, . . . , ζ4). By

Lemma A.9 (3) they have at most C+δ−2L2(d−1)− 1
4 choices, and once they are fixed

we can reduce to k[Mpos] and prove (9.4). �

9.3.8 Degree 3 atom removal

In this step, we assume there is an atom v of degree 3, which is connected to three
atoms vj (1≤ j ≤ 3) of degree 4, by three single bonds �j (1≤ j ≤ 3). In step (3R-
2G) we further assume that, there is a special bond �′1 (see Definition 9.12) in the
molecule (or component) after removing the atom v and the bonds �j . In this case,
suppose �′1 connects atoms v′1 and v′2, v′1 is connected to v′3 by a double bond (�′2, �′3),
and v′2 is connected to v′4 by a double bond (�′4, �′5), see Fig. 33.
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• Step (3R-1): we remove the atom v and all (three) bonds connecting to it, and set
�Ext=∅.

• Step (3R-2G): we remove the atom v and all (three) bonds connecting to it. Then
we remove the atoms {v′1, v′2} and all (five) bonds connecting to them. We also set
�Ext=∅.

Clearly the operation of removing v and �j (1 ≤ j ≤ 3) does not increase
the number of components (by Lemma 9.13). Therefore for (3R-1) we have
(�V,�E,�F) = (−1,−3,0). As for (3R-2), we have (�V,�E,�F) equals ei-
ther (−3,−8,0) or (−3,−8,1), depending on whether �′1 becomes a bridge after
removing v. For (3R-1) we define �γ =−2 and �κ =−1, and for (3R-2) we define
�γ =�χ + 1

6(d−1) and �κ =−4. In both cases we define Extpre = Extpos.

Proposition 9.22 The step (3R-1) is normal, and satisfies �η = 2 and �V3 = 2. The
step (3R-2G) is good. Both satisfy (9.4).

Proof The step (3R-1) is normal and (3R-2G) is good by definition, the equalities for
�η and �V3 are also easily verified.

To prove (9.4), note that this is clear for (3R-1) because (k�1 , k�2, k�3) satisfies the
system (A.14) in Lemma A.9 and thus the number of choices for these is at most
C+δ−1L2(d−1), and then (9.4) follows by reducing to k[Mpos] as before. Now we
only need to consider (3R-2G). If �′1 does not become a bridge after removing v,
then �χ =−5 and �γ =−5+ 1

6(d−1) . In this case, by repeating the proof of Propo-
sition 9.18 (see (3S3-5G), Scenario 3), we know that (i) the number of choices for
(k�1 , k�2, k�3) is at most C+δ−1L2(d−1), and (ii) once (k�1, k�2 , k�3) is fixed, the num-

ber of choices for (k�′1, . . . , k�′5) is at most C+δ−2L3(d−1)− 1
4 . Therefore the number

of choices for (k�1, k�2 , k�3, k�′1, . . . , k�′5) is at most C+δ−3L5(d−1)− 1
4 , which implies

(9.4).
Now, we may assume �′1 becomes a (special) bridge after removing v, see Fig. 33.

Since �′1 is not a bridge in Mpre, we know v must have at least one bond connecting
to each of the two components after removing v and �′1. Without loss of generality,
assume v has only one bond, say �1, connecting to an atom v1 in X (the compo-
nent containing {v′1, v′3}), then by Lemma 9.14 we know that (k�1 , k�′1) satisfies the

system (A.13) in Lemma A.9, but with nδ−1L−2 replacing δ−1L−2 and resonance
(i.e. k�1 = k�′1 and they have opposite signs in (A.13)) allowed. Since (k�1 , k�2, k�3)

also satisfies (A.14), we can apply Lemma A.9 (3) to bound the number of choices

for (k�1 , k�2, k�3, k�′1) by nC+δ−2L2(d−1)− 1
4 , unless �1 and �′1 have opposite direc-

tions (viewing from X) and k�1 = k�′1 . If the above improved bound holds, then the

number of choices for (k�1 , k�2, k�3, k�′1, . . . , k�′5) is at most C+δ−4L4(d−1)− 1
6 , since

once (k�1 , k�2, k�3, k�′1) is fixed, the number of choices for (k�′2, . . . , k�′5) is at most

C+δ−2L2(d−1) by Lemma A.9 (1).
Finally, suppose �1 and �′1 have opposite directions and k�1 = k�′1 . In partic-

ular we must have v1 �= v′1, hence (k�1 , k�2, k�3, k�′2, k�′3) will satisfy the system
(A.17) in Lemma A.9. By Lemma A.9 (5), we can bound the number of choices

for these by C+δ−2L3(d−1)− 1
4 . Once these are fixed, the number of choices for
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(k�′4 , k�′5) is at most C+δ−1Ld−1 by Lemma A.9 (1), so the number of choices for

(k�1 , k�2, k�3, k�′1, . . . , k�′5) is still at most C+δ−4L4(d−1)− 1
4 . This proves (9.4). �

9.3.9 Degree 2 atom removal

In this step, we assume there is an atom v of degree 2, connected to one or two
atom(s) of degree 2 or 4.

• Step (2R-1): suppose v is connected to a degree 4 atom by a double bond, where
the two bonds have opposite directions. We remove the atom v and the double
bond.

• Step (2R-2G): suppose v is connected to a degree 4 atom by a double bond, where
the two bonds have the same direction. We remove the atom v and the double bond.

• Step (2R-3): suppose v is connected to a degree 4 atom by a single bond, and also
connected to another atom of degree 2 or 4 by a single bond. We remove the atom
v and the two bonds.

• Step (2R-4): suppose v is connected to two degree 2 atoms v1 and v2 by two single
bonds, such that neither v1 nor v2 is connected to a degree 3 atom. We remove the
atoms {v, v1, v2}, and all bonds connecting to them.

• Step (2R-5): suppose v is connected to a degree 2 atom v′ by a double bond. We
remove the atoms v, v′ and the double bond. In all steps we set �Ext=∅.

For (2R-1)–(2R-3) we have (�V,�E,�F) = (−1,−2,0) (note that F = 0
due to Lemma 9.13). For (2R-4) we have (�V,�E,�F) can be (−3,−4,0) or
(−3,−3,−1), and for (2R-5) we have (�V,�E,�F) = (−2,−2,−1). For (2R-
2G) we define �γ =−1+ 1

3(d−1) and �κ =−1, and for all others define �γ =−1
and �κ =−1. We also define Extpre = Extpos.

Proposition 9.23 The step (2R-2G) is good, and the other four are normal. For (2R-1)
and (2R-5) we have �V3 =�η = 0. For (2R-3) we have �η = 0 and �V3 ≥ 1; for
(2R-4) we have �V3 ≥ 0 and �η ≤−2.

Proof The statements about good or normal, as well as the ones regarding �η and
�V3, can be shown by direct verification. As for (9.4), if (�1, �2) are the two bonds
of v, then (k�1 , k�2) satisfies the system (A.13) in Lemma A.9, so (9.4) follows from
Lemma A.9 (1) and reduction to k[Mpos]. For (2R-4) just notice that v1 and v2 be-
come degree 1 after removing v, so if �3 and �4 are the bonds they have other than �1

and �2, then k�3 and k�4 must be uniquely fixed once (k�1, k�2) is fixed, so the total
number of choices for (k�1 , . . . , k�4) is still at most C+δ−1Ld−1. �

9.4 The algorithm

We now describe the algorithm. It is done in two phases. In phase one we remove the
degenerate atoms using steps (DA) only; moreover we remove the non-tame degen-
erate atoms (i.e. those with degree 4) strictly before the tame ones. Once phase one
is finished we enter phase two, where there is no more degenerate atoms; note that
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none of our steps can create any (possibly) degenerate atom, which is easily checked
by definition.

In phase two, we will describe the algorithm as a big loop. Once we enter the loop,
we shall follow a set of rules so that depending on the current molecule M, we either
(i) choose the next step, or (ii) claim a checkpoint and choose the two possibilities
for the next step. In some cases, we may also choose more than one steps or claim
more than one checkpoints successively, again following a specific set of rules, until
we are done with this execution of the loop and return to the start of the loop. The
loop ends when M contains only isolated atoms.

9.4.1 Phase one: degenerate atom removal

The steps in phase one are determined as follows.

• If there is a degenerate atom of degree 4, remove it using (DA).
• If there is no degenerate atom of degree 4 but there is a tame atom, remove it using

(DA).
• Repeat this until there is no degenerate atom. Then enter phase two.

Note that these steps will not create new degenerate atom, or new degenerate atom
of degree 4, but may transform degenerate atom of degree 4 into tame ones. At the
end of phase one there will be no degenerate atom, which will be preserved for the
rest of the algorithm.

9.4.2 Phase two: description of the loop

We now describe the loop in phase two. For an example of this algorithm, see Ap-
pendix B. Note that there is no triple bond in the beginning.
(1) If M contains a bridge, then remove it using (BR). Repeat until M contains no

bridge.
(2) Now M contains no bridge. If M contains two degree 3 atoms v1 and v2 con-

nected by a single bond �1, then:
(a) If M contains one of the functional groups in Fig. 28, then perform (3S3-5G).

Go to (1).
(b) Otherwise, M contains the functional group in Fig. 27. If it satisfies (i) and

(ii) in Sect. 9.3.4, and d(v3)= · · · = d(v6)= 4, then we claim a checkpoint,
and choose the two possibilities for the next step to be (3S3-1) and (3S3-2G)
(the pre-assumptions for (3S3-1) and (3S3-2G) are satisfied, see Sect. 9.3.4).
Go to (1).

(c) If it satisfies (i) and (ii) in Sect. 9.3.4, but (say) d(v3) and d(v5) are not both
4, then we claim a checkpoint, and choose the two possibilities for the next
step to be (3S3-2G) and (3S3-3G) (the pre-assumptions for (3S3-2G) and
(3S3-3G) are satisfied, see Sect. 9.3.4). If after (3S3-3G) a triple bond forms
between v3 and v5, immediately remove it by (TB-1)–(TB-2). Go to (1).

(d) If either (i) or (ii) in Sect. 9.3.4 is violated, then we perform (3S3-4G) (the
pre-assumption for (3S3-4G) is satisfied, see Sect. 9.3.4). Go to (1).

(3) Otherwise, if M contains two degree 3 atoms v1 and v2 connected by a double
bond (�1, �2), then:
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(a) If M contains the functional group in Fig. 29 corresponding to (3D3-4G) or
(3D3-5G), then we perform the corresponding step. Go to (1).

(b) Otherwise, M contains the functional group in Fig. 29 corresponding to
(3D3-1)–(3D3-3G). This can be seen as the start of a type II chain. Now,
if and while this chain continues (i.e. v3 and v4 are connected by a double
bond, and they are connected to two different atoms v5 and v6 by two single
bonds of opposite directions viewing form {v3, v4}), we claim a checkpoint,
and choose the two possibilities for the next step to be (3D3-1) and (3D3-2G)
(the pre-assumptions for (3D3-1) and (3D3-2G) are satisfied, see Sect. 9.3.5).
Proceed with (c) below.

(c) Now assume the type II chain does not continue, i.e. we have reached the end
of the type II chain (if the type II chain does not continue in the beginning
then we skip (b) and directly move to (c) here). Then:

(i) If not all atoms in the current component other than {v1, v2} have degree
4, then we claim a checkpoint and choose the two possibilities for the
next step to be (3D3-2G) and (3D3-3G) (the pre-assumptions for (3D3-
2G) and (3D3-3G) are satisfied, see Sect. 9.3.5). If after (3D3-3G) a
triple bond forms between v3 and v4, immediately remove it by (TB-
1)–(TB-2) (this is always doable, see Remark 2 immediately following
the description of this algorithm). Go to (1).

(ii) Otherwise, if v3 and v4 are like in Fig. 30, then perform (3D3-6G) (the
pre-assumption for (3D3-6G) is satisfied, see Sect. 9.3.5). Go to (1).

(iii) Otherwise, we claim a checkpoint, and choose the two possibilities for
the next step to be (3D3-1) and (3D3-2G) (the pre-assumptions for
(3D3-1) and (3D3-2G) are satisfied, see Sect. 9.3.5). Go to (1) but scan
within this component (see explanation below).

(4) Otherwise, if M contains a degree 3 atom v1 connected to a degree 4 atom v2 by
a double bond (�1, �2), then we have one of the functional groups in Fig. 31. We
perform (3D4G). Go to (1).

(5) Otherwise, if M contains a degree 3 atom v1 connected to a degree 2 atom v2,
then we have one of the functional groups in Fig. 32. We perform (3S2G). Go to
(1).

(6) Otherwise, if M contains a degree 3 atom v, then v must be connected to three
degree 4 atoms vj (1≤ j ≤ 3) by three single bonds �j (1≤ j ≤ 3). Then:
(a) If the component after removing v and �j contains a special bond, then

we perform (3R-2G) (the pre-assumption for (3R-2G) is satisfied, see
Sect. 9.3.8). Go to (1).

(b) Otherwise, we perform (3R-1). Go to (1).
(7) Otherwise, M must only contain atoms of degree (0 and) 2 and 4. If we are

in one of the cases corresponding to steps (2R-2G)–(2R-5), then perform the
corresponding step. Go to (1).

(8) Otherwise, there is a degree 2 atom v connected to a degree 4 atom v1 by a double
bond of opposite directions. This can be seen as the start of a type I chain. Now,
if and while this chain exists (we do not require this chain to continue from v1,
which is slightly different from (3-b)), we perform (2R-1) until we reach the end
of the type I chain. Go to (7) but scan within this component (see explanation
below).
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Before proceeding, we make a few remarks about the validity of the algorithm and
Condition 2.

1. There is no triple bond when we perform any step other than (TB-1)–(TB-2).
This is because only steps (3S3-3G) and (3D3-3G) may create triple bonds, but they
are immediately removed using (TB-1)–(TB-2), as in (2-c) and (3-c-i).

2. In (3-c-i), after (3D3-3G), suppose v3 and v4 are connected by a triple bond. If
not both v3 and v4 have degree 4, then we can perform (TB-1)–(TB-2). If d(v3) =
d(v4) = 4, then the two extra single bonds �′1 and �′2 from v3 and v4 must have
opposite directions (by the requirement in Definition 9.1); since the type II chain
does not continue, �′1 and �′2 must share a common atom, say v5. The first equation in
(9.2), with cv3 = cv4 = 0, and the condition k�3 = k�4 in�Ext, then forces k�′1 = k�′2 ,
which is impossible as v5 cannot be degenerate.

3. When executing a “Go to” sentence, we may proceed to scan the whole
molecule for the relevant structures, except in (3-c-iii) and (8), where we only scan
the current component. Note that after performing (3D3-1) or (3D3-2G) in (3-c-iii),
v3 and v4 will have degree 3, and all other atoms in the current component will
have degree 4. Therefore the next step(s) we perform in this component, following
our algorithm, may be (BR), (3S3-1)–(3S3-5G), (3D3-4G)–(3D3-5G), (3D4G), (3R-
1)–(3R-2G), possibly accompanied by (TB-1)–(TB-2), but cannot be (3D3-1)–(3D3-
3G) because the type II chain does not continue. Similarly, after performing the last
(2R-1) in (8), v1 will have degree 2, and no atom in the current component may
have degree 3. Therefore the next step we perform in this component may be (2R-
2G)–(2R-5), but cannot be (2R-1).

4. There is no bridge when we perform any step other than (TB-1)–(TB-2) or (BR).
This is because step (BR) has the top priority due to the “Go to (1)” sentences in the
algorithm. Moreover, if we are in (3-b), i.e. the type II chain continues, then the steps
(3D3-1) and (3D3-2G) cause the same change on M, and this change does not create
any bridge. In the same way, if we are in (8), then the step (2R-1) does not create any
bridge.

5. In the whole process we never have a saturated component, thus in (7) there
must be at least one degree 2 atom (unless there are only isolated atoms, in which
case the loop ends; note that we are also not considering degree 1 atoms, as those
imply the existence of bridges).

6. The timespots where we claim checkpoints are in (2-b), (2-c), (3-b), (3-c-i)
and (3-c-iii). In each case Condition 2 is preserved, because (i) by our choice, the
two possible �Ext’s for the two possibilities for the next step at this checkpoint are
exactly negations of each other, so any k[Mpre] must satisfy one of them, and (ii)
for (3S3-3G) (same for (3D3-3G)), if k[Mpre] satisfies �Ext and k′[Mpos] satisfies
Extpos, then k[Mpre] must satisfy Extpre, which follows from (9.6) and (9.7).

9.5 Proof of Proposition 9.10

The algorithm described in 9.4.2 leads to at most Cn tracks. Each track contains at
most Cn steps as each step removes at least one bond, while there are only 2n− 1
from the beginning. We will fix a track in the discussion below. Let r be the total
number of good steps in this track. Note that the change of any of the quantities we
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will study below, caused by any single step we defined above, is at most C (in fact,
at most 100).

9.5.1 Phase one

We start with phase one. Note that η∗ must remain nonnegative due to absence of
saturated components, as each component must have at least one atom of degree in
{0,1,2} or two atoms of degree 3; moreover initially η∗ = 0 because there are only
two atoms of degree 3 or only one atom of degree 2. Let s be the number of (DA)
removing degree 4 degenerate atoms that are normal, and let s′ be the number of
(DA) removing tame atoms. After removing all the degree 4 degenerate atoms, by
Proposition 9.15, we know that 0≤ η∗ ≤ −2s +Cr , we know that s ≤ Cr .

At this time, the number of tame atoms is at most 2 + C(s + r) ≤ 2 + Cr , as
originally the number of tame atoms is at most 2, and the number of newly created
tame atoms is at most C(s + r). Moreover, if r = 0, then also s = 0. If a degree 2 or
degree 3 atom in the original base molecule is degenerate (hence tame), then after the
first (DA) step, by Proposition 9.15 we know that η∗ will become negative, which is
impossible. This means that if r = 0 then s = s′ = 0, hence in all cases s + s′ ≤ Cr .

9.5.2 Phase two: increments of η and V3

Since the total number of steps in phase one is at most Cr , we know at the start
of phase two, each of the quantities we will study below has changed at most Cr
compared to the initial state. Note that (TB-1) and (TB-2) only occur once after (3S3-
3G) or (3D3-3G) which are good steps, the number of those is also at most Cr .

Let the number of (BR) where d(v1)= d(v2)= 3 (see Proposition 9.17) be z1, the
number of other (BR) be z′1. Let the number of (3S3-1) be z2, the number of (3R-1)
be z3, the numbers of (2R-3)–(2R-5) be z4, z5 and z6. By Propositions 9.17–9.23, we
can examine the increment of η in the whole process and get

−2z1 − 2z′1 − 2z2 + 2z3 − 2z5 ≥ 2−Cr, (9.8)

note that initially η = −2 and in the end η = 0. In the same way, by examining the
increment of V3 we get

−2z1 − z′1 + 2z2 + 2z3 + z4 ≤ Cr, (9.9)

note that initially V3 ∈ {0,2} and in the end V3 = 0. Subtracting these two inequalities
yields z′1 + z2 + z4 + z5 + 2≤ Cr . In particular we also know r ≥ 1.

9.5.3 Phase two: remaining steps

Next we will prove that z1 + z3 + z6 ≤ Cr . Let V ∗2 be the number of degree 2 atoms
with two single bonds. It is clear that |�V ∗2 | ≤ C for any step, �V ∗2 = 0 for (3D3-1),
(3R-1) and (2R-5), and�V ∗2 ≥ 0 for (2R-1), and for (BR) assuming d(v1)= d(v2)=
3. Moreover, equality holds for (BR) if and only if the bridge removed is special.
Therefore, with at most Cr exceptions, all the bridges appearing in (BR) are special.



Full derivation of the wave kinetic equation 683

Then, if we consider the increment of V2, we similarly see that z6 ≤ z1 + Cr (using
also r ≥ 1). Combining with (9.9) which implies z3 ≤ z1+Cr , we only need to prove
z1 ≤ Cr .

Consider the increment of the number of special bonds, denoted by ξ . Clearly
�ξ = 0 for (2R-1) and (2R-5); for (BR) which removes a special bridge, we can
check that this operation cannot make any existing non-special bond special, so�ξ =
−1. Moreover, by our algorithm, whenever we perform (3R-1), it is always assumed
that the component contains no special bond after this step, so �ξ ≤ 0. Similarly,
whenever we perform (3D3-1) we are always in (3-b) or (3-c-iii). For (3-c-iii), v3
and v4 are the only two degree 3 atom in the component after performing (3D3-1) or
(3D3-2G), and they are not connected by a special bond (otherwise we shall perform
(3D3-6G)), so this step also does not create any special bond, hence �ξ ≤ 0.

Now let us consider steps (3D3-1) occurring in (3-b). By our algorithm, if we also
include the possible (3D3-2G), then such steps occur in the form of sequences which
follow the type II chains in the molecule. For any step in this sequence except the last
one, we must have �ξ = 0 (because in this case, after (3D3-1), neither v3 nor v4 is
connected to a degree 3 atom by a single bond). Moreover, if for the last one in the
sequence we do have �ξ > 0, then immediately after this sequence we must have a
good step (because in this case, after we finish the sequence and move to (3-c), either
v3 or v4 will have degree 3 instead of 4, so we must be in (3-c-i)). Since the number
of good steps is at most r , we know that the number of steps for which �ξ > 0 is at
most Cr . Thus, considering the increment of ξ , we see that z1 ≤ Cr .

9.5.4 Type I and type II chains

Now we see that the number of steps different from (3D3-1) and (2R-1) is at most
Cr . In particular steps (3D3-1) or (3D3-2G) occurring in (3-c-iii) is also at most
Cr because each of them must be followed by an operation different from (3D3-1)
and (2R-1). As for the sequences of (3D3-1) or (3D3-2G) occurring in (3-b), each
sequence corresponds to a type II chain, and each chain can be as long as Cn, but
the number of chains must be at most Cr for the same reason. Moreover, follow-
ing each chain we have a sequence of checkpoints, and at each checkpoint we may
choose (3D3-1) or (3D3-2G), but the number of (3D3-2G) chosen must be at most
Cr . If necessary we can further divide these chains, so that (3D3-1) is chosen at each
checkpoint of each type II chain.

In the same way, steps (2R-1) also occur in the form of sequences which follow
the type I chains in the molecule, and at the end of each sequence we have a step
different from (3D3-1) and (2R-1). Thus each sequence corresponds to a type I chain,
and the number of chains is at most Cr . Note that some of the edges in the chains
may not exist in the original base molecule, but the number of those is again at most
Cr because (3S3-3G) and (3D3-3G) are both good steps. Upon further dividing, we
can find these (at most Cr) chains in the original base molecule, such that the number
of atoms and bonds not belonging to one of these chains is at most Cr . In addition,
since we are choosing (3D3-1) in type II chains, by definition, the set Ext obtained
in the start must contain (possibly among other things) the conditions k�1 = k�2 for
any two paired single bond (�1, �2) in any type II chain.
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9.5.5 Conclusion

Finally we prove (9.3). At the initial timespot, D(M) is the union of all the possible
D(M,Ext) for Ext ∈ϒ , thanks to Condition 2. The number of possible tracks is at
most Cn, so we only need to fix one track. Now by Condition 4, we get

sup #D(M,Ext)≤ (C+)nδ−κL(d−1)γ .

Since initially χ = n, we see that (d − 1)γ ≤ (d − 1)n− 2νr for 0< ν ≤ 1
12 by the

definition of good and normal steps. As for κ , note that �κ = −1 for both (3D3-1)
and (2R-1). If the total numbers of atoms in type I chains and type II chains are m
and m′, then m′ = n−m up to error Cr , and the number of steps (3D3-1) and (2R-1)
are m′/2 and m respectively (all up to error Cr), so initially κ =m+ m′

2 = n+m
2 up

to error Cr . Clearly factors δ−Cr is acceptable in view of the gain L−2νr , so we have
proved (9.3).

10 Non-regular couples III: L1 bounds for coefficients

We now return to the study of the expression (8.27). Let Q#
sk and (r0, rirr) be as in

Sect. 8.4. For simplicity, until the end of the proof of Proposition 10.1 we will write
Q#
sk simply as Q, and the associated sets (N #

sk)
∗ as N ∗ etc. Recall, by (8.29), that the

total length of the irregular chains in Q is at most C(r0 + rirr). Let $ be a subset of
N ∗, we may define, as in (8.27), the function

UQ(t, s,σ , α[N ∗])=
ˆ
˜E

∏

n∈N ∗
eπiαntn dtn, (10.1)

where σ = σ [$] ∈ [0,1]$, and the domain ˜E is defined as in (5.4), but with the
extra conditions tnp > tn + σn for n ∈ $, where np is the parent of n. Note that
the definition here is slightly different from (5.3) as we include the signs ζn in the
variables αn, which is more convenient for this section. Then, let n′0 be the scale of
Q, we can write

(8.27)= (C+δ)
n−n′0

2

(

δ

2Ld−1

)n′0
ζ ∗(Q)

ˆ
RN∗×R2

G(λ) · eπi(λt+μs) dλ

ˆ
[0,1]$

dσ

×
∑

E

εE UQ
(

t, s,σ , (δL2ζn�n + λn)n∈N ∗
) ·Xtot(λ,σ , k[Q]). (10.2)

Let M be the base molecule obtained from Q as in Definition 9.3. It is easy to
see that M contains no triple bond, as triple bonds in M can only come from (1,1)-
mini couples and mini trees (as in Definition 4.1) in Q. By the proofs in Sect. 9,
we can introduce at most Cn

′
0 sets of extra conditions Ext, such that the summation

in E = k[Q] in (8.27) can be decomposed into the summations with each of these
sets of extra conditions imposed on k[Q]. Moreover, for each choice of Ext there is
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1 ≤ r1 ≤ n′0 such that the conclusion of Proposition 9.10, including (9.3), holds true
(with r replaced by r1).

Notice that a type I chain in M can only be obtained from either one irregular
chain, or the union of two irregular chains in Q; this can be proved in the same
way as in Sect. 10.1.2 below (which involves the more complicated type II chains),
see Remark 10.3. Therefore, the total length m of type I chains in M is bounded
by the total length of irregular chains in Q, which is at most C(r0 + rirr). However,
each irregular chain in Q also corresponds to a type I chain in the base molecule, so
rirr ≤ Cr1, hence m≤ Cr , where r = r0 + r1. This means the number of atoms in M

that are not in one of those (at most Cr) type II chains is at most Cr .
Now, suppose n and n′ are two branching nodes in Q which correspond to two

atoms in M that are connected by a double bond in a type II chain, then we must have
ζn′�n′ = −ζn�n under the extra conditions in Ext, see Remark 9.9. In fact we will
restrict {n,n′} to the interior of this type II chain by omitting 5 pairs of atoms at both
ends of the chain, in the same way as in Definition 8.4. Then, we make such {n,n′} a
pair (this is related to but different from the pairing of branching nodes in Proposition
4.3), and choose one node from each such pair to form a set ˜N ch. If it happens that
one of {n,n′} is a parent of the other, we assume the parent belongs to ˜N ch. Let N rm

be the set of branching nodes not in these pairs, and define ˜N = ˜N ch ∪N rm.
We will be interested in estimates on the function UQ in (10.1) where αn =

δL2ζn�n + λn, which means that αn + αn′ = μn for each n ∈ ˜N ch, where n′ is
the node paired to n and μn = λn + λn′ is a parameter depending on λ. Under this
assumption on αn, we can write (similar to (5.5))

UQ(t, s,σ , α[N ∗])= VQ(t, s,σ , α[˜N ]) (10.3)

for some function VQ. This function actually depends also on the parameters μn for
n ∈ ˜N ch, but we will omit this for notational convenience. The main goal of this
section is to prove the following:

Proposition 10.1 Suppose Q has scale n′0. For each n ∈ ˜N , suppose Sn ⊂ Z and
#Sn ≤ L10d . Then, uniformly in (t, s), in the choices of (Sn)n∈ ˜N , and in the parame-
ters (μn)n∈ ˜N ch , we have

δn
′
0/4 ·

∑

(mn):mn∈Sn
sup

(αn):|αn−mn|≤1
sup
σ

∣

∣VQ(t, s,σ , α[˜N ])
∣

∣≤ (C+)n′0LCr
√
δ(logL)Cr ,

(10.4)
where r = r0 + r1.

Before proving Proposition 10.1, we first make some observations. By (10.1), one
can see that the function VQ is completely determined by the tree structures of the
trees of Q, as well as the pairing between branching nodes described above (i.e. it
does not depend on the pairings between leaves of Q, nor on the signs of the nodes).
Thus, below we will forget the signs of the nodes of Q and view it as an unsigned
couple, which corresponds to an undirected molecule as in Definition 9.3 (we retain
the pairings between branching nodes). Denote the unsigned couple by Qns and the
undirected molecule still by M. Later in the inductive step, we may further forget
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the leaf pairing structure of Q, hence viewing it as a double-tree with some of the
branching nodes paired, and denote it by Qtr . We may then write

VQ(t, s,σ , α[˜N ])= VQns (t, s,σ , α[˜N ])= VQtr (t, s,σ , α[˜N ]).
Next, for any function V = V (x) defined on [0,1]n, by inducting on n we can

prove that

sup
x∈[0,1]n

|V (x)| ≤
∑

ρ

ˆ
[0,1]n

|∂ρx V |dx, (10.5)

where ρ ranges over all multi-indices with each component being 0 or 1. This implies
that

∑

(mn):mn∈Sn
sup

(αn):|αn−mn|≤1
sup
σ

∣

∣VQ(t, s,σ , α[˜N ])
∣

∣

≤
∑

ρ

ˆ
(αn):αn∈Sn(1)

sup
σ

∣

∣∂ραVQ(t, s,σ , α[˜N ])
∣

∣dα[˜N ], (10.6)

where ρ is as above, and Sn(1) is the 1-neighborhood of Sn in R which has measure
≤ L10d . If we fix ρ in (10.6), which has at most 2n

′
0 choices, then ∂ραVQ has a similar

form as VQ except that one has some extra πitn factors in the integral (10.1). From
the proof below it is clear that such factors will not make a difference, so we will
focus on the right hand side of (10.6) without the ∂ρα derivative.

Finally, we record the following lemma, which will be useful in the proof of Propo-
sition 10.1.

Lemma 10.2 Let T be a ternary tree, and denote by N the set of branching nodes.
Let $⊂N , and consider

UT (t,σ , α[N ])=
ˆ
˜D

∏

n∈N
eπiαntn dtn, (10.7)

where σ = σ [$] ∈ [0,1]$, and the domain ˜D is defined as in (5.2), but with the extra
conditions tnp > tn + σn for n ∈$, where np is the parent of n.

For every choice of dn ∈ {0,1} (n ∈ N ), we define qn for n ∈ N inductively as
follows: Set qn = 0 if n is a leaf, and otherwise define qn = αn + dn1qn1 + dn2qn2 +
dn3qn3 where n1, n2, n3 are the three children of n.

Uniformly in σ and t , the following estimate holds:

|UT (t,σ , α[N ])| ≤ (C+)n
∑

dn∈{0,1}

∏

n∈N

1

〈qn〉 . (10.8)

Proof The proof is straightforward, see Proposition 2.3 in [18]. Note that here we
have the extra parameters σ , but they only contribute unimodular coefficients to var-
ious components of UT and do not affect any of the estimates. �
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Proof of Proposition 10.1 The proof will proceed by induction on the size of ˜N ch. The
base case in which ˜N ch is empty is covered by Lemma 10.2, since for any choice of
yn ∈R and Sn(1) of measure ≤ L10d , one has that

ˆ
Sn(1)

1

〈αn + yn〉 dαn � logL

Therefore the left hand side of (10.4) is bounded by δn
′
0/4(C+)n′0(logL)n

′
0 which is

more than acceptable since if ˜N ch is empty we must have n′0 ≤ Cr .
We now assume that ˜N ch is nonempty and that estimate (10.4) hold for couples

with smaller ˜N ch (equivalently molecules with shorter Type II chains). To prove
(10.4) for Q, we first need to analyze the structure of the couple Q, which is done in
the next section. �

10.1 Tree Structure near n ∈ ˜N ch

Recall the definition of PC and LP bonds in Definition 9.3. Clearly, the two edges
of a double bond cannot be both PC bonds, but we can have them both being LP
bonds (we call this an LP-LP double bond) or one LP and one PC bond (we call that
an LP-PC double bond). Denote by N the set of atoms in M connected by double
bonds in the type II chains, then each such pair of atoms corresponds to a pair of
branching nodes in Q, and only one of the two nodes belongs to ˜N ch. There are two
cases for the molecule M: Case 1 where there exists at least one LP-LP double bond
connecting a pair of atoms in N, or Case 2 where all double bonds connecting a pair
of atoms in N are LP-PC double bonds.

10.1.1 LP-LP double bonds

Suppose that one of the double bonds appearing in N is an LP-LP double bond. In this
case, if (p, c1, c2, c3) and (p′, c′1, c′2, c′3) denote the two 4-node subsets corresponding
to the two atoms connected by an LP-LP double bond, then p and p′ are two branching
nodes in N ∗ such that neither is a child of the other. We also have two leaf pairings
between the children ck1 , ck2 and c′j1 , c′j2 where ki, ji ∈ {1,2,3}, see Fig. 34. Note that
p and p′ may or may not be in the same tree. In fact one of them may be a descendant
of the other, in which case Fig. 34 will be depicted differently (but the proof will not
be affected).

10.1.2 LP-PC double bonds

Now consider Case 2 in which all the double bonds in all type II chains connecting
pairs of atoms in N are LP-PC double bonds. Here we can verify that, the two hori-
zontal parallel single bonds in Fig. 25 that connect two LP-PC double bonds cannot
be both PC bonds (since each node in N ∗ has a single parent), which means that at
least one of the two parallel single bonds is an LP bond. Since the total number of LP
bonds is ∈ {n′0, n′0 + 1} and that of PC bonds is ∈ {n′0 − 1, n′0 − 2}, we conclude that
the number of the parallel single bonds that are both LP is bounded by the number of
bonds outside all the type II chains which is Cr .
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Fig. 34 In Case 1, the two
paired nodes are p and p′,
neither of which is a child of the
other. Each has two children
leaves paired with the children
of the other. Here Tp and T ′p
denote the trees obtained by
deleting the subtrees rooted at p
and p′ respectively (keeping the
leaves p and p′), and Tch, T ′

ch

denote the trees rooted at p0, p′0
respectively

Fig. 35 A type II chain in which we label the bonds as either LP (leaf pair) or PC (parent-child). Here we
assume that all double bonds are LP-PC, and for any pair of parallel colored bonds, one is LP and the other
is PC. Here A(p) is the atom corresponding to the branching node p, and we assume p is the parent of p′.
Similar for p1 and p2

As a result of this, by splitting the type II chains appearing in M at the (at most) Cr
sites where the parallel single bonds are both LP bonds, we obtain that the molecule
M has at most Cr type II chains where the double bonds are all LP-PC and the
parallel single bonds connecting them are such that one is LP and the other is PC. We
shall abuse notation, and refer to those (possibly smaller) chains as the type II chains
below and still denote by N the smaller set of atoms connected by such LP-PC double
bonds, such that each pair of single bonds has one LP and one PC bond. See Fig. 35.

Let (p, c1, c2, c3) and (p′, c′1, c′2, c′3) denote the two 4-node subsets corresponding
to the two atoms of N connected by a LP-PC double bond in a type II molecular
chain, and suppose that p′ is a child of p. Since there is a double bond between A(p)
and A(p′), some child ck of p must be paired to a child c′j of p′; in particular, ck and
c′j are leafs.

We claim that: (1) among the one remaining child of p and the two remaining
children of p′, exactly 2 are leaves, and the other one, denoted by p0, is a branching
node corresponding to an atom in N; (2) the parent of p, denoted by p1, corresponds
to an atom in N that is connected to A(p) by a single bond. Note that the node p0
in (1) is either a child of p or a child of p′; we call these Case 2A and Case 2B, see
Fig. 36.

In fact, apart from the double bond connecting to A(p′), there is at least one more
PC bond (which corresponds to the non-root branching node p) at the atom A(p);
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Fig. 36 The type II chain in Case 2 corresponds to a chain of modules of form A and B depicted here. All
nodes marked by × are leafs. Each module connects to the next one either through the parent node p or
through the child node p0. Here Tp denotes the tree obtained by deleting the subtree rooted at p (keeping
the leaf p), and Tch denotes the tree rooted at p0

this must be a single bond connecting to A(p1) where p1 is the parent of p, so (2) is
true. Now, apart from this single bond and the double bond between A(p) and A(p′),
there are three remaining bonds connecting to eitherA(p) orA(p′), which correspond
to the three remaining children of p and p′ listed in (1). Among these three bonds,
exactly two are LP bonds and exactly one is a PC bond (thanks to the assumption we
made above), hence exactly two of the three children are leaves, and the other one,
denoted by p0, is a branching node which corresponds to an atom connected to either
A(p) or A(p′) by a single bond. This proves (1) and thus we are in either Case 2A or
Case 2B.

If we perform the above analysis for the LP-PC double bond at p0 or p1, and repeat
this process, it is easy to see that each type II chain in M corresponds to a chain in
Q, which is formed by repeatedly stacking one of the modules A or B depicted in
Fig. 36 (with each module connecting to the next one either through the parent node
p or through the child node p0).

Remark 10.3 A similar (and simpler) argument to the above can be used to show that,
each type I chain in M must be obtained from either one irregular chain, or the union
of two irregular chains in Q. Note that unlike here, the argument for type I chains
will involve signs, but this can be easily adjusted.

10.1.3 Conclusion on the tree structure of Q

From the discussions in Sects. 10.1.1 and 10.1.2 we conclude the followings.
In Case 1, there exist two paired branching nodes p and p′, with p ∈ ˜N ch, such

that neither is a child of the other. Moreover, p and p′ each has two children leaves
that form two pairs, see Fig. 34. Note that this is a property of the unsigned couple
Qns .
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In Case 2, the couple Q contains at most Cr chains, each consisting of modules A
and B as described in Fig. 36, such that the rest of the couple has at most Cr nodes.
Moreover for each module A or B in this chain, the nodes p and p′ (as in Fig. 36)
are paired with p ∈ ˜N ch, and p′ is a child of p. Note that this is a property for the
double-tree Qtr .

10.2 Induction step

Now we can proceed with the induction step in the proof of Proposition 10.1. As
stated before we will deal with the unsigned couple Qns . Recall that the couple Q is
formed by two trees T ±, with corresponding sets of branching nodes N±.

Suppose first that we are in Case 1, and we fix p and p′ as in Sect. 10.1.3. In this
case, using the notation in Fig. 34, denote by Tch the subtree attached to p0, and Nch
the set of branching nodes in Tch, and let p1 be the parent of p. Also denote by Tp the
tree obtained by deleting the subtree rooted at p from the tree containing p (keeping p

as a leaf), and let Np be its set of branching nodes. Without loss of generality assume
p ∈ T +, define UT + = UT +(t,σ , α[N+]) as in (10.7). Then we have that (note σp
and σp0 may be replaced by 0)

UT +(t,σ , α[N+])=
ˆ
F1

∏

n∈Np

(

eπiαntn
)

ˆ tp1−σp

0
eπiαptp dtp

ˆ tp−σp0

0
eπiαp0 tp0 dtp0

×
3
∏

j=1

UT (j)
ch

(tp0 ,σ , α[N (j)
ch ]),

where T (j)ch are the three subtrees of Tch, N (j)
ch are defined accordingly, and

F1 :=
{

t[Np] : 0< tn < tnp < t, where n
p is the parent of n, and tn < tnp − σn

if n ∈$}. (10.9)

Interchanging the order of integration, we obtain that

UT +(t,σ , α[N±])=
ˆ
F1

∏

n∈Np

(

eπiαntn
)

ˆ tp1−σp−σp0

0
G(tp1 , tp0)e

πiαp0 tp0 dtp0

×
3
∏

j=1

UT (j)
ch

(tp0 ,σ , α[N (j)
ch ]),

G(tp1 , tp0)=
1

πiαp

(

eπiαp(tp1−σp) − eπiαp(tp0+σp0 )
)

χ0(
tp1

10
)χ0(

tp0

10
).

Clearly G satisfies ‖̂G(η, θ)‖L1
η,θL

∞
σp,σp0

≤ C〈αp〉−1 (where ̂G is the Fourier trans-

form on R
2), hence

UT +(t,σ , α[N+])
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=
ˆ
R2

̂G(η, θ)

ˆ
F1

∏

n∈N p

(

eπiαntn
)

ˆ tp1−σp−σp0

0
e2πiηtp1 eπi(αp0+2θ)tp0 dtp0

×
3
∏

j=1

UT (j)
ch

(tp0 ,σ , α[N (j)
ch ]) =

ˆ
R2

̂G(η, θ)UT +∗ (t,σ
′, α′[N+∗ ])

where T +∗ is the tree obtained by replacing the subtree rooted at p with the subtree
rooted at p0 (i.e. merging p and p0), which has N+∗ =N±\{p} as its set of branching
nodes, and α′ is obtained from α by adding 2η and 2θ to αp1 and αp0 respectively.
Similarly, σ ′ is obtained from σ by restricting to the new set of branching nodes and
replacing σp0 by σp0 + σp.

Doing the same computation for the node p′ (for which αp′ = −αp+μp), noticing
that p′ /∈ {p1,p0}. We obtain that

VQns (t, s,σ , α[˜N ])= UT +(t,σ , α[N+])UT −(s,σ , α[N−])

=
ˆ
R4

̂G(η, θ)̂G′(η′, θ ′)VQns
new
(t, s, σ̃ , α̃[˜Nnew])

where Qnsnew is the unsigned couple obtained from Qns by replacing the trees rooted
at p and p′ with the trees rooted at p0 and p′0 respectively, and has the same leaf
pairing and branching node pairing structures as Qns . The set of branching nodes
N ∗

new = N ∗\{p,p′}, and ˜Nnew = ˜N \{p} is the set obtained from N ∗
new by pair-

ing branching nodes as above. The variables α̃[˜Nnew] is the restriction of α[˜N ] to
˜Nnew, which then has at most four entries translated by some linear combinations of
(±2θ,±2η,±2θ ′,±2η′). Similarly, σ̃ is obtained from σ by translations as explained
above.

The function G′ satisfies the same bound as G, but with the right hand side re-
placed by C〈αp−μp〉−1. Using that

´
R
〈αp〉−1〈αp−μp〉−1dαp ≤ C, we can directly

estimate ˆ
(αn):αn∈Sn(1)

sup
σ

∣

∣VQns (t, s,σ , α[˜N ])∣∣

≤ C sup
(Tn(1))

ˆ
(αn):αn∈Tn(1)

sup
σ

∣

∣VQns
new
(t, s,σ , α[˜Nnew])

∣

∣ ,

where Tn(1) ranges over all subsets of R with measure≤ L10d , and we assume n ∈ ˜N
in the first integral, and n ∈ ˜Nnew in the second integral. Using the induction hypoth-
esis on Qnsnew, we obtain the needed estimate.

We are thus left with Case 2 where Q is the union of at most p ≤ Cr chains of
modules A and B as described in Fig. 36, plus at most Cr other nodes. At this point
we will forget the leaf pairing structure of Q and view it as a double-tree Qtr with
some branching nodes paired. We will prove, with Sn(1) defined as above, that

δn
′
0/4 ·

ˆ
(αn):αn∈Sn(1)

sup
σ

∣

∣VQtr (t, s,σ , α[˜N ])∣∣≤ (C+)n′0LCp
√
δ(logL)|N rm|+Cp,

(10.10)
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where n′0 is the scale of Q. This estimate would give (10.4) since |N rm| + p ≤ Cr .
We will prove estimate (10.10) by induction on p, with the base case p = 0 being

a consequence of Lemma 10.2. Let p ∈ ˜N ch, and let us start by assuming that p is the
parent node in a Module A. Assume without loss of generality that both nodes p and
p′ belong to the tree T +. Let Tch be the tree rooted at p0 (see Fig. 36), Tp be the tree
obtained from T by removing the subtree rooted at p (keeping p as a leaf), and Nch
and Np be the respective sets of branching nodes. Then if p1 is the parent of p, we
have

UT +(t,σ , α[N+])

=
ˆ
F1

∏

n∈Np

(

eπiαntn
)

dtn

ˆ tp1−σp

0
dtpe

πiαptpUTch (tp,σ , α[Nch])

×
ˆ tp−σp′

0
dtp′e

−πi(αp−μp)tp′

=
ˆ
F1

∏

n∈Np

(

eπiαntn
)

dtn

ˆ tp1−σp

σp′
dtpGp(tp1 , tp)UTch (tp,σ , α[Nch]), (10.11)

where F1 :=
{

t[Np] : 0 < tn < tnp < t, and tn < tnp − σn if n ∈ $}. The function
Gp is defined by

Gp(tp1 , tp)= χ0
( tp

10

)

χ0
( tp1

10

)

eπiαptp
1

πi(μp − αp)
(

eπi(μp−αp)(tp−σp′ ) − 1
)

(10.12)

and satisfies that

‖̂Gp(η, θ)‖L1
η,θL

∞
σ
p′
≤ C

〈αp −μp〉 . (10.13)

Moreover, in view of the restriction tp > σp′ in the last integral in (10.11), we may
truncate Gp and define Gcut

p :=Gp · 1tp−σp′≥0. This truncated function then satisfies

(10.13), but with the right hand side replaced by C〈αp −μp〉−1 log(2+ |αp −μp|),
which follows from direct calculations.

In case 2B, the computation is similar and one obtains that

UT +(t, α[N+])

=
ˆ
F1

∏

n∈Np

(

eπiαntn
)

ˆ tp1−σp

0
dtpe

πiαptp

×
ˆ tp−σp′

0
dtp′e

−πi(αp−μp)tp′UTch(tp′ ,σ , α[Nch]),

=
ˆ
F1

∏

n∈Np

(

eπiαntn
)

ˆ tp1−σp−σp′

0
dtp′Gp(tp1 , tp′)UTch (tp′ ,σ , α[Nch])
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with the kernel

Gp(tp1 , tp′)= χ0
( tp

10

)

χ0
( tp1

10

)

e−πi(αp−μp)tp′ 1

πiαp

(

eπiαp(tp1−σp) − eπiαp(tp′+σp′ ))

that satisfies the bound

‖̂Gp(η, θ)‖L1
η,θL

∞
σp,σp′

≤ C

〈αp〉 . (10.14)

Consider now one of the p chains of modules A and B, suppose that it contains �
modules, which we list from top to bottom, and is contained in the tree T +. Define
h1 to be the p node (see Fig. 36) of the top module, and p1 to be the parent of h1;
also define h�+1 to be the p0 node of the bottom module, and p�+1 to be the parent
of h�+1. Define Tabove to be the tree obtained by removing the subtree rooted at h1
and keeping h1 as a leaf, and Tbelow to be the tree rooted at h�+1 (we define Nabove
and Nbelow accordingly). Note that Tabove is just Tp for the top module and Tbelow
is just the Tch for the bottom module. Let hk (1 ≤ k ≤ �) be the p node of the k-th
module from top to bottom, and write (αk,μk) := (αhk ,μhk ). Then by iterating the
above calculations, we have

UT +(t,σ , α[N+])=
ˆ
F1

∏

n∈Nabove

(

eπiαntn
)

dtn

×
ˆ
C

�
∏

k=1

G∗k(tk, tk+1)dtk+1 · UTbelow(tp�+1 ,σ , α[Nbelow]).

Here F1 is the set defined before but associated with Nabove, and (t1, t�+1) :=
(tp1 , tp�+1). The function G∗k equals Gcut

hk
if the k-th module is A and either k ≤ 4

or k ≥ �− 4, and G∗k =Ghk otherwise. The domain

C = {(t2, . . . , t�+1) : tk > tk+1 + σ̃k, for 1≤ k ≤ �; tk > σ
′
k, for 5≤ k ≤ �− 5},

where σ̃k is the sum of zero, one or two σn variables appearing in σ , and σ ′k equals
either 0 or some σn that appears in σ . The function G∗k satisfies either (10.13) or
(10.14), and with the right hand side of (10.13) multiplied by log(2+|αp−μp|) only
if k ≤ 4 or k ≥ �− 4. As a result, we may write, with σ̃tot = σ̃1 + · · · + σ̃�, that

UT +(t,σ , α[N+])

=
ˆ
(R2)�

�
∏

k=1

̂G∗k(ηk, θk)
ˆ
F1

∏

n∈Nabove

(

eπiαntn
)

dtn · e2πiη1tp1

×
ˆ
C

�
∏

k=2

e2πi(ηk+θk−1)tk dtk · e2πiθ�tp�+1UTbelow(tp�+1 ,σ , α[Nbelow])dtp�+1

=
ˆ
(R2)�

�
∏

k=1

̂G∗k(ηk, θk)
ˆ
F1

∏

n∈Nabove

(

eπiαntn
)

dtn
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×
ˆ tp1−σ̃tot

0
K(tp1, tp�+1) · UTbelow(tp�+1 ,σ , α[Nbelow])dtp�+1 ,

K(tp1 , tp�+1)= χ0
( tp1

10

)

χ0
( tp�+1

10

)

e2πiη1tp1 e
2πiθ�tp�+1

ˆ
C0

�
∏

k=2

e2πi(ηk+θk−1)tk ,

where C0 = {(t2, . . . , t�) : (t2, . . . , t�+1) ∈ C}.
Now let ηk + θk−1 = βk , then the above integral in C0 can be written as

ˆ tp1−σ̃1

−∞
e2πiβ2t2dt2

ˆ t2−σ̃2

−∞
e2πiβ3t3dt3

ˆ t3−σ̃3

−∞
e2πiβ4t4G(t4)dt4;

G(t4) :=
ˆ
C4

�
∏

k=5

e2πiβktk ,

where C4 = {(t5, . . . , t�) : (t2, . . . , t�+1) ∈ C}. Therefore, if the derivatives do not fall
on χ0 factors, we have

∣

∣(∂tp1
− 2πi(β3 + β2 + η1))(∂tp1

− 2πi(β2 + η1))(∂tp1
− 2πiη1)K

∣

∣

≤ C‖G‖L∞ ≤ C

(�− 5)!
uniformly in (tp1 , tp�+1) and σ , noticing that C4 is a subset of a simplex. If any of the
above derivatives falls on χ0 then we can take that derivative again and get similar
estimates. Since also |K| ≤ C/(�− 1)!, we conclude that

|̂K(η0, θ0)| ≤ C

(�− 5)! min(1, |η0−η1|−1|η0− (β2+η1)|−1|η0− (β3+β2+η1)|−1)

uniformly in σ (there may be other possibilities for denominators but the results are
the same). In the same way we can get similar estimates for θ0, and combing these
two yields the bound

sup
(ηk,θk)k=1,...�

‖̂K(η0, θ0)‖L1
η0,θ0

L∞σ ≤
C

(�− 5)! .

As a result, we have that

UT +(t,σ , α[N+])

=
ˆ
(R2)�+1

̂K(η0, θ0)

�
∏

k=1

̂G∗k(ηk, θk)
ˆ
F1

∏

n∈Nabove

(

eπiαntn
)

dtn · e2πiη0tp1

×
ˆ tp1−σ̃tot

0
e

2πiθ0tp�+1UTbelow(tp�+1 ,σ , α[Nbelow])dtp�+1

=
ˆ
(R2)�+1

̂K(η0, θ0)

�
∏

k=1

̂G∗k(ηk, θk) · UT +new
(t, σ̃ , α̃[N+

new])
�
∏

k=0

dηkdθk,
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Fig. 37 The tree T +new is
obtained from T + by removing
the chain of A and B modules,
and connecting the tree Tbelow
at one of the children of h1
keeping the other two children
as leaves

where T +new is the tree obtained from T + by deleting this chain of Modules A and B
as follows: Attach the tree Tbelow at its root as one of three children of h1 (see Fig. 37)
keeping the other two children as leaves. N+

new is the set of branching nodes of Tnew,
σ̃ is the restriction of σ with σh1 = σ̃tot, and α̃[N+

new] is obtained from α[N+
new] by

translating αp1 by 2η0, defining αh1 = 2θ0, and keeping all remaining αn for n ∈
N+

new \ {p1,h1} the same.
We define the double-tree Qtrnew = T +new∪T − (which has no leaf pairing structure),

with the branching node pairing structure inherited from Qtr and not involving h1.
Also define ˜N tr

new accordingly. Using the induction hypothesis, we can take supremum
over σ , then integrate in αn for n ∈ ˜N tr

new, to obtain that the left hand side of (10.10) is
bounded by (recalling that the removed chain of A and B modules has 2� branching
nodes)

(C+)n′0−2�LC(p−1)
√
δ(logL)|N rm|+C(p−1)

×
(

δ(2�)/4
ˆ
(α1,...,α�):αk∈Sk(1)

ˆ
(R2)�+1

sup
σ
|̂K(η0, θ0)|

�
∏

k=1

|̂G∗k(ηk, θk)|
)

≤ (C+)n′0−2�C�LC(p−1)
√
δ(logL)|N rm|+C(p−1)

×
(

δ(2�)/4
ˆ
(α1,...,α�):αk∈Sk(1)

∏�
k=1�k(αk − μ̃k)
(�− 5)!

)

≤ (C+)n′0−2�C�LC(p−1)
√
δ(logL)|N rm|+C(p−1)

(

C�δ(2�)/4
(logL)�+10

(�− 5)!
)

≤ (C+)n′0−2�C2�LC(p−1)
√
δ(logL)|N rm|+C(p−1)

(

(logL)15eC
√
δ logL

)

,

where Sk(1) is a set of measure ≤ L10d , we denoted by μ̃k either 0 or μk (depending
on whether the k-th module is A or B), and �k(z) is either 〈z〉−1 or (for at most 10
values of k) 〈z〉−1 log(2 + |z|). In the final step we used the bound x�−5

(�−5)! ≤ ex for
any �. Note also that in applying the induction hypothesis for N tr

new we have fixed
the value of αh1 = 2θ0 (using integrability of ̂K), but it is clear from the proof that
fixing the value of any αn will only lead to better estimates than integrating in αn.
This gives the estimate (10.10) and finishes the proof. �
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10.3 Proof of Propositions 2.5 and 2.7

We are now ready to prove Propositions 2.5 and 2.7. First we establish the absolute
upper bound for (8.27), which then allows us to control (8.4).

Proposition 10.4 Given one congruence class F of non-regular marked couples of
scale n as in Definition 8.4, the expression

∑

Q∈F
KQ(t, s, k) (10.15)

can be decomposed into at most Cn terms. For each term there is an integer 1≤ r ≤ n
such that this term is bounded, uniformly in (t, s) ∈ [0,1]2, by (C+δ1/4)n〈k〉−20d ·
L−νr . Moreover, for each fixed r , the number of possibilities of Q (or F ) that corre-
spond to this r is at most Cn(Cr)!.
Proof As in Sect. 8 we can reduce to (8.27), and then to (10.2). Note that in (10.2) the
Q actually means Q#

sk by our notation. Using the decay factors in (8.28) we can gain
the power 〈k〉−30d , and also restrict to the subset where |kl − al| ≤ 1 for some fixed
parameters (al) (with summability in (al) guaranteed). Using the bound for G(λ),
which is a modification of the first inequality in (8.26), we may also fix the value of
λ (and hence μn).

As in Sect. 9, by decomposing into at most Cn
′
0 terms (where n′0 is the scale of

Q#
sk), we can add the set of extra conditions Ext, which also defines the sets ˜N (as in

Proposition 10.1), etc., and the value r1 ≥ 1. Let r = r0 + r1 as above, then thanks to
Ext, we can use (10.3) to reduce UQ#

sk
to VQ#

sk
. Moreover, for each n ∈ ˜N , the value

δL2ζn�n + λn belongs to some subset of R of cardinality at most L3d , as k[Q#
sk]

varies (this is because each kn belongs to a ball of radius at most n≤ (logL)3 under
our assumptions). In particular the value mn = �δL2ζn�n + λn� belongs to a set
Sn ⊂ Z with cardinality at most L3d , for all possible choices of k[Q#

sk].
To estimate (10.2) with λ fixed, we first integrate in σ . Using (8.28), we can esti-

mate (10.2) using
∑

E #
sk

|εE #
sk
| · sup

σ

∣

∣VQ#
sk

(

t, s,σ , (δL2ζn�n + λn)n∈ ˜N
)∣

∣, (10.16)

where E #
sk = k[Q#

sk] is a k-decoration of Q#
sk (we also have additional factors that

will be collected at the end). We next fix the values of mn ∈ Sn for each n; note that
then

sup
σ

∣

∣VQ#
sk

(

t, s,σ , (δL2ζn�n + λn)n∈ ˜N
)∣

∣≤ sup
(αn):|αn−mn|≤1

sup
σ

∣

∣VQ#
sk
(t, s,σ , α[˜N ])∣∣

by definition, so if we use (10.4) to sum over (mn) in the end, we can further estimate
(10.16) using

∑

E #
sk

|εE #
sk
| ·
∏

l

1|kl−al|≤1

∏

n

1|�n−bn|≤δ−1L−2, (10.17)
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where al and bn are constants, and we also include the conditions in Ext. Now
(10.17) is almost exactly the counting problem D(M,Ext) stated in Definition 9.8,
due to Remark 9.9, except that we only assume |kl − al| ≤ 1 for leaves l. However,
for any branching node n there exists a child n′ of n such that kn ± kn′ belongs to a
fixed ball of radius μ◦n as in Lemma 6.6, so by using (6.30), one can reduce (10.17)
to at most Cn

′
0 counting problems, each of which having exactly the same form as

D(M,Ext) in Definition 9.8. Therefore, (10.17) can be bounded using Proposition
9.10 (and using Remark 9.11 if necessary). Collecting all the factors appearing in the
above estimates, we get that

〈k〉20d · |(10.15)| ≤ (C+)nδ(n−n′0)/2δ3n′0/4L−(d−1)n′0 ·L−2νr0

×LCr
√
δ(logL)Crδ−(n′0+m)/2L(d−1)n′0−2νr1, (10.18)

which is then bounded by (C+δ1/4)nL−3νr/2δ−m/2, where m is the total length of
type I chains in the molecule obtained from Q#

sk . We knowm≤ Cr so δ−m/2 ≤ Lνr/2,
which implies the desired bound.

Finally, suppose we fix r , then the base molecule formed by Q#
sk is, up to at most

Cr remaining atoms, a union of at most Cr type II chains with total length at most
n′0. This clearly has at most (Cr)!Cn possibilities. By Proposition 9.6, the number
of choices for Q#

sk is also at most (Cr)!Cn. To form Qsk from Q#
sk one needs to

insert at most Cr irregular chains with total length at most n, which also has at most
Cn possibilities. Finally, using Corollary 4.16, we see that Q has at most (Cr)!Cn
choices. The number of choices for markings, as well as Ext, are also at most Cn

and can be accommodated. �

Proof of Proposition 2.5 By definition, we have

E|(Jn)k(t)|2 =
∑

Q
KQ(t, t, k),

where the sum is taken over all couples Q= (T +,T −) such that n(T +)= n(T −)=
n. If Q is regular, then the number of such Q’s is at most Cn by Proposition 4.9, and
for each Q we have |KQ(t, t, k)| � 〈k〉−20d(C+δ)n by Proposition 6.7 and Remark
6.9. Therefore, the sum over these Q’s is under control.

Now consider non-regular Q. It follows from definition that the congruence re-
lation (as in Definition 8.4) preserves the scales of both trees of a couple. Thus,
the sum over Q can be decomposed into sums over Q ∈ F (i.e. sums of form
(10.15)), where F runs over the (possible) different congruence classes. Applying
Proposition 10.4, we can regroup these terms according to the value of 1 ≤ r ≤ 2n
(which we call the index), such that (i) each single term with index r is bounded
by (C+δ1/4)2n〈k〉−20d · L−νr , and (ii) the number of terms with index r is at most
(Cr)!C2n. Hence

E|(Jn)k(t)|2 � 〈k〉−20d(C+δ)n + 〈k〉−20d(C+δ1/4)2n
2n
∑

r=1

L−νr (Cr)!C2n
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Fig. 38 A flower tree, as in
Definition 11.1. The red leaf f is
the flower, r is the root, and
Tj (1≤ j ≤ 2n) are attached
sub-trees, where n is the height

� 〈k〉−20d(C+
√
δ)n,

noticing also that r ≤ 2n≤ 2(logL)3. This completes the proof. �

Proof of Proposition 2.7 Here we are considering the sum of KQ(t, t, k) over all cou-
ples Q such that n(Q) = m for some fixed value m. If Q is non-regular, then using
the same argument as in the above proof we can bound the corresponding contribu-
tion by 〈k〉−20d(C+δ1/4)mL−ν since we also have r ≥ 1. Therefore we only need to
consider regular couples Q. If m is odd then this sum is zero because the scale of
regular couples must be even. If m= 2n, we only need to show that

∣

∣

∣

∣

∑

n(Q)=2n
Q regular

KQ(t, t, k)−Mn(t, k)

∣

∣

∣

∣

� 〈k〉−20d(C+
√
δ)nL−ν,

but this is a consequence of Proposition 7.11. This completes the proof. �

11 The operator L

In this section we prove Proposition 2.6. The arguments are mostly the same as in
previous sections, so we will only point out the necessary changes in the proof. First,
in order to expand the kernel (L n)

ζ
k�(t, s), we need to slightly modify the definition

of trees and couples.

Definition 11.1 A flower tree is a tree T with one leaf f specified, called the flower;
different choices of f for the same tree T leads to different flower trees. There is a
unique path from the root r to the flower f, which we call the stem. A flower couple
is a couple formed by two flower trees, such the two flowers are paired (in particular
they have opposite signs).

The height of a flower tree T is the number of branching nodes in the stem of T .
Clearly a flower tree of height n is formed by attaching two sub-trees each time, and
repeating n times, starting from a single node; see Fig. 38. We say a flower tree is
admissible if all these sub-trees have scale at most N .
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Proposition 11.2 Given ζ ∈ {±}, we can make the decomposition (2.27), such that
for each m,

E|(L n)
m,ζ
k� (t, s)|2 =

∑

Q

˜KQ(t, s, k, �), (11.1)

where the sum is taken over all flower couples Q= (T +,T −), such that both T ± are
admissible, have height n and scale m, and the flower of T ± has sign ±ζ . For t > s,
the quantity ˜KQ is defined similar to (2.24):

˜KQ(t, s, k, �) :=
(

δ

2Ld−1

)2m

ζ ∗(Q)

×
∑

E

εE

ˆ
E

∏

n∈N ∗
eζnπiδL

2�ntndtn
∏

δ(tfp − s)
(+)
∏

f�=l∈L∗
nin(kl)1kf=�,

(11.2)

where E is a k-decoration of Q, the other objects are associated with the couple Q,
and the set E is defined as in (5.4) but with s replaced by t ; in the last product we
assume l has sign + and is not one of the two flowers f of the flower couple Q.

The differences between (11.2) and (2.24) are the (two) Dirac factors δ(tfp − s),
where fp is the parent of f for both flowers f, and the (one) factor 1kf=�.

Proof Note that

L b=
∑

n(T1),n(T2)≤N

{

IC+(b,JT1,JT2)+ IC+(JT1 , b,JT2)+ IC+(JT1 ,JT2, b)
}

,

where the signs of the trees Tj are determined by the positions they appear (+ for
the first and third inputs of C+ and − otherwise). This corresponds to attaching two
sub-trees T1,2 to a single node. Calculating L n corresponds to repeating this n times
(obtaining an admissible flower tree T of height n), and the linear (or conjugate
linear) part of L n corresponds to the flower of T having the same (or opposite) sign
as the root. Taking into account also the time integrations, we get

(L n)
ζ
k�(t, s)=

∑

m

(L n)
m,ζ
k� (t, s) :=

∑

m

∑

T

˜JT (t, s, k, �),

where the inner sum in the last expression is taken over all admissible flower trees T
of height n and scale m such that the ζr =+ and ζf = ζ , and

˜JT (t, s, k, �)=
(

δ

2Ld−1

)m
∏

n∈N
(iζn)

∑

D

εD

ˆ
D

∏

n∈N
eζnπiδL

2�ntndtn · δ(tfp − s)

×
∏

f�=l∈L

√

nin(kl)η
ζl
kl
(ω)1kf=�, (11.3)
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where D is a k-decoration of T , D is defined as in (5.2), and the other objects are
associated with the tree T . Note also that if T is admissible and has height n ≤ N
and scale m, then n ≤ m ≤ (1 + 2N)n ≤ N3. Then, by repeating the arguments in
Sect. 2.2.3 using Lemma A.2, we can deduce (11.2). �

Proof of Proposition 2.6 We only need to control the right hand side of (11.1). We will
basically repeat the arguments in Sects. 5–10. The main points worth noticing are the
followings.

(1) If Q is an admissible flower couple, and ˜Q is congruent to Q in the sense of
Definition 8.4, then ˜Q is also an admissible flower couple, if we choose its flower
to be the image of the flower of Q, and has the same height and scale as Q. This
will enable us to decompose the right hand side of (11.1) into sums of form (10.15)
where F is a congruence class of marked flower couples (which are defined similar
to Definition 8.4), which then allows for the cancellation exploited in Sect. 8.

To prove the above claim, notice that the branching nodes in any irregular chain
in Qsk are also branching nodes in Q, and this chain can be divided into two chains
such that all branching nodes in the first one belong to the stem of a tree in Q, and
all branching nodes in the second one contained in one of the Tj sub-trees that are
attached in the process described in Definition 11.1.

We may treat these two chains separately; at the joint of the two chains we may
leave out at most 5 nodes, but this will be acceptable similar to Sect. 8. Similarly we
may assume that the first chain avoids the flower, by shortening it if necessary. For
the second chain all branching nodes are contained in some Tj , so modifying it in the
sense of Definition 8.4 has effect only within Tj (and it does not affect any pairings
between Tj and any other Tj ′ ), and does not change the scale of Tj . For the first chain
all branching nodes belong to the stem, so modifying it may result in some Tj being
replaced by its conjugate, or being permuted with some other Tj , see Fig. 22. Note
that the nodes in the chain may not be consecutive nodes on the stem, but the part of
stem between them can be obtained by including a unique path within each regular
tree (represented by a black box in Fig. 22). In either case, this does not change the
height or scale of Q, nor the fact that n(Tj )≤N for each j . Therefore, the couple ˜Q
is also admissible and has the same height and scale as Q.

(2) In (11.2) we have the factor 1kf=� instead of nin(kf). First notice that k− ζ� is a
linear combination of the kl for f �= l ∈ L∗, so the decay factor 〈k− ζ�〉−20d in (2.28)
can be obtained from the nin(kl) factors. Moreover, since kf ∈ Z

d
L, we can replace

1kf=� by ψ(L(kf − �)) for some suitable cutoff function ψ . Using this function in
place of nin(kf), we can repeat all the previous arguments, with at most a L3d loss.
For example, in Propositions 6.7 and 6.10 we are relying on Proposition 6.1, which
only requires the norm in (6.2). The norm of W is bounded by the same norm of
the tensor product function

∏

l nin(kl), as W is obtained from the latter by a linear
change of variables; if one factor in this tensor product is replaced by ψ(L(kf − �)),
then its norm gets multiplied by a constant power of L. Therefore, all the proofs will
be the same, except for a possible loss of at most L3d .

(3) In (11.2) we have the Dirac factors δ(tfp − s). This means that in the integral in
(11.2) we are omitting the integration in tfp for both flowers f. However, this differ-
ence will cause at most another L20d loss. This is intuitively clear as only one node
(and one time variable) is affected, and we can demonstrate it as follows.
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Recall the sequence of reductions in Sects. 5–10, where we remove from the cou-
ple Q successively (i) the regular couples and regular trees, then (ii) the irregular
chains, then (iii) the nodes corresponding to atoms in type II chains of the base
molecule. In both steps (ii) and (iii) we can choose to avoid the two specific nodes
fp , so for each flower f, we only need to consider the case where (a) fp belongs to a
regular couple or a regular chain in step (i), or (b) fp belongs to the rest of Q after
performing steps (i)–(iii). Let m= fp .

In case (a) we will further reduce the regular couple or regular tree using Proposi-
tion 4.8, and we may assume fp belongs to one of the regular chains in this process
(we only consider Case 2 in Sect. 5.1.1; Case 1 is much easier as the expression is
much simpler and we can directly calculate it). The point here is that, if we omit the
integration in tm, then the resulting expression, which is a function of α[N ∗] as in
(5.3), satisfies the same bound as the one with tm integration, but in the weaker norm
L∞αmL

1
α[N ∗\{m}] instead of L1

α[N ∗]. To see this, consider

K(t,α1, . . . , αm)=
ˆ
t>t1>···>t2m>0

eπi(β1t1+···+β2mt2m) dt1 · · ·dt2m (11.4)

as in (5.12), where βa (1 ≤ a ≤ 2m) is a permutation of ±αj (1 ≤ j ≤ m) associ-
ated with a legal partition, as in Sect. 5.2; for simplicity we have omitted the λa
variables. By the arguments in Sect. 5.2, we can bound the L1

α1,...,αm
norm of K (or

we may extract explicit 1
αj

factors from K and bound the L1 norm in the other αj
variables, see Lemma 5.10; for simplicity we will omit this case). Now, suppose we
insert δ(t2m − s) in (11.4) (note that, since a child of m is a leaf that is paired with
a leaf in the other tree, we must have tm = t2m in the regular chain integration), then
we will lose integrability in β2m; however if we fix the value of β2m then we get the
expression

eπiβ2ms

ˆ
t>···>t2m−1>s

eπi(β1t1+···+β2m−1t2m−1)dt1 · · ·dt2m−1 (11.5)

(note that there is some a such that βa = −β2m is also fixed). This has basically
the same form as (11.4), except for a harmless class J operator corresponding to
integration in ta , so we can repeat the proof in Sect. 5.2, using the notions of class J
and R operators, to obtain the same bound for this expression in the L1 norm in the
remaining αj (i.e. excluding βa and β2m) variables. This then implies the bound for
our expression, for fixed s, in the L∞L1 type weaker norm as desired.

In case (b), the same argument applies, except that we replaced the L1 norm by
the variant in (10.4). The proof is in fact easier, as the bound (10.4), after removing
the type II molecular chains, follows solely from the denominators 〈qn〉 occurring in
(10.8) in Lemma 10.2. If we omit the integration in tm, then we are at loss of only
one denominator involving αm, which does not affect the presence of all the other
denominators. Thus, if αm is fixed, the function can be bounded in the remaining
variables in the norm in (10.4), using the same arguments in Sect. 10.

In either case, in the end we can obtain the same bound for the modified time
integral, but in weaker norms without integrability in at most two of the αn variables.
But this bound can easily be transformed to the L1 type bound involving all variables,
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with at most L10d loss, because each αm will be replaced by δL2�m in the actual KQ
expression, which belongs to the union of at most L5d fixed unit intervals (at least if
we restrict |kl| ≤ L for each l; if maxl |kl| :=M ′ ≥ L then we may lose (M ′)10d but
this will be covered by the (M ′)100d gain coming from nin). Therefore L∞αm bounds
imply the corresponding L1

αm
bounds with a loss of at most L5d , once we insert the

suitable cutoff functions adapted to these unit intervals.
In view of the arguments (1)–(3) above, the bound for the right hand side of (11.1)

can be obtained, using the same arguments as in Sects. 5–10. This proves Proposition
2.6. �

Corollary 11.3 Fix M0 ≥ L and M1 ≥ L(100d)3 . In (11.2), suppose |k| ≥M2
0 , and we

insert suitable cutoff functions supported in |kl| ≤M0 for each f �= l ∈ L∗; moreover,
suppose we insert one (or more) cutoff function supported in |�nj | ≥M1 for some
1≤ j ≤ n− 1, where nj is the j -th node in the stem from top to bottom (in particular
nn = fp), then the resulting expression satisfies the same bound as (11.2), but with an
additional decay factorM−1/9

1 M5d
0 . The same holds for the right hand side of (11.1).

Proof Note that the assumption implies that for any irregular chain in Qsk with
branching nodes on the stem, the gap h (see Proposition 8.3) must satisfy |h| ≥M2

0/4
(since |kn| ≥M2

0/2 for any node n on the stem, and |kn| ≤N3M0 for any node n off
the stem); in particular we are in the large gap case (Sect. 8.3.2) and thus do not need
the cancellation coming from congruence couples obtained by altering this irregular
chain. Thus, in carrying out the arguments in previous sections we only need to sum
over Q ∈F ′ where F ′ (unlike F ) is a subset in a fixed congruence class, formed
by altering irregular chains that are completely contained in some Tj . Since altering
these chains do not affect the structure of the stem or any �nj factor, we can bound
the resulting expression in the same way as (11.2).

To gain the extra decay in M1 using the largeness of |�nj |, like in the proof of
Proposition 11.2, we may assume nj belongs to either (a) a regular couple or regular
tree, or (b) the rest of the couple after removing all the special structures. In case (a),
if nj is not paired (as a branching node) to nn = fp , we can use (5.10) or the denom-
inators αn in (5.8) to gain a power of M1; if nj is paired to fp , then we will consider
Case 1 and Case 2 (in the sense of Sect. 5.1.1) separately. By direct calculation in
Case 1 and examining (11.5) similar to Sect. 5.2 in Case 2, we can also gain a power
M
−1/9
1 at a loss of at mostM5d

0 , in either situation. In case (b), the decay comes from
the denominators qn in (10.8). If |�nj | ≥M1 then one of these denominators, say
〈̃q〉, will be �M1; we then sum over this q̃ to get

∑

q̃

1

〈̃q〉 �M−1
1 M5d

0

since q̃ belongs to a set of cardinality at most M5d
0 as the decoration varies. This

provides the needed decay, and the rest of the sum can be estimated as in Proposition
10.1. �
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12 The endgame

In this section we prove Theorem 1.1. We will do this in a few steps. Recall that
A≥ 40d is fixed in Sect. 2.3.1, as is the even integer p�A,ν 1 and δ�p,C+ 1.

Proposition 12.1 With probability ≥ 1−L−A, we have

|(Jn)k(t)|� 〈k〉−9d(p2C+
√
δ)n/2L, |Rk(t)|� 〈k〉−9d(p2C+

√
δ)N/2L (12.1)

for any k ∈ Z
d
L, t ∈ [0,1], and all 0≤ n≤N3, where R is defined in (2.17). Note in

particular that the right hand side of the second inequality in (12.1) is bounded, due
to our choice N = �logL�, by

(p2C+
√
δ)N/2L≤ δN/8L≤ L−(100d)3 . (12.2)

Proof First consider Jn. For fixed k and fixed t , (Jn)k(t) is a random variable of
form (A.4), so using Lemma A.3 and Proposition 2.5 we get

E|〈k〉10d(Jn)k(t)|p � pnp(C+
√
δ)np/2.

This being uniform in t , we can integrate in t and sum in k to obtain that

E‖〈k〉9d(Jn)k(t)‖p
L
p
t,k([0,1]×ZdL)

� pnp(C+
√
δ)np/2, (12.3)

where Lpk is taken with respect to L−d times the counting measure in k. Moreover
we also have

E|∂t (Jn)k(t)|2 � 〈k〉−20d(C+
√
δ)nL40d , (12.4)

which can be proved using the arguments in Sect. 11, as taking ∂t derivative just
corresponds to omitting the tr integration and producing something like (11.2). This
then implies that

E‖〈k〉9d∂t (Jn)k(t)‖p
L
p
t,k([0,1]×ZdL)

� pnp(C+
√
δ)np/2L40dp. (12.5)

By using Gagliardo-Nirenberg for t ∈ [0,1], and bounding the L∞k norm by the Lpk
norm for k ∈ Z

d
L with an extra loss Ld/p , we conclude that

E‖〈k〉9d(Jn)k(t)‖p
L∞t,k([0,1]×ZdL)

� Ldpnp(C+
√
δ)np/2L40d , (12.6)

thus with probability ≥ 1−L−p/2, we have

sup
t,k

|〈k〉9d(Jn)k(t)|� pn(C+
√
δ)n/2L41d/p+1/2,

which implies (12.1). The estimate for R is the same, with n replaced by N ; we just
need to notice that Rk(t) equals the sum of (JT +)k(t) over all trees T + of scale
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> N such that its three sub-trees all have scale ≤ N (in particular the scale of T +
is between N and 3N ). This property, as well as the similar property for couples, is
again invariant under congruence relations, so the same arguments in the previous
sections apply. �

Proposition 12.2 With probability ≥ 1−L−A, we have

‖L n‖Z→Z � (p2C+
√
δ)n/2L60d (12.7)

for all 0≤ n≤N .

Proof We only need to show, with probability ≥ 1−L−A, that

sup
k,�

sup
0≤s<t≤1

〈k − ζ�〉9d |(L n)
m,ζ
k� (t, s)|� (p2C+

√
δ)m/2L55d (12.8)

for any ζ ∈ {±} and n ≤ m ≤ N3. The supremum in (t, s) can be treated similar to
the proof of Proposition 12.1, so the main point here is to address the supremum in
(k, �). This formally has infinitely many possibilities, but we will use Lemma A.6,
which is a variant of Claim 3.7 in [18], to reduce it to finitely many possibilities. We
may assume ζ equals + below, as the other case is the same.

We start by making the decomposition

1=
∑

R≥L
χR(kl), (12.9)

where χR(z) is supported in |z| � R if R = L and in |z| ∼ R if R > L, for each
f �= l ∈ L∗. Note that, as in the proof of Corollary 11.3, we also fix one particular
stem structure of the tree T in (11.3). Let the maximum of these R for all the kl be
M0. Below we may assumeM0 = L, since even ifM0 >L, we will lose at mostM20d

0
in all subsequent arguments (see for example Corollary 11.3), which can be covered
by the M−200d

0 gain from the nin(kl) factor, and clearly the summation over R is not
a problem.

Now assume M0 = L. If |k| ≤ L2, then the number of possibilities for (k, �) is at
most L8d . We can replace the L∞k,� norm in (12.8) by Lpk,� and argue as in Proposition
12.1, applying Proposition 2.6 and the corresponding bound for t and s derivatives
(which can be obtained similarly as in Sect. 11), to get (12.8).

Suppose now |k| ≥ L2, then we will further make the decomposition (12.9) for
the variables �nj (1≤ j ≤ n− 1) defined in Corollary 11.3, but with L replaced by

L(100d)3 . Let the maximum of these R for all the �nj be M . For fixed M , let the

corresponding contribution to (L n)
m,ζ
k� be (L n)

m,ζ
M,k�, then it suffices to show that

E
∣

∣ sup
k,�

sup
0≤s<t≤1

〈k− �〉9d |(L n)
m,ζ
M,k�(t, s)|

∣

∣

p � pmp(C+
√
δ)mp/2L50dpM−p/20

(12.10)
for M >L(100d)3 , and the same bound without M−p/20 for M = L(100d)3 .

Suppose M is fixed. Clearly |k− �| ≤ L2, so we may also fix the value of k− � at
a loss of L5d . In the formula (11.3) of the terms in L n, we will fix the values of kf′
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and kf′′ in the decoration D , where f′ and f′′ are the two siblings of f. Clearly each
of them has at most L5d choices, so fixing them again introduces a factor of at most
L15d .

Recall that in (11.3), the whole expression depends on �fp only through the inte-
gral

ˆ
eζfpπiδL

2�fp tfp δ(tfp − s)dtfp = eζfpπiδL2�fp s .

Moreover, once kf′ and kf′′ are fixed, and kf = �, then �fp is determined by � and
no longer depends on the other parts of the decoration. Therefore one can extract the

factor eζfpπiδL
2�fp s and write the contribution currently under consideration in the

form of

eζfpπiδL
2�fp s ·

(

δ

2Ld−1

)m
∏

n∈N
(iζn)

∑

D

εDA∗∗(t, s, δL2 ·�[N \{fp}])

×
∏

f�=l∈L

√

nin(kl)η
ζl
kl
(ω)1kf=�, (12.11)

where A∗∗ is a function of the remaining variables �[N \{fp}] and does not depend
on �fp . Moreover, when �fp is fixed, the function A∗∗ (or more precisely the func-
tions generated by A∗∗ that occur in the proofs in the previous sections) satisfies the
bounds described in the proof of Proposition 2.6 in Sect. 11, hence one can get the
same square moment estimate as in Proposition 2.6. Moreover if M >L(100d)3 , then
using the same arguments as in the proof of Corollary 11.3, we can gain an extra
M−1/9 compared to Proposition 2.6, with at most L5d loss.

Now, after removing the unimodular factor eζfpπiδL
2�fp s in (12.11), we notice

that the rest of (12.11) depends on k only through the resonance factors �nj for
1 ≤ j ≤ n− 1. Moreover we have assumed that |�nj | ≤M for each such j . If any
nj and nj+1 have opposite signs, then by definition and |�nj | ≤M , we easily see
that |k| �M , so we can replace the L∞k,� norm by Lpk,� and close as before, where

the loss is at most MC/p and can either be absorbed by the gain M−1/9 coming from
Corollary 11.3 if M > L(100d)3 , or neglected if M = L(100d)3 . We may thus assume
all nj have the same sign, and in this case we have

�nj = |k + aj |2β − |k+ bj |2β +�′j = 〈k, cj 〉β +�′′j
where (aj , bj , cj ) are vectors, and (�′j ,�′′j ) are expressions, that do not depend on k

(hence they are bounded by L3).
We may then apply Lemma A.6 and assume k is represented by a system

(r, q, v1, . . . , vq, f, y). Then, if χM(z) is a cutoff function supported in |z| ≤M , and
F is an arbitrary function, we have

n−1
∏

j=1

χM(�nj ) · F(�n1 , . . . ,�nn−1)
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=
n−1
∏

j=1

1S(cj )χM(G(f,y, cj )+�′′j ) · F((G(f, y, cj )+�′′j )1≤j≤n−1),

(12.12)

where S is the set of z whose first r coordinates form a linear combination
of {v1, . . . , vq} and G is some function. The point here is that, the right hand
side of (12.12) does not explicitly involve k, but only depends on the variables
(v1, . . . , vq, f, y), which are bounded in size by MC for a constant C depending
only on d . This is in contrast with k, which has no a priori upper bound and may have
infinitely many choices.

Therefore, for any k, the function A∗∗(t, s, δL2 ·�[N \{fp}]), viewed as a function
of (t, s, k[T \{r, f}]), equals G∗∗(t, s, v1, . . . , vq, f, y, k[T \{r, f}]) for some function
G∗∗. This means that

sup
k

∣

∣(· · · [A∗∗] · · · )∣∣= sup
(v1,...,vq ,f,y)

∣

∣(· · · [G∗∗] · · · )∣∣, (12.13)

where the parenthesis (· · · ) in (12.13) represents (12.11) without the eζfpπiδL
2�fp s

factor. Now, with the finite volume that (v1, . . . , vq, f, y) and (t, s) occupy, we can
bound

∥

∥(· · · [G∗∗] · · · )∥∥
L∞t,sL∞v1,...,vq ,f,y

�
∥

∥(· · · [G∗∗] · · · )∥∥1−C/p
L
p
t,sL

p
v1,...,vq ,f,y

∥

∥(∂t,s,y · · · [G∗∗] · · · )
∥

∥

C/p

L
p
t,sL

p
v1,...,vq ,f,y

.

(12.14)

Then, we take p-th power moments and argue as in the proof of Proposition 12.1.
Note that by Lemma A.6, for any system (r, q, v1, . . . , vq, f, y), the G∗∗ function is
the limit of the A∗∗ functions for some sequence of k; the same limit holds for the
(∂t , ∂s) derivative, and ∂yG∗∗ is the limit of ∂�nj

A∗∗ multiplied by some harmless

factors (these factors are bounded by MC which is diminished by the C/p power in
(12.14); also any derivative of A∗∗ can be treated in the same way as A∗∗ itself), so
the p-th power moments for fixed (v1, . . . , vq, f, y) can be estimated as in Proposi-

tion 2.6, with the extra decay in M for the term without derivatives if M >L(100d)3 .
In summary we get

E
∣

∣ sup
k,�

sup
0≤s<t≤1

〈k − �〉9d |(L n)
m,ζ
M,k�(t, s)|

∣

∣

p � pmp(C+
√
δ)mp/2L45dpMC−p/18,

which clearly implies (12.10), if M > L(100d)3 . Here notice that we gain the power
M−p/18 from the p-th moment of the (· · · [G∗∗] · · · ) term without derivatives, thanks
to Corollary 11.3, and that all the losses caused by the summation or integration
in (r, q, v1, . . . , vq, f, y), or by the (∂t , ∂s, ∂y) derivatives, are at most MC . If M =
L(100d)3 then we do not have the gain M−p/18, but the losses are still at most MC ≤
Lp which is also acceptable. The proof is now complete. �



Full derivation of the wave kinetic equation 707

Proposition 12.3 With probability ≥ 1−L−A, the mapping defined by the right hand
side of (2.18) is a contraction mapping from the set {b : ‖b‖Z ≤ L−500d} to itself.

Proof Suppose we exclude the exceptional set of probability L−A in Propositions
12.1–12.2. Consider the mapping

b �→ (1−L )−1(R+B(b, b)+C (b, b, b)),

as usual, we just need to prove it maps the given set to itself, and the contraction
property will follow similarly. Suppose ‖b‖Z ≤ L−500d , note that

(1−L )−1 = (1−L N)−1(1+L + · · · +L N−1)

maps Z to Z, where (1−L N)−1 can be constructed by Neumann series; using (12.7)
we get that ‖(1−L )−1‖Z→Z � L62d . Therefore, it suffices to show that

‖R‖Z + ‖B(b, b)‖Z + ‖C (b, b, b)‖Z � L−600d .

The bound for R follows from (12.1) and (12.2), so we only need to consider B and
C . But this is again easy, using the loose estimate

‖IC+(u, v,w)‖Z � ‖C+(u, v,w)‖Z � L20d‖u‖Z‖v‖Z‖w‖Z,
together with (12.1) and the assumption ‖b‖Z ≤ L−500d . This completes the proof.

�

Proof of Theorem 1.1 By Propositions 12.1–12.3, with probability ≥ 1−L−A, the so-
lution a = ak(t) to (2.3)–(2.4) can be written as the ansatz (2.15) for t ∈ [0,1], where
each Jn satisfies (12.1), and b is constructed by contraction mapping and satisfies
‖b‖Z ≤ L−500d . Denote this event by E, so that P(E)≥ 1−L−A. Let E1 ⊃E be the
event that (NLS) has a smooth solution on [0, δ · Tkin].

For each τ ∈ [0, δ] we will calculate, with û as in (1.2), that

E(|̂u(τ · Tkin, k)|21E1)= E(|ak(δ−1τ)|21E1).

If we replace 1E1 by 1E1\E , then the resulting contribution is bounded by L−A+10d ,
since |ak(t)|2 is bounded uniformly in k and t by mass conservation, so we may
replace 1E1 by 1E . This then reduces to the expression

∑

0≤n1,n2≤N
E((Jn1)k(t)(Jn2)k(t)1E)+ 2

N
∑

n=0

ReE((Jn)k(t)bk(t)1E)+E(|bk(t)|21E),

where t = δ−1τ . The terms involving b are obviously bounded by L−100d using
(12.1) and ‖b‖Z ≤ L−500d , so we just need to consider the correlations between Jn1

and Jn2 . In these correlations, if we replace 1E by 1Ec , then the resulting contribution
is

∣

∣E((Jn1)k(t)(Jn2)k(t)1Ec)
∣

∣≤ (E|(Jn1)k(t)|4)1/4(E|(Jn2)k(t)|4)1/4(P(Ec))1/2
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� L−A/2+10d

using Lemma A.3 and Proposition 2.5, so we may replace 1E by 1, thus reducing to
the expression

∑

0≤n1,n2≤N
E((Jn1)k(t)(Jn2)k(t))=

∑

Q
KQ(t, t, k),

where the last sum is taken over all couples Q = (T +,T −) with n(T ±) ≤ N . We
may replace this condition by the condition n(Q) ≤ 2N , because each term KQ in
the difference must satisfy N ≤ n(Q)≤ 2N , and the set of these Q is invariant under
congruence, so we can bound the difference by (C+

√
δ)N/2 ≤ L−100d . This reduces

our target, up to errors O(L−10d), to

2N
∑

n=0

∑

n(Q)=n
KQ(t, t, k)=

N
∑

n=0

Mn(t, k)+O(L−ν)= n(δt, k)+O(L−ν)

= n(τ, k)+O(L−ν),

where the last steps are due to Propositions 2.7 and 7.9. In the end we get that

E(|̂u(τ · Tkin, k)|21E1)= n(τ, k)+O(L−ν),

uniformly in τ ∈ [0, δ] and k ∈ Z
d
L. This proves Theorem 1.1. �

Appendix A: Preliminary lemmas

A.1 The exceptional set Z

We will define in Lemma A.1 the Lebesgue null set Z used in Theorem 1.1. Once
Lemma A.1 is proved, for the rest of the paper we will fix one β ∈ (R+)d\Z.

Lemma A.1 (The genericity condition) There exists a Lebesgue null set Z ⊂ (R+)d
such that the followings hold for any β = (β1, . . . , βd) ∈ (R+)d\Z.

(1) For any integers (K1,K2) �= (0,0), we have

|β1K1 + β2K2|� (1+ |K1| + |K2|)−1 log−4(2+ |K1| + |K2|); (A.1)

(2) The numbers β1, . . . , βd are algebraically independent over Q, and for any R
we have

#
{

(X,Y,Z) ∈ (Zd)3 : |X|, |Y |, |Z| ≤R, X �= 0, max(|〈X,Y 〉β |, |〈X,Z〉β |)≤ 1
}

�R3d−4+ 1
6 . (A.2)
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Proof (1) This is standard in Diophantine approximation, which can be proved by
summing over all (K1,K2) the measure of the set of (β1, β2) not satisfying (A.1)
and applying Borel-Cantelli.

(2) Without loss of generality we may assume β ∈ [1,2]d . If XjY j = XjZj = 0
for all j , since X �= 0, the number of choices for (X,Y,Z) is clearly at most R2d−1

which satisfies (A.2) since d ≥ 3. If XiXj (Y iZj − Y jZi)= 0 for all (i, j), but not
all XjY j and XjZj are zero, say X1Y 1 �= 0, then for fixed (X,Y,Z), the Lebesgue
measure of the set

E :=
{

β ∈ [1,2]d :
∣

∣

∣

∣

d
∑

�=1

β�X�Y �
∣

∣

∣

∣

≤ 1,

∣

∣

∣

∣

d
∑

�=1

β�X�Z�
∣

∣

∣

∣

≤ 1

}

is bounded by C|X1Y 1|−1. Moreover, once X1 and Y 1 are fixed, the number of
choices for (Xj ,Y j ,Zj ) for each j ≥ 2 is at most R2. This implies that

ˆ
[1,2]d

(left hand side of (A.2))dβ ≤ C
∑

|X|,|Y |,|Z|≤R
|X1Y 1|−1 ≤ CR2d−1+ 1

8 ,

where the sum in (X,Y,Z) is taken under the assumption XiXj (Y iZj − Y jZi)= 0
and X1Y 1 �= 0. By Borel-Cantelli lemma, and using that 2d − 1 ≤ 3d − 4, we get
(A.2) for any R and almost all β .

Now suppose there is 1 ≤ i < j ≤ d such that XiXj (Y iZj − Y jZi) �= 0, say
(i, j) = (1,2). Then for fixed (X,Y,Z), the Lebesgue measure of E is bounded by
C|X1X2|−1 · |Y 1Z2 − Y 2Z1|−1, therefore
ˆ
[1,2]d

(left hand side of (A.2))dβ ≤ C
∑

|X|,|Y |,|Z|≤R
|X1X2|−1 · |Y 1Z2 − Y 2Z1|−1,

where the sum in (X,Y,Z) is taken under the assumption X1X2(Y 1Z2 − Y 2Z1) �=
0. The last sum is bounded by R3d−4+ 1

8 , by fixing the values of X1, X2 and
Y 1Z2 − Y 2Z1 and using the divisor estimate (i.e. the number of divisors of any
nonzero integer x is Oε(|x|ε) for any ε > 0). Again by Borel-Cantelli, we obtain
(A.2) for almost all β . �

A.2 Miscellaneous results

We collect some auxiliary results needed in the main proof.

Lemma A.2 (Complex Isserlis’ theorem) Given kj ∈ Z
d
L (not necessarily distinct) and

ζj ∈ {±} for 1≤ j ≤ n, then

E

[ n
∏

j=1

η
ζj
kj
(ω)

]

=
∑

P

∏

{j,j ′}∈P
1kj=kj ′ , (A.3)

where the summation is taken over all partitions P of {1,2, . . . , n} into two-element
subsets {j, j ′} such that ζj ′ = −ζj .
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Proof Let all the different vectors in {kj : 1 ≤ j ≤ n} be k(1), . . . , k(r). Assume for
each 1≤ i ≤ r and ζ ∈ {±} that the number of j ’s such that kj = k(i) and ζj = ζ is

a
ζ
i , then we have

E

[ n
∏

j=1

η
ζj
kj
(ω)

]

= E

[ r
∏

i=1

(gk(i) )
a+i (gk(i) )

a−i
]

=
{

(a+1 )! · · · (a+r )!, if a+i = a−i for all i,
0, otherwise.

On the other hand, for fixed P the product on the right hand side of (A.3) is either
0 or 1, and equals 1 if and only if each pair {j, j ′} ∈P is such that kj = kj ′ = k(i)
for some i, and ζj ′ = −ζj . If a+i = a−i for all i, then the number of choices for P

clearly equals (a+1 )! · · · (a+r )!; otherwise no such P exists. This proves (A.3). �

Lemma A.3 (Gaussian hypercontractivity) Given n and ζj ∈ {±} for 1≤ j ≤ n, sup-
pose the random variable X has the form

X =
∑

k1,...,kn

ak1···kn
n
∏

j=1

η
ζj
kj
(ω), (A.4)

where ak1···kn are constants, then for any q ≥ 2 we have

E|X|q ≤ (q − 1)
nq
2 · (E|X|2) q2 . (A.5)

Proof This is the standard hypercontractivity estimate for Gaussians, see [57],
Lemma 2.6. �

Lemma A.4 (A combinatoric inequality) Given a multi-index ρ, we have

∑

ρ1+···+ρ9=ρ

ρ!
(ρ1)! · · · (ρ9)! · (2|ρ

1|)! · · · (2|ρ9|)! ≤ C(2|ρ|)!. (A.6)

Proof We first fix ρ2∗ := ρ2 + · · · + ρ9 and sum over (ρ2, . . . , ρ9), then sum over
(ρ1, ρ2∗). The sum over (ρ2, . . . , ρ9) can be bounded by inductively repeating this
process, provided one can bound the sum over (ρ1, ρ2∗). To bound this latter sum, if
ρ = (a1, . . . , an) then it can be written as

∑

0≤bj≤aj

n
∏

j=1

(

aj

bj

)

(2A− 2B)!(2B)!

where A = a1 + · · · + an and B = b1 + · · · + bn. If B is fixed, then the sum over
(b1, . . . , bn) equals

(

A
B

)

by a simple application of the binomial theorem (or the Van-
dermonde identity), so (A.6) would follow from the inequality

∑

0≤B≤A

(

A

B

)(

2A

2B

)−1

≤ C. (A.7)
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By symmetry, in (A.7) we may assume B ≤ A/2, so
(

A
B

)

/
(2A

2B

) ≤ 1/
(

A
B

) ≤ 1/
(2B
B

) ≤
2−B , which proves (A.7) and hence (A.6) by induction. �

Lemma A.5 (A sharp Hua’s lemma) For s, r ∈R and h ∈ Z, define the Gauss sums

Gh(s, r, n)=
h+n
∑

p=h
e(sp2 + rp),n ∈N; and Gh(s, r, x)=Gh(s, r, �x�), x ∈R+,

(A.8)
where �x� is the floor function, and e(z)= e2πiz. Then we have

‖Gh(·, r, n)‖4
L4([0,1]) � n

2 log(2+ n), ‖Gh(·, r, n)‖6
L6([0,1]) � n

4 (A.9)

uniformly in (r, h). The constants involved in � here are absolute constants.

Proof We only need to bound the cardinalities of the sets

A4 = {(a, b, c, d) ∈ [h,h+ n]4 : a2 − b2 + c2 − d2 = 0},
and A6 = {(a, . . . , f ) ∈ [h,h+ n]6 : a2 − b2 + c2 − d2 + e2 − f 2 = 0}.

By changing variables (a, b) �→ (a + b, a − b) etc., we can reduce to the sets

B4 = {(a, b, c, d) : ab+ cd = 0} and B6 = {(a, . . . , f ) : ab+ cd + ef = 0},
where |a|, |c|, |e| ≤ n and b, d,f ∈ [2h,2h + 2n]. To count #B6, we may assume
a ≥ |c| ≥ |e| (and a > 0). Note that f belongs to a fixed residue class modulo
gcd(a, c)/gcd(a, c, e); once f is fixed, then d belongs to a fixed residue class modulo
a/gcd(a, c). When f and d are fixed then b is unique. This implies that

#B6 �
∑

a≥|c|≥|e|

n

gcd(a, c)/gcd(a, c, e)
· n

a/gcd(a, c)
= n2

∑

a≥|c|≥|e|

gcd(a, c, e)

a
.

For the last sum, let gcd(a, c, e)=� and a = a′� etc., then

∑

a≥|c|≥|e|

gcd(a, c, e)

a
�

∑

0<�≤n

∑

0<a′≤n/�

∑

|c′|,|e′|≤a′
1

a′
�

∑

0<�≤n
(n/�)2 � n2,

hence #B6 � n4. In the same way we can bound #B4 � n2 log(2+ n). �

Lemma A.6 Fix M ≥ L(100d)3 . Consider k = (k1, . . . , kd) ∈ Z
d
L and a system

(r, q, v1, . . . , vq, f, y) where 0 ≤ q ≤ r ≤ d , vj ∈ Z
r
L (1 ≤ j ≤ q) are nonzero or-

thogonal vectors and f = (f r+1, . . . , f d) ∈ Z
d−r
L and y = (y1, . . . , yq) ∈ R

q , such
that |f |, |vj |, |y| ≤MC0(d) where C0(d) is a fixed large constant depending on d ,
and that the linear span of {v1, . . . , vq} does not contain any coordinate vector in R

r .
We say that the system (r, q, v1, . . . , vq, f, y) represents k, if the followings hold:
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(1) If z= (z1, . . . , zd) ∈ Z
d
L, |z| ≤M and |〈k, z〉β | ≤M , then the vector (z1, . . . , zr )

is a linear combination of {v1, . . . , vq};
(2) If (z1, . . . , zr )= γ 1v1+· · ·+γ qvq , then we have 〈k, z〉β = y1γ 1+· · ·+yqγ q +

βr+1f r+1zr+1 + · · · + βdf dzd .
Then, each k ∈ Z

d , after possibly permuting the coordinates, is represented by
some system (r, q, v1, . . . , vq, f, y). Conversely, for each system (r, q, v1, . . . , vq, f, y)

and θ > 0, there exists k ∈ Z
d represented by a system (r, q, v1, . . . , vq, f, y

′), such
that |y′ − y|< θ .

Proof of Lemma A.6 As M ≥ L(100d)3 , upon multiplying everything by L, we may
replace ZL by Z. As our convention, in the proof C will denote any large con-
stant depending only on d . In the first part, given k we will construct the system
(r, q, v1, . . . , vq, f, y), which is done by induction in d . The case d = 1 is obvious,
now suppose the result is true for d − 1, with constant C0 = C0(d − 1). We also
denote kβ = (k1β1, . . . , kdβd) for k = (k1, . . . , kd) and β = (β1, . . . , βd), so that
〈k, z〉β = 〈kβ, z〉.

Fix k ∈ Z
d , consider the set H of z ∈ Z

d such that |z| ≤M and |〈k, z〉β | ≤M
(clearly 0 ∈H ). Let q be the maximal number of linearly independent vectors in H ,
we may fix a maximum independent set {w1, . . . ,wq} ⊂H , and apply Gram-Schmidt
process to get orthogonal vectors (v1, . . . , vq). Since each wj ∈ Z

d and |wj | ≤M ,
we can easily make vj ∈ Z

d and |vj | ≤MC . If the linear span of {v1, . . . , vq} does
not contain any coordinate vector in R

d , then we shall prove the result with r = d .
In fact, (1) is already satisfied by definition; since |〈k,wj 〉β | ≤M for 1≤ j ≤ q , we
also know that |〈k, vj 〉β | ≤MC for 1≤ j ≤ q . Let yj = 〈k, vj 〉β , then |y| ≤MC and
(2) is also satisfied.

If, instead, the linear span of {v1, . . . , vq} contains a coordinate vector in R
d ,

say ed = (0, . . . ,0,1), we shall apply the induction hypothesis. In this case we
have |〈k, vj 〉β | ≤ MC for 1 ≤ j ≤ q and hence |kd | ≤ MC . By induction hypoth-
esis (with M replaced by MC ), the vector (k1, . . . , kd−1) is represented by some
system (r, q, v1, . . . , vq, f, y) where 0 ≤ q ≤ r ≤ d − 1 and |f |, |vj |, |y| ≤MCC0 .
Now we claim that k is represented by (r, q, v1, . . . , vq, f

′, y) where f ′ = (f, kd);
in fact (2) is satisfied by definition, as for (1), if |z| ≤M and |〈k, z〉β | ≤M , then
|β1k1z1+· · ·+βd−1kd−1zd−1| ≤MC as |kd | ≤MC , so we may apply the induction
hypothesis (with M replaced by MC ) to show that (z1, . . . , zr ) is a linear combi-
nation of {v1, . . . , vq}. In either case we have constructed the desired system, with
C0(d)= C ·C0(d − 1).

Now, suppose a system (r, q, v1, . . . , vq, f, y), and θ > 0, is fixed. We may choose
kj = f j for r + 1≤ j ≤ d , and again notice that |z| ≤M and |〈k, z〉β | ≤M implies
that |β1k1z1+· · ·+βrkrzr | ≤MC . Therefore we only need to consider r = d . Select
vectors u1, . . . , ud−q ∈ Z

d such that they form an orthogonal basis with {v1, . . . , vq},
and |uj | ≤MC for 1≤ j ≤ d − q . Now choose k∗ = ρ1u1 + · · · + ρd−qud−q , where
ρj are large integers, and assume k is chosen such that |kβ − k∗| ≤MC . We will
assume 0 ≤ ρj ≤ B and B �M,θ 1. Clearly, if |z| ≤ M and |〈k, z〉β | ≤ M , then
|〈k∗, z〉| ≤MC .
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Suppose |z| ≤ M and |〈k∗, z〉| ≤ MC . If we decompose z = x1u1 + · · · +
xd−qud−q + z′ where z′ is a linear combination of (v1, . . . , vq), then

〈k∗, z〉 =
d−q
∑

j=1

ρj |uj |2xj .

Each xj is a rational number and maxj |xj | ≥M−C unless all xj = 0, and the number
of choices for (x1, . . . , xd−q) is at most MC when z varies. For each fixed nonzero
(x1, . . . , xd−q) the number of choices for (ρ1, . . . , ρd−q) satisfying |〈k∗, z〉| ≤MC is
at most MCBd−q−1, so for at least Bd−q −MCBd−q−1 choices of (ρ1, . . . , ρd−q)
(and for any choice of k satisfying |kβ − k∗| ≤MC given k∗), we have that |z| ≤M
and |〈k, z〉β | ≤M implies that z is a linear combination of vj (1≤ j ≤ q).

For such choices we already have (1). Clearly z is then represented by (q, v1, . . . ,

vq, y
′) (with r = d and f being void) where (y′)j = 〈kβ, vj 〉 = −〈k∗−kβ, vj 〉. Given

(vj ) and y, we may fix a vector h ∈R
d , where |h| ≤MC , such that 〈h,vj 〉 = −yj for

1≤ j ≤ q; it then suffices to choose k∗ and k such that |k∗ − kβ − h| ≤M−C1θ with
C1 larger than all the C appearing above. (note that this also implies |kβ−k∗| ≤MC ).
Since k can be arbitrarily chosen, it suffices to have

{

(k∗)j − hj
βj

}

<M−2C1θ for 1≤ j ≤ d,

where {·} means the distance to the nearest integer. Clearly

(k∗)j − hj
βj

=
d−q
∑

i=1

(ui)
j

βj
ρi − hj

βj
.

Since the linear span of {vj } does not contain any coordinate vector in R
d , we know

that, for each 1≤ j ≤ d , there exists 1≤ i = i(j)≤ d − q such that (ui)j �= 0.
We may choose ρi such that

{

(ui)
j

βj
ρi

}

<M−3C1θ (i �= i(j));
{

(ui)
j

βj
ρi − hj

βj

}

<M−3C1θ (i = i(j)).

Given i, since all the nonzero numbers in the set {1, (ui)j (βj )−1 : 1≤ j ≤ d} are Q-
linearly independent, by Weyl’s equidistribution theorem, we see that the number of
(ρ1, . . . , ρd−q) satisfying all the above conditions is �M,θ Bd−q . Therefore, we may
choose (ρ1, . . . , ρd−q), and hence k∗ and k, such that both (1) and (2) are satisfied.

�

A.3 Lattice point counting bounds

We list the various lattice point counting bounds, which are the main technical tools
used in Sect. 9.3.



714 Y. Deng, Z. Hani

Lemma A.7 (Sphere counting) Uniformly in a ∈ Z
d
L and γ ∈R, we have the bound

#
{

x ∈ Z
d
L : |x − a| ≤ 1, ||x|2β − γ | ≤ δ−1L−2}� δ−1Ld−

4
3 .

Proof By dividing an interval of length δ−1L−2 into O(δ−1) intervals of length L−2

we may assume δ = 1. Let y = (y1, . . . , yd) = (√β1x1, . . . ,
√

βdxd), then |y|2 =
γ +O(L−2), where |y| is the usual norm in R

d . If we fix the coordinates yj (3≤ j ≤
d), noticing that each yj (3≤ j ≤ d) has � L choices, it then suffices to prove that

#
{

(u, v) ∈ (
√

β1ZL)× (
√

β2ZL) : u2 + v2 = γ +O(L−2),

|u− u0| + |v− v0|� 1
}

� L 2
3 (A.10)

uniformly in (u0, v0, γ ) ∈R
3.

Let |γ | ∼ R2 (we may assume R� L−1), then (u, v) belongs to the O(ε) neigh-
borhood of a circle centered at the origin of radius ∼ R, where ε = L−2R−1. Since
(u, v) also belongs to a disc of radius O(1), we know that (u, v) actually belongs
to the O(ε) neighborhood of an arc of length O(min(R,1)) on the circle. Let
! := (√β1ZL)× (

√

β2ZL) be a fixed lattice, it will suffice to prove that the number

of points in ! that belong to this neighborhood is � L 2
3 .

Now, we may decompose the above arc of length O(min(R,1)) into at most

O(L
2
3 ) sub-arcs, each with length � ρ, where ρ = L− 2

3R
1
3 , note that ε� ρ � R.

Thus is suffices to prove that the O(ε) neighborhood of each sub-arc contains O(1)
points in !. Let this neighborhood beM , from elementary geometry we can calculate
that the area of the convex hull of M is

A�
( ρ

R

)

Rε+R2
( ρ

R

)3 = ρε+ ρ
3

R
� L−2.

But any nondegenerate triangle with vertices in ! have area � L−2, so the points in
! ∩M must be collinear; however M is contained in an annulus of width 2ε, and
any straight line contains at most two segments in this annulus, each having length at
most O(

√
εR)=O(L−1), so in any case the number of points in ! ∩M is at most

O(1). �

Lemma A.8 (Good and bad vectors) We say a vector 0 �= x ∈ Z
d
L is a bad vector, if

#
{

y ∈ Z
d
L : |y − b| ≤ 1, |〈x, y〉β − !| ≤ L−2}≥ Ld−1− 1

4 (A.11)

for some b ∈ Z
d
L and ! ∈ R; otherwise we say x is a good vector. Then, when L is

large enough, for any a ∈ Z
d
L, the number of bad vectors x satisfying |x − a| ≤ 1 is

at most Ld−1− 1
4 .

Proof If (A.11) is true for some (b,!), then it is actually true for b = ! = 0 up to
some constant, by fixing x taking the difference between any two possibilities of y.
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We will show that

∑

x �=0,|x−a|≤1

∑

|y|,|z|≤1

1|〈x,y〉β |≤L−2 · 1|〈x,z〉β |≤L−2 � L3d−4+ 1
6 , (A.12)

which implies the desired result, as the left hand side of (A.12) is just the sum of
the square of the left hand side of (A.11) over |x − a| ≤ 1. However the left hand
side of (A.12) is bounded by the same expression with a = 0, again by fixing (y, z)
and taking the difference between any two possibilities of x. Moreover, if we set
(x, y, z)= L−1(X,Y,Z) with (X,Y,Z) ∈ (Zd)3, then (A.12) with a = 0 is just (A.2)
which follows from the definition of Z. This completes the proof. �

Lemma A.9 (Atom counting bounds) For 1≤ j ≤ 5, let xj ∈ Z
d
L be variables, aj ∈

Z
d
L and ζj ∈ {±} be fixed parameters. Fix also the parameters ki ∈ Z

d
L and γi ∈ R

for i ∈ {1,2}. We require that |xj − aj | ≤ 1 for each j . If any of the statements below
involves an equation of form

∑

j∈A ζjxj = ki with some set A, then we also require
that (i) no three of ζj (j ∈A) are the same, and (ii) if j, j ′ ∈A and ζj ′ + ζj = 0 then
xj �= xj ′ .

We have the following estimates, where the implicit constants only depend on d
and β , and do not depend on (δ,L) or any of the parameters (aj , γi, ki):

(1) (Two-vector counting) If we require

ζ1x1 + ζ2x2 = k1,
∣

∣ζ1|x1|2β + ζ2|x2|2β − γ1
∣

∣≤ δ−1L−2, (A.13)

then the number of choices for (x1, x2) is � δ−1Ld−1, and is � δ−1Ld−1− 1
3 if ζ1 = ζ2.

(2) (Three-vector counting) If we require

ζ1x1 + ζ2x2 + ζ3x3 = k1,
∣

∣ζ1|x1|2β + ζ2|x2|2β + ζ3|x3|2β − γ1
∣

∣≤ δ−1L−2, (A.14)

then the number of choices for (x1, x2, x3) is � δ−1L2d−2.
(3) (Four-vector counting 1) If we require

⎧

⎨

⎩

ζ1x1 + ζ2x2 = k1,
∣

∣ζ1|x1|2β + ζ2|x2|2β − γ1
∣

∣≤ δ−1L−2,

ζ1x1 + ζ3x3 + ζ4x4 = k2,
∣

∣ζ1|x1|2β + ζ3|x3|2β + ζ4|x4|2β − γ2
∣

∣≤ δ−1L−2,

(A.15)
then the number of choices for (x1, . . . , x4) is � δ−2L2d−2− 1

4 .
(4) (Four-vector counting 2) If we require

⎧

⎨

⎩

ζ1x1 + ζ2x2 + ζ3x3 = k1,
∣

∣ζ1|x1|2β + ζ2|x2|2β + ζ3|x3|2β − γ1
∣

∣≤ δ−1L−2,

ζ1x1 + ζ2x2 + ζ4x4 = k2,
∣

∣ζ1|x1|2β + ζ2|x2|2β + ζ4|x4|2β − γ2
∣

∣≤ δ−1L−2,

(A.16)
and assume that (ζ3, x3) �= (ζ4, x4), then the number of choices for (x1, . . . , x4) is

� δ−2L2d−2− 1
4 .
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(5) (Five-vector counting 1) If we require

⎧

⎨

⎩

ζ1x1 + ζ2x2 + ζ3x3 = k1,
∣

∣ζ1|x1|2β + ζ2|x2|2β + ζ3|x3|2β − γ1
∣

∣≤ δ−1L−2,

ζ1x1 + ζ4x4 + ζ5x5 = k2,
∣

∣ζ1|x1|2β + ζ4|x4|2β + ζ5|x5|2β − γ2
∣

∣≤ δ−1L−2,

(A.17)
then the number of choices for (x1, . . . , x5) is � δ−2L3d−3− 1

4 .
(6) (Five-vector counting 2) If we require

⎧

⎪

⎪

⎨

⎪

⎪

⎩

ζ1x1 + ζ2x2 + ζ3x3 = k1,
∣

∣ζ1|x1|2β + ζ2|x2|2β + ζ3|x3|2β − γ1
∣

∣≤ δ−1L−2,

ζ1x1 + ζ2x2 + ζ4x4 + ζ5x5 = k2,

∣

∣ζ1|x1|2β + ζ2|x2|2β + ζ4|x4|2β + ζ5|x5|2β − γ2
∣

∣≤ δ−1L−2,

(A.18)
then the number of choices for (x1, . . . , x5) is � δ−2L3d−3− 1

4 .
(7) (Five-vector counting 3) If we require (A.17), and that

⎧

⎨

⎩

ζ2x2 − ζ4x4 = k∗1 ,
∣

∣ζ2|x2|2β − ζ4|x4|2β − γ ∗1
∣

∣≤ nδ−1L−2,

ζ3x3 − ζ5x5 = k∗2 ,
∣

∣ζ3|x3|2β − ζ5|x5|2β − γ ∗2
∣

∣≤ nδ−1L−2
(A.19)

for some constants (k∗1 , k∗2 , γ ∗1 , γ ∗2 ) and n ≥ 1, and assume that (ζ2, ζ3, x2, x3) �=
(ζ4, ζ5, x4, x5), then the number of choices for (x1, . . . , x5) is � nδ−2L2d−2− 1

4 .

Note that, if n≤ (logL)3 then the bound in (7) can be replaced by δ−2L2d−2− 1
6 .

Proof In all the proofs, we may assume δ = 1 as above, by dividing an interval of
length δ−1L−2 into O(δ−1) intervals of length L−2.

(1) If ζ1 = ζ2, then x1 + x2 =±k1 is fixed. For y = x1 − x2, we have that

|y|2β =±2γ1 − |k1|2β +O(L−2);

moreover as |x1−a1| ≤ 1 we have that |y− (2a1−k1)| ≤ 2. Lemma A.7 then implies

that the number of choices for y, and hence for (x1, x2), is � Ld− 4
3 .

Otherwise, we may assume ζ1 = + and ζ2 = −, then x1 − x2 = k1 �= 0. Let y =
x1 + x2, then we have that

〈k1, y〉β = γ1 +O(L−2);

moreover as |x1 − a1| ≤ 1 we have that |y − (2a1 − k1)| ≤ 2. We may assume that
the first coordinate k1

1 of k1 is nonzero, then |k1
1 | ≥ L−1. Thus, when the coordinates

yj (2≤ j ≤ d) are fixed, y1 will belong to an interval of length � L−1 and will have
� 1 choices. As each yj (2≤ j ≤ d) has � L choices, we conclude that the number
of choices for y, and hence for (x1, x2), is � Ld−1.

Note that, if in addition we assume x1− x2 is a good vector, then by definition we

can bound the number of choices of (x1, x2) by Ld−1− 1
4 .



Full derivation of the wave kinetic equation 717

(2) By assumption the ζj (1 ≤ j ≤ 3) are not all equal, so we may assume ζ1 =
ζ3 =+ and ζ2 =−. Let y = k1 − x1 and z= k1 − x3, then we have that

〈y, z〉β =
|k1|2β − γ1

2
+O(L−2);

moreover as |x1 − a1| ≤ 1 and |x3 − a3| ≤ 1 we have that |y − (k1 − a1)| ≤ 1 and
|z− (k1− a3)| ≤ 1. By applying Proposition 6.1 with n= 1, whereW and � are two
fixed (translates of) nonnegative compactly supported smooth cutoff functions, we
know that the number of choices for (y, z), and hence for (x1, x2, x3), is � L2d−2.
Note that the second inequality in (6.5) is not needed if one only needs the upper
bound instead of asymptotics.

(3) If ζ3 = ζ4, then by (1) we know that (x1, x2) have at most Ld−1 choices, while

for x1 fixed, (x3, x4) has at most Ld−1− 1
3 choices, so the total number of choices for

(x1, . . . , x4) is at most L2d−2− 1
3 . The same is true (with 1

4 instead of 1
3 ) if ζ3+ ζ4 = 0

and x3− x4 is a good vector. But if x3− x4 is a bad vector, then x1 is a fixed translate
of a bad vector which belongs to a fixed ball of radius 1, so by Lemma A.8, the

number of choices for x1, and hence (x1, x2), is at most Ld−1− 1
4 , so we get the same

result.
(4) This follows from (3) by taking the difference of the two equations, and notic-

ing that if ζ3 = ζ4, we must have x3 �= x4.
(5) If ζ4 = ζ5, then by (2) we know that (x1, x2, x3) have at most L2d−2 choices,

while for x1 fixed, (x4, x5) has at most Ld−1− 1
3 choices, so the total number of

choices for (x1, . . . , x5) is at most L3d−3− 1
3 ; note that this estimate is valid even

if we allow ζ3 = ζ4 = ζ5. The same is true (with 1
4 instead of 1

3 ) if ζ4 + ζ5 = 0 and

x4−x5 is a good vector. If x4−x5 is a bad vector, then x1 has at most Ld−1− 1
4 choices

by Lemma A.8. For x1 fixed, the number of (x2, x3) and (x4, x5) can be bounded by
Ld−1 by (1), so we get the same result.

(6) This follows from the first part of (5) by taking the difference of the two
equations, provided (ζ3, x3) �= (ζj , xj ) for j ∈ {4,5}; now suppose, say, ζ3 = ζ4 and
x3 = x4, then the value of x5 is fixed and the number of choices for (x1, x2, x3) is at
most L2d−2 by (2), so the result is still true.

(7) By subdividing one interval of length nL−2 we may assume n= 1. The result
then follows from (3), since we may assume (for example) either ζ2 �= ζ4 or x2 �= x4,
and simply exploit the first equation in (A.17) and the first equation in (A.19). �

Appendix B: An example of molecule reduction

Here we provide an example of the molecule reduction algorithm described in
Sect. 9.4.2. For simplicity we only consider phase two.

Suppose the original molecule is a base molecule as in Fig. 39. Then, according
to the algorithm, we first treat the two degree 3 atoms (labeled 9 and 10) connected
by a single bond. As in (2-b) we claim a checkpoint and perform either (3S3-1) or
(3S3-2G). In either case M is reduced to the one in Fig. 40.
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Fig. 39 The original base molecule “flashlight”. The bonds �1 to �8 will appear in the Ext condition
obtained by the algorithm

Fig. 40 The molecule obtained after performing (3S3-1) or (3S3-2G). Note that this is a checkpoint and
corresponds to two possible steps (though the operation on M is the same and the only difference is�Ext)

Next, as in (1), we perform (BR) and remove the bridge connecting atoms labeled
4 and 5. Then M is reduced to the one in Fig. 41.

Next, we treat the two pairs of degree 3 atoms (labeled (3,4) and (5,7)) connected
by two single bonds. As in (2-a) we perform (3S3-5G) (Scenario 2) twice, and reduce
M to the one in Fig. 42.

Next, we treat the two degree 3 atoms (labeled 11 and 12) connected by a double
bond. Since the type II chain continues, as in (3-b) we claim a checkpoint and perform
either (3D3-1) or (3D3-2G). In either case M is reduced to the one in Fig. 43.

Next, we treat the two degree 3 atoms (labeled 13 and 14) connected by a double
bond. The type II chain does not continue, so as in (3-c-ii) we perform (3D3-6G) and
reduce M to the one in Fig. 44.
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Fig. 41 The molecule obtained after performing (BR)

Fig. 42 The molecule obtained after performing (3S3-5G) twice

Fig. 43 The molecule obtained after performing (3D3-1) or (3D3-2G). Again this is a checkpoint and the
only difference between two possible steps is �Ext

Finally, we treat the remaining three pairs of degree 2 atoms connected by three
double bonds. As in (7) we perform (2R-5) three times and reduce M to the empty
graph.

Following the algorithm we have performed at least three good steps (r ≥ 3). The
two checkpoints provide four possible tracks, which correspond to different possibil-
ities of Ext in the beginning; for example if we choose (3S3-1) and (3D3-1) then the
Ext we obtain in the beginning is

{k�1 = k�2, k�3 = k�4, k�5 = k�6, k�7 − k�8 is a good vector}.
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Fig. 44 The molecule obtained after performing (3D3-6G)

Table 1 Basic notations about
trees and couples Concept Symbol Where defined

Tree T Definition 2.1

Root, node, leaf r, n, l Definition 2.1

Leaf set (tree) L Definition 2.1

Branching node set (tree) N Definition 2.1

Sign ζ , ζn Definition 2.1

Scale (tree) n(T ) Definition 2.1

Couple Q Definition 2.2

Leaf set (couple) L∗ Definition 2.2

Branching node set (couple) N ∗ Definition 2.2

Scale (couple) n(Q) Definition 2.2

Paired tree, saturated paired tree — Definition 2.2

Lone leaf — Definition 2.2

Decoration D , E Definition 2.4

In this track (other tracks will have better exponents) we can calculate γ = 18 −
1

2(d−1) at the beginning, so we have, omitting powers of δ, that

sup #D(M,Ext)� L18(d−1)− 1
2 .

Appendix C: Table of notations

Here we list some important notations used in this paper. These are mainly concerned
about trees, couples, molecules and their structures. Table 1 contains the basic nota-
tions and the corresponding symbols. Table 2 contains further notations, including
different types of couples. Table 3 contains notations related to molecules.
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Table 2 Further notations about
trees and couples Concept Symbol Where defined

(1,1)-mini couple, mini tree — Definition 4.1

Code (mini couple, mini
tree)

— Definition 4.1

Regular couple — Definition 4.2

Legal partition, dominant
partition

P Definition 4.4

Regular chain, regular
double chain

— Definition 4.6

Type (regular couple) — Proposition 4.10

Prime couple — Definition 4.12

Skeleton Qsk Proposition 4.13

Regular tree — Remark 4.15

Dominant couple — Definition 4.17

Special set Z Definition 4.18

Equivalence (dominant
couple)

— Definition 4.18

Encoded tree, equivalence
(encoded tree)

— Sect. 4.5, Definition 4.21

Associated encoded tree — Definition 4.22

Irregular chain H, H◦ Definition 8.1

Congruence — Definition 8.2, 8.4

Table 3 Notations about
molecules Concept Symbol Where defined

Molecule, atom, bond M, v, � Definition 9.1

Saturated component — Definition 9.1

Base molecule — Proposition 9.2

Molecule associated to a
couple

— Definition 9.3

Type I and II chains — Definition 9.7

Degenerate atom, tame atom — Definition 9.8

Extra conditions Ext Definition 9.8

Step, track, checkpoint — Sect. 9.2

Bridge, special bond — Definition 9.12

Good step, normal step — Beginning of Sect. 9.3
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