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Abstract

We provide the rigorous derivation of the wave kinetic equation from the cubic non-
linear Schrodinger (NLS) equation at the kinetic timescale, under a particular scaling
law that describes the limiting process. This solves a main conjecture in the theory of
wave turbulence, i.e. the kinetic theory of nonlinear wave systems. Our result is the
wave analog of Lanford’s theorem on the derivation of the Boltzmann kinetic equa-
tion from particle systems, where in both cases one takes the thermodynamic limit as
the size of the system diverges to infinity, and as the interaction strength of waves/ra-
dius of particles vanishes to 0, according to a particular scaling law (Boltzmann-Grad
in the particle case).

More precisely, in dimensions d > 3, we consider the (NLS) equation in a large
box of size L with a weak nonlinearity of strength «. In the limit L — oo and o« — 0,
under the scaling law o ~ L™!, we show that the long-time behavior of (NLS) is
statistically described by the wave kinetic equation, with well justified approxima-
tion, up to times that are O (1) (i.e. independent of L and «) multiples of the kinetic
timescale Tiin ~ 2. This is the first result of its kind for any nonlinear dispersive
system.
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1 Introduction

The kinetic theory of nonlinear wave systems is the formal basis of the non-
equilibrium statistical physics of such systems. It is an extension of the kinetic frame-
work, first laid out by Boltzmann in the context of particle systems, to nonlinear dis-
persive systems. The wave kinetic theory can be traced back to the work of Peierls in
1928 on anharmonic crystals [58], which exhibited the very first wave kinetic equa-
tion (the phonon Boltzmann equation). Soon after, the kinetic framework for waves
was widely adopted in plasma theory [15, 32, 68, 70], water waves [3, 4, 48, 49], and
later formalized into a systematic approach to understand the effective long-time be-
havior of large systems of interacting waves undergoing weak nonlinear interactions
[56, 64, 72]. This kinetic theory for waves came to be known as wave turbulence
theory, due to its surprising and profound implications on the spectral energy dynam-
ics and cascades for nonlinear wave systems, similar to those made in Kolmogorov’s
theory of hydrodynamic turbulence.

The central object in wave turbulence theory is the wave kinetic equation (WKE),
which plays the analogous role of Boltzmann’s kinetic equation for particles. The
(WKE) was derived, at a heuristic level, in the physics literature to describe the ef-
fective behavior of the normal frequency amplitudes of solutions in some statistically
averaged sense. The analogy to Boltzmann’s theory also comes from the thermody-
namic limit involved in both theories: The number of particles N — oo in Boltz-
mann’s theory is paralleled by the size L — oo of the dispersive system in the wave
kinetic theory, and the particle radius r — 0 is paralleled by the strength of nonlinear
wave interactions, which we shall denote by « — 0. A scaling law is a rule that dic-
tates how these two limits are taken; for example the well-known Boltzmann-Grad
limit corresponds to the scaling law Nr¢~! ~ 1 as N — oo and r — 0 [37].

From the mathematical viewpoint, the fundamental problem is to give a rigorous
justification or derivation of the wave kinetic equation starting from the nonlinear
dispersive equation that governs the wave system as a first principle. This is Hilbert’s
Sixth Problem for the statistical theory of wave systems. It should be said, though,
that this question is far from being a mere mathematical curiosity. In fact, it is a ques-
tion that was posed by physicists as a means to better understand the exact regimes
and limitations of the wave kinetic theory [56]. The particle analog of this problem
is the rigorous derivation of the Boltzmann equation starting from the Newtonian
dynamics of particles as a first principle. This was given by Lanford’s celebrated the-
orem [9, 33, 54], which justifies the derivation in the above-mentioned Boltzmann-
Grad scaling law where the particle number N — oo and the particle size r — 0 in
such a way that Nr¢—1 ~ 1.
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546 Y. Deng, Z. Hani

Despite being open for quite some time, progress on this problem for wave sys-
tems only started in the past twenty years. In part, this is due to the fact that it relied
on techniques that didn’t mature until then, like progress in the analysis of probabilis-
tic nonlinear PDE, combinatorics of Feynman diagrams, and in some cases analytic
number theory, all of which are components that address various facets of the prob-
lem. We shall survey the previous results leading up to this work in Sect. 1.2.1. In
another part, as we shall see and explain below (see Sect. 1.2.2), the full resolution
of this problem is a probabilistically-critical problem, and prior to this work, no such
result existed even in the parabolic setting.

We consider the nonlinear Schrodinger (NLS) equation as a fundamental and pro-
totypical system in nonlinear wave theory. This is partly due its unique universal-
ity property in this class, in the sense that any Hamiltonian dispersive system gives
(NLS) in an appropriate scaling limit (see [67]). Our main result is a full rigorous
derivation of the wave kinetic equation (WKE) up to O (1) timescales. This means
timescales that are independent of the asymptotic parameters involved in the thermo-
dynamic limit, namely the size L of the domain and the strength « of the nonlinearity.
For the sake of definiteness, this will be done under the scaling law oL ~ 1, which is
of particular mathematical interest as we shall explain later. However, our approach is
fairly general and allows treating some other scaling laws with minor modifications
(cf. Sect. 1.2.3).

1.1 Statement of the main result
1.1.1 (NLS) as the microscopic system

In dimension d > 3, consider the cubic nonlinear Schrodinger equation
(9, — Mw+ |wPw=0

on a generic irrational torus of size L > 1. For convenience, we will adjust by dila-
tions and work equivalently on the square torus T¢ = [0, L]¢ of size L, but with the
twisted Laplacian

Ag=Qm) (B +--+ B0 (1.1)

Here 27) lisa normalizing constant, and 8 = (B!, ..., B e (RT)4 represents the
aspect ratios of the torus. We assume 8 is generic, i.e. belongs to the complement of
some Lebesgue null set 3, which is fixed by a set of explicit Diophantine conditions,
stated precisely in Lemma A.1. We will comment in Sect. 1.2.3 below in more detail
on the necessity of this genericity condition, but roughly speaking, it is necessary for
some scaling laws, including the one we impose in this paper, due to some number
theoretic considerations. Other scaling laws, some of which can also be covered by
our proof, do not require this genericity condition as we shall discuss later.

As mentioned above, the strength of the nonlinearity is the other asymptotic pa-
rameter in the wave kinetic theory. Of course, this strength is intimately tied to the
size of solutions (say in terms of L? norm). To emphasize this size, we adopt the
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ansatz w = Au where A can be thought of as the conserved L? norm of w. This leads
us to study the equation

(i3 — Ap)u+ 22 ul*u=0, xeT¢=1[0,L]1,
u(0, x) = ujn(x).

(NLS)

The defocusing sign of the nonlinearity adopted here is merely for concreteness pur-
poses. The same results hold for the focusing case; this is due to the weak nonlinearity
setting inherent in the wave kinetic theory we study here.

The kinetic theory seeks to give the effective dynamics of frequency amplitudes
E|a(t, k)|? where!

4 1 .
-~ _ —2mik-x _ -~ 2mik-x
u(t, k)= /Td u(t,x)e dx, u(t,x)= 7d E u(t, ke , (1.2)

d
L keZ§

and the averaging happens over a random distribution of the initial data. Such random
distribution is chosen in a way that allows for the kinetic description; we call such
data well-prepared. More precisely, we consider random homogeneous initial data
given by

1 . ; —
uin() = =7 > B0, () = Vrin®)me@),  (DAT)

d
keZj

where Zi = (L™'2)4, and nj, : RY — [0, 00) is a given Schwartz function, {n(w)}
is a collection of i.i.d. random variables. We assume that each 7y is either a centered
normalized complex Gaussian, or uniformly distributed on the unit circle of C. This is
sometimes called the random phase assumption in the literature [56]. For simplicity,
in the proof below, we will only consider the Gaussian case; the unimodular case can
be treated with minor modifications (see for example Lemma 3.1 of [18]).

Given such random solutions, we define the strength of the nonlinearity parameter
to be a := A>L~?. This nomenclature can be justified, heuristically at this point,
by noting that if u# is a randomly chosen L2(’]I“i) function with norm O(1), then
with high probability one has that ||u|| Loo(T4) < L™4/2, which makes the nonlinearity

A2 |u|?u of size ~ A>L™% = « in L?(T?). This heuristic can be directly verified for the
well-prepared initial data u;j, using Gaussian hypercontractivity estimates, but it will
follow from our proof that it is also true for the solution u(¢) itself at later timescales
of interest to us.

Finally, we define the kinetic timescale

. L2d
fin =502 =3 5%

’

| =

"Here we note that one has freedom to choose a different normalization of the Fourier transform. We
caution that, while this has no effect on the theory, it does change the expression for the strength of the
nonlinearity « below, and hence the kinetic timescale Tij, = 1 /2a2, in terms of A and L. For example,
another common normalization is the one that puts L~4/2 in front of the Fourier integral; there o would
be 22 and Tyjn = 1/22 = 17224,
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548 Y. Deng, Z. Hani

which will be the timescale at which the kinetic behavior will start exhibiting itself
for (NLS).

1.1.2 The wave kinetic equation for NLS

Under the homogeneity assumption on the initial data in (DAT) (i.e. the independence
of uy, (k) for different k), the relevant wave kinetic equation is also homogeneous (i.e.
has no transport term) and is given by:

dn(t, k) =Kn(0),n(t), n(0))(k),
n(0, k) = nin(k),

(WKE)

where the nonlinearity

K(¢1, ¢2, ¢3) (k) = /(]Rd)3 {@1k) 2 (ko) p3(ks) — p1 (K)o (k)3 (k3)

+ @1 (k)2 (k)3 (ks) — ¢ (ki) (k)3 (k) }
x 8(ki — ka + k3 — k) - 8(Ik1 |} — ka3 + I35
— |k|%) dkidkodks. (KIN)
Here and below & denotes the Dirac delta, and we define
k|5 = (k. kg, (k. O)p:=p'k" "+ 4+ plre?,

where k = (k', ..., k%) and ¢ = (€', ..., ¢%) are Z¢ or RY vectors.

Note that the initial data of (WKE) matches that for (NLS) in (DAT) in the sense
that E|iiy(k)|? = nin(k), hence the description well-prepared for (DAT). We shall
show as part of our proof (Proposition 7.9; see also an optimal local well-posedness
result in [35]) that given such initial data nj,(k), there exists § > 0 small enough
depending on 7n;,, such that there exists a unique local solution n = n(t, k) (k € Rd)
of (WKE) on the interval [0, §].

1.1.3 The main result

The main result of this manuscript is the rigorous and quantitative justification of
(WKE) over all the existence interval [0, §], as the limit of the averaged (NLS) dy-
namics under the scaling law oL = 1.

Theorem 1.1 Let d > 3, and consider the Lebesgue null set 3 C (R+)d defined in
Lemma A.1. The followings hold for any fixed g € (RT)4\3.

Fix A > 40d, a Schwartz function ni, > 0, and fix § < 1 depending on (A, B, niy).
Consider the equation (NLS) with random initial data (DAT), and assume ) =
L@=D/2 50 that « = L~ and Tiin = L?/2. Then, for sufficiently large L (depending
on 8), the equation has a smooth solution up to time

sL?

T—7=5'Tkin,
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with probability > 1 — L™4. Moreover we have (here U is as in (1.2))

lim sup sup |E[u(t - Txin, k)|2 —n(t, k)| =0, (1.3)
L—oo vel0.8] kezd

where n(t, k) is the solution to (WKE).

A few remarks about this result are in order. First, we understand that the expected
value E in (1.3) is taken only when (NLS) has a smooth solution on [0, § - Tiin],
and the quantity that we take expectation of is defined to be 0 otherwise. As stated
in Theorem 1.1, this is a set of probability > 1 — L~4, and hence its complement
has no effect on (1.3) (using the mass conservation of u#). Second, the convergence
as L — oo is actually quantitative in the sense that there exists v = v(d) > 0 and a
constant C independent of L such that

sup sup |E|i@(z - Tin, k)|> — n(z, k)| < CL™".
t€[0,8] keZi

We also point out that the requirement that nj, be Schwartz is an overkill, and the
proof only requires control on finitely many Schwartz semi-norms of nj,.

Finally, we remark that Theorem 1.1 extends, with essentially the same proof, to
scaling laws of the form o = L™ for « smaller than and sufficiently close to 1. For
such scaling laws, we do not need the genericity assumption for 8, and (1.3) holds
independent of the shape of the torus. We shall discuss this in some more detail in
Sect. 1.2.3 below.

1.2 Comments on Theorem 1.1
1.2.1 Background work

Starting from the middle of the past century, wave turbulence has become a signif-
icant component in the study of nonlinear wave theory, and a vibrant field of sci-
entific study in plasma theory [15], oceanography [51, 69], crystal thermodynamics
[63] to mention only a few. We refer to [56, 72] for textbook treatments. Mathemat-
ically speaking, problems related to wave turbulence theory have attracted consider-
able attention in the last couple of decades. The focus was initially on constructing
solutions to nonlinear dispersive equations that exhibited some form of energy cas-
cade? [5, 11, 34, 38—42, 45-47, 52, 53]. This is one of the important conclusions
of the wave kinetic theory, which predicates the presence of stationary power-like
solutions to (WKE), called the forward and backward cascade spectra. These are
the wave-analogues of Kolmogorov spectra in hydrodynamic turbulence [56, 71, 72].
The rigorous study of such solutions of the (WKE) has been initiated in [28, 29]. The
wide range of applicability of this kinetic theory, combined with its profound turbu-
lence implications, emphasized the importance of setting it on rigorous mathematical
foundations.

2Upper bounds on this cascades, measured in terms of the growth of high Sobolev norms was also inves-
tigated in [6, 8, 10, 12, 17, 59, 62, 65].
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550 Y. Deng, Z. Hani

In terms of justifying the kinetic formalism, several works addressed certain as-
pects of the problem [24, 25, 30, 55] (see also [26, 27] for related results on the
linear Schrodinger equation with random potential). The full question of deriving
the (WKE) starting from the unperturbed dispersive system was first treated in [7].
There, the authors justify the derivation of (WKE) for (NLS) up to timescales that are
vanishingly small relative to the kinetic timescale, namely up to L™V Ty, for some
y > 0. The later works in [13, 18] were able to substantially improve such timescales
of approximation all the way to L~¢T;, for arbitrarily small & and for some partic-
ular scaling laws. We shall elaborate a bit more on these works given their relevance
to this manuscript, and the fact that they were the first to showcase the importance of
the scaling law to this problem.

The result in [18] suggested that the rigorous derivation of the wave kinetic equa-
tion depends on the scaling law at which L diverges to co and « vanishes to 0. More
precisely, it is shown that for two favorable scaling laws, including the one studied in
this manuscript, one can justify the approximation as in (1.3) but up to times scales of
the form L~ for arbitrarily small ¢. The main difficulty in such a result is in proving
the existence of solutions to the (NLS) equation as a Feynman diagram expansion up
to times 7 ~ L~%Tii,. This time T plays the role of the radius of convergence of this
power series expansion. When it comes to absolute convergence, the result in [18]
gives optimal, up to L? loss, estimates on this radius of convergence 7', and proves
that (1.3) holds for such timescales. This is done for all admissible scaling laws (cf.
Sect. 1.2.3), and outside the two favorable scaling laws mentioned above, the time
T is much shorter than the conjectured kinetic timescale. In fact, we show that the
expansion diverges absolutely in a certain sense for times longer than 7', which raised
the question whether one can justify the kinetic equation at the kinetic timescales out-
side the two scaling laws identified in [18]. This issue was also investigated in [14]
which further analyzed this divergence.

Of course, the central question, for any scaling law, is whether one can justify the
approximation (1.3) up to times that are O (1) multiples of the kinetic timescale. Such
a result, regardless of the scaling law, would allow transferring the rich set of behav-
iors exhibited by the wave kinetic equation (such as energy cascade or formation of
condensate [28, 29]) on the interval of approximation into long-time behaviors of
the cubic NLS equation. This includes NLS set on the unit torus by rescaling. Our
main theorem provides such quantitative approximation, for the scaling law o ~ L.
Moreover, as we shall discuss in Sect. 1.2.3 below, the proof extends with minor mod-
ifications to some close-by scaling laws.

Finally, we mention a recent deep work [66] of Staffilani-Tran, which was sub-
mitted to arXiv shortly after the completion of this manuscript. It concerns a higher
dimensional KdV-type equation under a time-dependent Stratonovich stochastic forc-
ing, which effectively randomizes the phases without injecting energy into the sys-
tem. The authors derive the corresponding wave kinetic equation up to the kinetic
timescale, for the specific scaling law a ~ L™ (i.e. first taking L — oo and then
taking o« — 0).
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1.2.2 Criticality of the problem

Criticality is one of the fundamental concepts in the study of nonlinear PDE. While
the classical scaling criticality plays a central role in the study of deterministic
equations, a different type of scaling takes the spotlight for probabilistic problems
as showcased in several recent works both in the parabolic and dispersive setting
[22, 23, 44]. To explain the difference, it is worth recalling the following robust def-
inition of criticality: A problem is subcritical if subsequent (Picard) iterates of the
solution get better and better compared to previous ones; it is critical if the iter-
ates neither exhibit an improved nor worse behavior compared to previous ones, and
supercritical if the iterates successively deteriorate. For instance, the classical (deter-
ministic) scaling criticality for the cubic (NLS) equation i ;v + Av = %|v|*v can be
defined as the minimum regularity s for which the first iterate of an H*-normalized
rescaled bump function of the form uj, := N—* +9 ¢(Nx) is better behaved than the
zeroth iterate. This can be easily seen by comparing |uin|2uin and Auj, to obtain that
the problem is critical if s = s, := % — 1 and subcritical (resp. supercritical) if s > s
(resp. s < S¢).

The more relevant notion of criticality for us is that of probabilistic scaling crit-
icality. This can be formulated in terms of the H* regularity of the initial data for
(NLS) on the unit torus as above, (see [22, 23]), but for our problem (NLS) it trans-
lates (or rescales) into the trichotomy of whether the time interval [0, 7] on which we
study the solutions satisfies 7' < Ty (subcritical regime), T' ~ Tij, (critical regime),
or T > Tiin (supercritical regime). To see this, we note that the first iterate of (NLS)
is given in Fourier space by

TiQA
A“)(t k) : _lL Zum(kl)”m(kZ)um(k3) o
S(k)
Q= ki[5 — lkalj + Ikslj — IKI3. (1.4)

where S(k) = {(k1, kp, k3) € Zi : k1 — ko + k3 = k}. A deterministic analysis us-
ing the fact that (k) decays like a Schwartz function (think of it as compactly
supported in B(0, 1)) shows that this term is bounded (up to logarithmic losses) by
LA% sup,, |S7,m| where St = {(k1, k2, k3) € S(k) : | —m| < T—1}.1t’s not too hard
to see that sup,, | S7,m| ~ Lr-1 (at least when T < L%, see Lemma A.9 or Lemma
3.2 in [18]). However, with random data u;j, and using Gaussian hypercontractivity
estimates, a major cancellation happens in the sum over S(k) above, and with over-
whelming probability, one has the much improved central-limit-theorem-type bound

—a )\2 1/2 )\2T1/2
", k)|~—<sup|srm|) ~ (1.5)

From this it is clear that the iterate @V (¢, k) is much better behaved compared to the

zeroth iterate it;, (k) on timescales 7 < L/\—%f ~ Tiin, and does not feature any improve-
ment for times 7' ~ Tij,. For this reason, all previous works [7, 13, 14, 18] on this
subject deal with the probabilistically subcritical setting, albeit the results in [13, 18]
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cover the full subcritical regime T < L~¢ T, for the scaling law oL = 1, which we
also adopt in this paper. Consequently, obtaining the rigorous derivation of the wave
kinetic equation at the kinetic timescale Tii, as in Theorem 1.1 is a quintessential
probabilistically critical problem. In fact, Theorem 1.1 seems to be the first solution
of a probabilistically critical problem, both in the dispersive and parabolic setting
(here we should note that recent developments in the parabolic setting allow covering
the full subcritical range [43, 44]).

1.2.3 On scaling laws and the torus genericity condition

Theorem 1.1 justifies the kinetic approximation under the scaling law aL =1, i.e. o
goes to zero like L™!. This is one of the two favorable scaling laws identified in [18],
and is also the one treated in [13]. Moreover, it also holds a particular mathematical
importance. In fact, Theorem 1.1 scales back, in this scaling law, to time ~ 1 results
(i.e. local well-posedness with precise description of statistical properties) for the
cubic (NLS) equation on the unit torus, in the probabilistically critical space H ™1/,
which is linked to a main open problem raised in [23]. A particularly interesting
case happens when d = 3. There, for an appropriate choice of nj, (namely ¢(£)|£]~!
for some ¢ € S(R?) vanishing near 0 and infinity), Theorem 1.1 rescales into a local
existence result for the Littlewood-Paley projection of data in (essentially) the support
of the Gibbs measure for the (NLS) equation on T3. Such local existence results
for Gibbs measure initial data would be a central part of a potential proof of the
invariance of the Gibbs measure. As is well-known, the Gibbs measure invariance
problem for (NLS) on T? is another outstanding probabilistically critical problem.
In fact, after the work [22] which solves the two-dimensional case, it is the only
remaining Gibbs measure invariance problem for (NLS), given that the question of
existence (or lack thereof) of such measures is now well understood in constructive
quantum field theory [1, 2, 31, 36, 61].

As explained in [18], not all scaling laws are admissible for the kinetic theory, and
the admissibility of the scaling law depends on the whether the torus is generic or not.
In fact, suppose one adopts the scaling law o« = L™ for k > 0. Here x = 0 means that
one takes the L — oo limit followed by the o« — 0 limit, which incidentally was the
other favorable scaling law identified in [18]. Since the kinetic timescale is given by
Tiin ~ a~2 = L2, restrictions on the admissible ¥ come from any restriction posed
by the kinetic theory on the time interval of approximation. The relevant restriction
here is that the exact resonances, for which 2 = 0, in a sum like (1.4) should not
overwhelm the quasi-resonances for which 0 < || < T~!. The latter interactions
are the ones responsible for the emergence of the kinetic equation in the large box
limit. For an arbitrary torus (including the rational or square torus), the exact reso-
nances can have a contribution of (L24~2)1/2 o the sum in (1.4) (taking into account
the Gaussian £2 cancellation), which should be compared to the (L) T)V/2 estimate
used above. This means that if the torus is rational, then the limitation of the kinetic
theory is given by Tiin < L>. This translates into the requirement that x < 1 on a
rational torus. On the other hand, on a generic torus, the contribution of exact res-
onances is much less, namely (L%)1/2, which when compared to (L= / T)1/2 yields
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the requirement that Ty, < L9, and hence « has to < d /2 on a generic torus. Note
that our scaling law « = L™! lies just outside the range of admissible scaling laws
for a rational torus, but well within the range for a generic torus. This explains why
Theorem 1.1 is stated for a generic torus.

Scaling Law o = L™% Tiin = 1/20% Torus type
0<k <l Tiin ~ L% < L? Any torus
1<k <L4/? L? < Tign < LY generic torus

That being said, our proof extends with minor modifications to scaling laws
o = L™ for k smaller than but sufficiently close to 1. This is within the admissi-
ble range of scaling laws on an arbitrary torus, and as such our result can be extended
to such scaling laws which require no restrictions on the shape of the torus. Given the
complexity of the proof, we chose to focus the discussion here to the single scaling
law o = L~!. We will address the remaining scaling laws < 1 (on the arbitrary
torus) in a separate forthcoming note. Note that some challenges are apparent in the
case k > 1, and new ideas seem to be needed there.

Remark 1.2 After the submission of this paper, the authors have completed the sub-
sequent works [19-21]. In particular [21] addresses the full range of scaling laws
0 < k < 1 without genericity assumption; see also discussions in [21] regarding the
endpoint case y = 0, which is in fact not compatible with the continuum setting (the
difficulty comes from the remainder terms Ry in (1.6) below). Moreover, [19] es-
tablishes important results including propagation of chaos and non-Gaussian density
evolution, which are again true for the full range of scaling laws [21].

1.3 A high-level sketch of the proof

A proper overview of the proof requires introducing quite a bit of notation and setup.
We shall do this in Sect. 3 after we set up the problem in Sect. 2. Here, we shall be
content with a zoomed-out overview of the proof. As in our previous work in [18] on
the subcritical timescales, the idea is to expand the (NLS) solution as a power series
(Feynman diagram expansion) of its iterates

w=u® 4O 4™ LRy (1.6)

for sufficiently large N. Here, the j-th iterates u/ can be written as a sum over ternary
trees of scale j (cf. Sect. 2) and Ry is the remainder. In the subcritical problem in
which T < L™ ¢Tiiy, it is sufficient to do a finite (but O (s~ ) long) expansion to
prove an approximation result like (1.3). Roughly speaking, the reason for that is that
each iterate exhibits at least a L~¢ improvement over the previous one. In particular,
one does not need to keep track of any factorial dependences on N when estimating
the iterates and the remainder R . Such factorial growth appear when one computes
the correlations, like E(u(k)u(f)), and hence in the estimates on the iterates and the
remainder.
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This becomes one of the major difficulties in the critical problem. In fact, in our
critical setting here where T = §Txip, the only improvement in the successive iterates
is ~ /8 (cf. (1.5)), and as such the best estimates one can dream of for Ry is to
control it by («/S)N . For the contribution of Ry in (1.3) to vanish in the limit L —
00, one has to allow N to diverge as L — oo. This means that one has to track
carefully the factorial divergences in N in the correlations E(u (k)m). In fact, such
correlations can be represented as sums over pairs of ternary trees whose leaves are
paired to each other. We call those such objects couples, and the number of those
couples is factorial in n := k + £, which is called the scale of the couple. This brings
us to the central idea in the proof: can one classify the couples into groups, such that
those saturating or almost saturating the worst-case-scenario estimates are relatively
few and do not lead to factorial losses in n = k + £, while the remaining (factorially
many) couples satisfy much better estimates than the worst-case scenario, i.e. feature
a gain of powers of L, which is sufficient to offset the factorial loss?

The positive answer to this question constitutes the bulk of the proof. However,
the answer is not as straightforward as one might first hope. In fact, one would hope
that the couples with almost saturated estimates would be small perturbations of the
“leading” ones that converge to the iterates of the wave kinetic equation. Unfortu-
nately, these are not the only ones. In our proof we will actually identify three fami-
lies of couples with almost saturated estimates. The first family, which we call regular
couples, are essentially the leading ones that converge to the iterates of the wave ki-
netic equation, plus some similar couples whose contribution cancel out in the limit.
The second family, which we call irregular chains, can also lead to almost saturated
estimates and is dealt with in Sect. 8. The last family, which we call Type II (molec-
ular) chains, satisfy an L' bound that makes its contribution acceptable. This is dealt
with in Sect. 10.

The good news is that there are only O(C") couples that lead to almost saturated
estimates, whereas the remaining (factorial in n) number of couples all feature a gain
in L. This is the content of our main rigidity theorem in Sect. 9. In fact, we show that
if one performs a type of surgery on an arbitrary couple to remove all its regular sub-
couples, all its irregular chains, and all its Type II molecular chains (which are exactly
the structures that lead to almost saturated estimates), then we are left with a reduced
structure whose estimate features a gain L~" where r is comparable to the size of
this structure! This is enough to offset the factorial divergence r! that comes from the
possibilities of these size r structures, provided that r is small enough relative to L.
Since r < N, this is more than guaranteed if we pick N ~log L.

We should mention that the analysis of each of the couple families mentioned
above requires a different genre of argument, ranging from sophisticated combinato-
rial constructions in Sects. 7, 8 and 9, to analytic ones in Sect. 5 and 10, and number
theoretic ones in Sect. 6. Once this picture is made clear, the estimate on the re-
mainder term is relatively easier and can be derived from the analysis above. There
are some subtleties involved, which will be treated in Sect. 11. For a more detailed
discussion of the proof, see Sect. 3.
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2 Basic setup
2.1 Preliminary reductions

Consider the equation (NLS). Let M = f |u|? be the conserved mass of u (where

£q2 . .
f takes the average on ']I“i), and define v := e~ 2*"M! .y then v satisfies the Wick
ordered equation

(i8,—Aﬁ)v+)»2(|v|2v—2][|v|2-v>=0. (2.1

By switching to Fourier space, rescaling in time and taking back the linear flow, we
can define

121712
ar(t) = e T 58 T - 1, k), 2.2)

with 7 as in (1.2). By the same calculations as in Sect. 2.1 of [18], we obtain that
a = ai(t) satisfies the equation

alak = C+(aa a’ a)k(t)a
2.3)
ar(0) = (ar)in = v/ nin (k)i (@),
with the nonlinearity
Ce(fs g, Mik(t)
. T2
= W . (lé‘) Z €k1k2k3e£6ﬂlL Q(ky,ky, k3, k)t fkl (t)gkz (t)hkS (t),
k1 —ko+k3=k
2.4)

for ¢ € {£}. Here in (2.4) and below, the summation is taken over (ki, k3, k3) €
(Z‘I{)3, and

—_—

. ifky & ki, k)
€kikoks = =1, ifk; =ky=ks; 2.5)

0, otherwise,
and the resonance factor
Q=Qki, ko, k3, k) := [kl — lkalf + Ikslp — kI = 20k —k,k —ks)g;  (2.6)

the last equality in (2.6) requires k1 — kp + k3 = k. Note that € ,k, is always sup-
ported in the non-resonant set

6= {(kl,kz, k3) : either ky & {k1,k3}, ork; =ky = k3}. 2.7

The rest of this paper is focused on the system (2.3)—(2.4), with the relevant terms
defined in (2.5)—(2.7), in the time interval ¢ € [0, 1].
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Fig.1 An example of a tree
with + sign (Definition 2.1)

2.2 Trees and couples

Throughout the proof we will make extensive use of ternary trees and pairs of ternary
trees, to characterize the expressions appearing in the formal expansion of solutions
to (NLS). These are alternative formulations of the classical Feynman diagrams.

Definition 2.1 A ternary tree T (see Fig. 1, we will simply say a tree below) is a
rooted tree where each non-leaf (or branching) node has exactly three children nodes,
which we shall distinguish as the left, mid and right ones. We say 7T is trivial (and
write 7 = o) if it consists only of the root, in which case this root is also viewed as a
leaf.

We denote generic nodes by n, generic leaves by [, the root by t, the set of leaves
by L and the set of branching nodes by N. The scale of a tree T is defined by
n(T)=|N|,soif n(T)=nthen |L|=2n+1and |T|=3n+1.

A tree 7 may have sign + or —. If its sign is fixed then we decide the signs of
its nodes as follows: the root t has the same sign as 7, and for any branching node
n € N, the signs of the three children nodes of n from left to right are (¢, —¢, ¢) if
n has sign ¢ € {£}. Once the sign of 7T is fixed, we will denote the sign of n € 7 by
Zn. Define the conjugate 7 of a tree 7 to be the same tree but with opposite sign.

Definition 2.2 A couple Q (see Fig. 2) is an unordered pair (7,7 ™) of two trees
T+ with signs 4 and — respectively, together with a partition &2 of the set LT U L~
into (n + 1) pairwise disjoint two-element subsets, where £ is the set of leaves for
T=, and n =nt +n~ where n¥ is the scale of T=. This 7 is also called the scale of
Q, denoted by n(Q). The subsets {[, '} € &2 are referred to as pairs, and we require
that ¢y = —¢, i.e. the signs of paired leaves must be opposite. If both 7+ are trivial,
we call Q the trivial couple (and write Q = X).

For a couple Q = (T, T, &) we denote the set of branching nodes by N'* =
Nt UNT, and the set of leave by £* = LT U L™; for simplicity we will abuse
notation and write Q =7+ U T ~. We also define a paired tree to be a tree where
some leaves are paired to each other, according to the same pairing rule for couples.
We say a paired tree is saturated if there is only one unpaired leaf (called the lone
leaf). In this case the tree forms a couple with the trivial tree e.

Remark 2.3 Our notions about trees and couples will be fixed throughout, for example
L£E will always mean the set of leaves for the tree TE, and N l* will always mean the

N* set for a couple Q;, etc.
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(=) (+) (=)

Fig.2 Anexample of a couple (Definition 2.2). Here and below two nodes of same color (other than black)
represent a pair of leaves

Definition 2.4 A decoration 9 of a tree T (see Fig. 3) is a set of vectors (kn)neT,
such that k,, € Z‘i for each node n, and that

kn =kn, —kn, +kny, orequivalently nkn = Cn kn, + Cnykn, + Snskng,

for each branching node n € A, where ¢, is the sign of n as in Definition 2.1, and 1y,
ny, n3 are the three children nodes of n from left to right. Clearly a decoration & is
uniquely determined by the values of (k()c.. Fork € Zi , we say ¥ is a k-decoration
if ke = k for the root t.3

Given a decoration 2, we define the coefficient

€7:= [ ] €rnugky 2.8)
neN

where € k,k; s as in (2.5). Note that in the support of € we have that (ky, ,kn,,kn;) €
G for each n € . We also define the resonance factor 2;, for each n € N by

Qn = Qkn, . kny. kny k) = lkny |5 — lkny 3 + ks[5 — [knl. (2.9)

A decoration & of a couple Q = (T, 7T, &), see Fig. 4, is a set of vectors
(kn)neg, such that 9* = (kn)neT+ is a decoration of T+, and moreover k; = ky
for each pair {[,I'} € 2. We define €, := €4+€¢-, and define the resonance factors
Qy for n € N* as in (2.9). Note that we must have k.+ = k.~ where t* is the root
of T%; again we say & is a k-decoration if k.+ = k.~ = k. Finally, we can define
decorations Z of paired trees, as well as €5 and 2, etc., similar to the above.

2.2.1 Multilinear Gaussians associated with trees

For any tree T, define the expression /7 inductively by

(@i T =,
(I () = . (2.10)
IC: (J1y, I1» I3k (t), otherwise,

3Note that our notion of decoration is different from some earlier literature, in which vectors k are assigned
not to the nodes of the couple but to the edges connecting nodes to its children. These differences are of
course non-essential.
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Fig.3 An example of a
decorated tree (Definition 2.4).
It satisfies k =a — b + ¢ and
a=d—e+ fetc

I

a d o d b € a b ¢

Fig.4 An example of a decorated couple (Definition 2.4). It satisfies k =/ —e+m and l =a —d + c etc

where 71, T2 and 73 are subtrees of 7 from left to right, ¢ is the sign of 7, C; is
defined as in (2.4), and linear Duhamel operator Z is given by

t
IF(t) =/ F(s)ds. @2.11)
0

Denote z* =z and z~ =Z for complex numbers z (note that similar expressions like

m* or a7 that occur later may also have different meanings; this will depend on the

context). By induction, we can show that if 7 has scale n, then J7 has the expression

(S n
(Tret) = (—) [1G)d e Ar. 5% QIND [ [ Vi kong (@),

d—1
2L neN 2 el
(2.12)

where Q[N] represents () neA/» and the sum is taken over all k-decorations 2 of T~
(or equivalently, all choices of (k()(cr). In (2.12) the coefficient A = A7 (¢, a[N])
is defined inductively by

t 3
Aot a[NT) = 1; AT(z,a[N])z/ef”"“t’/]_[AT,.(/,a[Nj])dr’, (2.13)
0 iol

where 771, 77 and T3 are subtrees of 7 from left to right so that A" = N] UN> UN3 U
{r}, and ¢ is the sign of 7. Finally, for n > 0 we define

To= Y Jr+ (2.14)
n(T+H)=n

where the sum is taken over all trees 7+ of scale n that have + sign.
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2.2.2 The ansatz and the remainder term

Define N := |log L]. With the definition of J7 and 7, in Sect. 2.2.1 we may intro-
duce the ansatz

N
at) =Y (Tn®) +b)= Y (Fro®+b@), (215

n=0 n(TH=N

where again the sum is taken over all trees 7+ of scale at most N that have + sign.
The remainder term b := by (¢) then satisfies the equation

b=R+Lb+ Bb,b)+%b,b,b), (2.16)

see for example Sect. 2.2 of [18], where the terms on the right hand side are defined
by

R= ZIC+(L¢,E, w), ZLb= ZIC+(M,5, w),
©) (1)

Bb.b)=Y ICiu.T,w), €(b,b,b)=TCy(b.b,b).
2)

(2.17)

The above summations are taken over (i, v, w), each of which being either b or 7,
for some 0 < n < N; moreover in the summation | ) for 0 < j <2, exactly j inputs
in (u, v, w) equals b, and in the summation Z(O) we require that the sum of the three
n’s in the J,’s is at least N. Note that .&, %4 and ¢ are R-linear, R-bilinear and
R-trilinear operators respectively, and (2.16) is equivalent to

b=(1—-.2)""(R+Bb,b)+Cb,b,b)), (2.18)
provided 1 — .Z is invertible in a suitable space.
2.2.3 Correlations associated with couples

Given t,s € [0,1] and k € 74 | we want to calculate the correlation E(ai (t)a(s)).
Neglecting the remainder b for the moment, we obtain the main contribution

Ei= ) EUIr OeOIr-i)], (2.19)
(THT)

where the sum is taken over all pairs of trees (7, 7~) where 7= has sign £ and
scale at most N. For fixed (7, 77), by (2.12) we get that

El(TT:)k(O(TT-)1(s)]

<Ld 1> 1_[ (in) Z €@+€9—'AT+(I,5L2'Q[N+])
neN* (9+,97)
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x A (s, 8L* - QIN]) ~E[ I ,/nin(k,)n,ii(w)], (2.20)
lel*

where n equals the sum of scales of 7 and 7. By using the complex version of
a specific case of the Isserlis’ theorem, which is proved in Lemma A.2, we conclude
that

EN(IT0)O(T Tk (5)]
)

5 n
= (zLT) £ Y Y es-Bolt,s, L2 - QNN - [ nintko),

P & leL*

(2.21)
where {*(Q) and Bg are defined by
Q=[] G, (2.22)
neN*

Bo(t,s,alN*]) = Ar+(t,a[NT]) - A7 (s, a[N7T]). (2.23)

Here in (2.21) the first summation is taken over all possible sets of pairings & that
make a couple Q := (7+, 7, £?), and the second summation is taken over all k-
d‘ecorations & of the couple Q. The product HEQL* is taken over [ € L* that have
sign +.

By summing over all (7, 77), we conclude that £ = ZQ Kolt, s, k), where the
summation is taken over all couples Q = (7, 7, &) with both T having scale at

most N, and Ko is defined by

n (+)

8
Kolt,s k)= (W) t*(Q)Y es-Bo(t,s, 8L - QIN*) - [ | ninlko).
&

leL*
(2.24)

Here n is the scale of O.

2.3 Notations and estimates

Here we state the main notations, norms and estimates.
2.3.1 Parameters and norms

From now on we fix 8 € (]R“‘)d \2 with 3 defined in Lemma A.l. Let C denote
any large constant that depends only on the dimension d, and C* denote any large
constant that depends only on (d, §, nin). These constants may vary from line to line.
The notations X <Y and X = O(Y) will mean X < CTY, unless otherwise stated.
Recall that A > 40d is fixed in Theorem 1.1. We will fix v = (100417)_l <« 1, and
fix an even integer p that is sufficiently large depending on A and v, abbreviated as
p >4, 1 (same below). Then fix the value of § in Theorem 1.1, such that § <, ¢+ 1
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(so 8 is sufficiently small depending on p and C*). Finally assume L >>s 1 and fix
N =logL].

Let xo = xo0(z) be a smooth even function for z € R that equals 1 for |z| < 1/2 and
equals O for |z| > 1; define also xo(z!,...,z%) = xo(z") - x0(z%) and xo0 = 1 — xo.
By abusing notation, sometimes we may also use xo to denote other cutoff functions
with slightly different supports. These functions, as well as the other cutoff functions,
will be in Gevrey class 2 (i.e. the k-th order derivatives are bounded by (2k)!). For
a multi-index p = (o1, ..., om), we adopt the usual notations |p| = p1 + -+ + pm
and p! = (p1)!--- (pm)!, etc. For an index set A, we use the vector notation @[A] =
(otj)jea and da[A] = ]_[jeA da, etc.

Define the time Fourier transform (the meaning of = later may depend on the con-
text)

74\()») :/ M(t)e*2ﬂi)»t dt, u(t)= / ﬁ(x)eZNiAz da.
R R

Define the X* norm for functions F = F (¢, k) or G = G (¢, s, k) by

IIFIIXK=/< )9SUP(/<) |F (3, k)| da,

1Gllx« = /( )9SUP( k)|F (h, . k)| drdp,

where ™ denotes the Fourier transform in ¢ or (¢,s). If F = F(¢t) or G = G(t, s) does
not depend on &, the norms are modified accordingly; they do not depend on « so we
simply call it X. Define the localized version X} . (and similarly Xjo.) as

IFllxs =inf{||Fllx«: F=F for0<t <1};
IGlIxx =inf{||G||XK :G=Gfor0<t,s< 1}.

If we will only use the value of G in some set (for example {z > s} in Proposition
6.10), then in the above definition we may only require G = G in this set. Define the
Z norm for function a = ay (1),

lal = sup L™ (k)" a (1), (2.25)
O=t=l - yepd

2.3.2 Key estimates
In this section we state the key estimates of the paper. The rest of the paper until
Sect. 11 is devoted to the proof of these estimates, and in Sect. 12 we use them to

prove Theorem 1.1.

Proposition 2.5 Let J7 and [J, be defined as in Sect. 2.2.1. Then, for each 0 <n <
N3 ke Z‘i and t € [0, 1] we have

E[(Jk®P < (k)24 (T8, (2.26)
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Proposition 2.6 Let . be defined as in (2.17), note that £" is an R-linear operator
for n > 0. Define its kernels (f”)ie (t,s) for ¢ € {£} by

!
L"b)= > > / (L") (2, 5)by ()" ds.
cefx} ¢ 70

Then for each 1 <n < N and ¢ € {%}, we can decompose

(L= Y. (@ (2.27)

n<m<N3
such that foranyn <m < N3 and k,le Z‘z andt,s € [0, 1] witht > s we have
EI(ZM5C (2,51 < thk—co)~20d (et /sym LA, (2.28)
Proposition 2.7 Recall the nonlinearity KC(¢1, ¢2, ¢3) defined in (KIN). Define

Mo(t, k) = nin(k);

d 2.29
My, k) =6 Z /OK(Mnl(t/)’an(t/)an_g(t/))(k)dt/v 229

ny+ny+n3=n—1

which form the Taylor expansion of the solution to (WKE), see Proposition 7.9, then
foreach0<n < N3, ke Z‘i and t € [0, 1], we have that

D Kol t,k) = My, k)‘ SR MCTVo) LY,
n(Q)=2n

where the summation is taken over all couples Q of scale n, and Kg is defined in
(2.24). If 2n is replaced by 2n + 1, then the same result holds without the M, (¢, k)
term.

3 Overview of the proof
3.1 The main challenge

We will focus on the analysis of the correlations K g, since they also control the sizes
of J7 and J, in the ansatz (2.15) in view of (2.21). Recall that we have divided the
proof of Theorem 1.1 into three sub-tasks: Proposition 2.5—to obtain upper bounds
for Ko, Proposition 2.6—to control the R-linear operator .’ appearing in (2.16), and
Proposition 2.7—to evaluate the leading contributions of g and match them with
the Taylor expansion of n(t, k). To demonstrate the main challenge of the problem,
let us compare the current situation with the subcritical situation which was solved
in [18], i.e. when one restricts ¢+ < L™¢ in these propositions.
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In the subcritical situation, it can be shown that each term in the expansion in
(2.15) gains a power L~¢ compared to the previous one, with high probability, in
particular we have

IKo(t,s, k)| < (k)2 c, L™, (3.1)

for any couple Q of scale 2n. Here for simplicity we only consider couples of even
scale; the case of odd scale is treated in the same way. Note that (3.1) becomes neg-
ligible when n is sufficiently large depending on ¢, so the expansion (2.15) can be
done to a finite order N independent of L, and any constant factors one may lose that
depends on N will be negligible compared to L. Of course it is still highly nontrivial
to analyze Ko for Q with large scale, but this can be done using the combinatorial
structure of Q, see [18].

In the current critical situation, however, the best estimate one can hope for is that

IKo(t, s, k)| < (k)= (CTs)" (3.2)

for couples Q of scale 2 (in reality we will have CT+/§ instead of C*§ due to a
technical reason, see Proposition 10.1, but this is not important here). This means
that, in order for the remainder b in (2.15) to behave significantly better than the
main terms, the expansion has to be done at least to order N > 101;%; in fact as in
Sect. 2.3.1 we have set N = |log L]. Therefore the order of expansion grows with L,
which brings the fundamental difficulty of the problem.

One consequence of the largeness of N is that, in many parts of the proof, one
is not allowed to lose log L type factors; on the contrary, for (3.1), any logarithmic
factors are negligible. This means that one needs to make every single estimate as
sharp as possible, which is a main source of technical difficulties appearing in the
proofs below.

A much more significant challenge, which also suggests our main proof strategy,
is as follows. For fixed n, it is well known that the number of ternary trees is at
most CV; however the number of couples Q of scale 2n will grow like n!, due to the
possibilities of pairings between leaves. This factorial loss, though negligible in the
subcritical case (3.1), easily overwhelms the §” gain coming from (3.2) and seems to
completely destroy the convergence.

However, there is one crucial observation that allows us to avoid this fate. Namely,
although the total number of couples of scale 2n grows factorially on n, the number
of couples that actually saturate (3.2) is in fact bounded by C". In other words, even
though the whole problem is critical, the vast majority of couples Q are actually of
“sub-critical” nature and satisfy much better estimates than (3.2). This fact seems to
be unique for the dispersive equation (NLS), and we have not found a counterpart for
stochastic heat equations.

With this observation, it is now clear what we should do with the couples Q.
We shall divide them into different classes, depending on whether they saturate the
estimate (3.2), or nearly saturate it, or neither. This will be controlled by an index
r = r(Q), which plays the central role in the proof. We explain this in more detail in
Sect. 3.2 below.
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3.2 Classification of couples

The fundamental objects in our classification of couples are what we call regular
couples, see Definition 4.2. These couples have relatively simple structure, and can
be constructed by repeating two basic steps (which we call steps A and B, see Figs. 10
and 11) starting from the trivial couple x. As a result, the number of regular couples
of a fixed scale 2N is bounded by CV for some absolute constant C (Corollary 4.9).
Moreover, these couples are exactly the ones that (formally) saturate (3.2); in fact
a subset of these couples, called the dominant couples (Definition 4.17), constitute
exactly the leading contributions in Proposition 2.7.

With the notion of regular couples, it is natural to define the index r as the “dis-
tance” of a given couple to the set of regular couples, roughly as follows:

r(Q) = the remaining size of Q, after repeatedly reverting

the steps A and B, until no longer possible. (3.3)

Note that the actual definition of r, see (3.15), is slightly different from (3.3), due to
the presence of particular structures called the irregular chains and Type II) molec-
ular chains, which will be discussed in Sects. 3.4.1 and 3.4.2 below. Here we will
temporarily ignore the difference, and note that a couple of index 2r is essentially a
regular couple up to “perturbations” of size <2r.

It is now intuitively clear that the number of couples of scale 2n and index 2r
is at most C"r! instead of n!. This is because a couple of size 2r has at most r!C”
possibilities, while reverting steps A and B at most n times leads to at most C"
possible choices (Corollary 4.16). Therefore, it remains to show that a couple of scale
2n and index 2r satisfies the following improvement to (3.2), namely

IKo(t,s, k)| < (k)20 (Ccrsy L= (3.4)

for some absolute constant v > 0. In the rest of this section we will briefly explain
why (3.4) is intuitively plausible, and how we shall prove it.

First, recall the definition (2.24) of Kg. It is easy to show that the function
Bo(t,s,a[N*]) is bounded by a product of factors of form (p)~! where each p
is a suitable linear combination of the «; variables for j € N*; see for example [18],
Proposition 2.3. As such, for each fixed (¢, s), the function Bo(t, s, a[N*]), as a
function of a[N*], is almost L' integrable. Note that we do need to carefully distin-
guish between genuine and almost integrability (see Sect. 3.3.2 below), but here we
will temporarily ignore this and simply assume Bg € L'. Assuming also niy, is sup-
ported in the unit ball, then (2.24) is controlled by the upper bound for the following
counting problem

{€=(kn)ne : kil <1 (VLELY), |Qn—an| <GL) ' (YneNH}  (35)

for k-decorations &, where k is fixed, and o, € R are fixed real numbers.
Accurately estimating the number of solutions to (3.5) is a major component of
this work (see Sect. 3.4.2); for demonstration we will use a naive dimension counting
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Fig.5 An example of a
decorated regular couple. It
satisfies k =m — e +d and
k=a—-b+cetc

argument here (which may not be precise but usually provides the correct heuristics).
For example, the decorated couple in Fig. 4 corresponds to the counting problem for
(a,b,c,d,e,l,m) e Z7Ld such that

I—e+m=k, |z —lelg+Imlz — |kl =ar+ 0@ 'L7?);

a—d+c=1, lalj—ldlj+lelf =l =a2+06""'L7);

(3.6)
d—b+e=m, [dlg—Iblj+lels —Imlg=0o3+0@""'L7%);
a—b+c=k lalg—Ibl+Iclj — klj=as+ 0@ 'L7?).

Thus dimension counting yields a possible upper bound, which is L* (871 L72)3 =

873146 (note that the last line of equations in (3.6) follows from the first three).

Now, a key feature of regular couples is that, all its branching nodes can be paired
such that for any decoration & and any two paired branching nodes n and n’, one must
have Q, = +Qy (see Proposition 4.3), i.e. each variable Q, occurs fwice in the Bg
function, and in the counting problem. For example, the following decorated couple
(Fig. 5) which is regular, corresponds to the counting problem for (a, b, c,d, e, m) €
ng such that

m—e+d=k, |m3—lel3+Id5—kl53=a1+ 006 'L7?);

B p p p

2 2 2 2 17-2 @37
a—b+c=k, lalz—blz+Ilclz—Iklz=0as+ 0@ 'L7?).

Thus dimension counting yields a possible upper bound, which is L*¢ (871 L72)? =
8_2L4d_4.

It is clear that in both systems, the dimensions of the submanifolds determined by
the linear parts are the same (which is 4d here and 2nd if Q has scale 2n) The reason
why the non-regular couple Q in Fig. 4 enjoys better estimates than the regular couple
in Fig. 5, is that the corresponding system contains one more independent quadratic
equation, due to the fact that each Q2 occurs twice for regular couples, but not for
non-regular couples.

As such, it is natural to believe that Ko for regular couples Q, which involve
the least number of quadratic equations in the counting problem, will be the worst
in terms of upper bounds and will saturate (3.2), while KCg for non-regular couples
Q will enjoy better estimates. Moreover, if a couple Q has “distance” at least 2r
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to regular couples, i.e. it is obtained by making a size 2r perturbation to a regular
couple, then it will contain at least » extra quadratic equations in the corresponding
counting problem, and thus satisfies the improved bound (3.4).

A major part of this paper is to make the above heuristics rigorous. In addition,
one has to calculate the asymptotics of g for regular couples Q, and deal with the
R-linear operator .Z. In the next section we start by considering regular couples.

3.3 Regular couples

Let Q be a regular couple. Our goal is to calculate the asymptotics of g, then
combine and match them with M, (¢, k) in Proposition 2.7; in this process we also
obtain uniform bounds for Ko, as in (3.2), that lead to Proposition 2.5.

Note that in all previous works [7, 13, 14, 18], only the correlations K g for couples
Q up to scale 2 are calculated, and they are matched with only the first order term
M (t, k) in the expansion of n(z, k). In subcritical situations this is enough, as each
term gains at least L ¢ compared to the previous one; in the current work, however,
it is necessary to calculate the correlations g for couples Q of any scale. These
correlations have much richer structure than M, (¢, k) which are obtained by simply
iterating the nonlinearity (KIN), so the fact that they still match the higher order
iterations M,, (¢, k) is quite remarkable.

3.3.1 Approximation using circle method

The formal calculation of the asymptotics of K¢ is not difficult. In fact in the limit
L — oo the sum in (2.24) can be viewed as a Riemann sum, which is then approxi-
mated by an integral, and we also have

Bol(t,s, SL?QIN*]) ~ (3L2)—"/BQ T8, (3.8)

where the product is taken over all different variables 2, and there are in total n of
them (half of the scale of Q). Thus heuristically we have (see Proposition 6.7 for the
actual version)

(+)

Kolt.s. 0~ 275c*(@) [ Bo- [[]8@0) [T matkido.  69)
n leL*

where do is the surface measure for a suitable linear submanifold of (k). Here note
that the vectors involved in different variables 2, can be separated, for example for
Fig. 5 and (3.7), the two different 2, variables are

Im|5 —lelf + |d|j — k|3 =2(m —k.k—d)s and
lalg — IbI5 + Iclj — k15 = 2(a — k. k —c)p,

and the vectors they involve are (m — k,k — d, a — k, k — ¢), which are independent
variables. This is crucial for (3.8) to be valid, as products like § (x - y)d(x - z) etc. may
not be well-defined in general.
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In order to make the approximation (3.9) rigorous, one first needs to perform a
change of variables, so that the different Q,, become (x;,y;)g (1 < j <n) for the
new independent variables (x;, y;). In the simple case n = 1, we essentially need to
prove

) w<x,y)-B(8L2<x,y>,s)~L2"—28—1/8-/R2dw(x,y)-6(<x,y>ﬁ>dxdy

x,yeZ‘i

for a Schwartz function v and an L' function 3, which was achieved in earlier works
[7, 18] etc. by applying the circle method and exploiting the genericity of 8. The case
of general n, which can be as large as N = |log L |, follows from applying the circle
method for the integration in each of the variables (x;, y;), see Proposition 6.1.

There is one main new ingredient, though, compared to previous works. Assuming
nin is supported in the unit ball, we know that each of the variables (x;, y;) belongs
to a ball of size at most n. If n is independent of L, as in previous works, then any loss
in terms of » is negligible; however for n ~ log L this bound is not good enough, as a
polynomial loss in n for each variable (x;, y;) will lead to a factorial net loss, which
is not acceptable. The idea here is to make this restriction more precise, namely that
each (x;, y;) belongs to a ball of size A; centered at some point determined by the
previous (xg, y¢), after fixing some strict partial ordering in j. Moreover individual
Aj can be as large as n, but the product of all these A ; is bounded by C", which is
then acceptable, see Lemma 6.6. In addition, since each (x;, y;) is supported in a
ball not centered at the origin, one needs to apply a translation-invariant version of
the circle method. This is mostly straightforward, but requires a new argument when
dealing with major arcs, see Lemma 6.2.

3.3.2 Analysis of Bg

In order to apply Proposition 6.1, one needs to obtain L' bounds for the function
Bo = Bo(t,s,a[N*]) defined in (2.23). Here the rough bound in [18], Proposition
2.3 is not enough, as (x) ! is not in L' and one cannot afford to lose log L type factors
in the L' norm. Fortunately, since each variable €2, occurs twice in the function
Bg. it in principle should also occur twice in the denominators, which allows one to
recover L' boundedness, in view of the elementary inequality

/<x—a>—1<x—b>—‘dx51 (3.10)
R

uniformly in a and b.

To make the above heuristics precise, we will perform an inductive argument ex-
ploiting the structure of regular couples. First note that by induction, Bg can be
written as a multi-dimensional integral in the time variables f, in a domain £ = £g
defined by Q, see (5.4). Next, we apply the structure theorem for regular couples,
which is proved in Proposition 4.8, to construct Q from a specific couple Qy, by re-
placing each of its leaf pairs with a smaller regular couple Q;. We will assume this
Qo is a so-called regular double chain, see Definition 4.6. Then, by considering the
time domains £ associated with Q, Qp and each Q;, we can essentially express Bg
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in terms of Bg, and Bg;. Applying the induction hypothesis for each By, we can
reduce the study of B to that of BQO; since Qp has an explicit form, the correspond-
ing function Bg, is also explicit and in fact equals the product of two functions of
the form

K(t, o1, 0y) =/ Bt Bamtm) qr, .. dty,,, (3.11)

t>11>>1, >0

see (5.12). Here ¢ is replaced by s in the other function, and {8y, ..., B2} is a per-
mutation of {£«jq, ..., £a,} corresponding to a legal partition (Definition 4.4).

The analysis of the function K is done in Sect. 5.2, where we show that it is essen-
tially L' in (a1, ..., a,) for any 7, except it may contain a few factors 1/mia i(jez)
where Z is a subset of {1,...,m}, but then it will be L! in the remaining vari-
ables, see Lemma 5.10. Using this result, we can proceed with the inductive step
and finally prove Proposition 5.1, which states that for each fixed (¢, s), the function
Bolt,s, a[N*)) is the product of ]_[nez 1/(wicy) for some subset Z of branching
nodes, with an L' function of the remaining o, variables. This then allows us to ap-
ply Proposition 6.1 and calculate the asymptotics of g as in Sect. 3.3.1. Note that
the factors [ [, 1/(wiay) are not in L' but have the correct parity so that the circle
method still applies, provided one treats the singularities using the Cauchy principal
value.

Finally we need to calculate the integrals of (the integrable parts of) Bg, see
(6.39). These values can again be calculated inductively; in fact we can identify
a special class of regular couples, called dominant couples (Definition 4.17), such
that this integral vanishes for any non-dominant regular couple (Proposition 7.4). For
dominant couples, the above induction process yields a recurrence relation for the
integrals JBg of Bg. Such a recurrence relation then uniquely determines these
integrals, which happen to be independent of Z. See Proposition 7.5.

3.3.3 Combinatorics of leading terms

As in Sects. 3.3.1 and 3.3.2, we are able to calculate the leading term of g for each
regular couple Q, and it just remains to put them altogether. Note that each of these
leading terms has the form

(KQ)app(t, 5,k) ~8" > " [ ] tn- TBa(t,5) - MG 5 (K),

Z neZ

see (6.7). Here Z is a subset of branching nodes, JBg(t, s) is a function of (z, s)
only that is also independent of Z, and M*Q (k) is an explicit multilinear integral
expression of the initial data nj, depending on Q and Z, see (6.32). Since JBg
vanishes for non-dominant couples we just need to consider dominant Q.

The natural idea is then to classify all these terms according to the form of the ex-
pression /\/I*Q - and combine the coefficients J Bo(t, s). This leads to the definition
of enhanced dominant couples which depends on Z, and the notation of equivalence
between enhanced dominant couples which asserts that the forms of M*Q , are the
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same. See Definition 4.18 and Proposition 7.7. As such, we need to calculate the
combinations of coefficients

3 Tl TBow.0

Qe neZ

where the sum is taken over all enhanced dominant couples (Q, Z) in a fixed equiv-
alence class 2", and we restrict to r = s as this is the case of interest in Proposition
2.7. It turns out, see Proposition 7.8, that for equivalence classes in which Z # &, the
above combinations again vanish due to delicate cancellations involving the signs ¢y,.

Finally, Proposition 7.10 establishes that the combinations of coefficients corre-
sponding to Z = @ exactly coincide with the coefficients occurring in M, (t, k).
As the corresponding multilinear expressions M*Q’g(k) also match precisely, see
Propositions 7.7 and 7.9, this then completes the regular couple part of the proofs of
Propositions 2.5 and 2.7.

3.4 Non-regular couples

We now turn to the non-regular couples. Compared to the regular couple case, here
we only need to obtain upper bounds instead of asymptotics, but the structures of
couples are much more complicated.

First, we reduce a general couple Q by reverting the steps A and B as in (3.3)
whenever possible. The result, say Qg of these operations is called the skeleton of
Q (Proposition 4.13), and is prime in the sense that it is not obtained from any other
couple by performing A and B. Now by Proposition 4.14, Q can be obtained from
Qi by attaching regular sub-couples (as well as regular trees, see Remark 4.15,
which behave similarly). This allows us to express K¢ in terms of ICQJ, for these
regular couples Q;, and an expression similar to g, , see (8.2).

Thanks to Sect. 3.3 we have enough information about K¢ ;; in particular they
can be divided into a remainder term which gains an extra L ™" power, and a leading
term which satisfies (3.2) as well as differentiability in k as in (6.38). For simplicity
we only consider the leading terms below, which can be viewed effectively as nj,
multiplied by a power of C*S§.

3.4.1 Irregular chains

Now we have effectively reduced Kg to Ko, . Since Qg is a prime couple which
does not have any regular sub-couple, it is tempting to guess that

Koy (1,5, )| < (k)2 (Ctoy L= (3.12)

for constant v > 0, where 2n is the scale of Q. Clearly (3.12) would imply the
desired (3.4), in view of the definition (3.3), but unfortunately it is not true.

A main obstacle that prevents (3.12) is the so-called irregular chains (we denote
them by H). These are chains of branching nodes, such that each one is the parent of
the next one, and each one has a child leaf paired to a child of the next node, and a
child leaf paired to a child of the previous node (see Fig. 6 below).
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Fig.6 An example of an irregular chain, and another irregular chain congruent to it; see Sect. 8. We also
include the vectors k and k’ in a decoration. Here a white leaf may be paired with a leaf in the omitted part

The irregular chains were already discussed in the earlier works [14, 18]. In [18]
it was noted that these chains create terms that diverge absolutely, which is a main
challenge in reaching the sharp time scale for scaling laws & ~ L™ when 0 <« < 1.
Here we are in the k = 1 case, and it can still be shown that if Qg contains long
irregular chains then Ko, violates (3.12). More seriously, if the decoration in Fig. 6
satisfies |k — k’| ~ L™! (i.e. the small gap case in Sect. 8.3.1), then even the 8" gain
in (3.12) will be absent, and one can only hope for

Ko, (1.5, k) S (k)~20L™ (3.13)

with a constant v < 1 independent of n, which is clearly not sufficient.

Note, however, that such bad behavior is only for a single irregular chain. In the
small gap case, one can in fact group together different irregular chains, such that the
quantities /Cg for the corresponding couples Q exhibit exact cancellations. This leads
to the definition of congruence between different irregular chains and, by straightfor-
ward extensions, congruence between prime couples Qg and general couples O, see
Definitions 8.2 and 8.4.

For two congruent irregular chains (or couples), there is a one-to-one correspon-
dence between their sets of decorations, such that for any two decorations in cor-
respondence, the values of ¢,€2, are exactly the same, see Proposition 8.3. The in-
put functions in Ko, for the two chains, which are either n;, or functions of sim-
ilar form that come from regular sub-couples, differ only by a translation of length
|k —k'| < L~!, and the different signs

Q) =[]

n

for different chains in the same congruence class then leads to the desired cancella-
tion, see (8.5) and (8.6). This effectively improves the power L™" in (3.13) to L~%"
where ¢ is the length of the chain (with also the gain from other chains), which is
then more than acceptable.
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The above cancellation works only for the small gap case. For the complementary
large gap case such cancellation is not available, but a direct calculation allows one
to retain the 8" gain in (3.12). It is still not possible, though, to achieve the negative
powers of L in (3.12), which means we need to modify the definition of  in (3.3), see
Sect. 3.4.2. In either case the calculation involving irregular chains are done similar
to [18], Sect. 3.4, using Poisson summation. See Sects. 8.3.1 and 8.3.2.

With the above analysis and by exploiting the cancellation in the small gap case,
we can then reduce K g, to some expression similar to ot where O is the couple
formed by deleting all irregular chains in Q, see (8.27). For simplicity we will
denote it by Q' below.

3.4.2 Molecules

Now we proceed to analyze Q', which is a prime couple and does not contain any
irregular chains. At this point we will be able to accommodate logarithmic losses, so
we may exploit the almost integrability of Bo(z, s, «[(N7)*]) in the «y, variables and
reduce to the counting problem (3.5) described in Sect. 3.2.

In order to bound the number of solutions to (3.5), we notice that any such system,
such as (3.6) and (3.7), consists of a number of quadruple equations of the form

a—b+c—d=0, lalg—Iblj+Iclf—Idlf=a+0@"'L?)

which involves four vectors (a, b, ¢, d).

The natural idea is to gradually reduce the size of the system by solving for the
quadruples (a, b, ¢, d) one at a time. Note that some quadruples will have nonempty
intersection with others, hence by solving for one quadruple one may also decide
some components of later quadruples. Therefore the order in which we choose the
quadruples is crucial, and we need to design a specific algorithm depending on the
structure of the couple Q.

Before describing this algorithm, however, we need to make one shift in the point
of view. Note that after solving for a quadruple and fixing some unknown vectors,
we reduce to a smaller counting problem, but the new counting problem may not be
coming from another couple (unless in special cases). Thus to validate the induction
process, we need to shift to a structure more flexible than couples.

Note that each quadruple corresponds to a branching node and its three children in
the couple Q’, and the only properties we need from Q' are the pairwise intersections
of these 4-element subsets. We then define these 4-element subsets as afoms and
their intersections as bonds, to form a (non-simple) graph with maximum degree 4,
which we refer to as a molecule (Definitions 9.1, 9.3). Our counting problem for a
couple then reduces to the counting problem for a molecule, where each unknown
vector corresponds to a bond and each quadruple system corresponds to an atom; for
example the system (3.6) is represented by Fig. 7. As such, solving for a quadruple
corresponds to deleting an atom from the molecule, which simply results in a smaller
molecule.

We then design a particular molecule reduction algorithm, by applying some
specifically defined operations called steps (Sect. 9.3), following some particular rule
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Fig.7 The molecule associated
with (3.6) and the couple in
Fig. 4. The arrows represent the
signs of the corresponding
vectors in the system, see
Definition 9.8 and Remark 9.9

(Sect. 9.4). In each step we remove (or in some cases add) a finite number of bonds as-
sociated with some (at most 4) atoms to reduce to a smaller molecule, and solve the
local counting problem involving the corresponding quadruples. The upper bounds
for such counting problems are provided by Lemma A.9.

Note that the couple Q' is prime, consequently the corresponding molecule M
does not contain triple bonds. For such molecules, the application of the algorithm
allows us to bound the number of solutions to (3.5) by (essentially)

@ S (87]L2d72)nL7vr1’ (314)

where 2n is the scale of Q, and 2ry is the number of remaining atoms after removing
(all copies of) the two specific structures—which we call type I and Il (molecular)
chains (see Definition 9.7)—from the molecule. This is proved in a rigidity theorem,
Proposition 9.10, which is perhaps the single most important estimate in this paper.

Since the counting bound ® < (7' L24=2)" corresponds to the bound (3.2) for
Ko, we see from (3.14) that this r| should be defined as the index r, replacing the
naive definition (3.3), to make (3.4) valid. More precisely, we redefine

r(Q) = the remaining size of Q, after reverting all steps A and B, removing all

irregular chains, and removing all type I and II chains in the resulting molecule.
(3.15)

Although this r is smaller than (3.3), we still have the upper bound C"(Cr)! for
the number of couples with index r, because type I and II molecular chains and
irregular chains are all explicit objects and inserting copies of them only leads to C"
possibilities. Note also that a couple can be reconstructed from the corresponding
molecule, again with at most C" possibilities (Proposition 9.6).

The last piece of the puzzle is to guarantee the genuine L' integrability of the By
function in the variables associated with the type I and II chains, as we can only afford
losses of (log L)€ with the new definition (3.15). As it turns out, type I chains in the
molecule only come from irregular chains in the couple, which are already treated in
Sect. 3.4.1. As for type II chains, we can verify that each variable o, associated with
such chains again occurs twice in Bg' (same as regular couples in Sect. 3.3.2), thus
integrability can be proved in a similar manner. See Proposition 10.1.

Remark 3.1 Some concepts introduced in this work have also been discussed in earlier
mathematical and physical literature such as [27, 55], under different names. For

clarity we list some of the correspondences below:
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e The trees, couples and molecules are different but equivalent ways to represent the
standard Feynman diagrams in the literature (though the couples and molecules
focus on different aspects of the structure, which is important for this paper);

e The dominant couples, non-dominant regular couples and irregular chains are
closely related to the leading diagrams, nested diagrams and necklace diagrams
in earlier literature;

e The (1, 1) mini-couples and mini-trees correspond to the gain and loss terms de-
scribed in earlier literature;

e The atomic counting bounds in Lemma A.9 is conceptually related to the crossing
bounds in earlier literature; in particular the rigidity theorem, Proposition 9.10,
achieves the same “gain per crossing” effect as in [27], but now in the nonlinear
setting.

3.5 Operator .Z, and the endgame

We now discuss the R-linear operator ., which appears in the equation (2.16) satis-
fied by the remainder b. Since b will be assumed to have tiny norm in a high regular-
ity space (Proposition 12.3), the quadratic and cubic (in b) terms in (2.16) are not a
problem, and the only difficulty is the linear term .Z.

Usually, to invert 1 — % one would like to construct a function space X’ and prove
that . is a contraction mapping from X to itself. However in the current situation
this seems to be problematic due to the critical nature of the problem. Indeed, in [18]
the standard X** norm for b > 1/2 is used, which certainly cannot be applied in the
critical setting. One may try to use the critical U” and V? norms as in [50], but even
they seem to be not precise enough; moreover they are L” based norms, while the
classical TT* argument (see [18], Sect. 3.3), which is the main tool in establishing
norm bounds for random matrices or operators, works best in L2,

In this paper we have found an interesting alternative to the above approach, which
might be of independent interest. Namely, in order to invert 1 — . we do not really
need .Z to have small norm from some space to itself, all we need is that .Z has small
spectral radius.* Note that the spectral radius of .Z is basically

p(L) = lim |.£2""",
n—oo

where the norm can be chosen as the operator norm between any two reasonable
spaces, and p(.Z) does not really depend on any specific choice of norms. Therefore,
the idea is to consider the powers £", instead of ((££*)" which depends on the
specific choice of the Hilbert norm. This provides the motivation for Proposition 2.6.

Now, by (2.17), we can write ((Zb)(t) as an expression that is R-linear in b and
R-multilinear in the Gaussians; moreover this expression involves a summation over
decorations of specific trees, which are obtained by attaching two sub-trees 71 and
T to a single node. Repeating this n times, we see that the kernels (.,2”"),{5 (t,s) of

", and the corresponding homogeneous components (,,2””),("1[’{0, s), are given by

4This is well-known in the context of matrix analysis (see [16], Example 4.1.5), however we have not seen
any prior example where it is applied to PDEs.
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expressions associated with specific trees (or more precisely a modified version of
trees called flower trees, see Definition 11.1), which have similar form as J7 with
only minor and manageable modifications, see (11.3). In the same way, the correla-
tions ]E|(§,””)Z}’§ (t,5) |2 will have similar form as KCg with minor modifications, see
(11.2). Therefore, the estimate for .£”, as in Proposition 2.6, can be done without
paying too much extra effort, by adapting the above proof for the estimates of Ko
and making only small changes. See Sect. 11.

Finally, to pass from Propositions 2.5-2.7 to Theorem 1.1 we simply apply Lemma
A.3, exploiting the multilinear Gaussian form for 7~ to control the L” moments by
L? moments for free. In controlling the operators .#” (Proposition 12.2) one encoun-
ters a problem of reducing to finitely many values of k, which is more subtle than the
similar problem occurring in [18], but it still can be resolved by applying a refined
version of Claim 3.7 in [18]. See Lemma A.6.

3.6 The rest of this paper

In Sect. 4 we examine the structure of trees and couples and prove some basic results
that will be important in later proofs.

Then, Sects. 5-7 are devoted to the analysis of regular couples. In Sect. 5 we study
the integrability properties of the coefficients Bg, in Sect. 6 we prove the number
theoretic approximation lemma (Lemma 6.1) and apply it to Kg, and in Sect. 7 we
collect the asymptotics obtained in Sect. 6 and match them with M, (¢, k).

Sections 8—10 are devoted to non-regular couples. In Sect. 8 we introduce the no-
tion of irregular chains and exhibit the cancellation structure, in Sect. 9 we analyze
the structure of the molecule obtained from the given couple Q and use it to solve
the counting problem associated with Ko, and in Sect. 10 we recover the L! inte-
grability of Bg in the type I and II chain variables, which finally allows us to prove
Propositions 2.5 and 2.7.

Finally, in Sect. 11 we apply similar arguments as above to control the kernels of
Z" and prove Proposition 2.6, and in Sect. 12 we put everything together to prove
Theorem 1.1.

4 Structure of couples

The central part in the proofs of Propositions 2.5-2.7 is the analysis of the correla-
tions Kg(t, s, k) for different couples Q, and superpositions thereof. Therefore the
structure of couples will play a key role in the arguments. This will be analyzed in
the current section.

4.1 Regular couples

We start with the notion of regular couples.

Definition 4.1 A (1, 1)-mini couple is a couple formed by two ternary trees of scale

1 with no siblings paired. It has two possibilities, shown in Fig. 8. We assign the
two-digit code 00 to the top one, and code 01 to the bottom one in Fig. 8.
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/N
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Fig.8 Two possibilities of Code 00
(1, 1)-mini couples (Definition

N

Code 01
Code 10 Code 20 Code 30
Code 11 Code 21 Code 31

Fig.9 Six possibilities of mini trees (Definition 4.1)

A mini tree is a saturated paired tree of scale 2 with no siblings paired. It has six
possibilities, shown in Fig. 9; as in the figure we also assign them the two-digit codes
in {10, ...,31}. We define a (2, 0)-mini couple to be the couple formed by a mini tree
and a single node e.

Definition 4.2 We define the regular couples as follows. First the trivial couple X is

regular. Suppose Q is regular, then

(1) The couple Q, formed by replacing a pair of leaves in Q (which may or may
not be in the same tree) with a (1, 1)-mini couple, is regular (see Fig. 10).

(2) The couple Q- , formed by replacing a node in Q with a mini tree, is regular (see
Fig. 11).

(3) All regular couples are of form (1) or (2).

Note that the scale of a regular couple must be even. The operations described in (1)

and (2) will be referred to as step A (acting at a pair of leaves) and step B (acting at

a node) below.

Proposition 4.3 Given any regular couple Q, there is a unique way to pair branching

nodes n € N'* to each other, such that for any pair {n, v'} and any decoration & of Q
we have { Q= —{n Q.
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(A) (B)

>
>

Fig. 10 Step A of building regular couples (Definition 4.2). There are two possibilities depending on the
mini couple. The ends A and B represent the rest of the couple, which is unaffected by the step

Fig. 11 Step B of building :
regular couples (Definition 4.2). E

(A)

There are six possibilities .(A)
depending on the mini tree. The E
ends A and B represent the rest °
of the couple, which is !
unaffected by the step :(B)

(B)

Fig. 12 A new pair of branching nodes (connected by a pink dotted curve) formed by step A or B; see
Proposition 4.3

Proof This is easily proved by induction. When Q = x there is nothing to prove.
Suppose the result holds for Q, then let Q4 be formed from Q by step A or B. In
either case, we simply make the two new branching nodes into a pair (for step A, these
are the two roots of the (1, 1)-mini couple which are also two leaves in Q; for step B,
these are the two branching nodes of the mini tree). See Figs. 12 for a description of
the corresponding decoration. It is easy to verify that the pairings obtained this way
does not depend on the order of applications of A and B, hence the uniqueness. [

4.2 Structure of regular couples

We next analyze the structure of general regular couples.

Definition 4.4 Given m > 0, consider a partition P of {1, ...,2m} into m pairwise
disjoint two-element subsets (or pairs). We say P is legal if there do not exist a <
b < c <d such that {a, c} € P and {b, d} € P. For example, when m = 3, then P =

{{1, 2}, {3, 6}, {4, 5}} is legal, while P = {{1, 6}, {2, 4}, {3, 5}} is not. We say P is
dominant if P = {{1,2},...,{2m — 1,2m}}.
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Proposition 4.5 (1) A legal partition can be obtained by inserting a pair of adjacent
elements into a smaller legal partition. More precisely, P is legal if and only if either
Om=0and P =2, or (ii)ym > 1 and

P={{a,b}:a<b<j, {a,b}ePl}U{{a,b—i—Z}:a<j§b, {a,b}ePl}
Ulfa+2,b+2}:j<a<b, {a.byePi}U{{j.j+1}}

for some 1 < j <2m — 1 and some Py associated with m — 1 which is legal.

(2) Alternatively, a legal partition can be obtained by concatenating two smaller
legal partitions, or enclosing a smaller legal partition in a new pair. More precisely,
P is legal if either (i) m =0 and P = &, or (ii) m > 2 and

P={{a.b}:a <b <2k, {a,b} P}
U{{a+2k,b+2k}:a <b<2(m—k), {a,b} € P}

for some 1 <k <m — 1 and some P associated with k and some P> associated with
m — k which are legal, or (iii) m > 1 and

P={{a+1,b+1}:a <b<2m-2, {a,b}eP]}U{{l,Zm}}
for some Py associated with m — 1 which is legal.
Proof This is easily proved by induction. O

Definition 4.6 A regular chain is a saturated paired tree, obtained by repeatedly ap-
plying step B at either a branching node or the lone leaf, as described in Definition
4.2, starting from the trivial tree o. A regular double chain is a couple consisting of
two regular chains (where, of course, the lone leaves of the two regular chains are
paired). It can also be obtained by repeatedly applying step B at either a branching
node or a lone leaf, starting from the trivial couple x.

Proposition 4.7 The scale of a regular chain T is always an even number 2m. The
2m branching nodes are naturally ordered by parent-child relation; denote them by
n; (1 < j <2m) from top to bottom. Then, see Fig. 13, T is associated with a le-
gal partition P of {1,...,2m}, and a code in {10,...,31} (as in Definition 4.1)
for each pair, such that (i) the lone leaf is a child of nyy,, and (ii) for any pair
{a,b} € P(a < b), the two children leaves of n, are paired with the two children
leaves of n, respectively, and the exact positions (relative to n, and ny,) and pairings
of these nodes are just like in the mini tree (in which the root represents n, and the
other branching node represents ny,) having the code of {a, b}. We also define T to
be dominant if the partition P is dominant in the sense of Definition 4.4.

Proof This is a direct consequence of Proposition 4.5 (1) and Definition 4.6, because
the trivial tree corresponds to m = 0 and P = &, and applying step B at a branching
node or lone leaf, i.e. replacing it with a mini tree, just corresponds to inserting a pair
of adjacent elements into P. O
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ny (10) ny" (30)

Nom-1(10) 7

Fig. 13 A regular double chain (as described in Proposition 4.7). The lone leaves are colored in orange.
The left chain is dominant; the right chain is not, as the partition P’ contains {1, 2m} and {2, 2m — 1}. The
code of each mini tree is indicated beside the node n, and n; as in Proposition 4.7

The following proposition describes (inductively) the structure of all regular cou-
ples.

Proposition 4.8 (Structure theorem for regular couples) For any nontrivial regular
couple Q # x, there exists a regular couple Qo # X which is either a (1, 1)-mini
couple or a regular double chain, such that Q is formed by replacing each pair of
leaves in Qg with a regular couple. Clearly each such couple has scale strictly smaller
than that of Q, see Fig. 14.

Proof 1In the base case n(Q) =2, so Q is either a (1, 1)-mini couple or a (2, 0)-mini
couple (which is a regular double chain), so the result is true. Suppose the result is
true for Q, with associated Qg and the leaf-pairs in Qg replaced by regular couples
Q; (1 <j<n). Let Qy be obtained from Q by step A or B in Definition 4.2. Then:

(1) If Qg is any couple and one applies step A, then this step A must be applied
at a leaf-pair belonging to some regular couple Q; (i > 1). In this case the same Qg
works for Q, the regular couples Q; (1 < j # i) also remain the same, and the
regular couple Q; is replaced by AQ;.

(2) If Qp is any couple and one applies step B at a node which belongs to some
Q; (i > 1), then the same result holds as in (1) except that Q; is now replaced by
BO,;.

(3) If we are not in case (1) or (2), and Qp is a (1, 1)-mini couple, then the node
where one applies step B must be one of the roots. In this case for Q1 we may replace
Qo by Q; which is a (2, 0)-mini couple. Two leaf pairs in Q; remain leaf-pairs (note
that a leaf pair can be viewed as the trivial couple), and the third leaf-pair in Q; is
replaced by Q.

(4) If we are not in case (1) or (2), and Qy is a regular double chain, then the node
where one applies step B must be a branching node of Q. In this case for Q| we
may replace Qy by BQy. The regular couples Q; (j > 1) remain the same, while the
two new leaf-pairs in BQ( (which do not belong to Q) remain leaf-pairs.

In any case we have verified the result for O, which completes the inductive
proof due to Definition 4.2. O
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Fig. 14 A regular couple with structure as described in Proposition 4.8. Here and below two circles of
same color represent a regular couple Q ;. If we require Qy, to have type 1, as in Proposition 4.10, then
this representation is unique

Corollary 4.9 The number of regular couples of scale n is at most C".

Proof Let the number of regular couples of scale n be A, then Ag = 1. By Proposi-
tion 4.8, any regular couple Q of scale n > 1 can be expressed in terms of a couple
Qp (say of scale 1 <m < n) and regular couples Q; (1 < j <m+1) of scale n; such
thatny + - - - +n;+1 = n —m. Notice that Qg has at most 5™ choices, since m = 2m
must be even, and the number of choices for the legal partition P in Proposition 4.7
is the Catalan number (2:1“) /(m1 4+ 1) < 4™ and that Qg has 6™! choices, due to
the codes in {10, ...,31}, once P is fixed (there are two possibilities of (1, 1)-mini
couples for m; = 1 but this does not affect the result), leading to 24™! < 5™. This
implies that

n
m
Anfz :5 : : A”l“.A”nH»l'
m=1 ni+-Any41=n—m

Let B, be such that By = 1 and equality holds in the above inequality for B,, then
A, < B,,. Moreover the generating function f(z) = ano B, 7" satisfies that

f@O=14) > ™ > Buy-By, "

n>11<m=<n ni+-Anyp=n—m
. 52(f(2))*
=1 57)" mtl 4 0
+ (59" (f(2) + =5

m=1
Note that for |z|] < 1 the equation
572
1—-5zf

has unique solution near f = 1 which is an analytic function of z, we conclude that
B, < C" for some absolute constant C (for example C = 100), hence A, <C". O

f=1+ & f=1-5zf +10zf>

Note that in Proposition 4.8, the choice of Qy may not be unique; however we can
recover uniqueness under some extra assumptions.
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Proposition 4.10 For any regular couple Q # x, we say it has type 1 if Qo isa (1, 1)-
mini couple in Proposition 4.8, and has type 2 if Qq is a regular double chain. Now,
if Q has type 2, then the choice of Qy, as well as the whole representation, is unique,
if we require that the regular couple replacing the pair of lone leaves in Qy is trivial
or has type 1 (see Fig. 14).

Proof First, the type is well-defined, because if Qy is a (1, 1)-mini couple, then for
each child n of the root of each tree, at least one of its descendant leaves is paired
with a leaf in the other tree (we shall call this property L in the proof below). However
this is not true if Qy is a regular double chain.

Now suppose Q has type 2. The roots of the chains of Qg are the roots of trees in
Q. For each root, only one of its three children nodes has property L, and this must be
the next branching node in Q. In the same way, all the subsequent branching nodes
(and lone leaves) in Qg can be uniquely determined. The pairing structure of leaves in
Qo is also uniquely determined by the pairing structure of Q. Moreover, the regular
couple replacing the pair of lone leaves in Qg does not have type 2 (i.e. it is either
trivial of has type 1), if and only if neither of the chains in Qg can be further extended
by the above process (i.e. by selecting the unique child which has property L). Thus
the choice of Qp is unique. Once Qy is fixed, it is easy to see that the regular couples
Q; in Q replacing the leaf pairs in Qg are also uniquely determined. This completes
the proof. g

4.2.1 Relevant notations

For later use, let us introduce some notations related to regular couples with structure
as in Proposition 4.8.

Definition 4.11 Given a regular couple Q, recall that the branching nodes in A'* are
paired as in Proposition 4.3. We shall fix a choice of N ¢ N* (here ch means
“choice”), which contains exactly one branching node in each pair, as follows. First
if @ = x then A" contains the single root of + sign. If Q # X, let Qg be uniquely
fixed as in Propositions 4.8 and 4.10.

Case 1.1f Q has type 1, then Qg is a (1, 1)-mini couple. Let Q; (1 < j < 3) be the
regular couples in Q replacing the leaf-pairs of Qp, counted from left to right in the
tree whose root has + sign (i.e. in the order red, green, blue in Fig. 8, assuming the
left tree has + root). Then we have N* = N UNJ UNF U {r, v}, where ¢ and t’ are
the two root nodes which are also paired; in particular define V" = " U NS U
./\/36" U {r}, where v is the root with + sign.

Case 2. If Q has type 2, then Qy is a (nontrivial) regular double chain, which is
formed by two regular chains 7+ and 7~ of scales 2m™ and 2m ™~ respectively. Let
the branching nodes of 7+ be nli, ces nzimi from top to bottom, and let the legal
partition of {1,...,2m%} associated with 7= be P* (see Proposition 4.7). Let the
pair of lone leaves in Qg (which is a pair between a child leaf of n;'er and a child
leaf of n; ) be replaced by a regular couple Qy;, (which is trivial or has type 1; here
Ip means “lone pair”). If we list the pairs {a, b} € PT (a < b) in the increasing order
of a, then the j-th pair {a, b}, where 1 < j <m™, corresponds to a branching node
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i (10) ny (30)

Fig. 15 An example of the notations in Definition 4.11. Here m™ =1 and m~ =2, PT = {{1,2}} and
P~ ={{1,4},{2,3}}, and Qy), has type 1. The code of each mini tree is indicated beside the node n;t as
in Definition 4.11

pair {n}, nZ} in the sense of Proposition 4.3. This also corresponds to a mini tree
in Fig. 9 (in which the root represents n} and the other branching node represents
n,;") and two leaf-pairs in Qp, see Proposition 4.7. We define the regular couple in Q
replacing the pair of red leaves in Fig. 9 by Q; 1, and define the regular couple in
Q replacing the pair of green leaves in Fig. 9 by Q; ; > (see Fig. 15 for an example).
The same is done for the other regular chain 7 . Then we have

V= (UNGe ) Ur Ot g, ]

J€st

and then define

Nch:<

Here in (4.1) and (4.2), the couples Q; ¢ ,, where € € {} and ¢ € {1, 2}, are the ones

described above, and j\/]* ¢, (and ./\/]C ¢,) are defined correspondingly; similarly for

Qip, ./\fl’l‘) and /\/l;h Moreover in (4.2) the n;t are the nodes chosen above, such that
a < b for the pair {a, b} € P*.

U Njf’é’[) UNJU{nS ra <b}U{n; :a <b}. 4.2)

J€sL

4.3 Structure of general couples

We now turn to the structure of arbitrary couples.

Definition 4.12 A prime couple is a couple that cannot be formed from any other
couple by applying steps A or B as in Definition 4.2. For example the couple in
Fig. 2 is prime.

Proposition 4.13 For any couple Q, there exists a unique prime couple Qg such that

Q is obtained from Qg by performing the operations in Definition 4.2; moreover Q
is regular if and only if Qs = x. We call this Qg the skeleton of Q.
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Proof Recall the steps A and B defined in Definition 4.2, and denote the correspond-
ing inverse operations by A (where a (1, 1)-mini sub-couple collapses to a leaf-pair)
and B (where a mini tree collapses to a single node). Note that it is possible that a
(1, 1)-mini sub-couple or a mini tree appears only after an operation A or B, allowing
for further operations that are not possible before this operation.

Now, starting from a couple Q, we may repeatedly apply A and B whenever possi-
ble until obtaining a couple Qg where no more operation can be done. This Qg will
then be prime and satisfies the requirement. Now we need to prove the uniqueness of
Qsk- We first make a simple observation: if Dy and D, each represents a (1, 1)-mini
sub-couple or a mini tree in Q, and let D and I be the corresponding inverse oper-
ations (A or B) performed at D; and D, respectively, then the operations D; and D,
commute. This can be easily verified using the definition of these inverse operations,
as they are easily seen not to affect each other.

Now we can prove the uniqueness of Q. In fact, the base case Q = X is obvi-
ous; suppose Qg is unique for all Q with smaller scale, then starting with any Q,
we look for (1, 1)-mini sub-couples and mini trees in Q. If there is none then Q is
already prime and we are done. Suppose there is at least one of them, then for each
one, say D, if the first inverse operation (say D) is performed at D, then the resulting
(DQ)yy is uniquely fixed (but may depend on D), by applying the induction hypoth-
esis for the smaller couple DQ. Now, let D; and D, be arbitrary, and let D and D,
be corresponding inverse operations, and let Q) = DD, Q = D,D; Q, then we must
have (D1 Q)sk = (D29Q)sk = (Q1)sk. This proves the uniqueness of Qg. Clearly by
definition, @ is regular if and only if Qg = x. O

Proposition 4.14 (Structure theorem for general couples) Let Q be any couple with
skeleton Q. Then, see Figs. 16 and 17, Q can be obtained from Qg by (i) first
replacing each branching node with a regular chain, and then (ii) replacing each
pair of leaves in the resulting couple with a regular couple. This representation (i.e.
the chain (i) and the couple in (ii) at each position) is also unique.

Proof By Proposition 4.13, Q can be obtained from Qg by applying steps A and
B. We induct on the scale of Q. The base case Q = Qi is obvious by definition.
Suppose the result is true for Q, and let O be obtained from Q by applying A or B.
We know that Q is obtained from Qg by (i) first replacing each branching node with
aregular chain, say 7}0 (1 < j < n), resulting in a couple Q;,;, and then (ii) replacing
each leaf-pair in Q;,; by a regular couple, say Q; (1 < j <m). Then:

(1) If one applies step A, then this step A must be applied at a leaf-pair belonging
to some regular couple Q; (1 <i < m). In this case the 7}0 (1 < j < n) remain the
same for Q., the regular couples Q j (j # 1) also remain the same, and the regular
couple Q; is replaced by AQ;.

(2) If one applies step B at a node which belongs to some Q; (1 <i <m), then the
same result holds as in (1) except that Q; is now replaced by BQ;.

(3) If we are not in case (1) or (2), then the node where one applies step B must
be a branching node of Q;,,, hence it must be a branching node or the lone leaf of
some regular chain 7;° (1 <i <n). In this case the regular chains Tj" (j # i) remain
the same for Q, and the regular couples Q; (1 < j < m) also remain the same. The
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T

Fig. 16 An example of a couple, with structure as described in Proposition 4.14, whose skeleton is the
couple in Fig. 2. Here a black square represents a regular tree

©
o
g
5
o
g
-
.

regular chain 7;° is replaced by B7;°, while the two new leaf-pairs in B7;° (which do
not belong to 7;°) remain leaf-pairs. In any case we have verified the result for Q,
which proves existence.

Now to prove uniqueness of the representation, let Q;,, be the couple formed after
performing step (i). Given Qgy, clearly Q;,, uniquely determines the regular chains
in step (i) replacing the branching nodes in Qjy, so it suffices to show that Q uniquely
determines Q;,; (once Q;,; is given, it is also clear that Q uniquely determines the
regular couples in step (ii) replacing the leaf pairs in Q;,;). However we can show,
via a case-by-case argument, that Q;,; contains no nontrivial regular sub-couple (i.e.
no two subtrees rooted at two nodes in Q;,; form a nontrivial regular couple). Since
Q is formed from Q;,; by replacing each leaf pair with a regular couple, we see that
Qinr can be reconstructed by collapsing each maximal regular sub-couple (under
inclusion) in @ to a leaf pair (because any regular sub-couple of Q must be a sub-
couple of one of the regular couples in Q replacing a leaf pair in Q;,;). Clearly,
this collapsing process is commutative as explained in Proposition 4.13, hence the
resulting couple Q;,,; is unique. This completes the proof. g

Remark 4.15 We will call a saturated paired tree, which is a regular chain with each
leaf pair replaced by a regular couple, a “regular tree”. Thus in Proposition 4.14, Q
can also be formed from Qg by replacing each branching node with a regular tree
and each leaf pair with a regular couple; see Figs. 16 and 17. This representation is
also unique.

Corollary 4.16 Fix any Qgi, the number of couples Q with skeleton Qg such that
n(Q) <n is at most C".

Proof Let the couple formed after performing step (i) in the statement of Proposition
4.14 be Q. If n(Qgx) = m, then Q;y; is determined by m regular chains of total
scale at most n, so the number of choices for Q;,; is at most

Y. GGy =Gy

ni+-+np<n
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Fig. 17 An example of a regular
tree in Fig. 16, as defined in
Remark 4.15. The bottom black
node is the lone leaf

for some constant Cy. For each fixed Q;,;, let n(Q;,;) = r, then Q is formed from
Qin: by performing step (ii) in the statement of Proposition 4.14, so it is determined
by r + 1 regular couples of total scale at most n, so the number of choices for Q is at
most

Yoot =y

nitetnyp1<n

for some other constant C;. Therefore the total umber of choices for Q is at most
“4CcyCy)". O

4.4 Dominant couples

We will identify a subclass of regular couples, namely the dominant couples, which
give rise to the nonzero leading terms.

Definition 4.17 We define a regular couple Q to be dominant inductively as follows.
First the trivial couple x is dominant. Suppose Q # X, let Qg be uniquely determined
by Propositions 4.8 and 4.10, and let Q; (j > 1) be the regular couples in Q replacing
leaf pairs in Q. Then we define Q to be dominant, if (i) Qy is either a (1, 1)-mini
couple or a regular double chain formed by two dominant regular chains, and (ii)
each regular couple Q; is dominant.

4.4.1 An equivalence relation

Given a dominant couple Q, recall that A* is the set of branching nodes, and
Nt c N* is defined in Definition 4.11. Let Z be a special subset of A", which
will be defined inductively in Definition 4.18 below; we call 2 := (Q, Z) an en-
hanced dominant couple, and when Z = &, we will also denote 2 = (Q, @) just by
Q for convenience.

Definition 4.18 We inductively define special subsets Z C N, and an equivalence
relation ~ between enhanced dominant couples 2 := (Q, Z), as follows. First & is
a special subset and the enhanced trivial couple (x, @) is only equivalent to itself,
moreover two enhanced dominant couples where the Q have different types are never
equivalent.
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ny'[Z](10) ny (30)

(ni)'[Z] (30) (ny)"(30)

(n3)'[2] (10)

Fig. 18 An example of two equivalent dominant couples with (m*,m~) = (1,2) and
(mtY,m™)) = (2,1). Here we assume that (i) couples represented by the same color are
equivalent (with the corresponding Z sets, which are omitted), and (ii) the symbol [Z] means the value of
J corresponding to this branching node belongs to the suitable Z¥F or (Z£)' set. The code of each mini
tree is indicated beside the node nflt and (n?f)/ ,and Q;), and Q; » have type 1

Next, if 2 =(Q, Z) and 2" = (Q/, Z'), where Q and Q' have type 1 (recall the
definition of type in Proposition 4.10), then we have N'" = " U NS UNEM U {x}
where t is the root with + sign, see Definition 4.11. Then Z is special if and only if
Z=2721UZyUZj3 (i.e. vis notin Z) where Z; C J\/J.Ch is special, and similarly for
Q. Let 2, =(Qj, Z;), we define £ ~ 2’ if and only if 2; ~ Q; forl <j <3.

Now let 2 and 2’ be as before, but suppose Q and Q' have type 2. Let Qp be
associated with Q as in Proposition 4.10, and similarly for Q' (same for the other
objects appearing below). Suppose the two regular chains of Qg have scale 2m™ and
2m~ respectively, and let the branching nodes in Qp be n;t(l <a< 2mi), where
nécj_l is paired with nécj for 1 < j <m®, see Fig. 18. We will use the notations in
Definition 4.11, and note that Q is dominant and Oy, is trivial or has type 1. Recall
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that

J-€5t J— - -

N6h=<UN?h )U/\/l;hu{n; 1:1<j<m+}u{n£j_1:1§j§m_} 4.3)

J€st

as in (4.2); then Z is special if and only if

zZ= <U zm> UZpUind,_sjeztfufn, :jez7}) @44
J,€5L

for some special subsets Zj ., C N f};[ and Z;, C J\/’lfnh, and some subsets Z* C
{1,...,m*)}. Similar representationé are defined for 2'. For € € {£} and each
1 < j <m*, consider the tuple (I;¢,Cje, Zje1, Xje2). Here Ijc=11if j e Z€
and I;. =0 otherwise, c; . € {1, 2, 3} is the first digit of the code of the mini tree
associated with the pair {2j — 1,2} € P€ (see Definition 4.11; this code is also the
code assigned for the pair {2j — 1,2} € P¢ as in Proposition 4.7). Moreover £ ¢,
is the equivalence class of the enhanced dominant couple 2 ¢, = (Qj¢,i, Zje,.)
for ¢ € {1, 2}, and let & be the equivalence class of the enhanced dominant couple
2ip = (Qip, Zip)-

We now define 2 ~ 2’, if and only if () m™ +m~ = (m™) + (m™)’, and (ii)
the tuples coming from Qj (there are total m* + m™ of them) form a permutation of
the corresponding tuples coming from Q6 (there are total (m™) + (m™)’ of them),
and (iii) % = 9. Finally, note that if 2 = (Q, Z) and .2’ = (Q’, Z’) are equivalent
then n(Q) =n(Q) and |Z| = |Z’'|. When 2 ~ 2’ with Z = Z' = &, we also say that
9~Q.

4.5 Encoded trees

Let 7 be a tree, we will assign to each of its branching nodes n € N a code c = cy, €
{0, 1,2, 3} to form an encoded tree.

Given a encoded tree T, define the canonical path to be the unique path y starting
from the root v and ending at either a leaf or a branching node with code 0, such that
any non-terminal node n € y is a branching node with code ¢y € {1, 2, 3}, and the
next node 1’ in y is the cy-th child of n counting from left to right.

Definition 4.19 An encoded chain is an encoded tree whose canonical path y ends at
a leaf, and for any non-terminal node n € y, the two children of n other than n’ are
both leaves, where 1’ is the next node in y. We call the endpoint of y, which is a leaf,
the rail leaf of T .

Proposition 4.20 Given an encoded tree T # o, we say T has type 1 if its root v has
code ¢ = 0, otherwise we say it has type 2. Now, for any type 2 encoded tree T, there
is a unique encoded chain Ty # e, such that T is obtained from 7Ty by replacing each
leaf with an encoded tree, and that the tail leaf is replaced by either e (i.e. remains a
leaf) or an encoded tree of type 1.
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Proof This is straightforward from the definition. In fact 7 has type 1 if and only if
c = 0 for the root t; suppose c, € {1, 2, 3}, then 7o must have the same canonical
path y as 7. Thus 7y must be the encoded tree formed by selecting each node in y
and collapsing the subtree rooted at this node to a leaf. Such 7y is clearly unique, and
is nontrivial when c, € {1, 2, 3}. O

Definition 4.21 We define the equivalence relation between encoded trees as follows.
First the trivial tree e is only equivalent to itself, and encoded trees of different type
are not equivalent. Now suppose 7 and 7’ are two encoded trees of type 1, then
define 7 ~ 7" if and only if 7; ~ 7'/.’ for 1 < j <3, where 7; and 7'/ are the subtrees
of T and T~ respectively, from left to right.

Now suppose 7 and 7" are two encoded trees of type 2, then by Proposition 4.20
there exists a unique encoded chain 7 such that 7 is formed by replacing each leaf
of Tp with an encoded tree, and the same holds for 7. Let the branching nodes of 7
from top to bottom be n; (1 < j <m). For each 1 < j <m, let T;; and T} be the
two encoded trees that replace the two children of n; other than n ;1 (or the tail leaf),
counted from left to right; moreover let T;, be the encoded tree replacing the tail leaf,
which is either trivial or has type 1. Consider the triples (c;, 271, £ 2) for each j,
where c; is the code of n;, and Z;, is the equivalence class of 7;, for ¢ € {1, 2}.
Then the encoded trees 7 and 7 are equivalent, if and only if (i) m = m’ where m’
is defined similarly for 77, (ii) the triples (c;, £ 1, 2 2) form a permutation of the
corresponding triples coming from 7, and (iii) 77, is equivalent to 7.

4.5.1 Dominant couples and encoded trees

Given any dominant couple Q, we can inductively define a unique encoded tree 7
associated to Q, as follows.

Definition 4.22 Let Q be a dominant couple, we define the encoded tree 7 associated
with @ as follows. First if Q = x then define 7 = o. Suppose Q has type 1, then let
Q; (1 < j <3) be defined as in Definition 4.11, then define 7 to be the encoded tree
such that the root has code 0, and the three subtrees are 7; (1 < j < 3) which are
associated with O j» from left to right.

Now suppose Q is a dominant couple of type 2. Let the relevant notations like
Qje. and Oy, be as in Definition 4.11. Let m = mt + m~, consider the triples
(cjer Dje1, Lje2) fore e {£} and 1 < j <m*, where c; . is the first digit of the
code of the mini-tree associated with the pair {2j — 1,2} € P€ as in Definition 4.18;
we rearrange them putting the € = + triples before the € = — ones, and in increasing
order of j for fixed sign. Let the rearranged tuples be (c¢;, Q; 1, Qi 2) for 1 <i <m,
then 7 is defined as follows. First let 7 be the encoded chain which has m branching
nodes n; (1 <i <m) from top to bottom with code c;, then for each i, replace the
two children leaves of n; other than n; 1 (or the tail leaf) with 7; ; and 7; > which
are the encoded trees associated to Q; 1 and Q; » by induction hypothesis. Finally the
tail leaf is replaced by 7;, which is the encoded tree associated with Q;,.

Proposition 4.23 The mapping from dominant couples Q to encoded trees T, as de-
fined in Definition 4.22, is surjective. Moreover two dominant couples Q and Q' are
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equivalent in the sense of Definition 4.18, if and only if the associated encoded trees
T and T’ are equivalent in the sense of Definition 4.21. In particular this mapping
induces a bijection between the equivalence classes of dominant couples and equiva-
lence classes of encoded trees.

Proof The mapping is surjective because for any 7 one can always construct Q by re-
verting the construction in Definition 4.22, following the same induction process us-
ing Proposition 4.20. Now recall that equivalence between dominant couples Q is de-
fined as a special case in Definition 4.18 with Z = &, thus in Definition 4.18 for type 2
(type 1 is similar), the first component I ; 4 of the tuple (I; +,cj+, Zj+.1, Z} +.2)
is always 0. Therefore, part (ii) of the equivalence relation between Q and Q' can
be described as the triples (¢ +, Z; +,1, £ +,2) coming from Q being a permuta-
tion of the triples coming from Q’ (as well as other similar conditions). By induction
hypothesis, this is equivalent to the triples (c;, 27 1, Zi2) coming from Q being a
permutation of the triples coming from Q', where %, is the equivalence class of the
encoded tree associated to Q; ,, and the triples (c;, Q; 1, Q;2) are rearranged from
the triples (cj e, Q)¢ 1, @j.¢,2) as in Definition 4.22. Then, using Definition 4.21, we
see that this is equivalent to part (ii) of the equivalence relation between 7 and 7.
Similarly the other parts also match, therefore Q being equivalent to Q' is equivalent
to 7 being equivalent to 7. O

4.5.2 A summary

We will be using the equivalence relations between enhanced dominant couples
2 =(Q, Z) (say ~1), between dominant couples Q (say ~7), and between encoded
trees (say ~3). Clearly ~; is a special case of ~1, and Proposition 4.23 establishes
a bijection between equivalence classes under ~; and equivalence classes under ~3.
By abusing notation, below we will use the notation 2" (and similarly ¢ etc.) to
denote an equivalence class in each of these cases; the precise meaning will be clear
from the context. For later use, we list a few easily verified facts about these equiva-
lence classes below.

(1) We know that equivalent (enhanced) dominant couples and encoded trees must
have the same scale and |Z|, and the same type. The bijection in Proposition 4.23
also preserves the type; moreover, if Q has scale 2n, then the associated 7 has scale
n. If 2" denotes the equivalence class for both objects, we will define the half-scale
of 2 to be n.

(2) If the net sign ¢*(Q) of a dominant couple Q is defined by (2.22), and we
define the net sign £*(7) of an encoded tree 7 by

(=[] D 4.5)
neN

where ¢y, is the code of n, then these signs are preserved under equivalence (including
~1), and also under the bijection in Proposition 4.23 (so ¢*(Q) = ¢*(T) if T is
associated to Q).

(3) Let 2" be an equivalence class of enhanced dominant couples. Then, if 2" has
type 1, it can be uniquely determined (bijectively) by an ordered triple (271, 23, Z3)
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of equivalence classes of enhanced dominant couples. If 2" has type 2, it can be
uniquely determined (bijectively) by the following objects:

e A positive integer m > 1;

e An unordered collection of (ordered) tuples (I;,cj, Zj1, Zj2) forl < j <m,
where each I; € {0, 1}, each c; € {1, 2,3} and each 27| and %> is an equiva-
lence class of enhanced dominant couples;

e An equivalence class % of enhanced dominant couples that is trivial or has type 1.

(4) Let 2 be an equivalence class of dominant couples (with Z = &) or
encoded trees. Then the same description in (3) is valid, except that the tuple
(I,cj, Zj1, Zj ) should be replaced by the triple (¢, 27 1, Z}2).

5 Regular couples I: the .4 and B coefficients

We start with the analysis of Ko associated to the regular couples O, which will
occupy up to Sect. 7. The first step is to obtain suitable estimates for the coefficients
Bg occurring in (2.24), which is based on A7 occurring in (2.12).

5.1 Properties of the coefficients Bo

Recall the coefficients A7 = A7 (r, a[N]) and Bg = Bo(t, s, «[N*]) defined in
(2.13) and (2.23). By induction, we can also write

AT (t, a[N]) =/ 1_[ ebnTiontn qp 5.1
Dopen

where the domain
D= {t[N]:0 <ty <ty <1, whenever n’ is a child node of n}, (5.2)
and similarly

BQ(I,S,O([N*])z/ 1_[ ebniantn gz 5.3)
€ neN*

where the domain

E= {t[J\/*] :0 <ty < ty, whenever 0 is a child node of n;
tw <t whenevern € N'" and t, < s wheneverne N~}.  (5.4)

Now suppose Q is a regular couple. If we fix the pairing of branching nodes as in
Proposition 4.3, then for any decoration & of Q, we must have ¢y Q, = —, Q2 for
any pair {n, n’} of branching nodes. Let N/ h be defined as in Definition 4.11, then
we may define Bg = Bo(t, s, a[N°]) by

Bo(t,s,a[N") = Bo(t, s, a[N*]), (5.5)

assuming that «[N*\N "] is defined such that {0 = —Cnon for each pair {n, n'}.
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5.1.1 Structure of gg

For a regular couple Q # x, let Qg be uniquely determined by Propositions 4.8 and
4.10, which is either a (1, 1)-mini couple, or a nontrivial regular double chain, such
that Q is obtained from Qq by replacing each leaf-pair with a regular couple. We will
use the notations of Definition 4.11, including for example PE mT and Qjew Qp
and N¢" ./\/Iiyh etc.

J,€L

Case 1. If Q has type 1, then by (5.3) and (5.5), we deduce that

t X . 3 ~
BQ(t,s,a[N"h]):/o /0 e””"'(“_”)HBQ_,(H,SLa[th])dlldS1~ (5.6)

j=1

We remark that in (5.6), the variables (#1, s1) appearing in EQ_/. may be replaced by
(s1, #1) for some j, depending on the signs of the leaves of Q.

Case 2. Suppose Q has type 2. For each 1 < j < m™, let {a, b} be the j-th pair
in PE where a < b, then nj € N<": we shall rename Uyt 1= a;’, and define ,8; =
N e}"a}" where e;' ={at € {£} and ,B; = Cn;’“n; = —e}"a}". The same is
done for the other regular chain 7 ~. Then, by these definitions, and (5.3) and (5.5),

we deduce that

Bo(t, s, a[N"))

mt 2

-t + =
fAeet t 3
/ em(ﬂ1 148y o) | | | | BQ/+-! (ta, tp, Ot[N/dfi_ [])
I>0>>1, + >0 . o

j=1l1=1

m- 2
< ST § I ) SO )
§>51>>85 — >0

j=li=1

mt m-
X Ble (t2m+v S2m=>s O‘[Q;;l]) l_[ dtj 1_[ de.
j=1  j=1

5.7
As in Case 1, we remark that in some factors (#,, f,) may be replaced by (¢, #,), and
similarly for (sq, sp) and (#,,,+, $2,,- ), depending on the signs of the relevant leaves.
Note also that Qy, is trivial (in which case ngp = 1) or has type 1; this is not needed
here, but will be useful later.

5.1.2 Estimates for gg
The goal of this section is to prove the following

Proposition 5.1 Let Q be a regular couple of scale 2n. Then, the function
gg(t, s, a[NCh])
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is the sum of at most 2" terms. For each term there exists a subset Z C N, such
that this term has form

H Koc(Ctn) C(h1, Ao, NN\ Z])e™ 1122 dpp dag (58)

nez Cnmwion  JRr2

for t,s € [0, 1], where xoo is as in Sect. 2.3.1. In (5.8) the function C satisfies the
estimate

/ )4 02) VA2 (A1, A2, I NN ZD) [ daf N\ ZTdR1dR2 < C"210D! (5.9)
for any multi-index p, and we also have the weighted estimate

/<M>”8<A2>1/S' max () BIC (A1, A2, I NI\ Z]) | da[ N\ Z]dA1dr2 < C".
neN<\Z
(5.10)

We will denote the (M1, L) integral in (5.8) by EQ,Z = BNQ,Z(Z‘, s, a[NM\ Z)), so we
have

Bott,s.avey= 3 1229 By 0 s.atvnz). G

ZcNehneZ Snfridn

The proof of Proposition 5.1 is done by induction, using the recursive description
in (5.6) and (5.7). Clearly the hardest case is Case 2, where Qy is a regular double
chain. Therefore, before proving Proposition 5.1 in Sect. 5.3 below, we first need to
analyze the expressions associated with regular chains. This will be done in Sect. 5.2.

5.2 Regular chain estimates

Let P be a legal partition of {1, ...,2m}. As in Sect. 5.1.1, we list the pairs {a, b} €
P (a < b) in the increasing order of a. If the j-th pair is {a, b}, we define B, =€;a;
and By = —€;ja;, where 1 < j <m and €; € {£}. For this section, we also introduce
the parameters A, (1 <a < 2m) and A¢, and define u; = A, + Ap if the j-th pair is
{a, b}. Define now

K(t5 Ay eny, O,y )"05 ()\a)lfaSZm)

::/ T ILBIHAD N+ -+ (Bom+hom)am 1+ T ihot2m dty -+ -dtyy. (5.12)
t>t>>12,,>0
If we define the operator
t .
f 0= [ &g as
0
then we have

K(t, a1,y 0, 20y (ha)1<a<am) = g 3y -+ Loy -tiay (€7 05) (1), (5.13)
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By definition, if we replace «; by aj=aj+€jdg, where {a, b} (a < b) is the j-the
pair in P, and replace A, by A, = 0 and replace A, by Ap = A, +Ap =}, itis easily
seen that

K(t9a17"'7“}117)"07)"17"'7)"2}71):K(tv(ﬂ""’&;’ﬂ’)"()’)‘:""’)“/;;’l)‘ (5'14)

Therefore, in this section we will assume A, = 0 and A, = u; for the j-th pair
{a,b}(a < b).
For the purpose of Sect. 5.2.1 below, we also define the operators

t
Josy yzf(t)=/ AU £ (5) ds
. ;

and
! o+ B(t—s) i
Rapiyi.ys f (1) =/ Keold b ys) y3)emﬁ(tﬂ)em(ylﬂrm)f(S)dS-
) o a+y3
Given variables (¢, . . ., ap), we define a bundle to be any linear combination y, o, +

-+ + ypop Where y; € {—1,0, 1}. Moreover, below we always view the operators as
mapping functions on [0, 1] to functions on [0, 1].

5.2.1 Class J and R operators

Definition 5.2 Let E be a finite set of positive integers, and A C E. We define an
operator J = Ju[a],u[E]>» Which depends on the variables a[A] and u[E], to have
class J (and norm || J || = 1), if we have

JalALWE] = /m(ol[A], wlEL v1, v2) Iy, dy1 dye, (5.15)

where ¢ is a bundle of «[A], and m = m(«[A], u[E], y1, y2) is a function such that

1/4
/ (1 +) o+ |J/1|> |0gm(a[A], IET, y1. v2) | da[Aldyidy, < 2lp])!,
JjeA
(5.16)

for all u[E] and multi-index p. Note that the weight on the left hand side of (5.16)
does not involve |y3].

We also define an operator R = R[], 4[E]» Which again depends on the variables
«[A] and p[E], to have class R (and norm ||R| = 1), if 1 € A (called the special
index), and we have

RalALulE]l = /m(a[A\{l}], HIEL Y1, V2, V3) Re | vea) trtear:yr .y dv1dy2dys

5.17)
where € € {£}, £1 and £, are two bundles of «[A\{1}], and m = m(«[A\{1}], w[E],
Y1, Y2, ¥3) is a function such that

1/4
/<1+ > |aj|+|y1|+|y3|)

JjeA\(1}
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x|0fm(a[A\{1}], u[ET, y1, v2, v3)| da[A\{1}]dy1dy2dys < (2]p])!,
(5.18)

for all u[E] and multi-index p. Note that m = m(«[A\{1}], u[E], v1, y2, y3) does
not depend on «1, and the weight on the left hand side of (5.18) also does not involve
lv2l.

More generally, we also define an operator J to have class J (or R) if it can
be written as a linear combination (say J = ), a¢J¢) of operators 7, satisfying
(5.15)—(5.16) (or (5.17)—(5.18)) for different choices of £ (or (£, £3)); define the
norm |7 || and || R|| to be the infimum of ) _, || over all such representations. Below
we will study compositions of class J and R operators, and compositions of them
with other explicit operators; when doing so we always understand that the variables
a; and u; involved in different operators are different.

5.2.2 Compositions of class J and R operators

Lemma 5.3 The composition of two class J operators is of class J, and the norms
satisfy that | TPV TP < CI TV - 1TP| (the same will be true for subsequent
lemmas).

Proof Let J W[ AL uIE] and Ja[ Bl ulF] be of class J; we may assume that each satisfies

(5.15)—(5.16). Let 7 be their composition, which is an operator depending on the
variables (a¢[A U B], u[E U F]), of form

3)
JolAUB), L EUF)

= / m W @[A], LEL, v1, y2)m P @B, 1l F1, 3, v8)Jeypn 0 T 3.7 dyidyadysdya,

where £ is a bundle of @[A], and ¢, is a bundle of «[B].
Now look at the operator J := Jy,:y,. 1, Je,; 3,14 WE have

Jf(t) = / em/él(t—z)+my1t+myzz dZ/ eméz(z—s)+mygz+my45f(s) ds
0 0

1 11—
_ / F(s)ds / Y i (s i (s i (b ) g,
0 0

t t—
:/ em’ﬁl(tfs)Jrniylt+ni(y2+y3+y4)sf(s) ds/ em’(€2761+)/2+y3)u du.
0 0

We decompose J = J' + J” where in J’ we multiply the kernel by xo(€2 — €1 +y2 +
y3) and in J” we multiply by xco (€2 — €1 + 2 + 3).

To deal with J', notice that xo(y) [, €™7"du equals a compactly supported
Gevrey 2 function in y and v for v € [0, 1] (which can be explicitly written down,
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say by multiplying by xo(v — 1/2)), so we may rewrite
t
J/f(t) :/ em’EI(tfs)+zriy1t+rri(y2+y3+y4)sf(s) ds
0
x / M2 — €1+ 12+ y3.0)e" " do
R

=/M(f2—£1+1/2+7/3,0)d0
R

t
x/ T U= )FTi (40T (2t y3+7a=0)s () dg
0

where M is a fixed decaying Gevrey 2 function in two real variables. We refer to [60]
for basic properties of Gevrey functions. Therefore, the contribution of J' to 7
equals

/ mD(a[A], uIE], y1, y2)m®@ (@[ B1, wlF1, v3, v4)

X MLy — L1+ ¥2 + ¥3,0) ey +o,mtys+ya—o dvidyadysdysdo.

Note that £; is also a bundle of a[A U B], we can choose (note that the y; associated
with the composition m®) are called y]/.; this will be assumed for subsequent lemmas
as well)

m® (@[AU B1, u[E U F1, v/, v5)

_ / / m W (@[ A, LIET, 1, 72)
yi+o=y| J v2tyitya=o+y,

x m P (@[B1, u[F1, y3, ya) M(€2 — €1 + y2 + 3, 0) dyadysdyn,

which takes care of the contribution of J’. Then, if we do not take derivatives and
do not count the weight in (5.16), the norm for m® is easily bounded using the
corresponding norms for m1 and m® . If we do not take derivatives but include the
weight

1/4
<1+ > |aj|+|y{|)

jeAUB

in (5.16), we may decompose it into three parts (1 + ZjeA |ocj|)1/4, (ZjeB |Olj|)l/4
and |y/| 1/4_The first two parts can be estimated using the corresponding norms for
mY or m®, while for |)/1’|1/4 we may use |y{| < |y1] + |o|, together with the corre-
sponding norms for m(! and the decay in o.

Next consider the higher order derivative estimates. The argument will be the same
for the subsequent lemmas, so we will not repeat this later. Note that m® is a trilinear
expression of the functions m®M, m@ and M: in subsequent lemmas we may have
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higher degrees of multilinearity, but they will never exceed 9. Now by Leibniz rule
we have

3m (@[AUBL, LIEUF],y{,vs)
S e
= ———— 32 mW ([Al, ulEL, 11, y2)
2 3
80" m@ («[B], ulF1, v3, va)E M (€2 — £1 + 2 + 3, 0) dyadysdyn,

so the norm of 3% m® can be bounded in the same way as above, but using the norms

1 2 3
of 35 mM, 8L m® and 35 M. Compared to the versions without the derivatives, we
now have extra factors (2|p!])!, (2|p2)! and (2|p3|)! in view of (5.16) and the fact
that M is Gevrey 2. Therefore it suffices to show that

p! 1 2 3
oo a0 Gle DICIeTDI2Ie DI = C2lpDY
p1+p;p3_p (PH!(PpH!(p?)!

which follows from Lemma A .4.
Now for J”, we continue to calculate

t
J”f(t) =/ emﬁl(l—s)-‘rmVlt+m(y2+y3+y4)sf(s)
0

Xoollo = CL+ V2 1 V3)  ritr—timatm) =) _ 1y g
wi(ly — L1 +y2+¥3)

_ Xolo—li+y2+y3) [ il t=s)+mi(ni+yatya)ttmives
willy—Li+v2+v3) Jo
_ em’h(t—S)+m'V1t+ﬂi(yz+V3+V4)S)f(s) ds.

Note that both £; and ¢, are bundles of («y,...,ap), just like the above, we can
choose either

m 3 (@[AUBL ulEUFLy],») = / m D (a[A], u[E], y1, v2)
yi+rn+ys=y|
Xoo(la — L1+ 2+ v3)

2) ’
x m (a[B], ulF], y3, o) — dy»dys, or (5.19)
BV G-ty PV

m® (@[AU B, u[EU F1,y{,13) = / mD(a[A], u[E1, v{, v2)
nt+y+r=y

Xool2 — L1 +y2 +¥3)
wi(ly — L1+ 2+ y3)

x m@ («[B], u[F1, y3, va) dyrdys,  (5.20)

which settles the contribution of J” if we do not take derivatives and do not count the
weight. As for the weight, notice that for (5.19) we need to use |y;| < [y1| + |y2| +
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|y3|, which seemingly involves y»; however in view of the denominator £, — ¢1 +
y2 + 3 in (5.19), we may replace |)/2|1/4 by either [¢, — £1 + 2 + y3|1/4, which is
estimated using this denominator, or [¢> — £1 + y3|'/4, which is estimated using the
corresponding norms for m" and m‘®. Similarly, one can treat (5.20). The higher
order derivatives can be treated in the same way as J' above. d

Lemma 5.4 The composition of a class J operator and a class R operator is of
class J.

Proof Let Jof[l/)ﬂ, UlE] be of class J and Rff[)BL ulF] be of class R with special index

1 € B. We first consider 7@ = 7MORD | Similar to Lemma 5.3, we only need to
look at J := Jy;.,,95 Restear, t34€ar:y3,74,y5» Where £1 is a bundle of «[A], £ and £3
are two bundles of o[ B\{1}]. We have

t
Jf(f) — / eﬂifl(l‘*z)*HTi)/lH‘JTi)/zZ dz
0

U+ ear+ys

e t
_ Xoo(ba +ea +7/5)/ F(s)ds
b +€a + ys 0

y /Z Xoo(£2 + €y + 75)eni(z3+ea1)(z—s)eni(y3z+y4s)f(s) ds
0

t—s
X/ em’ﬁl(tfsfu)+ni(€3+eoz1)u+niy1t+ni(y2+y3+y4)s+ni(y2+y3)u du
0

t
_ Xoolla €t Hys) [ itu—sitminimiontntms £ (s) ds
£y +e€ar +ys 0

r—s
% / eni(63—ﬁl+ea1+yz+y3)u du.
0

Again decompose J = J' + J” where for J' and J” we multiply by xo(¢3 — £; +
€ay + 2+ y3) and xoo (€3 — €1 + €1 + y2 + y3) respectively, then as in Lemma 5.3,
the contribution of the J' term to 7@ will be

/ mO @[], LIE], 1. y2)m® @[ B\(1}], u[F1, v, v, v5)

Xoo (2 + €ay + ¥5)
b +€ay + ys

X MUz —L1+e€xr+y2+y3,0)
X Jfl;yl +o,2+y3t+ys—o dy1dy2dysdysdysdo,
which can be rewritten in the form of jogjxu Bl u[EUF] with

m® (@[AU B, u[EU F1,¥{,v3)

:/ / m O @[ A, ulE], y1. y2)
ri+o=y{ Jyt+yitya=o+y,
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x mP (@[B\(1}], u[F1, v3, va, ys)M (€3 — £ + €y + 2 + 3, 0)

o Xoo(£2 + €ty + y5)
U +eay + ys5

dy,dysdydys.

This m® can be controlled if we do not take derivatives and do not count the weight,
using the fact that

Xoo(&2 +€ay)

da; < Clo)~10 5.21
o+ can a) < C{o) (5.21)

/IM(§1+ea1,0)|"
R

uniformly in (o, ¢1, £2). As for the weight, we can again decompose it into different
parts; compared to Lemma 5.3, the new part that needs consideration is |or|'/4. But
we may replace it by either |5 + ea; 4 y5|'/4, which does not affect (5.21), or [£5 +
ys|1/4, which can be estimated using the weighted norm for m") or m® . The higher
order derivatives are also treated in the same way as in Lemma 5.3.

As for J”, similarly we have

Xoo(l2 +€a1 +y5) xoolls — L1 +e€ar +y2+y3)

(1) = :
b +eaj+ys Ti(l3 — L1 +€x;+y2+y3)

t
x / (eni(43+ea1)(t—S)+ﬂi(y1+V2+V3)t+ﬂiy4s _ em‘fl(t—s)+m'y1t+ﬂi(yz+y3+y4)5)f(s) ds,
0
(5.22)

so similar arguments as above imply that the corresponding contribution is of class
J, where we have used the fact that both £3 + €« and £, are bundles of «[A U B],

and that
/L

uniformly in (¢, £). The part |a1|'/* of the weight can be treated in the same way
as above, while the part |y»|!/ 4 of the weight (which is part of |y1/|1/ 4 in one of
the two terms in (5.22)) can be replaced by either |¢3 — €1 + €x1 + 2 + )/3|1/4 or
[l3 — €1 +€a) + )/3|1/4 and treated in the same way either as above or as |« |1/4.

Now we look at R®P 7M. The proof is similar, where we now have J :=
Royvear, t3+ear; s, ya,ys Je1;m, v, - Similar calculations yield that

Xoo (L1 +€ay)
¢ +eay

doy <C

) ‘XOO(Q +eayp)
0 +eay

Jf(t) = /t Xoo(l2 + €1 +5) i tea) =) miysitmivaz g
by +exy+ys

Z
X / e]'[l’f[(Z—S)eﬂl'()/lz-f'yzs)f(s) ds
0

e t
_ Xoo(bo +ea +7/5)/ F(s)ds
b +€ea + ys 0

t—s
x / eni(€3 +eay)(t—s—u)+miliu+miyst+mwi(ys+y1+y2)s+mi(ya+y)u du
0
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t
— Xoo (€2 + €1 +y5) eni(63+ea1)(tfs)+niy3t+ni(y4+y1+y2)sf(s) ds
4 €ea; + s 0

t—s
x / i =t —eartyatyu g4,
0

We proceed in basically the same way as for 7 (DR®| except that (i) the roles of £;
and ¢3 + €« are switched, but both are still bundles of a[A U B]; (ii) we now need
to deal with the weight |y4|1/ 4 but also y4 will be a part of the denominator so this
will not affect the proof. 0

Lemma 5.5 The composition of two class R operators is of class J .

Proof Let Rgll[k]: ulE] and R((Xz[)B]: ulF] be of class R, with special indices 1 € A
and 2 € B. Again we first consider the operator J := Ry, ye a1, tate101:71,70.73 X
Resteran, tateran;ya,ys,vs» Where £1 and £o are bundles of a[A\{1}], and £3 and ¢4

are bundles of o[ B\{2}]. We have

I — /t Xoo (1 + €101 + V3)eni(€2+610!1)(tfz)+77i)/1t+ni}/zz dz
L1 +erar + 3

% /Z Xoo(€3 + €20 + ¥5) eﬂi(f4+eza2)(z—‘v)+ﬂiV4z+ﬂiV5Sf(s) ds
o I3teart+ys

_ Xoo(l1 + €101 +¥3) Xoo (€3 + €202 + ¥6) /t f(s)ds
21 + €109 + 9 €3+€2a2+y6 0

t—s
x / eni(@2+61a1 Yt—s—u)+mi(latera)u+miyit+mi(yo+ya+ys)s+mi(ya+ya)u du
0

_ Xool1 + €101 4+ ¥3) Yoo (€3 + €202 + ¥6)
{+ea +y3 €3+ e00 + v

t
x/ eﬂt(€z+ela1)(t—S)+my1t+m(yz+y4+ys)‘vf(s)ds
0
t—s
x/ em(847@2+62012*610¢1+V2+V4)“ du.
0

Now, we make the decomposition again by multiplying

X0y — Ll + e —€ra1 +y2+ya) o xoo(l4 —L£o + €02 — €101 + y2 + Y4),

and denote the resulting terms by J’ and J”. Then repeating the same arguments
before we can show that the contribution of both J’ and J” are class J operators. The
key points here are that (i) both £; + €;¢; and £4 + €207 are bundles of «[A] and
o[ B] respectively, and that (ii) the bound

Xoo (82 +€10a1)
O+ e

/RZIM({1+620!2—610!1,0)|-‘ doydas

_ ‘Xoo(é“s + €e2002)
53+ ean

@ Springer



Full derivation of the wave kinetic equation 599

<C(o)™ ™

holds uniformly in (o, ¢1, {2, ¢3), and similarly

J.

holds uniformly in (&1, &2, ¢3), which follow from elementary calculus. The parts of
the weight that need consideration are (i) |oy |/4 and |era|'/4, which can be treated
using the denominators £1 + €101 + y3 and €3 + exan + v respectively, and (ii)
|y21'/# (which is part of |y{|'/# in one of the terms), which can be treated using the
denominator £4 — £ + €200 — €11 + Y2 + V4. O

Xoo (81 + €202 — €1007)
{1+ ear —€1ay

dajday <C

. ‘Xoo@s + e2a2)
&3+ ean

. ‘Xoo@z +e€ray)
O +erap

Lemma 5.6 Suppose J is an operator of class J, then the operator leq, T 11 —ca;»
where € € {x}, can be decomposed into an operator of class J and an operator of
class R (with special index 1).

Proof Let J = jof[lA]’M[E] be of class J, where we assume 1 ¢ E. Again we first

consider the operator X := leq; Je:,,1 L1 —ea; » Where £ is a bundle of «[A]. Then
t Z v
Xf(l‘) — / eem'oqz dz/ enil(z—v)-ﬁ-niy]z—i-ﬂiyzv dv/ e—enious-i—nimsf(s) ds
0 0 0
t t—s
— / eﬂi(V1+V2+M1)Sf(S) ds/ Tintyateanu 4,
0 0

t—s—u )
x / ent(ﬁ+ea1+y1)w dw.
0

Our estimates will be uniform in p due to the only position it appears, and the fact
that the left hand side of (5.16) does not involve y». When s is fixed, by making the
(X0, Xoo) decomposition twice, we can reduce the inner (¢, w) integral to 6 different
terms, namely:

II=/ M(y1 4 y2 + €y — o1, 02) Ml + €ay + 1, 01) - €717 451 doy,
RZ

Xoo(Y1 + 2 +€a1 —0)
wi(y) +y2+ea; —o)

II::/M(Z+60¢1 +y1,0) -
R

x (eni(y1+y2+eot1)(t—s) _ em'a(t—s))’

Xoo(L+ear +y1)

wi(l+eay + 1)

Xt tear+y1)  Xoo(yi +y2 +e€ay) i Hrean— _q)
wi(l+ear+y1) wi(yr+y2+ear) '

V= / Mys — £,0) X2 CLHT) pricereartn+a)i-9) g,
R wi(l+ear +y1)

enia(tfs) dd,

III::—/M(V1+7/2+ea1,0)
R

IV :=

@ Springer



600 Y. Deng, Z. Hani

[:= Xoo( +ear +y1) . Xoo(y2 — ) (eﬂi()/1+}/2+ea1)(t—s) _ eni(€+ea1+}/1)(t—s))
wil+ear+y1) wi(a—90)

Now, the terms I ~ IV will give rise to class J operators; for example, consider the
term IV where we choose the term e (V1+72T€2)(t=9) from the last parenthesis, then
we may express the contribution of this term as a class J operator with coefficient

m P (@[A U], w[E U{1}], ], v3) = 8(ys — 141)

y / Xoolttear+y1) Xooly1 +y2+ear)
v

)
- - m* (a[Al, u[E], y1, v2) dyi.
1+p=y] Til+ear+y)  milyr+y2+ear)

Here m(D is the coefficient associated with J (1), and the Dirac § function can be
removed by using the fact that

en’iuls :/ M(a)eﬂi(ll-1+0)5 do (5.23)
R

for some analytic function M and all s € [0, 1], which allows to replace § (yz’ — 1)
by M(y; — jt1); moreover the integral in o is uniformly bounded given the other
variables.

Finally, terms V ~ VI lead to class R operators. For example, consider the term VI
where we choose the term ¢! (¢+€21+7D(=9) from the last parenthesis, then we may
express the contribution of this term as a class R operator with £1 and ¢, replaced by
£, and the coefficient

1 Xoo(yy — 1 — £)
) A E o /=—3 Iy A0 (1)
m = (el AL ulEL vy, vy, v3) = (v = v3) Er

x (a[Al, _LEY, v{, v5 — i1).

The Dirac § function can again be removed using (5.23), and in all cases (both for
I~1V and V ~ VI) the weight can be treated in the same way as before, using the
denominator £ 4 ex1 + y; to estimate |o |1/ 4 and using the denominator y; + y» +
eay or y» — £ to estimate |y»|'/4 (which may appear as part of |y1/|1/ 4 for some
terms). O

Lemma 5.7 Suppose R is an operator of class R, then the operator leq, Ry —eq,»
where € € {x}, can be decomposed into an operator of class J and an operator of
class R (with special index 1).

Proof Let R = RS[)A] UlE] be of class R with special index 2, where 1 ¢ E. Consider
X = leo Ry veyan, 02 +e200; 71,2, 73 L1 —eay » Where €1 and £ are bundles of a[A\{2}].
Our estimates will be uniform in ;1 as in Lemma 5.6. We proceed in basically the
same way as in Lemma 5.6, and obtain the same expressions I ~ VI, except that here
¢ is replaced by £ + exa, and that we have an extra factor %W. The
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terms [ ~ IV still give rise to class J operators, since the factors in the coefficients
that depend on (¢, o), which are bounded by

1 1 1
i+ +ea)) (ba+ear+eaa+y) (b +ea+ys)

are integrable in (o1, a2) uniformly in the other variables.

As for terms V ~ VI, they will give rise to class R operators with special index 1.
For this we only need the integrability in a» (uniformly in the other variables) of the
factors in the coefficients that depend on «, which follows from the upper bound

1 1
(€ +ear+ys) (r—ea— )

Again, in all cases the weight can be treated in the same way as before, where for
terms I ~ IV we use the denominator £; 4+ exa2 + y3 to estimate |a2|1/ 4 use the
denominator £; + €1 + €203 + 1 to estimate |oq | 1/4 and use the denominator Y1+
¥2 + €ay to estimate |y»|!/* which may appear as part of 24 174 for some terms. For
terms V ~ VI we use the denominator £; + exa + 3 to estimate |op| 174 and use the
denominator y» — €xap — €3 to estimate |y2|]/ 4, O

Lemma 5.8 The operator Ieq, 11, —cq,, Where € € {X}, can be decomposed as

Xoo(at1)
€Emiog

leay Iy —eay = al Ly + Jay o + Ry, s

where J...y and R...y are of class J and R (with special index 1) respectively, and
o[ | indicates the corresponding set A = & in (5.15).

Proof We directly calculate X = I¢o, 1}, —cq, Such that

Xf(t)= /Ot eeniouz dz /Oz eni(ﬂ]—em)sf(s) ds = /Ot em’msf(s) ds /Ot_‘Y eem‘alu du,

note that the estimates are again uniform in p1. Now X can be decomposed into three
terms,

I;:/M(éal,U)JO;mulf‘Tda’
R

ea
Im:= —MJO;O,M’
emiog

I := Real,eo{l;o,ﬂl,o'

Clearly I = Jq, ., has class J, as we can always convolve by a decaying analytic

function as in (5.23); likewise Il = Xé";fai) Jal 1,1, With the operator also having class

J . Now looking at III, we can introduce the integration in (y1, y2) by convolution; to
see it is of class R, which involves y3 integration, we simply rewrite

Xoo(fal) / Mo Xoo(fal)

emia €miag
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with some fixed compactly supported Gevrey 2 function M ; then we replace %6311)
by L (o+teay)

wi(o+eay)

that

to produce the y3 integral (which is just the o integral here), noticing

J

for |o| <1, so the error term introduced in this way is of form 7y, ,, which has class
J. O

Xoo(€aq) _ Xoo(o +€ay)

- - da; <C
emiog wi(o +eay)

5.2.3 Regular chain expressions

Lemma5.9 Let P be a legal partition of {1, ...,2m}, where m > 1, and consider the
operator

L= Xolgi 42 X11gy40z - Xom—1185 4300 Xoms

again assume A, =0 and Ap = v for the j-th pair {a,b}(a < b). Suppose that
each X, (0 <a <2m) is either of class J or R, or X, =1d, such that X, # 1d
if {a,a + 1} € P. Then I can be decomposed into an operator of class J and an
operator of class R (with special index 1). Moreover the norms of these operators
are at most

2m

c” [T 1xall,
a=0

with || Xall = 1 if X, = Id.

Proof First note that we may always assume Xg = X7, = Id in view of Lemmas
5.3-5.5. Now we induct on m (for convenience of induction we may replace the
power C™ by C?"~1). When m = 1 we may assume [ = Ileq, INIM_@(1 where I has
class J or R, so the result follows from Lemmas 5.6-5.7. Suppose the result is true for
m’ < m, and consider any legal partition P of {1, ..., 2m}. We know that P is formed
either by concatenating two smaller legal partitions " and P”, or by enclosing a legal
partition P’ into the pair {1, 2m}. In the first case we have I = I'l” where I’ and I”
are the operators corresponding to P’ and P” respectively (with obvious choices
of the X,’s), so the result follows from Lemmas 5.3-5.5. In the second case we have
I =IeqI'1,, —cq, Where I' is the operator corresponding to P’ (with obvious choices
of the X,’s), so the result follows from Lemmas 5.6-5.7. O

Lemma 5.10 Consider now the operator I = Ig, 1, ---Ig, 12,, With A, satisfying
the same conditions as in Lemma 5.9. Then, I is a sum of at most 2™ terms: for each

term there exists a set Z C {1, ..., m}, such that this term has form
1—[ Xoo(aj) 7
jez 6j7TlOlj
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where T is another operator that depends only on the variables (1, ..., ,um)Nand
a[W]with W ={1,...,m}\Z, and has either class J or class R, with norm ||I| <
cm,

Proof We first consider all adjacent pairs {a,a + 1} € P. For such pairs we have a
factor in [ that is Ie,a,- IM_G,O,/. for some j, so by Lemma 5.8 we can decompose it

co(ot)) co(o))
)é( ma’ Jal Ly + Jaju; + Raj,u;- Now if we select the term )é( ma’
Xoo (@)

€j ma ’
depend on aj; if we select ja uj OF Ra: o We will leave it as is, and note that in

any case our operator has class J or class R.

Now, after removing all adjacent pairs {a,a + 1} we can reduce P to a smaller
Xoo( /)

into

ja[ Luj we

already get one factor while the remaining part of the operator will no long

legal partition 7. Then, apart from the possible = factors, the remaining part of

the operator, denoted by T, will be of form I descrlbed in Lemma 5.9. Note that if
P’ =, then I is already a composition of at most m class J or R operators, so the
result follows directly from Lemmas 5.3-5.5. If P’ # &, applying Lemma 5.9 then
yields that T has class J or R, and that the norm

2m’

17 < c™ [T iXall.
a=0

Here we assume that (after relabeling form smallest to largest) P’ is a legal partition
of {1,...,2m'}, and each X, is in fact a composition of class J and R operators ap-
pearing in Lemma 5.8, and the number n, of such operators is the number of adjacent
pairs in P between the elements a and a + 1 (again after relabeling) of P’ (note that

o > lif{a,a+ 1} € P’). Therefore || X,|| < C"« by iterating Lemmas 5.3-5.5, and
since ng + - -+ + no, = m — m’, we conclude that IITII < C™, which completes the
proof. g

5.3 Proof of Proposition 5.1

In this section we prove Proposition 5.1. The proof is done by induction on the scale
of Q, and Lemma 5.10 plays a key role in the inductive step.

Proof of Proposition 5.1 We induct on n. The base case n = 0 is trivial as B «(t,8)=1.
Suppose the result is true for regular couples of smaller scales, and consider a regular
couple Q of scale 2n. By the discussion in Sect. 5.1.1, we know that EQ can be
expressed as in either (5.6) or (5.7), such that the regular couples appearing on the
right hand sides all have scale strictly less than 2n.

Case 1. Suppose we have (5.6), then by induction hypothesis we have

3 3
Bot,s,alN'D= > ]I Yoo () /Rﬁ]'[cjuz,-_],xz,-,aN;h\Z,»])
j=1

Tio
Z1,22,Z3 j=1neZ; fn n
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6 ¢
% l_Id)\'J / \/A eﬂiat(ll—Sl)eﬂi()u*fl-F)L**Sl) dtldSl. (524)
izl 0 Jo

Here in (5.24), each Z; is a subset of/\/jCh, eachC; =Cj(haj_1, A2, ./\/J.Ch\Zj]) is
a function satisfying (5.9), and (A*, A**) = (A1 4+ A3+ As, A2 + A4+ A6). Note that C;
is either the function C associated with Q; and Z; as in (5.8), or is the same function
with the variables (A2;_1, A2;) replaced by (A2, A2;j—1). The same is true in Case 2
below.

By integrability in (A1, ..., Ag), we may fix the choices of these parameters, and
also exploit the weight (A1)1/*--- (x¢)!/* from (5.9) if needed. We then explicitly
calculate the expression

t ps ) eni(at+k*)t -1 eni(—a;—t—k**)s -1
/ / entac(tl—sl)eni(k*ll+A**s1) dryds) = . ]
0o Jo i (o + A*) i (—ote + A**)
(5.25)
By inserting the cutoffs yo(ar + A*) or yeo(ar + A™), and xo(—or + A**) or
Xoo(—ar + A™*) as in Sect. 5.2.1, we can easily show that the above expression, as a
function of (z, s, @), can be written in the form

/]R C04. M e A11229) q37 dis, (5.26)
where C’ is such that
/ ADYAOL) B8 €' (], My o) A dMgdar < C(21p))! (5.27)

uniformly in the choices of X ;. For example, if we insert the cutoffs yoo(otr + A%)
and xoo(—ar + A**), and choose the terms e (@ +2)1 and 7= +A™)S from the
numerators in (5.25), then by using (5.23) we can write

] Xoo(0te + A7) ) Koo (—0ty + 1*%)

C'O Ay a0) = MOy —oe =AM, + e — A ,
(A7, A%, o) (A —oay YM (A5 +ay )m'(ozt—i—)»*) T o 1)

for which (5.27) is easily verified, noticing also that x, is Gevrey 2. The other terms
can be treated similarly. ~

Now, for the regular couple O and the associated Bg, we may choose Z = Z U
Z> U Z3. Using (5.24), and rewriting (5.25) as the form (5.26), we can then easily
prove that it has the form (5.8) and satisfies (5.9); in fact, assume Q; has scale n;,
then the induction hypothesis together with (5.27) bounds the left hand side of (5.9)
without derivatives by

ch.cm.Cc".C = Cn1+n2+n3+l —C"

As for the higher order derivatives estimate, notice that the whole expression (5.24) is
a linear combination of terms that are factorized as a product of functions of o;[j\/]?h]
for 1 < j <3 and a function of ¢. For any multi-index p, suppose we want to control
the 3 derivative of the relevant quantity, and let the multi-index of derivatives falling
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on each of the above four sets of variables be p; (1 < j < 4), then by induction
hypothesis and (5.27), the left hand side of (5.9) is at most

C"2lpiD!- - 2lpah! = C"2lpD!,

which is what we need.
Case 2. Suppose we have (5.7), again by induction hypothesis we have

Eg(t,s,a[NCh])

m¢ 2
Yoo (On) Xoo(atn)
= Z l_[ 1_[1_[ 1_[ CaTliot 'nle_Z[l Cnioty,

(Zje)eelL} j=l1=1neZj,

Cjez a6L!A’bétva[Ncgt\Z_]Gl])d)\'(IGl)\‘bEl
<[ TITIT

eef{t}) j=11=1
X /Clp()‘lp,+7 )\'lp,—v o N \le]) d)"lp +d)\lp -

: + + + .
y / R S L L P A
t>11>>t, +>0

y / B S L LT e TR P
§>51>0>5,, >0

(5.28)
Here in (5.28) each Z; ., is a subset of NIC}; ) and Z;, is a subset of lp , each C] €l
and Cip is a function satisfying (5.9), and k =Ag+1+rgrpforl <a< 2m*

AT = hip+.
0 P,
By integrability in (A4 ¢,) and (A +), we may fix the choices of these parameters.
Note that we can also exploit the weight

[T o)+ Gap ) 4 a0 (5.29)

JH€st

from (5.9), whenever needed. Once these parameters are fixed, the relevant term in
(5.28) is then reduced to the product of a function of (z, af’, e ajn'+), and a function
of s and (s, , ..., anz_). Let us look at the function depending on ¢, since the other
can be treated in the same way.

As in (5.12), this function can be written as

K(tof .. ol A8 AT AT ). (5.30)

Qts
For 1 < j <m™, as in (5.14), define &; = af + etk and /,L;-'_ =i+ )»Z where
(a, b) is the j-th pair, then using (5.13) and Lemma 5.10, we can write

o
K@of, ..ol afafon o= > J] & X°°( ’) (™) (1),
zZrtc{l,...mt} jezt J
(5.31)
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where Z* is a subset of {1,...,m™}, T is an operator depending on the variables
(i, ....pwhy) and GWT] == (&) jew+ where W :={1,....mT)\Z™T, that is the
sum of a class J operator and a class R operator in the sense of Definition 5.2. There
are then two sub cases.

Case 2.1. Suppose T'is of class J, then I has form (5.15). The point is that, when
the variables (Ag, Y1, Y2, uf, e ,u;Jr) and @[WT] are fixed, and ¢ is a bundle of
a[W], then we can write

Tty (€7405) (1) = / G(n)e™ ™ dx (5.32)
R

for ¢t € [0, 1], where (viewing &[ W] as parameters)

1/4
/<A>”“|a£G<x>|dAsC(2|p|)!(1+ > |oT,-|+|y1|) : (5.33)
R

jeEWT
This is in fact obvious by calculating

t
it . ) .
‘If:m,yz(em)‘w)(t)=em(z+y1)’/ T FAT =05 4g
0

and inserting the cutoffs xo(y2 + Ag —¥{) or xoo(y2 + Ag — ¢) as in Case 1 above,
noticing that if part of the weight is |y + )»ar — £|'/4, it can be treated by exploiting
the denomigator which contains the same expression y» + )»(‘)" — £. Now using (5.15)
to expand [ as a linear combination of Jy;y, ,,, and combining (5.33) with (5.16)
(using Leibniz rule and Lemma A.4 if necessary), we obtain that

T(e™ ™% (1) = / HOGAS ot afw e da (5.34)
R
for r € [0, 1], where
/(A)1/4|85H(A, Ad it AW dEW A < C" 2lpD!.  (5.35)

Case 2.2. Suppose T is of class R, then I has form (5.17), say with special index
1. The arguments are similar to Case 2.1, except that now we are considering the
function

Reytedi tr+edisyrynys (€7700) (1)

_ X+ €a+Y3) riceyediipn /' i —ta—edDs g
Ly +ear +y3 0

By inserting the cutoffs xo(y2 + kaL — 0y —€aq) or xoo(y2 +A3’ —{> —ea) as above,
and using the fact that the resulting coefficient depending on &7 is bounded by
1 1

_ : - _ (5.36)
(1 +ea1+y3) (y2+iy —€2—e€ar)
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which is integrable in & uniformly in other variables, we can conclude that, similar
to (5.32) and (5.33), we have

U ~ .
Rll+eoz~1,€2+eot~1;y1,yz,y3(em}LOA)(t):/RGI()M al)emmd)\ (5.37)

for ¢t € [0, 1], where (again viewing &[W+\{1}] as parameters)

1/4
/ (WL G (n, @) drdd] < C(2|p|)!<1 + Y &+ Inl+ |y3|) :
2 1£jew+
(5.38)
Note that in deducing (5.38) we have used the fact that the integrability of (5.36)
remains true uniformly in the other variables, even if one of the denominators is
raised to the 3/4-th power. Here if part of the weight is |y, + )L(J)“ — 0 —edy|'4,
it can be estimated using the denominator which contains the same expression
vy + )Lg — {5 — edy; if part of the weight is |&]]'/4, it can be estimated using the
denominator ¢ + e} + y3. Now using (5.17) to expand T as a linear combination
of Ry 4edi, tr+¢di:y1,y2.y3» and combining (5.38) with (5.18) as in Case 2.1 above, we
obtain that (5.34) and (5.35) remain true in this case.

Now, in either case, we have obtained the formula (5.34) and the estimate (5.35),
which are enough to treat the [ (e” ixg %) part of K in (5.31), noticing that &; is a
translation of a;L given the (A4 ¢,) and (A, +) variables. However, for j € ZT, we
still have &; = at + e*)&j instead of 01;.r in (5.31). But this is easily resolved using
the simple fact that

A;
Xoo(a++€+)\+) Xoo(

Therefore, if we encounter the difference term — — - for some j,
€; m(a +e; )»a) €; mcc]

we simply move this j from ZT to W and exp101t the 1ntegrab1hty of this difference
inal ; . The higher order derivatives can be treated in the same way as in Case 1, and
the total loss caused by the right hand sides of (5.39) is bounded by

™ TT TTaea 012 (5.40)

jEZ* L

Xool@] +€A5)  xoola))

+A+) e;rmozj

dof <Clog2+ A ) <chHV12. (539

€; m(a +€

(where Z7 is the set before moving the elements j). Clearly 5.40 can be controlled
by the part in (5.29) with sign +,up toa C m" factor.

Now we can return to the formula (5.28). Clearly the arguments for the functions
depending on ¢ can be repeated for the function depending on s, obtaining a set Z~
By combining these arguments, as well as the arguments moving some of the j € Z +
to W*, we can write BQ in the form of (5.8), where

:<UZ./,€,1)UZI,,U{nj:a<b,jeZ+}U{n;:a<b,jeZ_};

J€st
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note also that e;-r = ¢, for j € Z* (hence n} € Z) as in Sect. 5.1.1, and that the
sets Z* may have been modified after moving the elements j as described above.
The bound (5.9) without derivatives then follows from the estimates obtained above
including (5.35) and (5.39); in fact, if the regular couples Q; ., has scale nj  , etc.,
then the induction hypothesis together with the above estimates bounds the left hand
side of (5.9) without derivatives by

1—[ Clier . CMp . Cm+ . Cm’ — Cn’

J€st

noticing that

an’e,r}—nlp—}—m*'—i—m_:n.

Jr€st

The higher order derivative estimates in (5.9) can be proved in the same way as in
Case 1 using the factorized structure. This completes the proof of (5.8) and (5.9).

Finally we prove (5.10) using a modification of the above inductive arguments.
The proof scheme is the same, except that we induct (5.10) in addition to (5.9). In
the inductive step, if n, := argmax(ay,) belongs to one of N';,Z,L\Zj,e,t or ./\/1;}'\211,,
then we repeat the above arguments using (5.10) for C; ¢, or Cj,, and noticing that
changing the exponent 1/4 to 1/8 does not affect any part of the above proof.

Now suppose 1, = n;t witha < b and j € wE (in Case 2, or n, = v in Case 1
which is similar), then for the functions C; ., and C;, we do not need to gain the oy,
weight, so we can use the bound (5.9) for them. We shall replace the weight (1)!/4 in
(5.33) and (5.38) by ()!/8(ar, ) /3. For example, if n, = n in Case 2.1 then instead
of (5.35) we now have

~ ~ +
/<A>1/8<am>1/8|H(x, A AW dEW Tl < ¢ ) YE,

using also that & = ay, £ ; the other cases are similar. Since A} = Ay 4 14 Aq 4.2,
we know that the factor ()»2‘) 1/8 can be added to (5.40) which is then still controlled
by the part in (5.29) with sign +. This means that we can insert the power (an*)l/ 8
at the price of weakening (1)'/# to (1)!/8. Finally, if n, occurs in the process of
moving j from ZT to W™, then the same result is true because (5.39) is still true,
with the right hand side replaced by C (A;)l/ 7, if the integrand on the left hand side

is multiplied by <a,.+> 1/8 This proves (5.10). O

6 Regular couples Il: approximation by integrals

With the properties of Bg obtained in Sect. 5, we now calculate the asymptotics of
Kg as in (2.24) for regular Q, using number theoretic methods.
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Full derivation of the wave kinetic equation 609

6.1 A general approximation result
We prove here a general approximation result, which we apply to g in Sect. 6.2.
Proposition 6.1 Fix g € (RT)4\3. Consider the following expression

I:= Z Z W(xlyu-vxn,)’],-",Yn)'\y(Lz‘S(xla)’l)ﬂ,~~’L28<xn,)’n>ﬁ)’
(X15eees xn)(yl ----- Yn)

6.1
where (X1,...,Xn, Y1,.-+,Yn) € (Z‘I{)z” in (6.1). Assume there is a (strict) partial
ordering < on {1, ..., n}, and that the followings hold for the functions W and V:

(1) The function W satisfies the bound (here W denotes the Fourier transform in
R

IWlL + 19W Il < (€)™ (6.2)

(2) This W is supported in the set
E:={(x1,....%0, Y1, ... y) 1 15 —ajl, 15j —bjl <Aj, V1< j<n}, (6.3)
where 1 < X; < (log L)4 are constants, aj and b are constant vectors. Each )?} isa

linear function that equals either x ;, or xj £ x s or xj £y for some j' < j, similarly
each y; equals either yj, or y; £ xj» or yj £ yj» for some j" < j.

(3) For some set J C{1,...,n}, the function V has the expression
Xoo(£2;)
Q... Q) =] [ T v, (6.4)
jed J

where X is as in Sect. 2.3.1, and for any |p| < 10n we have

1970l = CM@pDY | max(e2)V - il < C". 6.5)
Assume n < (log L)3. Then we have
’I—LM”/ WXLy eees Xns Viseeesr V)
(Rd)Zn

XW(L28(x1, y1)gs - - » L*8(xn, yn)p) dxy - - - dxpdyy - - - dyy

< (gA)LY, (6.6)
Here we recall that the choice of v, and the convention for C and C™T, are fixed in

Sect. 2.3.1. Moreover, defining

Iapp=(LZd_z(S_l)n/qjldQ[Jc]'/ a2 W(x17°"7xn’ yl»:yn)
Ry
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1155

jelJ

[T8Cxs. yi)p)dxs -+ dxpdy - --dyn. (6.7)

J’y]>5 jed

where the singularities 1/(x;, y;)p are treated using the Cauchy principal value, we
have

| Lapp| < (A1 (et L2,
(6.8)
1 = Lappl < (hp -~ A)C(CTL2 2871y L2,

Before proving Proposition 6.1, we first need to establish a few auxiliary results.
In these results we will use the notation e(z) = €22 and fix A such that 1 < A <
(log L)4; moreover we will set v = 1/40, so that v <« v by our choice.

Lemma 6.2 Suppose ® : R x R? x RY — C is a function satisfying the bounds

sup |95 8 (s, x, y)| < D 6.9)

$,X,y

for all multi-indices |«|, |B| < 10d. Then we have:
(1) The following bound

X —a

—b
Yx0(2=2)@(s.x.y) - e(6 - x + 7+ y + s{x. y)p) dxdyds

R JR2d

< DA (6.10)

holds uniformly in (§£,7n,a,b) € R4,
(2) Suppose, in addition, that ® satisfies one of the following two requirements:
(@) (s, x,y) = Xo(%)l’ﬁ\(ﬁ)q)/(x, y), where r = X%(t) and @' satisfies (6.9)
without s, or
(b) ®(s,x,y) = xo(£)P’ ﬁ,x, y), where @' satisfies (6.9), and F;®'(-, x, y) is
supported on an interval of length O (1) in R which does not depend on (x,y) €

R,
Here K := A"YL17V > 1. Then, there holds

> //RM (=2 Xo(y_ )P (s, x,y)

0+£(g.h)ez

xe[(Lg+&)-x+(Lh+n) - -y+s(x, y>,s])
§Dkzdmin[(1+|€|+|r)|)L_14_0U,1] 6.11)

uniformly in (a, b) € R*?. In particular, we have

x— y—>b
‘ //Rmxo ) xo( - )P (s, x, )

(g, (g,h)ez?d
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Full derivation of the wave kinetic equation 611

xe[(Lg+&)-x+ (Lh4n)-y+s(x, )5l < DA (6.12)

uniformly in (§£,7n,a,b) € R4,

Proof (1) By translating x and vy, it is enough to consider the case a = b = 0. The
result then follows by an application of the stationary phase lemma (or direct inte-
gration of the Gaussian phase) to bound the integral in (x, y) by 224 (s)~¢ which is
integrable.

(2) Let us denote the left hand side of (6.11) without absolute value by M (&, n)
and also Q = (x, y)g. Here, we split the discussion into two cases depending on the
size of a and b:

Case 1: if max(|al, |b|) < ALV/2. Here, we argue via a stationary phase analysis
for the phase function ¢ (x, y) = (Lg+&)-x + (Lh 4+ n) - y + sQ2. Noting that

Vip=Lg+&+sB'y', ..., 8D, Vyp=Lh+n+s@'x',.... g%,

and using our assumption on the s support of ®, we can bound the norms of
s(BUy!, ..., p4y?) and s(B'x!, ..., B%x%) by L/10 if L is large enough. If |Lg +
&+ |Lh + n| = L/5 (which happens for all but one value of (g, #)), we integrate by
parts at most 2d times in x or y in the dxdy integral, and gain a denominator that
is bounded below by (L + |Lg + &| + |Lh + n)?¢. For the only remaining value of
(g, h), we use a stationary phase estimate similar to part (1). In the end we get

M mI DA /| o @ L g1 L )
(g0 PIEATETE

+ <S>7d1|Lg+§|+|Lh+n|<L/5]
SDAM[L“vL > 1Lg+$+|Lh+n|<L/5i|
(g.m)#0
< 2d —v < 2d - —v
SDW(L™Y + Ligp gz ) S DA min (1, (14 1§+ [n)L7Y),
as needed.

Case 2: if max(|a|, |b|) > ALV/2. Here the analysis is slightly more delicate, and
we will obtain the estimate

[M(&, )| S DA min [ 1. (1+ €]+ )L~ T0" ] (6.13)

uniformly in (a, b), which finishes the proof of the lemma.

We start by splitting the integral appearing in M (&€, ) into two parts: one with
IVipl + | Vyp| < L'72Y giving a contribution M (£, n) and the complementary re-
gion giving a contribution M1 (£, n). More precisely, define

M=) //wao

0+£(g,h)ezXd

y—>b
x0(=

)P (s, x, ¥)x0
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Vi Vyw
X (LIZU)XO<L12U (6.14)

xe[(Lg+&)-x+ (Lh+n)-y+sQ]dxdyds,

The contribution of M| (&, 1) can be bounded easily by integrating by parts 10d times
in either x or y (depending on whether |V, ¢| or |V,¢|is 2 L'=2Y) and estimated by
(A~ 1L17v)22¢ L =94 which is more than acceptable. As such, we reduce to obtaining
the bound (6.13) for M (&, n).

Next, we would like to localize in §2. For this let J := max(|a|, |b|) > ALV/2.
Here, the analysis is different depending on whether we make the assumption (a) or
(b) on ®(s, x, y). Under assumption (a), we note that 1///\ (s) is odd and fastly decaying
at infinity, and has a jump discontinuity at O; all its derivatives are also uniformly
bounded and decaying, except at O where they are not defined. We would like to
integrate by parts in s once, in the region when |2| = J L_H%”. Such integration
by parts produces a new s-integrand which has the same form and is bounded as

1 J A JLY JL¥
1 g-17-—2, % —1 —v/10
i (57102 ot i ) S0 (i + ) S da S

and a boundary term (due to the discontinuity of 1///\ (s) at 0) that gives a contribution

of
Lg+¢& Lh+n
Z X0 L1-2v X0 L1-2v

0+£(g,h)e72d

)

- —-b
Oy BL2Q) 30 (2 ) o (2
/Q|ZJL1+ZIU/10 Xoo( )XO( A )XO( Y )
x @' (x,y)-el(Lg+&)-x+ (Lh+n)-yldxdy

(note xoo(§L2Q2) = 1 with the given lower bound of €2), which can be estimated using
Lemma 6.3 below by

< DA Z rg+é+{Lhni<L10 S DA min (1, (1 + €]+ [nhL ™),
(g,m)#0

as needed. Repeating this integration by parts Cv ™! times, we are reduced to obtain-
ing the bound (6.13) for

- A
meEm= 3 /R/on(xA“)xo(yA )& (s, X, M0

0+£(g,h) 72

y Vi Vyp Q
120 ) X0\ T1=20 ) X0 L+

xe[(Lg+&)-x+ (Lh+n) -y+s-Q]dxdyds.
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Full derivation of the wave kinetic equation 613

Now, under assumption (b) on ® (s, x, y), we have, for some p € R, ®'(s, x, y) =
e~ 2P (s, x, y) where Fy ®” (-, x, y) is supported in (say) [—1, 1] for any (x, y) IS

R4, As before, we split M1 (£, 1) in two parts depending on the size of |Q — 3 L2 l.

Let Mz (&, n) denote the contribution of the region where |2 — % | <J L_H' 1Y and
A7I§ (&, n) the contribution of the complementary region, namely

- —b
MyEm= ) //iw (£ aX()(y)L )XO(%)@”(;?,X,)’)

0+£(g,h) €72

Vi Vyo Q_ﬁ
XX0<L1—2U)XO<L1—2U X0 JyspEn e[(Lg+&) x

p
+(Lh+n)-y+s(Q— 5?)]dxdyds,

Mb(E, 1) =My (€, ) — Ma(E, 7).

The contribution of 1\7[£ can be bounded by integrating sufficiently many times in
s: Each integration by parts produces a factor of (2 — 5 L2 )~ ! at the expense of having

an s derivative fall on either yo(s/K) or ®”(s/(8L?), x, y) (giving a factor bounded
by D(8L*)~! given the Fourier support assumption on CD” ) or the Vg factors in the
other spatial cutoffs (which gives a factor bounded by < " ). In effect, the net gain of

Ll v
this 1ntegrat10n by part step is

_ 1 J JL?
<l - —+—+ < <LV
N| 8L2| <8L2 Ll—2u>N|Q 8L2|L

using the lower bound on |2 — #| in 1\7I§ As such, we can integrate by parts Cv~!
times in s to obtain that the contribution of 1\7& is acceptable as well.

As such, in both cases (a) and (b), we are left with the contribution of M;(&, n)
and M, (&, n) respectively, which we will estimate in the same way (thanks to the
bounds |®'|, |®”| < D) by

x—a y—>b Q-5
D/RZd XO( A )XO( A )XO(JL—H-le(i)
s Vip V,p
X /RXO(E) > XO(lezu)XO(Llyzz;)deXdy'

0+£(g,h)ezd

Now notice that the volume of the set of (x, y) satisfying lx—al <A |ly—=b <A
and |2 — m| <JL™ 1+ is bounded by PRy 1+ since [V, y 2| ~ J (using
the coarea formula or change of variables). Furthermore, for fixed (&, n, x, ¥), when
(g, h) varies, we claim that the measure of the set S(x, y) on which the s integrand
is supported is bounded by L!=2V . w To see this, suppose without loss of
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generality that |y!'| ~ J for example, then s € S(x, y) implies that

.B S —2v ﬂ E 2U
I —I— T+ '<L { I L}<L

gl
where {-} denotes the distance to the nearest integer. Since also |sf3Ty| <JKL7'S
1,1
JL™Y, we conclude that YﬂTy belongs to an interval of length < JL™Y, intersected

by the L2V neighborhood of the lattice %‘ +Z. Thus % belongs to a set of measure
at most (1 + JL~Y)L~2¥ and hence

L
ISCe IS 51+ JLTV)L™,

as claimed. With this estimate in hand, we can bound both M> and 1\72 by
x—a, y—b Q-5
<D
S R e T

Vi Vyp
x s X0 L1-2v X0 L1- 2v dsdxdy

p
xX—a y—>b Q

<D dxd

<0 [ ol b0 (2 Jist wlasdy

o 0st(g, 1y ez24

sDA2d71L71+211—5’ « é(l L JLYYLT = pR2-l 0=l Yy
This finishes the proof of (6.13), and hence that of (6.11). O

Lemma 6.3 Suppose that ® = O(x, y) satisfies (6.9) without s.
(1) The following bound holds

- —b
VRM Q_lxoo(,uﬂ)xo(xka)xo(yk )O(x, y)e(& - x + - y)dxdy| < DA,

uniformly in > 1 and (a, b, €, n) € R* . In addition, the following limit of principal
value type

- —b
im [ @ oo () x0 () 0 (2o2) O (x, y)e(& - x + 1 - ) dxdy

u—00 [p2d A

exists and is < D) uniformly in (a,b,&,n) € R*,
(2) The following estimate holds for the difference

- —b
“)xO(yT)G(x, Ve - x +n-y)dxdy

/ Qo (1S xo(~
R2d A
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Full derivation of the wave kinetic equation 615

SDAM (1 + 18] + ),
uniformly in (a, b).

Proof (1) It is enough to consider the region |2| < 1. Also, without loss of general-
ity we only need to consider the region with |x1| ~ max(|x], |y]). Recall that xq is
extended to R? as in Sect. 2.3.1; by abusing notation we may also use some xo of
different support. Let x = (x!, x"), and B = (ﬂl, B’) etc., it is enough to consider

)

/

. -1 X —a y - X
N(u.§,1m) '_/deQ Xoo (11€2) X0(2) x0 ( - )xo( )O(x,y)Xo('x1|
x xo(ﬁ)e@- X+ 17+ y)dxdy

_ / —b
=/ xo(xA“)xo(ljjll)e(é-x)cbc/wsr‘xoo(/vbsz)xommo(yA )

Y
O(x, —
<00 M10(
We change variables in the y! integral by setting u = Q = Blx'y! + (x/, y") p'» and
write

)e(n - y)dy.

/

N(M,é,n)=/Rd|/31xll’1Xo( - )X0(| rj)e(s - x)ds

/ / 17,7 7
y -b / / n <x ’y>f}’ /
. —— - " Id
% /Rd—l xo A )e|:77 Y Blx! Y

/XOO(MM)XO(M) (u—<x g ﬂ‘xlbl)
X " X0

u Blxlx
1
x O(x, u, y/)e(ﬂnl;{l)du, (6.15)
where O (x, u, y') = O(x, Y)xo(g;) evaluated at yl= 7”7;31 Lk

Now, we write the integral over u as

/°° Xoo(/vLu)XO(M)A(u’y/’x)du’
0

u
where
/ u—(x', y/> r— plxlp! 1u
Au,y ,x)=X0< ﬂlilk )@(x u, y)e(‘B T )
_u_<x/’y/> , ,31 Ipl 1
_XO( ﬁleix >®(x —u, y)e(ﬁ1 l)

1

(u— &y — B! n'u
:21)(0( FIFEY )@(x u, y)sm( ’lel)
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poof
Blixty — plxt12 )

Noting that the above integral is actually supported on the interval [(2) !, 2], the
contribution of the terms O (- W) is acceptable. Hence, we are left with

B! Ix |
bounding
> u—(x',y)p — Blxp! n'u | du
/0 Xoo(M“)XO(WXO( FIrE Ox, u, y')sin (27 ﬂ1x1)7
o 1,1 Iyl 1,1

uBtlx*u Blx*|u u— Q. ~ B'x'u , . du
Zi/ X X0 X0 O(x, , V' )sinQRru)—
o T e GRe =) u

for some Q depending on x, y', 8, A. The integral for 0 < u < 5 is bounded by O (1),
so we may use a smooth cutoff ¢(u) to restrict to u > 5. Then we integrate by parts
in u once. If the derivative falls on 1/u or ¢(u) the resulting contribution is bounded
by O(1). If the derivative falls on anything but the first factor, then the new integrand

is bounded by ﬂllrlf‘ L1+

1+ LI + ﬁ even without using the 1/u factor, as u belongs to an interval of

‘x | + ﬁ), so the resulting contribution is bounded by

due to the second factor. If the derivative falls on the first factor, then

pBlxl BlixY
In'| 'l
so the conclusion will be the same.

length

B l| ‘\
in the new integrand we Will have

instead of

, but u also belongs to a

smaller interval of length ﬁ‘l 1‘

This leads to an acceptable contribution to N (i, &, 1) in (6.15), and gives a bound
that is uniform in w, &, n. The statement about the lim,,_, »; follows directly from the
above argument and dominated convergence.

(2) Arguing exactly as above, it is enough to bound

Xo(ptu) </°° Xo(ptu) 1 1 In'| )
[, sy [ M<ﬁ1|x1|+ﬂ‘|x‘|2+ﬁ1|xll a

_ 1 1 In'|
<u! + +
~H <ﬂ‘|x‘| BT T B

which gives the needed bound when substituted in (6.15). O

Lemma 6.4 Suppose that ®(s, x, y) : Rx R? x R — C is a function satisfying (6.9).
(1) If ® is supported on |s| < L2, then the following bound holds uniformly in
(a,b,&,1) € R*:

- —b
Z D(s, x, y)xo(x ; a)XO(y )e(x.g—i—y.n—i—s(x, vg)lds S DML,

(x.y)eZ3?
(6.16)
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(2) If ®(s, x, y) is supported on the set |s| > L'V, then the following improved
estimate holds uniformly in (a,b,&,n) € R

- - —b

/<5s?) Y @G () x5 e 6 + v n+s(x g |ds
R (x,y)eZ%d

g D)»4dL2d7U. (617)

Proof Recall that, Q (x, y) = Z?:l B/ x7y/ where x/, y/ e Z; . We make the change
of variables

L*lpj — +yj, L*lqj —— —yj, pj qu (mod 2).

The sum in (x/, y/) € Z% then becomes the linear combination of four sums, which
are taken over (p/,q’) € Z2, or (p/,q7) € 2Z x 7, or (p’,q’) € Z x 27, or
( pj , qj ) € (ZZ)Z. We will only consider the first sum, and it will be obvious from
the proof that the other sums are estimated similarly. Define

z+w z—w z4+w—2a z—w—2b
) xo( ),

Tz w) = (s —— ——)x(— 2%

which has all derivatives in (z, w) up to order 10d uniformly bounded, and is sup-
ported in the set {g/ < Lz/ < g/ +2AL, h/ < Lw/ <h/ 4+ 2AL}, where (g/, h/) €
77 are determined by (a, b).

Now, by possibly redefining (s, £, n), we need to show that the function

B(E,n)=/‘ > Y(sipL gL e[sL2(plz —1glp) +p-&+y-n)|ds
R (p.q)ez*

d
Yo (s pL7h gL [elsL 728 (0)* + p/&]

R p.grezn j=1

X e[—stzﬂj(qj)2 + anj] ds

satisfies the bounds in (6.16) when Y is supported on |s| < L2, and that the cor-
responding integral with (s/8L%)~% (which we denote by B(&, n)) satisfies (6.17)
when Y is supported on |s| > L!~V. Note that in the above sum we must have
plelg/, g/ +20nL)and ¢/ € [h/, h7 + 201 L].

Recall the Gauss sums Gy (s, r,n) and Gy (s, r, x) defined in (A.8). Notice that
since 0, Gj(s,r; x) = ZpEN e(sth+ p)2 +r(h 4+ p))é(x — p), we can write

B, ) =/
R

x 8,/G i (—B/sL™2,n/, v/) dudv

d
/ LY @ L 0+ L) 8,Ge(BsL72 8 u!)
(u,v)eRf’ j=1

ds
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618 Y. Deng, Z. Hani

§L_2d/R/( )RM’D“T(s,(u+g)L_l,(v+h)L_1)|
u,v)eRy

d
X 1_[ |ng (,Bst_z, éj, Mj)Ghj (—,Bst_z, nj, vj)| dudvds,
Jj=1
where g = (g', ..., g% etc., and D*Y is obtained from Y by taking one derivative

in each of the variables u ;, v; (and hence has the same support properties).
(1) We first note that if ®, and hence T, is supported on the set |s| < L2, then we
have the bound (upon rescaling in s by L?)

B(E, <DL*2‘”2/ - :
B | < - 10 (5052 Go0iz)

d
X / x0(s) l—[ ‘ng (B's, &7, uj)Gh,- (—B's, 0/, vj)‘ dudvds.
R joi

Now, we use Lemma A.5 (and that 2d > 6) to get the needed bound, namely

d
B(E. <DL—2a’+2/ u v W=1/d (i 1=1/d g4
[BE,n| S ezt XO(IOOAL)XO(IOOAL)jl_ll(u ) /) udv

(2) To obtain the improved bound in (6.17) for B (&, n), we argue a bit differently.
Without loss of generality, we can assume j '= 1 and B2 € [1, 2]. We start by writing
the product of Gauss sums in B(&, 1) as

d
[[GeBIsL™2 67 .u)Gy (—B/sL™2 17 v7)
j=1

2 *
=[]GBIsL™ &, u)[[GeiC-)Gpit+)
j=1

=M, &) [[Gei (- )G

where M(s,&,1,u) = G, (sL™2, El,ul)ng(ﬁzsL_z, £2,u?) and [T* is the prod-
uct of the remaining 2d — 2 Gauss sums. We claim that, for Li-v <ls| < L2V the
following estimate holds for M:

sup | M(s, &, n,w)| S (ALY, (6.18)
s,E.n,u

Before proving this claim, let us see why it implies (6.17). Using (6.18), we have

|B(, )
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Full derivation of the wave kinetic equation 619

< —2d+2 u v
Pk /w,v)eng 10(55052) 705052

*
x ((AL)“O“ / [[1G i (B7s. 7, uDGi(=Bs. 07, v7) | ds
L_I_U§|S|SL5U
d . . . . . .
+/ <8‘1s>‘2]‘[\ngosfs,sf,uf)Ghj<—ﬂfs,n%vf)\ds)dudv.
|s|>L5v .
j=1

Splitting the s region into intervals of length 1, and using Lemma A.5 again on each
subinterval we obtain that

B m| < DLPL™™ / - )
IBE, m)| < ()2 10 (15052 Go0rz)

x [(AL)2_1O“L6”(AL)M—4+ > (6_1k)_2(AL)2d_2]dudv
|k|>L5v

Thus, it remains to prove (6.18). We may assume without loss of generality that
L™17v <sL™% < L (since G(—s,r;n) = G(s, —r; n) and the estimates we shall
use for G are independent of 7). To bound the Gauss sums, we write

sL2=n+1t!, BL2=m+1% nmeNU{0L 1!, 72€][0,1),

and use Dirichlet’s approximation to find, for j € {1, 2}, integers 0 < a/ < ¢/ <u/
such that (a’/, ¢’) =1 and

1
q/ul’

T < j=1,2.

By periodicity of sum G (s, r, x) in s and the Gauss lemma for such sums we have
G GL ™26 u)G o (5172, 6% u)

- u'ulog L
— 1 2 ‘
Va0 +ul |t = 121 4l - 1)

(6.19)

We start by dealing with the case n =0 (i.e. when sL ™2 = t! < 1). Note that this
implies m € {0, 1}. Here we will use the fact that L=~V < ! < 1. First note that if
a! =0, then we have

1,2 2
22 .1 1 2 2 .0 2 u u-logL u-logL
Ggl(SL aE , U )GgZ(ﬂ sL 75 , U ) < 1_’_”1"[1'1/2 S |‘51|1/2

<ALL'TlogL < AL"/4,
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620 Y. Deng, Z. Hani

which satisfies (6.18). Therefore, we now consider the case a'! # 0. Computing

al a2
' (B! - q—1| +]e% - ?D

2.1 2 21 2
=qlq2(|ﬂzsL_2—ﬁ—?|+‘ﬂzsL_z—m—a—2|)quq2|'B—a—m_a_
q q

log—*2q'¢® o 1

2 1 2 1.2 2 1
m +a 2 g
=|B"a —(mq q q )|Nalq2+mqlq2+az 1~ (q q2)1.01

where we have used the diophantine condition (A.1) and the fact that 0 < a’/ < g/
and m € {0, 1}. Therefore, we obtain

a a? 1
max(|r] — i 2——|)ZW,

which when plugged into (6.19) gives the bound

2 1,2
log L
og Smin( v max(ul,uz)(qlq2)0'51>logL
Vq1q2[1+mln(” u )( T 2)101] Vqlqz
<G, (6.20)

since ¢/ < u’/ < AL, which is better than (6.18).
It remains to consider the case when 1 < n < L3V, Here, we argue similar to the
above, to obtain

Cll a2
qlqz(ﬂ2|rl_a|+|t2_?|)
—12(|2L*2—2—2£| \21;2_ _a_2|
=q'q*(|B*sL 7 = B — B |+ |BL 7 —m = o))

>q q2|ﬂ +ﬂ n—m-— —| =|B2(ng'q* +a'q?) — (mq'q* +a*q")|

log*4(2nqlqz) S 1
N @2+ alq? +mglq? + alql ™ (nglg?)l o

Since n < L3V, we can repeat the same estimates as above and obtain the needed
bound (notice the room in (6.20) compared to needed bound in (6.18)). O

Lemma 6.5 Suppose that ®(x,y) is a function satisfying (6.9) without s. Let

Qx,y)={x,y)p.
(1) Suppose n > 1 and  is a function such that ||V || gy < D, then

‘ / W(MQ)Xo(

—b
)XO(y/\ )@ (x, Ve(x - £ +y-n)dxdy| < DA (6.21)
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Full derivation of the wave kinetic equation 621

uniformly in (a,b,&,n) € R¥. The same holds if y(u)®(x,y) is replaced by
W(u2,x,y) where ¥ =V (u, x, y) satisfies H supy |8;‘8§5\IJ| “Ll < D for all multi-
indices |«|, |B] < 10d.
(2) Suppose further that || (y) 8 Vg w) < D, then
X —a

—b
’M/ ¥ (112) xo( )x0(32) B (x, y)e(x - & +y - ) dedy—
R2d A A

- —b
(DY T —
R2d A A

1
<D (14 [E] + ), (6.22)
uniformly in (a,b) € R¥.

Proof Using a smooth partition of unity, it is enough to consider the region when
lx1| ~ max(|x|, | y|) (other regions are treated symmetrically). In this case, we do the
same change of variables as in the proof of Lemma 6.3, replacing the variable y! by
u = 2 to write the corresponding integral in (6.21) as

B X —a x/ y/_b/ y/
/Rdwlxw xo(—; )xO(W)eu-s)/Rdfle( LT

u— (x/,y/) , lxlbl - ’/“71 o (x/,y/) ’771
/Rm/f(uu)m( ﬁlilx D(x,u,y)e Iy P Vdu,

where (v, u, ) = (x, ¥, ¥ ) xo (i e
can directly obtain (6.21), as well as the extension with v - ® replaced by W. To
obtain (6.22), we look at the difference

_ Iy . — 1,151 - 1 _ " 1
[ e NS e (M

Je(y' - n')dy'dx

) evaluated at y! = . From this one

ﬂlxl)» ,31)61
_(x/’y/> /—ﬂlxlbl ~ , _<x/’y/> /nl
- /R ww)xo( ,folk )<b<x,0,y)e(ﬂ17xlﬂ)du,

which can be written as fR ,mﬁ(,uu)&(u; x,y")du, where

o 1,141 1 /oy 1
~ u—(x, ;) — B X b ~ un- —x, 'n
A(”;xs y/)_X()( ( y>ﬂ ) (QC?H’J/) ( < y>ﬂ )

ﬂlxl)n ,lel
—(x', ¥ — Blxtb ~ —(x, Y ) !
_XO( e B(r.0.y)e(— 7).

. ~ . 1
It is easy to see that [A| < D -min[1,u - (/Sllnlxlll + ﬁllxllmiln(l,\xll)

split the u integral into two regions. If [u| < w179, we can use the second of the
two bounds on A to obtain a contribution D=9 |42 to (6.22); if u > u~1/°, we

)]. Using this, we
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622 Y. Deng, Z. Hani

can use the first bound and the weighted norm || (y)/3y|| 11 to obtain a contribution
w~2D2% to (6.22). This finishes the proof. O

With the help of Lemmas 6.2-6.5, we can now prove Proposition 6.1.

Proof of Proposition 6.1 We start with some simplifying notation and reductions. Set
= (X1,...,Xxn) € R, y:=01,.-.,Yn) € Rin g = (s1,...,5,) € R", @ =
(21,...,,) e R" where Q; = (x;,y)p, and u = L25. We will also use the no-
tations like x <j := (x1,...,x;) € RY and similarly for the other variables y and €2.
Write W(x, y) = W(x, y)Y(x,y) where Y is a smooth function supported in the
set described in (6.3), namely

—aj\_ (i—bj
() (6.23)

T, =[] xo(Z

j=1

where fcvj and yNJ are as in (6.3), and we may use a different x¢ as said in Sect. 2.3.1.
Also note that we can assume (by rearranging the indices) that if j' =< jthen j' < j.

Set K := (10d max )\j)_1 L=V and write (with ¥ being the Fourier transform on
R™)

S= > W(x,y)‘IJ(MSZ)=/RnM_"@(M_IS) > W(x,y>e<s-sz>}ds

(x,y)ez3n (x.y)ezn

s TS
=/Rnu U (u 1s)J]:[lxo(E’)[...]ds
+/]R —"ww—lw(l—ﬂmff)[ 1 ds

=: Imajor + Iminor-

e Major arc contribution: By Poisson summation, there holds

Imajorz/Rl,U«_n@(M_ls)HXO(%)[ Z / e(g x+h-y
j=1

(g h)Esz"
+L7%s- Q)dxdyi|ds
n
:LZdnufn/ @(,Ugfls) HXO( |: Z / Wi(x,y)e(Lg-x
Re Jj=1 (g,h)ez2dn

+Lh-y+s- Q)dxdy]ds

— [ 2dnn (/ @(Mls)[/ W(x, ye(s - ) dxdyj| ds
R” R2dn
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Full derivation of the wave kinetic equation 623

— /R @(,rls)<1 — on(%)> [/Rm W(x, y)e(s - Q) dxdy:| ds
j=1

+/ W~ s)]"[xO [ / Wx, y)e(Lg - x+Lh-y

Jj=1 0£(g,h)eZ2dn

+5-Q) dxdy]ds)

= Imajor-A + Imajor—B + Imajor—C-

Noticing that Iyajor-a is nothing but the integral in (6.6), it remains to show that
Imajor-B»> Imajor-C and Inminor can all be bounded by the right hand side of (6.6).
To bound Imjor-B, We use the following bound:

C"*(Aq. 2d
ﬁ ” W ” L1(R2dny- (624)

W(x, y)e(s - Q) dxdy‘ <

R2dn

This bound is obtained by writing
/ Wi(x, y)e(s - Q)dxdy
R2dn

_ W(s,n)[/ T(x,y)e(s-x+n-y+s-sz)dxdy}d§dn,
RZdn RZdn

and applying stationary phase (when [s;| > 1) in the inner integral (or using the
Fourier transform of the Gaussian since the phase is essentially the difference of
two Gaussians). Using this bound, we can estimate

deorB = (C+)n()\l A )ZdLZan—nZ/ SJ ddS/ l_[/ Sk ) ddsk

Isj|>=K k£j

< (C+)n()\.] .. ')L”)zdLZan—nK—(d—l) 5 (C+)n()\.] .. ~)\'n)dL2an_nL_U~

Moving to Imgjor-c, We write

Imajor-C =L2dnﬂ_n /Zd W(Ev nH (&, n)d&dy,

HEm:= Y, /ww s)]"[xo / Y(x, yel(Lg+§) x

0#£(g, h)ezzdn

+ (Lh+n)-y+s-R]dxdyds.

Recalling the form of W in (6.4), it will be enough to show that
4
|HE m| < (CHA+[E[+ DO - ) LTV Wy |11 (6.25)
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624 Y. Deng, Z. Hani

For each j ¢ J, we use a partition of unity of R”~!/I subordinate to cubes of size
1 in order to write:

v@UD= > @,
kezr—1

() i supported in a unit cube of R" I, Since | e L'(R"~V), it is

where each W,
enough to obtaln the bound (6.25) with W! replaced by lIlf'(). In what follows, we
will omit the superscript («) and just assume that W is supported on a unit cube of
R =1,

Since the sum is over (g, h) # 0, let 1 < £ < n be the largest integer such that
(g¢, he) # 0. It is enough to estimate the contribution for each fixed 1 < ¢ < n since
polynomial losses in (6.25) can be absorbed by modifying the (C™)" factor. As such,
by abusing notation, we may assume in the definition of H (&, n) above that for some
fixed 1 <€ <n, the sumin H (&, 5) is over (g, h) -, € Z*?“=D (g, hy) € 721\ {0},
and (g, h)-¢ = 0. Hence,

Hew= Y [ 7ds<zl_[xo O BT SRR

(g.h) ¢ (224! R

Fooe(s<pox<p, yop) el(Lgg+E ) Xx<e+(Lhee+n_p) Yoy

+S<€'9<Z],
where
= Ti—aj. Fi—b,
Yooty = [ [ xo(=—")x0(55—), (6.26)

j=1 ! !

Foo(S<e,X<0,y-p)

Xp — ag e — be S¢
= Z dSl/]Rdeldyl'XO( » ))(()( e )Xo(E)ng(ng,xslvygz)

0(ge, ez '’

e[(Leg+&p) - xg + (Ldg +n¢) - ye + 50 - ¢,

and

G<p(s<¢, X<¢, .Y<e)

:=./R” Zds>/z ]_[ XO ‘I’(M 's)

j=t+1

n ~ ~
Xj—4aj yji— bj
JR2d(0—0) sl j:lll xo{ Aj )XO( ) )

e(€>€ 'x>e+7l>z'J’>z + 850 Sl>€)-

Notice that G<¢(s<¢, X <¢, ¥ <) only depends on the variables (x <4, y <) through
the possible occurrences of these variables in x; and J; in the xo factors when j >
41,
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Full derivation of the wave kinetic equation 625

We start by bounding G <, by applying Lemma 6.2 (n — £) times starting with
the last integration variables (s, X, ¥,). Indeed, by induction, one can show that
after integrating in (Sg41, Xk+1, Yk+1) for some £ <k <n — 1, we end up with an
expression of the form given in (6.10), with a € a; + {0, xp, £yp} and b € by +
{0, £xp7, £y} (cf. (6.3)) and D (sk, xk, yr) given by

n
— (5K SiNG (), —1
@—XO(K)/W% dS>k/RZd(”7k) ]_[ XO(K)\I»’(M )

j=k+1

n -~ ~
Xj—4aj v —b;
) /]R%’(n—l) Eordyor jgrl XO( Aj )XO( Aj )

e Xok+Nop Yoi + 55k Rp)

which satisfies the bound in (6.9) with
D < (CH" Ot ) W,

uniformly in the parameters (s <, X <k, y o) and together with all derivatives in the
parameters (x <k, y_;). Note that, if we differentiate ® in x; and y; at most 10d
times in (6.9), these derivatives may fall on some of the xo factors; however even
if we do this at every step of induction, each single yo factor will be differentiated
at most 20d times in total, because X; (and similarly 3;) depends only on x; and at
most one other variable.

This gives that Xo(%)Gge ($<¢, X <¢, y<¢) satisfies the conditions of part (2) of
Lemma 6.2 in the (s¢, x¢, y¢) integration (with condition 2(a) holding if £ € J and
2(b) if £ ¢ J). Thus, for any multi-indices e ¢, f_, satisfying |ak/, |Bx| < 10d for
each 1 <k < £, it holds that

B(
sup |0y =L dy < F<e(S<e, X <e, ¥ <¢)

S<¢

_4v _
< (L4 1&]+ neDL™10 (CH" G )21y [l 1

which allows us to start applying estimate (6.12) inductively starting with the
(S¢—1,Xx¢—1, ye—1) integral all the way to the integral over (s, x1, y1) giving the de-
sired bound in (6.25).

e Minor arc contribution: Now we move to bound the contribution of the minor
arc. This can be written as a sum of 2" — 1 terms of the following form: For any set
F c{l,...,n}suchthat |F| = f > 1, we consider

Linor =1 " /R nl_[m(%)l_[x()(%)ﬁw—ls) > W(x,y)e<s-sz>}ds

jeF j¢F (x,y)ez3dn

e / W (& mB(E. 1) dédn
RZdn
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s = | TG 1o
jeF

JEF

x[ Z T(x,y)e(s-52+x~§+y~7])]ds,

(x, y)eZzL""
where Y is as defined in (6.23). We shall show that:

[[e)*¥ )

JjeF

IBEE, )| S(CH'L¥M Y (o) , (6.27)

LOO

uniformly in &, 5, a;, and b; (1 < j < n). Once this estimate is established, we use
the bound

[[te))* (o)

JjeF

=C"@MN!
LOO

by (6.4)—(6.5) and that 1 < f <n < (log L)3, to conclude that |B(&,n)| can be
bounded by the right hand side of (6.6) as needed.
To prove (6.27), we can bound

s <[] 15) "

L1hs2
JjeF

[[e)?%@)

jeF

Lo©

Afterwards, we apply n times Lemma 6.4, going backwards in n, using part (1) for
j ¢ F and part (2) for j € F. Each application gives a factor of )\‘j‘.‘l L% for j ¢ F and
)L‘}szd_” for j € F, which gives (6.27) and finishes the proof of (6.6).

e Deducing (6.8) from (6.6): We again start by writing

M”/ W(x, y)¥(uf)dxdy
R2dn

=/ W(E,n)[u"/ ‘IJ(/LSZ)T(x,y)E(x-E+y-ﬂ)dxdy]d§dn, (6.28)
]RZdn RZdn

where Y is defined in (6.23) and recall that we have rearranged indices so if j' < j
then j' < j. Next, we start applying part (2) of either Lemma 6.3 or Lemma 6.5
for the dx;dy; integral (depending on whether j € J or not) backwards in n start-

ing with the dx,dy, integral. At the first application, we replace either %‘iﬂ”)

by p-v.gr or pW(uRen. uQ) by [fr W (R, 0)dwy] - §((xa, yu)p) plus an

additive error term that can be bound by AzdL_%(l + 1&x] + [nx]) uniformly in
(an,bn,X<n, ¥y, & -, N<y). The contribution of this additive error term to (6.28)
can be bounded by repeatedly applying part (1) of either Lemma 6.3 or Lemma 6.5
(using the more general form of part (1) of Lemma 6.5 if needed) and gives a total
contribution

< (€Y't /R W (& )I(1+ &l + lnl)dgdn
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1 o~ —
<€D Op oo A LTS (| W1 + 1AW 1 1) - (6.29)

This leaves us only with the main part contribution which corresponds to replacing
(6.28) by

/ W(Ev n)[ﬂn_l / ‘Ij<n(lL9<n)T<n(xv y)Fn—l(x<ns J’<n,§n, nn)
R2dn R2d(n—1)

e(x<n : §<n +Yan: 77<n) dx<ndy<n:|dgdn’
where Y, is as in (6.26),

/ V(Qy,..., 21,0y dw,, ifné¢lJ,
R

lI’<n(Qla~--aQn—1)= Q:
%068) o QUIeD. ifne .
jed\in} J
and
A;l — Up N’il _bn
/ 8 1)) 00 (Y 0 (P20 e (e - & + i - 1) dxudyn,
R4 x R4 )»n )‘-n
ifn¢J,
Cy_1=

1 -7?1’1 —dp )Tn - bn
V. . . dx,dy,,
p ./R‘lx]Rd X yn) g XO( o )XO( o )e(xn &n + Yn - M) dxudyy

ifnel.

This allows to repeat the above argument n — 1 times, each time producing an additive
error term bounded by (6.29), until finally (6.28) is replaced by I,pp in (6.7). This
allows us to bound I — I, as in (6.8), but the bound of /., follows from the same
arguments, so the proof of Proposition 6.1 is complete. g

6.2 Asymptotics of /Co for regular couples Q

Using Proposition 5.1 and Proposition 6.1, we can calculate the leading term in the
asymptotic expression for the correlation Kg(t, s, k) defined in (2.24), as well as
upper bounds for the error term.

Lemma 6.6 Let T be atree of scale n. For any node n € T define juy, to be the number
of leaves in the subtree rooted at n. Then, for any n € N, consider the values of jim
where m is a child of n, and let the second maximum of these values be i3, Then we
have

]_[ ne < ) (6.30)
N
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Proof We prove by induction. If n = 0 the result is obvious. Suppose the result holds
for smaller n, for any tree 7T, let the subtrees be 7, 7T, and 73 from left to right,
with scale ny, na and n3. If the root of 7 is t and root of T} is t;, then by induction
hypothesis we know that

3n1+n2+n; n

[ ““:“"H [T ri= oniDem T D S T
neN j=1neN;

6.31)

In the last inequality we have used that n = nj 4 ny 4+ n3 + 1, which also implies
2n+1<3-max(2n; +1,2ny+1,2n3+ 1), and that 7 equals the second maximum
of 2n; + 1 (1 < j < 3). This completes the proof. 0

Proposition 6.7 Let Q be a regular couple of scale 2n where n < N, then we have
Ko(t,s,k)=>.,Ko. z(t, s, k), where Z C N s the set that appears in Proposi-
tion 5.1, and

Ko z(t,s, k)

— 2—2}1 8” *

zl P / Bo.z(1. s, @IN\Z1) daIN"\Z]- M (k)

+Z,

where the error term X% satisfies ||<%’||Xﬁofi < (CT8)'L™2". The expression M*Q 7 (k)
is defined by

+)
oz = / [Tmntko- TT s@u]]g —da (6.32)
leL* neN¢ch\z neZ

Here k, € R? for each node w, and ¥ denotes the linear submanifold defined by the
equations kyx =k and ky = ko, — ky, + kn; for each branching node n (Where np,
ny and n3 are children nodes of n from left to right), and k; = ky for each pair of
leaves {1, 1'}. If we choose all the leaves of sign + and list them as 1, ..., 11, then
there is a linear bijection (up to a permutation of indices) from X to some hyperplane
{Ckyys ooy kg, ) s £k, - -k, =k} where 0 <m < n. The measure do is then
defined by do = dky, - - - dky,, . The product ]_[E;):* is taken over all L e {11, ..., ly11},
and Qn = Q(kny, kny, kny, kn). The singularities 1/ Qy, are treated using the Cauchy
principal value.

Proof We start with the summation in (2.24). Since for any decoration we must have
Cw Qw = —n 2y for any branching node pair {n, n } as in Proposition 4.3, in (2.24)
we can replace the factor Bo(t, s, 8L - Q[N*]) by Bg(t s,8L% - Q[N*"]). Then, by
Proposition 5.1, we may write (2.24) as a sum in Z of terms

5 o(SL2Qp)
Kozt s, k)= (2Ld—1> ' (Q)]_[ p— Z 1_[ x T SL2Q,

neZ nezZ
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(+)
x Bo z(t.5,8L*QIN™\Z]) - [ | nin(kn).  (6.33)
leL*

To analyze Kg z, we can use the formula (5.8) to write [3'9, z as an integral in
(X1, X2), and apply Proposition 6.1 for fixed (A1, A2). For simplicity of presentation
we will not explicitly show this step below, but notice that this allows us to estimate
the error term in L 3.2, type norms such as X*. We carefully note here that the bound
(5.9) involves dlfferent choices of p; however for Proposition 6.1 we only need (5.9)
for |p| < 10n, so this leads to at most C" loss, since the number of such multi-indices
0 is at most C".

Before applying Proposition 6.1, we need a few preparation steps. First, for any
n e N" we define x, = ky, — kyn and y, = kn — kn,, 50 we have Q, = 2(xy, yn)
by (2.6). It is easy to check by induction that (x,, y»), where n € ' <h (there are n
such nodes n), are free variables and uniquely determine a point on X, and the linear

mapping
(Xn, Yn)nener < (kiys oo kiy,) (6.34)

is volume preserving and preserves the lattice (Z‘I{)Z”. Therefore, we can rewrite the
sum in (6.33) as

28 L% (xy, ~ ,
Z € - l_[ XOO( > (xn yn)ﬂ) 'BQ,Z(I7S725L2(xnayn>ﬂ :neNch\Z)
(Xn,yn)meNeh  neZ 28L%(xn, yn)p

X W (x[N"], yINY), (6.35)
where € = €4 and
2n
WIN Y, IV = [ [ nintkey) - nin(Ek £k, - £ k). (6.36)
j=1

Next we will replace the € in (6.35) by 1; the difference caused will be an error
term that can be handled in the same way as the main term, and will be left to the
end. Then, we decompose (6.36) into functions supported in |k[j — a;?| <1, where
aj € 74 for1<j<2n,and | £k £k, - ki, — as, 1| <1, using a partition
of unity. Since nj, is Schwartz, for such a term we can freely gain the decay factors
H?’:{l (a*)~ —80d. thig easily allows us to sum in (a*) and also addresses the weight
(k)*%4 in the X40d norm, as |k| < (2n + 1) max |aj l.

Now we can apply Proposition 6.1. First (6.2) is true, because it is true if W is
regarded as a function of (kg j)1§ j<2n- Moreover the change of variables (6.34) is
volume preserving, so it also preserves the Fourier L' norm, and similarly the Fourier
L' norm with one derivative gets amplified by at most O () under this change of
variables. Second, the function W here clearly satisfies (6.4)—(6.5) due to Proposition
5.1, so we only need to verify the support condition (6.3).

Since the condition (6.3) allows for translation, we may assume a;’.‘ =0 in the

previous reduction. Then we have |k| < 1 for any leaf [. For any n € N" let v’ be
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the branching node paired with n, and let d (n) be the maximum depth, counting from
the root node(s), of n and n’. Define the partial order < such that n; < ny if and only
if d(ny) > d(ny). Now for any n € A/ h consider the variable xy (the other one yy,
is the same). We may assume d(n) equals the depth of n, since otherwise we have
Xn € {&xw, £yn} and we can perform the same argument for n’. Let nj(l1<j<3)
be the children nodes of n, then x, = ky, — ky. Using the notations in Lemma 6.6, if
Mﬂ] = max(unl ’ ,U«nz ’ Mng)’ then

IXn| = lkny — kns| < 2max(in,, iny) = 215.

Suppose now max(fin,, fn,, fny) 1S NOL by, , SAY itiS Ly, (the case of uy, being sim-
ilar), then n; is not a leaf. Let its children be ny;, ny; and ny3 from left to right, then
consider max(fln,;, Uny,, Mnys); We assume this maximum is not py,, (otherwise it
is not y,, and we can argue similarly replacing x,, by —yn,), then

[0 + Xn, | = lknyy — kngl < gy + fny < ,U«flz + pL?l.

Moreover, since nj is a child of n, by definition we know that either n, < n (if
ny € Ny or ny < n (if ny is paired with some 1) € N, note also that xp, €
{j:xn/z, £y, }). Summarizing, in any case we get (6.3) with A, = 2max{uj, Ma_,}
where n; is a child of n that is not a leaf. Note that by (6.30) we also have

l_[ An SC"+1.

neNch

By translation, the same bound is true for any (a;f), with suitable choices of (a;) and
(bj) in (6.3).
With all the preparations, we can apply Proposition 6.1 to get

(6.35):(LZd*%*‘)”/EQ,Z(t,s,a[/\/ch\Z])da[Nch\Z]-/W(x[Nch],y[Nch])

1
x]_[z(

neZ xm)’n)ﬁ

[] 8Qn ya)p) dxINPIYIN"1+ 2y (6.37)
neNeh\z

with ||%()”Xf40()cd < (CTLX=25-1yn =2 Note that in the X*%¢ norm we are taking
supremum in k for fixed (A1, Az), which is allowed because the bounds obtained
by applying Proposition 6.1 are uniform in k. Then, reversing the change of variables
(6.34), we can rewrite the dx[N"]dy[N"] integral in (6.37) as do integral in (6.32),
so this integral becomes M*Q ,(k), noticing also that 2(xy, yn)p = . This already
proves the desired result, provided we replace the €¢ factor by 1.

Finally, consider the case when €4 # 1. By definition (2.8) we know that €¢ #
1 only when some x, = 0 or y, = 0 (or both). If this happens, say x, = 0, then
Q, =0. Also y, € Z‘z satisfies |yy| < Cn < C(log L)3 up to translation, so it has
at most Ld(log L)3d choices. Then in the summation (6.35) we may first fix (xy, yn)
which has at most L% (log L)3? choices, then treat the remaining sum in the same way
as above. We can easily verify (for example by using Sobolev embedding) that the
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assumptions of Proposition 6.1 are preserved upon fixing some of the variables xy,
Yn or . Since the summation in (xy,, yn) only gives Ld(log L)3d < [2M-25.1-1/2,
we can see that the bound satisfied by any such difference term will put it in the
remainder term Z%. d

Remark 6.8 The main term M*Q (k) defined by (6.32) satisfies the bound

sup (9P M , (k)] S (CHY" k)~ (6.38)
|p|<40d '

In fact, if without derivatives, this bound follows the same argument as in the proof of
Proposition 6.1 (the decay in k can be included using that nj, is Schwartz as above).
Suppose one takes a 0y derivative in (6.32), then since the do integral can be rewritten
as dx[N° Ch]dy[/\/ h]. the corresponding result will have the same form as (6.32),
except that one of the input functions nj; is replaced by its partial derivative. Iterating
this fact we can obtain control for 9° M*Q , for |p] <40d.

Remark 6.9 The integral
TBo 7(t,s) = / Bo.z(t,s, alN"\Z]) da[N"\ Z] (6.39)

will be studied in detail in Sect. 7. For now we just note that it satisfies the simple
bound | TB9. 7zl x.. < (CT)™, which easily follows from (5.9). This, together with
Proposition 6.7 and (6.38), implies that || Ko(t, s, k) ||XﬁJOCd < (CT8)" for each regular
couples Q of scale 2n.

We conclude this section with a similar asymptotic formula for regular trees.

Proposition 6.10 Let T be a regular tree of scale 2n with lone leaf l,.. Let N be the
set of branching nodes, and L the set of leaves. Define the function (slightly different
from (5.1)—(5.3))

Aty s, a[N]) = / ]_[ ebnTiontn qp (6.40)
DneN

where the domain
D={t[N]:tq,yr >s; 0<ty <ty <t, whenever v’ is a child node of n},

with (I,)P being the parent of l,.. For t > s, consider the expression

S 2n~ (+)
Kfr(t,s,k)=<m) L)Y eq- A, s,8L7 - QIND - [ nintko.
9 leL\{l,}

(6.41)
Here the sum is taken over all k-decorations 9 of the regular tree T, ¢(T) is de-
fined similar to (2.22) but with N'* replaced by N, and the product is taken over
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[ € L\{l,} that has sign +. Then, we can decompose IC;- = (K%—)app + F*, where
(K3 )app(t, 5, k) is the sum of at most 2" terms each having form §" - JA*(t,s) -
M*(k), and we have the bounds

1T A [ x10 S (CH, sup [P M*(K) S(CH", 1% g0 <(CTO LT
lp|<40d loc
(6.42)

Proof Note that Q = (7, e) is a regular couple of scale 2n. A k-decoration Z can be
viewed as a k-decoration of Q, and we always have k|, = k. We can pair the branch-
ing nodes of 7 as in Proposition 4.3, such that £, Q. = — 1n 2y, and define Nt ag
in Definition 4.11, so in particular A%-(t, s, SL2QIN) = A7 (t,s,8L*QIN")) is a
function of 7, s and Q[N "] only.

Since 7 is formed from a regular chain by replacing each leaf pair with a reg-
ular couple, by using Proposition 5.1 for these regular couples, and analyzing the
regular chain similar to Sect. 5.2, we can show that A7 (t, s, a[N"]) has form (5.8)
that satisfies (5.9)—(5.10), for ¢ > s, with some choice of Z C N". Here the weights

(A1)7 (A2)7 and (1)8 (22)8 in (5.9) and (5.10) will be replaced by the weaker ones
(A1) + ()\,2)>‘1T and ((A1) + ()»2))%, but they still suffice to prove the desired Xjoc

and X ?OC bounds. Moreover, the product I—[E:Z\ ) in (6.41), compared to the product

]_[52:* in (6.33), only misses one factor nj, (k). Therefore, we can define the approx-
imation (K:j;')app similar to Proposition 6.7 and prove (6.42) using Proposition 6.1,
similar to the proof of Proposition 6.7. Here, due to the absence of the ni, (k) factor,
we can no longer control the weight (k)*%?, so the second inequality in (6.42) does
not have the same weight as (6.38), and the third inequality only involves the X&C
norm instead of Xl‘loq:d. Other than these, the proof is basically the same so we omit
the details. g

7 Regular couples lll: full asymptotics

In this section we further analyze the asymptotics obtained in Proposition 6.7. Clearly
the main goal is to evaluate the integral (6.39). Like Proposition 5.1, this will be done
by inducting on the scale of Q, so the operators and K functions associated with
regular chains, which are studied in Sect. 5.2, will also play a key role here. Once this
is done, we will combine these terms in Sect. 7.4 to calculate the full asymptotics.

7.1 Regular chain calculations

For any function F = F («¢[W]) we define

[G]/F:ehi%/F(a[W]) [1e7™" day, .1)

jew

if the limit exists. This can be seen as a Gaussian version of principal value integral;
clearly if F € L! then [G] | coincides with the usual Lebesgue integration.
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Lemma7.1 Let

I = Xolp 0, X11py42; - Xom—11g5 4200 X2m
be as in Lemma 5.9, for a legal partition P of {1, ..., 2m} with m > 1; in particular it
depends on (a1, ...,q,) and (U1, ..., Um), and also on the o[ A] and [ E] variables
appearing in the X, (0 < a < 2m) operators. Denote the collection of all these

variables by «[W]. For any A, consider the expression K = I(e™*5)(t). If we fix
(Ax, t) and all the  ; variables, and view K as a function of a[W], then K € L' and

/K(oz[W]) da[W]=0. (7.2)

Proof By Lemma 5.9 we know that I is a sum of an operator of class J and an
operator of class R. By repeating the proof of Proposition 5.1, we know that K € L.
Let Wi = W\{1}, we will fix aj = a;f for j € Wy, and view K = K («1) as a function
of a. Clearly for a.e. a*[W;] := (Dl;f)jewl we have K (a1) € L!, so it suffices to
prove that

[G]/K(ozl)dal =0 (7.3)

holds for each a*[W1]. Now once a*[W]] is fixed, we can simply write
K(al) = YOIeoq Y) I,u|—ecc1 G(t)»

where Y] have bounded kernel, i.e. Y1 f(¢) = fé Yi(¢,s) f(s)ds with Y] € L™, Yy is
either Id or has bounded kernel, and G is a bounded function. This gives that

K(ap) = / Yo(t, u)eS™ Y, (v, w)e™ M=) G (5) dudvdwds;
t>u>v>w>s>0
here Yy(z, s) may be replaced by §(r — s). We calculate
/ e K (@) dory :/ Yo(t, w)Y1 (v, w)e™ 15 G (s) dudvdwds
R t>u>v>w>s>0

P — _ 2.2
X/eem(v s)a1—m6 aldOl].
R

The last integral in o can be calculated explicitly and equals 6! e~ T W=/ 492, hence

_ r((v—s)z

<ot / e 47 dvdwds
t>v>w>s>0

1 _n(v—s)z
=0 / e 42 (v—ys)dvds — 0,
t>v>s5>0

/ 0K () da
R

which proves (7.3). Il
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Lemma7.2 Let

L= 1p 131y 120 - Lo +1am

be as in Lemma 5.10, for a legal partition P of {1, . 2m} that is not dominant, and
let K = 1(e™*0%)(t). We decompose I into H;ez fjjr(lag) T as in Lemma 5. 10, where

Z C{l,...,m} and Tdepends only on the variables (L1, ..., ) and a[W] with
W ={l,....,m\Z, and define_ K = T1(e"*%)(t). Then , for any choice of Z, if we fix
(t, Ao, (11, ...,,um) and view K as a function of a[W1], then K el and

/I?(a[W])da[W] =0. (7.4)

Proof This is a direct consequence of Lemma 7.1. Namely, if we carry out the con-
struction process of I in the proof of Lemma 5.10, then this I will have the form
described in Lemma 5.9; moreover as P is not dominant, there will be at least one
pair left after removing all adjacent pairs (which corresponds to m > 1 in Lemma 5.9
and Lemma 7.1), so Lemma 7.1 will be applicable. g

Lemma7.3 Let

L= gy Igytas - Lo +iom

be as in Lemma 5.10, where P = {{1,2}, ..., {2m — 1,2m}} is the dominant parti-
tion in the sense of Definition 4.4. Then we have frj—1 = €jaj and Prj = —€jaj
where €; € {£} for 1 < j < m. Given also Ag, define 1 and K associated with
Z C{l,...,m} as in Lemma 7.2. Then for any Z we have KelL' and

/l?(a[W])da[W]:/ Tt A ) AT N0l qpy  dp, . (7.5)
t>t1>>1, >0

Proof For 1 < j <m, by Lemma 5.8 we decompose

Xoo (Of])
Iej“j Iﬂj_fj“j = EﬂTlOlj 1/‘/ + ‘70‘/ Hj + R"‘/ nj»
therefore 7 is the composition of m operators, where the j-th operatoris /,,; if j € Z,
and is jaj,ﬂj —I—Raj,ﬂj if j € W. Thus T is of class J or R, so KelLl.
Now, let I* bf the operator where jaj,uj +Raj,,ij is replaced by Iejaj I,Lj_ejaj for
each j € Win [, and define K* accordingly. Then /* can be expanded into finitely
many terms, one of them being /; the other terms have form

l_[ Xoo(aj) N
€imid;
jezy T

for some @ #£ Z1 C W, where I"** depends on (i1, ..., iy) and «[W\Z], and has
class J or R; define K** accordingly. By the factorized structure and symmetry, we
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trivially have

[G]/ I L K @IWAZiD dalW) =0

f0r~any fixed (¢, Ao, (1, ---, Um), DNOticing also K** € L. Therefore, to calculate
J K(«[W])da[W], it suffices to calculate [G] [ K*(«[W]); by switching signs we
may assume €; = 1. Now K* can be written in the following form (with 7y = t)

K* = / em‘(ultl+»~-+umtm)+nikolm dey---dty
t>t;>>1,;, >0
x l_[ / eT[lC{j(Sj—tj) dS],
jEW t/' <8j <l‘j_]

therefore, for 6 > 0, we have

/K*(a[W]) []e %] da

jew

=/ N )+ T MO gL dy
t>11>>1, >0

ﬂ(Sffzf)z
-1 — - 2'
X l_[/ 0 e 49 ds;.
jew 1j<sj<tj_

For each fixed (¢#1, ..., t,), the integral in s; is uniformly bounded; moreover for any
7 > 0 we have

_m?
lim 0~le " w? dp :2/ e de =1, (7.6)
6—0 O<n<t §>0

s0 (7.5) follows. O
7.2 Non-dominant couples

For any regular but non-dominant couples, the leading term in the asymptotics ob-
tained in Proposition 6.7 simply vanishes.

Proposition 7.4 Let Q be a regular couple that is not dominant, then for any Z C N
that appears in Proposition 5.1 and any (t, s) we have (recall (6.39) for definition)

JBg 7(t,s)=0. (1.7)

Proof We induct on the scale of Q. Suppose (7.7) is true for all regular couples with
smaller scales (the base case will follow in the same way), and consider a regular
couple Q of scale 2n. As in Sect. 5.1.1, let Q be obtained from Qg and by replacing
the leaf-pairs with regular couples Q; (j > 1) with n(Q;) < 2n.
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Case 1.1f Q; is non-dominant for some j > 1, then by (5.6) and (5.7), we know
that the only way in which BQ depends on the variables oz[./\f ¢h] is via BQ thus we
can write

Bo(t. s, a[N"]) =/ Wt st s al NN - Bg (¢, s, a[N§"]) di’ds’
R2

for some kernel W. For any Z C N" let Z, = Z ﬁ/\/'j?'h and Z, = Z\Nj?'h, then the
component

l—[ Xoo(otn) -gg)z(t,s,ot[./\/Ch\Z])

nez CnTioy

of EQ must come from the components

I1 Xoo(0tn) -Bo, 7, (t.5.alN\Z1]) and

Tic
neZy CnTwioy

o
TT 22 5.1, 57, @V Za1)
CnTioy
nezp
of BQ and W respectively (with at most a = sign), where Wz, is a suitable kernel,
and that we must have

Bo. z(t, s, a[N"\Z])

=/ZWZZ(z,s,t’,s’,oz[(/\/ch\/\/;’1)\22])-EQJ.,Z1 (', s" a[N¥"\Z1]) dr'ds’".
R

This, together with the induction hypothesis (7.7) for ng, 7, clearly implies that
(7.7) also holds for EQ,Z.

Case 2. If Q; is dominant for each j > 1, since Q is not dominant, by Definition
4.17, we know that Qp must be a regular double chain with at least one of the regular
chains being non-dominant, say 7 is non-dominant. Following the proof of Propo-
sition 5.1 in Sect. 5.3, we see that the only way in which Bg depends on the vari-
ables (ocf, ...,a;l'+) is via the function K = K(t,af, cee, Z+’)‘ A+ ...,)L;m+)
in (5.30); in the same way as in Case I above, we have

gQ’Z(t,s,a[J\/'Ch\Z]):/EZ+(I,)\8',MT,...,u;+,5[W+])

x W(s ad A o oa aWil)dag [ dafda). (7.8)

74

m*’

Here we assume that ZT is the subset of {1,...,m"} appearing in (5.31), W+ =
{1,...,m™\Z*, and Z Cc N" is determined (among other things) by Z+, W; =
(NMZ)\{n] : a < b} where the set {n} : a < b} is the one appearing on the right
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hand side of (4.2), K 7+ 1s the function T (e" ixg ¥)(t) appearing on the right hand side
of (5.31), and W is some function. Note that ] = A} + ) and & = o] + €/ A}
is a translation of a;r, it will suffice to prove that for any fixed (¢, Ag, ufr, R ,u;;Jr),
we must have ‘

/ Kz+@WH)da[w*]=o. (7.9)

However, this K z+ 1s just the function K defined in Lemma 7.2, so (7.9) follows
directly from (7.4). Note that, should any modification procedure described in the
proof of Proposition 5.1 be needed, where some j € Z" is moved to W and &j =

+ +a4 + Xoo(&5)
o +€; A, is replaced by o) in the factor i
equality due to the factorized structure. In addition we also have

this would not affect the above

Xool@] + €00  Xool@))\ |
o i g7 )da; =0 (7.10)
R ejm(oej +ejka) €; mia;
This completes the inductive proof. g

7.3 Dominant couples

For a dominant couple Q, the corresponding leading term, which contains the integral
of Bg,z, will be nonzero due to Lemma 7.3. Moreover, in this situation it is easy to
check that any set Z that appears in Proposition 5.1 must be special as in Definition
4.18.

Proposition 7.5 Let Q be a dominant couple and Z C Q" be special. Then the
function JBg z(t,s) defined in (6.39) is independent of Z and may be denoted
JBo(t,s). Moreover, these~ functions satisfy some explicit recurrence relation, de-
scribed as follows. First TBg(t, s) =1 for the trivial couple.

Suppose Q has type 1, then it is formed from the (1, 1)-mini couple by replacing
its three leaf pairs by dominant couples Q; (1 < j < 3). Then we have

- min(z,s) 3 -
JBol(t,s) = 2/ []7Bg, . v dr. (7.11)
0

j=1

In particular jgg = jgg (min(t, s)) is a function of min(¢, s) for type 1 dominant
couples Q.

Suppose Q has type 2, then Q is formed from a regular double chain Qq, which
consists of two dominant regular chains, by replacing each leaf pair in Qg with a
dominant couple. Using the notations in Definition 4.11, we now have that the j-th
pairin P* is {2j — 1,2j}, and that Qyp is trivial or has type 1. Then we have

mT
TBott.5)= [ / 1780, ... 10T Bo, .51
t>t>>1, 4 >0 Js>51>->5, - >0 j=1 ’
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mt m-

x ]_[JBQ L(5j.5)TBg, _,(sj.57) - TBg,, (min(ty+ . 5,,-)) [ e [ [ ds;-
j=1 j=1

(7.12)

Here we understand that to =t and so = s.

Proof We induct on the scale of Q. The base case Q = x is obvious. Now suppose
the result is true for dominant couples of scale smaller than n(Q), it suffices to prove
for Q and any Z C N that JBg z(t, s) is given by (7.11) if Q has type 1 and by
(7.12) if Q has type 2.

Case 1. Assume Qg is a (1, 1)-mini couple, and that the three leaf pairs are re-
placed by Q; (1 < j <3) in Q. Then by (5.24) we have

Boz(t.s. o:NCh\Z])_/ ]_[c (A2j1. haj. [N\ Z;]) ]_[dk

j=1
N
X / / eﬂiar(tl —S|)e7'[l'()»*t1 +A*51) dt] dS] (713)
0 JO

where (A%, A**) = (A1 + A3+ A5, A2 + A4 + A6). Here C; are the functions defined in
(5.8) associated with the couple Q;; note that some C; may actually be the functions
defined in (5.8) after switching the variables A2j | and X, but this will not affect
the final result as will be clear later.

When (A1, ..., Ag) are fixed, we know that the (z1, s1) integral in (7.13) gives an
L' function K (o), and we can calculate that

/ K (@) dae = [G] / K (ote) dere = lim / K (ere)e™% dg

t s
. - sk it —¢ _ 2
hm/ / em(A H+A Al)dtldsl/em(tl s1)oe—mOa; da,
6—0Jo Jo R

t N ok s _ mw(ty—s] )2
:91irr})6’_1/ / TN 0T TG s (7.14)
- 0

Like in (7.6), with fixed 71, the 5| integral tends to 0 if #; > s, and to 2™+ if
t1 < s. This gives

min(z,s) )
/ K (oty) doy =2 / Tt treOn gy,
0

Now we plug this into (7.13), and integrate in (A, ..., A¢). Note that by definition
(cf. (5.8))

/]Rz Cj(hajmts haj, @INGNZ e 21200 gy dda,
=Bo, 7, (1.1, 2N\ Z)), (7.15)
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and this expression does not change even if the variables A;;_1 and A, are switched.
Thus

- min(z,s) 3 -
/BQ,Z(t,s,a[Nch\Z])dan/ [1Ba,.z,t. 1. alN\Z; 1) du,
0

j=1

so after integrating in a[J\/'fh\Z 71 (1 < j <3) and applying the induction hypothesis
we get (7.11).

Case 2. Now assume Q) is a regular double chain. We fix Q and Z, and define
the relevant variables and objects, such as a;_L, Zjew Z * and others, in the same
way as in Sect. 5.1.1 and the proof of Proposition 5.1 in Sect. 5.3. As in the proof of
Proposition 7.4, we may neglect any modification procedure described in the proof
of Proposition 5.1, where some j € Z* is moved to W' and & = o + €/ A} is

Xoc( /)

replaced by a in the factor , because the difference produced will contribute

~ €/ ./
0 to JBg, 7 upon integrating in all the «; variables, thanks to (7.10). Therefore, we

may omit the Xf J 1) factors and focus on the function BQ 2(t,s,a[N“"\Z]). By
/

(5.28) we have

Bo 7(t.s.a[N“"\Z])

me¢ 2
ch
1_[ 1_[ ch,e,L(AZj—l,e,u )\2j,e,u Ol[N, é L\ j,e,t]) d)\Zj—l,e,L)VZj,e,L

ee{x} j=1:=1
X /Clp ()"lp,-i-, )\lp,—a a[j\/};h\zlp]) d)\lp,-i-d)‘lp,—

) KX ad, wf @ IWDK ™ (5,05, iy s i, @ (W),
(7.16)

Here Z; ., and Z;, are subsets of N Ch , and N ch respectively, and C; ¢, and Clp are
the functions defined in (5.8) assomated with the couples Q; ., and Q;,; again note
that the order of the two A variables involved in each C function may be switched, but
this will not affect the final result. Moreover, K=, which depends on ¢ (or s), A(“)—L and
(/Lf, e, u,jn:i) and &'i[Wi] are the functions defined in Lemma 7.2 and Lemma
+y %

. ~ =+ + _ + +
7.3; here we have o —a +e5A5_ ](whereej _gni,l)andﬂj )‘2] ]+A2j

forl<j< m¥, and Aa = )\a,i,l +Agxoforl <a< 2m*, and )‘(j)E = Ajp,+. Now, by
applying Lemma 7.3 to the functions K*, and using the equality (7.15) with (Q;, Z;)
replaced by (Qj ., Zje,) and (Qyp, Z;p) to integrate over the (Aq ) and (Ajp +)
variables, we get that

/EQ,Z(t,s,a[Nch\Z])da+[W+]da—[W—]

-/ / ndundsf
t>t1>>t, 4+ >0 J5>51>->5, 7>0
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m+
X H Bo, ., (tj. tj. NS \Zj s \DBg, , ,(tj. 1), N \Zj 4 2])
j=1

X ngp (s Sm—> O5[-/\/'1;‘;}1\Z1p])

:ls‘

(SJ’SJ’a[N 1\Zj - 1])BQ,_2(S,,s,,a[J\/‘_2\Z _2D.

_/—]

.
Il

(7.17)

Now by integrating over « N;}é L\Z j.e ] and a[ N ch \Zp] and applying the induction

hypothesis, and noticing that 7 B, o)l t,s)=J B, o) (min(, s)) because Qy, is trivial
or has type 1, we obtain (7.12). Note that in the factor BNQIP in (7.17) the variables

ty+ and s,,- may be switched, but this has no effect on the final result due to the
symmetry of JBg,,(¢,s) int and s. O

7.4 Combinatorics of enhanced dominant couples

Finally we put everything together to obtain the full asymptotics. We use 2 = (Q, Z)
to denote enhanced dominant couples, where Z is s special subset of N,

Proposition 7.6 We have

Y. Kot.t.b= 22—2"8"; (Q)H— TBo(t.1) - My (k) + %,
n(Q)=2n nez EnT0
Q  regular
(7.18)

where ||%||Xf10d < (Ct8)"L~2Y. Here in (7.18), the first summation is taken over all
regular couples Q of scale 2n, and the second summation is taken over all enhanced
dominant couples 2 = (Q, Z) of scale 2n. The quantity M’y (k) = M*Q,Z(k) is de-
fined as in (6.32).

Proof This follows from combining Propositions 6.7, 7.4 and 7.5. Note that the num-
ber of choices for (Q, Z) is at most C", so the accumulate error term & still satisfies
the same bound as in Proposition 6.7. 0

PropOSItlon 7.7 Let 2 = (Q, Z) be an enhanced dominant couple. Let M pk) =
4 (k) be defined as in (6.32). Then, the expression /\/l* (k) depends only on the
eqmvalence class " of 2, so we can denote it by M 2/(k) Moreover, it satisfies the

recurrence relation described as follows. If 2" is an equivalence class of type 1, then
it is uniquely determined by (21, 22, 23), see Sect. 4.5.2. In this case we have

3
*%,(k) = /(]Rd)S 1_[1./\/1%(](]')3(](1 —ky+ k3 —k)
J=

x 8(Ik1lj — lkal + ks[5 — k|5) dki dkadks. (7.19)
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Next, if " is an equivalence class of type 2, then it is uniquely determined by m >
1, the tuples (I, cj, X1, Zjp2) for 1 < j <m, and ¥ trivial or of type 1, see
Sect. 4.5.2. Then we have

m
(k) = My (k) - [T MG ), (7.20)
j=1
where for each 1 < j <m, if (I;, c;) = (0, 1) we have
(o = /( o My () My (k3) -8k — k2 + ks — k)
x 8(lk1 |5 — kol + lks|5 — Ik|3) dkydkadks; (7.21)
if (Ij,c;)=1(0,2) we have
(o = /@W My (k)M (k3) -8k — k2 + ks — k)
x 8(lk1 |5 — kol + ks[5 — |k|3) dkydkadks; (7.22)
if (I,c;)=1(0,3) we have
M () = /( o My (k)M (k2) -8k — k2 + ks — k)

x8(lk1lf — Ikalj + Ikslj — k|3) ki dkadks. (7.23)

If T; =1 then the corresponding formulas are the same as above, except that the
factor

8(lk1lg — k2l + kalp — 1kI5)
should be replaced by

1
k15 — lkal + ks |3 — kI3

Proof We prove by induction. The integral (6.32) has two parts: the measure do’, and
the integrand

+)
1

ZQ=[Tmtko- TT s@u]] o
lel* neN<h\z nez M

It is easy to see that if Q is formed by the smaller couples Q; as in Definition 4.11,
then .7 (Q) is equal to the product of .#(Q;), multiplied by the product of the §(£2)
(if the corresponding I; =0) or 1/ (if I; = 1) factors appearing in (7.19)-(7.23),
where Q = |k |/23 — |k2|}23 + |k3|/23 — |k|/23. Therefore, to verify the recurrence relation
we just need to consider the measure part do'.
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Recall the linear submanifold ¥ and the definition of do in (6.32), which we shall
denote by dog here. If we choose one leaf from each leaf pair to form a set X" (the
exact choice can be arbitrary and does not affect the formula), then, as described in
Proposition 6.7, there is a set ) C X of odd cardinality, such that

dog = 5(2(11@ . k) dk[X).

ey

Now, suppose Q has type 1, which is composed of three dominant couples Q; (1 <
J =<3); let (X;,);) be associated with Qj, then we have X = X U X, U A3 and
Y=Y UM, UYs. Then

3
8(ky — ky + k3 — k)dkydkydks [ | dog,
j=1

3
=8k —ka+k -k ]] [a > (k) — kj>dk[Xj]i|dk1dk2dk3

j=1 [E:)}j

=8 ( > (ko) - k) dk[X] = dog.

ey

This can be verified, for example, by integrating any function against the measures.
Suppose Q has type 2, we will only consider the case m = 1, since the gen-
eral case follows from iteration. Using the notations of Definitions 4.11 and 4.18,
suppose (m*,m™) = (1,0) and c| = 1 (the other cases are similar), and denote
(Qip» Q14,15 Q1,4,2) =(Q1, D2, Q3), then X = A U A U A3 and Y = )y, hence

3
dkydks [ | dog,
j=1

’;

gtk

=2

<Z(j:k[)— )dk[X ]dkgdkg (

ley;

= S(Z(j:k[) - k) dk[X] = doo.

ey

> (ko) — )dk[m

ey

Therefore the measure dog satisfies the desired recurrence relation, so the result is
proved. g

Proposition 7.8 Let 2 be an equivalence class of enhanced dominant couples such
that for 2 =(Q, Z) € Z we have Z # &. Then we have

> (T

2=(0,2)eZ “neZ

! ) -JIBg(t,1) =0. (7.24)

Il
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Proof First |Z| is constant for all 2 € 27, so we may replace the product in (7.24)
by [[,cz ¢n- Denote this reduced sum by G g~ (). We prove (7.24) by induction. The
base case is simple. Suppose (7.24) is true for 2" of smaller half-scale. Let 2~ be
composed from smaller equivalence classes 2 as in Sect. 4.5.2, then by definition
of equivalence, the summation over 2 = (Q, Z) € 2" must contain (among other
things) a sub summation over 2; = (Q;, Z;) € £}, so in particular G»- equals a
multilinear expression of the quantities g,%»j (see also (7.25) below). Therefore, by
induction hypothesis, we may assume that Z; = @ for each 2, and Z # @. In partic-
ular, 2" must have type 2. By the structure of dominant double chains, it is easy to see
that £, =€ if ne ZN T with € € {£}. Let m > 1, the tuples (I;,c;, 21, Z;2),
and ¢ be fixed as in Sect. 4.5.2.

If 2€ 2, then 2;, € %, and we may decompose m = m™ + m~, such that
the tuples (I ¢, Cje, Zje 1, £je2) Where € € (£}, 1 < j <m® and 2, is the
equivalence class of Q; ., form a permutation of (I;,c;, Zj 1, Z}2) where 1 <
J < m. Moreover, since c; ¢ are just the first digits of the codes of the mini trees
appearing in the structure of Q, the corresponding second digits can be arbitrary (and
Bg does not depend on this second digit) which results in a 2" factor. Apart from this,
we apply Proposition 7.5 and sum over all possible Q’s—which means summing over
all permutations of the tuples and then summing over all possible Q; , and Q;,—to
get

G (1)

—m —
=2 Z Z [>11>'-->tm+>0/t>51> >S5, _>Ol_[( 1) j

mt+m—=m (A,...,. At B seon By —)

m

m+
< [[-# @) ]_[ M(B;)(s}) - Gay (Min(ty+, Syp-)) dty - - dty+dsy - - dsy-.
Jj=1 j=1
(7.25)
Here in (7.25) the summation is taken over all permutations A, ..., A+, B, ...,

%n-) of the tuples (I, c;, 271, Zj,2). Moreover I’; _ represents the first compo-
nent of %, the function .# (#/}) is Qgg/ Qg.w where (35 1 Z!

j+.2

sents the last two components of <7}, and /// (B ) 1s defined 51m11ar1y

Now fix m™ and m™, and consider the m variables f,...,t,+,S1,...,Sm_ €
[0,¢]. If we fix a total ordering to these variables, then under the assumptions
> -+ >t,+ and s; > --- > 5,,—, each total ordering can be uniquely represented
by a partition (A, B) of {1,...,m} into an m™ element subset A and an m~ ele-
ment subset B. Once this total ordering is fixed, we may rearrange these variables as
t>uy>--->uy >0, then this term on the right hand side of (7.25) becomes

) repre-

Z / ]‘[( 1)1]_[//1(%)@{,) Goy () duy - - duyy, (7.26)
[>Up>->Upy>

(€1, jEB j=1

where the summation is taken over all permutations (%71, ..., %) of the tuples
(Ij.cj. Zj1, Zj2), I represents the first component of ¢, and the function
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M(E}) is Qggj/ ggg/ where (2 J 1>
;. After summing over (A, B) and (m*,m™), we obtain that

j/.2) represents the last two components of

ggw)—z'" Z / 1_[///(%)@,) Gy () duty -

t>up>->uy,>0
X|:Z ]‘[(—1)13}, (7.27)
B jeB

where the inner summation is taken over all subsets B C {1, ...,m}. Since Z # &,
we know that at least one 1 < j < m is such that I’j = 1, which implies that

> T 1>f—1'[<1+< D) =0,

BcC{l,....m} jeB

where we understand the product is 1 if B = @. Therefore G4 () = 0 and the proof
is complete. U

7.4.1 Expansions of the solution to (WKE)

Now we can match the nonzero leading correlations, which come from the (enhanced)
dominant couples with Z = &, with the terms in the Taylor expansion of the solution
to (WKE).

Proposition 7.9 Let & be small enough depending on niy. Then the equation (WKE)
has a unique solution n = n(t, k) for t € [0, §]. The solution has a convergent Taylor
expansion

n(r k) =Y Myt k), (M. k)] < (CTo)" (7.28)
n=0

fort €10, 1], where M,,(t, k) is defined by (2.29). This M,,(k) can be expanded as

Mot k) =8" " X (T) - gr(t) - My (k), (7.29)
n(T)=n

where the summation is taken over all encoded trees of scale n. The sign £*(T) is
defined in (4.5), the function g7 (t) is defined inductively by

t
ge()=1, gr(t)= / g7, (e (g (1) dr, (7.30)

and the expression MT(k) is defined inductively as follows. First if T = e then define
M. (k) = nin(k). Now let (71, T2, T3) be the three subtrees of T from left to right.
Then, if c. = 0 where t is the root of T, we define

Mrk) = /( o M (k) M, (ko) M7 (k3)8 (ky — ko + ks — k)
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x 8(k1 |5 — kol + lkslg — IkI3) dkydkadks. (7.31)
If ¢y =1, we define
Mok = /Rd)z Mo (k) Moy (ko) Moy (k3)8 (ky — ko + k3 — k)
( 3
x 8(|k1lg — kalj + lks|5 — 1k|5) dkidkadks. (7.32)
If ce =2 we define
Myk) = / o Mo (k) Mg (k) Mors (k3)8 (ky — ko + k3 — k)
(
2 2 2 2
x 8(|k1|5 — |kal5 + Iks|f — [k|3) dkidkydks. (7.33)
If ¢ = 3 we define
Firto= [ Fri) frs o) Vs 0801 = ko + ks =
(R4)?
x 8(kilj — |kalg + lks|5 — [k|3) dkidkodks. (7.34)

The expression MT(k) depends only on the equivalence class of T , so we may de-
note it by M g- (k). For any 2, if 2 has type 1 and is determined by (Z1, Z2, Z3)
as above, then we have

3
M= [ TT Mo -a60 kot ks =i
Al

x 8(lki |5 — kalg + ksl — |k[3) dkidkydks. (7.35)

If 2 has type 2 and is determined by a positive integer m, triples (¢, Zj1, Zj2)
where 1 < j <m, and %, then we have

My (k)= Moy (k) - [ [ Mj ). (7.36)
j=1

where for each 1 < j <m,if c; =1 we have

M (k) =/ My, k)M, (ks) - 8kt — ko + k3 — k)
(R4)? . '

x 8(kilj — |kalj + k3|5 — [k|3) dkidkodks; (7.37)

ifcj =2 we have
Mk = /HW My, k)M g, (ks) - 8(ky — ka + k3 — k)
R4y .
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x 8(lk1 |5 — kol + ksl — |k|3) dkydkadks; (7.38)

if cj =3 we have

My k) = /Rd \ My, k)M, (k) - 8k — k + k3 — k)
(R?)
x 8(|k1 |5 — lkal§ + lks|5 — 1kI5) dkidkdks. (7.39)

Moreover, for any equivalence class 2 of dominant couples or encoded trees, we
have M g (k) = M- (k).

Proof This follows from direct calculation. First, let M, (¢, k) be defined by (2.29),
then the formula (7.29) follows from induction. Here one notes that (i) the four cases
in the recurrence relation (7.31)—(7.34) defining MT(k) exactly correspond to iter-
ating the four different terms in the nonlinearity (KIN), (ii) the recurrence definition
(7.30) of g7(t) corresponds to applying the Duhamel formula for (WKE), and (iii)
the sign ¢*(7) is uniquely determined by iterating the signs of the four terms in
(KIN).

Next, with the inductive definition (7.31)—(7.34) of MT(k), it is easy to see that
(7.35)—(7.39) hold. In fact, (7.35) is just (7.31), and (7.36) for general m follows
from iterating the m = 1 case, while the three possibilities (7.37)—(7.39) are just
(7.32)—(7.34). Since the expression (7.36) is invariant under permuting the differ-
ent indices 1 < j <m, we can inductively prove that MVT(k) does not change if 7 is
replaced by an equivalent encoded tree, so we can replace MT by M Z.

Next, let 2" be an equivalence class of dominant couples or encoded trees. For
dominant couples Q we assume Z = &, so in particular all the I; variables (as in
Sect. 4.5.2) appearing in the inductive step will be 0. As a result, the recurrence rela-
tions (7.19)—(7.23) for M’}K(k) do not contain any 1/ factor (only §(£2)), and thus
coincide with (7.31)—(7.35). This shows M (k) = ’E{(k). Finally, as in Remark
6.8 we have |/\77-(k)| < (CH)" (k)= if T has scale n. Since the number of en-
coded trees of scale n is at most C", and g7 (¢) is homogeneous in ¢ and can easily be
bounded in some smooth norm, we see that | M,, (¢, k) || x30d < (CT68)", which proves

the convergence of (7.28). O

Proposition 7.10 Let 2" be as in Proposition 7.8, but assume Z = & for 2 =
(Q, Z) € Z;, for simplicity we write 2 = (Q, @) simply as Q. Then for any equiva-
lence class 2" of half-scale n we have

Y TIBo(t.ty=2""3" gr(t). (7.40)
Qe TeZ

Proof Define

Gyy= Y gr(®),
Tex
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then by definition of equivalence and the recurrence relation (7.30) of g7(¢), we can
show that if 2" has type 1, then

G (1) _/ ]_[ Gy, ()t (7.41)
j=1
If 2 has type 2, then
Gg @)= Z / ]_[ Ga, )G g1, (1)) Go(tm)dty - - dty,
1>11>>1,>0 5, / )
(7 42)
where the sum is taken over all permutations (4, ..., &7,) of the triples (cj, 2 1,

Zi2)1<j<m (in particular the number of terms in thls summation varies, depending
on whether some of the triples coincide or not), and (3&”]./’ 1 5&”}{2) represents the last
two components of 7.

In order to prove (7.40), as the base case is easily verified, it will suffice to show
that the quantity

Gy ()= Y JBolt.1)
Qe

satisfies the same recurrence relation (7.41)—(7.42), but with an extra factor of 22 on
the right hand side of (7.41), and an extra factor of 2% on the right hand side of
(7.42).

The case when 2 is type 1 is in fact quite easy, as the recurrence relation satisfied
by J EQ (t,t),namely (7.11), has the same form as (7.41) assuming ¢ = s. If one sums
over all @ € 27, which is equivalent to summing over all Q; €. A forl <j<3,
one gets the same recurrence relation for G4 (f) in place of J BQ(I t). The factor
of 22—instead of 2 on the right hand side of (7.11)—comes from the two possible
codes (i.e. 00 or 01) for the (1, 1)-mini couple forming the structure of O.

From now on we assume 2" has type 2. Let m > 1, the triples (c¢j, 21, Z;2)
where 1 < j <m, and % be fixed as in Sect. 4.5.2. We can argue in essentially the
same way as in the proof of Proposition 7.8, except that (i) now the «7;, %; and €
only contain three components, for example ¢; = (c’j, 3&”]’ . E’Jj’,z) as I’j is always 0,

and (ii) we do not have the factors (—1)191* in (7.25) or (_1)1’]. in (7.26). Therefore,
we do not have the cancellation as in Proposition 7.8, instead we have

QJ(I)—T" / H:%(%)(Mj)~go](um)dul-..dum~<21>,
1 yyyyy (Km) I>UL>>Up> =1 B
where again the inner summation is taken over all subsets B C {1, ..., m}. In this way

we get G o (1) = 22" ¢, where % is exactly the right hand side of (7.42) with the G
quantities replaced by G quantities. This verifies the recurrence relation satisfied by
G, and completes the proof. O
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Proposition 7.11 Forn < N3, we have

Y Kolt.t.k) — My(t. k) < (€LY,

n(Q)=2n Xﬁ)ocd
Q  regular
Proof This follows from Propositions 7.6, 7.7, 7.8, 7.9 and 7.10. Il

8 Non-regular couples I: cancellation of irregular chains

We now turn to the study of non-regular couples, until the end of Sect. 10. Since
regular couples have been studied in Sect. 5-7, in view of Proposition 4.14, we can
reduce any non-regular couple Q to its skeleton Oy, which is a nontrivial prime
couple. Then, we will focus on the study of prime couples.

8.1 From general to prime couples

Let Q be a non-regular couple with skeleton Oy, then Qg # X is a prime couple. By
Proposition 4.14, Q is formed from Qg in a unique way by replacing each branching
node m with a regular tree 7™ and each leaf pair {m, m’} with a regular couple
Q(m*m/). Using the results of Sect. 5, we shall reduce Kg(¢, s, k) to an expression
that has similar form with Ko, (¢, 5, k).

In fact, by (2.24) and (5.3) we have

(+)

8 " .
Ko, s, k)= <W> Q) /S ee [T et dry T nintho),
&

neN* leL*
(8.1)

where n is the scale of Q, £ is the domain defined in (5.4), & is a k-decoration and
other objects are defined as before, all associated to the couple Q. By definition,
the restriction of & to nodes in Qg forms a k-decoration of Q, and the relevant
quantities such as 2, are the same for both decorations (i.e. each 2y, in the decoration
of Qg uniquely corresponds to some €2, in the corresponding decoration of Q).
Now, let {m, m’} be a leaf pair in Qg, which becomes the roots of the regular
sub-couple Qm.m) in O. We must have kg = kyy. In (8.1), consider the summation
in the variables k,,, where n runs over all nodes in Q(m'm/) other than m and m’
(these variables, together with ky, and ky,,/, form a ky, -decoration of Q(m*m/)), and the
integration in the variables t,, where n runs over all branching nodes in Q(m’m/), with
all the other variables fixed. By definition, this summation and integration equals,
up to some sign £*(QMm)y and some power of 8(2LY~1)~!, the exact expression
ICQ(m_m/) (tmr, tanyp, km). Here we assume ¢ = + and ¢y = —, and m” is the parent
of m (if m is the root then f,» should be replaced by ¢; similarly for (m')?).
Similarly, let m be a branching node in Q, which becomes the root p and lone
leaf q of a regular tree T in Q. We must have ky = kq. In (8.1), consider the
summation in the variables k,,, where n runs over all nodes in T other than P
and q (these variables, together with k, and &, form a ky, -decoration of T where

@ Springer



Full derivation of the wave kinetic equation 649

km = kp = kq), and the integration in the variables #,,, where n runs over all branching
nodes in 7™M with all the other variables fixed. In the same way, this summation
and integration equals, up to some sign ¢ (7™ and some power of §(2L4~1)~! the
exact expression lCi‘r(m) (tpr, tq, kp). Here p? is the parent of p (again, if p is the root
then #,» should be replaced by ¢ or s) and the relevant notations are defined as in
Proposition 6.10.

After performing this reduction for each leaf pair and branching node of Oy, we
can reduce the summation in (8.1) to the summation in ky, for all leaves and branching
nodes m of Qgy, i.e. a k-decoration of Q. Moreover, we can reduce the integration
in (8.1) to the integration in t, for all branching nodes m of Q. (for a regular tree,
the time variables #,» and 4 for Q correspond to #» and i, for Qg where m? is the
parent of m). This implies that

8 1o 572
_ — Cnmi- 8L Qnity
KQ(I,Ssk)—<2Ld_1> ¢*(Qsk) ; /c"ske(%k | | e dty
o5k

neNj
(+)
< T Kowmm tmrtayekm) [ K o tms k). (8.2)
meLl¥, melN},

where ng is the scale of Qg, Ex is the domain defined in (5.4), & is a k-decoration,
the other objects are as before but associated to the couple Q. Moreover in (8.2),
the first product is taken over all leaves m of sign + with m’ being the leaf paired to
m, the second product is taken over all branching nodes m, and m?” is the parent of
m.

Using Propositions 6.7 and 6.10, in (8.2) we can decompose

K:Q(m,rn/) = (ICQ(m,m/))app + <@Q(m,m’) ) ’C:;'(m) = (ICf;‘(m))app + <%j;‘(m) . (83)

Here (K Qlm.m) )app 18 the leading term in Proposition 6.7, and is a linear combination
of functions of (¢, s) multiplied by functions of k, which in turn satisfy (6.38) and
the Xjoc bound in Remark 6.9; the remainder %Q(m,m’) is bounded in X ;100Cd with extra
gain L™ as in Proposition 6.7. The terms (K?(m) )app and %’;‘,(m) are as in Proposition
6.10, and satisfy the bound (6.42).

We may fix a mark in {£, R} for each leaf pair and each branching node in Qg
which indicates whether we select the leading term (- - - )app OF the remainder term %
or Z*; for a general couple Q we can do the same but only for the nodes of its skele-
ton Q. In this way we can define marked couples, which we still denote by O, and
expressions of form (8.2) but with IC Q(mm) and IC;W replaced by the corresponding
leading or remainder terms, which we still denote by K g. By definition, any sum of
Ko over unmarked couples Q equals the corresponding sum over marked couples Q
for all possible unmarked couples and all possible markings.

Using the relevant Xﬁ)ocd and Xﬁ)c bounds (which control weighted L' norms in
time Fourier variables), we can expand the (- - - )app and Z (or %*) factors as a Fourier
integral in (fmp, t(m'yr) (OF (tmp, tm)), Which reduces (8.2) to a formula of form sim-
ilar to (2.24) for Qg, but with the Q,, variables appearing in Bg, suitably shifted,
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Fig. 19 An irregular chain, as in ng
Definition 8.1. Here m j and
njy are required to have
opposite signs. A white leaf may
be paired with a leaf in the
omitted part

nin replaced by factors coming from (ICQ(m.mr))app or %Qmm’)’ and with extra fac-
tors com.ing from (IC;_@)app or %’;‘_(m) included. Before doing so, howev§r, we nged
to exploit the cancellation between Kg for some different couples Q with specific
symmetries. Such cancellation is linked to the notion of irregular chains, which we
now introduce.

8.2 Irregular chains and congruence

We now introduce the main object that causes difficulty in the analysis of Qg , namely
the irregular chains.

Definition 8.1 (Irregular chains) Given a couple Q (or a paired tree 7)), we define an
irregular chain to be a sequence of nodes (ng, ..., n,), such that (i) nj4 is a child
of nj for 0 < j < ¢ — 1, and the other two children of n; are leaves, and (ii) for
0 < j <g —1, there is a child m; of n;, which has opposite sign with n;1, and is
paired (as a leaf) to a child p; 1 of n; 1. We also define pg to be the child of ng other
than n; and my. See Fig. 19.

Definition 8.2 (Congruence and a relabeling) Consider any irregular chain H =
(no, ..., ng). By Definition 8.1, we know p; is the child of n; other than n;,; and
m; for 0 < j < g — 1, thus p; has the same sign with n; (hence it is either its first or
third child). Now for two irregular chains H = (no, ..., ny) and H' = (ng, ..., n;),
with p; and p’ etc. defined accordingly, we say they are congruent, if ¢, = Cny» and
for each 0 < j < g — 1, either p; is the first child of n; and p is the first chlld of
', j»or pj is the third child of n; and p is the third child of n countmg from left to
right. See Fig. 20.

In particular, if ¢ and the congruence class (and hence ¢y,) are fixed, then an
irregular chain  is uniquely determined by the signs ¢y, for 1 < j < g. We relabel
the nodes nj, p; (0 < j < ¢q) by defining {b;, ¢;} = {n],p]} and that b; =n; if and
only if ¢n; = +. Further, we label the two children of n, other than p, as ¢ and f,
with £, =+ and {5 = —
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no+

:
pot Mt

'
my'—

e+ f~ pat e+ f—

(H) (H")

Fig.20 Three congruent irregular chains #, H’ and H”, as in Definition 8.2; here each pj (or p/j etc.) is
the third child of n; (or n/j etc.). For convenience, we have included the sign of each node. As for the re-

labeling, we represent the case (b, ¢j) = (n;, p;) by round points, and the other case (bj,¢;) = (pj,n;)
by diamond shaped points. Points of the same color are still paired regardless of their shapes

(H) (H)

Fig. 21 Decorations of irregular chains in Fig. 20 with sign of each node included. For the nodes b, ¢;
etc. see Definition 8.2

Proposition 8.3 Let H = (n, ..., ny) be an irregular chain. For any decoration 9
(or &), its restriction to n; (0 < j < q) and their children is uniquely determined by
2(g +2) vectors kj, L € Zi 0 <j<gqg+1), such that kbj =k; and kcj ={; for
0<j=<gq,and ke =ky11 and ks = £;1. See Fig. 21 for an example corresponding
to the irregular chains in Fig. 20. These vectors satisfy

ko—f():kl—(Zl:'--qu_H—eq_H I=h,

and foreach 0 < j < g we have Sn; Qn/. =2(h,kji1—kj)p. Moreover €k ko kn 3 =
€kjy1€ 41855 where (nji,nj2,1;3) are the children of nj from left to right. We say
this decoration has small gap, large gap or zero gap with respect to 'H, if we have
0 < |h| < 15057 |h| = o057 or b =0.

Proof We can verify that (knj,knjl,knjz,knj3) € {(kj,kjr1,€j11,45),
(kj, €j, Ljv1, kjy)} if Sn; =+, and (kn;, knjys knjys knjs) € {8, Ljv1, kjvr, kj),
(€. kj kjy1,€j+1)} if ¢n; = —. Moreover by pairing we know km; = kyp,,, for
0 < j < g — 1. The result then follows.
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Definition 8.4 Let H = (ny, ..., ny) be an irregular chain contained in a couple Q or
a paired tree 7. If we replace H by a congruent irregular chain H' = (ng, ..., n;),
then we obtain a modified couple Q' or paired tree 7' by (i) attaching the same
subtree of ¢ and f in Q (or 7)) to the bottom of ¢’ and f', and (ii) assigning to 1, the
same parent of ny and keeping the rest of the couple unchanged.

Given a marked prime couple Oy, we identify all the maximal irregular chains

= (ng, ..., ngy), such that g > 1034 , and all n; and their children have mark £. For
each such maximal irregular chain #, consider H° = (ns, ..., n,_s) formed by omit-
ting 5 nodes at both ends (so that it does not affect other possible irregular chains).
We define another marked prime couple ésk to be congruent to Qg, if it can be ob-
tained from Qg by changing each of the irregular chains H° to a congruent irregular
chain, as described above. ~

Given a marked couple Q, we define Q to be congruent to O, if it can be formed as
follows. First 0}3tain the (marked) skeleton Q; and change it to a congruent marked
prime couple Q. Then, we attach the regular couples Q(m’mz and regular trees
T from Q to the relevant leaf pairs and branching nodes of Qg. Note that if an
irregular chain H° = (ny, ..., ny) in Qg is replaced by (H°)' = (no, .. n/ ) in Oy,
with relevant nodes m;, p; etc. as in Definition 8.1, thenfor 0 < j < g — 1, the same
regular couple Q(™j-Pj+1) is attached to the leaf pair {m P " 1}in Osk. Similarly, for

1<j<gq,if g“n/j = {n; then the same regular tree T(”f ) is placed at the branching

node n’j in @yk; otherwise the conjugate regular tree 7 is placed at n’j. See Fig. 22
for a description of two congruent couples.

8.3 Expressions associated with irregular chains

Given one congruence class F of marked couples as in Definition 8.4, the goal of
this section is to analyze the sum

Z Ko(t,s, k), (8.4)
QeF

where the sum is taken over all marked couples Q € % . Let the lengths of all the
irregular chains #° involved in the congruence class .%, as in Definition 8.4, be
g1, ..., qr, then | .#| =22 where Q =g + - -- + g,. Since these irregular chains do
not affect each other, we may focus on one individual chain, say H° = (ng, ..., ny);
that is, we only sum over Q € .% obtained by altering this irregular chain #°.

In the summation and integration in (8.2), we will first fix all the variables k,, and
tn, exceptky withne{n;,p;,m; 1}J(1<j<g)andty withn=n; (1 <j<qg-—1),
and sum and integrate over these variables. Note that we are fixing &, and ky,, as well
as k. and ky, in the notation of Definition 8.2, and are thus fixing (ko, €0, kg+1, £4+1)
and ko — €o = ky41 — €41 = h as in Proposition 8.3. It is easy to see that in the
summation and integration in (8.2) over the fixed variables (i.e. those ky, and t,, not
in the above list), the summand and integrand does not depend on the way H° is
changed, because the rest of the couple is preserved under the change of 7°, by
Definition 8.4.

@ Springer



Full derivation of the wave kinetic equation 653

'S
%)

,n
8

Fig. 22 Two congruent couples Q and Q' as in Definition 8.4 (formed by altering one irregular chain
H® in Qgy; of course the actual H° is much longer). Here each circle (labeled by Q; or S;) represents
a paired tree, two circles of the same color (labeled by the same Q) in the same couple form a regular
sub-couple, and each black box (labeled by T7;) represents a regular tree. Two circles in different couples
of the same color and same labeling (including signs) represent the same paired tree, two boxes of the
same labeling represent the same regular tree (if they have the same sign) or two conjugate regular trees
(if they have opposite signs). Finally, the signs represent the signs of the corresponding nodes in Qg and

’
st

We thus only need to consider the sum and integral over the variables listed above.
By Proposition 8.3, this is the same as the sum over the variables k; (1 < j < g), with
£; :=kj — h, and integral over the variables t; := In; (1 <j <g—1), which satisfies
fo>1 > >1t_1 >ty withtg:=1ty, and t; := In,- For any possible choice of H°
(there are 27 of them), the sum and integral can be written, using (8.2) and Proposition
8.3, as

S q 4 q
) / <2LT> [Teap [Tewene
k 0>11>>1g—1>14 j=1 j=0

ki.....kq
q - q

« l—[ Q2IOL2 k1 —k ;) pt; l_[ K)o - K5 qpodin - -dig_1.  (8.5)
j=0 j=1

Here in (8.5), we have

IC]"HO = ,Cj(tjvt]—lak] _h)a ]C;HO zlcj(t]—la t]ak])

if fn; =+, and

Kjwe =Kjltj-1,tj, k), K go =K3(tj-1,t5,kj — )
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if ¢n; = —, where K; = (K _1)app and IC;f = (Kj;—(nj))app where 7)) is cho-

Q(Pj~mj
sen to have sign 4; note that if 7 is the regular tree conjugate to 7~ then ’C*T = IC_§-,
and the same holds for the leading contribution (- - - )app.

In what follows we shall study the expression (8.5), where we also sum over all
possible choices of 1°, i.e. all possible choices of ¢n; (1 < j < ¢q). We will view it as
a function of (ko, £o, kg+1, £g+1, 0, t4). Depending on the value of & we have three
possibilities. However, the zero gap case h = 0 is very easy, as we have k; = £}, so
in view of the €k 1j410; factors we must have k1 = --- = k; = ko, so the expression
(8.5) is bounded by L~@~14 /4!, which is a large negative power of L when g is
large (we have at least ¢ > 103d — 10 by Definition 8.4). This term can then be easily
treated, in the same way as the small gap term below.

8.3.1 Small gap case

Assume the small gap condition 0 < |#] < 1/(1006L). Summing over all choices of
¢n; in (8.5), we get the expression

. q q
ié 4 572
§ € e27Tl(3L (h.kjr1—k;j)pt;
7Ld-1 | | kjvi€j+1€; | |
k 0>11>>1g_1>14 j=0 j=0

q
X 1_[ [/Cj(lj,tj;],kj —h)’(:jf(l‘jfl,tj,kj)
j=1

—ICj(tjfl,tj,kj)’(:j(tjfl,tj,kj —h)]dt] ~~~dtq71. (8.6)

Recall that X; and IC; are of form (- - -)app, by Propositions 6.7 and 6.10, they can
be decomposed into terms which are products of functions of time variables ¢; and
functions of frequency variables & ;. Due to bilinearity of (8.6), we may thus assume

Kjt,s,k)=(C " TAjt,)M;k), Kit,s,k) = (c+a)m97Aj(r, )M (k),

(8.7)
where 2m ; and 2m’j are the scales of Q/>™j=1) and T™/), the functions JA;, JA;‘.
and M, ./\/lj satisfy that

1T Aj e 1T ASxiee ST sup (04107 M (k)] + [P M35 ()]) S 1.

[p|<40d
(8.8)
After extracting the factor (C8)"/ tm; , we can write the difference factor in (8.6) as

TA;(tj, t;i—) T A5 (-1, 1)) - Mj(kj — )M (kj)
= TAj (-1t DT A (i1, 1) - M (k)M (kj — )
= [TA;j @, t;- )T A (-1, 1)~T Aj (51, 1) T At -1, 17)] - M (kj =) MG (k)
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+ T A1, )T A1, 1)) - [M (k= )M ) = M (k)M (ki — b)),
(8.9)

since M ; and M?* are real valued.
For any |h| < 1/(1005L), by (8.8) we get

sup (k) [97[ M (kj — )M (kj) — Mk Mk — )]l S87'L71, (8.10)
|p|=<30d

which we shall use to control the second term on the right hand side of (8.9). To deal
with the first term, we notice that both factors

JAj(t.5) = TAj(s.1) and  JA5(t,5) — TA(t. 5) (8.11)

vanish at ¢t = 5. In fact, if 7™ is formed from a regular chain of scale 2m’
(see Remark 4.15), then we may apply similar arguments as in Sect. 7, and cal-
culate J.Ajf(t, s) in the same way as Jgg(t,s), so that it is either O or is given
(up to a constant multiple) by (7.12), except that the domain of integration is now
t >t >--->t, >s (as the regular tree 7™/ only has one regular chain), and
the irrelevant factors in the integrand are omitted. This shows that 7, .Ajf (t,t) =0if

m’ > 1;if m’ = 0 then 7™ is trivial so J A’; (t,1) = 1, so in either case the desired
vanishing of (8.11) is true. Since JA; and J A’/k. are bounded in Xjoc as in Remark
6.9 and (6.42), we can write the functions in (8.11) in the form

8.11) =t — 5| / GO )™ 0 dadp, [[(A) + () B Gl S (CHY™,
RZ

(8.12)
for s, 1 € [0, 1] (and also ¢ > s for the latter term in (8.11)). Here the bound in (8.12)
follows from the simple fact that the Fourier L' norm of |x|™" xo(x)(e™** — 1) is
bounded by (A)” for 0 < y < 1. By (8.10), (8.12), and making further decomposi-
tions if necessary, we can rewrite (8.9) as a linear combination (in the form of an
integral in A; and ) of

ltj_1 — tj]<0 e i) LN (k ), (8.13)

where either k; = 0 and N/ satisfies (8.10), or kj = 1/18 and /| satisfies (8.10) with
right hand side replaced by 1. The coefficient of this linear combination is a function
of (A, u;) that satisfies the weighted bounds in (8.12).

By performing the above reduction for all j, we can rewrite (8.6) as a linear com-
bination (in the form of an integral in (A, ) variables) of terms, where the coef-
ficient of this linear combination is a function of these (A;, 1t), and is bounded in
some weighted L' norm which is a tensor power of the one in (8.12). The term then
has the following form:

i5 \4
Z:= (C+8)”"°‘< ) / dey -+ -dt,_
2041 to>11> >y >1g ¢
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q

« 1—[ ltj 1 — tj|K,~eni(x_,t_,-+u_,r,-_1)ezniaLZ(zq(h,k,,+|>,9—zo(h,k0>,3)
Jj=1
q q
< 30 [Tl [T 00N w). @14
ki...kq j=0 j=1

where (A, ;) are parameters as above, and m is the sum of all the half-scales m ;
and m’..
We will first fix the #; variables and sum in k; in (8.14). In this sum we

may ignore the factors 1i;;,,, because if any k; = k41 then in (8.14) we have

ePLA 1=t ) (ki)s (A7 N4 1) (k ), which can be treated in the same way with
much better estimates as we are summing over fewer variables. Thus, up to lower
order error terms which have the same form, we have
Z 1= (CH )™ (152)9 2T 8L (g hokgs1) p=to (hKo)p)
q .
x/ [T1ti1 = 1 Fjh,tj = 1j)e™ @atisti0 dey - diy
fo

>l > >l 1> j=1

(8.15)

where F; is defined to be

F] (h, t) — L—(d—l) ZeZHiﬁth(h,]QﬁN’j(k).
k

By Poisson summation we have (here /\’/: denotes the Fourier transform in RY)

Fi(h,t)=L Z/\A/j(L(y—aLt(ﬁlhl,...,ﬁdhd))) (8.16)

yezd

where A/ (1 < Jj <d) are coordinate/s_\ of h, and we assume ,3j e[l, 2]. 'Note that
by assumption, see (8.10), we have |N;(§)| < (£)=%% and also |8LtB7hI| < 1/50,
so the sum corresponding to y = 0 in the above formula contributes at most L~3%,
hence

|Fi(h, )] SL73% 4 L1+ 8L% - |h)) ™ <L73% 4 L1+ 8L~ (8.17)

using also that |k| > L~!. Moreover, for j with kj =0, we have an extra s~ip—!
factor in the above bound, due to (8.10). In particular, for each j, we have

/“M ([ Fj(h, 1) dt < L™ (8.18)

Now, let tg — 1, := o, using (8.15) we can rewrite, for fixed parameters (A, u;),
that

Z = Z(ko’ ZO? k({+1’ Z(14’13 tOs tq)

@ Springer



Full derivation of the wave kinetic equation 657

_ (C+8)mm[(l-s/z)qe—ZniﬁLza(h,ko)ﬂ _eniBLZQ*tqeniAZlq . P(o, h).

Here Q* := |kyy1 |123 — €441 |/25 + IZ()I% - |ko|%, and )»Z is the last component of the
vector (A%, ..., )Q;) that satisfies

q—1 q
Z)\.j(tj+l —tj) +)\.th = Z()thj +ujti—1)
j=0 j=1

(in particular each A;‘. is a linear combination of A; and ;). Moreover P is defined
by

g—1
P(o, h) =/ [T 1t = 1519 Fj(h 140 — 1) 01700,
o

>t>>tg1>0 =0

where we replace 7y by o and 7, by 0 in the above integral. By (8.18) and our choice
of g we have

sup / |P(0, h)|do <L~ %0 < 17404, (8.19)
|h|<@1008L)~1 Jlo|<1

In summary, we get that
(8.6) = (CT8)™et(i§/2)4

1
x / / GOVP (. 0, ko, Lo) - 8(to — ty — 0)e™ L X la gTiMg 4y iy,
RJO
(8.20)

where Q* is as above, and the functions G and P satisfies

1
||()»)T18G||L1§(C+)mm’ sup /O P, 0, ko, £o)|do < L™4%, (8.21)
X, ko, Lo

where the supremum in (kg, £¢) is taken here over |kg — £g| < (1008L)~!.

Now, define the new marked couple Q7 by removing the irregular chain #° from
Qsk; namely we set (po, ¢, f) (see Definition 8.2) to be the three children nodes of ng,
with the order determined by their signs and the relative position of pg, and remove
the other nodes (i.e. (n;,p;) for1 < j <g and m; for 0 < j < g — 1). See Fig. 23.
Denote the scale of Q3 by n . Note that Q7 does not depend on the choice of 7° in
the fixed congruence class, and for the decoration of Q3 coming from the decoration
of Oy, we have £y, Q2n, = Q* for each choice of H°.

We now consider the sum

ZKSQg(t, 5, k), (8.22)
5
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e(ky) palfa)

efks)

Fig. 23 An example of (parts of) Qg and Q3 <> Where g = 2. For simplicity, we have also included a
decoration of Qg and the corresponding decoration for Q;k

where Q ranges over all marked couples formed by altering the irregular chain ° in
Qsk, and the superscript sg represents the small gap case. With (8.20), we can rewrite
it as

(8.22) = (CT )™ (i5/2)7 - < Li 1> (95 )/G(A)dk/ do

xZ/g( €= - P(h, 0, ko, £0)
é’; sk

(+)
. o
% Titng 1_[ e§117Tl~5L Qnitn dt, 1_[ ICQmm/)(tmp,t(m,)p,km)
ne(NV ) me(L5)*
< [T Ko tmes tms k). (8.23)

meW3)*

Here in (8.23) the sum is taken over all k-decorations & of QF, and the other
notations are all associated with Q< , except 5 and €, €63 1nstead for 5; we add
the one extra condition 7, p > Ing + o (where ”0 is the parent of ng) to the original
definition (5.4), and for €, Eg? we remove the one factor €k, k, kn,, (Where ng; are
the children of ng from left to right) from the original definition (2.8). The functions
G and P, and variables (ko, £o) etc. are as in (8.20), and we may also insert the
small gap restriction 0 < || < 1/(1008L) in (8.23). Finally, in the functions ICT(nO)
and K Qlmm) for the leaf pair {m, m’} containing pg, the input variable tn, should be
replaced by #,,, + 0.

Remark 8.5 Due to the absence of €k, ky, kn,; i €45 - in the summation in (8.23), the
decoration (k) may be resonant at the node ng (i.e. (kn,, kng,, kng3) € 6, see (2.7)),
but it must not be resonant at any other branching node. This resonance may lead
to an (at most) L*¢ loss in the counting estimates in Sect. 9, but this can always be
covered by the L™ gain from P in (8.21). See Remark 9.11 for further explanation.
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8.3.2 Large gap case

Now consider the large gap case |h| > 1/(1005L). Here we will not need a big L ™40
power gain as in Sect. 8.3.1, and it is also not necessary to exploit the cancellation.
Therefore, we may fix a single choice for the irregular chain 7°.

We proceed as in Sect. 8.3.1, and in the proof below we may assume ko # k411 in
the decoration of Q. In fact, if ko = ky41 then we must have ko # k, (as kg # kg1
in view of the factor €, ¢, ¢, in (8.5)), so we may apply the same analysis to the
shorter chain (ng, ..., ny_1), which will not make a difference in the proofs in later
sections, as we leave out only one node for this chain.

We now repeat the calculations in Sect. 8.3.1 for (8.5), using again (8.8). The main
difference is that we do not have (8.10). By Poisson summation formula, we still have
(8.16), but now the contribution of y # 0 is not negligible. Still we may assume |y| <
C4SL|h|, as the remaining contribution is at most CtL=% when |7| < 1. Assume
|h'| > C~'|h|, then replacing (8.18) we have

/ \Fy(h, D) dr
|t]1<1

dr 1
<
L2 /( TF L 8Lrﬁ1h1|)4ozn<1+L|yf—6Lrﬁfhf|>4°

Iy'SsLiAl

<1, (8.24)

where y' = (y2, ..., y%). This is because in (8.24), the inner sum over y’ is trivially
bounded by 1, so the integral over ¢ is bounded by C*(8L|k|)~'L~!, and the final
sum over y! is bounded by Ct(SL|h|)"'L~" - 8§L|h| = CTL™!, noting also that
SL\h| = C L.

With (8.24) and the same arguments as before, in the end we can still write (8.5) in
the form of (8.20), together with (8.21), except that the right hand side of the second
inequality of (8.21) will be 1 instead of L~*¢_ We then define the marked couple
Q7 in the same way as in Fig. 23, which also does not depend on the choice of H°
in the fixed congruence class (except when ko = k;41 and we remove the chain with
one less node, where Q7 may depend on the last digit ¢n, ; however this is obviously
acceptable and we will ignore it below), so that from (8.20) we can again deduce
(8.23) for (8.22), except that the small gap condition in (8.22) should be replaced by
the large gap condition. Moreover the assumption kg # k;41 means we can recover
the factor €y kngy kngs in (8.23), hence instead of €, €s5 we have the original factor
€5 from (2.8) in Definition 2.4. This means (ky,, kn,, kn;) € G for any n € (Nk)*
and any decoration appearing in (8.23), which will allow us to apply the appropriate
counting estimates in Sect. 9.

In summary, in both small gap and large gap cases we have arrived at the formula
(8.23), possibly with minor differences indicated above.

8.4 Conclusion

In Sect. 8.3 we have fixed a single irregular chain H° in Q. Since different irregular
chains do not affect each other, we can combine them and get an expression for the
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full sum (8.4). Namely, let ka be the marked couple obtained by removing all the
irregular chains H° from Qg as described in Fig. 23 (perhaps with minor modifica-
tion in the large gap case as described in Sect. 8.3.2 above, which we will ignore).
This does not depend on the choice of Qg in the fixed congruence class, nor on the
choice of Q € .%. We then have

8 /
8.4 = (CTo)" (W) c*(Q%)

X/ G(X)d)»/ dO’Z/ 6(@#7)(1 o, k[Q ) Hemkntn
RE

neg
- +)
< [T et iman, T Kgmm tmr tawyp ki)
ne(V#)* me(Lt )
X H IC?;‘(m) (fmr s tm, k). (8.25)

meWH)*

Here in (8.25), n6 is the scale of ka and n1 is the sum of all the m and g in (8.23),
the summation is taken over all k-decorations 53( of ka, and the other notations
are all associated with Q# , except 3 . instead, for E#k we add the extra conditions
tar > tq + oy (Where n? is the parent of n) to the original definition (5.4), forn € E,
where E is a subset of the set (./\/ )* of branching nodes. The vector parameters are
A=A[E]€eR® and 0 =0 [E] €[0, 1]E respectively, and k[Q ] is the vector of all
the k,,’s. The functions G(A) and P(A, o, k[Qs ]) satisfy the bounds

[Tt G

nel

SECH", sup / [P, 0, k[QfDIdo S1. (8.26)
L! Ak[QF1/10.17%

We may also insert various small gap or large gap conditions (including the ones
coming from ko # k,41 in Sect. 8.3.2), and some input variables in some of the
ICQ(m_m/) or K;.(m) functions may be translated by oy, as in (8.23) in Sect. 8.3.1.
Finally, the function € &4 may miss a few €knkn, factors compared to the original
: —40d

kuzkn3
definition (2.8), but for each such missing factor we can gain a power L on the
right hand side in the second inequality in (8.26).

At this point, we may expand the functions ICQ(m w) and K% ) (or their leading

Tm
or remainder contributions) using their Fourier L' (or X loc) bounds, and combine the

K factors and the P factor in (8.25), to further reduce to the expression

(8.4)= (C*) " ( ) £ (Qh)

2Ld—l
x G(A) - 71 HH19) gy / do /
/RAXRZ 0,118 Z e
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<1 eAni 8Lt [] e dtn - XX, 0. k[QH D). (827)

neA neA

Here in (8.27) the set A = (V#)* and A = (A[A], A, 1) € R? x R2, the function
G is different from the one in (8.25), but still satisfies the same first inequality in
(8.26) (with E replaced by A, and the extra factor (A) 7 () 7 on the left hand side).
Using the second bound in (8.26), the X7 bounds for K Qm.m’) and /Cé_(m) and their
components, and the definition of markings £ and R, we deduce that the function
Xiot satisfies

(+)
| atokiQibiar s [T w22 s28)
(0.1 te(ct )

uniformly in A, where r¢ is the total number of branching nodes and leaf pairs that
are marked R in the marked couple ka. In (8.28) we can also gain a power L—40d
per missing factor €x k,, ky, ky, N € &4 a8 described above.

$

Note that the couple ka is still prime. Moreover by definition, it does not contain
an irregular chain of length > 103d with all branching nodes and leaf pairs marked
£. In particular, if r( is the number of branching nodes and leaf pairs that are marked
R, rirr 1s the number of maximal irregular chains, and Q is the total length of these
irregular chains, then we have

Q < C(ro + rirr)- (8.29)

Based on this information, as well as the first inequality in (8.26) and (8.28), we will
establish an absolute upper bound for the expression (8.27). This will be done in
Sects. 9 and 10.

9 Non-regular couples II: improved counting estimates

We shall reduce the estimate of (8.27) to bounding the number of solutions to some
counting problem, see (10.17). In this section we first introduce and study this count-
ing problem, and then use it to control (8.27) in Sect. 10.

9.1 Couples and molecules

To study the counting problem, we introduce the notion of molecules, which is more
flexible than couples.

Definition 9.1 A molecule M is a directed graph, formed by vertices (called atoms)
and edges (called bonds), where multiple and self-connecting bonds are allowed. We
will write v € Ml and £ € M for atoms v and bonds £ in M; we also write £ ~ v if
v is one of the two endpoints of £. We further require that (i) each atom has at most
2 outgoing bonds and at most 2 incoming bonds (a self-connecting bond counts as
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outgoing once and incoming once), and (ii) there is no saturated (connected) com-
ponent, where a component is saturated means that it contains only degree 4 atoms.
Here and below connectedness is always understood in terms of undirected graphs.

It is clear that a subgraph of a molecule is still a molecule. We will be interested
in certain special subgraphs (or types of subgraph) of molecules, which we will refer
to as functional groups. We introduce the following notation for molecules M, which
will be used throughout this section: V' is the number of atoms, V; (0 < j <4) is the
number of degree j atoms (Vj is the number of isolated atoms), E is the number of
bonds, F is the number of components. We also define

X =E—-V+F, n=V34+2V,4+3V;4+4Vy—4F,
N :=V3+2Vo +2V 4+2Vy — 2F.

0.1

This y is called the circuit rank of M and represents the number of independent
cycles; n and 7, are auxiliary quantities designed to control several types of steps in
the algorithm, see Sect. 9.5.

Proposition 9.2 In a molecule any self-connecting bond must be single, and between
any two atoms there is at most a triple bond. A molecule of n > 1 atoms has at most
2n — 1 bonds; if it has exactly 2n — 1 bonds we will call it a base molecule. Then, a
base molecule must be connected. It either has two degree 3 atoms or one degree 2
atom, while all other atoms have degree 4.

Proof In a molecule each atom has degree < 4, so the number of bonds is at most 27.
Equality cannot hold when n > 0 because otherwise each atom would have degree
4, contradicting (ii) in Definition 9.1. For the same reason there cannot be quadruple
bonds or self-connecting double bonds. For a base molecule, the degrees of atoms
have to be as stated because the total degree is 4n — 2. If it is not connected, then it
has at least two components, so at least one of them will contain only degree 4 atoms,
contradiction. O

Definition 9.3 Let Q be a nontrivial couple, we will define a directed graph M as-
sociated with Q as follows. The atoms are all 4-node subsets of O that contain a
branching node n € N'* and its three children nodes. For any two atoms, we connect
them by a bond if either (i) a branching node is the parent in one atom and a child
in the other, or (ii) two leaves from these two atoms are paired with each other. We
call this bond a PC (parent-child) bond in case (i) and a LP (leaf-pair) bond in case
(i1). Note that multiple bonds are possible, and a self-connecting bond occurs when
two sibling leaves are paired. This definition applies even if one of the trees of Q is
trivial; note that in this case the root of the trivial tree is regarded as a leaf instead of
a branching node.

We fix a direction of each bond as follows. If a bond corresponds to a leaf pair,
then it goes from the atom containing the leaf with — sign to the atom containing
the leaf with + sign. If a bond corresponds to a branching node n that is not a root,
suppose n is the parent in the atom v; and is a child in the atom v, then the bond
goes from v to vy if n has + sign, and go from v, to v otherwise. See Fig. 24 for
an example.
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Fig.24 A base molecule (Definition 9.3), which comes from the couple in Definition 2.2. Here each atom
has the same label as its parent node in the couple

Proposition 9.4 The directed graph M defined in Definition 9.3 is a base molecule.

Proof Let n > 1 be the scale of Q, then M has n atoms and 2n — 1 bonds, because
the atoms are in one-to-one correspondence with branching nodes, and the bonds are
in one-to-one correspondence with non-root branching nodes and non-root leaf pairs.
The statements about outgoing and incoming bonds follow directly from Definition
9.3, and it is also easy to check that M is connected. Therefore M is a base molecule.

g

Remark 9.5 In the proof below (for example in some figures), we may omit the di-
rections of some bonds, if these directions do not play a significant role; however
they still need to satisfy the conditions in Definition 9.1. In the convention we use,
arrows indicate bonds with fixed direction, segments without arrow indicate bonds
with uncertain direction, and dashed segments indicate possible bond(s) connecting
the given atom(s) to the rest of the molecule. Boxes with dashed boundary indicate
components after removing certain bonds or atoms.

Proposition 9.6 Given a base molecule M with n atoms as in Definition 9.1, the
number of couples Q such that the corresponding molecule equals M is at most C".

Proof For each atom v € M, each bond ¢ ~ v corresponds to a unique node n € v.
We may assign a code to this pair (v, £) indicating the relative position of n in v (say
code O if n is the parent in this atom, and codes 1, 2 or 3 if n is the left, mid or
right child in this atom). In this way we get an encoded molecule which has a code
assigned to each pair (v, £) where £ ~ v. Clearly if M is fixed then the corresponding
encoded molecule has at most C” possibilities, so it suffices to show that Q can be
reconstructed from the encoded molecule.
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Fig.25 The two types of Type I molecular chain

molecular chains. For type II,

the single bonds of the same --- -O<——’O<——’O‘——>O- ---
color are paired single bonds,

and must have opposite

directions. The directions of the

double bonds are not drawn

here, but they must satisfy the R -
conditions in Proposition 9.2

Type II molecular chain

In fact, if the encoded molecule is fixed, then the branching nodes of Q uniquely
correspond to the atoms of M. Moreover, the branching node corresponding to v; is
the a-th child of the branching node corresponding to vy, if and only if vy and vy
are connected by a bond ¢ such that the codes of (v1, £) and (v, £) are o and O re-
spectively. Next, we can determine the leaves of Q by putting a leaf as the «-th child
for each branching node and each «, as long as this position is not occupied by an-
other branching node; moreover, the «-th child of the branching node corresponding
to vy and the B-th child of the branching node corresponding to v; are paired, if and
only if vy and v, are connected by a bond £ such that the codes of (v, £) and (vy, £)
are o and B respectively. Therefore Q can be uniquely reconstructed (if one of the
trees in Q is trivial the reconstruction will be slightly different but this does affect the
result). O

Definition 9.7 We define two functional groups, which we call type I and type 11
(molecular) chains, as in Fig. 25. Note that type I chains are formed by double bonds,
and type II chains are formed by double bonds and pairs of single bonds. For type I
chains, we require that the two bonds in any double bond have opposite directions.
For type II chains, we require that any pair of single bonds have opposite directions,
see Fig. 25.

We now define the counting problem associated with a molecule (or a couple, see
Remark 9.9), which is the main thing we study in the rest of this section.

Definition 9.8 Given a molecule M and a set S of atoms. Suppose we fix (i) a¢ € Z‘i
for each bond ¢ € M, (ii) ¢, € Zi for each non-isolated atom v € M, assuming ¢, =0
if v has degree 4, (iii) I', € R for each non-isolated atom v, and (iv) f, € Z‘I{ for each
non-isolated v € S with d(v) < 4. Define © (M) to be the set of vectors k[M] :=
(k¢)eem, such that each k, € Z‘i and |k —ay| <1, and

Zé‘vlkl = Cyp, ng,ﬂkﬂ%} -Ty

{~v {~v

<5 1.2 9.2)

for each non-isolated atom v. Here in (9.2) the sum is taken over all bonds ¢ ~ v, and
&v.¢ equals 1 if £ is outgoing from v, and equals —1 otherwise. We also require that
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(a) the values of k; for different £ ~ v are all equal given each non-isolated v € §, and
this value equals f, if also d(v) < 4, and (b) for any non-isolated v ¢ S and any bonds
£y, £ ~ v of opposite directions (viewing from v), we have k¢, # k¢,. Note that this
actually makes ® depending on S, but we will omit this dependence for simplicity.
We say an atom v is degenerate if v € S, and is tame if moreover d (v) < 4.

In addition, we may add some extra conditions to the definition of © (IM). These
conditions are independent of the parameters, and have the form of (combinations of)
(k¢, — k¢, € E) for some bonds £1, £, € M and fixed subsets E C Zi. Let Ext be
the set of these extra conditions, and denote the corresponding set of vectors k[M] be
O (M, Ext). We are interested in the quantities sup#9 (M, Ext), where the supre-
mum is taken over all possible choices of parameters (ag, ¢y, 'y, fy).

Remark 9.9 The vectors k[M] will come from decorations of the couple Q from
which M is obtained. In fact, if k[Q] is a k-decoration of Q, then it uniquely cor-
responds to a vector k[M]. It is easy to check, using Definitions 2.4 and 9.8, that
Y oy Co,eke equals 0 if d(v) € {2, 4} and equals £k if d(v) =3,and ), g“v,g|kg|/23
equals O if d(v) = 2, equals —¢, 2y if d(v) =4 (where n is the parent node in the
atom v), and equals —¢, (2 £ |k|/23) if d(v) = 3. Moreover, if (ky,, kn,, kn;) € S,
then either the values of k, for different £ ~ v are all equal (and this value equals k
if d(v) < 4), or for any bonds £, £2 ~ v of opposite directions we have k;, # ky,.
Note that a degenerate atom corresponds exactly to a branching node n for which

eknl knzkn3 =- 1 :

Proposition 9.10 (A rigidity theorem) Let M be a base molecule of n atoms, where
1 <n<(log L)3, that does not contain any triple bond. Then, © (M) is the union of
at most C" subsets. Each subset has the form © (M, Ext), and there exists 1 <r <n,
and a collection of at most Cr molecular chains of either type I or type Il in M, such
that (i) the number of atoms not in one of these chains is at most Cr, and (ii) for any
type Il chain in the collection and any two paired single bonds (L1, £3) in this chain
(see Fig. 25), the set Ext includes the condition (k¢, = k¢,). Moreover we have the
estimate that

n+m

sup#D (M, Ext) < (CT)"s~ "2 L@ Dn=2vr (9.3)

where m is the number of atoms in the union of type I chains.

Remark 9.11 In view of Remark 8.5, in Definition 9.8 we may also fix some set S* of
atoms such that neither (a) nor (b) is required for v € S*, but we are allowed to mul-
tiply the left hand side of (9.3) by L~40¢'IS"I In this way we can restate Proposition
9.10 appropriately, and the new result can be easily proved with little difference in
the arguments, due to the large power gains. For simplicity we will not include this
in the proof below.

9.2 The general framework

The framework of proving Proposition 9.10 is as follows. We will perform a sequence
of operations on M, following some specific algorithm, until reducing M to isolated
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atoms only. The operations are usually removing bonds or atoms from M, but in
some cases may also add new bonds to M. As is standard in graph theory, whenever
we remove some atoms, we also automatically remove all bonds connected to them.

Together with each operation we also specify an extra condition, which has the
form appearing in Ext and will be denoted by AExt. This is usually & but in some
cases may be nontrivial. The operation and the extra condition together is called a
step. A sequence of steps ending at isolated atoms is called a track. In each track,
the time immediately after a step and before the next step is called a timespot. In our
algorithm, there are timespots, which we call checkpoints, where the next step has
two choices, leading to different tracks. Any track will contain at most Cn steps, and
the total number of tracks is at most C".

For each step, we use the subscript (-)pre to denote any object before this step,
and use (-)pos to denote the object after this step. If X is a real-valued variable we
define AX = Xpos — Xpre. During each track we will monitor the values of various
quantities associated with M, such as x, n, etc. We will also retrospectively (i.e. in
the opposite direction of the steps) define two variables (y, k) and a set Ext of extra
conditions. In the end state with only isolated atoms, we set y = x = 0 and Ext = &.
For each step we will fix the value of Ay and Ak, and will determine Ext e from
EXtpos and AExt. Given a track and a timespot ¢*, consider all the possible tracks
that coincide with the given track up to t*; these different tracks lead to different
values of y and Ext calculated at ¢*, and we define Y to be the collection of all such
possible Ext’s.

We will set our steps and algorithm in such a way that, for any timespot in any
track, the following conditions are always satisfied:

e Condition 1: M is always a molecule;

e Condition 2: any vector k[M] must satisfy one of the conditions Ext € Y

o Condition 3: if M consists of components M, then Ext is the union of Ext;
which only involves bonds in M;;

e Condition 4: sup#® (M, Ext) < (C+)"08”‘L(‘1’1)V, where ng is the number of
remaining steps in this track.

The above conditions are trivially satisfied in the end state, so we only need to ver-
ify that they are preserved during the execution of the algorithm (Conditions 2—4 will
be verified retrospectively). Now Condition 3 is easy to verify as the operation in each
step will be restricted to one component of M, and so will the extra condition AExt.
Condition 1 will be preserved if an operation only removes bonds or atoms; in the
exceptional cases where new bonds are added, we only need to show that the (outgo-
ing or incoming) degree of each atom does not increase, and no saturated component
is created, which will be done within the definition of steps. Condition 2 depends on
the algorithm, but at each non-checkpoint where the next step has only one choice,
we will always set Ext pre = EXtpos, Which preserves Condition 2; checkpoints will
only appear in specific places where we will verify Condition 2 within the definition
of the algorithm. Finally, for Condition 4, we only need to show that

SUp #0 (Mpre, Extpre) < CT8AL™U=DAY L sup #D (Mpos, EXtpos), 9.4)

which will be one of the key components of the proof.
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Fig.26 A bridge and a special single bond (see Definition 9.12). The bridge can also be seen as a special
case of Lemma 9.14 below with r =1

In Sect. 9.3 we define all the steps together with (Ay, Ax) and AExt, then prove
(9.4), and study some properties of these steps which will be used in analyzing the
algorithm. The algorithm is described in Sect. 9.4, and we use it to prove Proposition
9.10 in Sect. 9.5.

9.2.1 Some useful facts
We record some definitions and facts which will be frequently used below.

Definition 9.12 Given a molecule M, we say a single bond ¢ is a bridge if removing
£ adds one new component, see Fig. 26. We say ¢ is special if both atoms connected
by £ have degree 3, and each of them has a double edge, connected to two different
atoms.

Lemma 9.13 Suppose M has no bridge. Suppose we remove a set Y of atoms from M
together with all the bonds connecting to them, and consider the possible new compo-
nents generated by this operation. Then in M, the total number of bonds connecting
each component to Y is at least 2. In particular, the number of such components is at
most h/2, where h is the total number of bonds connecting Y to Y°.

Proof 1f Z is one of the components and there is only one bond ¢ connecting Z to Y,
then since Z cannot be connected to any other component, we know that £ is a bridge
in the original M. The second statement follows immediately. g

Lemma 9.14 Suppose X and X' form a partition of atoms in (some component of)
M, and £y, ..., L, are all the bonds connecting X to X'. Then for any k[M] € D (M)
we have

.
> ¢jlke, |3 —To| <ns™'L7? 9.5)

j=1

.
> ¢ike, =co,
j=1

where n is the number of atoms in M (note that n < (log L)%, i equals 1 or —1
depending on whether £; goes from X to X' or otherwise, co is a constant vector
depending only on the parameters (cy), and T is a constant depending only on (I'y).
In particular, if r = 1 (Which means £ is a bridge) then kg, is uniquely determined
by (cv).

Proof This follows from summing (9.2) for all v € X, and noticing that k;, where ¢
is a bond connecting two atoms in X, appears exactly twice with opposite signs. [
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9.3 The steps

We start by defining all different types of steps. Recall the quantities defined in (9.1).
We will always have either Ay = Ax or Ay > Ax + #_1). In these two cases we
call the step normal or good; good steps will be indicated by the letter “G” appearing
in the names.

9.3.1 Degenerate atoms

In this step, assume v is a non-isolated degenerate atom. Note that any atom with
self-connecting bond must be degenerate, otherwise © (M) = & trivially.

e Step (DA): we remove the atom v, and all bonds connecting to it, and set AExt =
.

Suppose j € {0, 1} is the number of self-connecting bonds at v, and % is the num-
ber of other atoms having bond(s) with v. Then for (DA) we have AE = —d(v) + j,
AV = —1 and AF <h — 1. We define Ay =0 if d(v) <3 or if d(v) =4 and
AF 4+ j = 2; otherwise let Ay = -2 + %. We also define Ax =0, and Extpe =
EXtpos-

Proposition 9.15 The step (DA) is either normal or good, and it satisfies (9.4). If
d(v) > 2 and the step is normal we must have An, < —2.

Proof First, by counting the degree of v we know & +2j <d(v),so Ay < —d(v) +
Jj+h <0.If Ay =0, then we have a normal or good step; if Ay = -2 + }‘, then
dv)=4and AF+j<1,s0 Ax=—4+j+ AF + 1< -2, and we have a good
step. Now suppose d(v) > 2 and the step is normal, then Ay =0, hence AF =h — 1
and d(v) = j + h, which means that j =0, d(v) = h, and each bond connecting to v
is a single bond. We then have AF = d(v) — 1. As for the quantity p, := V3 +2V, +
2V1 + 2V, the contribution to p, of each of the d(v) atoms connected to v changes
fromOto 1, or 1to 2, or 2 to 2 after the removal of v. The contribution of v itself to p,
is 4 —d(v) as d(v) > 2. We conclude that An, <d(v) —2(dw)—1)— 4 —-d(v)) =
—2, as desired.

Now we prove (9.4). Recall that v is a degenerate atom, so k; are all equal for £ ~
v, let this value be k*. If k[Mpre] € D (Mpre, Extpre) and k* is fixed, then k[Mps],
which is the restriction of k[Me] to the bonds in Mes, belongs to D (Mos, Extpos)
with some new parameters that depend on the original parameters as well as k* (note
that, if a degenerate atom v’ that is not tame in Mre becomes tame in M5, then v
must be adjacent to v, so the value of k, for £’ ~ v’ must be fixed, once k* is fixed).
This implies that

sup#D (Mpre, Extpre) < - sup#D (Mpos, ExXtpos)

where 91 is the number of choices for k*. If Ay = -2 + }‘, this already implies
(9.4), since M < L% and (d — )2 — i) > d. If Ay =0, we only need to show that
k* is uniquely determined. This is true by definition if d(v) < 3; if d(v) = 4 then
1+ AF > 2 — j, but the number of non-self-connecting bonds at v is 2(2 — j), so
Lemma 9.13 implies that some bond ¢ connecting to v must be a bridge. By Lemma
9.14 we know that kg, is constant, hence k* is also constant and (9.4) is still true. [
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9.3.2 Triple bonds

From now on, in all subsequent steps, we assume My has no degenerate atom (and
hence no self-connecting bond). In the current step, assume there is a triple bond
between two atoms vy and vz in My, such that d(v) and d(v2) are not both 4. In
(TB-1) we assume d(v1) = d(v2) = 3, so the triple bond is separated from the rest
of the molecule; in (TB-2) we assume d(v;) = 3 and d(vy) = 4, so v has an extra
single bond.

e Steps (TB-1)~(TB2): we remove atoms vy, vy and all bonds connecting to them,
and set AExt = @.

For (TB-1) we have (AV,AE,AF) = (-2,-3,—1), and for (TB-2), we have
(AV,AE,AF) = (—2,—4,0). For both steps we define Ay = -2, Ak = —1 and
Extpre = EXEpos-

Proposition 9.16 The steps (TB-1) and (TB-2) are normal, and satisfy (9.4).

Proof These steps are normal by definition, as A x = —2. To prove (9.4), let the bonds
in the triple bond be £; (1 < j < 3), and let the extra single bond in the case of (TB-2)
be £4. For (TB-2) we have that kg, is constant due to Lemma 9.14, and in both cases
(key, key, key) satisfies the system (A.14) in Lemma A.9, thanks to (9.2). By Lemma
A.9 (2) we have at most CT8~1L2E@=D choices for these (ke ; ); by fixing their values
and reducing to k[M0s] as in the proof of Proposition 9.15 we can prove (9.4). [

9.3.3 Bridge removal

In all subsequent steps, we assume M. has no triple bonds. In the current step, we
assume M. contains a bridge £, which is a single bond connecting atoms vy and v;.

e Step (BR): we remove the bond ¢, and set AExt = &.

For (BR) we have (AV, AE, AF) = (0, —1, 1) because removing a bridge adds one
component. We also define Ay = Ax =0 and Extpre = EXtpos.

Proposition 9.17 The step (BR) is normal, and satisfies (9.4). Moreover we have
An = —2and AV3 > —2, with equality holding only when d(v1) = d(v2) = 3.

Proof The step is normal because Ax = 0. Let the bridge be ¢, then the value of k;
must be fixed by Lemma 9.14. Once k; is fixed, we can reduce to k[M,os] as before
and this leads to (9.4).

The effect of (BR) reduces the degrees of two atoms each by 1, and adds one new
component. By definition of n we have Ap =2 —4 = —2, because the contribution to
p = V3 +2V, 4 3V] + 4V of each of the two atoms connected by £ changes from 0
tol,or1to2,or2to3,or3to4 after the removal of £. Moreover AV3 > —2 is clear
from definition, and equality holds only when both v; before removal of the bridge
have degree 3. O
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Steps (3S3-1)—(3S3-3G) Step (3S3-4G): (ii) violated Step (3S3-4G): (i) violated

Fig. 27 The functional group involved in steps (3S3-1)—(3S3-4G). In the first two pictures {v3, v5} are
{vg, vg} are not in the same component after removing v and vy, while in the third picture they are

/
1

Scenario 4 Scenario 5 Scenario 6

Fig. 28 The functional groups involved in step (3S3-5G). In total there are 6 scenarios

9.3.4 Degree 3 atoms connected by a single bond

In all subsequent steps, we assume there is no bridge in M. In the current step,
we assume that there are two degree 3 atoms v; and vy, connected by a single bond
£1. Then M. must contain one of the functional groups shown in Figs. 27 and 28.
Recall the definition of good and bad vectors in Lemma A.8.

In steps (3S3-1)-(3S3-4G) we assume that v; and v, each has two more single
bonds ¢, £3 and ¢4, ¢5, connecting to four different atoms v3, v4 and vs, vg labeled
as in Fig. 27. In (353-1)-(3S3-3G) we assume that (i) after removing {vq, v2} and
all bonds connecting to them, {v3, vs} is in one new component, and {v4, ve} is in
the other new component, and that (ii) the bonds £, and £4 have opposite directions
(viewing from {vy, v3}), and the bonds ¢3 and ¢5 also have opposite directions. In
(3S3-4G) we assume either (i) or (ii) is false. Moreover, in (3S3-1) we assume that
d(vz) =---=d(ve) =4, and in (3S3-3G) we assume that d(v3) and d(vs) are not
both 4. Finally, in (3S3-5G) we assume the functional groups around v; and v; are
like the ones shown in Fig. 28.

e Step (3S3-1): we remove the atoms {vy, v2} and all (five) bonds connecting to them.
In this step we set AExt to be the condition “ky, = k¢, and k¢, = k¢5 and k¢, — kg,
is a good vector” if £; and ¢3 have opposite directions (viewing from v1), and to
be the condition “k¢, = k¢, and k¢, = kg7 if £1 and £3 have the same direction.
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e Step (353-2G): we remove {v1, vz} and all bonds connecting to them, but set AExt
to be the negation (i.e. logical NOT) of the condition in (3S3-1).

e Step (3S3-3G): we remove {vy, v2} and all bonds connecting to them, but add a
new bond £¢ between v3 and vs (not drawn in Fig. 27), which goes from v3 to vs if
£> goes from v3 to vy and vice versa. We set AExt to be the condition in (3S3-1).

e Step (3S3-4G)—(353-5G): we remove {vy, v2} and all bonds connecting to them,
and set AExt = &.

We remark that (3S3-1)-(3S3-5G) are just the possible steps one can perform;
the exact choice of steps and order of performing will be fixed in the algorithm in
Sect. 9.4 below. For (3S3-1) and (3S3-2G) we have (AV,AE, AF) = (—2,-5,1),
and for (3S3-3G) we have (AV, AE, AF) = (-2, —4,1). For (3S3-4G), if (i) is not
violated, then we still have (AV, AE, AF) = (=2, =5, 1); if (i) is violated then we
must have (AV, AE, AF) = (—2,—5,0). This is because AF <1 by Lemma 9.13,
and if AF = 1 then we may assume {v3, vs} is in one component and {v4, v} is in the
other component after the removing {vy, v}, since otherwise £; would be a bridge.
As for (3S3-5G), the calculation depends on the scenario. For Scenarios 1 and 2, we
have (AV, AE, AF) equals either (-2, —5,0) or (-2, —5, 1), while for Scenarios
3-6 we must have (AV, AE, AF) = (-2, =5, 0); these can be verified basically by
using Lemma 9.13.

We define Ay = —2 for (3S3-1), and Ay = Ay + m for all other steps. We
also define Ak = —1 for (3S3-1) and (3S3-3G), and Ax = —2 for all other steps. For
the four steps other than (3S3-3G), we define Ext e = Extpos U AExt, while for
(3S3-3G) we define

Extpre = Ext/ . UAExt, 9.6)

pos

where Exti,oS is obtained by replacing each occurrence of kg, in Extpos With kg, .
Proposition 9.18 Each of the five steps verifies Condition 1 and satisfies (9.4). More-
over (353-1) is normal and satisfies An = —2 and AV3 =2, while the other four are
good.

Proof We only need to verify Condition 1 for (3S3-3G), which adds a new bond to
the molecule. This is true because the new bond is added in the component containing
v3 and vs, and this component does not become saturated because d(v3) and d(vs)
are not both 4. Moreover (3S3-1) is normal and the other four steps are good by
definition, and for (3S3-1) we have An = —2 and AV3 = 2 since originally d(v3) =
---=d(vg) = 4. Now we need to prove (9.4).

For (353-1), as part of Extpre we have k¢, = k¢, and k¢, = ks, and (ke , ke, , key)
satisfies the system (A.14) in Lemma A.9 due to (9.2). Therefore we have at most
C*871121=D choices for these due to Lemma A.9 (2), and if (ke, , ke, , k) is fixed,
we can reduce to k[Mpos] and prove (9.4).

For (3S3-2G), (3S3-4G) and (3S3-5G) the argument is the same, except that now
(key, ..., kes) satisfies the system (A.17) for some choice of signs (¢1,...,¢5). If

A x = —3 then the number of choices for (k¢,, ..., k¢s) is at most C+5’2L3(‘1_1)_%
by Lemma A.9 (5), which proves (9.4); so we only need to consider Ay = —2. In
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(3S3-2G) and (3S3-4G), by using Lemma 9.14 we know that in addition to (A.17)
we also have (A.19); in (3S3-5G), if Ax = —2 then we must be in Scenarios 1 or 2,
and it is easy to check that (A.19) also holds. As such, Lemma A.9 (7) bounds the
number of choices for (kg,, ..., k¢5) by C+8_2L3d_3_% , which proves (9.4), unless
(82, ¢3) = (L4, ¢5) and (ky,, key) = (ke,, kes). This last case cannot happen in (3S3-
4G) due to the directions of £, and £4, nor in (3S3-5G) as v3 cannot be degenerate,
so we only need to consider (3S3-2G), where Ext . implies that £; and £3 have
opposite directions, and k¢, — k¢, is a bad vector. By Lemma A.8, we know k¢, has

at most C+Ld_l_% choices, and when k¢, = k¢, is fixed, the number of choices
for (kg , key, kes) s at most ctslpd-! using Lemma A.9 (1). Thus the number of
choices for (k¢,, ..., kes) is at most cts-! Lz(d’])’%, which proves (9.4).

Finally consider (353-3G). Note that Ml,os has two components (assuming My is
connected; otherwise consider the current component of M), namely M’ containing
{v3, vs}, and M” containing {vs4, ve}. Moreover by Condition 3, Ext pos is the union
of Ext’ and Ext”, which only involve bonds in M’ and M” respectively. For any
k[Mipre] € D (Mpre, Extpre) and assuming kg, = k¢, , we can define

, , . ke, EF L,
k' [Mpos] = (ke)leMpos» ky = .7
key,, £=4e.

Note that k’'[M,0s] can be divided into k'[M'] and k'[M"], the latter being the restric-
tion of k[Mpre] to M”. Moreover, we can check that k'[M'] belongs to © (M, Ext’)
with essentially the original parameters (where in the place of a;, we have ay,). Once
k'[M'] s fixed, in particular k¢, = k¢, = 26 is fixed, then k¢, and k¢, = kg satisfy the
system (A.13) in Lemma A.9. If £; and ¢3 have the same direction, then the number
of choices for (kg,, k¢;) is at most C+8_1Ld_l_% by Lemma A.9 (1); if they have
opposite directions, then k¢, — kg; must be a good vector due to Extpre. Repeating
the argument in the proof of Lemma A.9 (1), and using the definition of good vectors
(decomposing intervals of length 8§~ 1L~2 into intervals of length L2 if necessary),
we see that the number of choices for (k¢ , k¢;) is at most Ccts! L‘l’]’}t. In either
case, once kg, = kg5 is fixed, k'[M”] will belong to ©(M”, Ext”) with some new
parameters that depend on the original parameters as well as k¢,. This implies that

1

Sup #0 (Mpre, Extpre) < sup#D (M, Ext’) - CT6 'L 73 . sup#D (M, Ext”),

however since M is the disjoint union of M’ and M and Ext s is the union of
Ext’ and Ext”, it is easy to see that

sup#D (M, Ext”) - sup#D(M”, Ext”) = sup#D (Mpos, Extpos),
which proves (9.4). g
9.3.5 Degree 3 atoms connected by a double bond

In this step, we assume there are two degree 3 atoms v and v;, connected by a double
bond (£1, £3), which are also connected to two other atoms v3 and v4 by two single
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Steps (3D3-1)—(3D3-3G) Step (3D3-4G) Step (3D3-5G)

Fig.29 The functional groups involved in steps (3D3-1)—(3D3-5G)

Step (3D3-6G): Scenario 1 Step (3D3-6G): Scenario 2

Fig. 30 The functional group involved in step (3D3-6G). In the left picture £5 becomes a bridge after
removing {v}, vy}, while in the right picture it does not

bonds ¢3 and ¢4, see Figs. 29 and 30. In (3D3-1)-(3D3-3G) and (3D3-6G) we assume
v3 # v4 and £3 and ¢4 are in opposite directions (viewing from {vy, v3}); in (3D3-1)
we assume d(v3) = d(vq4) =4, and in (3D3-3G) we assume that not all atoms in the
current component other than {vy, v2} have degree 4. In (3D3-4G) we assume v3 # v4
and £3 and ¢4 are in the same direction, and in (3D3-5G) we assume v3 = v4. Finally,
in (3D3-6G) we assume that v3 is connected to v4 via a single bond ¢5, and v3 and
vg4 are each connected to different atoms vs and vg via double bonds (£g, £7) and
(¢3, £9), see Fig. 30. Recall the definition of good and bad vectors in Lemma A.8.

e Step (3D3-1): we remove the atoms {vy, vz} and all (four) bonds connecting to
them. In this step we set AExt to be the condition that “k¢, = k¢, and k¢, — kg,
is a good vector” if €1 and £ have opposite directions, and to be the condition
“key = ke,” if £1 and £, have the same direction.

e Step (3D3-2G): we remove {vq, v2} and all bonds connecting to them, but set
AExt to be the negation (i.e. logical NOT) of the condition in (3D3-1).

e Step (3D3-3G): we remove {v1, v2} and all bonds connecting to them, but add a
new bond ¢5 between v3 and v4 (not drawn in Fig. 29), which goes from vy to v3 if
£3 goes from v to v3 and vice versa. We set AExt to be the condition in (3D3-1).

e Steps (3D3-4G)—(3D3-5G): we remove v and v> and all bonds connecting to
them, and set AExt = @.

e Step (3D3-6G): we remove the atoms {vy, ..., v4} and all (nine) bonds connecting
to them, and set AExt = &.

For the four steps other than (3D3-3G) and (3D3-6G) we have (AV, AE, AF) =
(=2, —4,0), where AF =0 due to Lemma 9.13, since Ml has no bridge. For (3D3-
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3G) we have (AV,AE, AF) = (-2, -3,0) for the same reason. Finally for (3D3-
6G) we have (AV,AE, AF) equals either (—4, —9,0) (if £5 does not become a
bridge after removing {vy, v2}) or (—4, =9, 1) (if it does).

Define (Ay, Ax) = (=2, —1) for 3D3-1), (Ay, Ak) = (-1 + ﬁ, —1) for
(3D3-3G), (Ay, Ak) = (Ax + ﬁ, —4) for (3D3-6G), and (Ay, Ak) = (-2 +
ﬁ, —2) for the other three steps. For the five steps other than (3D3-3G), which
do not add new bonds, we define Extpre = Extpos U AEXE; for (3D3-3G) we define
Extpre as in (9.6), but in Ext;)OS we replace each occurrence of k¢ by ke, .

Proposition 9.19 Each of the six steps verifies Condition 1 and satisfies (9.4). More-
over (3D3-1) is normal and satisfies An = AV3z =0, while the other five are good.

Proof We only need to verify Condition 1 for (3D3-3G). This is because the opera-
tion does not add any new component, and the existing component does not become
saturated, because by assumption at least one atom in the current component other
than v; and vy does not have degree 4. Moreover (3D3-1) is normal and the other
four steps are good, which follows directly from definition, and in (3D3-1) we are
assuming d(v3) = d(v4) = 4 before the operation, so it is clear that An = AVz =0.
Thus it suffices to prove (9.4).

For (3D3-1), as part of Extpre We have kgy = ky,, and (k¢ , ke, , k¢y) satisfies the
system (A.14) in Lemma A.9 due to (9.2). Therefore we have at most cts—1p2d=D
choices for these due to Lemma A.9, and if (k¢,, k¢,, k¢;) is fixed, we can reduce to
k[Mlpos] and prove (9.4).

For (3D3-2G), (3D3-4G) and (3D3-5G) the argument is the same, except that now
(key, ..., key) has to satisfy the system (A.16) with some choice of signs (&1, ..., {4).
By Lemma A.9 (4), we get at most C+8’2L2("’1)’% choices for (kg,, ..., ke,),
which proves (9.4), unless {3 = ¢4 and k¢; = kg,. The latter case cannot happen in
(3D3-4G) due to the directions of ¢3 and ¢4, nor in (3D3-5G) because v3 cannot be
degenerate. If it happens in (3D3-2G), then due to Extpe, we know that the direc-
tions of £; and ¢, must be opposite, and k;, — k¢, is a bad vector. Then, just like in
the proof of Proposition 9.18, we know k¢, has at most C +pd-1-3 choices, and the
number of choices for (k¢,, ..., k¢,) is at most cts! Lz(d’l)’él’t , which proves (9.4).

Next consider (3D3-6G). By the same argument, we only need to bound the num-
ber of choices for (k¢ , ..., k¢y). If £5 does not become a bridge after removing vy and
vy, then Ax = —5. By repeating the proof above and the proof of Proposition 9.18
(see (353-5G), Scenario 3), we know that (i) the number of choices for (k¢,, ..., k¢,)
is at most Ct8~1L2@=D and (ii) once (key, ..., ke,) is fixed, the number of choices
for (kes, ..., key) is at most C+8_2L3(d’1)’%. Therefore the number of choices for
(key, - -, key) is at most C*+5-3L5@=D=1 which implies (9.4).

Now, if £5 does become a bridge after removing v; and v, then Ay = —4.
By Lemma 9.14, we know that (ke,, k¢s) satisfies the system (A.13) in Lemma
A.9, but with n8~! L =2 replacing 8 "' L~2. Since (kq, , ke, , ke,) also satisfies (A.14),
we can apply Lemma A.9 (3), with a further division of intervals if necessary,
to bound the number of choices for (k¢,, ke,, key, kes) by nC+8_2L2(d_l)_41T.
Once (kg,, k¢, , ks, kes) is fixed, then kg, is also fixed, and number of choices for
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Scenario 1 Scenario 2 Scenario 3 Scenario 4

Fig.31 The functional groups involved in step (3D4G). In total there are 4 scenarios

(kegs - - - key) 1s bounded by cts—2p2d-D by Lemma A.9 (1). Therefore the num-
ber of choices for (ky,, ..., kg,) is at most C+5_4L4(d*1)*% (recall n < (log L)%,
which implies (9.4).

Finally consider (3D3-3G). Given any k[Mpre] € D (Mpre, Extpre) and assuming
ke, = ke, we define &’ [Mpos] as (9.7), but with kg/S = k¢,. By the same observation,
we see that k’[Mpos] belongs to D (Mo, Extpos) With essentially the original param-
eters (where in the place of ag; we have ay,). Once &’ [Mpos] is fixed, then (kg , k¢,)
satisfies the system (A.13) in Lemma A.9; moreover by Extpe we know that ei-
ther ¢ and £, have the same direction or k¢, — k¢, is a good vector. Just like in the
proof of Proposition 9.18, we see that the number of choices for (k¢,, k¢,) is at most

C*6~1L4=1=%  This implies that

SUp#D (Mypre, EXE pre) < SUP #D (Mpos, EXt pog) - CT6 1 LI,
which proves (9.4). O
9.3.6 Degree 3 and 4 atoms connected by a double bond

In this step, we assume there is an atom v; of degree 3, and another atom v; of degree
4, that are connected by a double bond (£1, £2). Then M. must contain one of the
functional groups shown in Fig. 31.

e Step (3D4G): we remove the atoms {vy, v2} and all (five) bonds connecting to
them, and set AExt = &.

For (3D4G), we can check using Lemma 9.13 that, in each scenario, we always
have (AV,AE,AF) = (-2,-5,0). We define Ay = -3 + m, Ak = —2 and
Extpre = EXtpos-

Proposition 9.20 The step (3DAG) is good, and satisfies (9.4).

Proof The step is good by definition. Now by (9.2) we know that (kg,, ..., k¢s) sat-
isfies the system (A.18) in Lemma A.9 with some choice of signs ({1, ..., {5). By
Lemma A.9 (6) they have at most C*§ —2p3@d=1—g choices, and once they are fixed
we can reduce to k[M,os] and prove (9.4). Il
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Scenario 1 Scenario 2 Scenario 3 Scenario 4

Fig.32 The functional groups involved in step (3S2G). In total there are 4 scenarios

Fig.33 The functional group
involved in step (3R-2G). Here
v1, V2, v3 are not drawn; some
of them may coincide with some
v}. Also we only draw the

scenario where Z/l becomes a

bridge after removing v, but the
other scenario is also possible

9.3.7 Degree 3 and 2 atoms connected

In this step, we assume there is an atom v; of degree 3, and another atom v, of degree
2, that are connected. Note that they must be connected by a single bond ¢1, otherwise
there would be a bridge. Then, Ml must contain one of the functional groups shown
in Fig. 32.

e Step (3S2G): we remove the atoms {vy, v2} and all (four) bonds connecting to
them, and set AExt = @.

For (3S2G), we can check using Lemma 9.13 that, in each scenario, we always
have (AV, AE, AF) = (=2, —4,0). We define Ay = =2 + 7, Ax = -2 and
EXtpre = EXtpos-

Proposition 9.21 The step (352G) is good, and satisfies (9.4).

Proof The step is good by definition. Now by (9.2) we know that (kg,, ..., k¢,) sat-
isfies the system (A.15) in Lemma A.9, with some choice of signs (¢1, ..., ¢4). By
Lemma A.9 (3) they have at most C*§ —2p 2= choices, and once they are fixed
we can reduce to k[M,os] and prove (9.4). Il

9.3.8 Degree 3 atom removal

In this step, we assume there is an atom v of degree 3, which is connected to three
atoms v; (1 < j < 3) of degree 4, by three single bonds £; (1 < j < 3). In step (3R-
2G) we further assume that, there is a special bond ¢} (see Definition 9.12) in the
molecule (or component) after removing the atom v and the bonds £;. In this case,
suppose £} connects atoms v} and v}, v} is connected to v} by a double bond (¢}, £3),
and v} is connected to v} by a double bond (£}, £5), see Fig. 33.
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e Step (3R-1): we remove the atom v and all (three) bonds connecting to it, and set
AEXt = Q.

e Step (3R-2G): we remove the atom v and all (three) bonds connecting to it. Then
we remove the atoms {v], v} and all (five) bonds connecting to them. We also set
AEXt = J.

Clearly the operation of removing v and £; (1 < j < 3) does not increase
the number of components (by Lemma 9.13). Therefore for (3R-1) we have
(AV,AE,AF)=(—1,-3,0). As for (3R-2), we have (AV,AE, AF) equals ei-
ther (—3, —8,0) or (—3, —8, 1), depending on whether Z’l becomes a bridge after
removing v. For (3R-1) we define Ay = —2 and Ak = —1, and for (3R-2) we define
Ay =Ax + m and Ak = —4. In both cases we define Extpre = EXtpos.

Proposition 9.22 The step (3R-1) is normal, and satisfies An =2 and AV3z = 2. The
step (3R-2G) is good. Both satisfy (9.4).

Proof The step (3R-1) is normal and (3R-2G) is good by definition, the equalities for
An and AV3 are also easily verified.

To prove (9.4), note that this is clear for (3R-1) because (kg , k¢, , k¢;) satisfies the
system (A.14) in Lemma A.9 and thus the number of choices for these is at most
Ct871L2@=D  and then (9.4) follows by reducing to k[Mps] as before. Now we
only need to consider (3R-2G). If £] does not become a bridge after removing v,
then Ax =—5and Ay = -5+ ﬁ. In this case, by repeating the proof of Propo-
sition 9.18 (see (3S3-5G), Scenario 3), we know that (i) the number of choices for
(ke,» ke, key) is at most CT6~1L2@=D and (ii) once (ky, , ke, k¢,) is fixed, the num-

ber of choices for (ke’l e, ke%) is at most C+8_2L3(d_1)_%. Therefore the number
of choices for (k¢,, ke, , ke, kg/l e k(/s) 1s at most C+8_3L5(d’1)’%, which implies
9.4).

Now, we may assume £; becomes a (special) bridge after removing v, see Fig. 33.
Since £/ is not a bridge in Mipre, we know v must have at least one bond connecting
to each of the two components after removing v and £}. Without loss of generality,
assume v has only one bond, say £, connecting to an atom vy in X (the compo-
nent containing {v}, v3}), then by Lemma 9.14 we know that (k, kg/l) satisfies the
system (A.13) in Lemma A.9, but with n6~' L2 replacing § "' L~2 and resonance
(ie. ke, = kg/l and they have opposite signs in (A.13)) allowed. Since (k¢,, k¢,, key)
also satisfies (A.14), we can apply Lemma A.9 (3) to bound the number of choices
for (ke , key, keys kg/l) by nC+8_2L2(d’1)’%, unless £1 and E’l have opposite direc-
tions (viewing from X) and k¢, = ke/l . If the above improved bound holds, then the
number of choices for (ke,, k¢,, ke, kg/l, ..., k) is at most C+8’4L4(d_1)_%, since
once (kg,, ke, ke, k[/l) is fixed, the number of choices for (ke/z, e, kﬁ’s) is at most
C+872L%@=D by Lemma A.9 (1).

Finally, suppose ¢; and ¢| have opposite directions and k¢, = k@/l . In partic-
ular we must have v # vi, hence (k(l,kgz,k(3,kg/2,kg/3) will satisfy the system
(A.17) in Lemma A.9. By Lemma A.9 (5), we can bound the number of choices
for these by C+8_2L3<d’])’%. Once these are fixed, the number of choices for
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(k%, kg/s) is at most C*8~!1L9~! by Lemma A.9 (1), so the number of choices for

(key s keys kess k@/l e, kg/s) is still at most CT8~4L4@=D=1 This proves (9.4). O
9.3.9 Degree 2 atom removal

In this step, we assume there is an atom v of degree 2, connected to one or two
atom(s) of degree 2 or 4.

e Step (2R-1): suppose v is connected to a degree 4 atom by a double bond, where
the two bonds have opposite directions. We remove the atom v and the double
bond.

e Step (2R-2G): suppose v is connected to a degree 4 atom by a double bond, where
the two bonds have the same direction. We remove the atom v and the double bond.

e Step (2R-3): suppose v is connected to a degree 4 atom by a single bond, and also
connected to another atom of degree 2 or 4 by a single bond. We remove the atom
v and the two bonds.

e Step (2R-4): suppose v is connected to two degree 2 atoms v and v, by two single
bonds, such that neither v; nor v, is connected to a degree 3 atom. We remove the
atoms {v, vy, v2}, and all bonds connecting to them.

e Step (2R-5): suppose v is connected to a degree 2 atom v’ by a double bond. We
remove the atoms v, v’ and the double bond. In all steps we set AExt = &.

For (2R-1)-(2R-3) we have (AV,AE,AF) = (—1,-2,0) (note that F =0
due to Lemma 9.13). For (2R-4) we have (AV, AE, AF) can be (-3, —4,0) or
(—3,—-3,—1), and for (2R-5) we have (AV,AE, AF) = (-2,—-2,—1). For (2R-
2G) we define Ay = —1+ 3(%_1) and Ak = —1, and for all others define Ay = —1
and Ak = —1. We also define EXt pre = EXtpos.

Proposition 9.23 The step (2R-2G) is good, and the other four are normal. For (2R-1)
and (2R-5) we have AVz = An = 0. For (2R-3) we have An =0 and AV3 > 1; for
(2R-4) we have AV3 >0 and An < 2.

Proof The statements about good or normal, as well as the ones regarding An and
A V3, can be shown by direct verification. As for (9.4), if (£1, £7) are the two bonds
of v, then (k¢,, k¢,) satisfies the system (A.13) in Lemma A.9, so (9.4) follows from
Lemma A.9 (1) and reduction to k[Ml,os]. For (2R-4) just notice that vy and v, be-
come degree 1 after removing v, so if £3 and £4 are the bonds they have other than £
and {5, then k¢, and k¢, must be uniquely fixed once (k,, k¢,) is fixed, so the total
number of choices for (kg , ..., kg,) is still at most cte—1lpd-1, O

9.4 The algorithm

We now describe the algorithm. It is done in two phases. In phase one we remove the
degenerate atoms using steps (DA) only; moreover we remove the non-tame degen-
erate atoms (i.e. those with degree 4) strictly before the tame ones. Once phase one

is finished we enter phase two, where there is no more degenerate atoms; note that
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none of our steps can create any (possibly) degenerate atom, which is easily checked
by definition.

In phase two, we will describe the algorithm as a big loop. Once we enter the loop,
we shall follow a set of rules so that depending on the current molecule M, we either
(1) choose the next step, or (ii) claim a checkpoint and choose the two possibilities
for the next step. In some cases, we may also choose more than one steps or claim
more than one checkpoints successively, again following a specific set of rules, until
we are done with this execution of the loop and return to the start of the loop. The
loop ends when M contains only isolated atoms.

9.4.1 Phase one: degenerate atom removal

The steps in phase one are determined as follows.

o If there is a degenerate atom of degree 4, remove it using (DA).

o If there is no degenerate atom of degree 4 but there is a tame atom, remove it using
(DA).

e Repeat this until there is no degenerate atom. Then enter phase two.

Note that these steps will not create new degenerate atom, or new degenerate atom
of degree 4, but may transform degenerate atom of degree 4 into tame ones. At the
end of phase one there will be no degenerate atom, which will be preserved for the
rest of the algorithm.

9.4.2 Phase two: description of the loop

We now describe the loop in phase two. For an example of this algorithm, see Ap-

pendix B. Note that there is no triple bond in the beginning.

(1) If M contains a bridge, then remove it using (BR). Repeat until M contains no
bridge.

(2) Now M contains no bridge. If M contains two degree 3 atoms v and vy con-
nected by a single bond ¢, then:
(a) If M contains one of the functional groups in Fig. 28, then perform (3S3-5G).

Go to (1).
(b) Otherwise, M contains the functional group in Fig. 27. If it satisfies (i) and
(1) in Sect. 9.3.4, and d(v3) = - - - = d(vg) = 4, then we claim a checkpoint,

and choose the two possibilities for the next step to be (3S3-1) and (3S3-2G)
(the pre-assumptions for (3S3-1) and (3S3-2G) are satisfied, see Sect. 9.3.4).
Go to (1).

(c) Ifit satisfies (i) and (ii) in Sect. 9.3.4, but (say) d(v3) and d(vs) are not both
4, then we claim a checkpoint, and choose the two possibilities for the next
step to be (353-2G) and (3S3-3G) (the pre-assumptions for (3S3-2G) and
(3S3-3G) are satisfied, see Sect. 9.3.4). If after (3S3-3G) a triple bond forms
between v3 and vs, immediately remove it by (TB-1)-(TB-2). Go to (1).

(d) If either (i) or (ii) in Sect. 9.3.4 is violated, then we perform (3S3-4G) (the
pre-assumption for (3S3-4G) is satisfied, see Sect. 9.3.4). Go to (1).

(3) Otherwise, if M contains two degree 3 atoms v; and v, connected by a double
bond (¢1, £2), then:
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(a) If M contains the functional group in Fig. 29 corresponding to (3D3-4G) or
(3D3-5G), then we perform the corresponding step. Go to (1).

(b) Otherwise, M contains the functional group in Fig. 29 corresponding to
(3D3-1)—-(3D3-3G). This can be seen as the start of a type II chain. Now,
if and while this chain continues (i.e. v3 and v4 are connected by a double
bond, and they are connected to two different atoms vs and v by two single
bonds of opposite directions viewing form {v3, v4}), we claim a checkpoint,
and choose the two possibilities for the next step to be (3D3-1) and (3D3-2G)
(the pre-assumptions for (3D3-1) and (3D3-2G) are satisfied, see Sect. 9.3.5).
Proceed with (c) below.

(c) Now assume the type II chain does not continue, i.e. we have reached the end
of the type II chain (if the type II chain does not continue in the beginning
then we skip (b) and directly move to (c) here). Then:

(i) Ifnotall atoms in the current component other than {vy, v>} have degree
4, then we claim a checkpoint and choose the two possibilities for the
next step to be (3D3-2G) and (3D3-3G) (the pre-assumptions for (3D3-
2G) and (3D3-3G) are satisfied, see Sect. 9.3.5). If after (3D3-3G) a
triple bond forms between v3 and v4, immediately remove it by (TB-
1)—(TB-2) (this is always doable, see Remark 2 immediately following
the description of this algorithm). Go to (1).

(i1) Otherwise, if v3 and v4 are like in Fig. 30, then perform (3D3-6G) (the
pre-assumption for (3D3-6G) is satisfied, see Sect. 9.3.5). Go to (1).

(iii)) Otherwise, we claim a checkpoint, and choose the two possibilities for
the next step to be (3D3-1) and (3D3-2G) (the pre-assumptions for
(3D3-1) and (3D3-2G) are satisfied, see Sect. 9.3.5). Go to (1) but scan
within this component (see explanation below).

(4) Otherwise, if M contains a degree 3 atom v; connected to a degree 4 atom v, by
a double bond (£¢1, £3), then we have one of the functional groups in Fig. 31. We
perform (3D4G). Go to (1).

(5) Otherwise, if M contains a degree 3 atom v; connected to a degree 2 atom v,,
then we have one of the functional groups in Fig. 32. We perform (3S2G). Go to
(D).

(6) Otherwise, if M contains a degree 3 atom v, then v must be connected to three
degree 4 atoms v; (1 < j < 3) by three single bonds £; (1 < j < 3). Then:

(a) If the component after removing v and £; contains a special bond, then
we perform (3R-2G) (the pre-assumption for (3R-2G) is satisfied, see
Sect. 9.3.8). Go to (1).

(b) Otherwise, we perform (3R-1). Go to (1).

(7) Otherwise, M must only contain atoms of degree (0 and) 2 and 4. If we are
in one of the cases corresponding to steps (2R-2G)—(2R-5), then perform the
corresponding step. Go to (1).

(8) Otherwise, there is a degree 2 atom v connected to a degree 4 atom v by a double
bond of opposite directions. This can be seen as the start of a type I chain. Now,
if and while this chain exists (we do not require this chain to continue from vy,
which is slightly different from (3-b)), we perform (2R-1) until we reach the end
of the type I chain. Go to (7) but scan within this component (see explanation
below).
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Before proceeding, we make a few remarks about the validity of the algorithm and
Condition 2.

1. There is no triple bond when we perform any step other than (TB-1)—(TB-2).
This is because only steps (353-3G) and (3D3-3G) may create triple bonds, but they
are immediately removed using (TB-1)—(TB-2), as in (2-c) and (3-c-i).

2. In (3-c-i), after (3D3-3G), suppose v3 and vg4 are connected by a triple bond. If
not both v3 and v4 have degree 4, then we can perform (TB-1)—(TB-2). If d(v3) =
d(vq4) = 4, then the two extra single bonds Z’l and 6/2 from v3 and v4 must have
opposite directions (by the requirement in Definition 9.1); since the type II chain
does not continue, £} and ¢} must share a common atom, say vs. The first equation in
(9.2), with ¢y; = ¢y, = 0, and the condition k¢, = k¢, in AExt, then forces kl,l = ke’z,
which is impossible as vs cannot be degenerate.

3. When executing a “Go to” sentence, we may proceed to scan the whole
molecule for the relevant structures, except in (3-c-iii) and (8), where we only scan
the current component. Note that after performing (3D3-1) or (3D3-2G) in (3-c-iii),
v3 and vg will have degree 3, and all other atoms in the current component will
have degree 4. Therefore the next step(s) we perform in this component, following
our algorithm, may be (BR), (3S3-1)—(353-5G), (3D3-4G)—-(3D3-5G), (3D4G), (3R-
1)-(3R-2G), possibly accompanied by (TB-1)—(TB-2), but cannot be (3D3-1)-(3D3-
3G) because the type II chain does not continue. Similarly, after performing the last
(2R-1) in (8), v; will have degree 2, and no atom in the current component may
have degree 3. Therefore the next step we perform in this component may be (2R-
2G)—(2R-5), but cannot be (2R-1).

4. There is no bridge when we perform any step other than (TB-1)—(TB-2) or (BR).
This is because step (BR) has the top priority due to the “Go to (1)” sentences in the
algorithm. Moreover, if we are in (3-b), i.e. the type II chain continues, then the steps
(3D3-1) and (3D3-2G) cause the same change on M, and this change does not create
any bridge. In the same way, if we are in (8), then the step (2R-1) does not create any
bridge.

5. In the whole process we never have a saturated component, thus in (7) there
must be at least one degree 2 atom (unless there are only isolated atoms, in which
case the loop ends; note that we are also not considering degree 1 atoms, as those
imply the existence of bridges).

6. The timespots where we claim checkpoints are in (2-b), (2-c), (3-b), (3-c-1)
and (3-c-iii). In each case Condition 2 is preserved, because (i) by our choice, the
two possible AExt’s for the two possibilities for the next step at this checkpoint are
exactly negations of each other, so any k[Mlre] must satisfy one of them, and (ii)
for (3S3-3G) (same for (3D3-3G)), if k[Me] satisfies AExt and k’[Mpos] satisfies
ExXtpos, then k[Mlpe ] must satisfy Extpee, which follows from (9.6) and (9.7).

9.5 Proof of Proposition 9.10

The algorithm described in 9.4.2 leads to at most C” tracks. Each track contains at
most Cn steps as each step removes at least one bond, while there are only 2n — 1
from the beginning. We will fix a track in the discussion below. Let r be the total

number of good steps in this track. Note that the change of any of the quantities we
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will study below, caused by any single step we defined above, is at most C (in fact,
at most 100).

9.5.1 Phase one

We start with phase one. Note that 1, must remain nonnegative due to absence of
saturated components, as each component must have at least one atom of degree in
{0, 1,2} or two atoms of degree 3; moreover initially n, = 0 because there are only
two atoms of degree 3 or only one atom of degree 2. Let s be the number of (DA)
removing degree 4 degenerate atoms that are normal, and let s’ be the number of
(DA) removing tame atoms. After removing all the degree 4 degenerate atoms, by
Proposition 9.15, we know that 0 < n, < —2s + Cr, we know that s < Cr.

At this time, the number of tame atoms is at most 2 + C(s +r) <2 + Cr, as
originally the number of tame atoms is at most 2, and the number of newly created
tame atoms is at most C(s + r). Moreover, if r = 0, then also s = 0. If a degree 2 or
degree 3 atom in the original base molecule is degenerate (hence tame), then after the
first (DA) step, by Proposition 9.15 we know that 7, will become negative, which is
impossible. This means that if » = 0 then s = s’ = 0, hence in all cases s +s" < Cr.

9.5.2 Phase two: increments of n and V3

Since the total number of steps in phase one is at most Cr, we know at the start
of phase two, each of the quantities we will study below has changed at most Cr
compared to the initial state. Note that (TB-1) and (TB-2) only occur once after (3S3-
3G) or (3D3-3G) which are good steps, the number of those is also at most Cr.

Let the number of (BR) where d(v1) = d(vy) = 3 (see Proposition 9.17) be z1, the
number of other (BR) be z’l. Let the number of (3S3-1) be z3, the number of (3R-1)
be z3, the numbers of (2R-3)—(2R-5) be z4, z5 and z¢. By Propositions 9.17-9.23, we
can examine the increment of 7 in the whole process and get

—2z1 — 22} — 222+ 223 — 225 > 2 — Cr, 9.8)

note that initially » = —2 and in the end n = 0. In the same way, by examining the
increment of V3 we get

—2z1— 21 +2z20+2z3+z24 < Cr, (9.9)

note that initially V3 € {0, 2} and in the end V3 = 0. Subtracting these two inequalities
yields z’l + 22 4+ z4 + z5 + 2 < Cr. In particular we also know r > 1.

9.5.3 Phase two: remaining steps

Next we will prove that 7 + z3 + z6 < Cr. Let V; be the number of degree 2 atoms
with two single bonds. It is clear that |AV2*| < C for any step, AVz* =0 for (3D3-1),
(3R-1) and (2R-5), and AV > 0 for (2R-1), and for (BR) assuming d (vi) = d(v2) =
3. Moreover, equality holds for (BR) if and only if the bridge removed is special.
Therefore, with at most Cr exceptions, all the bridges appearing in (BR) are special.
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Then, if we consider the increment of V;, we similarly see that z¢ < z1 + Cr (using
also r > 1). Combining with (9.9) which implies z3 < z1 + Cr, we only need to prove
z1 <Cr.

Consider the increment of the number of special bonds, denoted by &. Clearly
A& =0 for (2R-1) and (2R-5); for (BR) which removes a special bridge, we can
check that this operation cannot make any existing non-special bond special, so A§ =
—1. Moreover, by our algorithm, whenever we perform (3R-1), it is always assumed
that the component contains no special bond after this step, so A& < 0. Similarly,
whenever we perform (3D3-1) we are always in (3-b) or (3-c-iii). For (3-c-iii), v3
and vy are the only two degree 3 atom in the component after performing (3D3-1) or
(3D3-2G), and they are not connected by a special bond (otherwise we shall perform
(3D3-6Q)), so this step also does not create any special bond, hence A& < 0.

Now let us consider steps (3D3-1) occurring in (3-b). By our algorithm, if we also
include the possible (3D3-2G), then such steps occur in the form of sequences which
follow the type II chains in the molecule. For any step in this sequence except the last
one, we must have A& = 0 (because in this case, after (3D3-1), neither v3 nor vy is
connected to a degree 3 atom by a single bond). Moreover, if for the last one in the
sequence we do have A& > 0, then immediately after this sequence we must have a
good step (because in this case, after we finish the sequence and move to (3-c), either
v3 or vs4 will have degree 3 instead of 4, so we must be in (3-c-i)). Since the number
of good steps is at most r, we know that the number of steps for which A > 0 is at
most Cr. Thus, considering the increment of £, we see that z; < Cr.

9.5.4 Typeland type Il chains

Now we see that the number of steps different from (3D3-1) and (2R-1) is at most
Cr. In particular steps (3D3-1) or (3D3-2G) occurring in (3-c-iii) is also at most
Cr because each of them must be followed by an operation different from (3D3-1)
and (2R-1). As for the sequences of (3D3-1) or (3D3-2G) occurring in (3-b), each
sequence corresponds to a type II chain, and each chain can be as long as Cn, but
the number of chains must be at most Cr for the same reason. Moreover, follow-
ing each chain we have a sequence of checkpoints, and at each checkpoint we may
choose (3D3-1) or (3D3-2G), but the number of (3D3-2G) chosen must be at most
Cr. If necessary we can further divide these chains, so that (3D3-1) is chosen at each
checkpoint of each type II chain.

In the same way, steps (2R-1) also occur in the form of sequences which follow
the type I chains in the molecule, and at the end of each sequence we have a step
different from (3D3-1) and (2R-1). Thus each sequence corresponds to a type I chain,
and the number of chains is at most Cr. Note that some of the edges in the chains
may not exist in the original base molecule, but the number of those is again at most
Cr because (3S3-3G) and (3D3-3G) are both good steps. Upon further dividing, we
can find these (at most Cr) chains in the original base molecule, such that the number
of atoms and bonds not belonging to one of these chains is at most Cr. In addition,
since we are choosing (3D3-1) in type II chains, by definition, the set Ext obtained
in the start must contain (possibly among other things) the conditions k¢, = k¢, for
any two paired single bond (£, £3) in any type II chain.
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9.5.5 Conclusion

Finally we prove (9.3). At the initial timespot, © (M) is the union of all the possible
D (M, Ext) for Ext € Y, thanks to Condition 2. The number of possible tracks is at
most C", so we only need to fix one track. Now by Condition 4, we get

sup#D (M, Ext) < (CT)"s* L@~ Dr,

Since initially xy =n, we see that (d — 1)y <(d — D)n —2vrforO <v < % by the
definition of good and normal steps. As for «, note that Ak = —1 for both (3D3-1)
and (2R-1). If the total numbers of atoms in type I chains and type II chains are m
and m’, then m’ = n — m up to error Cr, and the number of steps (3D3-1) and (2R-1)
are m’/2 and m respectively (all up to error Cr), so initially k = m + ’"7/ =24 up

to error Cr. Clearly factors " is acceptable in view of the gain L™2", so we have
proved (9.3).

10 Non-regular couples llI: L! bounds for coefficients

We now return to the study of the expression (8.27). Let ka and (ro, rirr) be as in
Sect. 8.4. For simplicity, until the end of the proof of Proposition 10.1 we will write
ka simply as Q, and the associated sets (J\/'j()* as N'* etc. Recall, by (8.29), that the
total length of the irregular chains in Q is at most C(rg + rirr). Let E be a subset of
N*, we may define, as in (8.27), the function

uQ(t,s,a,a[N*])z/N [ e o den. (10.1)
€ neN

where ¢ = o[Z] € [0, 118, and the domain & is defined as in (5.4), but with the
extra conditions t,» > t, + oy for n € E, where n? is the parent of n. Note that
the definition here is slightly different from (5.3) as we include the signs ¢, in the
variables o, which is more convenient for this section. Then, let n6 be the scale of
Q, we can write

n—ngy 5 ng .
(827)=(CT8) 2 ( ) £*(Q) / G(A) - e HH1s) gy / do
21471 RN xR2 0,118

X Y eslo(t.s.0. (BL2CaQn + An)nen) - Xiot(h, 0. K[Q]).  (10.2)
&

Let M be the base molecule obtained from Q as in Definition 9.3. It is easy to
see that M contains no triple bond, as triple bonds in M can only come from (1, 1)-
mini couples and mini trees (as in Definition 4.1) in Q. By the proofs in Sect. 9,
we can introduce at most C™0 sets of extra conditions Ext, such that the summation
in & = k[Q] in (8.27) can be decomposed into the summations with each of these
sets of extra conditions imposed on k[ Q]. Moreover, for each choice of Ext there is
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1<rn < n6 such that the conclusion of Proposition 9.10, including (9.3), holds true
(with r replaced by rp).

Notice that a type I chain in M can only be obtained from either one irregular
chain, or the union of two irregular chains in Q; this can be proved in the same
way as in Sect. 10.1.2 below (which involves the more complicated type II chains),
see Remark 10.3. Therefore, the total length m of type I chains in M is bounded
by the total length of irregular chains in Q, which is at most C(rg + ri;r). However,
each irregular chain in Q also corresponds to a type I chain in the base molecule, so
rir < Cri, hence m < Cr, where r = ro + r1. This means the number of atoms in M
that are not in one of those (at most Cr) type II chains is at most Cr.

Now, suppose n and n’ are two branching nodes in @ which correspond to two
atoms in M that are connected by a double bond in a type II chain, then we must have
Cw Q2 = —&n 2y, under the extra conditions in Ext, see Remark 9.9. In fact we will
restrict {n, n'} to the interior of this type I chain by omitting 5 pairs of atoms at both
ends of the chain, in the same way as in Definition 8.4. Then, we make such {n,n'} a
pair (this is related to but different from the pairing of branching nodes in Proposition
4.3), and choose one node from each such pair to form a set N, If it happens that
one of {n, n'} is a parent of the other, we assume the parent belongs to Neh Let NT™
be the set of branching nodes not in these pairs, and define N' = N'" U N7

We will be interested in estimates on the function Ug in (10~.1) where o, =
8L2§nQn + An, which means that oy + @y = uy, for each n € Ne¢h | where v is
the node paired to n and py = Ay + Ay is a parameter depending on A. Under this
assumption on oy, we can write (similar to (5.5))

Ug(t,s,a,a[N*)) =Vol(t,s,a,alN]) (10.3)

for some function Vg. This function actually depends also on the parameters 1 for
n e N but we will omit this for notational convenience. The main goal of this
section is to prove the following:

Proposition 10.1 Suppose Q has scale ny,. For each n € N, suppose Sn C Z and
#S, < L% Then, uniformly in (t, s), in the choices Of(Sn)ne/\?, and in the parame-
ters (Un) e f7en» We have

ot 3 sup  sup|Vo(t,s, 0, alND)| < (CHY0LE 3 (log L)C",
(My)imn€Sn (an):lan—mn|<1 ©
(10.4)
wherer =rg + 1.

Before proving Proposition 10.1, we first make some observations. By (10.1), one
can see that the function Vg is completely determined by the tree structures of the
trees of Q, as well as the pairing between branching nodes described above (i.e. it
does not depend on the pairings between leaves of Q, nor on the signs of the nodes).
Thus, below we will forget the signs of the nodes of Q and view it as an unsigned
couple, which corresponds to an undirected molecule as in Definition 9.3 (we retain
the pairings between branching nodes). Denote the unsigned couple by Q™ and the
undirected molecule still by M. Later in the inductive step, we may further forget
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the leaf pairing structure of Q, hence viewing it as a double-tree with some of the
branching nodes paired, and denote it by Q'". We may then write

Vol(t,s, o, alNT) =Vau(t,s, 0, alN) = Vor(t,s, o, a[N).

Next, for any function V = V(x) defined on [0, 1]?, by inducting on n we can
prove that

sup |V (x)] 52/ 192V | dx, (10.5)
xel0,1]" > Joar

where p ranges over all multi-indices with each component being O or 1. This implies
that

sup sup|VQ(t,S,0,Ot[./’\7])|

(Mp):ma €8Sy (an):lan—my|<l 0O

< Z/ sup|92Vo (1, s, 0, alN'])| da[A], (10.6)

o (an):an€Sn(l) ©

where p is as above, and Sy (1) is the 1-neighborhood of §;; in R which has measure
< L1 1f we fix o in (10.6), which has at most 2 choices, then 32 Vo has a similar
form as Vg except that one has some extra wit, factors in the integral (10.1). From
the proof below it is clear that such factors will not make a difference, so we will
focus on the right hand side of (10.6) without the 3¢ derivative.

Finally, we record the following lemma, which will be useful in the proof of Propo-
sition 10.1.

Lemma 10.2 Let T be a ternary tree, and denote by N the set of branching nodes.
Let B C N, and consider

r(t.a.aiND =[] e, (107
D neN

where o = o [E] € [0, 112, and the domain Dis defined as in (5.2), but with the extra
conditions typ > ty + oy for n € B, where n? is the parent of n.

For every choice of dy, € {0,1}(n € N), we define qn for n € N inductively as
follows: Set q, =0 if nis a leaf, and otherwise define gy = oy 4 dn,qn, + dn,qn, +
dnyqn, where ny, np, n3 are the three children of n.

Uniformly in o and t, the following estimate holds:

1
Urt.o.alNDI=CH" > ] —- (10.8)
dn€{0,1} neN (qn)

Proof The proof is straightforward, see Proposition 2.3 in [18]. Note that here we

have the extra parameters o, but they only contribute unimodular coefficients to var-
ious components of U7 and do not affect any of the estimates. O
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Proof of Proposition 10.1 The proof will proceed by induction on the size of N¢h The
base case in which A" is empty is covered by Lemma 10.2, since for any choice of
yn € R and Sy, (1) of measure < L0 one has that

— dan<logL
/Sn(l) (@0 +ya)

Therefore the left hand side of (10.4) is bounded by 8"6/4(C+)”6 (log L)”f) which is
more than acceptable since if A" is empty we must have ny<Cr.

We now assume that Neh is nonempty and that estimate (10.4) hold for couples
with smaller V" (equivalently molecules with shorter Type II chains). To prove
(10.4) for Q, we first need to analyze the structure of the couple Q, which is done in
the next section. g

10.1 Tree Structure nearn € ./T/”h

Recall the definition of PC and LP bonds in Definition 9.3. Clearly, the two edges
of a double bond cannot be both PC bonds, but we can have them both being LP
bonds (we call this an LP-LP double bond) or one LP and one PC bond (we call that
an LP-PC double bond). Denote by 9 the set of atoms in M connected by double
bonds in the type II chains, then each such pair of atoms corresponds to a pair of
branching nodes in Q, and only one of the two nodes belongs to A/, There are two
cases for the molecule M: Case I where there exists at least one LP-LP double bond
connecting a pair of atoms in 91, or Case 2 where all double bonds connecting a pair
of atoms in 9T are LP-PC double bonds.

10.1.1 LP-LP double bonds

Suppose that one of the double bonds appearing in 91 is an LP-LP double bond. In this
case, if (p, ¢1, ¢2, ¢3) and (p’, ¢}, ¢}, ¢;) denote the two 4-node subsets corresponding
to the two atoms connected by an LP-LP double bond, then p and p’ are two branching
nodes in A'* such that neither is a child of the other. We also have two leaf pairings
between the children ¢, ¢, and c’jl, c’j2 where k;, j; € {1, 2, 3}, see Fig. 34. Note that
p and p’ may or may not be in the same tree. In fact one of them may be a descendant
of the other, in which case Fig. 34 will be depicted differently (but the proof will not

be affected).
10.1.2 LP-PCdouble bonds

Now consider Case 2 in which all the double bonds in all type II chains connecting
pairs of atoms in 91 are LP-PC double bonds. Here we can verify that, the two hori-
zontal parallel single bonds in Fig. 25 that connect two LP-PC double bonds cannot
be both PC bonds (since each node in A/* has a single parent), which means that at
least one of the two parallel single bonds is an LP bond. Since the total number of LP
bonds is € {n(, n, + 1} and that of PC bonds is € {n(, — 1, n;, — 2}, we conclude that
the number of the parallel single bonds that are both LP is bounded by the number of
bonds outside all the type II chains which is Cr.
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Fig.34 In Case 1, the two
paired nodes are p and p/,
neither of which is a child of the
other. Each has two children
leaves paired with the children
of the other. Here 7 and 7};
denote the trees obtained by
deleting the subtrees rooted at p
and p’ respectively (keeping the
leaves p and p’), and T, T,
denote the trees rooted at pq, p6
respectively

!
T

Alp,) Alp) Alpy)

LP ~ PC ,—~ PC O

PC ||LP LP||PC LP|| PC

pc \“ 1p \ rp O

Alps) Alp) Alpy)

Fig.35 A type II chain in which we label the bonds as either LP (leaf pair) or PC (parent-child). Here we
assume that all double bonds are LP-PC, and for any pair of parallel colored bonds, one is LP and the other
is PC. Here A(p) is the atom corresponding to the branching node p, and we assume p is the parent of p’.
Similar for pq and py

As aresult of this, by splitting the type II chains appearing in M at the (at most) Cr
sites where the parallel single bonds are both LP bonds, we obtain that the molecule
M has at most Cr type II chains where the double bonds are all LP-PC and the
parallel single bonds connecting them are such that one is LP and the other is PC. We
shall abuse notation, and refer to those (possibly smaller) chains as the type II chains
below and still denote by 91 the smaller set of atoms connected by such LP-PC double
bonds, such that each pair of single bonds has one LP and one PC bond. See Fig. 35.

Let (p, ¢q, ¢, ¢3) and (p/, c/l, c’z, cg) denote the two 4-node subsets corresponding
to the two atoms of 91 connected by a LP-PC double bond in a type II molecular
chain, and suppose that p’ is a child of p. Since there is a double bond between A(p)
and A(p’), some child ¢; of p must be paired to a child c’j of p’; in particular, ¢t and
¢, are leafs.

We claim that: (1) among the one remaining child of p and the two remaining
children of p’, exactly 2 are leaves, and the other one, denoted by pg, is a branching
node corresponding to an atom in 91; (2) the parent of p, denoted by p;, corresponds
to an atom in 91 that is connected to A(p) by a single bond. Note that the node pg
in (1) is either a child of p or a child of p’; we call these Case 2A and Case 2B, see
Fig. 36.

In fact, apart from the double bond connecting to A(p’), there is at least one more
PC bond (which corresponds to the non-root branching node p) at the atom A(p);
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Module A Module B

Fig.36 The type II chain in Case 2 corresponds to a chain of modules of form A and B depicted here. All
nodes marked by x are leafs. Each module connects to the next one either through the parent node p or
through the child node p¢. Here 7, denotes the tree obtained by deleting the subtree rooted at p (keeping
the leaf p), and 7., denotes the tree rooted at pg

this must be a single bond connecting to A(p1) where p; is the parent of p, so (2) is
true. Now, apart from this single bond and the double bond between A(p) and A(p’),
there are three remaining bonds connecting to either A(p) or A(p’), which correspond
to the three remaining children of p and p’ listed in (1). Among these three bonds,
exactly two are LP bonds and exactly one is a PC bond (thanks to the assumption we
made above), hence exactly two of the three children are leaves, and the other one,
denoted by po, is a branching node which corresponds to an atom connected to either
A(p) or A(p’) by a single bond. This proves (1) and thus we are in either Case 2A or
Case 2B.

If we perform the above analysis for the LP-PC double bond at pg or p;, and repeat
this process, it is easy to see that each type II chain in M corresponds to a chain in
Q, which is formed by repeatedly stacking one of the modules A or B depicted in
Fig. 36 (with each module connecting to the next one either through the parent node
p or through the child node py).

Remark 10.3 A similar (and simpler) argument to the above can be used to show that,
each type I chain in Ml must be obtained from either one irregular chain, or the union
of two irregular chains in Q. Note that unlike here, the argument for type I chains
will involve signs, but this can be easily adjusted.

10.1.3 Conclusion on the tree structure of Q

From the discussions in Sects. 10.1.1 and 10.1.2 we conclude the followings.

In Case 1, there exist two paired branching nodes p and p’, with p € N ¢h such
that neither is a child of the other. Moreover, p and p’ each has two children leaves
that form two pairs, see Fig. 34. Note that this is a property of the unsigned couple
Qns .
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In Case 2, the couple Q contains at most Cr chains, each consisting of modules A
and B as described in Fig. 36, such that the rest of the couple has at most Cr nodes.
Moreover for each module A or B in this chain, the nodes p and p’ (as in Fig. 36)
are paired with p € N, and p’ is a child of p. Note that this is a property for the
double-tree Q.

10.2 Induction step

Now we can proceed with the induction step in the proof of Proposition 10.1. As
stated before we will deal with the unsigned couple Q™. Recall that the couple Q is
formed by two trees 7*, with corresponding sets of branching nodes N'*.

Suppose first that we are in Case 1, and we fix p and p’ as in Sect. 10.1.3. In this
case, using the notation in Fig. 34, denote by 7, the subtree attached to pg, and Np,
the set of branching nodes in 7., and let p; be the parent of p. Also denote by 7, the
tree obtained by deleting the subtree rooted at p from the tree containing p (keeping p
as a leaf), and let V), be its set of branching nodes. Without loss of generality assume
p € T, define U+ =Ur+(t,0,a[NT]) as in (10.7). Then we have that (note oy
and oy, may be replaced by 0)

tp, — ty—
U N+ _ Tionty L% Tidply P70 Tidtptp
i+ (t,0,af D= e e dry e 0o dfy,
0 0
P

F1nel,
3 .

x [Tt tpg. 0.2 IND.
j=t "

where TC(h]) are the three subtrees of 7., ./\/C(}f ) are defined accordingly, and

Fl:= {t[/\/'p] :0 <ty <ty <t, where n? is the parent of n, and t,, <ty — o
ifne E} (10.9)
Interchanging the order of integration, we obtain that

tpl —0p—0p,

U7'+(t, . Ot[./\/i]) :/ l—[ <eniantn) / G(tpl , tpo)eniapotpo dtpo
7 neN, 0

3
()
x [Tt oy, 0, @INGD,
j=1

. B . t t
Gty tpy) = (™1t =) — T 02700 ) 5 (B (B8,

wiay
Clearly G satisfies ||a(r;, NIl L < C(ozp)_1 (where G is the Fourier trans-
1.0°70p.0p(

form on Rz), hence

U+ (t, o, a[NT])
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_ / Gar. )

3
) =
x 1—[1u7;(hj)(tp0,6705 NG'D = /R2 G(n, OUp+(t, 0", ' INSD)
]:

1 —Oyp—0)}
p1 % —Op . .
ma“tn)/ 0 ezmm‘pl em(apo+29)tpo dfpo

F1 neN P

where 7T is the tree obtained by replacing the subtree rooted at p with the subtree
rooted at pg (i.e. merging p and po), which has V- = N\ {p} as its set of branching
nodes, and o’ is obtained from « by adding 21 and 26 to «yp, and «y, respectively.
Similarly, ¢ is obtained from o by restricting to the new set of branching nodes and
replacing oy, by op, + 0p.

Doing the same computation for the node p’ (for which ¢ = —arp 4 1), noticing
that p’ ¢ {p1, po}. We obtain that

Vous(t, 8,0, alNT) = Uz (t, 0, «[NTDUT- (5,0, a[NT])

- /]R G008 (.0 Vay, (5.5, F R )
where QZ;W is the unsigned couple obtained from Q™ by replacing the trees rooted
at p and p’ with the trees rooted at po and p(, respectively, and has the same leaf
pairing and branching node pairing structures as Q"*. The set of branching nodes
Ny = N5\[p,p'}, and Ne = N'\{p} is the set obtained from A%, by pair-
1gg branching nodes as above. The variables oz[./\/'new] is the restriction of a[N ] to
New, which then has at most four entries translated by some linear combinations of
(£26, +2n, £20’, +27'). Similarly, & is obtained from o by translations as explained
above.

The function G’ satisfies the same bound as G, but with the right hand side re-
placed by C(ap — /,Lp)_l. Using that fR(ap)_l {orp — up)_ldap < C, we can directly
estimate

/ Sup|VQns([,S,0',Ol[j\7'])|
(

an):an€Sn(l) o

E C Sup / Sup ’VQ:';S,W(Z" S, 67 a[ﬁnew])| I
(Ta (1)) / (an):an€Tn(l) ©

where Ty (1) ranges over all sgbsets of R with measure < L'%_ and we assume n € N
in the first integral, and n € A, in the second integral. Using the induction hypoth-
esis on Q75 , we obtain the needed estimate.

We are thus left with Case 2 where Q is the union of at most p < Cr chains of
modules A and B as described in Fig. 36, plus at most Cr other nodes. At this point
we will forget the leaf pairing structure of Q and view it as a double-tree Q" with

some branching nodes paired. We will prove, with S, (1) defined as above, that

8"/ / sup|Vor (1,5, 0, a[N])| < (CH)0LPY3 (log LN 1+CP,
(an):an€Su(l) o
(10.10)
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where ny, is the scale of Q. This estimate would give (10.4) since |[N""| 4+ p < Cr.

We will prove estimate (10.10) by induction on p, with the base case p = 0 being
a consequence of Lemma 10.2. Let p € N°" and let us start by assuming that p is the
parent node in a Module A. Assume without loss of generality that both nodes p and
p’ belong to the tree 7. Let 7., be the tree rooted at pg (see Fig. 36), T, be the tree
obtained from 7 by removing the subtree rooted at p (keeping p as a leaf), and NV,
and \V,, be the respective sets of branching nodes. Then if p; is the parent of p, we
have

Z/l7'+(t,(r,0t[./\/+])

/‘7:1 neN,

tpfap/ .
% / dl‘ ,efm(otpfup)tp/

-/, ]

where F| = {t[./\/p] 0<ty <ty <t,and ty <ty — oy if n € E}. The function
Gy is defined by

lpl—ﬁp .
’”““’") dtn/ dty ™ " UT, (tp, 0, [ Nep])
0

Tpy—op
(e ar, / Aty Gt 1p)UT,, (1. 0 @[N], (10.11)

neN, %’

1

—————— (M) 1) (10.12)
ity — tp)

t t .
Gy (ty,, ty) = P P1\ miapty
p(tpys tp) XO(lo) (10)e
and satisfies that

~ C
IGp(n, D1 oo < —. (10.13)
i Loty (ap — pp)

Moreover, in view of the restriction t, > oy in the last integral in (10.11), we may
truncate Gy, and define Gg“’ =Gy - ltp—crp,z(). This truncated function then satisfies

(10.13), but with the right hand side replaced by C{crp, — ,up)_l log(2 + |ay — ppl),
which follows from direct calculations.
In case 2B, the computation is similar and one obtains that

Ur+ (L, a[NT])

. p; —0p .
— / 1_[ (emozntn) / dtpemaptp
Fi 0

neN,

tp (Tp .
x/ dtp/e_”’(“"_“”)t"’bh;h (ty, 0, a[Nep),

-/ ]

Ip)—op—o,/
(et / " dty Gy iy, 1y )UT,, (1, 0 2L Na])
neN, 0
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with the kernel

Iy t ; 1 ; ;
Gty 1) = XO( 10) ( 1P(;) —7ri(atp—pp)ty — (emap(zpl—ap) _ enlap(lp/+z7p/))

that satisfies the bound

~ C

||Gp(77, 9)||L,17‘9L8f,,op/ = m (10.14)
Consider now one of the p chains of modules A and B, suppose that it contains £
modules, which we list from top to bottom, and is contained in the tree 7. Define
h1 to be the p node (see Fig. 36) of the top module, and p; to be the parent of b;
also define hyy1 to be the pg node of the bottom module, and p,1 to be the parent
of hy41. Define Typove to be the tree obtained by removing the subtree rooted at b
and keeping b as a leaf, and Tpe, to be the tree rooted at by 1 (we define Nopove
and Npejow accordingly). Note that Tapeve is just 7, for the top module and Tpeion
is just the Ty, for the bottom module. Let by (1 < k < £) be the p node of the k-th
module from top to bottom, and write (o, fx) := (ap,, iy, ). Then by iterating the

above calculations, we have

Ur«(t,0,a[NT]) = /]r (e""“nfn) dty
1

neM]b()LE
0
x /C l_[ Gz(tk’ tk+1) dtk+1 ’ uneluw (IPZH 0, a[Nbel()w])-
k=1

Here Fj is the set defined before but associated with Nypove, and (11, tey1) 1=
(tp, > tpe,1)- The function G equals G%’;’ if the k-th module is A and either k <4
ork>/{—4,and G,t = Gy, otherwise. The domain

C:{(tz,...,tg+1):tk>tk+1—{-a:k, forl <k<¥t; 1 >O’1£, for5 <k <¢{-5},

where Gy is the sum of zero, one or two oy, variables appearing in ¢, and o] equals
either 0 or some oy, that appears in o. The function G satisfies either (10.13) or
(10.14), and with the right hand side of (10.13) multiplied by log(2 + |t — ey ) only
if k<4 ork>{—4. As aresult, we may write, with 6ot = 7| + - - - + 0¢, that

U+ (t, o, a[NT])

G ’9 mantn)dt . 2ni7]1tp1
/R”H x (nk k)/ n-e

F1 neNapove

277 (i +6 £ 271i0 t
/C 1_[ e O+ Ok—1)1k dry - et Z/{’Eduw (tlerl , 0, Ol[Nbelow]) dtpz+1
k=2

/ nGk(le,Qk)/ mo’“t“) din
®HE

l HEN above
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fpl *(r;mt
X / ’C(tpl ’ tP@-H) ' uﬁelaw (IPZ-H 0, a[NbeZDW])dtpH—l ’
0

14
i’ ety omi 2ribyt l_[ 2mi i+,
Kty ¢ = %0 P1 0 CHLY 2ty p 270ty e i (Ng+ kfl)tk’
p1 PZ+1) X (IO)X( 10 ) C()kfz

where Co = {(t2,...,t¢) : (2, ..., te41) €C}.
Now let ng + 6x—1 = Bk, then the above integral in Cy can be written as

tp, =51 i =02 i 1303 o
/ e mﬁzt;dtz/ e mﬁ3t3dt3/ e ”’ﬁ4t4G(t4)dt4;
—0o0

—00 —o0
4
Gta):= [ []e> P,
Cik=s

where Cy = {(ts, ..., 1) : (t2, ..., tg+1) € C}. Therefore, if the derivatives do not fall
on o factors, we have

|3y, — 278 (B3 + B2+ 11)) By, — 278 (o + 1)) (B, — 2min)K]

=ClIGl~ =
uniformly in (¢,,, #p,,,) and o, noticing that Cy4 is a subset of a simplex. If any of the
above derivatives falls on o then we can take that derivative again and get similar
estimates. Since also || < C/(¢ — 1)!, we conclude that

1K (10, 60)| < min(1, |70 — m 1™ o — (B2 +n0)1 " o — (B3 + B2+ )1 ™)

£ —=5)!

uniformly in o (there may be other possibilities for denominators but the results are
the same). In the same way we can get similar estimates for 6y, and combing these
two yields the bound

sup K Gno, o)l o

o X —.
>0k )k=1....0 7 (£ —5)!

As a result, we have that

U+ (t, o, a[NT])

¢
_ I’C\ .6 é?k ) (em'ot"tn) dt. - eZninotpl
/(Rz)m (o O)IUl % (ke Ox) /fl I1 n

ne-/\/;lbove

tp| —Otot .
2mifpt,
X /) e Pert Z/{nelow (tpiJrl 0, [Nbdi])dtpPrl

¢ ¢
_ /( o Kl 0 1 Gi 060 -Us. (1., GINE,D [ ] dmedt,
k=1 k=0
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Fig.37 The tree 7;{:,,, is
obtained from 7 by removing
the chain of A and B modules,

and connecting the tree Tpeiou b
at one of the children of b 1
keeping the other two children

as leaves

where 71

o s the tree obtained from 7 F by deleting this chain of Modules A and B
as follows: Attach the tree Tpeio, at its root as one of three children of h; (see Fig. 37)
keeping the other two children as leaves. AV}, is the set of branching nodes of Ty,
o is the restriction of o with o, = o, and @[N], ] is obtained from [N}, by
translating oy, by 2n¢, defining ay, = 26, and keeping all remaining o, for n €
NE A\ {p1, b1} the same.

We define the double-tree Q') = 7, U7~ (which has no leaf pairing structure),
with the branching node pairing structure inherited from Q' and not involving b;.
Also define ./\Nf,igw accordingly. Using the induction hypothesis, we can take supremum
over o, then integrate in a, forn K/,ggw, to obtain that the left hand side of (10.10) is
bounded by (recalling that the removed chain of A and B modules has 2¢ branching
nodes)

(C+)n6—24LC(p—1)JS(IOgL)|N""|+C<p—1)

14
x (8@OM / / sup [K(no, 60| [ [ 1G} (nk. 60
(@1,.p):ar €8k (1) J R2)HT o

~~~~ k=1

< (C+)n6—2zCzLC(p—1)ﬁ(logL)|N’m|+C(p—1)

¢ -
o« [ s@0rs / [Tiemt Pro — )
(@100 €S (1) € —=5)!

2410
< (C+)n6—2eCeLc<p—1)ﬁ(logL)|N’m|+C(p—1) (Cea(um%)

< (CHyH 22 LCP=DV (1og L)W HC (=D <(10g L)lseCﬁlogL) ’

where Si(1) is a set of measure < L'%, we denoted by iy either 0 or jux (depending
on whether the k-th module is A or B), and ®4(z) is either (z)~! or (for at most 10

values of k) (z)~! log(2 + |z|). In the final step we used the bound (265—_5)' < e* for

any ¢. Note also that in applying the induction hypothesis for N/ = we have fixed
the value of ay, = 26y (using integrability of ), but it is clear from the proof that
fixing the value of any o, will only lead to better estimates than integrating in oy,.

This gives the estimate (10.10) and finishes the proof. U
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10.3 Proof of Propositions 2.5 and 2.7

We are now ready to prove Propositions 2.5 and 2.7. First we establish the absolute
upper bound for (8.27), which then allows us to control (8.4).

Proposition 10.4 Given one congruence class % of non-regular marked couples of
scale n as in Definition 8.4, the expression

Z Kol(t,s, k) (10.15)
QeF

can be decomposed into at most C" terms. For each term there is an integer 1 <r <n
such that this term is bounded, uniformly in (t,s) € [0, 112, by (C18V/*)" (k)=204 .
L™"". Moreover, for each fixed r, the number of possibilities of Q (or .F) that corre-
spond to this r is at most C"*(Cr)!.

Proof Asin Sect. 8 we can reduce to (8.27), and then to (10.2). Note that in (10.2) the
Q actually means ka by our notation. Using the decay factors in (8.28) we can gain
the power (k)34 and also restrict to the subset where |k; — a(| < 1 for some fixed
parameters (a;) (with summability in (a;) guaranteed). Using the bound for G(1),
which is a modification of the first inequality in (8.26), we may also fix the value of
A (and hence uy).

As in Sect. 9, by decomposing into at most C"™ terms (where ny, is the scale of
ka), we can add the set of extra conditions Ext, which also defines the sets N (asin
Proposition 10.1), etc., and the value r; > 1. Let r =rg 4 r1 as above, thgn thanks to
Ext, we can use (10.3) to reduce quk to Vka' Moreover, for each n € NV, the value

8L2§n§2n + Ay belongs to some subset of R of cardinality at most L3 as k[ka]
varies (this is because each ky belongs to a ball of radius at most n < (log L)3 under
our assumptions). In particular the value m, = LSLZCnSZn + Ay ] belongs to a set
Sn C Z with cardinality at most L3 for all possible choices of k[ka].

To estimate (10.2) with A fixed, we first integrate in o. Using (8.28), we can esti-
mate (10.2) using

D legyl-sup Vs (15,0, BL2 6@+ et (10.16)

#
(g.)i k

where <§’ﬁ( = k[ka] is a k-decoration of ka (we also have additional factors that
will be collected at the end). We next fix the values of m,, € S, for each n; note that
then

sup\VQ#k(t,s,a,(6L2§nQn+An)n€j\~/)| < sup sup|VQ#k(t,s,o,a[ﬁ])|
o s s

(an):lan—mp|<1l ©

by definition, so if we use (10.4) to sum over (my) in the end, we can further estimate
(10.16) using

Z s 'Hll’ﬂ—atlfl Hlmn—bn|ga—1L—z, (10.17)
&t [ n
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where a; and b,, are constants, and we also include the conditions in Ext. Now
(10.17) is almost exactly the counting problem © (M, Ext) stated in Definition 9.8,
due to Remark 9.9, except that we only assume |k; — a(| < 1 for leaves . However,
for any branching node n there exists a child n’ of n such that k,, £ ks belongs to a
fixed ball of radius p;, as in Lemma 6.6, so by using (6.30), one can reduce (10.17)
to at most C"0 counting problems, each of which having exactly the same form as
D (M, Ext) in Definition 9.8. Therefore, (10.17) can be bounded using Proposition
9.10 (and using Remark 9.11 if necessary). Collecting all the factors appearing in the
above estimates, we get that

<k>20d 1(10.15)] < (C+)}’l8(n—n6)/253n6/4L—(d—1)n6 . L—Zvro
XLCr\/g(log L)Cr(s—(n6+m)/2L(d—l)n6—2vr| , (1018)

which is then bounded by (CT§!/#)" L =3v7/25=m/2 \where m is the total length of
type I chains in the molecule obtained from ka. We know m < Cr so 8~ ™"/2 < [Vr/2,
which implies the desired bound.

Finally, suppose we fix r, then the base molecule formed by ka is, up to at most
Cr remaining atoms, a union of at most Cr type II chains with total length at most
ng. This clearly has at most (Cr)!C" possibilities. By Proposition 9.6, the number
of choices for ka is also at most (Cr)!C". To form Qg from ka one needs to
insert at most Cr irregular chains with total length at most n, which also has at most
C" possibilities. Finally, using Corollary 4.16, we see that Q has at most (Cr)!C"
choices. The number of choices for markings, as well as Ext, are also at most C"
and can be accommodated. O

Proof of Proposition 2.5 By definition, we have

El(Je® =) Ko, 1, k),
Q

where the sum is taken over all couples Q = (7, 7 7) such that n(7 ) =n(7 ") =
n. If Q is regular, then the number of such Q’s is at most C” by Proposition 4.9, and
for each Q we have |Ko(t,1, k)| S (k)=204(C*8)" by Proposition 6.7 and Remark
6.9. Therefore, the sum over these Q’s is under control.

Now consider non-regular Q. It follows from definition that the congruence re-
lation (as in Definition 8.4) preserves the scales of both trees of a couple. Thus,
the sum over Q can be decomposed into sums over Q € .% (i.e. sums of form
(10.15)), where .Z runs over the (possible) different congruence classes. Applying
Proposition 10.4, we can regroup these terms according to the value of 1 <r <2n
(which we call the index), such that (i) each single term with index r is bounded
by (C*T81/4)27 (k)=204 . [~V "and (ii) the number of terms with index r is at most
(Cr)!C*" . Hence

2n
Bl S k)72 ()" + (k)70 (Ccts >y L ey

r=1
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Fig.38 A flower tree, as in v
Definition 11.1. The red leaf f is

the flower, t is the root, and

Tj (1 < j <2n) are attached

sub-trees, where 7 is the height e e
,

S k)Mo,
noticing also that r < 2n < 2(log L)3. This completes the proof. g

Proof of Proposition 2.7 Here we are considering the sum of Kg(?, ¢, k) over all cou-
ples Q such that n(Q) = m for some fixed value m. If Q is non-regular, then using
the same argument as in the above proof we can bound the corresponding contribu-
tion by (k)~2%4(C*+§1/4)™ L=V since we also have r > 1. Therefore we only need to
consider regular couples Q. If m is odd then this sum is zero because the scale of
regular couples must be even. If m = 2n, we only need to show that

Y Kot t,k) = My, k)| < (k)2 (CH6) L™,

n(Q)=2n
Q regular

but this is a consequence of Proposition 7.11. This completes the proof. U

11 The operator .Z

In this section we prove Proposition 2.6. The arguments are mostly the same as in
previous sections, so we will only point out the necessary changes in the proof. First,
in order to expand the kernel (.Z"),{ +(t,s), we need to slightly modify the definition
of trees and couples.

Definition 11.1 A flower tree is a tree 7 with one leaf f specified, called the flower;
different choices of f for the same tree 7 leads to different flower trees. There is a
unique path from the root ¢ to the flower f, which we call the stem. A flower couple
is a couple formed by two flower trees, such the two flowers are paired (in particular
they have opposite signs).

The height of a flower tree T is the number of branching nodes in the stem of 7.
Clearly a flower tree of height n is formed by attaching two sub-trees each time, and
repeating n times, starting from a single node; see Fig. 38. We say a flower tree is
admissible if all these sub-trees have scale at most N.
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Proposition 11.2 Given ¢ € {£}, we can make the decomposition (2.27), such that
for each m,

El(Z") e (.91 =Y Kolt.s.k.0), (11.1)
Q

where the sum is taken over all flower couples Q = (T, T ™), such that both T* are
admissible, have height n and scale m, and the flower of T+ has sign +¢. Fort > s,
the quantity KCg is defined similar to (2.24):

_ S 2m
Ko(t,s. k. ) := (—) Q)

2[d-1
- )
x Zeéa/ l_[ pnTisL Q"’“dl‘nHS(l‘fp —5) 1_[ ”in(k[)lkf=e,
& & neN f#leL*

(11.2)

where & is a k-decoration of Q, the other objects are associated with the couple Q,
and the set £ is defined as in (5.4) but with s replaced by t; in the last product we
assume | has sign + and is not one of the two flowers § of the flower couple Q.

The differences between (11.2) and (2.24) are the (two) Dirac factors 8(tsp — s),
where § is the parent of § for both flowers §, and the (one) factor 1x;=¢.

Proof Note that

b= Y ICi. T, T) + IC(T7;. b, T7) + IC+(T7i, T73. b)),
n(T1).n(T)<N

where the signs of the trees 7; are determined by the positions they appear (+ for
the first and third inputs of C; and — otherwise). This corresponds to attaching two
sub-trees 71 2 to a single node. Calculating .£"* corresponds to repeating this n times
(obtaining an admissible flower tree 7 of height n), and the linear (or conjugate
linear) part of .Z" corresponds to the flower of 7 having the same (or opposite) sign
as the root. Taking into account also the time integrations, we get

(LMt $) =Y (LG s) =D Fr(t.s. k. 0),
m T

m

where the inner sum in the last expression is taken over all admissible flower trees T
of height n and scale m such that the ¢ = + and {; = ¢, and

Trt.s.k.0) = (%) [1 (’f“)z@/ [T 5ot tndry - 8(t50 — 5)
D

neN 9 neN
<[] vVankong @)=, (11.3)

f£lel
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where & is a k-decoration of T, D is defined as in (5.2), and the other objects are
associated with the tree 7. Note also that if 7 is admissible and has height n < N
and scale m,thenn <m < (1 +2N)n < N 3, Then, by repeating the arguments in
Sect. 2.2.3 using Lemma A.2, we can deduce (11.2). O

Proof of Proposition 2.6 We only need to control the right hand side of (11.1). We will
basically repeat the arguments in Sects. 5—10. The main points worth noticing are the
followings. N

(1) If Q is an admissible flower couple, and Q is congruent to Q in the sense of
Definition 8.4, then Q is also an admissible flower couple, if we choose its flower
to be the image of the flower of O, and has the same height and scale as Q. This
will enable us to decompose the right hand side of (11.1) into sums of form (10.15)
where .# is a congruence class of marked flower couples (which are defined similar
to Definition 8.4), which then allows for the cancellation exploited in Sect. 8.

To prove the above claim, notice that the branching nodes in any irregular chain
in Qg are also branching nodes in O, and this chain can be divided into two chains
such that all branching nodes in the first one belong to the stem of a tree in Q, and
all branching nodes in the second one contained in one of the 7; sub-trees that are
attached in the process described in Definition 11.1.

We may treat these two chains separately; at the joint of the two chains we may
leave out at most 5 nodes, but this will be acceptable similar to Sect. 8. Similarly we
may assume that the first chain avoids the flower, by shortening it if necessary. For
the second chain all branching nodes are contained in some 7;, so modifying it in the
sense of Definition 8.4 has effect only within 7; (and it does not affect any pairings
between 7; and any other 7;/), and does not change the scale of 7;. For the first chain
all branching nodes belong to the stem, so modifying it may result in some 7; being
replaced by its conjugate, or being permuted with some other 7}, see Fig. 22. Note
that the nodes in the chain may not be consecutive nodes on the stem, but the part of
stem between them can be obtained by including a unique path within each regular
tree (represented by a black box in Fig. 22). In either case, this does not change the
height or scale of O, nor the fact that n(7;) < N for each j. Therefore, the couple Q
is also admissible and has the same height and scale as Q.

(2)In (11.2) we have the factor 1= instead of ni, (k). First notice that k — £ is a
linear combination of the k| for f # [ € L*, so the decay factor (k — c0)=20d in (2.28)
can be obtained from the nin(ki) factors. Moreover, since ks € Z‘i, we can replace
lkf:g by ¥ (L(k; — £)) for some suitable cutoff function . Using this function in

place of ni,(kf), we can repeat all the previous arguments, with at most a L3¢ loss.
For example, in Propositions 6.7 and 6.10 we are relying on Proposition 6.1, which
only requires the norm in (6.2). The norm of W is bounded by the same norm of
the tensor product function [ ], nin(k(), as W is obtained from the latter by a linear
change of variables; if one factor in this tensor product is replaced by ¥ (L (ks — £)),
then its norm gets multiplied by a constant power of L. Therefore, all the proofs will
be the same, except for a possible loss of at most L3¢,

(3) In (11.2) we have the Dirac factors §(¢j» — ). This means that in the integral in
(11.2) we are omitting the integration in #;» for both flowers f. However, this differ-
ence will cause at most another L2%? loss. This is intuitively clear as only one node
(and one time variable) is affected, and we can demonstrate it as follows.
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Recall the sequence of reductions in Sects. 5-10, where we remove from the cou-
ple Q successively (i) the regular couples and regular trees, then (ii) the irregular
chains, then (iii) the nodes corresponding to atoms in type II chains of the base
molecule. In both steps (ii) and (iii) we can choose to avoid the two specific nodes
7, so for each flower f, we only need to consider the case where (a) ¥ belongs to a
regular couple or a regular chain in step (i), or (b) f¥ belongs to the rest of Q after
performing steps (i)—(iii). Let m = 7.

In case (a) we will further reduce the regular couple or regular tree using Proposi-
tion 4.8, and we may assume §” belongs to one of the regular chains in this process
(we only consider Case 2 in Sect. 5.1.1; Case I is much easier as the expression is
much simpler and we can directly calculate it). The point here is that, if we omit the
integration in t,,, then the resulting expression, which is a function of «[N*] as in
(5.3), satisfies the same bound as the one with #, integration, but in the weaker norm
Lol V\(m)] instead of Li[/\f*]' To see this, consider

Om "o
K(t,ai,...,dn) =/ TPttt Pamton) 4g,y . . dty,, (11.4)
t>11>->19,>0

as in (5.12), where B, (1 < a < 2m) is a permutation of +«; (1 < j < m) associ-
ated with a legal partition, as in Sect. 5.2; for simplicity we have omitted the X,
variables. By the arguments in Sect. 5.2, we can bound the L}, 1, DOrm of K (or
we may extract explicit ai factors from K and bound the L' norm in the other « |
variables, see Lemma 5.10; for simplicity we will omit this case). Now, suppose we
insert §(tp,;, — s) in (11.4) (note that, since a child of m is a leaf that is paired with
a leaf in the other tree, we must have #;, = 7, in the regular chain integration), then
we will lose integrability in B5,,; however if we fix the value of 85, then we get the
expression

eTiboms / eﬂi(ﬂlt1+---+52m71t2m71)dt1 -~ dtym_1 (11.5)
t>->ty_1>S
(note that there is some a such that 8, = — B, is also fixed). This has basically

the same form as (11.4), except for a harmless class J operator corresponding to
integration in #,, so we can repeat the proof in Sect. 5.2, using the notions of class J
and R operators, to obtain the same bound for this expression in the L' norm in the
remaining «; (i.e. excluding B, and B,,) variables. This then implies the bound for
our expression, for fixed s, in the L®L! type weaker norm as desired.

In case (b), the same argument applies, except that we replaced the L' norm by
the variant in (10.4). The proof is in fact easier, as the bound (10.4), after removing
the type II molecular chains, follows solely from the denominators (gy) occurring in
(10.8) in Lemma 10.2. If we omit the integration in #,, then we are at loss of only
one denominator involving a,, which does not affect the presence of all the other
denominators. Thus, if oy, is fixed, the function can be bounded in the remaining
variables in the norm in (10.4), using the same arguments in Sect. 10.

In either case, in the end we can obtain the same bound for the modified time
integral, but in weaker norms without integrability in at most two of the oy, variables.
But this bound can easily be transformed to the L' type bound involving all variables,
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with at most L% 1oss, because each ay, will be replaced by 8L2Qy, in the actual K o
expression, which belongs to the union of at most L3¢ fixed unit intervals (at least if
we restrict |k;| < L for each [; if max |k| := M’ > L then we may lose (M")'%¢ but
this will be covered by the (M Y1004 gain coming from nj,). Therefore Lgf“ bounds

L34, once we insert the

imply the corresponding Lém bounds with a loss of at most
suitable cutoff functions adapted to these unit intervals.

In view of the arguments (1)—(3) above, the bound for the right hand side of (11.1)
can be obtained, using the same arguments as in Sects. 5—10. This proves Proposition

2.6. O

Corollary 11.3 Fix My > L and My > LUOD* [ (11.2), suppose k| > M, and we
insert suitable cutoff functions supported in k(| < Mg for each § # | € L*; moreover,
suppose we insert one (or more) cutoff function supported in |Qy;| = M, for some
1 < j <n—1,wheren; is the j-th node in the stem from top to bottom (in particular
n, = §P), then the resulting expression satisfies the same bound as (11.2), but with an

additional decay factor M| v 9M8d. The same holds for the right hand side of (11.1).

Proof Note that the assumption implies that for any irregular chain in Qg with
branching nodes on the stem, the gap 4 (see Proposition 8.3) must satisfy |h| > Mg /4
(since |kn| > M§/2 for any node n on the stem, and |k, | < N3M, for any node n off
the stem); in particular we are in the large gap case (Sect. 8.3.2) and thus do not need
the cancellation coming from congruence couples obtained by altering this irregular
chain. Thus, in carrying out the arguments in previous sections we only need to sum
over Q € ¥’ where .%’ (unlike .%) is a subset in a fixed congruence class, formed
by altering irregular chains that are completely contained in some 7;. Since altering
these chains do not affect the structure of the stem or any 2, i factor, we can bound
the resulting expression in the same way as (11.2).

To gain the extra decay in M using the largeness of |2y, |, like in the proof of
Proposition 11.2, we may assume n; belongs to either (a) a regular couple or regular
tree, or (b) the rest of the couple after removing all the special structures. In case (a),
if n; is not paired (as a branching node) to n, = f¥, we can use (5.10) or the denom-
inators o, in (5.8) to gain a power of My; if n; is paired to {7, then we will consider
Case I and Case 2 (in the sense of Sect. 5.1.1) separately. By direct calculation in
Case 1 and examining (11.5) similar to Sect. 5.2 in Case 2, we can also gain a power
M ]_ 1/9 at a loss of at most Mgd, in either situation. In case (b), the decay comes from
the denominators gy in (10.8). If |2,;| > M then one of these denominators, say
(q), will be = M ; we then sum over this g to get

ZL<M—1M5d
=@~

since g belongs to a set of cardinality at most Mgd as the decoration varies. This
provides the needed decay, and the rest of the sum can be estimated as in Proposition
10.1. -
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12 The endgame

In this section we prove Theorem 1.1. We will do this in a few steps. Recall that
A > 40d is fixed in Sect. 2.3.1, as is the even integer p >4, 1 and § <Lp,ct 1.

Proposition 12.1 With probability > 1 — L™, we have
(T O] S k) UPPCHVE) 2L, R0 S (k) (p*CTVOHNAL (12.1)

forany k € Zd, tel0,1],andall0<n < N3, where R is defined in (2.17). Note in
particular that the right hand side of the second inequality in (12.1) is bounded, due
to our choice N = |log L], by

(PPCTENAL < N8, < [,~(1004)° (12.2)

Proof First consider 7. For fixed k and fixed ¢, (J,)x(t) is a random variable of
form (A.4), so using Lemma A.3 and Proposition 2.5 we get

E|(k) "™ (TeI” < p"P(CTV8)I
This being uniform in ¢, we can integrate in ¢ and sum in k to obtain that

9d p < Pt np/2
EIO™ Tk O] 10 11y S P VO, (12.3)

where L,f is taken with respect to L™¢ times the counting measure in k. Moreover
we also have

E|3,(Tk(01* S (k)20 (cT/6)n L4, (12.4)

which can be proved using the arguments in Sect. 11, as taking 9d; derivative just
corresponds to omitting the ¢, integration and producing something like (11.2). This
then implies that

9d p < Pt np/2 y 40dp
BIR™M 0Tk O] p 10,11,z S P CEVBPRLI. - 12.5)

By using Gagliardo-Nirenberg for ¢ € [0, 1], and bounding the L?° norm by the L,f
norm for k € Zi with an extra loss L9/? , we conclude that

9d p < gd np o+ np/2 y 40d
EIO™ (T O] s, 10,11z S L P (CTVEPELS, (12.6)

thus with probability > 1 — L™/, we have

sup 1) (T)r()] S p(C /82 LA/ P2,
t,

which implies (12.1). The estimate for R is the same, with n replaced by N; we just
need to notice that R (f) equals the sum of (J7+)«(¢) over all trees T+ of scale
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> N such that its three sub-trees all have scale < N (in particular the scale of 7+
is between N and 3N). This property, as well as the similar property for couples, is
again invariant under congruence relations, so the same arguments in the previous
sections apply. g

Proposition 12.2 With probability > 1 — L™, we have

1" 122 S (P*CHV/8) 2L (12.7)
forall0<n <N.
Proof We only need to show, with probability > 1 — L~4, that

sup sup (k— 20| (1, 9)] S (pPCTVEMAL (12.8)

k.t 0<s<t<l

forany ¢ e {}andn <m <N 3. The supremum in (¢, s) can be treated similar to
the proof of Proposition 12.1, so the main point here is to address the supremum in
(k, £). This formally has infinitely many possibilities, but we will use Lemma A.6,
which is a variant of Claim 3.7 in [18], to reduce it to finitely many possibilities. We
may assume ¢ equals + below, as the other case is the same.

We start by making the decomposition

1= xrtk). (12.9)

R>L

where xr(z) is supported in |z| < R if R =L and in |z] ~ R if R > L, for each
f # L € L£*. Note that, as in the proof of Corollary 11.3, we also fix one particular
stem structure of the tree 7 in (11.3). Let the maximum of these R for all the k| be
M. Below we may assume My = L, since even if My > L, we will lose at most Mgo:z
in all subsequent arguments (see for example Corollary 11.3), which can be covered
by the My 200d gain from the nj, (ky) factor, and clearly the summation over R is not
a problem.

Now assume Mg = L. If k| < L2, then the number of possibilities for (k, £) is at
most L3, We can replace the L7, normin (12.8) by L,[: . and argue as in Proposition
12.1, applying Proposition 2.6 and the corresponding bound for 7 and s derivatives
(which can be obtained similarly as in Sect. 11), to get (12.8).

Suppose now |k| > L2, then we will further make the decomposition (12.9) for
the variables 2y, (1 < j <n — 1) defined in Corollary 11.3, but with L replaced by

L(IOOd)B. Let the maximum of these R for all the 2, ; be M. For fixed M, let the

corresponding contribution to (,,2”")2"2’4 be (,,S,””)"A;’il, then it suffices to show that

E[sup sup (k=)™ |(LM)y5 0t 9" S p"P(CTVE)"P2LN0P P20
k£ 0<s<t<1 ’
(12.10)
for M > L<100d)3, and the same bound without M—P/20 for M = 1.(100)°
Suppose M is fixed. Clearly |k — £| < L?, so we may also fix the value of k — £ at
aloss of L. In the formula (11.3) of the terms in %", we will fix the values of ky
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and ks~ in the decoration &, where §" and " are the two siblings of j. Clearly each
of them has at most L> choices, so fixing them again introduces a factor of at most
L 15d .

Recall that in (11.3), the whole expression depends on €24» only through the inte-
gral

Sy Y
/egfpﬂlﬁL prtfp(;(tfp _ S) d[fp :e§fpnl5L prs.

Moreover, once kf/ and kf// are fixed, and k; = ¢, then Qjp is determined by £ and
no longer depends on the other parts of the decoration. Therefore one can extract the
factor el TiISL Qs
form of

and write the contribution currently under consideration in the

CFirTiSLI Qs <2L‘Z_l) [ ]G Y eaA™(t,s,8L7 - QIN\{))
neN 2

x [T vnnkong @)=, (12.11)

f£lel

where A** is a function of the remaining variables Q[N \{§”}] and does not depend
on Qj5r. Moreover, when Qj is fixed, the function A** (or more precisely the func-
tions generated by .A** that occur in the proofs in the previous sections) satisfies the
bounds described in the proof of Proposition 2.6 in Sect. 11, hence one can get the
same square moment estimate as in Proposition 2.6. Moreover if M > L(IOOd)S, then
using the same arguments as in the proof of Corollary 11.3, we can gain an extra
M—1/9 compared to Proposition 2.6, with at most L3 1oss.

Now, after removing the unimodular factor €™ iSL2 Qs in (12.11), we notice
that the rest of (12.11) depends on k only through the resonance factors €2y, for
1 < j <n— 1. Moreover we have assumed that |S2nj| < M for each such j. If any
n; and njy have opposite signs, then by definition and |2y, | < M, we easily see
that |k| < M, so we can replace the L,‘f’z norm by L,f’ ¢, and close as before, where
the loss is at most M /P and can either be absorbed by the gain M~1/° coming from
Corollary 11.3 if M > LU%D* or neglected if M = LU%D* We may thus assume
all n; have the same sign, and in this case we have

Qu, = |k +aj13 — lk+bj[3+ ) = (k.cj)p + 2

where (aj, bj, c;) are vectors, and (Q’j, Q’j’ ) are expressions, that do not depend on k

(hence they are bounded by L?).

We may then apply Lemma A.6 and assume k is represented by a system
(r,q,v1,...,v4, f,¥). Then, if xp(z) is a cutoff function supported in |z| < M, and
F is an arbitrary function, we have

n—1

[]xm(@n) F(Quy..... Q)
j=1
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n—1
= [ 1sepxm(G(fiyoep) + Q) - FUG(f.y.c)) + QDizjzn-1):
j=1
(12.12)

where S is the set of z whose first r coordinates form a linear combination
of {vi,...,vy} and G is some function. The point here is that, the right hand
side of (12.12) does not explicitly involve k, but only depends on the variables
(v1,...,v4, f,¥), which are bounded in size by MC for a constant C depending
only on d. This is in contrast with k, which has no a priori upper bound and may have
infinitely many choices.

Therefore, for any k, the function A**(¢, s, SL2.QIN \{§”}]), viewed as a function
of (t,s, k[T \{x, f}]), equals G**(z,s,v1, ..., vy, f, y, k[T \{r, f}]) for some function
G**. This means that

supl( [A™]--)[= sup  [(--[G"]--),

(12.13)

where the parenthesis (---) in (12.13) represents (12.11) without the equ”"SLfo”
factor. Now, with the finite volume that (vy, ..., vy, f, y) and (¢, s) occupy, we can
bound

||("'[g**]"')HL,_°°SL°°

Ve Vg oY

1—c/ ¢/
sleemoly ey | NGy 19700l hy

(12.14)

Then, we take p-th power moments and argue as in the proof of Proposition 12.1.
Note that by Lemma A.6, for any system (r, g, v1, ..., vy, f,y), the G** function is
the limit of the A** functions for some sequence of k; the same limit holds for the
(9, 5) derivative, and 9,G** is the limit of 852nj A** multiplied by some harmless

factors (these factors are bounded by M which is diminished by the C/p power in
(12.14); also any derivative of .A4** can be treated in the same way as A™** itself), so
the p-th power moments for fixed (v1,..., vy, f, ¥) can be estimated as in Proposi-
tion 2.6, with the extra decay in M for the term without derivatives if M > L<100d)3.
In summary we get

E[sup sup (k— &)™ 1(L™My5 . 0I|" < p"P (€8P ALA P/,
kot 0<s<t<l

which clearly implies (12.10), if M > L1100 Here notice that we gain the power
M~P/18 from the p-th moment of the (- --[G**]---) term without derivatives, thanks
to Corollary 11.3, and that all the losses caused by the summation or integration
in (r,q,v1,...,vq, f,y), or by the (9, dy, dy) derivatives, are at most MC.If M=
L(lo()”l)3 then we do not have the gain M—P/18 but the losses are still at most M€ <
L? which is also acceptable. The proof is now complete. O
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Proposition 12.3 With probability > 1 — L4, the mapping defined by the right hand
side of (2.18) is a contraction mapping from the set {b : ||b||z < L~} to itself.

Proof Suppose we exclude the exceptional set of probability L™ in Propositions
12.1-12.2. Consider the mapping

bi> (1 =L)"Y (R+ Bb,b)+ % b,b,b)),

as usual, we just need to prove it maps the given set to itself, and the contraction
property will follow similarly. Suppose ||b||z < L™ note that

1-"=-2NH T+ 2+ +2h

maps Z to Z, where (1 —.#")~! can be constructed by Neumann series; using (12.7)
we get that [|[(1 — £) 7|z z < L9, Therefore, it suffices to show that

IRl z 4+ 1B (b, b)Yz + |€ (b, b,b)|z < L0,

The bound for R follows from (12.1) and (12.2), so we only need to consider % and
% . But this is again easy, using the loose estimate

20d
IZC4 (u, v, w)llz S NC4(u, v, w)llz S L™ Nullzllviizllwllz,

together with (12.1) and the assumption ||b||z < L™%¢_ This completes the proof.
O

Proof of Theorem 1.1 By Propositions 12.1-12.3, with probability > 1 — L™4, the so-
lution a = ax (t) to (2.3)—(2.4) can be written as the ansatz (2.15) for ¢ € [0, 1], where
each J, satisfies (12.1), and b is constructed by contraction mapping and satisfies
b1l z < L~3% Denote this event by E,sothat P(E) > 1 — L4 . Let E| D E be the
event that (NLS) has a smooth solution on [0, § - Tiin].

For each 7 € [0, §] we will calculate, with % as in (1.2), that

E(@(t - Tains ©)1*1g,) = E(lar (8™ 0)*1E,).

If we replace 1g, by 1\, then the resulting contribution is bounded by L=A+104,

since |ay (t)|2 is bounded uniformly in k£ and ¢ by mass conservation, so we may
replace 1, by 1g. This then reduces to the expression

N
Y BTk 0O16) +2 ) ReE(T)k (b ()1E) +E(bi (1) 15),

0<ni,ny<N n=0

where t = §~'7. The terms involving b are obviously bounded by L~!%%¢ ysing
(12.1) and ||b||z < L% 50 we just need to consider the correlations between 7y,
and 7y, . In these correlations, if we replace 1z by 1gc, then the resulting contribution
is

|E(Tn )k () (Tn)k (O1ge) | < EI(Tn ) OID A EN( Tk O1H VA @EY
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< [—A/+10d

using Lemma A.3 and Proposition 2.5, so we may replace 1g by 1, thus reducing to
the expression

Y BTk Tk @)=Y Kot 1,k),
Q

0<ny,np<N
where the last sum is taken over all couples Q = (7, 7~) with n(7*) < N. We
may replace this condition by the condition n(Q) < 2N, because each term Kg in
the difference must satisfy N <n(Q) < 2N, and the set of these Q is invariant under

congruence, so we can bound the difference by (C +«/§)N /2 < [ ~100d Thig reduces
our target, up to errors O(L’md ), to

2N N
YY) Kol t.k) =) My(t.k) + O(L™") =n(8t,k) + O(L™")
n=0n(Q)=n n=0

=n(t, k) + O(L™"),
where the last steps are due to Propositions 2.7 and 7.9. In the end we get that
E([i(z - Tian, O)[*1g,) =n(z, k) + O(L™"),

uniformly in 7 € [0, §] and k € Zﬁ. This proves Theorem 1.1. O

Appendix A: Preliminary lemmas
A.1 The exceptional set 3

We will define in Lemma A.1 the Lebesgue null set 3 used in Theorem 1.1. Once
Lemma A.1 is proved, for the rest of the paper we will fix one g € (R1)?\ 3.

Lemma A.1 (The genericity condition) There exists a Lebesgue null set 3 C (R+)d
such that the followings hold for any B = (B', ..., p%) € RT)4\3.
(1) For any integers (K', K% #(0,0), we have
IB'K'+ B2K? 2 (14 K|+ 1K) og ™ @ + K| + | K (A.1)

(2) The numbers B, ..., B¢ are algebraically independent over Q, and for any R
we have

#[(X, Y,Z) € (27 X1, Y], 1Z] < R, X #0, max(I(X, Y)gl, (X, Z)p]) < l]

< R3d—4+§ (A.2)
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Full derivation of the wave kinetic equation 709

Proof (1) This is standard in Diophantine approximation, which can be proved by
summing over all (K', K?) the measure of the set of (8!, 82) not satisfying (A.1)
and applying Borel-Cantelli.

(2) Without loss of generality we may assume 8 € [1,2]¢. If X/Y/ =X/ 72/ =0
for all j, since X # 0, the number of choices for (X, Y, Z) is clearly at most R2d-1
which satisfies (A.2) since d > 3. If X X/(Y?Z/ — Y/ Z") =0 for all (i, j), but not
all X/YJ and X/ ZJ are zero, say X'yl # 0, then for fixed (X, Y, Z), the Lebesgue
measure of the set

<1}

is bounded by C|X 1Y_1|_1. Moreover, once X' and Y! are fixed, the number of
choices for (X/, Y/, Z/) for each j > 2 is at most R2. This implies that

517

d
ZﬂZXEZZ

=1

d
Z,BZXZYE

=1

E::{,Be[l,Z]d:

/ (efthand side of (A2)dB<C Y |X'¥!|7' < CR¥13,
(1,214 IXLIYLIZI<R

where the sum in (X, Y, Z) is taken under the assumption X' XI(yizi —yizhy=0
and X'Y! £ 0. By Borel-Cantelli lemma, and using that 2d — 1 < 3d — 4, we get
(A.2) for any R and almost all S.

Now suppose there is 1 <i < j < d such that X' X/(Y!Z/ — Y/ Z') # 0, say
(i, j) = (1, 2). Then for fixed (X, Y, Z), the Lebesgue measure of E is bounded by
CIX'x2=1.\y'z2 —y2Zz"|7!, therefore

/ (left hand side of (A2)dg<C > |X'X*|7 |y Z? —y?Z'|7,
1,21 IXLIYLIZI<R

where the sum in (X, Y, Z) is taken under the assumption X'x2(y'z2 —y?*zhy #

0. The last sum is bounded by R3d’4+%, by fixing the values of X 1 X2 and
Y'Z% — Y?2Z! and using the divisor estimate (i.e. the number of divisors of any
nonzero integer x is O¢(|x|€) for any € > 0). Again by Borel-Cantelli, we obtain
(A.2) for almost all S. Il

A.2 Miscellaneous results
We collect some auxiliary results needed in the main proof.

Lemma A.2 (Complex Isserlis’ theorem) Given k; € Zi (not necessarily distinct) and
¢je{x}for1 < j <n,then

n
E[]‘[n,ﬁj(w)]=z [T 1=, (A3)
j=l1 P {j.j"eZ

where the summation is taken over all partitions & of {1,2, ..., n} into two-element
subsets {j, j'} such that {jy = —¢;.
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710 Y. Deng, Z. Hani

Proof Let all the different vectors in {k; : 1 < j < n} be kO kf’). Assume for
each 1 <i <r and ¢ € {£} that the number of j’s such that k; = k@ and {j={¢is
af , then we have

E[]‘[ n (w)} = E[]‘[(gkm)“z* @) }
j=1 i=1

_J@hHr--@h, ifat =a; foralli,
B 0, otherwise.

On the other hand, for fixed & the product on the right hand side of (A.3) is either
0 or 1, and equals 1 if and only if each pair {j, j'} € & is such that k; = kj» = =k®
for some i, and ¢ ]r =-¢;. If a =a; for all i, then the number of ch01ces for &
clearly equals (a ). (a;Ir ) 0therw1se no such &2 exists. This proves (A.3). O

Lemma A.3 (Gaussian hypercontractivity) Given n and gje{x}forl < j<n,sup-
pose the random variable X has the form

Z ki, an (), (A4)

.....

where ay, ...k, are constants, then for any g > 2 we have
EIX|?<(q— D7 - EIX?)?. (A5)

Proof This is the standard hypercontractivity estimate for Gaussians, see [57],
Lemma 2.6. O

Lemma A.4 (A combinatoric inequality) Given a multi-index p, we have

|
Yo @'t @D = C@lph. (A.6)

V... (p9
e Dl (%)

Proof We first fix ,o* = p% 4 -+ p° and sum over (p2, ..., p°), then sum over

(', o 2). The sum over (p2, ..., p°) can be bounded by inductively repeating this

process provided one can bound the sum over (p!, ,o*) To bound this latter sum, if
=(ai, ..., ay) then it can be written as

Z ]‘[( )(ZA 2B)!(2B)!
0<bj=aj j=1 J

where A=a; +---+a, and B=>by + --- + b,. If B is fixed, then the sum over
(b1, ...,bp) equals ( ) by a simple appllcatlon of the binomial theorem (or the Van-
dermonde identity), so (A.6) would follow from the inequality

A\ 24\ 7!

§ < )( ) <cC. (A7)
B/\2B

0<B<A
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Full derivation of the wave kinetic equation 711

By symmetry, in (A.7) we may assume B < A/2, so (2)/(52) < 1/(2) < 1/(215)
2-8 which proves (A.7) and hence (A.6) by induction.

O IA

Lemma A.5 (A sharp Hua's lemma) Fors,r € R and h € Z, define the Gauss sums

h+n
Gu(s,r,n) = X:e(sp2 +rp),neN; and Gy(s,r,x)=Gp(s,r, [x]), x eRy,
p=h
. (A.8)
where | x| is the floor function, and e(z) = e*™'%. Then we have
||Gh(',l’, n)||L4([0 m Nn lOg(2+n) ||Gh(',l", n)”?ﬁ([(),l]) 5”4 (A9)

uniformly in (r, h). The constants involved in < here are absolute constants.

Proof We only need to bound the cardinalities of the sets

Ay={(@.b,c.d)e[h,h+n]*:a> —b*+* —d*> =0},
and Ag={(a,..., ) elh,h+nl®:a® —b* +c* —d* +e* — f2=0}.
By changing variables (a, b) — (a + b, a — b) etc., we can reduce to the sets
Byi={(a,b,c,d):ab+cd =0} and Bs={(a,...,f):ab+cd+ef =0},

where |al, |c|, |e] <n and b,d, f € [2h,2h + 2n]. To count #Bg, we may assume
a > |c| = le] (and a > 0). Note that f belongs to a fixed residue class modulo
ged(a, ¢)/ ged(a, c, e); once f is fixed, then d belongs to a fixed residue class modulo
a/gcd(a, c). When f and d are fixed then b is unique. This implies that

4p, < Z n Z gcd(a c, e)
6 gcd(a, ¢)/ ged(a, ¢, e) a/ gcd(a c) a

az|c|z|e| az|c|zle|

For the last sum, let ged(a, ¢, ¢) = A and a = a’ A etc., then

y secd oy vy Loy warse

a>|c|>|e| 0<A<nO<a’<n/A|c'|,le'|<d’ 0<A<n

hence #Bg < n*. In the same way we can bound #B4 < n?log(2 + n). g

Lemma A6 Fix M > L<100d)3. Consider k = (kl,...,kd) IS Zi and a system
(r,q,vi,...,vq, f,y) where 0 < g <r <d, v; € Z}) (1 < j < q) are nonzero or-
thogonal vectors and f = (f™, ..., f9 e Zi_r and y = (y',...,y9) e RY, such
that | f1, |vjl, [yl < MCD ywhere Co(d) is a fixed large constant depending on d,
and that the linear span of {v1, ..., v} does not contain any coordinate vector in R".
We say that the system (r,q,v1, ..., vy, f,y) represents k, if the followings hold:
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712 Y. Deng, Z. Hani

) Ifz=(" ...,z eZe, |zl <M and |{k, 2)g|l < M, then the vector ', ....7")
is a linear combination of {v1, ..., vg};

Q) If@',....2"H =y'vn +---+y9vy, then we have (k,z)g = iyl yiyd +
‘Br+lfr+lzr+l 4ot ,Bdded.

Then, each k € 72, after possibly permuting the coordinates, is represented by
some system (r,q, vi, ..., Vq, [, y). Conversely, for each system (r, q, v1, ..., vq, f,y)
and 6 > 0, there exists k € 74 represented by a system (r,q, v1, ..., g, f, v, such
that |y — y| < 6.

Proofof LemmaA.6 As M > L“OOd)S, upon multiplying everything by L, we may
replace Zy by Z. As our convention, in the proof C will denote any large con-
stant depending only on d. In the first part, given £k we will construct the system
(r,q,v1,...,v4, f,¥), which is done by induction in d. The case d = 1 is obvious,
now suppose the result is true for d — 1, with constant Co = Co(d — 1). We also
denote kg = (k'B, ..., k4p?) for k = (k',...,k%) and B = (B',..., B9), so that
(k.2)p = (kp. 2).

Fix k € Z4, consider the set H of z € Z¢ such that |z| < M and |(k, z)p| < M
(clearly O € H). Let g be the maximal number of linearly independent vectors in H,
we may fix a maximum independent set {w1, ..., wy} C H, and apply Gram-Schmidt
process to get orthogonal vectors (v1, ..., vg). Since each w; € 74 and lwi| < M,
we can easily make v; € 74 and lvj| < MEC . If the linear span of {vy,...,v,} does
not contain any coordinate vector in R?, then we shall prove the result with r = d.
In fact, (1) is already satisfied by definition; since |(k, w;)g| < M for 1 < j <gq, we
also know that |(k, v;)g| < M€ for 1 < j <g.Lety/ = (k,v;)p, then |y| < M€ and
(2) is also satisfied.

If, instead, the linear span of {vi,...,v,} contains a coordinate vector in RY,
say eg = (0,...,0,1), we shall apply the induction hypothesis. In this case we
have |(k,vj)g| < MC for 1 < j < g and hence |k?| < M€. By induction hypoth-
esis (with M replaced by M), the vector (k',...,k%"1) is represented by some
system (r,q,v1,...,vq, f,y) where 0 < g <r <d — 1 and | f], |v;|, |y| < M Co.
Now we claim that k is represented by (r,q, vi, ..., vq, f',y) where f' = (f, k?);
in fact (2) is satisfied by definition, as for (1), if |z] < M and |(k, z)g| < M, then
1B 2 - BTk 41 < MC as k4| < M, so we may apply the induction
hypothesis (with M replaced by M€) to show that (z',...,7") is a linear combi-

nation of {vy, ..., v,}. In either case we have constructed the desired system, with
Co(d)=C-Co(d —1).
Now, suppose a system (r, g, v1, ..., Vg, f, ¥),and 6 > 0, is fixed. We may choose

k/ = f7 forr +1 < j <d, and again notice that |z| < M and |(k, z)g| < M implies
that |B'k'z! +- ..+ B7k"z"| < MC. Therefore we only need to consider r = d. Select
VECtors uy, ..., Uq4—q € 74 such that they form an orthogonal basis with {vy, ..., v4},
and |u ;| < MC for 1 < j <d — g. Now choose k* = puj + - -- + Pd—qUd—g, Where
p; are large integers, and assume k is chosen such that |kg — k*| < MC. We will
assume 0 < p; < B and B >y 1. Clearly, if |z] < M and |(k,z)g| < M, then
|(k*,z)| < M€,
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Full derivation of the wave kinetic equation 713

Suppose |z| < M and |(k*,z)| < MC. If we decompose z = xjuj + --- +
Xd—qUd—q + 2/ where 7’ is a linear combination of (vy, ..., vy), then

d—q

2
=Y pjlujl*x;.

Each x; is a rational number and max; |x;| > M~ unless all x; = 0, and the number
of choices for (x1,...,x4—4) is at most M € when z varies. For each fixed nonzero
(x1, ..., X4—q) the number of choices for (py, ..., py—q) satisfying [(k*, z)| < MC€ is
at most M€ B4=41 5o for at least B4~9 — M€ B4=4~1 choices of (py, ..., Pd—gq)
(and for any choice of k satisfying |kg — k*| < MC given k*), we have that |z] < M
and [(k, z)g| < M implies that z is a linear combination of v; (1 < j < q).

For such choices we already have (1). Clearly z is then represented by (g, v1, ...,
vy, Y) (withr =d and f being void) where (y')/ = (kg, v;) = —(k* —kg, v;). Given
(v;) and y, we may fix a vector /1 € RY, where |h| < M€, such that (h, vj) = —y/ for
1 < j < g; it then suffices to choose k* and k such that |k* — kg — h| < M~C19 with
C| larger than all the C appearing above. (note that this also implies |kg —k*| < MC).
Since k can be arbitrarily chosen, it suffices to have

k) — pi
{%} <M 29 for 1<j<d,

where {-} means the distance to the nearest integer. Clearly

dq

(k*)’ —h/
X

j

Since the linear span of {v;} does not contain any coordinate vector in R4, we know
that, for each 1 < j <d, there exists 1 <i =i(j) <d — g such that (u;)’ #0.
We may choose p; such that

i Y W .
{0/43]) .}<M‘3C‘9 i #i): {(';3 pi = ,31}<M3C19 (=1

Given i, since all the nonzero numbers in the set {1, (u;)/ (8/)~' : 1 < j < d} are Q-
linearly independent, by Weyl’s equidistribution theorem, we see that the number of

(P15 - - ., Pd—q) satistying all the above conditions is 2,6 B4~4_ Therefore, we may
choose (p1, ..., Pd—q), and hence k* and k, such that both (1) and (2) are satisfied.
O

A.3 Lattice point counting bounds

We list the various lattice point counting bounds, which are the main technical tools
used in Sect. 9.3.
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714 Y. Deng, Z. Hani

Lemma A.7 (Sphere counting) Uniformly in a € Z‘i and y € R, we have the bound
#lxeZi:lx—al<1, |k} —yl<s L2} <867'LI,

Proof By dividing an interval of length 8~1L=% into 0(6 ~1Y intervals of length L2
we may assume § = 1. Let y = (y! ,...,yd) =( \/_xd) then |y|? =

¥ + O(L™?), where |y| is the usual norm in R<. If we ﬁx the coordmates yi3<j<
d), noticing that each yf (3 < j <d) has < L choices, it then suffices to prove that

#{w,v) € (fB1Z0) x (B2Zo) 1+ =y + 0L,

2

| —uol + v —vo| S1} SL3 (A.10)

uniformly in (g, v, ¥) € R3.

Let |y| ~ R? (we may assume R > L1, then (u, v) belongs to the O (¢g) neigh-
borhood of a circle centered at the origin of radius ~ R, where ¢ = L2R~1L. Since
(u, v) also belongs to a disc of radius O (1), we know that (u, v) actually belongs
to the O(e) neighborhood of an arc of length O(min(R, 1)) on the circle. Let
I'.= (\/ﬁ 7)) x (\/@ZL) be a fixed lattice, it will suffice to prove that the number
of points in I that belong to this neighborhood is < L3.

Now, we may decompose the above arc of length O(min(R, 1)) into at most
O(L-%) sub-arcs, each with length <« p, where p = L_-%R%, note that ¢ < p < R.
Thus is suffices to prove that the O (g) neighborhood of each sub-arc contains O (1)
points in I'. Let this neighborhood be M, from elementary geometry we can calculate
that the area of the convex hull of M is

3 p3
A<<( )R€+R2( ) —pe—l—?SJL*z.
But any nondegenerate triangle with vertices in I" have area > L2, so the points in
I’ N M must be collinear; however M is contained in an annulus of width 2¢, and
any straight line contains at most two segments in this annulus, each having length at
most O(v/eR) = O(L™1), so in any case the number of points in I' N M is at most
o). O
Lemma A.8 (Good and bad vectors) We say a vector 0 # x € Z‘Z is a bad vector, if

#lyeZd:ly—bl <1, |(x.y)p—T| <L} =147 (A.11)

for some b € Z’I{ and T € R; otherwise we say x is a good vector. Then, when L is
large enough, for any a € 7%, the number of bad vectors x satisfying |x —a| <1 is

at most L9171

Proof 1f (A.11) is true for some (b, T"), then it is actually true for b =T =0 up to
some constant, by fixing x taking the difference between any two possibilities of y.
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We will show that

3d—4+1
> Y Lupisr2 Lpapier2 S LY, (A.12)
x#0.1x—al<1 |yl g1 <1

which implies the desired result, as the left hand side of (A.12) is just the sum of
the square of the left hand side of (A.11) over |x — a| < 1. However the left hand
side of (A.12) is bounded by the same expression with a = 0, again by fixing (y, 2)
and taking the difference between any two possibilities of x. Moreover, if we set
(x,v,2)=L7Y(X,Y, Z) with (X, Y, Z) € (Z%)3, then (A.12) with a = 0 is just (A.2)
which follows from the definition of 3. This completes the proof. g

Lemma A.9 (Atom counting bounds) For 1 < j <5, let x; € Z‘z be variables, aj €
Z”LI and ¢ € {£} be fixed parameters. Fix also the parameters k; € Zi and y; e R
fori e {1,2}. We require that |x; — aj| < 1 for each j. If any of the statements below
involves an equation of form y_ jeatjxj = ki with some set A, then we also require
that (i) no three of {; (j € A) are the same, and (ii) if j, j' € A and ¢jr+ &5 =0then
Xj 75 Xjr-

We have the following estimates, where the implicit constants only depend on d
and B, and do not depend on (8, L) or any of the parameters (a;, y;, k;):

(1) (Two-vector counting) If we require

axi+ox =k, |alalp+alp - <s'L7 (A.13)

then the number of choices for (x1, x2) is <8 VL4~ andis < 8_1Ld_1_% ife =&,
(2) (Three-vector counting) If we require

axi+ox+ax =k, |alxl+alll+alalz—n| <6T'LT (A1)

then the number of choices for (x1, x2, x3) is S §1p2d-2,

(3) (Four-vector counting 1) If we require

axi+ox =k, |albalz+ okl —n|<s'L7,
axi+ax+daxa=ky, |Gl +alalp + alxaly —nl <L
(A.15)

then the number of choices for (x1,...,x4) is S 8*2L2d_2_%.
(4) (Four-vector counting 2) If we require

axi+oxn+ax=k, |Gl +abeli+alal;-n| <8l

Gixi+ ox + Gxa =ky,|GlxG 4 Qalxalp + Galxaly — v <857ILT
(A.16)
and assume that (&3, x3) # (84, Xa4), then the number of choices for (x1,...,x4) is
§3—2L2d727%'
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(5) (Five-vector counting 1) If we require

axi+on+ax=k, |Gl +abeli+ ol —n| <L

QX1+ Gaxa+ Gsxs =ka, |Gl [g + Galxalf + gslxsp — | <67'L72
(A.17)
then the number of choices for (x1,...,x5) is S 5213431,
(6) (Five-vector counting 2) If we require

axi+oxa+xs =k, [albaly 4 Glelg + ol —n| <87 'L
$1x1 + §ax2 + Laxa + {5x5 = ka,

211115 + alxalf + calxall + gslxsl — ya <67'L72,

(A.18)
1
then the number of choices for (x1, ..., x5) is S §=2p3d=3-7,
(7) (Five-vector counting 3) If we require (A.17), and that
{oxo — Caxq = kT, |§2IX2|§ - C4IX4|% —yf| =ns7L2,
(A.19)

axy — osxs =k3, | Galxalp — gslxsly — vy | <ns 'L

for some constants (k{,k3,y;",yy) and n > 1, and assume that ({2, ¢3, X2, X3) #
1
(¢4, €5, X4, X5), then the number of choices for (x1, ..., xs) is < nd2L2-2-3,

Note that, if n < (log L)3 then the bound in (7) can be replaced by 8_2L2d_2_%.

Proof In all the proofs, we may assume § = 1 as above, by dividing an interval of
length §~'L=2 into O(8~") intervals of length L~2.
(D) If &1 = &, then x| + xp = £k is fixed. For y = x; — x2, we have that

y[3 =2y — ki[5 + O(L™?);

moreover as |x] —aj| < 1 we have that |y — (2a; — k)| < 2. Lemma A.7 then implies
that the number of choices for y, and hence for (x1, x2), is < L4 _%.

Otherwise, we may assume {; = + and ¢, = —, then x| —xp =k; #0. Let y =
x1 + x3, then we have that

(k1,y)p =1+ O(L™?);

moreover as |x; — aj| <1 we have that |y — (2a; — k1)| < 2. We may assume that
the first coordinate kll of k1 is nonzero, then |k11 | > L. Thus, when the coordinates
yj (2 <j <d) are fixed, y1 will belong to an interval of length < L~! and will have
< 1 choices. As each yj (2 < j <d) has < L choices, we conclude that the number
of choices for y, and hence for (x1, x3), is < La-1

Note that, if in addition we assume x| — x is a good vector, then by definition we

can bound the number of choices of (x1, x3) by Ld’l’%.
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(2) By assumption the ¢; (1 < j < 3) are not all equal, so we may assume | =
{3 =+ and & = —. Let y = k1 — x1 and z = k1 — x3, then we have that

k1l — 71

OL_2;
> +O(L™)

(v.2)p =
moreover as |x; —aj| <1 and |x3 —a3| <1 we have that |y — (k; —a;)| <1 and
|z — (k1 —a3)| < 1. By applying Proposition 6.1 with n = 1, where W and W are two
fixed (translates of) nonnegative compactly supported smooth cutoff functions, we
know that the number of choices for (y, z), and hence for (x, x2, x3), is < L24-2,
Note that the second inequality in (6.5) is not needed if one only needs the upper
bound instead of asymptotics.

(3) If £3 = &4, then by (1) we know that (x1, x2) have at most L¢~! choices, while
for x; fixed, (x3, x4) has at most L¢ —1-3 choices, so the total number of choices for
(x1,...,x4) is at most L%=2=3  The same is true (with % instead of %) if&3+¢4=0
and x3 — x4 is a good vector. But if x3 — x4 is a bad vector, then x; is a fixed translate
of a bad vector which belongs to a fixed ball of radius 1, so by Lemma A.8, the

number of choices for x|, and hence (x1, x2), is at most Ld_l_%, so we get the same
result.

(4) This follows from (3) by taking the difference of the two equations, and notic-
ing that if 3 = {4, we must have x3 # x4.

(5) If ¢4 = &5, then by (2) we know that (x, x2, x3) have at most L2¢~2 choices,
while for x; fixed, (x4, x5) has at most Ld_l_% choices, so the total number of
choices for (xi,...,xs) is at most L3d’3’%; note that this estimate is valid even
if we allow ¢3 = {4 = ¢5. The same is true (with % instead of %) if &4+ ¢5=0and

X4 — x5 is a good vector. If x4 — x5 is a bad vector, then x| has at most Ld’l’% choices
by Lemma A.8. For x| fixed, the number of (x7, x3) and (x4, x5) can be bounded by
L1 by (1), so we get the same result.

(6) This follows from the first part of (5) by taking the difference of the two
equations, provided (¢3, x3) # (¢}, x;) for j € {4, 5}; now suppose, say, {3 = ¢4 and
X3 = X4, then the value of x5 is fixed and the number of choices for (x1, x2, x3) is at
most 1242 by (2), so the result is still true.

(7) By subdividing one interval of length nL~2 we may assume n = 1. The result
then follows from (3), since we may assume (for example) either ¢, # {4 Or X3 # X4,
and simply exploit the first equation in (A.17) and the first equation in (A.19). |

Appendix B: An example of molecule reduction

Here we provide an example of the molecule reduction algorithm described in
Sect. 9.4.2. For simplicity we only consider phase two.

Suppose the original molecule is a base molecule as in Fig. 39. Then, according
to the algorithm, we first treat the two degree 3 atoms (labeled 9 and 10) connected
by a single bond. As in (2-b) we claim a checkpoint and perform either (3S3-1) or
(3S3-2G). In either case M is reduced to the one in Fig. 40.
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Fig. 39 The original base molecule “flashlight”. The bonds ¢ to ¢g will appear in the Ext condition
obtained by the algorithm

Fig. 40 The molecule obtained after performing (3S3-1) or (3S3-2G). Note that this is a checkpoint and
corresponds to two possible steps (though the operation on M is the same and the only difference is AExt)

Next, as in (1), we perform (BR) and remove the bridge connecting atoms labeled
4 and 5. Then M is reduced to the one in Fig. 41.

Next, we treat the two pairs of degree 3 atoms (labeled (3, 4) and (5, 7)) connected
by two single bonds. As in (2-a) we perform (3S3-5G) (Scenario 2) twice, and reduce
M to the one in Fig. 42.

Next, we treat the two degree 3 atoms (labeled 11 and 12) connected by a double
bond. Since the type II chain continues, as in (3-b) we claim a checkpoint and perform
either (3D3-1) or (3D3-2G). In either case M is reduced to the one in Fig. 43.

Next, we treat the two degree 3 atoms (labeled 13 and 14) connected by a double
bond. The type II chain does not continue, so as in (3-c-ii) we perform (3D3-6G) and
reduce M to the one in Fig. 44.
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Fig.41 The molecule obtained after performing (BR)
O]
©
(5
of
Fig.42 The molecule obtained after performing (3S3-5G) twice
Q)
©
()
of

Fig.43 The molecule obtained after performing (3D3-1) or (3D3-2G). Again this is a checkpoint and the
only difference between two possible steps is AExt

Finally, we treat the remaining three pairs of degree 2 atoms connected by three
double bonds. As in (7) we perform (2R-5) three times and reduce M to the empty
graph.

Following the algorithm we have performed at least three good steps (r > 3). The
two checkpoints provide four possible tracks, which correspond to different possibil-
ities of Ext in the beginning; for example if we choose (3S3-1) and (3D3-1) then the
Ext we obtain in the beginning is

{key =key,  key =key,  kes =keg,  ke; — keg 15 a good vector}.
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O

Q /
OO

%
)

Fig.44 The molecule obtained after performing (3D3-6G)

Table 1 Basic notations about

trees and couples Concept Symbol Where defined
Tree T Definition 2.1
Root, node, leaf ool Definition 2.1
Leaf set (tree) L Definition 2.1
Branching node set (tree) N Definition 2.1
Sign ¢, ¢n Definition 2.1
Scale (tree) n(T) Definition 2.1
Couple Q Definition 2.2
Leaf set (couple) L* Definition 2.2
Branching node set (couple) N* Definition 2.2
Scale (couple) n(Q) Definition 2.2
Paired tree, saturated paired tree — Definition 2.2
Lone leaf — Definition 2.2
Decoration 9,8 Definition 2.4

In this track (other tracks will have better exponents) we can calculate y = 18 —
ﬁ at the beginning, so we have, omitting powers of &, that

sup#O (M, Ext) < L18@-D-3

Appendix C: Table of notations

Here we list some important notations used in this paper. These are mainly concerned
about trees, couples, molecules and their structures. Table 1 contains the basic nota-
tions and the corresponding symbols. Table 2 contains further notations, including
different types of couples. Table 3 contains notations related to molecules.
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Table 2 Further notations about
trees and couples

Table 3 Notations about
molecules

References

Concept Symbol  Where defined
(1, 1)-mini couple, mini tree — Definition 4.1
Code (mini couple, mini —_ Definition 4.1
tree)

Regular couple — Definition 4.2
Legal partition, dominant P Definition 4.4
partition

Regular chain, regular — Definition 4.6
double chain

Type (regular couple) — Proposition 4.10
Prime couple — Definition 4.12
Skeleton sk Proposition 4.13
Regular tree — Remark 4.15
Dominant couple — Definition 4.17
Special set V4 Definition 4.18
Equivalence (dominant — Definition 4.18
couple)

Encoded tree, equivalence — Sect. 4.5, Definition 4.21
(encoded tree)

Associated encoded tree — Definition 4.22
Irregular chain H, H° Definition 8.1
Congruence — Definition 8.2, 8.4
Concept Symbol Where defined
Molecule, atom, bond M, v, £ Definition 9.1
Saturated component — Definition 9.1
Base molecule — Proposition 9.2
Molecule associated to a — Definition 9.3
couple

Type I and II chains — Definition 9.7
Degenerate atom, tame atom — Definition 9.8
Extra conditions Ext Definition 9.8
Step, track, checkpoint —_ Sect. 9.2

Bridge, special bond

Good step, normal step

Definition 9.12
Beginning of Sect. 9.3
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