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1. Introduction
Notation. Let X be a topological space, V; W be normed vector spaces, and H be a complex Hilbert space.

(a) Bx is the Borel o-algebra on X.

(b) B(V;W) is the space of bounded linear maps V' — W with operator norm || - || = || - |lv—w. Also,
B(V) = B(V;V). Finally, B(H)s, :={A € B(H) : A* = A}.

(c) If A is a (possibly unbounded) self-adjoint operator on H, then P4: By — B(H) is its projection-
valued spectral measure. If f: R — C is Borel measurable, then we define f(A) := fU(A) FN) PA(dN).
(Please see Section 2.2.)

1.1. Known results

Let H be a complex Hilbert space. Given an appropriately regular scalar function f: R — C, one of the
goals of perturbation theory is to “Taylor expand” the operator function that takes a self-adjoint operator
A on H and maps it to the operator f(A). This delicate problem has its beginnings in the work of Yu.L.
Daletskii and S.G. Krein. In their seminal paper [9], they proved that if f: R — C is 2k-times continuously
differentiable and A, B € B(H)sa,, then the curve R 3 ¢t — f(A+tB) € B(H) is k-times differentiable in
the operator norm and

dk

Sl s =w [ [ oG ) PAGA) B PA BPA), ()
o(A)  o(A)
—_———
k+1 times

where fI¥l: R¥+1 5 C is the k*® divided difference (Section 4.2) of f, defined recursively as

FEIOG M) = FEIO - M1 )
)\k - >\k+1

FO = f and (N, M) = @)

for (A1,...,A\kp1) € R¥F1 The reader might be (rightly) puzzled by the multiple integral in (1), since
standard projection-valued measure theory only allows for the integration of scalar-valued functions. In-

deed, while the innermost integral fa(A) I, -+, Apy1) PA(d)\1) makes sense using standard theory, it
is already unclear how to integrate the map

Ag = / FH O gy oo A1) PA(dMN) B
a(A)

with respect to P4. Daletskii and Krein dealt with this by using a Riemann-Stieltjes-type construction
to define f: ®(r) PA(dr) for certain operator-valued functions ®: [s,t] — B(H), where o(A) C [s,t]. This
approach, which requires rather stringent regularity assumptions on ®, allows one to make sense of the right
hand side of (1) as an iterated operator-valued integral — in other words, a multiple operator integral.
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Now, for j € {1,...,k+1}, let (Q;,.%;) be a measurable space and P;: .#; — B(H) be a projection-valued
measure. Emerging naturally from the formula (1) is the general problem of making sense of

(1P Pt by, ... by = / ~--/gp(wl,...,wkH)Pl(dwl)bl~~-Pk(dwk)kak+1(dwk+1) (3)
(o5

Qg1

for certain functions ¢: Q3 X -+ - x Q1 — C and operators by, ..., by € B(H). An object successfully doing
so is called a multiple operator integral (MOI). Under the assumption that H is separable, these have been
studied and applied to various branches of noncommutative analysis extensively. Please see A. Skripka and
A. Tomskova’s book [32] for an excellent survey of the MOI literature and its applications.

In this paper, we shall make use of the “separation of variables” approach to defining (3). For separable
H, this approach was developed by V.V. Peller [29,30] and N.A. Azamov, A.L. Carey, P.G. Dodds, and
F.A. Sukochev [2] in order to differentiate operator functions at unbounded operators. The present author
extended the approach to the case of a non-separable Hilbert space in [26]. We review the relevant definitions
and results in Sections 2.1 and 4.1. Henceforth, any MOI expression we write or reference is to be interpreted
in accordance with Section 4.1 (specifically, Theorem 4.1.2).

Now, we quote the best known general results on higher derivatives of operator functions. If Bg’p (R™) is
the homogeneous (s, p, q)-Besov space (Definition 4.3.10), then we write

PBF(R) := By (R) N {f € C*R) : f* is bounded } (4)

for the k'™ Peller-Besov space. It turns out that PB(R) N PB*(R) = PB'(R) N BF*°(R). (Please see the
paragraph containing Equation (25) at the end of Section A.2.)

Theorem 1.1.1 (Peller [29]). Let H be a separable complex Hilbert space, A be a self-adjoint operator on H,
and B € B(H)sa. If f € PBY(R) N PB*(R), then the map R 3 t v+ f(A+1tB) — f(A) € B(H) is k-times
differentiable in the operator norm, and the formula (1) holds.

This is Theorem 5.6 in [29]. To quote the relevant result from [2], we need some additional terminology.
First, recall that if H is a complex Hilbert space, then M C B(H) is a von Neumann algebra if it is
a unital #-subalgebra that is closed in the weak operator topology (WOT). Second, suppose Z C M is
a #*-ideal with another norm || - ||z on it. We call Z an invariant operator ideal if (Z,|| - ||z) is a Banach
space, ||7]] < ||r|lz = ||r*||z for € Z, and Z is symmetrically normed, i.e., |larb||z < ||a|| ||7||z]|b]| for r € T
and a,b € M. Third, an invariant operator ideal Z has property (F) if whenever (a;)jcs is a net in 7
such that sup,c;[lajllz < co and a; — a € M in the strong™ operator topology (S*OT), we get a € T
and |lallz < supje; [las]lz. Finally, we write Wy (R) for the k' Wiener space (Definition 4.3.5) of functions
f: R — C that are Fourier transforms of complex measures with finite £** moment.

Theorem 1.1.2 (Azamov-Carey-Dodds-Sukochev [2]). Let H be a separable complex Hilbert space, M C B(H)
be a von Neumann algebra, and a be a self-adjoint operator on H affiliated with M (Definition 2.2.7). If
Z C M is an invariant operator ideal with property (F), s, = {b € T : b* = b}, and f € Wi11(R), then
the map L, 2 b — fo(b) = f(a+b) — f(a) € T is k-times Fréchet differentiable (Definition 4./.4) in the
Z-norm || - ||z and

Opy +++ Oy, fa(0) = Z / / FE O+ Ng1) P2(dA) bray - - - PU(AAR) by PP (k1)
T€5%ho(4)  o(A)
—_——

k41 times

for all by, ... by € Ls,, where Sy is the symmetric group on k letters.
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This is Theorem 5.7 in [2]. As is noted in [2], the motivating example of an invariant operator ideal with
property (F) comes from the theory of symmetric operator spaces. Indeed, if (E, ||-||g) is a symmetric Banach
function space with the Fatou property, (M, 7) is a semifinite von Neumann algebra (Definition 2.1.8), and
(E(7), | - | g(r)) is the symmetric space of T-measurable operators induced by E, then

(Z 11 Nlz) = (B(r) O M, [ - lrynm) = (B(T) DM, max{[| - [z, [ - la}) (5)

is an invariant operator ideal with property (F). (Please see Section 2.3 for the meanings of the preceding
terms.) Though Theorem 1.1.2 applies to this interesting general setting, the result demands much more
regularity of the scalar function f than Theorem 1.1.1. (Indeed, Wj(R) € PB!(R) N PB*(R).) It has
remained an open problem (Problem 5.3.22 in [32]) to find less restrictive conditions for higher Fréchet
differentiability of operator functions in the symmetric operator space ideals described above. The present
paper makes substantial progress on this problem: a corollary of our main results is that if E is fully
symmetric (a weaker condition than the Fatou property), then the result of Theorem 1.1.2 holds for (Z, ||-||z)
as in (5) with f € PBY(R) N PB*(R). In other words, we are able to close the regularity gap between
Theorems 1.1.1 and 1.1.2 in the (fully) symmetric operator space context. Moreover, we are able, for the
first time in the literature on higher derivatives of operator functions, to remove the separability assumption
on H by using the MOI development from [26].

Remark 1.1.3 (Other related work). The Schatten p-ideals have property (F), so Theorem 1.1.2 applies to
them when the underlying Hilbert space is separable. There are, however, much sharper results known about
differentiability of operator functions in the Schatten p-ideals (again, when the underlying Hilbert space is
separable). Please see [23,22]. Also, there is a seminal paper of de Pagter and Sukochev [11] that studies
once Gateaux differentiability of operator functions in certain symmetric operator spaces at measurable
operators; we discuss its relation to the results in this paper in Remark 4.4.7.

1.2. Main results

Let H be a complex Hilbert space, M C B(H) be a von Neumann algebra, and a be a self-adjoint operator
affiliated with M (Definition 2.2.7). We recall from the previous section that our goal is to differentiate
the operator function Zsy, b — f(a +b) — f(a) € Z, where (Z,|| - ||z) is some normed ideal of M and
f € PBY(R)NPB¥(R). (Please see (4).) The ideals we consider are the integral symmetrically normed ideals
(ISNTs). The definition of integral symmetrically normed is an “integrated” version of the symmetrically
normed condition ||arb||z < ||a|| ||7||z]|b]|- Loosely speaking, (Z, || - ||z) is integral symmetrically normed if

/ Alo) 7 B(o) pldo)

=

< |Irllz / |AI1Blldp, r € 1.
z )

The precise definition (Definition 3.1.3.(b)) is slightly technical, so we omit it from this section. Our first
main result comes in the form of a list of interesting examples of ISNIs.

Theorem 1.2.1 (Ezamples of ISNIs). Let H be an arbitrary (not-necessarily-separable) complex Hilbert space
and M C B(H) be a von Neumann algebra.

(i) The ideal (M, || - ||) is integral symmetrically normed.
(i) If (Z,]-||z) s a separable symmetrically normed ideal of M, then T is integral symmetrically normed.
(iii) The ideal (KC(H), || - ||) of compact operators is an integral symmetrically normed ideal of B(H).
(iv) If 1 < p < oo, then the ideal of (Sp(H), ||-||s,) of Schatten p-class operators (Definition 2.2.1 in [26])
is an integral symmetrically normed ideal of B(H). (For us, Soo(H) = B(H).)



E.A. Nikitopoulos / J. Math. Anal. Appl. 519 (2023) 126705 5

(v) Suppose (M, 1) is semifinite (Definition 2.1.8). If (E, ||-||g) is a fully symmetric space of T-measurable
operators (Definition 2.5.1.(c)) and (Z,| - llz) = (ENM,|| - leam) = (ENM,max{]| - ||| - I}),

then T is an integral symmetrically normed ideal of M.

Proof. Ttem (i) is Example 3.2.1, item (ii) is part of Proposition 3.2.3, item (iii) follows from Proposition 3.2.5
(or Remark 3.2.6), item (iv) is a special case of Example 3.2.2, and item (v) is Theorem 3.3.1. O

With these in mind, we now state our second main result. Recall that f*/: R¥*! — C is the k** divided
difference of f: R — C (please see (2)), S is the symmetric group on k letters, and all multiple operator
integral (MOI) expressions as in (3) are to be interpreted in accordance with Section 4.1.

Theorem 1.2.2 (Derivatives of operator functions in ISNIs). Let H be an arbitrary (not-necessarily-separable)
complex Hilbert space, M C B(H) be a von Neumann algebra, and a be a self-adjoint operator on H affiliated
with M. If (Z,]|| - ||z) is an integral symmetrically normed ideal of M and f € PB'(R) N PB*(R), then
the operator function Zs, 3 b — fo(b) == f(a+b) — f(a) € T is k-times continuously Fréchet differentiable
(Definition /4.4.4) in the Z-norm || - ||z, and

O, - O, fa(0) = / FE L+ Neg1) PA(dA) bray - - - PU(AAR) by P2 (d k1),
“Esko(a) o(a)
k+1 times

for allby,..., by € Ig,.
Proof. Combine Theorem 4.4.6 and Corollary 4.3.14. O

Theorems 1.2.2 and 1.2.1.(iv) generalize the best known results, from [23], on differentiability of operator
functions in the ideal (Z,| - ||z) = (Sp(H),|| - ||s,) to the non-separable case when p = 1. We do not,
however, fully recover the optimal regularity on f, established in [22], when p € (1, 00). Also, to the author’s
knowledge, the present paper’s result on the ideal of compact operators (i.e., Theorems 1.2.2 and 1.2.1.(iii))
is new even when H is separable. Finally, as promised at the end of the previous section, Theorems 1.2.2
and 1.2.1.(v) (together with Fact 2.3.2) make substantial progress on the open problem (Problem 5.3.22
n [32]) of finding general conditions for higher Fréchet differentiability of operator functions in ideals of
semifinite von Neumann algebras induced by (fully) symmetric Banach function spaces.

2. Preliminaries

For Section 2, fix a complex Hilbert space (H, (-,-)) and a von Neumann algebra M C B(H). Recall also
that S’ .= {b € B(H) : ab = ba, for all a € S} is the commutant of a set S C B(H) and that a unital
x-subalgebra N' C B(H) is a von Neumann algebra if and only if N' = N := (N’)’. This is the well-known
(von Neumann) Bicommutant Theorem.

2.1. Weak* integrals in von Neumann algebras

Following parts of Section 3.3 of [26], we review some basics of operator-valued integrals. We shall write

n=1

(N; H) = {(hn)neN e HY : > |ha? < oo} and ((hn)neN, (kn)nen) 2@ = 3 (An, kn)
n=1

Also, for the duration of this section, fix a measure space (3, 5, p).
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Definition 2.1.1 (Weak* measurability and integrability). A map F: ¥ — M is called weak* measurable if
(F(-)h,k): ¥ — C is (A, Bc)-measurable, for all h, k € H. Now, suppose in addition that

/\((F(U)hn)neN, (kn)nen)e2(N;m)| p(do) < oo, (6)
b

for all (hn)nen, (kn)nen € £2(N; H). We say that F is weak* integrable if for all S € J#, there exists
(necessarily unique) Is € M such that

(Ishn)ments (e )2 (o) = / (F(0)hn)nents (kn)en) vy p(d0),
S

for all (hy)nen, (kn)nen € 2(N; H). In this case, we call Is the weak* integral (over S) of F' with respect
to p, and we write fs Fdp= fs F(o) p(do) = Is.

Remark 2.1.2. Let M, = {0-WOT-continuous linear functionals M — C} be the predual of M. Part
of Theorem 3.3.6 in [26] says that F' is weak® measurable (respectively, integrable) in the sense of Defi-
nition 2.1.1 if and only if F' is weakly measurable (respectively, integrable) in the weak* topology on M
induced by the usual identification M = M *. The above terminology is therefore justified.

It turns out (Theorem 3.3.6.(iii) in [26]) that (6) is actually already enough to guarantee that F' is weak*
integrable. Since we do not need this level of generality, we shall prove a weaker statement from scratch.

Definition 2.1.3 (Upper and lower integrals). For a function h: ¥ — [0, oo] that is not necessarily measurable,
we define

/h(U) pldo) = /h dp = inf { /ibdp : h < h p-almost everywhere, h: ¥ — [0, 0] measurable} and
5 5 5

| ~—

h(o) p(do) = /h dp = sup { /Edp : h < h p-almost everywhere, h: ¥ — [0, 0] measurable}
bl %
to be, respectively, the upper and lower integral of h with respect to p. (Please see Section 3.1 of [26].)

Proposition 2.1.4 (Eristence of weak* integrals). If F: X — M is weak* measurable and [||F||dp < oo,
then F' is weak® integrable and o

/de

b

This is called the (operator norm) integral triangle inequality.

< / | F|l dp. (7)
>

Remark 2.1.5. First, the operator norm of a weak® measurable map is not necessarily measurable when H is
not separable. This is why we need the lower integral above. Second, one can also prove that weak* integrals
are independent of the representation of M. Please see Theorem 3.3.6.(iv) in [26].
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Proof. Fix S € /7, and define Bs: H x H — C by (h,k) = [¢(F(o)h, k) p(do). Then Bg is linear in the
first argument and conjugate-linear in the second argument. Also,

|Bshk\</| o), k)| pldo) < /| o)h, k)| pldor) < /nF h||\|k|\p<do><||h\|Hk||/||F||dp,

for all h,k € H. In particular, Bg is bounded. By the Riesz Representation Theorem, there exists unique
ps(F) € B(H) such that (ps(F)h, k) = Bs(h,k), for all h,k € H. Moreover,

lps(F)I| = sup{|Bs(h, k)| : b,k € H, [|h]], [|k]] < 1} < /||F||dp~

If we can show pg(F) = [4 F dp, then we are done.
To this end, fix a € M’ and h,k € H. If 0 € ¥, then (F(o)ah,k) = (a F(o)h, k) = (F(0)h,a*k). Thus
Bg(ah, k) = Bg(h,a*k). But then

(aps(F)h, k) = (ps(F)h,a"k) = Bs(h,a"k) = Bs(ah, k) = (ps(F) ah, k).

Since h,k € H were arbitrary, a ps(F) = ps(F) a. Since a € M’ was arbitrary, ps(F) € M"” = M by the
Bicommutant Theorem. Next, fix (hn)nen, (kn)nen € £2(N; H). Then

/Z )b, kn)| p(do) < [(ha)nen e | (Fn)nenllez o, H)/HFHdp <00

by the Cauchy-Schwarz Inequality (twice). Therefore, by the Dominated Convergence Theorem,
oo
/z s ) z/ V) () = 3 ps (F s o)
n=1 n=1 n=1
as desired. O

Other than basic algebraic properties of the weak™ integral, which are usually clear from the definition, the
most important fact about weak* integrals that we shall use is an operator-valued Dominated Convergence
Theorem, which we prove from scratch for the convenience of the reader. (But we remark that it follows from
Proposition 3.2.3.(v) and Theorem 3.3.6 in [26].) First, we note that one can do better than the operator
norm triangle inequality. Indeed, retaining the notation from the proof above, we have

(fre)

for all h € H.

— sup{|Bs(h, K)| : k]| < 1} < sup { / (F(0)h, k)] p(do) - [K]) < 1} < / |F(0)h] p(do),
> bl

Lemma 2.1.6 (Nonmeasurable Dominated Convergence Theorem). Suppose (gn)neN 1S a sequence of func-
tions X — [0, 00| such that g, — 0 pointwise p-almost everywhere as n — oo. If

/ sup g, dp < 00,
neN

then [gndp — 0 asn — oc.
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Proof. By definition of the upper integral, there is some measurable g: ¥ — [0, oo] such that fE gdp < o0
and sup,cn gn < g p-almost everywhere. Now, if n € N, then, by definition of the lower integral, there
exists a measurable g, : ¥ — [0, oo] such that 0 < g, < g,, p-almost everywhere and

1 N
/gnd,o—— </gndp-
n

) z

Since g, — 0 p-almost everywhere, and 0 < g, < g, p-almost everywhere, we also have g, — 0 p-almost
everywhere as n — oco. Also, g, < g, < g p-almost everywhere, for all n € N. Therefore, by the Dominated
Convergence Theorem,

n— oo n—oo n—oo

1
0< 1iminf/gn dp < limsup/gndp: lim sup </gndp— —) < 1imsup/§n dp =0,
n— o0 n
b b

as desired. O

Proposition 2.1.7 (Operator-valued Dominated Convergence Theorem). Let (F,,),en be a sequence of weak”
integrable maps ¥ — M, and suppose F': ¥ — M is such that F,, — F pointwise in the weak, strong, or
strong® operator topology as n — oo. If

J1Euldp < . (®)
%
then F: ¥ — M is weak™ integrable and fz F,dp — fz Fdp in, respectively, the weak, strong, or strong*

operator topology as n — oo.

Proof. Fix h,k € H. In all cases, F,, — F pointwise in the WOT as n — oo. Therefore, (F(-)h, k) is the
pointwise limit of ((F,(-)h, k))nen. Consequently, F' is weak™ measurable. Also, ||F|| < sup,en ||[Fnll, so F
is weak™ integrable by (8) and Proposition 2.1.4. Now, (8) also gives

neN

/sup [(Fn(o)h, k)| p(do) < [|R]| IIkII/Sug [ Fnlldp < oo.
ne
P

Therefore, by the Dominated Convergence Theorem,

<</Fn dp> h,k> - /(Fn(a)h,k)p(da) - /(F(a)h,k) p(do) = <</de> h,k>
) 2

z P

as n — oo. Thus fz F,dp — fz Fdp in the WOT as n — oco. Assume now that F,, — F pointwise in the
strong operator topology (SOT) as n — oo, and write T, = fz F,dpand T = fz Fdp. Then

o)

/ I(Fue) = F(o)hl plde)

as n — 0o, by the integral triangle inequality observed above and Lemma 2.1.6, which applies because of
(8) and the fact that sup,cn ||(Fr — F)h|| < 2||h||sup, ey || Fr||. Finally, the S*OT case follows from the
SOT case because (F¥),en and F* satisfy the same hypotheses as (F,),en and F, and the adjoint is easily
seen to commute with the weak* integral. O
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We end this section by stating an additional property of weak™ integrals when M is semifinite. Before
stating the result, we recall some notation and terminology. For a,b € B(H), we write a < b or b > a to
mean {(b—a)h,h) >0, for all h € H. Also, we write

Mi={aeM:a>0}.
It is easy to see that M is closed in the WOT. Also, if (a;);ec.s is a net in M that is bounded (there exists
b € B(H) such that a; < b, for all j € J) and increasing (j1 < ja2 = a;, < aj,), then sup;c; a; exists in

B(H)4 and belongs to M. (Please see Proposition 43.1 in [7].) This is often known as Vigier’s Theorem.

Definition 2.1.8 (Trace). A function 7: M4 — [0, 0] is called trace on M if

(a) 7(a+0b)=7(a) +7(b),
(b) 7(Aa) = A7(a), and
(¢) T(ce) = 7(ec),

for all a,b € M4, ce M, and A € R;. A trace 7 on M is called

a) normal if 7(sup.. ;a;) = sup.,.; 7(a;) whenever (a;);cs is a bounded and increasing net in M,
jeJ aj jeJ T\4j 3 )i

(b) faithful if a € My and 7(a) = 0 imply ¢ = 0, and

(c) semifinite if 7(a) = sup{7(b) : @ > b e M, 7(b) < 0}, for all a € M.

If 7 is a normal, faithful, semifinite trace on M, then (M, 7) is called a semifinite von Neumann algebra.

Remark 2.1.9. In the presence of (a) and (b), condition (c) is equivalent to 7(u*au) = 7(a) for all a € M4
and all unitaries u belonging to M. This is Corollary 1 in Section 1.6.1 of [13].

For basic properties of traces on von Neumann algebras, please see Chapter 1.6 of [13] or Section V.2 of
[33]. Motivating examples of semifinite von Neumann algebras are (B(H ), Tr) and (L>°(Q, 1), [, * dp), where
(Q, Z, u) is a o-finite measure space and L>(Q, i) is represented as multiplication operators on L?({, u1).

Notation 2.1.10. Let (M, 7) be a semifinite von Neumann algebra and 1 < p < co. Write
1
HaHLP(T) = T(‘a|p)p € [0700]7
foralla € M, and £P(7) :=={a € M : ||a||’£p(7) = 7(|a|P) < oco}. Also, we take (L>(7), ||| o (r)) = (M, ||-]]).
It turns out that if 1 < p < oo, then [|-||z»(r) is a norm on LP(7). (Please see [12] or [10].) The completion
(LP(1), |l - lleery) of (LP(7), || - [[zr(r)) is called the noncommutative L” space associated to (M,T). We

shall see another perspective on LP(7) in Section 3.3.

Theorem 2.1.11 (Noncommutative Minkowski Inequality for Integrals [26]). Let (M, T) be a semifinite von
Neumann algebra. If F: ¥ — M is weak* integrable, then

/de

b

< / 1Fll 2oy dpy
Lp(T) b))

for all p € [1,00]. In particular, if the right hand side is finite, then [, Fdp € LP(T).
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This is Theorem 3.4.7 in [26], and the motivation for its name is the classical Minkowski Inequality for
Integrals (e.g., 6.19 in [18]). In view of the name of (7), an equally sensible name for Theorem 2.1.11 is the
“noncommutative LP-norm integral triangle inequality.”

2.2. Unbounded operators and spectral theory

In this section, we provide the information about unbounded operators, projection-valued measures, and
the Spectral Theorem that is necessary for this paper. Please see Chapters 3-6 of [4] or Chapters IX and X
of [6] for more information and proofs of the facts we state (without proof) in this section.

An (unbounded linear) operator A on H is a linear subspace dom(A) C H (the domain of A) and a
linear map A: dom(A) — H. We may identify A with its graph I'(4) = {(h, Ah) : h € dom(A)} C H x H.
We say A is densely defined if dom(A) C H is dense, closable if the closure of I'(A) in H x H is the graph
of some operator A (called the closure of A) on H, and closed if I'(A) C H x H is closed (i.e., A = A). If B
is another unbounded operator on H, then the sum A + B has domain dom(A 4+ B) := dom(A) N dom(B),
and the product AB has domain dom(AB) := {h € dom(B) : Bh € dom(A)} = B~*(dom(A)). In addition,
we write A C B if I'(4) C I'(B), i.e., dom(A) C dom(B) and Ah = Bh, for all h € dom(A); and A = B if
ACBand BC A, ie., dom(A) =dom(B) and Ah = Bh for h in this common domain.

Given a densely defined operator A on H, we may form the adjoint A* of A as follows. First, let

dom(A*) :={k € H : dom(A) 3 h— (Ah,k) € C is bounded}.

Then, for k € dom(A*), let A*k € H be the unique vector in H such that (Ah, k) = (h, A*k), for all
h € dom(A). One can show that if A is densely defined and closed, then so is A*, and A = (A*)*. A closed,
densely defined operator A on H is normal if A*A = AA* and self-adjoint if A* = A. Finally, a self-adjoint
operator A on H is called positive, written A > 0, if (Ah, h) > 0 whenever h € dom(A).

Notation 2.2.1. Write C'(H) for the set of closed, densely defined linear operators on H. Also, write
CH), ={AceC(H): A"A=AA"}, C(H)sa ={A€C(H): A=A}, C(H); ={A€C(H)sa: A>0}
for the set of normal, self-adjoint, and positive operators on H, respectively.

Next, we recall basic definitions and facts about integration with respect to a projection-valued measure.

Definition 2.2.2 (Projection-valued measure). Let (€2,.%) be a measurable space and P: .% — B(H). We
call P a projection-valued measure if P(Q) = idy, P(G)? = P(G) = P(G)* whenever G € .#, and

P( U Gn> :WOT-iP(Gn) (9)

neN n=1

yN

whenever (G,)neN € is a sequence of disjoint measurable sets. In this case, we call the quadruple

(Q,.Z, H, P) a projection-valued measure space.

Remark 2.2.3. To be clear, it is implicitly required in (9) that the series on the right hand side converges
in the WOT. It actually follows from the above definition that P(#) = 0 and P(G; N Gs) = P(G1) P(G2)
whenever G, Gy € .#. (Please see Theorem 1 in Section 5.1.1 of [4].) These are often added to the definition
of a projection-valued measure because they guarantee that the series in (9) converges in the SOT.
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Notation 2.2.4. If p: @ — C is a function, then [|p|s=) = sup,cq|@(w)| € [0,00]. Also, we write
00(Q, .7) == {(F,Bc)-measurable functions @ — C} and (*(Q,F) = {p € L°(Q,.F) : ||¢|l=@) < oo}
Finally, if 4 is a complex measure on (£2,.%), then we write |u| for the total variation measure of p and
ltllvar = |p|(€2) for the total variation norm of p.

Proposition 2.2.5 (Integration with respect to a projection-valued measure). Let (Q,.F, H, P) be a projection-
valued measure space and @, € (0(, .F).

(i) Fiz h,k € H. If P, x(G) = (P(G)h,k), for all G € F, then Py is a complex measure such that
1Pk llvar < ||RIl ||E||. Also, Pni < P in the sense that if P(G) = 0, then Pj, ,(Go) = 0 whenever
F 3Gy CG, te., |Ppi|(G) =0. Finally, Py is a (finite) positive measure.

(ii) Let dom(P(¢)) :={h € H : [, |¢[*dPyp < oo} and h € dom(P(yp)). Ifk € H, then ¢ € L'(Q,| Py xl),
and there exists a unique hy, € H such that (hy, k)g = stOdPh,k, for all k € K. If we define
P(p)h = hy, then P(¢) € C(H),.

(iii) We have P(¢)* = P(7), dom(P()P(1)) = dom(P(1)) N dom(P(¢1)), and P(¢)P(¥) € P(gt). In
particular, P(p)*P(¢) = P(|¢|?), and if 1 € (°(Q, F), then P(p)P () = P(p1)).

(iv) The map €°(Q, %) > ¢ — P(p) € B(H) is a (contractive) x-homomorphism.

(v) Let (pn)nen € £°(Q, F)N be a sequence. If sup,cn lonllee@) < 00 and @, — ¢ € £°(Q,.F)
pointwise (i.e., ¢, — ¢ boundedly), then P(p,) — P(p) in the strong* operator topology as n — co.

We shall often write P(p) = [, ¢ dP = [, p(w) P(dw) and call this the integral of ¢ with respect to P.

The reason projection-valued measures are relevant for us is the Spectral Theorem, which we now recall.
If A e C(H), then the resolvent set p(A) C C of A is the set of A € C such that A— \idy : dom(A) — H is
a bijection with bounded inverse. The spectrum o(A) C C of A is the complement of p(A). The resolvent set
p(A) is open in C, and the spectrum o(A) is closed in C. Also, a normal operator A € C(H), is self-adjoint
if and only if 0(A) C R. Finally, A € C(H)4 if and only if A € C(H)s, and o(A) C [0, 00).

Theorem 2.2.6 (Spectral Theorem for normal operators). If A € C(H),, then there exists a unique projection-
valued measure P*: B,y — B(H) such that A = fJ(A) APA(d)\). We call P4 the projection-valued
spectral measure of A. We shall frequently abuse notation and consider P? to be a projection-valued measure
defined on B¢ or, when A € C(H)sa, on Br.

The Spectral Theorem leads to the usual definition of functional calculus. If A € C(H), and f: 0(A) — C
is Borel measurable, then we define

F(A) = PA(f) = / fdPA € O(),.

a(A)

This definition enjoys the property that if f,g: C — C are Borel measurable, then f(g(A)) = (f o g)(4).
(Please see Corollary 5.6.29 of [19].)

Now, if A € C'(H) is arbitrary, then A*A € C(H ). (This result is often called von Neumann’s Theorem.)
In particular, o(A*A) C [0,00), so we may define the absolute value |A| := (A*A)z € C(H), of A via
functional calculus. Also, there exists a unique partial isometry U € B(H) with initial space im |A| = im(A*)
and final space im A such that A = U|A|. (In particular, dom(A) = dom(|A]).) This is called the polar
decomposition of A. (Please see Section 8.1, particularly Theorems 2 and 3, of [4].)

We end this section with a review of the concept of an operator affiliated with a von Neumann algebra.
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Definition 2.2.7 (Affiliated operators). An operator a € C'(H) is said to be affiliated with M if u*au = a,
for all unitaries u belonging to M’. In this case, we write a n M. If in addition a is normal (respectively,
self-adjoint), then we write a n M,, (respectively, a 1 Ms,).

Here are some properties of affiliated operators.
Proposition 2.2.8. Let (2, %, H, P) be a projection-valued measure space.

(i) If a € B(H), then an M if and only if a € M.
(ii) If P(G) € M, for all G € Z, then P(p) n M, for all ¢ € (°(Q,.F). In particular, by item (i), if
p € £2°(Q, F), then P(p) € M.
(iii) If a € C(H),, then a n M if and only if P*(G) € M, for all G € By(q); and in this case f(a) n M,
Jor all f € €°(0(a), By(a))- In particular, f(a) € M, for all f € (°°(0(a), By(a))-
(i) If a € C(H) and a = ula| is its polar decomposition, then a n M if and only if u € M and
Plel(@) e M, for all G € B (ja])-

The first three properties follow without much difficulty from the definitions, the Bicommutant Theorem,
and the Spectral Theorem. For the difficult part of item (iv), please see Lemma 4.4.1 in [24].

2.8. Symmetric operator spaces

In Section 3.3, we shall make use of the theory of symmetric operator spaces. In the present section,
we review the notation, terminology, and results from this theory that are necessary for our purposes. We
refer the reader to [14] for extra exposition, examples, and a thorough list of references. (The reader who
is uninterested in Section 3.3 may safely skip at this point to Section 3.1.) For the duration of this section,
suppose (M, 7) is a semifinite von Neumann algebra.

Write Proj(M) = {p € M : p?> = p = p*} for the lattice of (orthogonal) projections in M. An operator
an M is called T-measurable if there exists some s > 0 such that 7(P1?l((s,00))) < oo. Write

S(7) :=={an M : ais T-measurable},

and let a,b € S(7). Then a+b is closable, and a + b € S(7); ab is closable, and ab € S(7); and a*, |a| € S(7).
Moreover, S(7) is a x-algebra under the adjoint, strong sum (closure of sum), and strong product (closure
of product) operations; we shall therefore omit the closures from strong sums and products in the future.
For the preceding facts (and more) about 7-measurable operators, please see [25,34].

Fix a € S(71). For s > 0, define

ds(a) = T(Plal((s, oo))) € [0, o0].

By definition of 7-measurability, ds(a) < oo for sufficiently large s. The function d(a) = d.(a) is called the
(noncommutative) distribution function of a. Now, for ¢ > 0, define

pe(a) == inf{s > 0: dy(a) <t} € [0,00).
The function p(a) = p.(a) is called the (generalized) singular value function or (noncommutative) decreasing

rearrangement of a, and u(a) is decreasing and right-continuous. For properties of d(a) and u(a), please see
[17]. Now, define S(7)4 = S(t)NC(H)4. If a € My = S(7)+ N M, then we have the identity
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T(a) = 7,%((1) dt.
0

We therefore extend 7 to S(7)4 via the formula above; this extension is still notated 7: S(7)+ — [0, 0]
Finally, if a,b € S(7), then we write

t t
a—<<b if /,us(a) ds < /,us(b) ds, for all t > 0.
0 0
In this case, we say that a is submajorized by b or that b submarjorizes a (in the “noncommutative” sense

of Hardy-Littlewood-Pélya). We now define symmetric operator spaces.

Definition 2.3.1 (Symmetric operator spaces). Let E C S(7) be a linear subspace and || - ||[g be a norm on
E such that (E,|| - ||g) is a Banach space. We call (E,| - | g)

(a) a symmetric (or rearrangement-invariant) space of T-measurable operators — a symmetric space' for
short — if a € S(7), b € E, and p(a) < u(b) imply a € E and |la||g < ||b||£;

(b) a strongly symmetric space of T-measurable operators — a strongly symmetric space for short — if it
is a symmetric space, and a,b € E and a << b imply ||a||g < ||b]|g; and

(c) a fully symmetric space of T-measurable operators — a fully symmetric space for short — if a € S(7),
be E,and a << bimply a € E and |ja||g < ||b]|&.

If (E,| -||g) is a symmetric space, then we define
Proj(F) := ENProj(M) and cg = sup Proj(E) € Proj(M)
and call cg the carrier projection of F.

Next, we describe a large class of examples of symmetric spaces. Let m be the Lebesgue measure on
the positive halfline (0,00) and (N,n) = (L>((0,00),m), [;* +dm), where L>((0,00),m) is represented
as multiplication operators on L?((0,00),m). Then the set of densely defined, closed operators affiliated
with N is precisely L°((0,00),m), i.e., the space of m-almost-everywhere equivalence classes of measurable
functions (0, 00) — C, viewed as unbounded multiplication operators on L?((0,00),m); and

S(n) = {f € L°((0,00),m) : ds(f) = m({x € (0,00) : | f(x)| > s}) < oo for some s > 0}.
For proofs of these facts, please see Section 2.3 of [8]. A (strongly, fully) symmetric space of n-measurable
operators is called a (strongly, fully) symmetric Banach function space. For the classical theory of such
spaces, please see Chapter II of [21].
Fact 2.3.2. Let (E C L°((0,00),m), || - |g) be a (strongly, fully) symmetric Banach function space. If

E(r) ={ac S(7): ula) € E} and |a| g = ||p(a)||e for a € E(T),

then (E(7), || - ||(r)) is a (strongly, fully) symmetric space of T-measurable operators.

! Beware: This has nothing to do with the notion of a (Riemannian) symmetric space from geometry.



14 E.A. Nikitopoulos / J. Math. Anal. Appl. 519 (2023) 126705

For the strongly/fully symmetric cases, please see Section 9.1 of [14]. For the (highly nontrivial) case of
an arbitrary symmetric space, please see [20]. When 1 < p < co and E = L? := LP((0,00),m), then LP(7)
as defined using the construction in Fact 2.3.2 is a concrete description of the abstract (completion-based)
definition from Section 2.1. When p = oo, this follows from Lemma 2.5.(i) in [17]; when p < oo, it follows
from Lemma 2.5.(iv) in [17] and Proposition 2.8 in [15]. Moreover, we have

(LP(1), | lzo(ry) = ({a € S(7) : 7(lal?) < oo}, 7(| - 7))
when 1 < p < co. As a result,
(LPN L) (1) = LP(T)NL>®(1) = LP(r) N M = LP(T)
with equality of norms (if we give £P(7) the norm max{|| - [[z»(-), || - [|}). It is also true that
(L4 L)1) = L () + L=(7) = L}(7) + M

with equality of norms. (This follows from Proposition 2.5 in [15].) To be clear, if Z is a vector space
and X,Y C Z are normed linear subspaces with respective norms || - ||x and || - ||y, then the subspace
X NY C Z is given the norm || - || xny = max{| - || x,] - [[y}, and the subspace X +Y C Z is given the
norm ||z||x+y = inf{||z||x + |lylly cz € X,y €Y, z =z +y}.

In general, if (E, | - ||g) is a strongly symmetric space of 7-measurable operators, then E C L(7) + M
with continuous inclusion, and cg =1 <= L!(7) N M C E with continuous inclusion. This is Lemma 25
in [14] (combined with the last paragraph of the proof of Lemma 3.4.6 in [26]). By Theorem 4.1 in Section
IL.4.1 of [21], if (E, | - ||5) is a nonzero symmetric Banach function space, then L' N L® C E C L' 4 L™
with continuous inclusions, i.e., cz = 1.

Finally, we discuss Kothe duals. For a symmetric space (E, || - ||g), define

E*:={a€ S(r):abec L'(r), for all b € E} and
lal|gx == sup{7(|ab]) : b€ E, ||b||g < 1} for a € S(7).

Of course, ||a]|gx could be infinite.

Fact 2.3.3 (Kothe dual). Let (E,||-||g) be a strongly symmetric space of T-measurable operators with cg = 1.
If a € S(1), then |la||px = sup{7(|ab|) : b € L}(7) = L} ()N M, ||b]lg < 1}. Moreover, a € E* if and only
if llallgx < oo. Finally, || - ||gx is a norm on E* such that (E*,| - ||gx) is a fully symmetric space with
cgpx = 1. We call E* the Kothe dual of E.

Remark 2.3.4. In the classical case of symmetric Banach function spaces, the Kéthe dual of F is called the
associate space of E or the space associated with E.

For a proof of this fact, please see Section 5 of [15] or Sections 5.2 and 6 of [14]. Now, let (E, || - ||g) be a
strongly symmetric space of 7-measurable operators with ¢cg = 1. Since E* is fully symmetric and cgx = 1,
we can consider the Kothe bidual (E**, |- [[gxx) = ((E*)*, | - [(gx)x) of E as a (fully) symmetric space.
It is always the case that E C E** and || - |[gxx < |- ||[pon E.If E=E** and |- ||[g = || - ||gxx on E,
then we call E Kothe reflexive. (This term is not standard; a more common term is mazimal.) Note that,
by Fact 2.3.3, if E is Kothe reflexive, then F is automatically fully symmetric.

The following is a celebrated equivalent characterization of Koéthe reflexivity. It is stated and proven as
Proposition 5.14 in [15] and Theorem 32 in [14].
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Theorem 2.3.5 (Noncommutative Lorentz-Luzemburg). Let (E,| - ||g) be a strongly symmetric space of 7-
measurable operators with cg = 1. Then E is Kothe reflexive if and only if E has the Fatou property:
whenever (a;)jer is an increasing net (j1 < jo = aj, —aj, € S(7)4) in ENS(7)y with sup,c; |lajl|e < oo,
we have that sup,¢ ; a; exists in ENS(7)4 and ||sup;c; a;llg = sup;e; ol e-

The definition of the Fatou property involves rather arbitrary nets. It is therefore reasonable to be
concerned that verifying the Fatou property in classical situations might be quite difficult. However, as
we explain shortly, the sequence formulation of the Fatou property is equivalent in classical situations.
Let (E C L°((0,00),m), || - ||z) be a symmetric Banach function space. We say that E has the classical
Fatou property if whenever (f,)nen is an increasing sequence of nonnegative functions in E such that
sup,en || fnllE < 00, we have sup, o fn € E and || sup,en fulle = sup,en || fnl|£. It turns out (Theorem
4.6 in Section 2.4 of [3]) that if E has the classical Fatou property, then E is fully symmetric, so we may
speak of its Kothe dual as a (fully) symmetric Banach function space when E is nonzero. The classical
Lorentz-Luxemburg Theorem (e.g., Theorem 1 in Section 71 of [37]) says that a nonzero symmetric Banach
function space has the classical Fatou property if and only if it is (strongly symmetric and) Kothe reflexive.
In particular, by the Noncommutative Lorentz-Luxemburg Theorem, a symmetric Banach function space
has the Fatou property if and only if it has the classical Fatou property.

Example 2.3.6. Let (E, |||/ g) be a nonzero strongly symmetric Banach function space (which implies cg = 1
as noted above). By Theorem 5.6 in [15],

(BT zem<) = EX @ e )

In particular, if E is Kothe reflexive (i.e., has the classical Fatou property), then E(7) is Kothe reflexive
(i.e., has the Fatou property) as well.

Remark 2.3.7. Let E be a symmetric Banach function space. By Theorem 3 in Section 65 of [37], E has
the classical Fatou property if and only if whenever (f,),en is a sequence of nonnegative functions in F

with iminf,, o || frnl|E < o0, we have liminf,, . f, € E and H liminf, oo fn|| » < liminf, || fullg, i-e.,

I
Fatou’s Lemma holds for || - || . Hence the property’s name.

3. Ideals of von Neumann algebras
For Section 3, fix a complex Hilbert space (H, (-,-)) and a von Neumann algebra M C B(H).
8.1. Properties to request of ideals

In this section, we introduce some abstract properties of ideals of M that are useful in the study of MOIs
and their applications to the differentiation of operator functions. In Section 3.2, we give several classes of
examples that do not require the theory of symmetric operator spaces to understand. In Section 3.3, we
give a large class of additional examples using the theory of symmetric operator spaces.

Definition 3.1.1 (Symmetrically normed ideals). Let A be a unital Banach algebra and J C A be an ideal,
i.e., a linear subspace such that arb € J whenever a,b € A and r € J; in this case, we write J <.A. Suppose
we have another norm || - ||7 on J. We call (7, ]| - ||7) a Banach ideal of A if (7, | -||7) is a Banach space
and the inclusion ¢7: (7, - ||7) = (A, ]| - ||l.4) is bounded; in this case, we write

(7,1 7) @A and Cg = |ugllg-.4 € [0,00).
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If in addition a,b € A and r € J imply

larblls < llallallrllz[1b]l.4;
then we call (7, ] - ||7) a symmetrically normed ideal of .4 and write
(7,1 ll7) < A
or J <5 A when confusion is unlikely.

Remark 3.1.2. Beware: Definitions of a symmetrically normed ideal vary in the literature. Sometimes it is
required that C'7 = 1. Sometimes A is required to be a von Neumann or C*-algebra and J is required to
be a x-ideal with ||r*||7 = ||r||7, for all » € J. Sometimes even more requirements are imposed. We take
the above minimal definition because it is all we need.

We now define two additional properties one can demand of Banach or symmetrically normed ideals of
a von Neumann algebra. Before doing so, however, we make an observation. Let (2,52, p) be a measure
space, (Z, || - ||lz) < M be a Banach ideal, and F: ¥ — Z C M be weak* measurable. By definition,

/mesajwmm
P2 .

In particular, if ngF”I dp < o0, then Proposition 2.1.4 says that F': 3 — M is weak™ integrable.

Definition 3.1.3 (Properties of Banach ideals of M). Fix (Z,] - |lz) I M.

(a) Z has the Minkowski integral inequality property — or property (M) for short — if whenever (2, 52, p)
is a measure space and F': ¥ — Z C M is weak® measurable with [ ||F||zdp < oo, we have

[ras| < [1F1zdp
X 1 3z

(b) Z is integral symmetrically normed if whenever (X, 57, p) is a measure space, A, B: ¥ — M are weak*
measurable, A(-)cB(:): ¥ — M is weak* measurable whenever ¢ € M, and [[|Al|||B]dp < oo, it
follows that -

/deEI and
b

/A(a) r B(o) p(do) € T and
b

/ A(0) 1 B(o) pldo)

=

swmﬁmwmw,
z )

forallr € 7.

Remark 3.1.4. First, the name for property (M) is inspired by Theorem 2.1.11. However, inequalities like
the one required in (a) are called triangle inequalities in the theory of vector-valued integrals. Therefore, it
would also be appropriate to name (a) the “integral triangle inequality property.” However, this would lead
naturally to the abbreviation “property (T),” which is already decidedly taken. Second, if H is separable,
then one can show that the pointwise product of weak* measurable maps ¥ — M is itself weak™ measurable.
In particular, the requirement in (b) that “A(-) ¢ B(:): ¥ — M is weak* measurable whenever ¢ € M” is
redundant when H is separable.
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By testing the definition on the one-point probability space, we see that an integral symmetrically normed
ideal is symmetrically normed. We also have the following.

Proposition 3.1.5. If (Z, | - ||z) <s M has property (M), then T is integral symmetrically normed.

Proof. Suppose that Z <5 M has property (M). Let A, B: ¥ — M be as in 3.1.3.(b), and fix r € Z. Since
7 is symmetrically normed, ||A(o) r B(o)||z < ||r]|z||A(o)|| || B(o)|| whenever o € . Applying the definition
of property (M) to F':= A(-)r B(-), we conclude [ A(o)r B(o) p(do) € Z and

/A(a) r B(o) p(do)

P

< / 1A(e) r B(o) 2 pldo) < [Irllz / 1A 1B] dp.
- 5

Thus 7 is integral symmetrically normed. O
3.2. Examples of ideals I

In this section, we exhibit several examples of ideals with property (M), namely the trivial ideals, the
noncommutative LP-ideals, separable ideals, and the ideal of compact operators.

Example 3.2.1 (Trivial ideals). The trivial symmetrically normed ideals Z = {0} and Z = M both have
property (M). The latter follows, of course, from Proposition 2.1.4.

Example 3.2.2 (Noncommutative LP ideals). Suppose M is semifinite with normal, faithful, semifinite trace
7. 1If 1 <p < oo and LP(7) is given the norm || - [|zv(r) = max{|| - [|zo(r), || - |}, then (LP(7), [ || zr(r)) s M
by Noncommutative Holder’s Inequality (Théoreme 6 in [12]) and the completeness of (LP(7), || - || z»(r)) and
(M, ||1)- If we combine Example 3.2.1 with Theorem 2.1.11, then we conclude £P(7) has property (M) and
is therefore integral symmetrically normed by Proposition 3.1.5. Note that if (M,7) = (B(H), Tr), then
(LP(Tr), || - | 2o (1)) = (Sp(H), || - ||s,) is the ideal of Schatten p-class operators on H.

Notice that the ideal of compact operators is left out of the above examples. To include it in the mix, we
first prove that separable ideals have property (M).

Proposition 3.2.3 (Separable ideals). Fiz (Z,| - |z) IM. If (Z,]-||z) is separable, then I has property (M).
In particular, if (Z,|| - ||z) Is M is separable, then T is integral symmetrically normed.

Proof. To prove this, we make use of the basic theory of the Bochner integral; please see, for instance,
Appendix E of [5] for the relevant background.

Let (2,52, p) be a measure space, F': ¥ — T C M be weak® measurable, and h,k € H. Now, define
lhi: T — C by rw— (rh, k). Since the inclusion tz: (Z, || - ||z) < (M, || - ||) is bounded, ¢} j is a continuous
function Z — C. Also, ¢p 0 F = (F(-)h,k): ¥ — C is measurable by assumption. Since the collection
{lnr : h,k € H} clearly separates points, we conclude from the (completeness and) separability of Z
and Proposition 1.10 in Chapter I of [36] that F': ¥ — (Z,|| - ||z) is Borel measurable. Using again the
separability of Z, this implies F': ¥ — (Z, | - ||z) is strongly (or “Bochner”) measurable. Therefore, if in
addition [||Fllzdp = [ ||F|lzdp < oo, then F: ¥ — (Z,|| - [|z) is also Bochner integrable, and — by
applying Ek to the Bochner integral — the Bochner and weak* integrals of F' agree. Thus fz FdpeT and
H fz de”z < fz ||E ||z dp, by the triangle inequality for Bochner integrals. This completes the proof. O

In particular, if H is separable, then the ideal K(H) <s B(H) of compact operators H — H has property
(M). Actually, this also implies the non-separable case by an argument suggested by J. Jeon.
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Lemma 3.2.4. For a closed linear subspace K C H, write tix: K — H and nx: H — K for, respectively,
the inclusion of and the orthogonal projection onto K. Fix A € B(H). Then A € K(H) if and only if
A = At € K(K), for all closed, separable linear subspaces K C H.

Proof. The “only if” direction is clear. For the “if” direction, suppose that Ax = mxAix € K(K), for all
closed, separable linear subspaces K C H. If (hy,)nen is a bounded sequence in H, then set

K :=span{A*h, : k € Ny, n € N}.

Of course, K is a separable, closed linear subspace of H that contains {h,, : n € N} and is invariant under
A. Since Ak is compact, there is a subsequence (hy, )ren such that (Axhy, )ren converges. But

AKhnk = WKAhnk = Ahnk;
for all k € N, since K is A-invariant. We conclude that A € L(H). O
Proposition 3.2.5 (Compact operators). (JC(H),| - ||) <s B(H) has property (M).

Proof. Let (X, .57, p) be a measure space and F: ¥ — K(H) C B(H) be weak* measurable with

/ 1Pl dp < oo,
z

Since we already know the triangle inequality for the operator norm, it suffices to prove fz Fdp e K(H).
To this end, let K C H be a closed, separable linear subspace. Then, in the notation of Lemma 3.2.4,
Fg =7mxF()tx: ¥ — K(K) C B(K) is weak* measurable and

JiFlido < [ dp < .
> >

Since K(K) is separable, Proposition 3.2.3 gives [y, Fx dp € K(K). Since

</de> =7TK</FdP>LKZ/WKF(U)LKP(dU)Z/FKdPGK(K),

P )

we conclude from Lemma 3.2.4 that fz Fdpe K(H). O

Remark 3.2.6. In case one only wants to know K(H) is integral symmetrically normed, there is a different
proof available that does not go through the separable case first. Indeed, let (2, 2, p) be a measure space
and A,B: ¥ — B(H) be as in 3.1.3.(b). To prove the claim, it suffices to show that if ¢ € K(H), then
Js A(0) ¢ B(o) p(do) € K(H). First, suppose ¢ has finite rank. Then ¢ € 8y (H). Since (S1(H), |- ||s,) <B(H)
is integral symmetrically normed, [, A(o)cB(o)p(do) € Si(H) € K(H). Now, if ¢ € K(H) is arbitrary,
then — using, for instance, the singular value decomposition — there is a sequence (¢, )nen of finite-rank linear
operators H — H such that ||c,, — ¢|| = 0 as n — oo. But then, by the operator norm triangle inequality,
Js A(o) cn B(o) p(do) — [ A(o) ¢ B(o) p(do) in the operator norm topology as n — co. Since this exhibits
Js. A(0) ¢ B(0) p(do) as an operator norm limit of compact operators, we conclude it is compact, as desired.
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3.8. Ezxamples of ideals 1T

At this point, we shall make heavy use of the theory reviewed in Section 2.3. For the duration of this
section, suppose (M, 1) is a semifinite von Neumann algebra. To begin, we note that if (E,| - ||g) is a
symmetric space of T-measurable operators, then

&1 lle) = ENM, - leam) = (EOM,max{] - [, | - [I}) <s M.

This follows from Proposition 17 in [14]. We call £ the ideal induced by E. In this section, we prove that
ideals induced by fully symmetric spaces are integral symmetrically normed and that ideals induced by
symmetric spaces with the Fatou property have property (M).

Theorem 3.3.1 (Fully symmetric = integral symmetrically normed). If (E,||-||g) is a fully symmetric space,
then (&, - |le) = (ENM,| - |lenm) s M is integral symmetrically normed.

Proof. Let (¥,.%,p) be a measure space and A, B: ¥ — M be as in 3.1.3.(b). Define Trs: M — M by
M3 cr [ Alo)cB(o)p(do) € M. Then ||Too||m—rmt < [llAll[|[Blldp by the operator norm triangle
inequality. Also, if ¢ € L1(7) N M, then

| Toecll 2oy < / 1A(@) ¢ B 11 (sy p(do) < llllzicr / 1A]1B] do
> >

by Theorem 2.1.11. Since L' (1) N M is dense in L*(7) (Proposition 2.8 in [15]), we get that Too |11 (r)nm
extends uniquely to a bounded linear map T : L*(7) — L' () with |11 11(ry— 1) < [5IAll | B]| dp. Since
T and Ty agree on L' (7) N M, we obtain a well-defined linear map T': L*(7) + M — LT(T) + M by setting
T(x +y) =Tz + Ty for x € L'(7) and y € M. Moreover,

1T 21 (r) 4 M2t (1) 4 m < max{[|T1 | ()= 21 (7)s [ Toolmosrm} < /||A|| | B[ dp.
>

By Proposition 4.1 in [15], this implies
Te << </||A| 1Bl dp) ¢, forall c € L'(1) + M.
)

In particular, if ¢ € E C L*(7) + M, then

Tce E and |Te|p < IICHE/IIAH 1Bl dp
)

because F is fully symmetric; in other words, T restricts to a bounded linear map Tg: F — FE with
ITelle—Ee < [x||All[|B| dp. We conclude that if ¢ € £ = E N M, then

/A(O’) ¢B(0) p(do) = Towe =Tgc € € and

/A(o) ¢ B(o) p(do)

< lelle [ 141151 dp.
€ b

Thus & is integral symmetrically normed. O
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Remark 3.3.2. The argument above is inspired in part by Section 4.4 of [16].

The second main result of this section upgrades Theorem 3.3.1 when the symmetric space in question is
a Kothe dual. (It also generalizes Theorem 2.1.11.)

Theorem 3.3.3 (Kéthe duals and property (M)). Let (E,| - ||g) be a strongly symmetric space with cy = 1.
If (3,92, p) is a measure space and F: ¥ — M is weak™ integrable, then

/de

P

< / | Fll 5= dp.
EX »

In particular, (EX,|| - |lex) = (E* N M, || - [|Exam) <s M has property (M).

Proof. Let a := [;, Fdp € M. By Fact 2.3.3 (twice) and Theorem 2.1.11, we have

/de

p

= llallpx = sup{r(lab) : b € L'(7), |b]p < 1}

EX
= sup{

< sup { J1F@)blusry plde) s € £10), bl < 1} < [ 1Pl dp.
b >

/ F(o) b p(do)

P

:be LMNT), |Ible < 1}

Li(7)

as desired. O

Corollary 3.3.4. Let (E, || - ||g) be a strongly symmetric space with cg = 1. If (3,5, p) is a measure space,
F: Y — M is weak® integrable, and F(X) C EN M, then

/de

P

< [1F1e dp.
EXX 5

In particular, by Fact 2.5.3, if the right hand side is finite, then fz Fdpe E**.

Proof. Applying Theorem 3.3.3 to the space E** = (E*)* and using that || - |gxx < || ||z on E, we get

/de
5

< [1Fledo < [IF]mdp
ExXX E_ E_

as desired. O

Remark 3.3.5. Please see equation (0.5) in Section I1.0.3 of [21] for a classical analogue of this Minkowski-
type integral inequality.

Combining the Noncommutative Lorentz-Luxemburg Theorem with Corollary 3.3.4, we get the following.



E.A. Nikitopoulos / J. Math. Anal. Appl. 519 (2023) 126705 21

Theorem 3.3.6 (Fatou property = property (M)). Let (E,||-||g) be a strongly symmetric space with cg = 1.
Suppose (X, 7, p) is a measure space, F: X — M is weak* integrable, and F(X) C ENM. If E has the

Fatou property and [||F| g dp < co, then
‘/de < [1F1s do
pX E x

In particular, (€,|-|le) = (ENM,| - |lEnm) s M has property (M).

/deEE and
b

Proof. By the Noncommutative Lorentz-Luxemburg Theorem (Theorem 2.3.5), (E, ||-||g) = (E**, ||-[|gxx)-
Therefore, by Corollary 3.3.4, we know [, Fdp € E** = E and

/de /de

z z

< / | Fll dp,
E EXX 2

as desired. 0O
3.4. Comments about property (F)

A Banach ideal (Z,| - |[z) < M has (the sequential) property (F) if whenever a € M and (a;)jes
is a net (sequence) in Z such that sup;c; [lajllz < oo and a; — a in the S*OT, we have a € Z and
lallz < supje, llajllz. In [2], certain multiple operator integrals in invariant operator ideals with property
(F) are considered. We now take some time to discuss the relationship between properties (M) and (F).
First, there are certainly ideals with property (M) that do not have property (F), e.g., the ideal of compact
operators (Proposition 3.2.5). Second, as mentioned in [2], the motivating example of an invariant operator
ideal with property (F) is an ideal induced via Fact 2.3.2 by a (nonzero) symmetric Banach function space
with the Fatou property. By Theorem 3.3.6 and Example 2.3.6, such ideals have property (M). Third, the
author is unaware of an example of a symmetrically normed ideal with property (F) that does not have
property (M). It would be interesting to know if such an ideal exists.

In this context, it is worth discussing a technical issue in [2] with its treatment of operator-valued
integrals. For the rest of this section, assume H is separable. It is implicitly assumed in the proof of (the
second sentence of) Lemma 4.6 in [2] that at least some form of the integral triangle inequality holds for
the Z-norm || - ||z when Z has property (F). Specifically, it seems to be assumed that if (X, .52, p) is a finite

measure space and F: ¥ —Z C M is || - ||z-bounded and weak* measurable, then
/de €Z and /de g/HFllzdp
= b I =

(ignoring that ||F'||z may not be measurable). Let us call this the finite property (M). Then we may
rephrase the implicit claim as “property (F) implies the finite property (M).” As far as the author can tell,

/de

P

the arguments in [2] are only sufficient to prove

/deEI and
b

< p(X) sup [|[F(o)]|z.
T oEX

Indeed, the authors of [2] prove that Z has property (F) if and only if 7y = {r € Z : |||z < 1} is a complete,
separable metric space in the strong® operator topology and then apply Propositions 1.9-1.10 in Chapter
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I of [36] to approximate F' by simple functions in the strong* operator topology. Crucially, Propositions
1.9-1.10 in [36] only guarantee the existence of a sequence (F},),en of simple functions ¥ — Z such that
sup,cy | Fn(o)|lz < sup,es |[F(0)|z, for all n € N, and F,, — F pointwise in the strong* operator topology
as n — oo. Now, by Proposition 2.1.7, fz F,dp — fz F'dp in the strong* operator topology as n — oco.
Also, by the (obvious) triangle inequality for integrals of simple functions, if k¥ € N, then

/Fndp
5 I

Thus (the sequential) property (F) and the Dominated Convergence Theorem give

/de

b

sup
n>k

< sup / |Fallzdp < / sup | Fulz dp < (%) sup | F(0)]lz.
nZkE 2 n>k cEX

/deGI and
by

< / lim sup [Pz dp < p(S) sup | F(o) |z (10)
n—oo oc
A

The definition of property (F) does not guarantee that | F,(o)||lz — ||[F(0)||z as n — oo, so we cannot
evaluate the limit superior above much further without an upgraded version of property (F). (Interestingly,
this does not damage the applications in [2], since it seems only the estimate (10) is used seriously.) It
therefore seems that property (F) almost implies a weaker form of property (M) — but perhaps not quite.

Remark 3.4.1. Though we centered the discussion above on the “finite property (M),” it is worth pointing out
that in order to prove Lemma 4.6 in [2], it would actually suffice to know the following “finite integral sym-
metrically normed” condition: for every finite measure space (E A, p) and || - ||-bounded, weak* measurable
A,B: % — M, we have [5, A(o)r B(o)p(do) € T and || [5, A(o) r B(o) p(do) ||, < [I7[lz [ | All | B]l dp, for
all 7 € Z. As mentioned, in the presence of property (F), we would already know [, A(o)r B(o) p(do) € T,
so — as was the case above — it is really only the integral triangle inequality that is potentially missing.

4. Differentiating operator functions
4.1. Multiple operator integrals (MOIs) in ideals

We begin with a review of some information from [26] about (a simplified version of) the “separation
of variables” approach to defining multiple operator integrals. For the duration of this section, fix k € N
and, for each j € {1,...,k + 1}, a projection-valued measure space (2;,.%;, H, P;) such that P;(G) € M
whenever G € #;. Also, write

(Q,j) = (Ql X e X Qk—i-l,jl ®"‘®35k+1)
for the product measurable space.
Definition 4.1.1 (Integral projective tensor products I). Let ¢: Q@ — C be a function. A £°°-integral projective
decomposition (¢°-IPD) of ¢ is a choice (3, p, ¢1,...,vk+1) of a o-finite measure space (3,5, p) and
measurable functions ¢1: Q1 X X = C, ..., ppr1: Q41 X X — C such that
(a) ¢j(-,0) €€2(Q;,.%#;), forall j€{l,...,k+1} and 0 € &;

(b) Jx ||<P1 )||z<x>(91) a1 (s o) e (@py0) p(do) < 005 and
(C) p(w) fg p1(w1,0) 1 (wit1,0) p(do), for all w = (w1, ..., wkt1) € Q.
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Now, define
||SOHZOC(Ql,?1)®i~~®i€°°(ﬂk+l,‘?k+l) = 1nf{/||<p1(7 U)Hf’x’(ﬂl). ’ .||<pk+1(" O')”eoo(ﬂk-u)p(da) : (27 Py P1y- -, Spk-i-l)
b

is a £*>°-integral projective decomposition of go},

where inf ) := co. Finally, we define
0°(Q, F1)@i -+ @il (U1, Trr) = {9 € (0 F) : |@llgm (01,500,107 (U1, Frrn) < OO}
to be the integral projective tensor product of £°°(Q21,%1),... L (1, F k+1)-
It is easy to see that || - |[gee () < | - HZ”(Ql,91)®,;~--®1;Z°°(Qk+1,9k+1)‘ Also,

(foo(Ql, 91)@)2 S ®i£oo(Qk+17 1) || - ||l°°(9173?1)&-~~®i€"°(9k+1,9k+1))

is a Banach #-algebra under pointwise operations. This is a special case of Proposition 4.1.4 in [26]. (Please
see Example 4.1.5 in [26] as well.)

Theorem 4.1.2 (Definition of MOIs [26]). If (X, p, @1, ..., 9k+1) @8 a £>°-integral projective decomposition
of p € (1, F1)D;i -+ @il>® (i1, Fry1) and by, ..., by, € M, then the map

Y30 Pi(pi(5,0)) b1 Pe(pr(-,0)) bx Pria(@r1(-,0)) € M

is weak® integrable, and

(1P Pt o) by, .. b = / ~~~/go(wl,...,wk+1)P1(dw1)b1~~Pk(dwk)kak+1(dwk+1)

Qpy1 Q
= [ Pror,0)) br Pulipn(es o)) b Pesa(on () plder) € M
%
is independent of the chosen decomposition (X, p,¢1,...,¢k+1) of ¢. Moreover,
| (7P 0) by, .., bi]|| < [ellex (01, 20) ;@10 (@ sr, s ) 101 1Ok,

for all by, ... by, € M. Writing P = (Py, ..., Piy1), we call I'p: M* — M the multiple operator integral
(MOI) of ¢ with respect to P.

This follows from Theorem 1.1.3 (and Equation (4.14)) in [26]. We shall also need to know that, in
general, if ¢;: Q; x 3 — C is measurable and ¢;(-,0) € £>°(Q;,.%;) for j € {1,...,k+ 1} and 0 € ¥, then

Y300 Pi(pi(r,0)) b1 Pe(pr(c,0)) b Pet1(pr11(-0)) € M

is weak™ measurable, for all by,...,b; € M. This follows from a repeated application of Proposition 4.2.3
in [26], and we shall use it in the sequel without further comment.
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~

Notation 4.1.3. If ay,...,ar41 7 M, and ¢ € £°(0(a1), Bs(ay))®i - -

~

@il>*(o(ak+1), Bo(ay 1)), we write

olar, ... aps)#[01, ... o] = p(a)#b = (I%p)[b] = (17 P Q) by, ... by € M,
for all b= (by,...,b;) € MF where a := (ay,...,a541)-

Remark 4.1.4. Please see Remark 4.2.14 in [26] for an explanation of the use of the # symbol above. Also,
please be aware that T, "“**! is a common alternative way to notate I%1:®k+1p,

The following are two algebraic properties of MOIs that we shall use. They are proven as part of Propo-
sition 4.3.1 in [26].

Proposition 4.1.5 (Algebraic properties of MOIs). Suppose 1 < m < k.

(i) If p, b € £°(Q1, F1)@; -+ @il (U1, Fry1) and o € C, then I (o + ath) = [P+ a IP.
(“) Ifl/f € goo(Qm7ym)®igoo(Qm+17ym-‘rl): w(wlv"'vwk-i-l) = T/J(Wm,wmﬂ) fOT (wla"'awk+1) € Q;
and (NS E“(Ql,ﬂl)é{)l s ®i€m(ﬂk+1,ﬁk+1), then

(1P Pt (o)) b, - .o b)) = (TP P2 0) [by, oo b, (T5 P 140) (b, By 1, - -4 i
for all (by, ..., by) € MF.
Finally, we restrict the MOI in Theorem 4.1.2 to certain ideals of M.

Definition 4.1.6 (MOI-friendly ideals). Fix (Z, ||-||z) <M. We say that Z is MOI-friendly if whenever we are
in the setup of Theorem 4.1.2 and j € {1,...,k}, the MOI IPp: MF — M restricts to a bounded k-linear
map (Notation 4.4.1)

(M7 < (T Hlz) < (M-I = (Z ) o)

with operator norm at most [|¢|lgee (0, 7,18, &:% (i1, 70 0)- 11 this case, TP also restricts to a bounded

k-linear map (Z,| - ||)* — (Z,] - ||z) with operator norm at most Cé_l”‘P”Zoo(91,91)@,,‘-@1.@00(9“1,?“1)'

This definition may seem contrived, but the following shows that all the examples of ideals from Sec-
tions 3.2 and 3.3 are MOI-friendly.

Proposition 4.1.7. If (Z, ]| - ||z) S M is integral symmetrically normed, then T is MOI-friendly.

Proof. Suppose that 7 is integral symmetrically normed and that we are in the setup of Theorem 4.1.2.
Let j € {1,...,k}, b= (b1,...,bx) € MITL X T x M*=J and (X, p,¢1,...,¢ks1) be a £¥-integral pro-
jective decomposition of o € £%° (21, .71)®; - - - D> (i1, Fr+1). Now, we apply the definition of integral
symmetrically normed with

A(U) = < H le(‘ﬂh ('70'))bj1>Pj(<pj('va)) and
k+1
B(o) = Pj1(pjr1(0)) [] bja1Pil(e(-0)),
J2=j+2
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where empty products are the identity. This yields (1F¢)[b] = [, A( (o) p(do) € T and

(TP ) ][l < IIb III/HAH 1Bl dp < lIbjlz TT IIbs ||/||s01 o)l @) - lort1( 0l (s, P(dO).-

P#J b
Using [; < TE and taking the infimum over all £>°-IPDs (X, p, ¢1, . . ., ¥k+1) of p gives the desired result. O
4.2. Divided differences and perturbation formulas

Our goal is to differentiate operator functions in integral symmetrically normed ideals. As is common
practice, we begin by proving “perturbation formulas.” To do so, we shall use a generalization of the argument
from the proof of Theorem 1.2.3 in [30]. First, we review divided differences.

Definition 4.2.1 (Divided differences). Let f: R — C be a function. Define fI°0 := f and, for ¥ € N and
distinct A1,..., A\p+1 € R, recursively define

FE O ) = FE IO, Ak, Akn)

(4] —
PO k) v

We call fI*] the k™ divided difference of f.

It is easy to prove by induction that if A1,..., Ax41 € R are distinct, then
E+1

MO, Arg) = ZH et
#J

In particular, fI*! is symmetric in its arguments. As we shall see shortly, if in addition f € C*(R), then f[¥I
extends uniquely to a continuous function defined on all of R¥+1.

Notation 4.2.2. For m € N, define
3., = {(31,...,sm) €R™:5;>0for 1 <j<mand Zsj < 1} and
j=1

m—+1
A, = {(tl,...,th) e R™t! 1t; >0for1 <j<m+1and th_l}.
j=1

Denote by p,, the pushforward of the restriction to X, of the m-dimensional Lebesgue measure by the
homeomorphism %,, 3 (s1,...,8m) — (S1,-+-,8m, L — 81 — - — 8m) € Ay

Explicitly, p,, is the finite Borel measure on A,,, such that

/ap(t)pm(dt):/go(sl,...,sm,l—sl—-~-—sm)dsl-~-dsm7

A’VYL Z-,”

for all ¢ € (A, Ba,,). In particular, p,,(Ay,) = -5 The following is proven using the Fundamental
Theorem of Calculus and induction.
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Proposition 4.2.3. If k € N, f € C*(R), and Ay, ..., \er1 € R are distinct, then

) = [ fB- ) pr(at),
/

where X == (A1,...,A\g+1) and - is the Euclidean dot product. In particular, B extends uniquely to a
symmetric continuous function on all of R¥T1. We shall use the same notation for this extended function.

With this under our belts, we move on to proving perturbation formulas. For the rest of this section, fix
a complex Hilbert space (H, (,-)).

Lemma 4.24. Fiz k € N and ay,...,a541 € C(H)sa. For j €{1,...,k+ 1} and n € N, define
Aj,n = a‘jPaj([_n7n]) = X’ﬂ(aj) S B(H)sa>

where xn(t) = t1_,n(t) fort € R. If p € (> (R, Bg)® 1) and (b.n)neN = (b1ny-- b n)neN 15 a
sequence in B(H)¥ converging in the (product) SOT to b= (by,...,by) € B(H)*, then

01,y -+ Apg1,0)#0. 0 — plar, ..., apy1)#b
in the SOT as n — oo.

Proof. First, fix j € {1,...,k+ 1} and n € N. If f € (O(R,Br), then f(aj,) = f(xn(a;)) = (f o xn)(a;).
Now, if f is also bounded, then sup,,cn [|f © Xnlleo®) < || flle®) < 00 and fox, — foidg = f pointwise
as n — oo. Therefore, by Proposition 2.2.5.(v), f(ajn) — f(a;) in the S*OT as n — occ.

Next, let (X, p, 1, .., ¢r+1) be a £°-IPD of ¢. By definition,

O(A1 sy Apg1,n)#bom Z/@l(al,mU) bin - @k(akn, 0) bkn Prr1(aks1,n,0) p(do)
>

whenever b = (by,...,b,) € B(H)*. By the previous paragraph’s observations,

©1(a1,n,0) b1 - Ok (Ak s ) b Prt1(Akt1,n,0) = @1(a1,0) br - - prlak, o) by rt1(ary1,0)

in the SOT as n — oo, for all o € 3. Since

/ Sup [01(@1,0) brm -~ 1@y &) bin @1 (@t 1.m: )| p(do)
neN
>

< Sug(llbmll e ||bk,n||)/||§01('aU)”ZN(R) o lorg1 (s 0)|l g (r) p(do) < 00,
ne
>

the desired result follows from Proposition 2.1.7 and the definition of v(ay,...,ar+1)#b. O

Before stating and proving our perturbation formulas, we make an observation that we shall use repeat-
edly. If f: R — C is Lipschitz, then there are constants Cy,Cy > 0 such that |f(\)| < C1|A| + Cy, for all
A € R. In particular, it follows from the definition of functional calculus and the Spectral Theorem that

dom(a) € dom(f(a)), (1)

for all a € C(H)sa.-
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Notation 4.2.5. Let S be a set, m € N, and s = (s1,...,85,) € S™. If j € {1,...,m + 1}, then
sj— = (s1,...,8j-1) €77 and sy = (sj,...,8y) € ST
where 51 and $(,, 1)+ are both the empty list.

Theorem 4.2.6 (Perturbation formulas). Fiz ¢ € B(H)s and a € C(H)sa. If f € CY(R) is such that
e (R, Br)&:il>(R, Br), then

fla+e) = fla) = fMa+ca)pe (12)

More precisely, f(a+ c) — f(a) is densely defined and bounded, and M (a + ¢, a)#c is its unique bounded
linear extension. Now, suppose k > 2, b= (by,...,b._1) € B(H)!Y, and @ = (a1,...,ax_1) € C(H)E7L. If

sa ’

f e CK(R) is such that f*=1 € ¢=(R, Bg)®* and f* € (=(R, Bg)®*+1), then

FEU@G a+ e @i )#b — PG a,d0)#0 = F@ - a + ¢ a,d50)#[bi—, ¢, byt (13)
forallje{1,...,k}.
Proof. We first make an important observation. Fix a € C(H)sa, ¢ € B(H)s, and n € N. Now, define

pn = P([-n,n]), ¢, = P*"([-n,n]), an == ap, = xn(a), and d,, = (a+¢) g, = xn(a+c) in the notation
of Lemma 4.2.4. If 41,19 € £°(R, Br), then

Gn P1(dn)(dn — an)¥2(an) pn = Li—np)(a+ ¢) (Y10 xn)(a +¢) (dn — an) (Y2 © Xn) (@) 1—nn)(a)
= (%1 0 Xn) =) @+ ¢) (dn = an) ((¥2 0 Xn)1[-nn))(a)
= (1 L—nmp)(a +¢) (dn — an) (Y2 11—nn))(a)
= 1(a+¢) qn (dn — an) pn ¥2(a) = Y1(a + ¢) gn cpn P2(a),

where Qn(dn_an)pn = qndnPn—QqnanpPn = Qn(a+c)pn_Qnapn = ¢nCpy because im p,, C dom(a) = dom(a—|—c).
We now begin in earnest. Let f € C*(R) be such that fI1 € £>°(R, Bg)&;¢>*(R, Bg). Then

FO) = fG) = FUIO ) = ), (14)
for all A, p € R. Now, let a,c¢ € B(H)s,a. Since o(a) and o(a + ¢) are compact and f € C(R), the functions

ola+c) xoa(a)d (A p) = YA u)=A—peC and
ola+c) xala) > (A p) = e\ p)=fA) - flp) eC

belong to £°°(o(a + ¢), By(ate))Qil>(0(a), By(a)). By Proposition 4.1.5.(ii) and (14), we have
Jatea, — (Ia+c,af[1]) o (T*Heay).
Applying this to the identity 1 = idy € B(H), we conclude
fla+e) = fa) = (It @) 1] = (1*Foe ) [(17F ey 1] = (127 fM)[e] = M (a + ¢, a) e,

as desired.
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For general a € C(H )s,, we begin by showing f(a + ¢) — f(a) is densely defined; specifically, we show
dom(a) C dom(f(a + ¢) — f(a)). Indeed, since fII € ¢>°(R? Bge), f is Lipschitz on R. By (11), we have
dom(ag) C dom(f(ag)), for all ag € C(H)sa. In particular, since dom(a) = dom(a + ¢), we get

dom(a) = dom(a) Ndom(a + ¢) C dom(f(a + ¢)) Ndom(f(a)) = dom(f(a+c) — f(a)),

as desired. Next, let p,, ¢n, an, and d, be as in the first paragraph. If (X, p, 1, p2) is a £°-IPD of f[
then the results of the previous two paragraphs and Lemma 4.2.4 give

qn(f(dn) - f(an))pn =dn f[l] (dm an)#(dn - an)pn = /Qn ‘P(dm U)<dn - an)‘PQ(amU) Pn p(da)
b

= /<,0(a—|—c7 o) qn cPn p2(a, o) p(do) = f[l](a—FC, C)#[qn cpn] — fm(a—|—c7 a)#c
5

in the SOT as n — oo, since ¢, — 1 and p,, — 1 in the SOT as n — co. But now, notice

J(an)pn = (f 0 xn)(@) L—p (@) = ((f o xn) L—nn)(a) = (f L—pn)(a) = f(a) pn

and similarly ¢, f(dn)pn = qnf(a + ¢)py. (For the latter, we use that imp, C dom(a) C dom(f(a+c)).) It
follows that if m € N, h € im p,,,, and n > m, then

@n(f(dn) = f(an))pnh = @u(f(a +c) = f(a))puh
= qn(fla+c) = f(a))pnpmh
=qn(fla+c) = f(a))pmh
= (fla+c) = f(a))pmh = (fla+c) — f(a)h

in H as n — co. We have now proven that

(fla+e) = flaDh = (fU(a+e c)wc)h

for h € im py,. Since | J,,cy impm € H is a dense linear subspace, we are done with the first part.
Next, let & > 2 and f € C*(R) be such that f*=1 € (R, Bg)®* and fI € (> (R, Bg)®:*+1), By
definition and symmetry of divided differences, if j € {1,...,k} and A, u € R, then

f[k Y (>‘J a)‘ )‘j+) f[k_l](xj*au?xj+) = f[k](/_\'j*aAa:uanﬁL)()‘ - :u’)a (15)

for X = (A1,..., \e—1) € R¥"1. Now, suppose a,c € B(H)s, again, and fix @ = (as,...,a5_1) € C(H v
and b = (by,...,bx_1) € B(H)*1. Since o(a) and o(a + ¢) are compact and f*=1 € (R, Bg)®*, we
have that both of the functions

R x o(a+c) x o(a) x R¥7 5 (u, A, 1, v) Y3 A — g€ C and
RIT! x o(a+c¢) x o(a) x R¥7 3 (u, A\, p,0) & fF 1w, 4 0) = (57w, p,0) € ©
belong to
(R, BR) &2 (o (aJrC),Ba(a+c))®i€°°(0(a),Ba(a))®i£ (R, BR) (k=3),

This allows us to apply [%--4+¢%%+ to (15), which may be rewritten
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o= fHy,
If we do so and then plug (b;_,1,b,1) into the result, then we get

f[k Y (a’] N aj+)#b f 71](Cl] y @, a’J+)#b - (aj ,CL—FC,a,dj.{-)#[bj_, 17bj+]
(f[k w)(aj ,a+c a aj+)#[bj al,b ]
= M@ a+ ¢ a0 ) #lbj- ¢ b+,

where in the last line we used Proposition 4.1.5.(ii) and the definition of .
Finally, for general a € C(H )sa, let pn, gn, an, and d,, be as in the first paragraph. If 1 < j < k, then we
also define b. ,, = (b(j—1)—,bj—1Gn, Pubj, b(j+1)+). Since p, — 1 and ¢,, — 1 in the SOT, Lemma 4.2.4 gives

PE@G - diy @ )b — (@2 a+ ¢, Gy ) #b and

PR @5 an, @ ) #b o — FE (@5, 0,0 )#b

in the SOT as n — oco. Now, let (2, p, @1, ..., @ks1) be a £°-IPD of fI*I. Then
Ty = PN oy, @5 )#[(bn)j— s di — an, (bn) 4]

j—1 k—1
— / < H w(aj,, o) bj1>qn @;(dy,0)(dy, — an)<pj+1(an,a)pn< H bj2go(aj2+2,a)> p(do)
s

J1=1 Jj2=J

Ji=1 J2=J

J—1 k—1
= / < H gﬁ(ajl,d) bjl)@ ( +c 0) qn CPn (pJJrl a,o ( H b]ch Ajy+2,0 )) p(da)
b))
= f[k] (C_ij—a a+c,a, 6j+)#[bj—a Gn CPn, bj-‘r]
— f[k] ((ij,,a +c ava’jJr)#[bj*v c, bj+]

in the SOT as n — oo, by the observation from the first paragraph and Lemma 4.2.4. (Above, empty
products are declared to be 1.) Since we already know from the previous paragraph that

PN, @ )#b o — fE @ an, @) #b 0 = [P@5 - dny an, @) #(00) - di = an, (bon) 1),
for all n € N, this completes the proof when 1 < j < k. For the cases j € {1, k}, we redefine
b‘,n = (pnblab2+) and B,n = (b(kfl)fabk?—].QTL)'

Then we use an argument similar to the one above to see that

(f[k 1] (dp, @)#b f[l€ 1 (an, )#b,n) = an[k] (dn, an, d)#[d” — On, b"n]
— f[k] (a +ca, 5)#[q" CPn; b]

and

(0@, d )b — £ @, ) b )pn = (F@, oy )1, i — ) )P
= fM(@, a+ c,a)#[b, g cpn)-

Then we use Lemma 4.2.4 to take n — oo. This completes the proof. O
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Corollary 4.2.7. Let M C B(H) be a von Neumann algebra and a n Ms,. Suppose (Z,]| - |lz) IS M is
MOI-friendly. If f € C*(R) is such that 1) € 1>°(R, Br)&i¢*(R, Br), then

1
Flat o) = F@ €T and [f(a+0) = F@lz < M m oiorerpoensorrm oo €7
for all ¢ € Ty, =T N Mg,, where Mg, = {b € M :b* =b}.

Proof. Since a 7 Mg, and ¢ € Z;, C My,, it is easy to see a + ¢ n Mg, as well. In particular, the projection-
valued measures P?T¢ and P® take values in M. It then follows from (12) and the definition of MOI-friendly

that f(a+c) — f(a) €T and [[f(a +¢) — f(a)llz < ||f[1]||l°°(a(a+c),8<,(a+c))®ﬂ°°(U(a),Bo(a>)||C||I' o

Remark 4.2.8 (Quasicommutators). Let f € C'(R) be such that fI1 € ¢°(R, Br)&;¢/*(R,Bg). One can
show using essentially the same proofs show that if a,b € C'(H)s, and ¢ € B(H) are such that ag—qb € B(H)
(i.e., aq — ¢b is densely defined and bounded), then f(a)q — qf(b) € B(H) and

f(a)g — af(b) = fM(a,b)#[aq — qb].

As a result, we get a quasicommutator estimate in MOI-friendly ideals. Let M C B(H) be a von Neumann

algebra, and suppose (Z, || - |lz) < M is MOI-friendly. If a,b n Mg, and ¢ € B(H) are such that ag —
_ _ (1] —

qb € Z, then f(a)q qf(b) € 7 and Hf(a)q qf(b)HI < Hf Hf""(U(a),Ba(a))@)il“’(J(b),Ba(b))”aq quI' Such

quasicommutator estimates are of interest in the study of operator Lipschitz functions. Please see [1] or [30]

for more information.

4.8. The spaces BOC(R)®:*++1 gnd OC*(R)

In the following section, we prove a general result about derivatives of operator functions. In this section,
we introduce the functions whose operator functions we shall be differentiating. Then we use Peller’s work
from [29], which we review in detail in Appendix A, to give a large class of examples of such functions.

Definition 4.3.1 (Operator continuity). Fix f € £°(R,Bg). We say that f is operator continuous if

(a) for every complex Hilbert space H, a € C(H )s,, and ¢ € B(H )s,, the operator f(a+c)— f(a) is densely
defined and bounded; and

(b) for every complex Hilbert space H and a € C(H )sa, f(a+¢) — f(a) = 0in B(H) as ¢ — 0 in B(H )sa.
(More precisely, for every a € C(H)g, and e > 0, there is some § > 0 such that || f(a+c¢) — f(a)|| <€
whenever ¢ € B(H)s, and | ¢ < 4.)

In this case, we write f € OC(R). If in addition f is bounded, then we write f € BOC(R).

Taking H = C in the definition, it is clear that operator continuous functions are continuous. Also, we
observe that if f,g € BOC(R), H is a complex Hilbert space, a € C(H)sa, and ¢ € B(H)ga, then

(fg)(a+c) = (fg)(a) = (fla+c) = fla))gla+c) + f(a)(g(a+c) — g(a)).

But then

I(fg)(a+c) = (fg) (@) < llglleem)llf(a+e) = Fla)l + [ fllem)llg(a+¢) — g(a)] = 0

as ¢ — 0 in B(H)s. Thus fg € BOC(R). It is even easier to see f + g € BOC(R) and f € BOC(R).
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Next, if (3, 7) is a measurable space, ¢: R x ¥ — C is measurable, ¢)(-,0) € C(R) for o € X, then

19, o)l e (r) = su(g [ (t,0)|, forall o € X.
te

In particular, o + [[¢(-, )| (r) is measurable. Thus the following definition makes sense (without needing
to use upper or lower integrals).

Definition 4.3.2 (Integral projective tensor products II). Let ¢: R¥*!1 — C be a function. A BOC-integral
projective decomposition (BOCIPD) of ¢ is a choice (X, p,1,...,9r+1) of a o-finite measure space
(X, 2, p) and measurable functions ¢1, ..., ¢rr1: R x 3 — C such that

(a) ¢;j(-,0) € BOC(R), forall j € {1,...,k+1} and 0 € &;

®j5
() Js ller(0o)lle®) - - lor+1(, )l e ) p(do) < 00; and
(€) A) =[x 1(A1,0) -+ org1(Apy1,0) p(do), for all X = (Aq, ..., App1) € RFFL

Now, define
||50||BoC(R)®i(k+1> = inf { / ||<P1('7U)||e°°(R) T H‘»Ok-&-l('ao')”Zw(R) pldo) : (2, p, 01, Prt1)

is a BOC-integral projective decomposition of @},

where inf () := co. Finally, we define

BOCRZ ™ = {5+ ¢l pocqmysren < )
to be the (k + 1) integral projective tensor power of BOC(R).
Proposition 4.3.3. BOC(R)®:(:+1) C C(RF+1) N ¢>°(R, Br)®: 1) is a -subalgebra, and
(BOCR)® D1 [ ocmyenn)
is a Banach x-algebra under pointwise operations.

Sketch of proof. The containment BOC(R)®i(*k+1) C C(RF1) N (R, Bg)® *+1) follows from the defi-
nitions and an application of the (standard) Dominated Convergence Theorem. The rest of the statement
follows from the observation above that BOC(R) is a *-algebra and arguments similar to (but easier than)
those in the proof of Proposition 4.1.4 in [26]. O

We now introduce the space of functions to which the main result of the following section applies.

Notation 4.3.4. For k € N and f € C*(R), define

k
[flocm (R) = Z ||fm ||BOC(R)®i(j+1> € [0, 00},

j=1

and let OCM(R) := {f € C*(R) : [flocm®) < 00}
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Notice that if f € C'(R) and [floci(r) = ||f[1]||BOC(R)®iBOC(R) = 0, then flI =0, so f must be a
constant. In particular, [-|ocm(gr) is @ seminorm but not quite a norm. If we define

[fllocwt r = 1 fllese (=rp) + [floctw)

for 7 > 0, then it can be shown — using standard arguments and Proposition 4.3.3 — that OC¥! (R) is a
Fréchet space with the topology induced by the collection {|| - [|[pc1 . : 7 > 0} of seminorms. One can even
show that OC'*! (R) is a *-algebra under pointwise operations, and that these operations are continuous.
Since we shall not need these facts, we shall not dwell on them. Instead, we turn to examples.

Definition 4.3.5 (Wiener space). If k € N, then we define the k™ Wiener space to be the set of functions
f ]R — C such that there is a (unique) Borel complex measure p on R satisfying [ [£[F [p](d€) < oo and
= [g € u(dg), for all X € R.

It is easy to see that if 1 < j < k, then Wj(R) C W;(R) and Wi (R) C C*(R). We now prove by elementary
means that W (R) € OC¥I(R). Then we use Peller’s work from [29] to generalize this substantially.

Lemma 4.3.6. If £ € R and f(\) = e™¢, for all A € R, then f € BOC(R).

Proof. Of course, f is bounded and continuous. Now, if A\, u € R, then

1 1
MO ) :/f’(t/\+(1 — t)p) dt:if/emsei(l’”g“ dt
0 0

by Proposition 4.2.3. This is clearly a ¢*®-integral projective decomposition of f[Ul that yields

Hf[l]||ZN(R,BR)®J°°(R7BR) < |£|

In particular, if a € C(H)s, and ¢ € B(H )sa, then || f(a+c) — f(a)| < €] ||¢|| by Corollary 4.2.7. It follows
that f is operator continuous. 0O

Proposition 4.3.7. Wi(R) C OC(R), for all k € N. Specifically, if f(\ = Jg € u(d€), where p is a
Borel complex measure on R with [ |€]* |p](d€) < oo, then

oy ‘
flocmmr) < E 5 / €7 [p|(d€).
j:1 ] R

Proof. Notice that if f is as in the statement and j € {1,...,k}, then fW(X) = [p e6(i€)? p(dg), for all
A € R. Therefore, by Proposition 4.2.3,

I = [ 9 X)py(dt) = et M ARE (i€) u(dE) p (dt).
/ I

By Lemma 4.3.6, this is (after writing du = - d|u| to match the definition) a BOCIPD of fUl that yields

dlul

17 poomeoen < //|§|J || (d€) pj(dt) = p; (A /I&IJ |ul(d€) = /Ié\ﬂ | (dE).

A R

Summing over j € {1,...,k} gives the desired bound. O
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Remark 4.3.8. For the same reasons, if f € C*(R) and, for all j € {1,...,k}, fU) and the Fourier transform
of £ belong to L'(R), then f € OCFI(R).

Now, we use more serious harmonic analysis done by Peller [29] to exhibit a large class — containing
Wi (R) strictly — of functions belonging to OC*(R). We begin by defining Besov spaces.

Notation 4.3.9. If m € N, then we write .(R™) for the Fréchet space of Schwartz functions R™ — C and
L (R™) == Z(R™)* for the space of tempered distributions on R™. Also, the conventions we use for the
Fourier transform and its inverse are, respectively,

9= FD© = [ s s md Fo) = o [ en<rieae

Rm™ Rm™

for f € L'(R), with corresponding extensions to %/ (R™).

Definition 4.3.10 (Homogeneous Besov spaces). Fix m € N and ¢ € C(R™) such that 0 < ¢ < 1,
suppp C{€ e R™:||£]| <2}, and ¢ =1 on {{ € R™: ||§|| < 1}. For j € Z, define

0i(€) = p(277¢) —p(277" ),
for all £ € R™. Now, for s € R, p,q € [1,00], and f € '(R™), write
g = Q1% % Fles), e llonca € 0,06]
We call B;’p(Rm) ={f €S (R™):|[|flgz» < oo} the homogeneous (s,p,q)-Besov space.

Remark 4.3.11. First, note that @ f, éj * f have compactly supported Fourier transforms and so are smooth
by the Paley-Wiener Theorem; it therefore makes sense to apply the LP-norm to them. Second, since it is

easy to show that || f] pe» = 0 if and only if f is a polynomial, it is usually best to define Bg’p(Rm) as

a quotient space in which all polynomials are zero. The definition above is given in Chapter 3 of [27] and
Sections 5.1.2 and 5.1.3 of [35]. The definition “modulo polynomials” is given in Section 2.4 of [31]. (Please
see Section 1.2.5.3 of [31] as well.) Finally, beware that the positions of p and ¢ in B;?(R") are far from
consistent in the literature.

The case of interest is m = 1 and (s, p,q) = (k,00,1) for k € N. As we show in Section A.2, in this case
it turns out BI"*(R) C C*(R). Also, as mentioned above, if f € C[)] is a polynomial, then

11l = 0.

Therefore, if we are to prove sensible results about differentiating the operator function ¢ — f(a+c¢) — f(a)
when a is unbounded and f € Bf *°(R), it is necessary to impose additional restrictions that exclude (at
least) polynomials of degree higher than two. We accomplish this with the following modified Besov spaces.

Definition 4.3.12 (Peller-Besov spaces). If k € N, then we define
PB*R) := BF>~(R) N {feC*R): JARET bounded }
to be the k'™ Peller-Besov space.

The following result is a slight upgrade of Theorem 5.5 in [29] or Theorem 2.2.1 in [30].
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Theorem 4.3.13 (Peller [29]). If k € N, then there is a constant ¢, < 0o such that

1,
Hf[k] HBOC(R)@’M’C“) < %! Inel]% ‘f(k) (x)’ + CkaHvaO%

for all f € PB*(R); and if k > 2, then

||f[k] HBOC(R)@(’““) < Ck“f”B’fv‘x’a
for all f € PBY(R) N BY"™(R) = PBY(R) N PB*(R) = (}_, PBI(R).

The proof given in [29] is not very detailed and is only explicit in the cases k € {1,2}, so we present a
full proof of this theorem in Appendix A. As a result, we obtain the following.

Corollary 4.3.14. PB*(R) N PB*(R) = PB(R) N B¥*°(R) C OCM(R), for all k € N. Specifically,

k
[floct®) < éfel]% | ()] + ZCijHBj,oo,
i=1

for all f € PBY(R) N PB*(R), where c1,...,c, are as in Theorem 4.5.13.

Since it is easy to show that Wi(R) € PB*(R) N B¥*°(R), for all k € N, Corollary 4.3.14 does in fact
generalize Proposition 4.3.7.

4.4. Derivatives of operator functions in ideals

In this section, we finally differentiate operator functions in integral symmetrically normed ideals. For
the duration of this section, fix a complex Hilbert space (H, (-,)), a von Neumann algebra M C B(H), and
(Z,] - lz) S M. Also, write Zs, :=Z N Mg, ={be T :b* =b}.

As a consequence of the definition of a Banach ideal, Z, is a real Banach space when it is given (the
restriction of) the Z-norm | - ||z. Now, before setting up the main result of this section, we prove a key
technical lemma that is the main reason integral symmetrically normed ideals are considered in this paper.

Notation 4.4.1 (Bounded multilinear maps). Let (Vai, || - vi),---s Vi, | - lvi.)s (W, || - |lw) be normed vector
spaces over F € {R,C} and T: V] x --- X V}; = W be a k-linear map. Then we write

1T By (vi - xviswy = sup{|T(vr, - o) w05 €V, flojlly; <1, 1 <5 <k}

for the operator norm of T" and By (V; x - - - x Vi; W) for the space of k-linear maps V; X - -+ x Vj, — W with
finite operator norm.

Lemma 4.4.2 (Continuous Perturbation). If T is integral symmetrically normed, a1, ...,ax+1 1 Mga, and
¢ € BOC(R)?:*+1) then the map

If;'_l B (Cl, . ,Ck+1) s JOrte ak+1+ck+1g0 S Bk(Ik;I)

is continuous. (To be clear, I and Zs, are always endowed with the Z-norm || - ||z.)
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Remark 4.4.3. Recall from Proposition 3.1.5 that integral symmetrically normed ideals are MOI-friendly.
In particular, the map under consideration in Lemma 4.4.2 does actually make sense by definition of MOI-
friendly and the fact that a + ¢ n Mg, whenever a n Mg, and ¢ € Zg,. (As in the proof of Corollary 4.2.7,
the latter imply that P* and P**¢ take values in M.)

Proof. Write ¢,: It — Bj(Z¥;T) for the map in question. Now, let ¢ = (cy,...,ckr1) € ZEF! and
(C.n)neN = (Clm, - - Chi1.n)nen be a sequence in ZXF! converging to c. Then
k+1
YalC.n) — palc) = Z(cpa(clyn, s Cims Gty -3 Chp1) — Pa(Climy o s G s Gy v o5 Clig1))-
=1 -

Fix now a BOCIPD (%, p,¢1,...,¢k+1) of ¢ and by,...,b; € Z, and write by := 1. By definition of the

multiple operator integral, T} ,, (b1, ..., by) is precisely
j—1 k+1
/ < H @m(am + Cm,ns U) bm) (@j(aj + ¢jn, 0) - @j(aj +¢j, 0)) bj ( H (Pm(am + Cm,s 0) bm) P(da)a
% \m=1 m=j+1

where empty products are the identity. Now, if 1 < j < k+ 1 and

j—1
An(U) = < H Qp’m(am + Cm,n>y U) bm) (@j(aj + Cjn,y 0) — Y5 (aj + Cj, 0)) and

m=1
k+1
B(o) = H Om(am + em, ) by,
m=j+1
then
Tonlbyy. . by) = /An(a) b; B(o) p(do).
b
But
/IlAnll I1Blldp < TT ||bp||/||<ﬂj(aj + ¢y 0) = @j(a; + ¢, )| TT om0 lem ) pldo) < oo
D PFE] b m#j
Therefore, the definition of integral symmetrically normed gives T}, (b1,...,b;) € Z and

| T5 (b1, be)llz < IIbslz [ ||bp\|/H<Pj(aj + i 0) — @i(a; + ¢, 0)|| T lom(0)lle=r) p(do)
< CF bz - ||bk||I/H80j(aj +¢jmr0) = 9i(a; + ¢, 0)|| T llom (- 0)lle ®) p(do).
> m#j

Thus

1Tyl g zezy < C5 [ lei(aj + cjm, o) — @i(aj +cj,0)|| H lom (- 0)lle=®r) p(do). (16)

m#j

| —

Next, fix o € 3. Since ||¢jn, — ¢;]| < Czllcjn — ¢jllz = 0 as n — oo, the operator continuity of ¢;(-, o) gives
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lpj(a; +cjn, o) —pjla; +cj,0)| =0

as n — 0o. Since

o ht 1
/Sup (H%‘(%‘ + i) — pia; + ¢, 0| [ ||80m('7‘7)|£°°(]R)> p(do) < 2/ T llem (. 0)lle ) p(do),
5 m=1

% neN mj

which is finite, we conclude from (16) and Lemma 2.1.6 that ||T} |, zrz) — 0 as n — oo. If j = k + 1,
then we run the same argument with

k—1
A(o) = ( H Om(am + Cmon,0) bm> vk(ak + ckn,0) and

m=1

By (0) = @r+41(art1 + Cht1n, 0) — Prt1(@rtr + crtr,0)
to prove that [Ty 11,/ B, (z+:7) — 0 as n — oo. We conclude that
kt1

||<pa(c~,n) - ‘PG(C)HBk(I"‘;I) < Z HT"m

Jj=1

|Bk(Ik;I) —0

as n — 00, as claimed. O

Next, we recall the notion of Fréchet differentiability of maps between normed vector spaces and then
define what it means for a scalar function to be Z-differentiable. For these purposes, note that if V;,..., Vi, W
are normed vector spaces, then By(Vy x -+ x Vi3 W) = B(Vy; Bp—1(Va X -+ x Vi; W)) isometrically via

T — (1}1 — ((’UQ7 A 7Uk) — T(U1, e 7’[%))).
We use this identification below.

Definition 4.4.4 (Fréchet differentiability). Let V and W be normed vector spaces, U C V be open, and
F:U — W be amap. For p € U, we say F is Fréchet differentiable at p if there exists (necessarily unique)
DF(p) € B(V;W) such that

| F(p+h) — F(p) — DF(p)h|lw

—0
IAllv

as h — 0 in V. If F is Fréchet differentiable at all p € U, then we say F' is Fréchet differentiable in U and
write D'F = DF: U — B(V;W) for its Fréchet derivative map U > p — DF(p) € B(V;W). For k > 2,
we say F' is k-times Fréchet differentiable at p if it is (k — 1)-times Fréchet differentiable in a neighborhood
of p — say U for simplicity — and D*"1F: U — By_;(V*¥~1; W) is Fréchet differentiable at p. In this case,
we write

D*F(p) == D(D*'F)(p) € B(V; Bj_1(V¥F"5W)) = B(VF; W).
If F is k-times Fréchet differentiable at all p € U, then we say F' is k-times Fréchet differentiable in U and

write D¥F: U — By (V*; W) for its k™ Fréchet derivative map U 3 p — D*F(p) € Bp(V*; W). Finally, if
DFF is also continuous, then we say F is k-times continuously differentiable in U and write F' € C*(U; W).
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Concretely, if F: U — W is k-times Fréchet differentiable (in U), then one can show by induction that

d
DkF(p)[hl,. ;hk] = ahl 8hkF(p) _ d_s1

d

s1=0 dsk

F(p+ s1h1 + - + sihi),
sk:O

forallp e U and hy,...,h € V.

Definition 4.4.5 (Z-differentiability). Fix a n Ms,. A Borel measurable function f: R — C is called k-times
(Fréchet) Z-differentiable at a if there is an open set U C I, with 0 € U such that

(a) fla+b)— f(a) e ZforallbeU (ie., when b € U, f(a+b) — f(a) is densely defined and bounded,
and its unique bounded linear extension belongs to 7), and

(b) themap U 3 b~ f,(b) = f(a+b)— f(a) € T is k-times Fréchet differentiable (with respect to || - ||z)
at 0 e U C Ls,.

In this case, we write
Djf(a) = D" fa2(0) € Br(Z5:T)

for the k' Fréchet derivative of faz: U —=Tat0ecU.If fis k-times Z-differentiable at a for every a n Msa,,
then we simply say f is k-times Z-differentiable.

Suppose that f: R — C is Lipschitz and f(a + ¢) — f(a) € Z, for all a 7 Mg, and ¢ € I, (i.e.,
faz: Isa — T is defined everywhere). We claim that if f is k-times Z-differentiable, then f, ; is k-times
Fréchet differentiable everywhere — not just at 0 € Zg,. Indeed, fix b, c € Zg,, and note that

Jaz(b+¢) = faz(b) = fla+b+c) = fla+b) = fatpz(c). (17)
This is the case because (17) is immediate from the definition on
dom(a) = dom(a) Ndom(a + b+ ¢) Ndom(a + b) C dom(f(a)) Ndom(f(a+ b+ ¢)) Ndom(f(a+ b)),
which is dense in H. (Note that we used (11).) In other words,
furlb+0) = faro () + fas(b),

for all ¢ € Zg,. Since ¢ — faqpz(c) is k-times differentiable at 0 € Zg,, we conclude that f, ; is k-times
differentiable at b with

D*fy 2 (b) = D* fuy,2(0) = DEf(a +b).
With this in mind, here is the main result of this section.

Theorem 4.4.6 (Derivatives of operator functions in ISNIs). Suppose (Z,|-||z) IM is integral symmetrically
normed, and fix a 1 Ms,. If f € OCH(R), then fazr: Zsa — T is defined everywhere, and f, ; € C*(Zs; T).
In particular, f is k-times Z-differentiable. Moreover,

Dl;f(a)[b177bk] = Z f[k](a7"'aa)#[bﬂ'(l)a"'abﬂ(k)]a

TESy k+1 times

for all (by,...,by) € IE .
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By the observation above, we therefore also have

Dkfayl(c)[bla"'abk]:D]ch( )blv"'a E f[k (l-|—C a+c)#[b7r(1)a"'ab7r(k)]a
—
wESk k+1 times

forall ¢,by, ... b € Lg,.

Proof. Fix a 7 Ms,. Notice that if f € OCF(R), then f € C*(R) and flI € £>°(R, Br)&:¢*(R, Bg). In
particular, by Corollary 4.2.7, f, z(c) = f(a+¢) — f(a) € Z, for all ¢ € Zy,. In addition, we observe that if
f € OCH(R), then the map

Lo 3 ¢ — T0Feateflkl ¢ BTk 7)

is continuous by the Continuous Perturbation Lemma (Lemma 4.4.2). Therefore, the claimed k'"' derivative
map is, in fact, continuous. Thus, to prove the theorem, it suffices to prove the claimed formula for DX f(a).
We do so by induction on k.

Fix ¢ € Zs,. By Theorem 4.2.6,

far(€) = faz(0) = f(a,a)e = fla+¢) = fla) = f(a, a)te
= W+ c,a)#c — fM(a, a)#c
_ (IaJrc,af[l] _ [“»“f[”)[c].

Therefore, by the Continuous Perturbation Lemma (Lemma 4.4.2),

”C” [ fa2(6) = fa,z(0) = [P (a, a)pee]|, < ||7otee 00— 1o f T 2 =0

as ¢ — 0 in Zg,. This completes the proof when k = 1.

Next, suppose k > 2 and that we have proven the claimed derivative formula when f € OC*~1(R). To
prove the formula for f € OC¥(R), we set some notation and make some preliminary observations. If S is
a set, s € S, and m € Ny, then we write

S(m) = (8,...,5) € 8™,

where s() is the empty list. Now, fix b = (by,...,by—1) € ZF"! and f € OCH(R) € OCF-U(R). By
Theorem 4.2.6, we have

d(b,c) = fl=1 ((a + C)(k))#b — fi1 (a(k))#b
k
= Z (ST @+ )Gy ag—i)#b = FE (@ + €)o1)s age 1)) #b)

o

=Y (@ + )y amer—i) #lbi— ¢ b,

Jj=1

using Notation 4.2.5. Next, by the inductive hypothesis,

D¥ o z(co)bl = D fla+co)ltl = D fET((a+ co) ) #b7,

TESK_1
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for all cg € Zga, where b7 = (br(1y, - .., br(k—1)) for 7 € Sp_1. Combining this inductive hypothesis with the
expression for d(b, c) above gives

e(b,c) = D" faz(c)[b] — DF ! fu L (O)[0] — D Z S8 (@) #[07_, e, 7]
TESK_1 j=1
= > (@ ) #b” = T (ag)#bT) = D Zf” A #0707,
TESK_1 TESK_1 j=1

k
= > <5(bT,C)—Zf[k](a<k+1))#[b§—’cyb§+}>
TESK 1 Jj=1

k
Z Z ((@+ )y @rar—i) #0707 ] = ¥ (aegn) ) #b7 -, ¢ b7, 1)
€Sh_1 j=1

It follows that

€
” ( )HBk 1(ZE D) <

—0
llellz

k
Z || (et e fIF] — pecen flK] ||Bk(Ik;I)

as ¢ — 0 in Zy, by the Continuous Perturbation Lemma. Writing b := (bo,b1,...,bk—1), this proves

DEf(a)[b] = D*fo(0)[B] = > Zf”aam #67_ b0, b7 ] = > fM(agen)#

TESK-1 j=1 mESk

as claimed. This completes the proof. 0O

Remark 4.4.7. Let H be a separable complex Hilbert space, (M C B(H),7) be a semifinite von Neumann
algebra, and (E,|| - ||[g) be a separable symmetric Banach function space. In [11], it is proven (Theorem
5.16) that if f: R — R is a continuous function such that f [ admits a decomposition as in Definition 4.3.2
with only ¢1(-,0),2(-,0) € BC(R) (i.e., these functions are not assumed to be operator continuous) and if
a € S(T)sa, then the map E(T)sa 2 b+ f(a+b) — f(a) € E(7)sn makes sense and is Gateaux differentiable
at 0 with Gateaux derivatives expressible as double operator integrals involving f!*. In particular, this
result applies when £ = LP with 1 < p < oo. It is noted, however, in the introduction of [11] that
Fréchet differentiability does not in general hold in this setting. This is why we must work in the space
E@L - o) = (BE) N M, |- [strae) (o8- £7(7)) instead of the space (E(7), | - ) (0.8 L7(7)),
to prove positive results about Fréchet differentiability in this setting. (Also, our method — particularly the
extra assumption of operator continuity in our decompositions — allows us to assume only that a n Ms,, i.e.,
we need not assume that a is T-measurable.) In short, the results in [11] are, for good reason, of a different
flavor than the results in the present paper.
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Appendix A. Proof of Theorem 4.3.13

In this appendix, we provide a full proof of Theorem 4.3.13. We shall freely use basic facts about tempered
distributions and their Fourier transforms. In particular, we recall that, as a consequence of the Paley-Wiener
Theorem, if f € ./(R™) is such that supp f is compact, then f is a smooth function.

A.1. Part I

First, we set some notation that we shall use to write an expression (Theorem A.1.3 below) that is key
to the endeavor of proving Theorem 4.3.13. Write R, := [0, 00).

Notation A.1.1. We define two families (7 )uer, and (i.)uer, of tempered distributions on R by requiring

Tu(&) = 1j0,u(I€]) + |£|1(u,oo)(\§|) = {g7 it €] > u
a6) = “'T“uu,w)(m S

for u > 0 and £ € R; and r¢ := dg, o = 0. In other words, u, = T—r, =6 — T, for all u > 0.

Proposition A.1.2. Let f: R — C be a Borel measurable function. Write f x p: Ry x R — C for the map
(u, ) = (f % py) () = f(x) — (f 7o) (x) when it makes sense.

(i) If u >0, thenr, € L*(R)NL3(R). Specifically, ry, = uri(u-), |r1l|zz = V271, and ||r1]|z1 < 2 < oo;

so that ||ryllz = V2(mu)~t and ||ry||pr < 2.
(it) If f is bounded, then f x p is bounded and Borel measurable with

1f * pall e (ry xR < N Fllee ) (L + Ir1llzr) < 3l fllese(w)-

(And we can replace the {’s with L’s.) If in addition f € C(R), then f*u € C((0,00) x R).

(iii) If f € LY(R), then ||f * pullzs < | fllzs (X + |Ir1llz1) < 3||fllzr, for all u > 0, as well.

(iv) Fiz o > 0. Suppose f is bounded and suppfg [0,0]. Then f * u, =0 when v > o. In particular,
(f*p.)(z) € Co(Ry), for all x € R.

Proof. We take each item in turn but postpone the proof of (iv) until just after Lemma A.1.6.

(i) First, notice that |7i][z2 = 2 by an easy calculation. Therefore, ||| 2 = (27) 2|72 = V271
by Plancherel’s Theorem. Next, fix v > 0 and £ € R. Notice 7,(§) = 71(&/u), from which it follows, by
Fourier Inversion on L2, that r, = F~1(7,(-/u)) = uri(u-). In particular, we have ||ry|2 = u™2||ry ||
and ||ry|lr = ||r1)|L:, as claimed.

It now suffices to ||r1||r: < 2. To this end, note fjl Ir1(z)| dz < V2||r1||z2 = 272, by the previous
paragraph. Now, for almost every = € R,

2ma?

—0o0

[e%e) ‘ o d2 |
1

2ma?
—oo [€]>1

. T d2 -~ ix . 1 2 ix€
= / @Tl(g)e d§ = *m / @6 dé,
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using integration by parts, where all of the above are improper Riemann integrals.” Now, notice

| ] < 7% -
1

It follows that f o[>1 Iri(z)|de < 2 [° X5 do = 2. We finally conclude ||r{|[z2 < \/— + 2 <2, as desired.
(ii) Fix v > 0 and = € R. Then, recalling r, = url( ),

Jrra(e) = / F(@— ) ruly) dy = / f(& —ute)ry(t) d.
R R

Measurability of f * p follows from this identity and the fact that f x u(0,-) = 0. The bounds are also
immediate from this identity (because f * u = f — f *r.) and the first part. Finally, joint continuity of
(0,00) x R 5 (u,z) — f*r,(z) € R follows from the continuity of f and the Dominated Convergence
Theorem (which applies because f is bounded and r; € L'(R)).

(iii) This is immediate from Young’s Convolution Inequality (when u > 0), the fact that f=po = 0 (when
u = 0), and the first part. O

In order to bound integral projective tensor norms, one must exhibit expressions for the functions in
question as integrals that “separate variables” in a particular way. Here is one such expression, which we
take the rest of the section to prove.

Theorem A.1.3. Fiz o > 0. If f € {>°(R, Br) satisfies supp f C [0, 0], then

f[k] _ klil/ <ﬁ z)\mum>(f ﬁ)(}\) i)\j|ﬂ‘< klill i)\mum1> dit (18)
=1 *,uw j)€ (& U,

=1 m=1 m=j+1
R+

for all k € N and A € R¥*1 where |i| = Zl:n:1 Uy, and empty products are defined to be 1.

Remark A.1.4. The expression in (18) was written in [28] and [29] in the cases k = 1 and k = 2, respectively,
in a slightly different form. The use of y, was inspired by [30], in which (18) is written down exactly as
stated in the cases k € {1,2}.

For example,
FHAL ) = z/ ((f * pa) (N1) e Prteiden et facyy (o) e 22%) du and (19)
R4

f[2]()\17)\2, Ag) = — / ((f * fhuto) (A1) e~ (utv) pidou Jidzv + ei/\lu(f % futo)(A2) e~ X2 (utv) yirsv
i1

+ MU (f o ) (As) €7 dudo,

for all A1, Ao, A3 € R.

2 This is not technically perfect since actually 71 = L2-limpg_; oo % f\{\<R?1 (§)ei'E d¢. One should really take a particular

sequence Ry — oo as k — oo for the first couple of integrals.
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Notice that Proposition A.1.2 allows us to make sense of the expression (18) in the first place. By item
(iv), the integrand in (18) is bounded, continuous, and vanishes when || > o. Therefore, the integral above
is really over {@ € R :|i| < o}, which has finite measure. This, together with the continuity part of item
(ii) and the Dominated Convergence Theorem, also implies the right hand side of (18) is continuous in A.

The expression (18) is proven, inspired by the sketch in [29], in the following steps.

Step 1. Use an approximation procedure (Lemma A.1.6) to reduce to the case f, fe LY(R).
Step 2. Use an inductive argument to reduce to the case k = 1.
Step 3. Prove (18) when k =1 (i.e., prove (19)) assuming f, f € L'(R).

The approximation procedure in Step 1 will also help us to prove Proposition A.1.2.(iv).

Convention A.1.5. For this section, fix o > 0 and f € £>°(R, Bgr) with supp fc [0, o].

Lemma A.1.6. Fiz 0 < w € C(R) such that suppw C [0,1] and [p w(£) d§ = 2m. Define
wn =nw(n) and f, =d,f,

for alln € N. Then

(i) [ fallee®) < | flle~®) and fn — f pointwise as n — oo,

(ii) fo € L'(R) N L*(R),
(iti) fn € #(R) C LY(R) and supp f, C 0,0+ 1] C[0,0+1], and
(iv) fn*p— f*p boundedly on Ry x R asn — oo.

Proof. We take each item in turn.
(i) Notice that for all z € R,

2

On(z) =nwn)(z) =3(n tr) = ©(0) = 1 /w(f) d¢ =1
R

Bu(@)] = | & (@™ 5 de] < b fow(€)dE =1, iew [Fullim gy < 1,
as well. This takes care of the first part.

(ii) Of course, W, € Z(R) C LY(R), so that || f, |z < || f]lzee [&n]lz1 < oo.

(iii) By basic properties of Fourier transforms of tempered distributions, fn = F(Onf) = wn * f Since f

as n — o0o. But also, since w > 0,

has compact support, we have w,, * fe < (R) and

supp f = supp (wn * f) C suppw, +supp f C [0,n7 1] +[0,0] = [0,0 + 1],
as claimed.
(iv) By Proposition A.1.2 and the first part, ||fn * pulleo®, xR) < 3| fnllee®) < 3[[f[les, for all n € N.

Now, let v > 0 and = € R. (The case u = 0 is obvious.) By the proof of Proposition A.1.2.(ii) and the
Dominated Convergence Theorem,

(o #7) (@) = / Fule —uty) () dy — / F@—u Yy r(y) dy = (f %) (@)
R R

as n — oo. Therefore, (fp, * py) (@) = fr(x) = (fnxru) (@) = f(x) = (f*ru) (@) = (fxp)(z) asn — oo, O
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Proof of Proposition A.1.2.(iv). Suppose first that f.fe L'(R). Recall from Proposition A.1.2.(iii) that
1 % pullzr < 3l fllzt. so that /%, € LI (R). Also,

F(f *pa) = f fra € L'(R).

But supp fi, = (—00, —u] U [u, 00) when u > 0, and suppfg [0, o]. Therefore, if u > o, then F(f * u,,) = 0.
Therefore, by the Fourier Inversion Theorem,

Fopu=F N F(f*pa) =0

as well. (Recall f * pu, € C(R), so this equality is everywhere.)

Now, for general f as in Proposition A.1.2.(iv), let (f)nen be as in Lemma A.1.6. Since f,, fn € L'(R)
and suppfn - [0,0 + %], we know from the previous paragraph that f, % pu, = 0 when u > o + % Now,
suppose u > o. Then, choosing n; € N such that v > o + %, for all n > ni, we know that f, * u, =0
whenever n > ny. Since f, *x 4 — f * p pointwise as n — oo, we conclude f * p,, =0 as well. O

We now begin the proof of Theorem A.1.3 in earnest.

Notation A.1.7. Fix A = (A1,..., \gy1) € R¥ and @ = (uq, ..., ux) € RE. Define

-1 o k+1
SRIeN) :(He“m“m><fwm><xj>eMﬂ"“< I1 emm“m)

m=1 m=j+1
. - k
whenever 1 < j <k + 1, where @] :== )", _| Un.

Proof of Step 1. Suppose (18) holds when we also assume f.f € LY(R). For arbitrary f, let (f,)nen be
as in Lemma A.1.6. Since fn, f,, € L'(R), we know (18) holds for f,, in place of f. We must take n — oo
to obtain (18) for f. To this end, first let A1,..., A\gr1 € R be distinct and A = (Ay,..., A\gp1) € REFL
Then, by the recursive deﬁmtlon of the kth divided difference, fr, [k]( ) — fFI(X) as n — oo because f, — f
pointwise as n — 0o. Second, ek " ek _j boundedly on R x R% as n — oo by Lemma A.1.6.(iv). Third,
by Proposition A.1.2.(iv), the integral Zkﬂ ka Ef" A, @) di is really only over {@ € RE : |4 < o+ 1}, for
all n € N. Therefore, by the assumption and the Domlnated Convergence Theorem,

k+1 k+1
Z/skj)\udu%Z/em)\u
J= I]Rk Jle

as n — oo, for all A € R¥T1. We conclude that

+

=3 [ el o da
I=1Rk
whenever A1, ..., \g+1 € R are distinct. Since {A € RFHL 2N, Ak+1 € R are distinet} is dense in RF+1

and both sides of the above are continuous in A, we are done. O
Convention A.1.8. For the remainder of this section, assume in addition that f, f € LY(R).

By the reduction from Step 1, this assumption is appropriate. Next comes the proof of Step 2, which is
a bit painful and may be skipped on a first read. We warm up with two easy lemmas.
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Lemma A.1.9. If u > 0 and h()\) = e, then N (A1, \p) = ify eMveirz(u=v) gy,

Proof. The result is obvious if u = 0, so we assume u > 0. By Proposition 4.2.3,

1 u

1
hm(/\h)\Z / t/\l + (1 —t /\2 _ Z/U i(tA1+(1—t)A2)u dt = i/eiAlveiAQ(u—v) d’U,
0

0 0

where we substituted v :=tu. 0O

Lemma A.1.10. If u > 0 and g(\) == (f * 1) (N)e™%, then (g% po)(N) = (f * frusy)(N)e™ A when v > 0.

o~

Proof. Note that g(§) = F(f * py)(§ +u) = f(§+ u) 1a (€ + u), so that

~

F (g ) (€) = 9(&) 11 (§) = f(€ + u) (€ + w) 11 (8)-

But
+ —
6+ 0O = S Lo (€ +1) S 10 ©)

so that F(g# 1) (&) = F(€ + ) frare (€ 4+ 1) = F((f * frugo) e~ 5%)(€), for all £ € R. The result follows from
the Fourier Inversion Theorem. 0O

We are now ready for the proof of Step 2.

Proof of Step 2. Assume for some £ > 1 that (18) holds whenever 1 < k < ¢ (and all relevant f). Suppose
that 1 < k < ¢, and fix distinct A1, ..., Agro € R. Then

SEOL - M) = PO Ak Akgn)

f[k—‘rl]()‘la CR) )‘k+2) =

Ak+1 = Akt2
k41 — —
ke + )\17...,)\k+1,u)—££7j()\1,...,)\k7)\k+2,u) .
=1 E du
- Akl — Akt2
Jj= Rﬁ—

We now examine each term in the above sum. Define

5{,3'()‘1’ s ,)\k+1,ﬁ) - Eivj()‘la ey Ak )\k+27’t_l:)
Akt1 — Akt2

5; (i) =

for ease of notation.
First, suppose 1 < j < k 4 1. Then, by definition of €} ;’s and Lemma A.1.9,

H 'L)\mum f*ﬂ\ |) —iXj|d| H ez)\ Uy —1

m=1 m=j+1

eI ARF1UE _ oiAky2

Akl — Agt2

k

:@'/ T cmon( + ) )17 T s nosribston =)y
o m=1

m=j+1
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Now, this allows us to write

Uk j_

Jj—1 k

/@(ﬁ) dii =i // eiAmum (f " :ulﬁ\)(AJ) efz)\j\u| H eiAmtim—1 61)\’“'*'1”61)\"'*'2(“’“70) dv di.
0 m=1 m=j+1

We now manipulate this integral expression. Changing the order of integration yields

// dvdu—z//l{uk>v} - dudv.

R+ R’”
Changing variables as (u1, ..., Uk, v) = (U1, ..., Ug—1, Ut — V,0) =: (V1,...,Vk41) = v yields
/ / Liup>oy (@) - diddv =i / - dv,
R, R% errl
where functions evaluated at ug, ..., ug, v go to the same functions evaluated at vy, ..., vk_1, Uk +Vkt1, Vkt1-
(In particular, || goes to |v|.) This yields
j—1 k
/5 ) dii = i / H eiAmvm,(f " Mlvl)()‘j) e~ iNilvl H AmUm—1 Akt 10k STARL2VkA1 (g
m=1 m=j+1
REH!
-1 k+2
= / H ezAm1)m(f*Mv')()\j)e—zz\”v\ H ezz\mum,l dv
m=1 m=j+1
RET!
=i ey A d
7 €k+1,j( 1y-ens Ao, V) dv,
RAF!
which is one of the terms we wanted to see.
Second, for the j = k + 1 term, notice that
k
Op+1( H At (f o e T (A1, Arya).

But g(x) = (f * pq)(x) eIl satisfies g, 5 € L*(R)N L (R) and supp g C [0, o]. Therefore, by assumption
and Lemma A.1.10, we have

I kg1, Aeg2) = i / (g% o) igr) €720 4 (g ) (Aggp) 7 A420eA0417) dy
Ry

Z' / ((F * o) e A TNz (F s gy ) (Apgg)e s ey gy
R4

assuming || > 0. Therefore, renaming (uq, ..., uk,v) to (v1,...,Vk41),
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k
[ o= [ [ ( TT € (F % ) () e a0 Nz

m=1
Ri Rﬁ R4

k
+ T e (f * mraan) Aks2) e“k+2<'ﬁ+v>e“k+w> dv dii

m=1
k
=1 / ( H Amtm (f * /J/\'u|)(Ak+1) Z>‘k+1"v‘e’i>\k+2vk+1
RETL

m=1

k+1

+ T e (F = o) ko) e“m'”') dv

m=1

=i / (ef it O N2, 0) + ey (A, - o Mgz, v)) d,

k+1
R+

which are the remaining terms we needed.

Finally, putting it all together, we have

k+1 k+2

f[k“]()\ Sy Akt2) =1 Z/ ﬂ'*zkﬂz / 5k+1] (M, -y Akgo,v)dv
Jj=1 j=1
Rk Rﬁjl
when A1,..., A\gro € R are distinct. But, since both sides of the equation are continuous in (Aq, ..., Agt+2),

this completes the proof. O
We are now left with Step 3 (the easiest step), i.e., the base case of the induction in Step 2.

Proof of Step 3. First, we claim that

UL ) = /f u+ )2 dy du,
RZ

for all A1, 2 € R. (The integral above makes sense because f is compactly supported and belongs to
L'(R) OLOO(R) ) Indeed by the Fourier Inversion Theorem, continuity of f, and the fact that supp f C R,
we have f(\) = 5= fR e d¢, for all A € R. Therefore, if A1, A € R are distinct, then

f[l]()\ A2) i/f(g)w //f MV giA2(§=v) g d¢
172 2 A T on v

R4

//f z)\lv z)\2(£ v) dfdv _ _/f —‘r’U A1V z)\zu dudv

R+U

by Lemma A.1.9 and the change of variables u = £ — v. Swapping the roles of u and v in the above integral
gives the desired expression. As usual, the continuity of both sides in (A1, A2) allows us to pass from distinct
A1, A2 to arbitrary Ai, As.
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Therefore, our goal is to show
5/(U*uﬂ@hﬁf“”ahu+«f*m»@ﬁe—“wéM“ﬁw=:%‘/f%r+We””éMHMdu
T

for all A\;, A € R. To this end, notice that for all u > 0, the function g(\) = (f * p)(\) e satisfies
9,9 € LY(R) N L>=(R) and g € C(R). Also,

~ ~

9(&) = f(§ +u) (€ +u) = f(§ +u)

g Tu 1(0,00) (5)

when u > 0. Therefore, by the Fourier Inversion Theorem and the continuity of g,

£

gt

"o
R

1 [ 1 =
90 =5 [a© N de = o [ Fie+w
Ry
for all A € R (when u > 0). Therefore,

. —iA1u il _ L N 3 iME _idou
z/(f*uu)()\l)e et du = 27r//f(§+u)—§+ue e d¢ du
i ~

:—/f(quv)iu et 2? gy dy and
T

2 U+ v
R
: —idou iA1u _ L Iy S iAo Jidiu
z/(f*uu)()\g)e e du = 27r//f(§+u)—§+ue e dE du
R, R, R,

i ~ v )
— [ fu+v)——e?1uet*2 dy du.
2 / U+ v

el

Adding these together yields % fRQJr f(u + v) eM1%ei2v dy dv, as desired. This completes the proof. O
A.2. Part I1

We now use Theorem A.1.3 to prove Theorem 4.3.13.
Proposition A.2.1. If v,0 >0 and f: R — C is as in Convention A.1.5, then f * p, € BOC(R).

Proof. First, suppose f, fe L'(R) as well, and let g :== f  p,. Then § = fﬁv is compactly supported on
R.. By Theorem A.1.3 (really, only Step 3 of its proof), we have

gM (A, M) =i / ((g# pu) (Ar)e™ 1€ 4 (g4 ) (Ng)e ™21 du,
Ry
for all A1, A2 € R. For arbitrary f as in the statement and f,, as in Lemma A.1.6, we have that

(fn * Mv)[l]o\la A2) =i / (((fn * fhy) * Nu)(/\l)eii)\luei)\w + ((fn * pro) * Uu)()‘2)€7i)\2uei)\lu) du.
Ry
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As in the proof of Step 1 of the proof of Theorem A.1.3, we may take n — oo when A\; # A to conclude

)0 2) = [ ((F 5 p0) =) Qe e 4 () 5 ) Qe da
Ry

Since the right hand side is continuous in (A1, A2), we conclude this identity holds when A; = Ay as well.
This is a £*-integral projective decomposition of (f * u,)). We conclude from Corollary 4.2.7 that if H is
a complex Hilbert space, a € C(H)sa, and ¢ € B(H )ga, then

[(f * po)(a+c) = (f xpo)(a)]| < ||(f*.uv)mHgoo(R’BR)(gigoe(R’BR)”CHv

so that f % pu, € OC(R). Since f * u, is bounded by Proposition A.1.2.(ii), we are done. O

Proposition A.2.2. Fix o > 0. If k € N, then there is a constant ar, < 0o such that whenever f € {*(R, Bg)
satisfies supp f C [— o, —%] U [%,o], we have

17 socmyen < ara®[If .

Proof. Let f be as in the statement of the proposition and ¢ € C2°(R) be a bump function such that ¢ = 1
on [%,0] and suppy C [%,20]. V\iritingilzg(g) = YP1(=€), x1 = F1(41) and x2 = F1(¢2), we have
f=x1*f+4+xo*f because f =1 f + 1o f. But fi := x1 * f satisfies the hypotheses of Theorem A.1.3. By
Lemma 4.3.6, Proposition A.2.1, the fact that BOC(R) is an algebra, and the comments about when the
integrand in (18) vanishes, Theorem A.1.3 gives a BOCIPD of fl[k] from which we may conclude

k+1
K .
|I/1 ]||Boc(R)®i(k+1) <> / | f1 o pyg [l e () did
I=Maery a1 <o)

O'k O'k
<3k + 1) gllfillze < 3lxaller (b + 1)o7l flloe

by the bounds from Proposition A.1.2 and Young’s Convolution Inequality. Next, x — fo(—x) also satisfies
the hypotheses of Theorem A.1.3. This allows us to conclude

k
k o
1A mocysisen < 3lxallin(s+ D Tl
as well. Thus we may take a < 2 (|[x1]|rr + [[x2/[z2)(k 4+ 1) in the statement of proposition. O

We now transfer this result into the desired statement about Besov spaces. Recall from Definition 4.3.10
that we have fixed ¢ € C2°(R™) such that 0 < ¢ <1 everywhere, suppp C{{ € R™: ||€|| <2}, and p =1
on {£ € R™ : [|¢]| < 1}. We also defined ¢;(£) = ¢(277¢) — p(2797LE), for all j € Z and £ € R™. It is
easy to see that 0 < ¢; < 1, suppy; C {£ € R™ : 2771 < ||¢|| < 29+ o + i1 pi =927 ™) forn e N
(so that ¢ + Zjoil ¢; =1 everywhere), and Z;’i_oo ©j = 1grm\ {0} From these bump functions, we get the

Littlewood-Paley sequence/decompositions of a tempered distribution. Indeed, if f € ./(R™), then

F=e@ )+ 5 x f (20)
j=n

in the weak* topology of .#/(R™), for all n € Z. Therefore, the series Z;’;_m @ * [ converges if and only if

_—

(p(2™) * f)nen converges, if and only if (<p(2”-)f)n€N converges (all in the weak* topology). In particular,
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f=> %t (21)

j=—c0

~

in the weak* topology if and only if w*-lim,,_, RQ_”/) x [ =0 w*-lim, o ©(2")f = 0. The identity
in (20) with n = 1 is called the inhomogeneous Littlewood-Paley decomposition of f. The identity in (21)
(or at the very least, the formal series therein) is called the homogeneous Littlewood-Paley decomposition
of f. Sometimes these are also called the Calderén Reproducing Formulas. The proofs boil down to the
weak* continuity of the Fourier transform and the fact that if n € .(R™), then p(R~!:)n — 1 in Z(R™)
as R — oo, which is a nice exercise to prove.

Note that if Z;’;foo ®; * f converges (in the weak* topology), then P := f — Z;iioo p;x fe S (R™)
is easily seen to have the property that supp]3 C {0}. Therefore, P € C[Ay,...,Ay] is a polynomial and

f= ) ¥*f+P
Jj=—0o0

This observation will come in handy later. The most important fact about Besov spaces for us is that the
inhomogeneous Littlewood-Paley series of the k™" derivative of a function belonging to Bf *°(R) converges
uniformly. To prove this, we use Bernstein’s Inequality.

Lemma A.2.3 (Bernstein’s Inequality). Suppose o € NI* and 1 <r < p < oco. There is a constant by rp < 00
such that for all R > 0 and v € '(R™) with suppu C {£ € R™ : ||€|| < R}, we have

[0%u||,, < Doy rp R =3) ]| 1.

Proof. Defining ug == R~™u(R™!.), we see that suppur C {£ € R™ : ||| < 1}. Supposing we know the
desired inequality when R = 1, we have ||0%ug||r» < ||ug|L-- Since

8%ur = R R=™(8°u)(R™") and |jurl|lze = R™@ D |Jul| e
for all g € [1, 00], we conclude

R G0 150w 1 = [[0%u) ,, S lurller = R™G D Jullgr,

~

whence the desired inequality follows. Therefore, we can and do assume R = 1.
Next, we notice there are really two inequalities in the one we would like to prove:

lullze S llullzr and [|0%ul| , < Jullze-

To prove these it is key to notice u = @ x u and 9%u = @ * 0%u = (0*@) x u, by taking Fourier transforms
of both sides and recalling ¢ =1 on {{ € R™ : ||€|| < 1}. Then, by Young’s Convolution Inequality,

[ullze = [+ ulle < (@l LallullLr,

where % =1+ % —1€10,1] (using 1 <r < p < 00). By the same inequality,

0% ull o = [1@°%) * ul| ,, < (|0 s Nl 2o

This completes the proof. O
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We actually learned from the proof that we can take

ba,p,p < H8a\¢HL1 and bﬁ,r,p < H\¢”Lq’ (22)

where ¢ =1— (1 — 7). In particular, we can take bo,p < [|0°P||£1[|P]| La-

Proposition A.2.4. Fiz s € R, 1 < p < oo, and f € B{?(R™). If « € NJ* and |a| = s — =, then

Z;‘;im P x0°f = Z;‘;im 0%(@; * f) is absolutely uniformly convergent.

Proof. Since the Fourier transform of ; *0° f is supported in {£ € R™ : [[£]| < 27t!}, Bernstein’s Inequality
(Lemma A.2.3) gives

oo o0

Z 18,0 f| oo < bapios Z (2H)lelts Bi*fll o = 2bap.00 Z 285 f ||, = 2%bap.ooll fll

j=—00 j=—00 j=—o0

which is finite. O

Let us record a special bound we learned in the proof about our case of interest. When (s, p, ¢) = (k, 00,1)
for k € Ny and m = 1, we get from (22) that

> @ nN®, . = Z 185 % 7O < 25181 e =2 Bl e (23)

Jj=—00 j=—0o0

for f € B¥*°(R). In particular, there is a polynomial P, € C[)] such that

F0) = i (@, * )®) + Py € C(R) N 2R, B(R)) + C[\] (24)

j=—00
as tempered distributions. Thus f € C*(R), i.e., we have Bf’OO(R) C CF(R).

Proof of Theorem 4.3.13. We know from (23) and (24) that if f € B> (R), then

2@ DO <00

JEL

and f) differs from the bounded continuous function ZjeZ(\Séj * £)*) by a polynomial Py. If f € PB*(R),
then f®) is itself bounded, so P, must also be bounded and therefore constant. Write C € C for this
constant. Now, fix A := (A\1,..., Akt1) € R 1. Then Proposition 4.2.3 (twice), the uniform convergence of
the series, and the fact that pk(Ak) 5 give

) = [ 192 ety = [ (C+ 3, NP X)) pulat)

Ak Ak JEL

+Z/ @+ 1)) pildt) = +Z¢]*f

JEZAk JEL

Next, fix j € Z. Since f € Bk’m(R) we have that \géj x f satisfies the hypotheses of Proposition A.2.2 with
o = 27+1 Therefore, completeness of BOC(R)®:(*+1) Proposition A.2.2, and the definition of || - || jhooo give
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C
||f (] HBOC ]R)® (k+1) > |k' + Z H -k f (] ||BOC(]R)® (k+1) S |k'| + 2kak||f||Bf,<>o
JEZL

Sap (2R f | Loo

Finally, recalling the definition of C' and using (23) again, we get

C1 < it [P0+ DN « Nl < inf [FOO] + b0l g~

JEZL

It follows that we may take cg < k4 2k, in the statement of the theorem.
For the second statement, suppose f € PBY(R). Then, by the above, there is some C' € C such that

Fr=C+Y 3xf =C+> (%) (25)
JEZ JEZ
Now, it is easy to see that
. . k
B> (R) N B¥>°(R ﬂ BE>(

Therefore, if f € PB'(R) N BF*(R) C ﬂlzzl B (R) as well, then Yiez 1@ * )| p~ < oo whenever
1 < ¢ < k. This ensures that we can differentiate the series in (25) to conclude that

o ZZ(%*JE)(@

JEZ
and thus f € PB‘(R), when 1 < ¢ < k. In addition, when k > 2, the previous paragraph’s analysis gives

Hf[k]||BOC(R)®i(’°+1> S Qkak”fHBf*W'
We have therefore proven the desired bound and that PBY(R) N B¥*(R) = PBY(R)N---N PB*(R). O

Remark A.2.5. Note that if we required f € B%’OO(R) and f'= 3. 7 $; * f', instead of only f € PBY(R),
then we would get || fM]| soomys, Boo®) < 2a1|f| 51 (g, from this proof.
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