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Abstract

The use of multimodal data allows excellent opportunities for human—computer interaction research and novel techniques
regarding virtual and augmented reality (VR/AR) experiences. Collecting, coordinating, and synchronizing a large amount
of data from multiple VR/AR hardware while maintaining a high framerate can be a daunting task, despite the compelling
nature of multimodal data. The Lab Streaming Layer (LSL) is an open-source framework that enables the synchronous
collection of various types of multimodal data, unlike existing expensive alternatives. However, despite its potential, this
framework has not been fully adopted by the VR/AR research community. In this paper, we present a guideline of the LSL
framework’s use in VR/AR research as well as report current trends by performing a comprehensive literature review on
the subject. We extract 549 publications using LSL from January 2015 to March 2022. We analyze types of data, displays,
and targeted application areas. We describe in-depth reviews of 38 selected papers and provide use of LSL in the VR/AR
research community while highlighting benefits, challenges, and future opportunities.

Keywords Virtual reality - Augmented reality - Multimodal data collection - Lab Streaming layer - Open-source data
collection - Literature review

1 Introduction

With recent advancements and public interests in immersive
technologies, such as virtual/augmented reality (VR/AR),
designing and developing novel interaction techniques and

P< Roghayeh Leila Barmaki
rlb@udel.edu

Qile Wang
kylewang @udel.edu

Qinqgi Zhang
qingi @udel.edu

Weitong Sun
edwina@udel.edu

Chadwick Boulay
chboulay @ohri.ca

Kangsoo Kim
kangsoo.kim@ucalgary.ca
1 University of Delaware, Newark, DE 19711, USA

2 Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6,
Canada

3 University of Calgary, Calgary, AB T2N 1N4, Canada

metaphors, and evaluating the effectiveness of VR/AR have
become more and more important from the perspective of
human—computer interaction (HCI) research. With more
sensing and control devices proposed and invented in VR/
AR, numerous types of multimodal data from heterogeneous
devices have been investigated. Most commonly, these data
involve information about users’ emotions, behavior, and
physiological signals. Furthermore, reliable data collecting
and sharing procedures are necessary for accurate and robust
evaluations in VR/AR applications and research. It can help
us gain a deeper knowledge of users’ perception and cogni-
tion processes during their VR/AR experiences.
Previously, there have been several seminal works in the
development of such data collection and sharing frame-
works. For example, Reitmayr and Schmalstieg (2005) pro-
posed an open software architecture, OpenTracker, which
used a modular design to track input devices and process the
data for VR application development. Taylor et al. (2001)
presented the Virtual Reality Peripheral Network (VRPN),
which has been actively used for decades while covering
different VR/AR devices (Thomas et al. 2014; Cuevas-Rod-
riguez et al. 2012). Pavlik and Vance (2010) developed an
extension of the VRPN to collect and synchronize data from
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the Nintendo Wii Remote game controllers and sensors for
use in a VR application.

While VRPN and OpenTracker were useful for collecting
data with different sensors, such middleware platforms could
not adaptively update the system structure to change the sen-
sors dynamically. To overcome this, UbiTrack was devel-
oped based on middleware that allows users to dynamically
introduce their devices into the data collection framework at
run-time, particularly for AR tracking (Newman et al. 2004).

As a solution for the unified gathering of measurement
time-series data in research experiments, the open-source
Lab Streaming Layer (LSL) has recently attracted a lot of
interest from data scientists and researchers (Kothe 2014).
Networking, time synchronization, (near-) real-time access,
and optionally centralized data gathering, display, and disk
recording can all be handled by LSL. Collecting electro-
encephalogram (EEG) data are one of the most common
uses for LSL (Si-Mohammed et al. 2020; Wunderlich and
Gramann 2020).

Given the potential of LSL for effective and reliable data
collection in VR/AR research and practices, our overarching
goal in this paper is to explore and understand how or for
what purposes the LSL framework has been used in VR/AR
research. We conduct a scoping review using a systematic
literature survey approach to explore different uses of LSL in
VR/AR research for multimodal sensor data acquisition and
streaming. We present the recent trends in the use of LSL,
particularly focusing on what types of data and displays have
been involved and what application areas were considered
in the papers while maintaining our scope narrow within the
research that used VR/AR technologies. We also performed
in-depth reviews of selected papers by summarizing in what
context the LSL was used in their work. This review helps us
understand the growing use of LSL in VR/AR research and
identify the potential gap(s). The contributions of our work
include the following:

e We introduce and describe the LSL as an effective data
collection tool for VR/AR researchers who are currently
working or interested in multimodal data collection and
human (perception/behavior) analysis.

e  We provide comprehensive knowledge that captures the
recent trends and use cases of LSL in VR/AR research
domains by a systematic literature review.

e We identify the limited use of LSL in VR/AR research
and share some insights and potential research directions.

The rest of this paper is organized as follows. In Sect. 2, we
introduce the LSL framework and describe the features that
could directly benefit VR/AR or HCI research. We describe
the methodology of our literature review about the use of
LSL in VR/AR research in Sect. 3, and report the results
of high-level trends analysis in Sect. 4. Section 5 presents
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our in-depth reviews of selected papers, and the findings
are discussed with future research directions and possible
limitations in Sect. 6. We conclude our paper in Sect. 7 by
summarizing our work and contributions.

2 Lab streaming layer (LSL) framework

The core library of LSL framework was first introduced by
Kothe (2014). The first application was used to record and
synchronize multimodal data with Brain Computer Inter-
faces (BClIs), Mobile Brain and Body Imaging (MoBI)
paradigms. In recent years, LSL has become a standard for
synchronizing and collecting multiple data streams. Fur-
thermore, LSL’s preferred data storage format, XDF, exists
as an ANSI standard under the name “Attuned Container

Format™.!

2.1 LSL functionality

LSL is a low-level technology to communicate time series
and events between programs and computers. LSL estab-
lishes stream discovery, data transmission, and time-syn-
chronization protocols. The data transmission protocol
includes extensible descriptive metadata and a simple encod-
ing format. The time-synchronization protocol calculates
clock offsets using a subset of the Precision Time Protocol
(PTP) algorithm, and consumers of LSL streams can correct
for clock offsets in real time or store the clock offsets for
offline correction.

On top of the protocol is the LSL library, which includes
the core transport library, liblsl, and its language interfaces
(C, C++, Python, Java, C#, Rust, Julia, and MATLAB). The
library is general-purpose and cross-platform (OS Support:
Win/Linux/macOS/Android/iOS; Architecture Support:
x86/amd64/arm). The LSL distribution consists of the core
library, examples for each interface, and a suite of tools built
on top of the library.

LSL is mostly used to acquire brain data into a common
format and optionally synchronize with other data modali-
ties. For example, a common method to collect and analyze
EEG in an LSL-enabled experiment using OpenBCI hard-
ware requires:

¢ An OpenBCI bundle with embedded software to relay
EEG data over LSL

e A stimulus presentation program that sends stimulus
events over LSL

e An LSL viewer for visual confirmation of stream con-
tents

! https://webstore.ansi.org/Standards/ ANSI/ansicta20602017.
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e The LSL LabRecorder to store data into XDF format

¢ An XDF importer to load data into MATLAB

¢ An analysis tool like EEGLab or MNE-Python to seg-
ment, analyze, and visualize the data

2.2 LSL integrations

The originating use case for LSL was multimodal synchro-
nization and recording during neuropsychological experi-
ments. The suite of official LSL tools includes many appli-
cations and plugins to interface with a variety of devices
common to neuropsychology experiments, including bio-
physical sensors, behavioral measurement devices, and stim-
ulus presentation platforms. Many more LSL applications
and integrations are provided by the scientific community,
industry, and hobbyist communities. As of this writing, there
are more than 100 known LSL integrations® and many more
can be found by searching source code repositories by com-
bining keywords for LSL and the target device or platform.
If an integration does not already exist for a particular device
then a software developer may create one following one of
the provided example applications and the device’s software
development kit (SDK) documentation. Some of the major
integration modules are described in this section below.

2.2.1 LSL integrations for biophysical sensors

Brain sensors and products, such as InteraXon Muse,’
EEGO,* ActiveTwo from BioSemi,> CGX Quick-20 and
CGX Mobile-128 from Cognionics,® ANT neuro,’ acti-
CHamp from Brain Products,® gTec,9 mBrainTrain,'® and
Emotiv!!, are compatible with LSL or supported through a
third party software.

Other bio-physical sensors, such as EEGO Sport from
ANT neuro and CGX AIM from Cognionics, support col-
lecting electromyography (EMG) using LSL. In addition, for
Photoplethysmography (PPG) measurement, sensors such as
Bitalino'? are also supported with LSL.

[N]

https://labstreaminglayer.org.

w

https://choosemuse.com/.
https://www.ant-neuro.com/products/eego_sports.
http://www.biosemi.com/.
https://www.cgxsystems.com/.
https://www.ant-neuro.com/products/eego_sports.

8 https://www.brainproducts.com/solutions/actichamp/.

° https://www.gtec.at/.
10 https://mbraintrain.com/smarting-mobi/.
' https://www.emotiv.com/epoc/.

12 https://www.pluxbiosignals.com/collections/bitalino.

2.2.2 LSL integrations for input devices

LSL provides integrations for many behavioral measurement
and input devices including eye gaze trackers, keyboards,
mouse, gamepads, microphones, motion capture, and others.

For gaze, interfaces exist for Tobii and Pupil-Labs exter-
nal devices, as well as for their VR-integrated devices. For
example, Tobii has integrated eye trackers in HTC Vive Eye
and in the Pico Neo Eye product line, and the gaze data can
be streamed over LSL.

Compatible audio input such as AudioCapture'? appli-
cation can use the LSL implementation for cross-platform
audio capturing.

Motion-capture systems such as Microsoft Kinect, Nin-
tendo Wiimote, and OpenVR are compatible with LSL.
OpenVR supports motion capture from several consumer-
oriented VR devices from HTC, Valve, and others.

2.2.3 LSL integrations for stimulus presentation

LSL supports audio-visual stimulus presentation from many
platforms. Integration is supported natively or via a sim-
ple extension in tools like Psychopy, Psychtoolbox, Pres-
entation, and E-Prime, or with a middleware platform like
iMotions. LSL support is available for Unity as a custom
package and for Unreal Engine 4 as a plugin available in the
marketplace.

Great care must be taken when using LSL to synchro-
nize stimulus presentation events with neural recordings.
The instant that the stimulus-generation code is executed,
which is usually the hook where the LSL event is generated,
typically precedes the instant that the stimulus appears on
the display by 15—70 ms. The lag is due to a combination of
processing in the stimulus presentation platform and frame
buffering. However, if the stimulus presentation platform has
low variability in its processing times (i.e., “jitter”’), and the
display has low variability in its frame buffering times, the
lag can be calibrated once and subtracted from all stimulus
presentation times. It may even be acceptable to ignore the
lag entirely if the jitter is low and the analysis of the stimulus
response is independent of the absolute latency. Experiment-
ers should measure the lag for each new hardware configura-
tion. For example, the stimulus presentation software should
flash the display and send an LSL event simultaneously, and
a photodiode attached to the display should be recorded in
an auxiliary input of the biophysical recording device, then
the lag between the event and signal change should be evalu-
ated for low jitter.

Most stimulus presentation platforms designed for
the neuropsychology community indeed have low jitter.

13 https://github.com/labstreaminglayer/App-AudioCapture.
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Fig. 1 Scoping review process
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Common game engines, however, may have high jitter, espe-
cially when the complexity of the visual scene affects the
frame rate. The jitter can be mitigated somewhat by delay-
ing the LSL event generation until the last possible moment
before the frame is to be rendered. The LSL4Unity custom
package provides an example of reducing jitter by delaying
event generation until the WaitForEndOfFrame hook.

2.2.4 Distribution of LSL integrations

Most LSL integrations exist as a stand-alone application
that reads data from the device and re-streams it using the
LSL protocol. The official LSL applications are available in
GitHub repositories. Many of these applications have pre-
compiled releases attached to the respective source code
repository that the user can simply download and run. In
contrast, a few applications require the user to build the
application from the source. These stand-alone applications
often require the user to install a driver or run a service from
the vendor. For example, the g. NEEDaccess service must be
running before the LSL application can retrieve data from
any of the g.tec biophysical amplifiers.

In other cases, LSL might be integrated directly into the
software the vendor provides for their system (e.g., BioSemi,
BrainProducts, and ANT Neuro). A small but increasing
number of devices integrate LSL directly into the device
firmware, so the user does not need to run any device-
specific software to receive the data stream. For example,
OpenBCI and fNIRS (functional near-infrared spectros-
copy) devices NIRx and NIRscout do not require any extra
software.

@ Springer

3 Methodology for scoping review

To investigate recent trends and identify potential gaps in
the use of LSL in VR/AR research, we conducted a scop-
ing review adopting a systematic method. Following the
PRISMA method for the systematic review process (Lib-
erati et al. 2009), we first collected 549 papers from five
digital libraries: Association for Computing Machinery
(ACM) Digital Library, Institute of Electrical and Elec-
tronics Engineers (IEEE) Xplore, Google Scholar, Scien-
ceDirect (SD), and Springer. We conducted the full body
search without any time constraints using relevant key-
words, (“lab streaming layer” AND “virtual reality,” “lab
streaming layer” AND “augmented reality,” “lab stream-
ing layer” AND “mixed reality”). The paper search was
initially conducted on June 29-30, 2021, and was updated
again on March 24, 2022 with newly published papers.

Figure 1 shows the overall review flow with paper
counts selected in each level. After removing redundant
papers, we further screened certain types of publica-
tions, such as books, book chapters, dissertations/theses,
technical reports, and non-English manuscripts, to focus
our review to research articles, and published extended
abstracts and posters, which reduced the number of papers
to 209. Four coders—the first three and the fifth co-authors
of this paper—further screened the papers, which are not
related to VR or AR research by reviewing the abstracts
and skimming through the papers, and the final pool for
our analysis included 92 papers. Using this pool of 92
papers, the coders conducted a high-level analysis that
classifies the papers in the following categories using a
majority voting mechanism:
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Fig.2 The numbers of papers collected by our keyword search after Brain Signals  Other Physio. Gaze Body Motion
the screening are based on redundancy and exclusion criteria. The Data Type

covered period is from January 2015 to March 2022, and the total
column is the sum of all the papers. As we collected papers only up to
March 2022, there are only a limited number of papers collected for
the year 2022

¢ VR/AR Research Whether the research in the paper is
targeted to VR, AR, or Both.

e Data Types What types of data were collected/processed
through the LSL for the research in the paper, e.g., brain
signals like EEG, brain imaging like fNIRS, eye gaze,
body movement, etc.

¢ Display Types What kinds of displays were used in the
paper, e.g., head-mounted displays (HMDs), monitors,
and projection.

e Application Areas What application areas the research
in the paper were targeted, e.g., human perception/cogni-
tion studies, training, education, and systems evaluation.

The results of the high-level analysis is described in Sect. 4.
To understand how the LSL framework was used in the
papers in detail, we further reviewed some selected papers
by the citation count—average annual cites greater than or
equal to 5 evaluated on April 12, 2022 via Google Scholar.
We also included some recent works from peer-reviewed
journal articles and full-length conference papers in 2021
and 2022, which did not have enough time to get cited. The
detailed reviews of the selected 38 papers are included in
Sect. 5.

4 High-level trends analysis

We analyzed general trends in the use of LSL based on
the classification categories listed in Sect. 3: (1) VR/AR
Research, (2) Data Types, (3) Display Types, and (4) Appli-
cation Areas. Here we report some of the high-level results.

First, we found that the number of papers that used LSL
in their research has been gradually increasing over the
past years from 2015 to 2021 (see Fig. 2). Given our paper
collection was finalized in March 2022, the paper count
for the year 2022 (currently 7) is expected to increase

Fig.3 Different data types were collected through LSL among the
collected papers. Different colors represent various targeted devices

compared to the previous year. This increasing number of
research papers indicates that there is a growing interest
and potential benefits in the use of LSL for the unified
collection of measurement time-series data in research
experiments.

After screening these papers to identify VR/AR Research
papers, we found that a majority of the papers (76 out of
92) were focused on VR settings while there were only
12 papers that targeted AR settings—four papers covered
both AR and VR settings. Most research in the papers had
human participants seated or at a static location to examine
their neurological or physiological signals accurately, which
could be more suitable in VR settings than in AR which
often involved locomotion and navigation scenarios. The
dominance of VR settings in the papers could also be due
to the accessibility of VR HMDs in the field. LSL is com-
monly utilized with bio-sensors in wearable technology. Our
analysis indicates that HMDs are the dominant form of VR
device. This prevalence of VR HMDs may be a contribut-
ing factor to the greater popularity of VR compared to AR.

Regarding the Data Types, many papers used different
types and modalities of data in their work, e.g., collecting
EEG signals together with participant’s eye gaze. Consider-
ing the multiple data types in a single paper, we established
four categories of data types: (1) brain signals, e.g., EEG
and fNIRS; (2) other physiological data, such as EMG, gal-
vanic skin response (GSR), and electrocardiogram (ECG);
(3) gaze data based on computer vision methods or EOG;
(4) body motion data collected from optical cameras or mag-
netic tracking sensors. We finally ended up with 139 clas-
sifications among the 92 papers (see Fig. 3 for the detailed
distribution of the Data Types classifications). We identified
that the LSL was mostly used to collect neurological brain
and other physiological data, as we expected because it was
the original purpose of LSL inception. The body motion data
were not dominantly used despite the potential of LSL for

@ Springer
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effective human motion/behavioral data in VR/AR (Wang
et al. 2021).

In terms of the Display Types, we found that the LSL
has been mostly used for immersive HMD settings (79 out
of 92 papers), followed by the traditional desktop monitor
(16 papers), and projection setting (six papers—see Fig. 4
to learn more). This reflects the recent increasing trend of
research with wearable devices in VR/AR. Portable smart-
phones or tablets are possible to use as an VR/AR display
together with LSL; however, LSL is primarily utilized with
wearable technology. This may explain the absence of smart-
phone and tablet devices in our data. Interestingly there was
one paper that involved audio-based AR (Nagele et al. 2021).
We included this paper considering a broad concept of AR,
which could cover not only the visual modality but also dif-
ferent sensory modality extensions, e.g., audio AR.

While classifying the papers, we were able to categorize
eight Application Areas that these selected 92 papers were
focused on: (1) Human Study for understanding perception/

80
5 ARand VR “VR = AR

60

40 66

Count

20

14
. 4 .
0.

HMD Monitor Projection Audio

Display Category

Fig.4 Distribution of display types used in the collected papers. Each
color represents each targeted device

Fig.5 Application areas tar-
geted in the collected papers

Training
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Visualization
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Education

3.3%
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cognition process and brain activities, (2) New Interface,
such as BCIs, (3) Healthcare for therapy and rehabilitation,
(4) Education, e.g., for measuring learning performance,
(5) Military for tactical training and evaluation, (6) System
Evaluation, e.g., system latency benchmark, (7) Visualiza-
tion for better visual layout and representations, and (8)
Social Connection among the users. The two most popular
areas were “Human Study” and “New Interface.” Someone
might say that “Human Study” is not necessarily an appli-
cation per se, which we understand, but we included this as
one of our area categories because a lot of papers focused
on human-subjects studies to understand their neurologi-
cal or behavioral responses. The findings in those papers
could be beneficial to various applications, but they did
not specifically mention the target applications but gen-
erally focused on the understanding of humans. With the
continuous increase of public and research interests in BCI
in VR/AR, LSL was actively used to develop novel inter-
faces beyond the traditional input mechanisms (Lecuyer
et al. 2008). Given the trend that the brain (neurological)
and physiological signals were dominant in the used Data
Types, the “Healthcare” was also quite popular for collect-
ing and monitoring those signals in patient-care scenarios.
The details of the application area classifications are shown
in Fig. 5.

5 Detailed reviews

In this section, we describe our in-depth reviews of 38
papers (Table 1) selected from our pool of 92 papers.

We focused on papers with more than five average
citations per year in our in-depth reviews. Full papers
published at journal/conference venues in 2021 and 2022,
which did not have enough time to be cited, were also

Human Study
39.1%
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Table 1 A list of the selected 38 papers for in-depth reviews, and their classifications

Paper Year VR/AR Display EEG/fNIRS  Other physio. =~ Gaze  Body motion  Application area
Mavros et al. 2016 VR Screen 4 Human Study
Banaei et al. 2017 VR HMD 4 4 Human Study
Park et al. 2018 VR HMD 4 Human Study
Peterson and Ferris 2018 VR HMD 4 Human Study
Hertweck et al. 2019 VR HMD 4 Human Study
Putze et al. 2019 AR HMD v New Interface
Djebbara et al. 2019 VR HMD 4 4 Human Study
Faller et al. 2019 VR HMD 4 4 4 Human Study
Vortmann et al. 2019 AR HMD 4 4 4 Human Study
Vourvopoulos et al. 2019 VR HMD 4 4 Healthcare
Vortmann and Putze 2020 AR HMD v 4 New Interface
Gupta et al. 2020 VR HMD v 4 Human Study
Kroczek et al. 2020 VR HMD 4 Healthcare

Nenna et al. 2020 VR HMD v 4 Human Study
Cruz-Garza et al. 2021 VR HMD v 4 4 4 Education

Delaux et al. 2021 VR HMD v v Human Study
Miyakoshi et al. 2021 AR - v v Human Study
Rezaee et al. 2021 VR Projection v Healthcare
Kalantari et al. 2021 VR HMD v v v Human Study
Vortmann and Putze 2021 AR HMD v 4 New Interface
Muller et al. 2021 VR Screen v 4 Healthcare
Mladenovic et al. 2021 VR Screen v New Interface
Vortmann et al. 2021 AR HMD v 4 New Interface
Kumar et al. 2021 VR HMD v Human Study
Eckert et al. 2021 VR HMD v v Human Study
Weber et al. 2021 VR HMD v System Evaluation
Quintero et al. 2021 VR HMD v New Interface
Bustamante et al. 2021 VR HMD v v System Evaluation
Klug and Gramann 2021 VR HMD, Screen v System Evaluation
Berger et al. 2021 VR HMD v Human Study
Saanchez-Cuestaetal. 2021 VR HMD 4 Healthcare

Liet al. 2021 VR HMD v Human Study
Gorman and Wang 2021 AR HMD 4 New Interface
Callahan-Flintoftet al. 2021 VR HMD v Human Study
Kisker et al. 2021 VR & AR HMD v v v Human Study
Gregory et al. 2022 VR HMD v Human Study
Lapborisuth et al. 2022 VR HMD 4 v v Human Study
Valente et al. 2022 AR HMD, Screen v Social Connection

included to capture the most recent research trends. The
reviews are structured based on the Data Types that the
papers used to reveal the purposes of the use of LSL in
VR/AR research, while being also organized by the target
Application Areas. Our focus in the reviews is more on
the use of LSL in the papers, not necessarily about their
research findings.

5.1 Brain signals

As noted in our high-level trends analysis (Sect. 4), a
majority of the papers used LSL for collecting neurologi-
cal brain signals, such as EEG and fNIRS. Here we review
15 selected papers in this category, considering the Appli-
cation Areas.

@ Springer
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5.1.1 Human studies

Many publications investigated the user’s perception/cogni-
tion process with brain signals in VR using LSL in human
study settings. In order to improve enveloping closed-
loop VR for human studies, it is crucial to incorporate
feedback on the user’s emotive state. Kumar et al. (2021)
demonstrated how EEG readings may be used to assess a
viewer’s emotional state while they take in immersive VR
content. Communication between the EEG and VR envi-
ronment was performed via LSL (and its recording tool
called LabRecorder). Since such VR-EEG neurofeedback
requires users to wear VR goggles on top of the electrodes,
the user experience with those devices or the technology is
an important research aspect. Berger et al. (2021) explored
the user experience of VR-based neurofeedback paradigms
with respect to different genders, and the impact of 3D and
2D VR environments through user research. The outcomes
showed that female participants experienced more discom-
fort than male participants; they concluded that training ses-
sions for the VR experience are more beneficial for females
to adapt to the technology that they perceive as less reach-
able. Also, this research showed that the 3D environment
did not necessarily exacerbate cybersickness, compared
to the 2D environment. The LSL was used to implement a
streaming framework for the incoming EEG data. To achieve
the collection of more accurate brain signals as an objec-
tive and reliable measure in human studies, Hertweck et al.
(2019) experimented EEG signal quality while using two
VR HMDs, e.g., HTC Vive Pro and Oculus Rift. For the
signal quality assessment, LSL was employed to capture and
synchronize all the information and events in VR.

There were many types of research that investigated
brain activities in navigation tasks using LSL. Mavros et al.
(2016) analyzed the study of urban navigation behavior
by using EEG, and recorded the signal by electrodes and
Emotiv EPOC hardware (see footnote 11). Open-source
software tools using the LSL framework, which permits the
simultaneous mixing of data streams from several sources,
were created to manage accurate time synchronization.
Park et al. (2018) studied brain activity in spatial naviga-
tion by using mobile brain imaging, involving both EEG
and fNIRS systems. The analysis and processing of mobile
EEG and fNIRS signals were made possible by the use of
the LSL framework, which made it easier to integrate vari-
ous neurological and physiological methodologies. Nenna
et al. (2020) studied the brain dynamics being adjusted in
single-/dual-task scenarios using a visual discernment task
in a simulated VR setting. Participants in the user research
stood (single-task) or walked (dual-task) while completing
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the visual discrimination task in VR. P3'* amplitude reduc-
tion was observed, which is typically related to anxiety and
depression. The walking use of LSL in the VR implementa-
tions was particularly useful for them to control the study
systematically. Beyond the ground navigation, Faller et al.
(2019) studied the relationship between arousal and task
performance using a boundary-avoidance task in VR-based
aerial navigation. The participants in their study could con-
trol their navigation directions via a BCI equipped on an
HMD, which was achieved by using the LSL to collect and
analyze the brain signals.

To study neural signals and the effects in the process
of memory encoding and attention cueing, Gregory et al.
(2022) developed a data set that consists of EEG and behav-
ioral data collected from 47 candidates during a visual work-
ing memory assignment in VR. During the memory task,
participants had to recall information about virtual objects
on a table in VR, including their state and specifics, and
either a nonsocial pointing object (stick cue) or embodied
virtual avatar was used as attentional cues. Further research
is encouraged using this dataset in the context of conver-
gence research between VR and neural signal processing.

5.1.2 New interfaces

Given the growing interest in novel human—computer inter-
faces, such as BCI, there were also some papers that used
LSL for developing new human interfaces and investigating
the effects (Bablani et al. 2020). Mladenovi¢ et al. (2022)
studied the feedback of BCI regarding motor imagery in a
video game, Tux Racer.'® They used LSL to control a virtual
joystick in real-time while streaming the classifier output
from OpenViBE (Renard et al. 2010). Gorman and Wang
(2021) developed a convenient, closed-loop AR-based BCI,
which can provide users with accurate object/environment
control ability. The system assessed the practicability of con-
trolling a physical device by steady-state visually evoked
potentials (SSVEP) applying LSL. The conducted study with
three participants showed that the proposed system could be
an effective interface to control a navigation robot, indicat-
ing the potential use for individuals with special physical
needs. Brain signals tend to be noisy, especially when differ-
ent electronic devices are used simultaneously. Weber et al.
(2021) suggested a methodical approach to check HMDs for
electromagnetic (EM) noise that might interfere with EEG
measurements. They synchronized the EEG and task cues

14 P300 (P3): the largest positive peak of an event-related potential
(ERP) waveform within the time window of 300-500 ms, which is
elicited in the process of decision making.

15 https://tuxracer.sourceforge.net/.
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via LSL to analyze the signal quality and status of EEG data
in frequency and time domain quality.

Similarly, Klug and Gramann (2021) provided policies for
various experimental settings and conditions, which could
influence the robustness of EEG signals. They compared
settings for stationary and mobile (non-stationary) to investi-
gate the effects of preprocessing, e.g., data filtering, on inde-
pendent component analysis (ICA) decomposition, which is
a frequently used method to eliminate noise artifacts from
the data. Through the experiment with 20 healthy adult par-
ticipants, they found clear differences between the mobile
and stationary data. While the ICA results were acceptable
in the stationary setting, high-pass filters should be applied
to make the ICA results reliable in the mobile setting. Using
LSL, data measurement and event marker streams in diver-
gent sources were recorded and time-stamped.

5.1.3 Other application areas

There were different application areas considered in the
papers using brain signal data. For example, in the con-
text of healthcare, in particular post-stroke rehabilitation,
Rezaee et al. (2021) studied VR-based balance training with
fNIRS and EEG systems combined with a wireless simula-
tor and Wii Balance Board. The neuroimaging and triaxial
accelerometry data were handled simultaneously using
LSL. Sdanchez-Cuesta et al. (2021) studied the efficacy of
immersive multimodal BCI-VR training for clinical stroke
rehabilitation protocols. The results showed that provid-
ing immersive motor imagery in VR could be combined
with noninvasive brain stimulation, e.g., neuromodulation
approach to increase the rehabilitation effects. The EEG data
acquisition, processing and the control of the VR environ-
ment were achieved through OpenViBE and LSL.

For education, Cruz-Garza et al. (2021) investigated the
neural dynamics associated with different VR classroom set-
tings, such as different window locations and room sizes. In
their study, participants were involved in various cognitive
tasks, such as the Stroop test, and they measured EEG data
together with the test performance through LSL. The out-
comes illustrated that the classroom design could influence
brain activity features during cognitive tasks, implying the
potential of neurophysiological analysis for effective class-
room design.

5.2 Other physiological data

A variety of physiological signals, e.g., electrodermal activ-
ity (EDA), EMG, ECG, heart-rate variability (HRV), and
GSR, have been used in many of the reviewed papers in
different contexts. Those signals could be collected and ana-
lyzed through LSL, together with or separately from brain

signals. We selected nine papers for in-depth reviews, which
involved different physiological data beyond EEG or fNIRS.

5.2.1 Human studies

To measure (or recognize) the users’ (affective/emotional)
states during VR/AR experiences, physiological signals
have been actively used, e.g., changes in heart rate, skin
conductance, and temperature could be a good indicator of
perceived stress in VR (Insko 2003; Meehan et al. 2002).
The use of LSL could provide an ability to measure accurate
response times while collecting such physiological signals,
e.g., ECG, HRYV, and heart rate, together with behavioral
data and game event timing. For example, Li et al. (2021)
presented a multimodal sensing system to detect cybersick-
ness that VR users experience by collecting and analyzing
neural and physiological signals. They conducted a human-
subjects study where participants experienced different
levels of cybersickness-inducing tasks in an immersive VR
environment. Photoplethysmogram (PPG)-based HRV, and
temperatures on fingertip and forehead collected with LSL
were used to estimate and correlate with the level of cyber-
sickness together with EEG and EOG signals. The results
showed that cognitive control capability—specifically the
extent of attentional engagement—is negatively influenced
by cybersickness. It also revealed that different vestibular
network domains—cognitive, sensorimotor, and autonomic
domains—measured by both physiological and neural sig-
nals have different implications in cybersickness.

5.2.2 New interfaces

Physiological signals could also be used to design novel user
interfaces, e.g., EMG-based gestural interaction (Nymoen
et al. 2015), or breath-based gaming interfaces (Sra et al.
2018). In our review, Quintero et al. (2021) developed an
open-source software framework called Excite-O-Meter,
which collects and processes physiological data using LSL.
The framework integrated cardiac activity signals, such as
ECG, PPG, and resulting HRYV, in interactive VR applica-
tions while providing real-time analysis. During the virtual
game interaction, they recorded ECG data to measure heart
rate and HRV, which are typically considered valid stress
markers. Their results showed that the developed tool based
on the framework could be easily used and provide scientifi-
cally valid data for researchers and practitioners.

5.2.3 Other application areas
A variety of application areas were considered in the
reviewed papers using physiological signals. Since physi-

ological changes are closely associated with emotion, e.g.,
arousal and valence, physiological data were often used in
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the context of social interactions. Gupta et al. (2020) meas-
ured the confidence level in a virtual helper by using differ-
ent physiological signals in VR. In particular, they used LSL
to collect GSR and HRV using Shimmer sensors and EEG
signals.'®Kroczek et al. (2020) studied interpersonal distance
during real-time social interaction using physiological meas-
urements like ECG, EDA, and EMG. The LSL framework
with a recording feature was used to record and synchro-
nize data from various sources regarding the distance and
physiology measures. In AR, Valente et al. (2022) devel-
oped a neural network model for emotion recognition using
ECG data and created a novel AR communication cue. They
evaluated the effects of the AR system in various situations
by gathering the data from the ECG sensors and delivering
it using LSL.

These physiological data were also utilized in considera-
tion of medical/clinical applications. For example, Peterson
and Ferris (2018) used the LSL framework to collect and
synchronize electrocortical responses and EMG activity to
analyze physical and visual balance perturbations. Vourvo-
poulos et al. (2019) used a VR system for post-stroke reha-
bilitation. In their pilot study with stroke survivors, EEG
and EMG signals collected through LSL were compared to
move their virtual avatars’ arms. The findings showed that
patients with serious motor impairments could advantage
more through EEG-based neuro-feedback, while patients
with gentle impairments benefited more through EMG-based
reports. Bustamante et al. (2021) introduced a robot arm
system that allows researchers to conduct various studies on
how humans may control a robotic arm in a range of scenar-
ios from an upper limb prosthetic to a wheelchair-mounted
robot controller in VR. The use of LSL allowed linking any
additional control modalities, such as EMG or gaze, to fulfill
the need for prosthetic or robotic assistance research. To
study learning performance and experience in educational
settings, researchers also investigated the use of physiologi-
cal signals in different learning environments. Kalantari
et al. (2021) conducted an experiment that examined physi-
ological signals in real and virtual classroom environments.
Participants in the study were engaged in different cognitive
tests, which involve various physiological responses, such
as EEG, ECG, EOG, and GSR. However, the consequences
did not illustrate any major variances between the real and
virtual settings. All the data including brain signals were
collected and synchronized through LSL.

5.3 Gaze

Regarding the use of gaze data, we found that most papers
were focused on AR research or applications. Here, we

16 https://shimmersensing.com/.
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introduce eight papers that utilized gaze data in their
research using LSL.

5.3.1 Human studies

Gaze is one of the most important social cues, which lets us
share our attention and intention with other people, by look-
ing at the target of interest (Langton et al. 2000). Unsurpris-
ingly, gaze has been used in many human-subjects studies
to understand human behavior and mental states. Vortmann
et al. (2019) tackled an interesting question about visual
interference of virtual contents in an AR user’s view, which
could influence the user’s focus of attention and internal
thought process. To investigate the effects of visual AR con-
tents, they designed a user study with a special alignment
task in AR. They collected participants’ gaze and behavioral
data, together with EEG signals through the LSL. Lapbo-
risuth et al. (2022) aim to get a deeper understanding of
the link between attention reorientation and gaze by utiliz-
ing a realistic VR-based target detection paradigm. They
were able to capture and combine the reorienting signals
across several modalities by using LSL to synchronize the
EEG and gaze data streams together via a local network. As
for many aspects of the VR user experience, Eckert et al.
(2021) assessed the objective evaluation of the cognitive
load. In a six-degrees-of-freedom (6-DoF) VR scenario with
uncontrolled scene illumination, they provided a technique
to measure the cognitive load using pupil dilation. To inves-
tigate an individual sigmoidal mapping function between
brightness levels and pupil size, the LSL was employed
to record and synchronize the data from the eye trackers.
Callahan-Flintoft et al. (2021) studied eye and head move-
ments during navigating VR experiences while emphasizing
the potential of VR systems as a tool for vision researchers.
Eye and head tracking in controlled VR environments allows
researchers to capture naturalistic human behaviors with-
out sacrificing strict experimental control. The study used
LSL to assess behavioral eye and head movements that were
timed to environmental factors/events in VR, proving the
viability of the created system in behavioral data gathering.

5.3.2 New interfaces

In terms of the use of gaze to develop novel user interfaces
in VR/AR, a series of research were conducted incorporating
the AR user’s gaze data with the EEG signals. Putze et al.
(2019) proposed a multimodal interface consisting of Micro-
soft HoloLens, Pupil Labs binocular eye-tracker, and BCI
to control smart home devices (e.g., a window blind). The
device component and the control system were connected
and communicated with each other via LSL. The paper also
noted some challenges in the use of LSL, e.g., the difficulty
of compiling on the Microsoft Universal Windows Platform.
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Vortmann and Putze (2020) further used their AR system
in a multimodal smart-home environment context and sug-
gested the benefits of attention-aware systems that track the
user’s attentional state. Vortmann et al. (2021) also studied if
an AR system can identify whether the user’s attended object
in AR is real or virtual by classifying data from EEG and
eye-tracking data via LSL. Recently they conducted research
about a person-independent and training-free BCI in AR set-
tings, using Microsoft HoloLens equipped with Pupil Labs
eye-tracker and an EEG cap (Vortmann and Putze 2021).
Those data were captured and processed through LSL and
MNE-Python toolbox.!”

5.4 Body motion

Motion data, such as body movement or location, gestures,
and postures, could be one of the most common and impor-
tant data types used in VR/AR research and applications.
Interestingly, however, there were not many papers that used
LSL to deal with such data in our trend analysis in Sect. 4
(see Fig. 3). Here, we review six papers that incorporate the
body motion data in their research—mostly together with
brain signal data.

5.4.1 Human studies

Body motion data have been actively used to study the cogni-
tive impacts during spatial navigation associated with brain
signals. Banaei et al. (2017) conducted research on how
interior shapes in architectural design affect the dynamics
of the human brain. Their research’s objective was to evalu-
ate the neurophysiological correlation between the physical
interior settings and the user’s affective state. In the study,
participants’ motion data, such as walking in diverse interior
forms in VR, were recorded and analyzed with EEG signals.
Djebbara et al. (2019) tackled one of the ongoing debates in
cognitive neuroscience and philosophy—whether the cogni-
tive process is associated with architectural affordances, a
way to see the physical structure of the environment based
on the perceived uses. They developed a VR HMD-based
system to investigate this issue. The LSL framework was
used to record human brain dynamics (EEG) and partici-
pants’ activities while navigating a structured virtual room.
Delaux et al. (2021) also used an immersive VR environment
to investigate the neurofeedback during active navigation,
e.g., cortical correlates of landmark-based navigation. They
used the LSL framework to collect participants’ behavioral
motions, EEG signals, and all other event triggers during
the VR experience. Beyond typical visual augmentation in
AR, Miyakoshi et al. (2021) focused on audio augmentation.

17 https://mne.tools/stable/index.html.

They studied how the brain works during spatial navigation
in a virtual maze while collecting both EEG and motion data
synchronously through LSL.

For psychology studies, Kisker et al. (2021) considered
VR as an effective tool to induce authentic fear and investi-
gate the reaction from a comprehensive angle. In their study,
subjects explored either a negative (fearful) or a neutral
VR cave with passive haptic feedback, and their behavio-
ral responses and EEG signals were evaluated. The results
did not show significant differences in the EEG signals but
revealed that the participants had a more negative affect and
fear behavior, such as slower walking or avoidance in the
negative setting than in the neutral setting. Since the VR
experience could provide real sentimental and behavioral
reactions, they came to the conclusion that VR has a sig-
nificant potential to boost the ecological validity of research
findings in these psychological investigations. The LSL was
used as a tool for synchronizing and capturing each data
stream from the experimental procedure, including body
movements, EEG, and events.

5.4.2 Other application areas

In the context of healthcare, Muller et al. (2021) presented a
study protocol to collect and analyze upper limb kinematics
for stroke patient rehabilitation. The goal of the research is
to examine the impacts of VR or conventional therapy ses-
sions on the paretic upper limb function in chronic stroke.
The protocol involved both brain signals and body motion
data using an optical motion sensor (Microsoft Kinect v2)
and EEG/fNIRS sensors, and LSL would be used as a tool
for synchronous measurements of upper limb kinematics and
motor cortical area activation (fNIRS and EEG).

6 Discussion

In this paper, we investigated the use of LSL in VR/AR
research using a systematic literature review approach.
Based on the rising number of papers in recent years, we dis-
covered that LSL has been receiving an increasing amount of
attention from researchers that use VR/AR for their studies
(see Fig. 2). We also identified that the use of LSL is largely
focused on neurological brain data collection as the develop-
ment of LSL originally targeted such use cases. Based on our
analysis results presented in the previous sections, here, we
discuss the findings and potential research directions, while
addressing missing and potential opportunities in the use of
LSL for human-centered VR/AR research.

@ Springer
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6.1 Benefits of LSL to human studies in VR/AR

In a large number of papers that we reviewed, LSL was
used for collecting and analyzing brain signals in the con-
text of human perception/cognition and behavioral studies.
This trend is particularly interesting in the VR/AR research
given the recent increase in user studies in VR/AR publica-
tions Dey et al. (2018). As the field of VR/AR research and
industry is growing both qualitatively and quantitatively,
researchers are more aware of the importance of human-
subjects studies to evaluate their developed systems, under-
stand human perception and behaviors during interactions
with virtual entities. Subjective measures, e.g., participant-
reported questionnaires and data collected from interviews,
have been qualitatively analyzed or converted into quantita-
tive values, such as Likert scales (Likert 1932). For dec-
ades, however, researchers addressed the potential issues
with such subjective questionnaires because of the ambi-
guity in interpreting the questions and concepts to meas-
ure (Slater 2004). Associating with subjective qualitative
measures, objective quantitative measures become more
important and emphasized as concrete evidence to support
the research claims or effects. Brain signals, other physi-
ological signals, and user’s behaviors, including gaze and
body motions, can be used as objective measures in VR/AR
studies. For example, several papers studied simulator sick-
ness (or cybersickness) in VR/AR by analyzing the user’s
EEG, EOG, and HRYV in our review (Berger et al. 2021; Li
et al. 2021). Understanding the causing factors and effects
of simulator sickness is crucial to extending the use of VR/
AR technologies in our daily lives.

Despite the potential of multimodality in improving user
experience, immersion, or even performance in certain tasks,
Martin et al. (2022) pointed out that such modalities should
be carefully designed considering the purpose. As human
studies in VR/AR would involve more and more multimodal
data captured through a variety of heterogeneous sensing
devices, e.g., visual, auditory, haptic, and proprioceptive
modalities Martin et al. (2022), LSL is a promising tool to
manage such large and dynamic data reliably.

6.2 Novel VR/AR interface research with LSL

For decades, VR/AR and HCI researchers pursue novel user
interfaces for more effective, efficient, and natural interac-
tions with virtual entities, more broadly with computing
devices. Developing such effective interfaces or interaction
methods is crucial, particularly in VR/AR due to the com-
plexity or ambiguity of the data visualized in 3D spatial
environments (LaViola et al. 2017).

Our review in this paper shows that LSL has been actively
used in the context of novel interface development and eval-
uation, e.g., BCI. The early research on BCI traces back to
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70s (Vidal 1973), and it has recently gained a lot of attention
from both researchers and the public because of the advances
in the technology and the potential to replace traditional
input mechanisms, e.g., keyboard and mouse (Bablani et al.
2020; Torres et al. 2020). BCI has been around for decades
even in the field of VR/AR, specifically in the context of
rehabilitation and training (Lecuyer et al. 2008). Considering
the accessibility and potential use of this technology for peo-
ple with disabilities, more rigorous research is required and
will be conducted in the future (Mane et al. 2020). The use
of LSL would be highly beneficial to perform such research,
not only for collecting and analyzing the data but also for
generating and sharing valid data sets for large-scale and
repeatable studies (Gregory et al. 2022).

Beyond the neurological signals, there was quite a bit of
research that collected and used eye gaze data in our review.
Eye gaze is one of the most important social cues that people
use for sharing their attention and intention (Langton et al.
2000).

The usage of gaze cues in VR/AR has recently received
significant attention. Many commercial VR/AR headsets
now come with eye trackers as a result of the growing popu-
larity of social VR/AR setups, with multi-user avatars.

VR/AR researchers have used gaze data to develop novel

forms of spatial user interaction in various interaction set-
tings and applications (Plopski et al. 2022). LSL is useful
and attractive to such researchers as it supports different
types of eye-tracking hardware.

Although LSL also supports some motion tracking hard-
ware, such as Microsoft Kinect, NaturalPoint OptiTrack, or
Vicon, we did not find many papers that used body motion
data with LSL in the review. This may be because of the
wide use of the existing individual tools and APIs provided
by the manufacturers, which does not require the VR/AR
developers and researchers to use LSL. However, the use of
LSL still has a lot of benefits with synchronized multimodal
data as VR/AR applications and research involve more com-
plex and multimodal signals. The range of LSL-supported
devices should be continuously increased and updated
including newer devices, e.g., Microsoft Azure Kinect, Win-
dows Mixed Reality VR headset and controllers (Wang et al.
2021), while also reflecting the recent trends with various
types of smart devices in different VR/AR interaction sce-
narios, such as AR interfaces to control Internet-of-Things
(IoT) devices. In this sense, Huo et al. (2018) and Jo and
Kim (2019) emphasize the potential of LSL in VR/AR due
to its scalability and adaptability.

6.3 Potential of LSL for designing VR/AR
applications

As fundamental techniques to realize VR/AR has expe-
rienced significant advances, more diverse VR/AR
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applications are considered and proposed for the past dec-
ades (Aukstakalnis 2016). Here in our review, we also
observed that LSL has been used in several VR/AR appli-
cation-specific areas, e.g., healthcare, social interaction,
and education, but the diversity is still quite limited. For
example, most use cases in the papers involved neurologi-
cal and other physiological signals in social interactions and
healthcare contexts, but the use of motion data for behavioral
analysis and applications was still underrepresented (Wang
et al. 2021). As we pointed above in Sect. 6.2, the LSL mid-
dleware or plugins for motion devices, which are commonly
used in VR/AR research, should be more introduced con-
sidering the potential in comprehensive data collection and
management in VR/AR applications.

In a broader field of HCI, the use of multimodal data
becomes more and more popular, or necessary in many
cases to improve the accuracy of human behavior analysis
and the contextual human understanding. For example, in a
mobile healthcare scenario, Blum et al. (2021) used LSL to
collect patients’ data collected by smartphone sensors. The
wearable technologies for VR/AR displays will continue to
be improved to the level of lightweight portable form fac-
tors and are anticipated to be widely used by consumers in
daily lives (Welch et al. 2019). Such VR/AR displays will be
equipped with various types of sensors, and a range of daily
applications should be designed and developed incorporat-
ing such sensors. In that context, a comprehensive data col-
lection and processing framework, such as LSL, is essential.

Not surprisingly, considering the daily use of VR/AR
nowadays and in the near future, social applications will be
one of the important application areas, as we are also cur-
rently witnessing the increase of social VR/AR platforms,
e.g., Meta’s Horizon Worlds'® or Microsoft AltspaceVR.'”
In such social settings, affective analysis of user emotional
states and detecting or recognizing user behaviors would be
needed for effective communication, and the use of multi-
modal embodied interactions through visually sophisticated
virtual avatars would require collecting and processing of
larger embodied social data. Given the strong potential of
LSL in social VR/AR with complex and diverse data, other
VR/AR application areas, which often involve multi-user
settings, will benefit from the use of LSL, such as training
and education, entertainment, collaboration, product design,
and building maintenance.

13 https://www.meta.com/horizon-worlds/.
19 https://altvr.com/.

7 Conclusion

Human measurement in VR/AR using physiological and
behavioral motion data is growing lately because of new
hardware and software technology advancements. In this
paper, we introduced the LSL framework as a renown data
collection tool in certain fields, and suggested the poten-
tial benefits of its utilization in VR/AR research based on
its capability and potential to collect, record, and synchro-
nize multimodal data from various sensing devices. To
understand the current use of LSL in VR/AR research, and
identify possible gaps in the use, we conducted a literature
review that covered high-level trends analysis about what
types of data and displays were involved, and what appli-
cation areas were targeted while using the LSL. We also
reviewed impactful selected papers in depth to further under-
stand the use cases of the LSL with different types of data.
In conclusion, we provided comprehensive knowledge of
current trends in the use of LSL in VR/AR research and
discussed the opportunities.

It is important to acknowledge that our literature research
has some limitations, which can guide us to our plans for
future work. The search keywords that we used might have
missed some research papers, e.g., we may have missed
some if the papers used terms like “extended reality,” or
“immersive technology” instead of VR/AR/MR, so the
future work could include a larger volume of papers using
more comprehensive keywords. Also, the present research,
particularly the in-depth reviews, mostly focused on the lat-
est publications. This is somewhat inevitable because of the
relatively short history of LSL, but it may cause some issues
to see the long-term, big-picture of LSL use-cases in VR/
AR. However, this is also our intention to cover the recent
research trends with LSL. To the best of our knowledge, this
is the first literature review research on the use of LSL for
multimodal data collection in/from VR/AR, which can help
researchers and practitioners understand the benefits and
potentials. We aim to follow up on the continuous develop-
ments and use of the LSL, and multimodal data collection,
fusion and analysis in the VR/AR/HCI research fields for
better understanding and measurement of human behavior in
immersive environments.
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