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Abstract
The use of multimodal data allows excellent opportunities for human–computer interaction research and novel techniques 
regarding virtual and augmented reality (VR/AR) experiences. Collecting, coordinating, and synchronizing a large amount 
of data from multiple VR/AR hardware while maintaining a high framerate can be a daunting task, despite the compelling 
nature of multimodal data. The Lab Streaming Layer (LSL) is an open-source framework that enables the synchronous 
collection of various types of multimodal data, unlike existing expensive alternatives. However, despite its potential, this 
framework has not been fully adopted by the VR/AR research community. In this paper, we present a guideline of the LSL 
framework’s use in VR/AR research as well as report current trends by performing a comprehensive literature review on 
the subject. We extract 549 publications using LSL from January 2015 to March 2022. We analyze types of data, displays, 
and targeted application areas. We describe in-depth reviews of 38 selected papers and provide use of LSL in the VR/AR 
research community while highlighting benefits, challenges, and future opportunities.

Keywords  Virtual reality · Augmented reality · Multimodal data collection · Lab Streaming layer · Open-source data 
collection · Literature review

1  Introduction

With recent advancements and public interests in immersive 
technologies, such as virtual/augmented reality (VR/AR), 
designing and developing novel interaction techniques and 

metaphors, and evaluating the effectiveness of VR/AR have 
become more and more important from the perspective of 
human–computer interaction (HCI) research. With more 
sensing and control devices proposed and invented in VR/
AR, numerous types of multimodal data from heterogeneous 
devices have been investigated. Most commonly, these data 
involve information about users’ emotions, behavior, and 
physiological signals. Furthermore, reliable data collecting 
and sharing procedures are necessary for accurate and robust 
evaluations in VR/AR applications and research. It can help 
us gain a deeper knowledge of users’ perception and cogni-
tion processes during their VR/AR experiences.

Previously, there have been several seminal works in the 
development of such data collection and sharing frame-
works. For example, Reitmayr and Schmalstieg (2005) pro-
posed an open software architecture, OpenTracker, which 
used a modular design to track input devices and process the 
data for VR application development. Taylor et al. (2001) 
presented the Virtual Reality Peripheral Network (VRPN), 
which has been actively used for decades while covering 
different VR/AR devices (Thomas et al. 2014; Cuevas-Rod-
ríguez et al. 2012). Pavlik and Vance (2010) developed an 
extension of the VRPN to collect and synchronize data from 
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the Nintendo Wii Remote game controllers and sensors for 
use in a VR application.

While VRPN and OpenTracker were useful for collecting 
data with different sensors, such middleware platforms could 
not adaptively update the system structure to change the sen-
sors dynamically. To overcome this, UbiTrack was devel-
oped based on middleware that allows users to dynamically 
introduce their devices into the data collection framework at 
run-time, particularly for AR tracking (Newman et al. 2004).

As a solution for the unified gathering of measurement 
time-series data in research experiments, the open-source 
Lab Streaming Layer (LSL) has recently attracted a lot of 
interest from data scientists and researchers (Kothe 2014). 
Networking, time synchronization, (near-) real-time access, 
and optionally centralized data gathering, display, and disk 
recording can all be handled by LSL. Collecting electro-
encephalogram (EEG) data are one of the most common 
uses for LSL (Si-Mohammed et al. 2020; Wunderlich and 
Gramann 2020).

Given the potential of LSL for effective and reliable data 
collection in VR/AR research and practices, our overarching 
goal in this paper is to explore and understand how or for 
what purposes the LSL framework has been used in VR/AR 
research. We conduct a scoping review using a systematic 
literature survey approach to explore different uses of LSL in 
VR/AR research for multimodal sensor data acquisition and 
streaming. We present the recent trends in the use of LSL, 
particularly focusing on what types of data and displays have 
been involved and what application areas were considered 
in the papers while maintaining our scope narrow within the 
research that used VR/AR technologies. We also performed 
in-depth reviews of selected papers by summarizing in what 
context the LSL was used in their work. This review helps us 
understand the growing use of LSL in VR/AR research and 
identify the potential gap(s). The contributions of our work 
include the following:

•	 We introduce and describe the LSL as an effective data 
collection tool for VR/AR researchers who are currently 
working or interested in multimodal data collection and 
human (perception/behavior) analysis.

•	 We provide comprehensive knowledge that captures the 
recent trends and use cases of LSL in VR/AR research 
domains by a systematic literature review.

•	 We identify the limited use of LSL in VR/AR research 
and share some insights and potential research directions.

The rest of this paper is organized as follows. In Sect. 2, we 
introduce the LSL framework and describe the features that 
could directly benefit VR/AR or HCI research. We describe 
the methodology of our literature review about the use of 
LSL in VR/AR research in Sect. 3, and report the results 
of high-level trends analysis in Sect. 4. Section 5 presents 

our in-depth reviews of selected papers, and the findings 
are discussed with future research directions and possible 
limitations in Sect. 6. We conclude our paper in Sect. 7 by 
summarizing our work and contributions.

2 � Lab streaming layer (LSL) framework

The core library of LSL framework was first introduced by 
Kothe (2014). The first application was used to record and 
synchronize multimodal data with Brain Computer Inter-
faces (BCIs), Mobile Brain and Body Imaging (MoBI) 
paradigms. In recent years, LSL has become a standard for 
synchronizing and collecting multiple data streams. Fur-
thermore, LSL’s preferred data storage format, XDF, exists 
as an ANSI standard under the name “Attuned Container 
Format”.1

2.1 � LSL functionality

LSL is a low-level technology to communicate time series 
and events between programs and computers. LSL estab-
lishes stream discovery, data transmission, and time-syn-
chronization protocols. The data transmission protocol 
includes extensible descriptive metadata and a simple encod-
ing format. The time-synchronization protocol calculates 
clock offsets using a subset of the Precision Time Protocol 
(PTP) algorithm, and consumers of LSL streams can correct 
for clock offsets in real time or store the clock offsets for 
offline correction.

On top of the protocol is the LSL library, which includes 
the core transport library, liblsl, and its language interfaces 
(C, C++, Python, Java, C#, Rust, Julia, and MATLAB). The 
library is general-purpose and cross-platform (OS Support: 
Win/Linux/macOS/Android/iOS; Architecture Support: 
x86/amd64/arm). The LSL distribution consists of the core 
library, examples for each interface, and a suite of tools built 
on top of the library.

LSL is mostly used to acquire brain data into a common 
format and optionally synchronize with other data modali-
ties. For example, a common method to collect and analyze 
EEG in an LSL-enabled experiment using OpenBCI hard-
ware requires:

•	 An OpenBCI bundle with embedded software to relay 
EEG data over LSL

•	 A stimulus presentation program that sends stimulus 
events over LSL

•	 An LSL viewer for visual confirmation of stream con-
tents

1  https://​webst​ore.​ansi.​org/​Stand​ards/​ANSI/​ansic​ta206​02017.

https://webstore.ansi.org/Standards/ANSI/ansicta20602017
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•	 The LSL LabRecorder to store data into XDF format
•	 An XDF importer to load data into MATLAB
•	 An analysis tool like EEGLab or MNE-Python to seg-

ment, analyze, and visualize the data

2.2 � LSL integrations

The originating use case for LSL was multimodal synchro-
nization and recording during neuropsychological experi-
ments. The suite of official LSL tools includes many appli-
cations and plugins to interface with a variety of devices 
common to neuropsychology experiments, including bio-
physical sensors, behavioral measurement devices, and stim-
ulus presentation platforms. Many more LSL applications 
and integrations are provided by the scientific community, 
industry, and hobbyist communities. As of this writing, there 
are more than 100 known LSL integrations2 and many more 
can be found by searching source code repositories by com-
bining keywords for LSL and the target device or platform. 
If an integration does not already exist for a particular device 
then a software developer may create one following one of 
the provided example applications and the device’s software 
development kit (SDK) documentation. Some of the major 
integration modules are described in this section below.

2.2.1 � LSL integrations for biophysical sensors

Brain sensors and products, such as InteraXon Muse,3 
EEGO,4 ActiveTwo from BioSemi,5 CGX Quick-20 and 
CGX Mobile-128 from Cognionics,6 ANT neuro,7 acti-
CHamp from Brain Products,8 gTec,9 mBrainTrain,10 and 
Emotiv11, are compatible with LSL or supported through a 
third party software.

Other bio-physical sensors, such as EEGO Sport from 
ANT neuro and CGX AIM from Cognionics, support col-
lecting electromyography (EMG) using LSL. In addition, for 
Photoplethysmography (PPG) measurement, sensors such as 
Bitalino12 are also supported with LSL.

2.2.2 � LSL integrations for input devices

LSL provides integrations for many behavioral measurement 
and input devices including eye gaze trackers, keyboards, 
mouse, gamepads, microphones, motion capture, and others.

For gaze, interfaces exist for Tobii and Pupil-Labs exter-
nal devices, as well as for their VR-integrated devices. For 
example, Tobii has integrated eye trackers in HTC Vive Eye 
and in the Pico Neo Eye product line, and the gaze data can 
be streamed over LSL.

Compatible audio input such as AudioCapture13 appli-
cation can use the LSL implementation for cross-platform 
audio capturing.

Motion-capture systems such as Microsoft Kinect, Nin-
tendo Wiimote, and OpenVR are compatible with LSL. 
OpenVR supports motion capture from several consumer-
oriented VR devices from HTC, Valve, and others.

2.2.3 � LSL integrations for stimulus presentation

LSL supports audio-visual stimulus presentation from many 
platforms. Integration is supported natively or via a sim-
ple extension in tools like Psychopy, Psychtoolbox, Pres-
entation, and E-Prime, or with a middleware platform like 
iMotions. LSL support is available for Unity as a custom 
package and for Unreal Engine 4 as a plugin available in the 
marketplace.

Great care must be taken when using LSL to synchro-
nize stimulus presentation events with neural recordings. 
The instant that the stimulus-generation code is executed, 
which is usually the hook where the LSL event is generated, 
typically precedes the instant that the stimulus appears on 
the display by 15–70 ms. The lag is due to a combination of 
processing in the stimulus presentation platform and frame 
buffering. However, if the stimulus presentation platform has 
low variability in its processing times (i.e., “jitter”), and the 
display has low variability in its frame buffering times, the 
lag can be calibrated once and subtracted from all stimulus 
presentation times. It may even be acceptable to ignore the 
lag entirely if the jitter is low and the analysis of the stimulus 
response is independent of the absolute latency. Experiment-
ers should measure the lag for each new hardware configura-
tion. For example, the stimulus presentation software should 
flash the display and send an LSL event simultaneously, and 
a photodiode attached to the display should be recorded in 
an auxiliary input of the biophysical recording device, then 
the lag between the event and signal change should be evalu-
ated for low jitter.

Most stimulus presentation platforms designed for 
the neuropsychology community indeed have low jitter. 

2  https://​labst​reami​nglay​er.​org.
3  https://​choos​emuse.​com/.
4  https://​www.​ant-​neuro.​com/​produ​cts/​eego_​sports.
5  http://​www.​biose​mi.​com/.
6  https://​www.​cgxsy​stems.​com/.
7  https://​www.​ant-​neuro.​com/​produ​cts/​eego_​sports.
8  https://​www.​brain​produ​cts.​com/​solut​ions/​actic​hamp/.
9  https://​www.​gtec.​at/.
10  https://​mbrai​ntrain.​com/​smart​ing-​mobi/.
11  https://​www.​emotiv.​com/​epoc/.
12  https://​www.​pluxb​iosig​nals.​com/​colle​ctions/​bital​ino. 13  https://​github.​com/​labst​reami​nglay​er/​App-​Audio​Captu​re.

https://labstreaminglayer.org
https://choosemuse.com/
https://www.ant-neuro.com/products/eego_sports
http://www.biosemi.com/
https://www.cgxsystems.com/
https://www.ant-neuro.com/products/eego_sports
https://www.brainproducts.com/solutions/actichamp/
https://www.gtec.at/
https://mbraintrain.com/smarting-mobi/
https://www.emotiv.com/epoc/
https://www.pluxbiosignals.com/collections/bitalino
https://github.com/labstreaminglayer/App-AudioCapture
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Common game engines, however, may have high jitter, espe-
cially when the complexity of the visual scene affects the 
frame rate. The jitter can be mitigated somewhat by delay-
ing the LSL event generation until the last possible moment 
before the frame is to be rendered. The LSL4Unity custom 
package provides an example of reducing jitter by delaying 
event generation until the WaitForEndOfFrame hook.

2.2.4 � Distribution of LSL integrations

Most LSL integrations exist as a stand-alone application 
that reads data from the device and re-streams it using the 
LSL protocol. The official LSL applications are available in 
GitHub repositories. Many of these applications have pre-
compiled releases attached to the respective source code 
repository that the user can simply download and run. In 
contrast, a few applications require the user to build the 
application from the source. These stand-alone applications 
often require the user to install a driver or run a service from 
the vendor. For example, the g.NEEDaccess service must be 
running before the LSL application can retrieve data from 
any of the g.tec biophysical amplifiers.

In other cases, LSL might be integrated directly into the 
software the vendor provides for their system (e.g., BioSemi, 
BrainProducts, and ANT Neuro). A small but increasing 
number of devices integrate LSL directly into the device 
firmware, so the user does not need to run any device-
specific software to receive the data stream. For example, 
OpenBCI and fNIRS (functional near-infrared spectros-
copy) devices NIRx and NIRscout do not require any extra 
software.

3 � Methodology for scoping review

To investigate recent trends and identify potential gaps in 
the use of LSL in VR/AR research, we conducted a scop-
ing review adopting a systematic method. Following the 
PRISMA method for the systematic review process (Lib-
erati et al. 2009), we first collected 549 papers from five 
digital libraries: Association for Computing Machinery 
(ACM) Digital Library, Institute of Electrical and Elec-
tronics Engineers (IEEE) Xplore, Google Scholar, Scien-
ceDirect (SD), and Springer. We conducted the full body 
search without any time constraints using relevant key-
words, (“lab streaming layer” AND “virtual reality,” “lab 
streaming layer” AND “augmented reality,” “lab stream-
ing layer” AND “mixed reality”). The paper search was 
initially conducted on June 29–30, 2021, and was updated 
again on March 24, 2022 with newly published papers.

Figure  1 shows the overall review flow with paper 
counts selected in each level. After removing redundant 
papers, we further screened certain types of publica-
tions, such as books, book chapters, dissertations/theses, 
technical reports, and non-English manuscripts, to focus 
our review to research articles, and published extended 
abstracts and posters, which reduced the number of papers 
to 209. Four coders—the first three and the fifth co-authors 
of this paper—further screened the papers, which are not 
related to VR or AR research by reviewing the abstracts 
and skimming through the papers, and the final pool for 
our analysis included 92 papers. Using this pool of 92 
papers, the coders conducted a high-level analysis that 
classifies the papers in the following categories using a 
majority voting mechanism:

Fig. 1   Scoping review process 
based on the PRISMA flowchart 
(Liberati et al. 2009)
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•	 VR/AR Research Whether the research in the paper is 
targeted to VR, AR, or Both.

•	 Data Types What types of data were collected/processed 
through the LSL for the research in the paper, e.g., brain 
signals like EEG, brain imaging like fNIRS, eye gaze, 
body movement, etc.

•	 Display Types What kinds of displays were used in the 
paper, e.g., head-mounted displays (HMDs), monitors, 
and projection.

•	 Application Areas What application areas the research 
in the paper were targeted, e.g., human perception/cogni-
tion studies, training, education, and systems evaluation.

The results of the high-level analysis is described in Sect. 4. 
To understand how the LSL framework was used in the 
papers in detail, we further reviewed some selected papers 
by the citation count—average annual cites greater than or 
equal to 5 evaluated on April 12, 2022 via Google Scholar. 
We also included some recent works from peer-reviewed 
journal articles and full-length conference papers in 2021 
and 2022, which did not have enough time to get cited. The 
detailed reviews of the selected 38 papers are included in 
Sect. 5.

4 � High‑level trends analysis

We analyzed general trends in the use of LSL based on 
the classification categories listed in Sect. 3: (1) VR/AR 
Research, (2) Data Types, (3) Display Types, and (4) Appli-
cation Areas. Here we report some of the high-level results.

First, we found that the number of papers that used LSL 
in their research has been gradually increasing over the 
past years from 2015 to 2021 (see Fig. 2). Given our paper 
collection was finalized in March 2022, the paper count 
for the year 2022 (currently 7) is expected to increase 

compared to the previous year. This increasing number of 
research papers indicates that there is a growing interest 
and potential benefits in the use of LSL for the unified 
collection of measurement time-series data in research 
experiments.

After screening these papers to identify VR/AR Research 
papers, we found that a majority of the papers (76 out of 
92) were focused on VR settings while there were only 
12 papers that targeted AR settings—four papers covered 
both AR and VR settings. Most research in the papers had 
human participants seated or at a static location to examine 
their neurological or physiological signals accurately, which 
could be more suitable in VR settings than in AR which 
often involved locomotion and navigation scenarios. The 
dominance of VR settings in the papers could also be due 
to the accessibility of VR HMDs in the field. LSL is com-
monly utilized with bio-sensors in wearable technology. Our 
analysis indicates that HMDs are the dominant form of VR 
device. This prevalence of VR HMDs may be a contribut-
ing factor to the greater popularity of VR compared to AR.

Regarding the Data Types, many papers used different 
types and modalities of data in their work, e.g., collecting 
EEG signals together with participant’s eye gaze. Consider-
ing the multiple data types in a single paper, we established 
four categories of data types: (1) brain signals, e.g., EEG 
and fNIRS; (2) other physiological data, such as EMG, gal-
vanic skin response (GSR), and electrocardiogram (ECG); 
(3) gaze data based on computer vision methods or EOG; 
(4) body motion data collected from optical cameras or mag-
netic tracking sensors. We finally ended up with 139 clas-
sifications among the 92 papers (see Fig. 3 for the detailed 
distribution of the Data Types classifications). We identified 
that the LSL was mostly used to collect neurological brain 
and other physiological data, as we expected because it was 
the original purpose of LSL inception. The body motion data 
were not dominantly used despite the potential of LSL for 
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effective human motion/behavioral data in VR/AR (Wang 
et al. 2021).

In terms of the Display Types, we found that the LSL 
has been mostly used for immersive HMD settings (79 out 
of 92 papers), followed by the traditional desktop monitor 
(16 papers), and projection setting (six papers—see Fig. 4 
to learn more). This reflects the recent increasing trend of 
research with wearable devices in VR/AR. Portable smart-
phones or tablets are possible to use as an VR/AR display 
together with LSL; however, LSL is primarily utilized with 
wearable technology. This may explain the absence of smart-
phone and tablet devices in our data. Interestingly there was 
one paper that involved audio-based AR (Nagele et al. 2021). 
We included this paper considering a broad concept of AR, 
which could cover not only the visual modality but also dif-
ferent sensory modality extensions, e.g., audio AR.

While classifying the papers, we were able to categorize 
eight Application Areas that these selected 92 papers were 
focused on: (1) Human Study for understanding perception/

cognition process and brain activities, (2) New Interface, 
such as BCIs, (3) Healthcare for therapy and rehabilitation, 
(4) Education, e.g., for measuring learning performance, 
(5) Military for tactical training and evaluation, (6) System 
Evaluation, e.g., system latency benchmark, (7) Visualiza-
tion for better visual layout and representations, and (8) 
Social Connection among the users. The two most popular 
areas were “Human Study” and “New Interface.” Someone 
might say that “Human Study” is not necessarily an appli-
cation per se, which we understand, but we included this as 
one of our area categories because a lot of papers focused 
on human-subjects studies to understand their neurologi-
cal or behavioral responses. The findings in those papers 
could be beneficial to various applications, but they did 
not specifically mention the target applications but gen-
erally focused on the understanding of humans. With the 
continuous increase of public and research interests in BCI 
in VR/AR, LSL was actively used to develop novel inter-
faces beyond the traditional input mechanisms (Lecuyer 
et al. 2008). Given the trend that the brain (neurological) 
and physiological signals were dominant in the used Data 
Types, the “Healthcare” was also quite popular for collect-
ing and monitoring those signals in patient-care scenarios. 
The details of the application area classifications are shown 
in Fig. 5.

5 � Detailed reviews

In this section, we describe our in-depth reviews of 38 
papers (Table 1) selected from our pool of 92 papers.

We focused on papers with more than five average 
citations per year in our in-depth reviews. Full papers 
published at journal/conference venues in 2021 and 2022, 
which did not have enough time to be cited, were also 
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included to capture the most recent research trends. The 
reviews are structured based on the Data Types that the 
papers used to reveal the purposes of the use of LSL in 
VR/AR research, while being also organized by the target 
Application Areas. Our focus in the reviews is more on 
the use of LSL in the papers, not necessarily about their 
research findings.

5.1 � Brain signals

As noted in our high-level trends analysis (Sect. 4), a 
majority of the papers used LSL for collecting neurologi-
cal brain signals, such as EEG and fNIRS. Here we review 
15 selected papers in this category, considering the Appli-
cation Areas.

Table 1   A list of the selected 38 papers for in-depth reviews, and their classifications

Paper Year VR/AR Display EEG/fNIRS Other physio. Gaze Body motion Application area

Mavros et al. 2016 VR Screen ✓ Human Study
Banaei et al. 2017 VR HMD ✓ ✓ Human Study
Park et al. 2018 VR HMD ✓ Human Study
Peterson and Ferris 2018 VR HMD ✓ Human Study
Hertweck et al. 2019 VR HMD ✓ Human Study
Putze et al. 2019 AR HMD ✓ New Interface
Djebbara et al. 2019 VR HMD ✓ ✓ Human Study
Faller et al. 2019 VR HMD ✓ ✓ ✓ Human Study
Vortmann et al. 2019 AR HMD ✓ ✓ ✓ Human Study
Vourvopoulos et al. 2019 VR HMD ✓ ✓ Healthcare
Vortmann and Putze 2020 AR HMD ✓ ✓ New Interface
Gupta et al. 2020 VR HMD ✓ ✓ Human Study
Kroczek et al. 2020 VR HMD ✓ Healthcare
Nenna et al. 2020 VR HMD ✓ ✓ Human Study
Cruz-Garza et al. 2021 VR HMD ✓ ✓ ✓ ✓ Education
Delaux et al. 2021 VR HMD ✓ ✓ Human Study
Miyakoshi et al. 2021 AR - ✓ ✓ Human Study
Rezaee et al. 2021 VR Projection ✓ Healthcare
Kalantari et al. 2021 VR HMD ✓ ✓ ✓ Human Study
Vortmann and Putze 2021 AR HMD ✓ ✓ New Interface
Muller et al. 2021 VR Screen ✓ ✓ Healthcare
Mladenović et al. 2021 VR Screen ✓ New Interface
Vortmann et al. 2021 AR HMD ✓ ✓ New Interface
Kumar et al. 2021 VR HMD ✓ Human Study
Eckert et al. 2021 VR HMD ✓ ✓ Human Study
Weber et al. 2021 VR HMD ✓ System Evaluation
Quintero et al. 2021 VR HMD ✓ New Interface
Bustamante et al. 2021 VR HMD ✓ ✓ System Evaluation
Klug and Gramann 2021 VR HMD, Screen ✓ System Evaluation
Berger et al. 2021 VR HMD ✓ Human Study
Sáanchez-Cuesta et al. 2021 VR HMD ✓ Healthcare
Li et al. 2021 VR HMD ✓ Human Study
Gorman and Wang 2021 AR HMD ✓ New Interface
Callahan-Flintoft et al. 2021 VR HMD ✓ Human Study
Kisker et al. 2021 VR & AR HMD ✓ ✓ ✓ Human Study
Gregory et al. 2022 VR HMD ✓ Human Study
Lapborisuth et al. 2022 VR HMD ✓ ✓ ✓ Human Study
Valente et al. 2022 AR HMD, Screen ✓ Social Connection
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5.1.1 � Human studies

Many publications investigated the user’s perception/cogni-
tion process with brain signals in VR using LSL in human 
study settings. In order to improve enveloping closed-
loop VR for human studies, it is crucial to incorporate 
feedback on the user’s emotive state. Kumar et al. (2021) 
demonstrated how EEG readings may be used to assess a 
viewer’s emotional state while they take in immersive VR 
content. Communication between the EEG and VR envi-
ronment was performed via LSL (and its recording tool 
called LabRecorder). Since such VR-EEG neurofeedback 
requires users to wear VR goggles on top of the electrodes, 
the user experience with those devices or the technology is 
an important research aspect. Berger et al. (2021) explored 
the user experience of VR-based neurofeedback paradigms 
with respect to different genders, and the impact of 3D and 
2D VR environments through user research. The outcomes 
showed that female participants experienced more discom-
fort than male participants; they concluded that training ses-
sions for the VR experience are more beneficial for females 
to adapt to the technology that they perceive as less reach-
able. Also, this research showed that the 3D environment 
did not necessarily exacerbate cybersickness, compared 
to the 2D environment. The LSL was used to implement a 
streaming framework for the incoming EEG data. To achieve 
the collection of more accurate brain signals as an objec-
tive and reliable measure in human studies, Hertweck et al. 
(2019) experimented EEG signal quality while using two 
VR HMDs, e.g., HTC Vive Pro and Oculus Rift. For the 
signal quality assessment, LSL was employed to capture and 
synchronize all the information and events in VR.

There were many types of research that investigated 
brain activities in navigation tasks using LSL. Mavros et al. 
(2016) analyzed the study of urban navigation behavior 
by using EEG, and recorded the signal by electrodes and 
Emotiv EPOC hardware (see footnote 11). Open-source 
software tools using the LSL framework, which permits the 
simultaneous mixing of data streams from several sources, 
were created to manage accurate time synchronization. 
Park et al. (2018) studied brain activity in spatial naviga-
tion by using mobile brain imaging, involving both EEG 
and fNIRS systems. The analysis and processing of mobile 
EEG and fNIRS signals were made possible by the use of 
the LSL framework, which made it easier to integrate vari-
ous neurological and physiological methodologies. Nenna 
et al. (2020) studied the brain dynamics being adjusted in 
single-/dual-task scenarios using a visual discernment task 
in a simulated VR setting. Participants in the user research 
stood (single-task) or walked (dual-task) while completing 

the visual discrimination task in VR. P314 amplitude reduc-
tion was observed, which is typically related to anxiety and 
depression. The walking use of LSL in the VR implementa-
tions was particularly useful for them to control the study 
systematically. Beyond the ground navigation, Faller et al. 
(2019) studied the relationship between arousal and task 
performance using a boundary-avoidance task in VR-based 
aerial navigation. The participants in their study could con-
trol their navigation directions via a BCI equipped on an 
HMD, which was achieved by using the LSL to collect and 
analyze the brain signals.

To study neural signals and the effects in the process 
of memory encoding and attention cueing, Gregory et al. 
(2022) developed a data set that consists of EEG and behav-
ioral data collected from 47 candidates during a visual work-
ing memory assignment in VR. During the memory task, 
participants had to recall information about virtual objects 
on a table in VR, including their state and specifics, and 
either a nonsocial pointing object (stick cue) or embodied 
virtual avatar was used as attentional cues. Further research 
is encouraged using this dataset in the context of conver-
gence research between VR and neural signal processing.

5.1.2 � New interfaces

Given the growing interest in novel human–computer inter-
faces, such as BCI, there were also some papers that used 
LSL for developing new human interfaces and investigating 
the effects (Bablani et al. 2020). Mladenović et al. (2022) 
studied the feedback of BCI regarding motor imagery in a 
video game, Tux Racer.15 They used LSL to control a virtual 
joystick in real-time while streaming the classifier output 
from OpenViBE (Renard et al. 2010). Gorman and Wang 
(2021) developed a convenient, closed-loop AR-based BCI, 
which can provide users with accurate object/environment 
control ability. The system assessed the practicability of con-
trolling a physical device by steady-state visually evoked 
potentials (SSVEP) applying LSL. The conducted study with 
three participants showed that the proposed system could be 
an effective interface to control a navigation robot, indicat-
ing the potential use for individuals with special physical 
needs. Brain signals tend to be noisy, especially when differ-
ent electronic devices are used simultaneously. Weber et al. 
(2021) suggested a methodical approach to check HMDs for 
electromagnetic (EM) noise that might interfere with EEG 
measurements. They synchronized the EEG and task cues 

14  P300 (P3): the largest positive peak of an event-related potential 
(ERP) waveform within the time window of 300–500   ms, which is 
elicited in the process of decision making.
15  https://​tuxra​cer.​sourc​eforge.​net/.

https://tuxracer.sourceforge.net/
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via LSL to analyze the signal quality and status of EEG data 
in frequency and time domain quality.

Similarly, Klug and Gramann (2021) provided policies for 
various experimental settings and conditions, which could 
influence the robustness of EEG signals. They compared 
settings for stationary and mobile (non-stationary) to investi-
gate the effects of preprocessing, e.g., data filtering, on inde-
pendent component analysis (ICA) decomposition, which is 
a frequently used method to eliminate noise artifacts from 
the data. Through the experiment with 20 healthy adult par-
ticipants, they found clear differences between the mobile 
and stationary data. While the ICA results were acceptable 
in the stationary setting, high-pass filters should be applied 
to make the ICA results reliable in the mobile setting. Using 
LSL, data measurement and event marker streams in diver-
gent sources were recorded and time-stamped.

5.1.3 � Other application areas

There were different application areas considered in the 
papers using brain signal data. For example, in the con-
text of healthcare, in particular post-stroke rehabilitation, 
Rezaee et al. (2021) studied VR-based balance training with 
fNIRS and EEG systems combined with a wireless simula-
tor and Wii Balance Board. The neuroimaging and triaxial 
accelerometry data were handled simultaneously using 
LSL. Sáanchez-Cuesta et al. (2021) studied the efficacy of 
immersive multimodal BCI-VR training for clinical stroke 
rehabilitation protocols. The results showed that provid-
ing immersive motor imagery in VR could be combined 
with noninvasive brain stimulation, e.g., neuromodulation 
approach to increase the rehabilitation effects. The EEG data 
acquisition, processing and the control of the VR environ-
ment were achieved through OpenViBE and LSL.

For education, Cruz-Garza et al. (2021) investigated the 
neural dynamics associated with different VR classroom set-
tings, such as different window locations and room sizes. In 
their study, participants were involved in various cognitive 
tasks, such as the Stroop test, and they measured EEG data 
together with the test performance through LSL. The out-
comes illustrated that the classroom design could influence 
brain activity features during cognitive tasks, implying the 
potential of neurophysiological analysis for effective class-
room design.

5.2 � Other physiological data

A variety of physiological signals, e.g., electrodermal activ-
ity (EDA), EMG, ECG, heart-rate variability (HRV), and 
GSR, have been used in many of the reviewed papers in 
different contexts. Those signals could be collected and ana-
lyzed through LSL, together with or separately from brain 

signals. We selected nine papers for in-depth reviews, which 
involved different physiological data beyond EEG or fNIRS.

5.2.1 � Human studies

To measure (or recognize) the users’ (affective/emotional) 
states during VR/AR experiences, physiological signals 
have been actively used, e.g., changes in heart rate, skin 
conductance, and temperature could be a good indicator of 
perceived stress in VR (Insko 2003; Meehan et al. 2002). 
The use of LSL could provide an ability to measure accurate 
response times while collecting such physiological signals, 
e.g., ECG, HRV, and heart rate, together with behavioral 
data and game event timing. For example, Li et al. (2021) 
presented a multimodal sensing system to detect cybersick-
ness that VR users experience by collecting and analyzing 
neural and physiological signals. They conducted a human-
subjects study where participants experienced different 
levels of cybersickness-inducing tasks in an immersive VR 
environment. Photoplethysmogram (PPG)-based HRV, and 
temperatures on fingertip and forehead collected with LSL 
were used to estimate and correlate with the level of cyber-
sickness together with EEG and EOG signals. The results 
showed that cognitive control capability—specifically the 
extent of attentional engagement—is negatively influenced 
by cybersickness. It also revealed that different vestibular 
network domains—cognitive, sensorimotor, and autonomic 
domains—measured by both physiological and neural sig-
nals have different implications in cybersickness.

5.2.2 � New interfaces

Physiological signals could also be used to design novel user 
interfaces, e.g., EMG-based gestural interaction (Nymoen 
et al. 2015), or breath-based gaming interfaces (Sra et al. 
2018). In our review, Quintero et al. (2021) developed an 
open-source software framework called Excite-O-Meter, 
which collects and processes physiological data using LSL. 
The framework integrated cardiac activity signals, such as 
ECG, PPG, and resulting HRV, in interactive VR applica-
tions while providing real-time analysis. During the virtual 
game interaction, they recorded ECG data to measure heart 
rate and HRV, which are typically considered valid stress 
markers. Their results showed that the developed tool based 
on the framework could be easily used and provide scientifi-
cally valid data for researchers and practitioners.

5.2.3 � Other application areas

A variety of application areas were considered in the 
reviewed papers using physiological signals. Since physi-
ological changes are closely associated with emotion, e.g., 
arousal and valence, physiological data were often used in 
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the context of social interactions. Gupta et al. (2020) meas-
ured the confidence level in a virtual helper by using differ-
ent physiological signals in VR. In particular, they used LSL 
to collect GSR and HRV using Shimmer sensors and EEG 
signals.16Kroczek et al. (2020) studied interpersonal distance 
during real-time social interaction using physiological meas-
urements like ECG, EDA, and EMG. The LSL framework 
with a recording feature was used to record and synchro-
nize data from various sources regarding the distance and 
physiology measures. In AR, Valente et al. (2022) devel-
oped a neural network model for emotion recognition using 
ECG data and created a novel AR communication cue. They 
evaluated the effects of the AR system in various situations 
by gathering the data from the ECG sensors and delivering 
it using LSL.

These physiological data were also utilized in considera-
tion of medical/clinical applications. For example, Peterson 
and Ferris (2018) used the LSL framework to collect and 
synchronize electrocortical responses and EMG activity to 
analyze physical and visual balance perturbations. Vourvo-
poulos et al. (2019) used a VR system for post-stroke reha-
bilitation. In their pilot study with stroke survivors, EEG 
and EMG signals collected through LSL were compared to 
move their virtual avatars’ arms. The findings showed that 
patients with serious motor impairments could advantage 
more through EEG-based neuro-feedback, while patients 
with gentle impairments benefited more through EMG-based 
reports. Bustamante et al. (2021) introduced a robot arm 
system that allows researchers to conduct various studies on 
how humans may control a robotic arm in a range of scenar-
ios from an upper limb prosthetic to a wheelchair-mounted 
robot controller in VR. The use of LSL allowed linking any 
additional control modalities, such as EMG or gaze, to fulfill 
the need for prosthetic or robotic assistance research. To 
study learning performance and experience in educational 
settings, researchers also investigated the use of physiologi-
cal signals in different learning environments. Kalantari 
et al. (2021) conducted an experiment that examined physi-
ological signals in real and virtual classroom environments. 
Participants in the study were engaged in different cognitive 
tests, which involve various physiological responses, such 
as EEG, ECG, EOG, and GSR. However, the consequences 
did not illustrate any major variances between the real and 
virtual settings. All the data including brain signals were 
collected and synchronized through LSL.

5.3 � Gaze

Regarding the use of gaze data, we found that most papers 
were focused on AR research or applications. Here, we 

introduce eight papers that utilized gaze data in their 
research using LSL.

5.3.1 � Human studies

Gaze is one of the most important social cues, which lets us 
share our attention and intention with other people, by look-
ing at the target of interest (Langton et al. 2000). Unsurpris-
ingly, gaze has been used in many human-subjects studies 
to understand human behavior and mental states. Vortmann 
et al. (2019) tackled an interesting question about visual 
interference of virtual contents in an AR user’s view, which 
could influence the user’s focus of attention and internal 
thought process. To investigate the effects of visual AR con-
tents, they designed a user study with a special alignment 
task in AR. They collected participants’ gaze and behavioral 
data, together with EEG signals through the LSL. Lapbo-
risuth et al. (2022) aim to get a deeper understanding of 
the link between attention reorientation and gaze by utiliz-
ing a realistic VR-based target detection paradigm. They 
were able to capture and combine the reorienting signals 
across several modalities by using LSL to synchronize the 
EEG and gaze data streams together via a local network. As 
for many aspects of the VR user experience, Eckert et al. 
(2021) assessed the objective evaluation of the cognitive 
load. In a six-degrees-of-freedom (6-DoF) VR scenario with 
uncontrolled scene illumination, they provided a technique 
to measure the cognitive load using pupil dilation. To inves-
tigate an individual sigmoidal mapping function between 
brightness levels and pupil size, the LSL was employed 
to record and synchronize the data from the eye trackers. 
Callahan-Flintoft et al. (2021) studied eye and head move-
ments during navigating VR experiences while emphasizing 
the potential of VR systems as a tool for vision researchers. 
Eye and head tracking in controlled VR environments allows 
researchers to capture naturalistic human behaviors with-
out sacrificing strict experimental control. The study used 
LSL to assess behavioral eye and head movements that were 
timed to environmental factors/events in VR, proving the 
viability of the created system in behavioral data gathering.

5.3.2 � New interfaces

In terms of the use of gaze to develop novel user interfaces 
in VR/AR, a series of research were conducted incorporating 
the AR user’s gaze data with the EEG signals. Putze et al. 
(2019) proposed a multimodal interface consisting of Micro-
soft HoloLens, Pupil Labs binocular eye-tracker, and BCI 
to control smart home devices (e.g., a window blind). The 
device component and the control system were connected 
and communicated with each other via LSL. The paper also 
noted some challenges in the use of LSL, e.g., the difficulty 
of compiling on the Microsoft Universal Windows Platform. 16  https://​shimm​ersen​sing.​com/.

https://shimmersensing.com/
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Vortmann and Putze (2020) further used their AR system 
in a multimodal smart-home environment context and sug-
gested the benefits of attention-aware systems that track the 
user’s attentional state. Vortmann et al. (2021) also studied if 
an AR system can identify whether the user’s attended object 
in AR is real or virtual by classifying data from EEG and 
eye-tracking data via LSL. Recently they conducted research 
about a person-independent and training-free BCI in AR set-
tings, using Microsoft HoloLens equipped with Pupil Labs 
eye-tracker and an EEG cap (Vortmann and Putze 2021). 
Those data were captured and processed through LSL and 
MNE-Python toolbox.17

5.4 � Body motion

Motion data, such as body movement or location, gestures, 
and postures, could be one of the most common and impor-
tant data types used in VR/AR research and applications. 
Interestingly, however, there were not many papers that used 
LSL to deal with such data in our trend analysis in Sect. 4 
(see Fig. 3). Here, we review six papers that incorporate the 
body motion data in their research—mostly together with 
brain signal data.

5.4.1 � Human studies

Body motion data have been actively used to study the cogni-
tive impacts during spatial navigation associated with brain 
signals. Banaei et al. (2017) conducted research on how 
interior shapes in architectural design affect the dynamics 
of the human brain. Their research’s objective was to evalu-
ate the neurophysiological correlation between the physical 
interior settings and the user’s affective state. In the study, 
participants’ motion data, such as walking in diverse interior 
forms in VR, were recorded and analyzed with EEG signals. 
Djebbara et al. (2019) tackled one of the ongoing debates in 
cognitive neuroscience and philosophy—whether the cogni-
tive process is associated with architectural affordances, a 
way to see the physical structure of the environment based 
on the perceived uses. They developed a VR HMD-based 
system to investigate this issue. The LSL framework was 
used to record human brain dynamics (EEG) and partici-
pants’ activities while navigating a structured virtual room. 
Delaux et al. (2021) also used an immersive VR environment 
to investigate the neurofeedback during active navigation, 
e.g., cortical correlates of landmark-based navigation. They 
used the LSL framework to collect participants’ behavioral 
motions, EEG signals, and all other event triggers during 
the VR experience. Beyond typical visual augmentation in 
AR, Miyakoshi et al. (2021) focused on audio augmentation. 

They studied how the brain works during spatial navigation 
in a virtual maze while collecting both EEG and motion data 
synchronously through LSL.

For psychology studies, Kisker et al. (2021) considered 
VR as an effective tool to induce authentic fear and investi-
gate the reaction from a comprehensive angle. In their study, 
subjects explored either a negative (fearful) or a neutral 
VR cave with passive haptic feedback, and their behavio-
ral responses and EEG signals were evaluated. The results 
did not show significant differences in the EEG signals but 
revealed that the participants had a more negative affect and 
fear behavior, such as slower walking or avoidance in the 
negative setting than in the neutral setting. Since the VR 
experience could provide real sentimental and behavioral 
reactions, they came to the conclusion that VR has a sig-
nificant potential to boost the ecological validity of research 
findings in these psychological investigations. The LSL was 
used as a tool for synchronizing and capturing each data 
stream from the experimental procedure, including body 
movements, EEG, and events.

5.4.2 � Other application areas

In the context of healthcare, Muller et al. (2021) presented a 
study protocol to collect and analyze upper limb kinematics 
for stroke patient rehabilitation. The goal of the research is 
to examine the impacts of VR or conventional therapy ses-
sions on the paretic upper limb function in chronic stroke. 
The protocol involved both brain signals and body motion 
data using an optical motion sensor (Microsoft Kinect v2) 
and EEG/fNIRS sensors, and LSL would be used as a tool 
for synchronous measurements of upper limb kinematics and 
motor cortical area activation (fNIRS and EEG).

6 � Discussion

In this paper, we investigated the use of LSL in VR/AR 
research using a systematic literature review approach. 
Based on the rising number of papers in recent years, we dis-
covered that LSL has been receiving an increasing amount of 
attention from researchers that use VR/AR for their studies 
(see Fig. 2). We also identified that the use of LSL is largely 
focused on neurological brain data collection as the develop-
ment of LSL originally targeted such use cases. Based on our 
analysis results presented in the previous sections, here, we 
discuss the findings and potential research directions, while 
addressing missing and potential opportunities in the use of 
LSL for human-centered VR/AR research.

17  https://​mne.​tools/​stable/​index.​html.

https://mne.tools/stable/index.html
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6.1 � Benefits of LSL to human studies in VR/AR

In a large number of papers that we reviewed, LSL was 
used for collecting and analyzing brain signals in the con-
text of human perception/cognition and behavioral studies. 
This trend is particularly interesting in the VR/AR research 
given the recent increase in user studies in VR/AR publica-
tions Dey et al. (2018). As the field of VR/AR research and 
industry is growing both qualitatively and quantitatively, 
researchers are more aware of the importance of human-
subjects studies to evaluate their developed systems, under-
stand human perception and behaviors during interactions 
with virtual entities. Subjective measures, e.g., participant-
reported questionnaires and data collected from interviews, 
have been qualitatively analyzed or converted into quantita-
tive values, such as Likert scales (Likert 1932). For dec-
ades, however, researchers addressed the potential issues 
with such subjective questionnaires because of the ambi-
guity in interpreting the questions and concepts to meas-
ure (Slater 2004). Associating with subjective qualitative 
measures, objective quantitative measures become more 
important and emphasized as concrete evidence to support 
the research claims or effects. Brain signals, other physi-
ological signals, and user’s behaviors, including gaze and 
body motions, can be used as objective measures in VR/AR 
studies. For example, several papers studied simulator sick-
ness (or cybersickness) in VR/AR by analyzing the user’s 
EEG, EOG, and HRV in our review (Berger et al. 2021; Li 
et al. 2021). Understanding the causing factors and effects 
of simulator sickness is crucial to extending the use of VR/
AR technologies in our daily lives.

Despite the potential of multimodality in improving user 
experience, immersion, or even performance in certain tasks, 
Martin et al. (2022) pointed out that such modalities should 
be carefully designed considering the purpose. As human 
studies in VR/AR would involve more and more multimodal 
data captured through a variety of heterogeneous sensing 
devices, e.g., visual, auditory, haptic, and proprioceptive 
modalities Martin et al. (2022), LSL is a promising tool to 
manage such large and dynamic data reliably.

6.2 � Novel VR/AR interface research with LSL

For decades, VR/AR and HCI researchers pursue novel user 
interfaces for more effective, efficient, and natural interac-
tions with virtual entities, more broadly with computing 
devices. Developing such effective interfaces or interaction 
methods is crucial, particularly in VR/AR due to the com-
plexity or ambiguity of the data visualized in 3D spatial 
environments (LaViola et al. 2017).

Our review in this paper shows that LSL has been actively 
used in the context of novel interface development and eval-
uation, e.g., BCI. The early research on BCI traces back to 

70s (Vidal 1973), and it has recently gained a lot of attention 
from both researchers and the public because of the advances 
in the technology and the potential to replace traditional 
input mechanisms, e.g., keyboard and mouse (Bablani et al. 
2020; Torres et al. 2020). BCI has been around for decades 
even in the field of VR/AR, specifically in the context of 
rehabilitation and training (Lecuyer et al. 2008). Considering 
the accessibility and potential use of this technology for peo-
ple with disabilities, more rigorous research is required and 
will be conducted in the future (Mane et al. 2020). The use 
of LSL would be highly beneficial to perform such research, 
not only for collecting and analyzing the data but also for 
generating and sharing valid data sets for large-scale and 
repeatable studies (Gregory et al. 2022).

Beyond the neurological signals, there was quite a bit of 
research that collected and used eye gaze data in our review. 
Eye gaze is one of the most important social cues that people 
use for sharing their attention and intention (Langton et al. 
2000).

The usage of gaze cues in VR/AR has recently received 
significant attention. Many commercial VR/AR headsets 
now come with eye trackers as a result of the growing popu-
larity of social VR/AR setups, with multi-user avatars.	
 VR/AR researchers have used gaze data to develop novel 
forms of spatial user interaction in various interaction set-
tings and applications (Plopski et al. 2022). LSL is useful 
and attractive to such researchers as it supports different 
types of eye-tracking hardware.

Although LSL also supports some motion tracking hard-
ware, such as Microsoft Kinect, NaturalPoint OptiTrack, or 
Vicon, we did not find many papers that used body motion 
data with LSL in the review. This may be because of the 
wide use of the existing individual tools and APIs provided 
by the manufacturers, which does not require the VR/AR 
developers and researchers to use LSL. However, the use of 
LSL still has a lot of benefits with synchronized multimodal 
data as VR/AR applications and research involve more com-
plex and multimodal signals. The range of LSL-supported 
devices should be continuously increased and updated 
including newer devices, e.g., Microsoft Azure Kinect, Win-
dows Mixed Reality VR headset and controllers (Wang et al. 
2021), while also reflecting the recent trends with various 
types of smart devices in different VR/AR interaction sce-
narios, such as AR interfaces to control Internet-of-Things 
(IoT) devices. In this sense, Huo et al. (2018) and Jo and 
Kim (2019) emphasize the potential of LSL in VR/AR due 
to its scalability and adaptability.

6.3 � Potential of LSL for designing VR/AR 
applications

As fundamental techniques to realize VR/AR has expe-
rienced significant advances, more diverse VR/AR 
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applications are considered and proposed for the past dec-
ades (Aukstakalnis 2016). Here in our review, we also 
observed that LSL has been used in several VR/AR appli-
cation-specific areas, e.g., healthcare, social interaction, 
and education, but the diversity is still quite limited. For 
example, most use cases in the papers involved neurologi-
cal and other physiological signals in social interactions and 
healthcare contexts, but the use of motion data for behavioral 
analysis and applications was still underrepresented (Wang 
et al. 2021). As we pointed above in Sect. 6.2, the LSL mid-
dleware or plugins for motion devices, which are commonly 
used in VR/AR research, should be more introduced con-
sidering the potential in comprehensive data collection and 
management in VR/AR applications.

In a broader field of HCI, the use of multimodal data 
becomes more and more popular, or necessary in many 
cases to improve the accuracy of human behavior analysis 
and the contextual human understanding. For example, in a 
mobile healthcare scenario, Blum et al. (2021) used LSL to 
collect patients’ data collected by smartphone sensors. The 
wearable technologies for VR/AR displays will continue to 
be improved to the level of lightweight portable form fac-
tors and are anticipated to be widely used by consumers in 
daily lives (Welch et al. 2019). Such VR/AR displays will be 
equipped with various types of sensors, and a range of daily 
applications should be designed and developed incorporat-
ing such sensors. In that context, a comprehensive data col-
lection and processing framework, such as LSL, is essential.

Not surprisingly, considering the daily use of VR/AR 
nowadays and in the near future, social applications will be 
one of the important application areas, as we are also cur-
rently witnessing the increase of social VR/AR platforms, 
e.g., Meta’s Horizon Worlds18 or Microsoft AltspaceVR.19 
In such social settings, affective analysis of user emotional 
states and detecting or recognizing user behaviors would be 
needed for effective communication, and the use of multi-
modal embodied interactions through visually sophisticated 
virtual avatars would require collecting and processing of 
larger embodied social data. Given the strong potential of 
LSL in social VR/AR with complex and diverse data, other 
VR/AR application areas, which often involve multi-user 
settings, will benefit from the use of LSL, such as training 
and education, entertainment, collaboration, product design, 
and building maintenance.

7 � Conclusion

Human measurement in VR/AR using physiological and 
behavioral motion data is growing lately because of new 
hardware and software technology advancements. In this 
paper, we introduced the LSL framework as a renown data 
collection tool in certain fields, and suggested the poten-
tial benefits of its utilization in VR/AR research based on 
its capability and potential to collect, record, and synchro-
nize multimodal data from various sensing devices. To 
understand the current use of LSL in VR/AR research, and 
identify possible gaps in the use, we conducted a literature 
review that covered high-level trends analysis about what 
types of data and displays were involved, and what appli-
cation areas were targeted while using the LSL. We also 
reviewed impactful selected papers in depth to further under-
stand the use cases of the LSL with different types of data. 
In conclusion, we provided comprehensive knowledge of 
current trends in the use of LSL in VR/AR research and 
discussed the opportunities.

It is important to acknowledge that our literature research 
has some limitations, which can guide us to our plans for 
future work. The search keywords that we used might have 
missed some research papers, e.g., we may have missed 
some if the papers used terms like “extended reality,” or 
“immersive technology” instead of VR/AR/MR, so the 
future work could include a larger volume of papers using 
more comprehensive keywords. Also, the present research, 
particularly the in-depth reviews, mostly focused on the lat-
est publications. This is somewhat inevitable because of the 
relatively short history of LSL, but it may cause some issues 
to see the long-term, big-picture of LSL use-cases in VR/
AR. However, this is also our intention to cover the recent 
research trends with LSL. To the best of our knowledge, this 
is the first literature review research on the use of LSL for 
multimodal data collection in/from VR/AR, which can help 
researchers and practitioners understand the benefits and 
potentials. We aim to follow up on the continuous develop-
ments and use of the LSL, and multimodal data collection, 
fusion and analysis in the VR/AR/HCI research fields for 
better understanding and measurement of human behavior in 
immersive environments.
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