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Abstract

The identity of dark matter has remained surprisingly elusive. While terrestrial experiments may be able to nail
down a model, an alternative method is to identify dark matter based on astrophysical or cosmological signatures.
A particularly sensitive approach is based on the unique signature of dark matter substructure in galaxy–galaxy
strong lensing images. Machine-learning applications have been explored for extracting this signal. Because of the
limited availability of high-quality strong lensing images, these approaches have exclusively relied on simulations.
Due to the differences with the real instrumental data, machine-learning models trained on simulations are expected
to lose accuracy when applied to real data. Here domain adaptation can serve as a crucial bridge between
simulations and real data applications. In this work, we demonstrate the power of domain adaptation techniques
applied to strong gravitational lensing data with dark matter substructure. We show with simulated data sets
representative of Euclid and Hubble Space Telescope observations that domain adaptation can significantly
mitigate the losses in the model performance when applied to new domains. Lastly, we find similar results utilizing
domain adaptation for the problem of lens finding by adapting models trained on a simulated data set to one
composed of real lensed and unlensed galaxies from the Hyper Suprime-Cam. This technique can help domain
experts build and apply better machine-learning models for extracting useful information from the strong
gravitational lensing data expected from the upcoming surveys.

Unified Astronomy Thesaurus concepts: Dark matter (353); Strong gravitational lensing (1643)

1. Introduction

One of the great achievements of astrophysics in the last
century was the realization by Zwicky, Rubin, and others that
the observed baryonic mass (stars, galaxies, etc.) was not
consistent with the dynamics of galaxies and clusters. A natural
solution to this problem was to consider unseen dark matter
compensating for this discrepancy. Presently, all efforts aimed
at extracting a nongravitational signature of dark matter have
come up empty (Goodman & Witten 1985; Drukier et al. 1986;
Fermi LAT Collaboration 2015; Geringer-Sameth et al. 2015;
Graham et al. 2015; The Super-Kamiokande Collabora-
tion 2015; MAGIC Collaboration 2016; Akerib et al. 2017; Cui
et al. 2017; IceCube Collaboration et al. 2017; Sirunyan et al.
2017; Archambault et al. 2017; Albert et al. 2018; Aprile et al.
2018; Du et al. 2018; Aaboud et al. 2019; Buch et al. 2020;
Froborg & Duffy 2020; Kannike et al. 2020; Rico 2020). While
this does not mean that dark matter cannot communicate with
standard model (SM) particles, as its SM couplings may be
strongly suppressed, there is also the possibility that such
interactions do not exist.

Since its discovery, subsequent evidence for particle dark
matter from its coupling to gravity is almost irrefutable
(Heymans et al. 2012; Anderson et al. 2014; Planck
Collaboration et al. 2016). At the same time, the list of
possible models that fit current constraints is still quite broad. A
particularly well-suited signature that can be used to distinguish

among dark matter models is the morphology and distribution
of its substructure within dark matter halos. Some promising
directions for inferring the properties of substructure include
tidal streams (Ngan & Carlberg 2014; Bovy 2016; Carl-
berg 2016; Erkal et al. 2016; Benito et al. 2020; Shih et al.
2021) and astrometric observations (Feldmann & Spolyar 2015;
Sanderson et al. 2016; Van Tilburg et al. 2018; Mishra-Sharma
et al. 2020; Vattis et al. 2020; Mishra-Sharma 2022; Pardo &
Doré 2021). A particularly sensitive probe is strong gravita-
tional lensing (Buckley & Peter 2018; Drlica-Wagner et al.
2019; Simon et al. 2019), to which we restrict ourselves in this
paper.
Strong gravitational lensing has already seen some promis-

ing success in extracting information about dark matter
substructure from lensed quasars (Mao & Schneider 1998;
Dalal & Kochanek 2002; Hsueh et al. 2017), observations with
ALMA (Hezaveh et al. 2016), and extended lensing images
(Koopmans 2005; Vegetti & Koopmans 2009a, 2009b). Var-
ious works have considered the expected signatures and
methods to extract information about the underlying distribu-
tion of dark matter (Vegetti et al. 2010; Daylan et al. 2018).
More recently, there has been a plethora of applications of

machine learning to this challenge, including classification
(Alexander et al. 2020b; Diaz Rivero & Dvorkin 2020; Varma
et al. 2020), regression (Brehmer et al. 2019), segmentation
analysis (Ostdiek et al. 2020a, 2020b), and anomaly detection
(Alexander et al. 2020c). To date, all works have exclusively
focused on the application of these techniques to simulations,
in large part due to the limited availability of strong lensing
data, something that is anticipated to change in the near future
with the commissioning of the Vera C. Rubin Observatory and
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the launch of Euclid (Oguri & Marshall 2010; Verma et al.
2019). However, naively applying models trained on simula-
tions to real data will not likely to be successful, as the data
idiosyncrasies will significantly diminish the accuracy of the
model. A promising method to bridge the gap between a model
trained on simulations and real data is based on the technique
of domain adaptation (DA; Ben-David et al. 2010).

A subset of transfer learning, DA is focused on the
generalization of the model across different domains or data
sets drawn from different underlying distributions. The goal of
DA is to adapt a model trained on one data set (source) by
generalizing it to another domain (target), where the objective
of the model is unchanged. In practice, DA can be realized in
several ways, including supervised, semisupervised, and
unsupervised approaches (Donahue et al. 2013; Motiian et al.
2017; Farahani et al. 2020).
The DA has been used in a wide variety of applications in

computer vision. Examples include adapting a model trained on
synthetic images to real images (Peng et al. 2017), simple to
complex images (Tzeng et al. 2017), and virtual worlds with
controlled data to the real world (Schmidt et al. 2021).
Recently, Ciprijanovic et al. (2021) used unsupervised DA

(UDA) to classify merging galaxies. Doing so achieved
promising results, with an increase of up to 19% in accuracy
compared to a model trained only on simulations. This work
showed that models trained without DA achieved poor
accuracy on real data. Another work (Ostdiek et al. 2020b)
used DA to generalize an image segmentation algorithm to
different gravitational lensing systems for subhalo detection.

In this work, we consider DA for dark matter searches in
strong gravitational lensing. With the present lack of sufficient
real data, we use two data sets to realize mock observations
with different surveys, Hubble Space Telescope (HST) and
Euclid, of galaxy–galaxy strong gravitational lensing to
carefully test the performance of DA prior to its applications
to real data. We evaluate the models trained on the source data
set to identify various types of dark matter substructure on the
target data set. We compare the performance of two DA
algorithms based on convolutional neural networks (CNNs)
and equivariant neural networks (ENNs) that incorporate a
known group symmetry to enhance performance. To demon-
strate the usefulness of DA for the transfer of knowledge to real
data sets, we apply this technique to the problem of lens finding
by performing UDA between a simulated data set and real
lensing images from the Hyper Suprime-Cam (HSC).

We begin with a brief review of dark matter substructure and
strong lensing signatures in Section 2. We then focus on the
details of strong lensing simulations in Section 3, followed by a
summary of DA algorithms in Section 4. We present our main
results in Section 5, followed by the discussion and outlook in
Section 6.

2. Dark Matter Detection and Strong Gravitational Lensing

2.1. Dark Matter Substructure

The Λ cold dark matter (ΛCDM) model envisions nearly scale
invariant density fluctuations present in the early Universe serving
as seeds of large-scale structure via hierarchical structure
formation. Structures such as dark matter halos are formed from
the coalescence of smaller halos (Kauffmann et al. 1993).
Evidence for such mergers has been observed in our Galaxy
(Necib et al. 2020a, 2020b; Chiti et al. 2021) and is a general

prediction of N-body simulations, where evidence of mergers
should remain largely intact. The distribution of subhalo masses is
expected to follow a power-law distribution,

( )µ bdN

dm
m , 1

where β∼ −1.9 has been found from simulations (Madau et al.
2008; Springel et al. 2008).
Comparison between simulations and observations indicates

good agreement with ΛCDM on large scales (Heymans et al.
2012; Anderson et al. 2014; Planck Collaboration et al. 2016).
However, discrepancies begin to arise on smaller, subgalactic
scales. These include the core-versus-cusp (Burkert 1995; Oh
et al. 2015), too-big-to-fail (Boylan-Kolchin et al. 2011), missing-
satellite (Klypin et al. 1999; Moore et al. 1999; Bullock &
Boylan-Kolchin 2017),5 and diversity problems (Oh et al. 2015).
While it may be the case that these problems can be addressed
with a better understanding of the astrophysics, e.g., baryonic
feedback (Benítez-Llambay et al. 2019), it is imperative that we
consider the manifestations of other theories beyond ΛCDM.
Two natural directions to consider are a modification to the

general theory of relativity, such as BF coupled (Alexander &
Carballo-Rubio 2020a; Alexander et al. 2020d, 2022b) or
Chern–Simons gravity (Jackiw & Pi 2003; Alexander &
Yunes 2009), or alternatives to cold noninteractive dark matter.
In the context of this paper, we will focus on the latter. An
example of a dark matter model that addresses several of the
tensions mentioned above is condensate dark matter, which can
be realized in the context of Bose–Einstein (Sin 1994; Hu et al.
2000; Silverman & Mallett 2002; Sikivie & Yang 2009;
Berezhiani & Khoury 2015; Hui et al. 2017; Ferreira et al.
2019) or Bardeen–Cooper–Schreifer (Alexander & Cor-
mack 2017; Alexander et al. 2018, 2021) condensates. A
concrete and well-motivated model is the axion. As the
Goldstone boson of a broken U(1) symmetry, axions were
originally introduced as a solution to the strong CP problem
(Peccei & Quinn 1977; Weinberg 1978; Wilczek 1978).
Shortly thereafter, it was recognized that they were a promising
dark matter candidate (Abbott & Sikivie 1983; Dine &
Fischler 1983; Preskill et al. 1983). Very light axions are
particularly well suited to address some of the issues with
structure on subgalactic scales. Axions with masses of
∼1× 10−23 eV have a de Broglie wavelength on kiloparsec
scales, which realizes a natural solution to the core-versus-cusp
problem. Additionally, light axions can form subhalos but also
substructures that are quite different from standard CDM.
These include vortices, disks, and interference patterns
(Rindler-Daller & Shapiro 2012; Alexander et al.
2019, 2022a; Hui 2021; Hui et al. 2021).

2.2. Strong Lensing Theory

A powerful probe of dark matter substructure is strong
gravitational lensing, an effect that is most pronounced near
extended lensing arcs. Any over- or underdensities along the
line of sight for an observer yields the lens equation, realized as
an integral over an induced gravitational potential (Narayan &
Bartelmann 1996),

( ) ( )òb q = - Y r
c

D

D D
dz

2
, 2LS

S L
2

5 See Kim et al. (2018) for a differing perspective.
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where DLS, DL, and DS are the angular diameter distances from
the lens to the source, the lens to the observer, and the source to
the observer. The last term on the right-hand side of
Equation (2) is known as the deflection angle, α, and is
related via a perpendicular derivative to the lensing potential,
Ψ;⊥=α. The lensing potential can be shown to be related to
matter density via a Poisson equation for gravitational lensing,

( )k Y = 2 , 32

implying that lensing from separate sources, a dark matter halo
and its subhalos, is a sum of deflection angles,

( )åa a= , 4i
all matter

where αi could represent a dark matter halo, subhalos, vortices,
external shear, interlopers, etc.

3. Strong Lensing Simulations

Similar to Alexander et al. (2020b, 2020c), we consider data
sets of three substructure classes: no substructure, Navarro–
Frenk–White (NFW) subhalos of CDM, and vortex substruc-
ture of superfluid-type (axion) dark matter. The parameters for
the simulations are shown in Table 1. We construct the
simulations with lenstronomy (Birrer & Amara 2018) to
mimic the characteristics of HST and Euclid using the default
instrument and observational settings. For background sources,
we use images of galaxies from the Galaxy10 DECals data set

(Dey et al. 2019) processed with a Gaussian mask and
convolved with a Gaussian of 2 pixels in size. This prevents the
lensing of unwanted foreground sources and noise in the
image. We choose the apparent magnitude of the background
galaxy such that the signal-to-noise ratio (S/N) of the lensing
arcs is consistent with real lensing data: S/N∼ 20 (Bolton et al.
2008).
We ensure that the total fraction of mass in the substructure,

fsub, is of ( ) 1% . We constrain the simulations such that the
total mass of the halo, including substructure, is always equal
to 1× 1012Me. This ensures that the classification algorithms
do not simply recognize simulations without substructure as
less massive on average. When simulating substructure for
CDM, we draw subhalo masses from Equation (1) for a total
number of sources taken from a Poisson draw with μ= 25,
consistent with the expected number of subhalos for our field of
view and redshift range (Díaz Rivero et al. 2018). We model
vortices of superfluid dark matter as uniform density strings of
mass of varying length and orientation, a valid approximation
at cosmological distances. Beyond the effects of substructure,
we also include the impact of external shear due to large-scale
structure.
The inclusion of the effects of substructure in our

simulations can be understood from the linearity of the Poisson
equation, Equation (3), which implies that the total lensing is
just the sum of the individual contributions,

( )-a a a a= + + , 5LSS halo halo sub

where αLSS is the external shear from large-scale structure,
αhalo is the lensing from the halo, and αhalo-sub is for the halo
substructure. Therefore, the location of an image can be found
from a modified form of the lens equation, Equation (2),

( )-a a ab q= - - - . 6i i i i i
LSS halo halo sub

The DA requires at least two data sets: the source and the
target. In this work, we will demonstrate DA between models
trained on mock HST observations and Euclid (and vice versa).
Thus, it will be our goal to successfully adapt and evaluate the
algorithms trained on a given source data set to the target
data set.

4. Domain Adaptation

The goal of our work is to train a supervised model on a
source data set and adapt it to a target data set. For this task, we
use a CNN, specifically EfficientNet (Tan & Le 2019), as our
base architecture. This is the same type of architecture that has
achieved top performance in previous applications to lensing
data sets (Alexander et al. 2020b, 2020c; Vattis et al. 2020).
More generally, CNNs are known to outperform other methods
of classification for strong gravitational lenses (Metcalf et al.
2019). Nonetheless, as noted by Ciprijanovic et al. (2021), a
model trained on simulations can perform poorly on real data.
To improve the performance of models trained on simulated

data, we use UDA, which attempts to mitigate the effects of the
domain shift between the source and the target domains. It
enables a transfer of knowledge gained from a labeled source
data set to a distinct unlabeled target data set within the
constraint that the objective remains the same (French et al.
2018). Examples from each data set are shown in Figure 1.

Table 1
Parameters with Distributions and Priors Used in the Simulation of Strong

Lensing Images

DM Halo

Param. Dist. Priors Details

θx Fixed 0 x position
θy Fixed 0 y position
z Fixed 0.5 Redshift
Mtot Fixed 1e12 Total halo mass in Me

Ext. Shear

Param. Dist. Priors Details

γext Uniform [0.0, 0.3] Magnitude
fext Uniform [0, 2π] Angle

Vortex

Param. Dist. Priors Details

θx Normal [0.0, 0.5] x position
θy Normal [0.0, 0.5] y position
l Uniform [0.5, 2.0] Length of vortex
fvort Uniform [0, 2π] Orientation from y-axis
mvort Uniform [3.0, 5.5] % of mass in vortex

NFW Subhalo

Param. Dist. Priors Details

r Uniform [0, 2.0] Radial distance from center
N Poisson μ = 25 Number of subhalos
fsh Uniform [0, 2π] Orientation from y-axis
msh Power law [1e6, 1e10] Subhalo mass in Me

βsh Fixed −1.9 Power-law index

Note. Note that only a single type of substructure was used per image.
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4.1. Unsupervised Domain Adaptation

We utilize adversarial discriminative DA (ADDA; Tzeng
et al. 2017), an adversarial adaptation method, with the goal of
minimizing the domain discrepancy distance through an
adversarial objective with respect to a discriminator. Ideally,
the discriminator will be unable to distinguish between the
source and the target distributions. We consider that we have
access to source images Xs and labels Ys that come from a
source distribution ps(x, y), as well as target images Xt from a
target distribution pt(x, y). Our objective is to learn a target
encoder Mt and classifier Ct that classifies Xt into K classes.

Due to the fact that it is not possible to perform supervised
learning on the target distribution, we learn a source encoder
Ms and a source classifier Cs. The encoder learns to map the
input samples to a latent vector whose dimensionality is lower
than the dimensionality of the input samples. With these
networks trained, the distance between Ms(Xs) and Mt(Xt) is
minimized, as illustrated in Figure 2. Since we are only
minimizing the encoders, we can assume that Cs=Ct= C.

We train Ms and C using a standard supervised loss. Then,
we train a discriminator D that classifies whether the encoded
vector represents an image from the source or target domain
using a standard supervised loss, where the labels indicate the
origin domain. Finally, we train Mt using D. To evaluate a
target image Xt, we perform C(Mt(Xt)).

In addition to the baseline CNN models, we also consider an
ENN (Weiler & Cesa 2021) for substructure classification. An
ENN can be thought of as a generalization of a CNN that
encodes the representation of a useful symmetry, both global or

local, such that its group convolutions are invariant symmetries
present in the data. This is useful if there is a known symmetry.
As we expect lensing images to have symmetries beyond
simple translation, for example, rotations, the flexibility of
choosing different group representations is expected to improve
the performance.
The ENN we use consists of a group equivariant CNN

(Cohen & Welling 2016) with six equivariant convolution
blocks. We utilize the dihedral group D2, whose symmetry
mappings include the identity, rotations by ±π, and horizontal/
vertical reflections. The D2 group structure is visualized in
Figure 3. Each block is composed of a convolutional layer, a

Figure 1. Example of lensing simulation of mock HST (top) and Euclid (bottom) data sets. Shown is an image of a real galaxy from the Galaxy10 DECals data set
(left), the image processed with a Gaussian filter to remove unwanted background (middle), and the final lensed image (right).

Figure 2. Depiction of target and source representations in the latent space of
the encoder in ADDA. Images in blue are from the source domain, and images
in orange are from the target domain.
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batch normalization layer, and an ReLU activation function.
After each pair of layers, we perform channel-wise average
pooling, and in the end, we use a fully connected layer for
multiclass classification. A schematic of the ENN architecture
is presented in Figure 4.

4.2. Network Training

For training, we use 30,000 images for the source domain
and 30,000 images for the target domain; in both cases, there
are 10,000 images per class. For validation, we use 7500
images for the source domain and 7500 images for the target; in
both cases, there are 2500 images per class. We use the Adam
optimizer (Kingma & Ba 2014) to minimize the loss. We
trained both EfficientNet and the ENN for 200 epochs, training
with a patience of 15 epochs, such that if the accuracy of the
model does not improve in 15 epochs, the training is stopped.
For the final results, we considered the epoch that achieved the
largest accuracy. Learning rate, weight decay, and other
hyperparameters were optimized through a hyperparameter
search and are available in Table 2.

We used random flip augmentations for both the source and
target data set. We also found that the best results were
obtained after random zooming (in a range of [0.8, 1.2]) and
rotations in a range of [0°, 90°] on the source data set. We
utilize the area under the receiver operating characteristic
(ROC) curve on the target validation set as the metric for
classifier performance for all of the models. All quoted area-
under-the-ROC-curve (AUC) values are macro-averaged. All
machine-learning models are implemented using PyTorch
(Paszke et al. 2019b) and run on a single NVIDIA Tesla
P100 GPU.

5. Results

We test the applicability of UDA using ADDA between
mock HST and Euclid observations in the context of multiclass
classification of three types of substructure: no substructure,
NFW subhalos of CDM, and superfluid DM vortices. We
employ two different base classifiers: EfficientNet and an
ENN.6 The parameters for our data sets are compiled in
Table 1. The results from our analysis are shown in Tables 3
and 4 for EfficientNet and the ENN, respectively. The ROC
curves for both combinations of source/target in addition to the
results for different architectures are presented in Figure 5. We

Figure 3. Visualization of the D2 group structure for a real gravitational lens.
Lensing image credit: ESA/Hubble & NASA.

Figure 4. Schematic of the ENN architecture.

Table 2
Hyperparameters and Augmentations Used to Train the UDA Algorithm

Method Hyperparameters
Hyperparameter

Values Augmentations

Learning rate 2 × 10−3 Horizontal flips
Supervised Weight decay 1 × 10−5 Vertical flips

Cyclic scheduler True

Learning rate target
encoder

1 × 10−6 Horizontal flips

ADDA Learning rate critic 1 × 10−5 Vertical flips
Weight decay 2.5 × 10−5

Cyclic scheduler False

6 The code used in our analysis can be found at https://github.com/
ML4SCI/DeepLense/tree/main/Domain_Adaptation_for_DeepLense_
Marcos_Tidball.
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also include the loss curves (Figure 7) and confusion matrices
(Figures 8 and 9) for these models in the Appendix.

5.1. Domain Adaptation

We first train EfficientNet on the source data sets where it
achieved a macro-averaged AUC≈ 0.999 for both data sets and
an accuracy of ≈99.6% for Euclid and ≈99.5% for HST.
Applying these models to the corresponding target data sets
naively, i.e., without DA, results in an AUC of ≈0.685 (0.789)
when the Euclid (HST) model is applied to the HST (Euclid)
data set and an accuracy of ≈50% (51%), a significantly
degraded performance. This degradation is anticipated, even
though the underlying physics is identical, due to different
instrument systematics.

Following the application of UDA with ADDA, we observe
a significant improvement in the application to the target data
set. With the EfficientNet-based algorithm, we achieve an
≈35% improvement in AUC, at ≈0.924, and an accuracy of
≈87% adapting from the Euclid to HST data sets. Going the
other direction, the AUC is improved to 0.991 and reaches an
accuracy of 0.88%. This is a remarkable improvement in
performance that can be further appreciated by comparing the
ROC curves in Figure 5. The red dashed curves correspond to
the naive application of EfficientNet, and the solid curves
correspond to the performance with ADDA. While there is still
some room for improvement in DA from Euclid to HST (left
panel), DA from HST to Euclid results in near-perfect
classification.

5.2. Equivariant DA

While EfficientNet saw a great improvement with ADDA, it
is clear there is still a lot on the table, as standard binary
classification has an AUC near unity. This informs us that one
should be able to further improve on the UDA performance,
particularly in the case of going from Euclid to HST. A natural
improvement to consider is changing the baseline classifier to
an ENN. When we leverage extra known symmetries of
lensing, we should see an appreciable bump in performance, as
our model does not need to learn this unimportant symmetry. In
principle, one could also consider the inclusion of other UDA,
but we will not consider that in this work.

Training and testing on source data sets, the ENN achieves
an AUC of ≈0.999 on both data sets and an accuracy of
99.4% and 99.7% for Euclid and HST, respectively. The naive
application to the test data set (i.e., no DA) again results in
degraded performance, realized with an AUC for the Euclid-
(HST-) trained model applied to HST (Euclid) data of ≈0.915
(0.973). This realizes a remarkable performance simply in the

naive application of the ENN to the target data set. After
training with ADDA, we find that our models are then able
to achieve effectively perfect classification with AUCs
of ≈0.999 for both combinations of source/target and an
accuracy of 99.1% (97.5%) from Euclid (HST) to HST
(Euclid). We see that the performance with our ENN is near
optimal, achieving a significant performance bump over the
CNN. This is truly impressive, as our DA algorithm is
unsupervised—it never saw the labels from the target data set
yet was nearly perfect at adapting to the new domain. This is,
of course, exactly the kind of transfer of knowledge one
would hope to be able to do between simulations and real
data sets.

5.3. Application for Lens Finding

To further demonstrate the prospects of DA, we applied it to
the task of lens finding. Identifying new lensed systems in
current and upcoming wide-area surveys is an important
problem that cannot be tackled efficiently by visual inspection
due to the rarity of strong lenses. Previous work (Petrillo et al.
2017; Metcalf et al. 2019) has demonstrated the capability of
CNNs in identifying lenses. Due to the relatively small number
of confirmed lenses and lens candidates, most studies have used
simulated lenses in their training data. However, this has
inevitably been shown to result in a degradation in the
performance of models when evaluated on real data. Given the
increase in performance that we have seen in the last section, its
seems likely that the difficulties induced by the differences
between simulated and observational data sets could be
mitigated by DA.
With this problem in mind, we take our target data set to

consist of 10,000 nonlensed galaxies obtained in the HSC
Subaru Strategic Program and 2500 real lens candidates covered
by HSC observations, where 1000 of the HSC lenses were used
in the test data set. The list of lens candidates was compiled
based on previous lens searches (Moustakas 2012; Diehl et al.
2017; Pourrahmani et al. 2018; Jacobs et al. 2019; Cañameras
et al. 2020, 2021; Huang et al. 2020, 2021; Sonnenfeld et al.
2020; Jaelani et al. 2021; Li et al. 2021; Garvin et al. 2022;
Rojas et al. 2022; Shu et al. 2022; Stein et al. 2022; Storfer et al.
2022; Wong et al. 2022). We constructed our source data set to
have the same distribution and size as the target data set and
included 10,000 nonlensed galaxies and 2500 lenses, all
simulated with lenstronomy. To obtain cutouts of the
nonlenses and galaxies that were used as deflectors in
simulations, we queried HSC Wide Public Data Release 2 with
the following constraints: magnitude in the i band, i_mag< 24;
spectroscopic redshift (from SDSS), 0.3< z < 0.7; and velocity

Table 3
Macro-averaged Area under the ROC Curve (AUC) for the EfficientNet

Classifier

Method AUC

Euclid to HST
ADDA 0.924
Supervised (source) 0.999
Supervised (target) 0.685

HST to Euclid
ADDA 0.991
Supervised (source) 0.999
Supervised (target) 0.789

Table 4
Macro-averaged Area under the ROC Curve (AUC) for the ENN Classifier

Method AUC

Euclid to HST
ADDA 0.999
Supervised (source) 0.999
Supervised (target) 0.915

HST to Euclid
ADDA 0.999
Supervised (source) 0.999
Supervised (target) 0.973
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dispersion (from SDSS), σV< 400 km s−1. To construct the
simulated systems, we used the following steps.

1. Randomly choose a deflector.
2. Draw a value of Einstein radius from a uniform

distribution between 0 75 and 2 5.
3. For a given velocity dispersion and redshift of the

deflector and Einstein radius of the system, find a redshift
of the background source assuming the singular iso-
thermal sphere profile. For that purpose, we used the
lenstronomy function sis_sigma_v2theta_E.

4. Randomly choose a galaxy from the Hubble Zoo Gems
catalog (Keel et al. 2022) as a background source and ray
trace it with lenstronomy, scaling it to the redshift
computed in a previous step and assigning the magnitude
drawn from a distribution similar to the source magnitude
distribution in Collett (2015).

In addition, we built another data set (which we refer to as
the balanced data set, as opposed to the unbalanced data set
described previously) with a different distribution of lensed and
nonlensed systems. In the source data set, we used 10,000

Figure 6. Comparison of ADDA and ResNet-18 performance for classifying objects into lensed and nonlensed galaxies for unbalanced (left) and balanced (right)
data sets.

Figure 5. Application of ADDA for DA between two different mock simulations of strong lensing surveys: from Euclid to HST (left) and HST to Euclid (right).
Dashed lines represent the naive application of a classifier trained on the source data set to the target, and solid lines represent the result after training with ADDA. Red
curves represent models based on EfficientNet, and blue curves represent models based on an ENN.
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nonlensed galaxies from HSC and 10,000 simulated lenses, and
for the target data set, we combined 2500 real lens candidates
and 2500 nonlensed objects from HSC. In the balanced data
set, there is an equal fraction of lensed and nonlensed systems;
however, due to the limited number of observational data, this
results in a different size for the source and target data sets,
which could have a negative impact on the performance of our
ADDA model.

We began with training ResNet-18 on the unbalanced
(balanced) source data set (we include the loss curves in
Figure 10 in the Appendix). While its accuracy on the
simulated data reached 94% (96%) and an AUC of 0.98
(0.99), on the data set with real lenses, the accuracy and AUC
dropped to 54% (64%) and 0.71 (0.76), respectively. Moreover,
the recall score was only 0.09 (0.28), meaning that we were
able to recover only a small fraction of lenses. The DA with
ADDA resulted in increasing the accuracy to 68% (69%). We
saw an appreciable increase in AUC for the unbalanced data set
to 0.76 but a very slight decrease for the balanced data set to
0.75 (Figure 6). The recall score was improved to 0.50 and 0.55
for the unbalanced and balanced data set, respectively. While
there is a slight degradation in precision, for both data sets,
ADDA shows a large improvement in the number of detected
lenses. The confusion matrices in Figure 11 in the Appendix
also help us to understand the benefits of ADDA for this
problem. We see that for the naive application to the target data
sets, the model effectively always guesses a single class, in this
case favoring the galaxy label for lenses. We see that the
implementation of ADDA, while not perfect, is to alleviate this
“confusion” between the class labels.

6. Discussion and Conclusion

With the upcoming arrival of strong gravitational lensing
data from Euclid and the Vera C. Rubin Observatory, it is
imperative to assess how algorithms trained on simulations can
be applied to real-world data. In this work, we studied how
UDA algorithms can be used to adapt a model trained on one
set of data (the source) to another set of gravitational lensing
data (the target). To make a quantitative comparison, we based
our work on two sets of realistic lensing simulations, a mock
data set from Euclid and another for HST.

We have demonstrated that the naive application of
substructure classification models has diminished performance
when applied to a different (target) data set. We then tested the
implementation of ADDA, an unsupervised DA method, for a
popular convolutional (EfficientNet) classifier and a symmetry
ENN classifier. We found that ADDA consistently increases
the performance of all models tested on the target data set. The
ENN-based ADDA algorithm achieved top performance

relative to the EfficientNet-based algorithm, achieving results
competitive with the original source trained and evaluated
algorithm. Lastly, we implemented ADDA for the problem of
lens finding. In this case, we explicitly show that DA can help
to alleviate performance losses when adapting a model trained
in the controlled simulated domain to real data.
With the upcoming arrival of high-quality strong lensing

data, DA techniques will be critical for real-world applications
of machine learning–based dark matter analyses. Possible
performance degradation for a simulation-trained model
naively applied to real data sets can be more significant than
what was realized here, particularly for the problem of
substructure detection, making the need for further develop-
ment and application of UDA methods even more critical.
While we have restricted ourselves to classification in this
work, DA techniques can be additionally useful in the broader
context of studying dark matter from regression to image
segmentation. In this work, we have not considered the impact
of line-of-sight halos, i.e., interlopers (McCully et al. 2017;
Despali et al. 2018; Gilman et al. 2019; Çağan Sengül et al.
2020). In some cases, their influence may dominate the signal
of substructure, so it is important to take care that they are not
incorrectly associated with the dark matter halo when working
with real data sets (see, for example, Çağan Şengül et al. 2022).
We leave the study of this effect for future work.
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Appendix
Extra Figures

In the Appendix we include extra figures with details of our
models' performance after training. For our substructure models
we show the loss curves with ADDA in Figure 7 and the
confusion matrices for EfficientNet and the ENN in Figures 8
and 9, respectively. Similarly, for our lens identification model
we display the loss curve in Figure 10 and confusion matrices
in Figure 11.
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Figure 7. Evolution of loss during training for models with ADDA aimed at substructure identification.

Figure 8. Confusion matrices for EfficientNet architecture for substructure classification with and without ADDA. The top row represents the naive application on the
target data set, and the bottom row shows after training with ADDA. The left (right) column represents evaluation of a Euclid- (HST-) trained model to HST (Euclid)
simulations.
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Figure 9. Confusion matrices for the ENN architecture for substructure classification with and without ADDA. The top row represents the naive application on the
target data set, and the bottom row shows after training with ADDA. The left (right) column represents evaluation of a Euclid- (HST-) trained model to HST (Euclid)
simulations.
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Figure 10. Evolution of loss during training with ADDA for models aimed at lens identification.

Figure 11. Confusion matrices for the detection of lensing images on real data. The top row represents the naive application on the target data set, and the bottom row
shows after training with ADDA. The left and right columns represent training with balanced and unbalanced data sets, respectively.
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