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Abstract

Over the last decade or so, Approximate Message Passing (AMP) algorithms have become
extremely popular in various structured high-dimensional statistical problems. Although the origins
of these techniques can be traced back to notions of belief propagation in the statistical physics
literature, our goals in this work are to present the main ideas of AMP from a statistical perspective
and to illustrate the power and flexibility of the AMP framework. Along the way, we strengthen
and unify many of the results in the existing literature.

1 Introduction

Approximate Message Passing (AMP) refers to a class of iterative algorithms that have been success-
fully applied to a number of statistical estimation tasks such as linear regression (Donoho et al., 2009;
Bayati and Montanari, 2011; Krzakala et al., 2012), generalised linear models (Rangan, 2011; Schniter
and Rangan, 2014; Mondelli and Venkataramanan, 2020) and low-rank matrix estimation (Mat-
sushita and Tanaka, 2013; Deshpande and Montanari, 2014; Deshpande et al., 2016; Montanari and
Richard, 2016; Kabashima et al., 2016; Lesieur et al., 2017; Rangan and Fletcher, 2018; Montanari
and Venkataramanan, 2021). Moreover, these techniques are also popular and practical in a variety
of engineering and computer science applications such as imaging (Fletcher and Rangan, 2014; Vila
et al., 2015; Metzler et al., 2017), communications (Schniter, 2011; Jeon et al., 2015; Barbier and Krza-
kala, 2017; Rush et al., 2017) and machine learning (Manoel et al., 2017; El Alaoui et al., 2018; Yang,
2019; Emami et al., 2020; Pandit et al., 2020). AMP algorithms have two features that make them
particularly attractive. First, they can easily be tailored to take advantage of prior information on the
structure of the signal, such as sparsity or other constraints. Second, under suitable assumptions on a
design or data matrix, AMP theory provides precise asymptotic guarantees for statistical procedures in
the high-dimensional regime where the ratio of the number of observations n to dimensions p converges
to a constant (Bayati and Montanari, 2012; Donoho et al., 2013; Donoho and Montanari, 2016; Sur
et al., 2017). More generally, AMP has been used to obtain lower bounds on the estimation error of
first-order methods (Celentano et al., 2020). In generalised linear models, low-rank matrix estimation
and neural network models, it also plays a fundamental role in understanding the performance gap
between information-theoretically optimal and computationally feasible estimators (Aubin et al., 2019,
2020; Barbier et al., 2019; Lelarge and Miolane, 2019; Reeves and Pfister, 2019). In these settings, it
is conjectured that AMP achieves the optimal asymptotic estimation error among all polynomial-time
algorithms (cf. Celentano and Montanari, 2022).

The purpose of this article is to give a comprehensive and rigorous introduction to what AMP can
offer, as well as to unify and formalise the core concepts within the large body of recent work in the
area. We mention here that many of the original ideas of AMP were developed in the physics and



engineering literature, and involved notions such as ‘loopy belief propagation’ (e.g. Koller and Fried-
man, 2009, Section 11.3) and the ‘replica method’ (e.g. Tanaka, 2002; Guo and Verdi, 2005; Mézard
and Montanari, 2009; Rangan et al., 2009; Krzakala et al., 2012). Our starting point, however, will
be an abstract AMP recursion, whose form depends on whether or not the data matrix is symmetric;
we will study the symmetric case in detail, and then present the asymmetric version, which can be
handled via a reduction argument. The striking and crucial feature of this recursion is that when
the dimension is large, the empirical distribution of the coordinates of each iterate is approximately
Gaussian, with limiting variance given by a scalar iteration called ‘state evolution’.

Rigorous formulations of the key AMP property are given in Theorems 2.1 and 2.3 (for the symmetric
case) and Theorem 2.5 (for the asymmetric case), which can be found in Sections 2.1 and 2.2 respec-
tively. Here, we both strengthen earlier related results, and seek to make the underlying arguments
more transparent. These ‘master theorems’, which can be viewed as asymptotic results on Gaussian
random matrices, can be adapted to analyse variants of the original AMP recursion that are geared to-
wards more statistical problems. In this aspect, we focus on two canonical statistical settings, namely
estimation of low-rank matrices in Section 3, and estimation in generalised linear models (GLMs) in
Section 4. The former encompasses Sparse Principal Component Analysis (Jolliffe et al., 2003; Zou
et al., 2006; Deshpande and Montanari, 2014; Wang et al., 2016; Gataric et al., 2020), submatrix
detection (Ma and Wu, 2015), hidden clique detection (Alon et al., 1998; Deshpande and Montanari,
2015), spectral clustering (von Luxburg, 2007), matrix completion (Candes and Recht, 2009; Zhu et
al., 2019), topic modelling (Blei et al., 2003) and collaborative filtering (Su and Khoshgoftaar, 2009).
The latter provides a holistic approach to studying a suite of popular modern statistical methods, in-
cluding penalised M-estimators such as the Lasso (Tibshirani, 1996) and SLOPE (Bogdan et al., 2015),
as well as more traditional techniques such as logistic regression. A novel aspect of our presentation in
Section 4 is that we formalise the connection between AMP and a broad class of convex optimisation
problems, and then show how to systematically derive exact expressions for the asymptotic risk of
estimators in GLMs. We expect that our general recipe can be applied to a wider class of GLMs than
have been studied in the AMP literature to date.

To preview the statistical content in this tutorial and highlight some recurring themes, we now discuss
two prototypical applications of AMP that form the basis of Sections 3 and 4 respectively. First,
suppose that we wish to estimate an unknown signal v € R™ based on an observation

A
A=Zw" +W,
n

where A > 0 is fixed and W € R™" is a symmetric Gaussian noise matrix. In this so-called spiked
Wigner model (see Section 3.1 and the references therein), a popular and well-studied estimator of v
is the leading eigenvector ¢ of A, which can be approximated via the power method, with iterates

k
k+1 Av

v = —.
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An AMP algorithm in this context can be interpreted as a generalised power method that produces a
sequence of estimates 0% of v via iterative updates of the form

o =gr(v*), P =AY — bpot!
for k € Ny, where we emphasise the following two characteristic features:

(i) Each ‘denoising’ function g: R — R is applied componentwise to vectors, and can be chosen
appropriately to exploit different types of prior information about the structure of v (e.g. to
encourage 0F to be sparse).

(ii) Inthe ‘memory’ term —by "', which is called an ‘Onsager’ correction in the AMP literature (e.g.
Donoho et al., 2009; Bayati and Montanari, 2011), the scalar by is defined as a specific function
of v¥ to ensure that the iterates v*! have desirable statistical properties; see (3.3) below.



One way to incorporate additional structural information on v into the spiked model is to assume that
its entries are drawn independently from some prior distribution 7 on R; for example, we can enforce
sparsity through priors that place strictly positive mass at 0. Then under appropriate conditions,
AMP theory guarantees that, for each k, the components of the estimate ©* have approximately the
same empirical distribution as those of gx(uxv + 0x€); here, & ~ N,(0,1,) is a ‘noise’ vector that
is independent of the signal v € R™, and the ‘signal’ and ‘noise’ parameters ui € R, o > 0 are
determined by a scalar state evolution recursion that depends on (gx) and the prior distribution m;
see (3.6). This distributional characterisation effectively reduces the analysis of the high-dimensional
o* to a much simpler univariate denoising problem, where the aim is to reconstruct V ~ 7 based on
a single corrupted observation of the form iV + oG with G ~ N(0,1) representing independent
Gaussian noise. The functions g; can then be chosen in such a way that the ‘effective signal-to-noise
ratios’ (ux/ox)? are large and g, (1, V + 01.G) accurately estimates V. This ensures that the resulting
AMP estimates 9 = g;(v¥) have low asymptotic estimation error as n — ooc.

For instance, suppose that the entries of v are drawn uniformly at random from {—1,1}. Then
provided we initialise the AMP algorithm with v* = ¢ and =1 = A1, where ||¢]| = \/nA2(A2 — 1),
it turns out that the asymptotic mean squared error (MSE) of ©* is minimised by choosing gj. to be
the function z +— tanh(ugz/0%); see Section 3.3. Figure 1 illustrates that the limiting MSE of the
AMP estimates ©* decreases with the iteration number k, and in particular that they improve on the
pilot spectral estimator o~! (which is agnostic to the structure of v).
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Figure 1: Asymptotic mean-squared error plots for estimation of a signal v € R™ with i.i.d. U{—1, 1} entries in
the rank-one spiked model, based on an AMP algorithm with denoising functions g: x — tanh(uga/ U,%) and

spectral initialisation (v = @ and =1 = A7 with [|@]| = \/nA2(A\2 — 1)1). See Sections 3.2-3.3, where we
also discuss how to consistently estimate A when it is unknown (Remark 3.12).

Left: Plot of AMSE()) := lim,,_,« ||0* — v||?/n against the iteration number k for the AMP estimates % =
9%(n), when A = 1.7. AMSE(\) decreases monotonically to some AMSE, () as k — 0o; see Theorem 3.10(c).

Right: Plots of AMSE_;1(A\) = 1 A A2 for the pilot spectral estimator 9=! and AMSE..(A) for AMP, with
A € [0,3]. The spectral estimator undergoes the so-called BBP phase transition at A = 1; see Section 3.1.

As a second example, consider the linear model y = X3 + ¢, where 5 € RP is the target of inference,
e € R" is a noise vector, and X € R™*? is a random design matrix with independent N (0, 1/n) entries.
In high-dimensional regimes where p is comparable in magnitude to, or even much larger than n, a
popular (sparse) estimator is the Lasso (Tibshirani, 1996), which for A > 0 is defined by

B € anguin {3y — XA+ N3l |
BERP

In the literature on high-dimensional estimation, upper bounds on the prediction and estimation error

of the Lasso have been obtained under suitable conditions on the design matrix X, such as the restricted

isometry property or compatibility conditions (e.g. Bithlmann and van de Geer, 2011). AMP offers

complementary guarantees by providing exact formulae for the asymptotic risk in the ‘large system



limit’ where n,p — oo with n/p — § € (0,00), and with the components of 5 drawn independently
from a prior distribution on R. To motivate the form of the AMP algorithm in this setting, first
consider the iterative soft thresholding algorithm (ISTA) for solving the Lasso optimisation problem,
whose update steps can be written as

=y — XB", B = STy, (6% + X T#%)  for k € Ny; (1.1)

here, #* is the current residual, n; > 0 is a deterministic step size, and for t > 0, the soft-thresholding
function ST;: w — sgn(w)(Jw| — t)+ is applied componentwise to vectors. This is an instance of
the general-purpose proximal gradient method (Parikh and Boyd, 2013, Sections 4.2 and 4.3). An
‘accelerated’ version of (1.1) called FISTA (Beck and Teboulle, 2009) bears a closer resemblance to
an AMP algorithm, where the iterates of the latter are given by

A Ak A ~
poyoxp Plopor g (3 xT) rken. (12)

Here, each ¢ > 0 is a deterministic threshold and ||3¥|y denotes the number of non-zero entries of
Bk € RP. By comparison with (1.1), we observe that #* in (1.2) is a corrected residual, whose definition
includes an additional memory term that is crucial for ensuring that the empirical distribution of the
iterates can be characterised exactly. Indeed, for each fixed k € N, the entries of the AMP estimate
Bk of B have approximately the same empirical distribution as those of STy, (8 + 0x¢) when p is large;
here £ ~ N,(0,I,) is a noise vector that is independent of 3, the noise level o}, > 0 is determined by
the state evolution recursion defined in (4.41) below, and the scalar denoising function STy, induces
sparsity.

Bayati and Montanari (2012) proved that in the asymptotic regime above, the AMP iterates (7, Bk)
converge in a suitable sense to a fixed point (7%, B*), and a key property of (1.2) is that for any such
fixed point, B* is a Lasso solution; see (4.42) below. It follows that the performance of the Lasso is
precisely characterised by a fixed point of the state evolution recursion (4.41); see Theorem 4.5. Since
the above properties are proved under a Gaussian design, the main utility of AMP in this setting is
not so much as an efficient Lasso computational algorithm, but rather as a device for gaining insight
into the statistical properties of the estimator. In Section 4, the above theory is developed as part of
an overarching AMP framework for linear models and generalised linear models (GLMs).

Note that in both of the examples above, the limiting empirical distributions of the entries of the AMP
iterates can be decomposed into independent ‘signal’ and ‘noise’ components, and the effective signal
strength and noise level are determined by a state evolution recursion. In Sections 3 and 4, we show
how to derive these asymptotic guarantees by applying the master theorems in Section 2 to suitable
abstract recursions, which track the evolution of the asymptotically Gaussian ‘noise’ components of
the AMP iterates. We discuss various extensions in Section 5, and provide proofs in the Appendix
(Section 6), with supplementary mathematical background deferred to Section 7. As a guide to the
reader, we remark that rigorous formulations of the results in this monograph require a number of
technical conditions. While we take care to state these precisely, and discuss them at appropriate
places, we emphasise that these should generally be regarded as mild. We therefore recommend that
the reader initially focuses on the main conclusions of the results.

The statistical roots of AMP lie in compressed sensing (Donoho et al., 2009, 2013). A reader ap-
proaching the subject from this perspective can consult Montanari (2012), Tramel et al. (2014) and
Schniter (2020) for accessible expositions of the motivating ideas and the connections with message
passing algorithms on dense graphs. Alternatively, for comprehensive reviews of AMP from a statisti-
cal physics perspective, see Zdeborova and Krzakala (2016), Krzakala et al. (2012) and Lesieur et al.
(2017).

In spin glass theory, an AMP algorithm was proposed as an iterative scheme for solving the Thouless—
Anderson—Palmer (TAP) equations corresponding to a Sherrington—Kirkpatrick model with specific
parameters (Mézard et al., 1987; Mézard and Montanari, 2009; Talagrand, 2011; Bolthausen, 2014).



The estimation problem here is equivalent to one of reconstructing a symmetric rank-one matrix in
a Gaussian spiked model. Bolthausen (2014) proved a rigorous state evolution result for AMP in
this specific setting, by introducing a conditioning argument that became an essential ingredient in
subsequent analyses of AMP (Bayati and Montanari, 2011; Javanmard and Montanari, 2013; Berthier
et al., 2020; Fan, 2022). See Section 6.2 for a detailed discussion of this proof technique.

In this article, we restrict our focus to AMP recursions in which the random matrices are Gaussian.
However, as we discuss in Section 5, several recent works have extended AMP and its state evolution
recursion to more general non-Gaussian settings. For matrices with independent sub-Gaussian entries,
results on the ‘universality’ of AMP were first established by Bayati et al. (2015) and later in greater
generality by Chen and Lam (2021). In addition, to accommodate the class of rotationally invariant
random matrices, a number of extensions of the original AMP framework have recently been proposed,
including Orthogonal AMP (Ma and Ping, 2017; Takeuchi, 2020) and Vector AMP (Schniter et al.,
2016; Rangan et al., 2019b), as well as the general iterative schemes of Opper et al. (2016), Cakmak and
Opper (2019) and Fan (2022). Some of these are closely related to expectation propagation (Opper and
Winther, 2005; Kabashima and Vehkaperé, 2014). In all of the above variants of AMP, the recursion
is tailored to the spectrum of the random matrix.

1.1 Notation and preliminaries

Here, we introduce some notation used throughout this tutorial, and present basic properties of Wasser-
stein distances, pseudo-Lipschitz functions, as well as the complete convergence of random sequences.

General notation: For n € N, let ey, ..., e, be the standard basis vectors in R™. For r € [1, 00|, we
write ||z||, for the £, norm of x = (v1,...,%,) € R", so that ||z|l, = (31— |z;|")*/" when r € [1, 00)
and |70 = maxj<i<y |2;]. We also define ||z, := n= V72|, = (n= 320 |z:[")Y" for 7 € (1,00).
Let (-,-) and ||-|| := [|-||]2 be the standard Euclidean inner product and norm on R" respectively, and
define (-, -),, to be the scaled Euclidean inner product on R™ given by (z,y),, := n~{(z, y) for z,y € R",
which induces the norm ||-||,, := ||:|[n,2. We denote by 1,, := (1,...,1) € R" the all-ones vector and
write (z)p, := (x,1,), =n" 1> 0 | @; for each z € R™.

For D € N and z',...,2P € R", we denote by v, (z!,...,2P) == n71 31 | O(y1,. Py the joint em-
D) .

pirical distribution of their components, and for a function f: RP? — R, write f(z!,...,z
(f(x},...,2P) 1 <i < n) € R" for the row-wise application of f to (z! - zP).

By a Euclidean space (E,||-|g) we mean a finite-dimensional inner product space over R, equipped
with the norm induced by its inner product; examples include (R™, ||-||) for n € N and (R¥**, ||-||¢) for
k,¢ € N, where ||-|| is the Frobenius norm induced by the trace inner product (A, B) ~ tr(A' B).

Gaussian orthogonal ensemble: We write W ~ GOE(n) if W = (W;;)1<; j<n takes values in the
space of all symmetric n x n matrices, and has the property that (Wj;)i<i<j<n are independent, with
Wij ~ N(0,1/n) for 1 <i < j<nand W ~ N(0,2/n) for i =1,...,n. Writing O,, for the set of all
n X n orthogonal matrices, we note the orthogonal invariance property of the GOE(n) distribution: if
Q € 0, and W ~ GOE(n), then Q"WQ ~ GOE(n).

Complete convergence of random sequences: The asymptotic results below are formulated in
terms of the notion of complete convergence (e.g. Hsu and Robbins, 1947; Serfling, 1980, Chapter 1.3).
This is a stronger mode of stochastic convergence than almost sure convergence, and is denoted
throughout using the symbol <. In Definition 1.1 and Proposition 1.2 below, we give two equivalent
characterisations of complete convergence and introduce some associated stochastic O symbols.

Definition 1.1. Let (X,,) be a sequence of random elements taking values in a Fuclidean space
(E,|-|g). We say that X,, converges completely to a deterministic limit x € E, and write X,, < = or
c-lim, 00 Xy =z, if Y, — x almost surely for any sequence of E-valued random elements (Y,,) with

Y, 4 X, for alln.



We write X, = 0.(1) if X, 5 0, and write X, = Oc(1) if Yy, = Oqs.(1) (i.e. limsup,, ., ||Yn|lg < 0o

almost surely) for any sequence of E-valued random elements (Y,) with Yy, 4 X, for all n.

Proposition 1.2. For a sequence (X,) of random elements taking values in a FEuclidean space
(Ea ||HE); we have

(a) Xy, =o0.(1) if and only if >, P(|| Xn|r > €) < 0o for all € > 0;
(b) Xy = Oc(1) if and only if there exists C > 0 such that ), P(|| Xy,||g > C) < 0.

For a deterministic = € F, we see that X,, — z if and only if 3 P(||X,, — z||[g > &) < oo for all
e > 0. Moreover, if X,, = z, then X,, = O.(1). The proof of Proposition 1.2, along with various other
properties of complete convergence and a calculus for o.(1) and O,(1) notation, is given in Section 7.1;
see also Remark 6.1.

Wasserstein distances and pseudo-Lipschitz functions: For D € N and r € [1,00), we write
P(r) = Pp(r) for the set of all Borel probability measures P on R” with [y [|z|" dP(z) < cc. For
P,Q € Pp(r), the r-Wasserstein distance between P and @ is defined by

4.(P.Q) = inf E(|X - Y[

where the infimum is taken over all pairs of random vectors (X,Y") defined on a common probability
space with X ~ P and Y ~ Q. For PP, Ps,... € Pp(r), we have d.(P,,P) — 0 if and only
if both [pp [|z||"dPy(x) — [go [|z||" dP(z) and P, — P weakly (e.g. Villani, 2003, Theorem 7.12).
Furthermore, for L > O we write PLp(r, L) for the set of functions 1: R” — R such that

() = ¢(y)| < Lllz =y 1+ 2|7+ [ly"™) (1.3)

for all z,y € RP, and denote by PLp(r) := (J,-qPLp(r,L) the class of pseudo-Lipschitz functions
f:RP — R of order r. Note that PLp(1, L) is precisely the class of all (3L)-Lipschitz functions on R”,
and that PLp(s) C PLp(r) for any 1 < s < r. Moreover, for any probability measure P € Pp(r), we
have | [pa ¥ dP| < L [pp (||lz]|+|z]|") dP(x)+|4(0)] < oo for all ¢ € PLp(r, L). Now for P,Q € Pp(r),
we define

d,(P,Q) = sup
$ePLp(r,1)

zde—/ zde‘. (1.4)
RD RD

In Section 7.4, we show (among other things) that d,,d, are metrics on Pp(r) that induce the same
topology (Remark 7.18).

2 Master theorems for abstract AMP recursions

2.1 Symmetric AMP

In this subsection, we present an abstract AMP recursion that was first studied by Bolthausen (2014)
in a special case®, and subsequently by Bayati and Montanari (2011, Section 4) and Javanmard and
Montanari (2013) in greater generality. Let (f)32, be a sequence of Lipschitz functions fi: R? — R,
and for n € N, let W = W(n) € R™™" be a symmetric matrix and v = y(n) € R™ be a vector of
auxiliary information. Given m~! = m~!(n) := 0 € R" and an initialiser h° = h%(n) € R", recursively
define m* = m¥F(n) € R™, by = by(n) € R and A**1 = hF+1(n) € R™ by

m* = fo(hF 7). b= (fe(BF ) Zf,; Fov),  BETh=wmF —pemtT o (2.1)

*In a 2009 workshop, Bolthausen presented his analysis of AMP for the TAP equations, which inspired the work
of Bayati and Montanari (2011); see Section 3 of the latter.



for k € No. Here, f: R? — R is a bounded, Borel measurable function that agrees with the partial
derivative of f; with respect to its first argument, wherever the latter is defined. Note that for each
y € R, the Lipschitz function = — fx(x,y) is differentiable Lebesgue almost everywhere (e.g. Federer,
1996, Theorem 3.1.6) with weak derivative z — f}(z,y).

In its generic form, (2.1) is not intended for use as an algorithm to solve any particular estimation
problem, but for the following reasons, it underpins the statistical framework for AMP:

(i) State evolution characterisation of limiting Gaussian distributions: In an asymptotic regime
where conditions (A0)—(A5) below are satisfied (in particular where (A0) requires W to be
Gaussian), the key mathematical property of (2.1) is given by (2.3) below: for fixed k € N,
the empirical distributions of the components of h* = hk(n) converge completely in Wasserstein
distance to a Gaussian limit N(0,72) as n — oo. The variances 77 are determined by the state
evolution recursion (2.2) below, which depends on the choice of Lipschitz functions (fy : k € Npy).
As we will discuss later in this subsection, the so-called Onsager correction term —b,m* ! plays
a pivotal role in ensuring that the asymptotic distributions are indeed Gaussian.

(ii) Basis for the construction and analysis of AMP algorithms: In statistical settings, (2.1) cannot
be used as a practical procedure when v and/or W are unobservable; for example, in Section 3
on low-rank matrix estimation, v represents the unknown target of inference and W is a noise
matrix. Instead, one can replace v and/or W in (2.1) with observed quantities to design an AMP
algorithm that produces a sequence of valid estimates of 7; see (3.3) for instance. To analyse the
statistical performance of these AMP estimates, it is helpful to be able to recast the algorithm
as an abstract recursion of the form (2.1), because its asymptotic characterisation yields exact
expressions for the limiting estimation error in terms of the state evolution parameters. Moreover,
through judicious choices of the Lipschitz functions fi, the AMP estimates can be tailored to
different types of prior information about the structure of ~.

(iii) Precursor to other abstract AMP recursions: By generalising and transforming (2.1), we can
obtain state evolution descriptions of the limiting behaviour in a number of related abstract
AMP iterations, including those in which the input matrix need not be symmetric (Section 2.2)
and/or the iterates themselves are matrices rather than vectors (Section 6.7). These facilitate
the analysis of a wider class of AMP algorithms that are not covered directly by (2.1) alone; see
for example Section 4 on GAMP.

We will now formalise point (i) above through Theorem 2.1 below. More generally, in Theorem 2.3,
we will establish the Wasserstein limit of the joint empirical distributions of the components of
h',... k¥ v € R" for each fixed k as n — oo. In view of (ii) and (iii), we will refer to these re-
sults as ‘master theorems’ for symmetric AMP.

We will consider a probabilistic setup where for each n € N, we have an AMP recursion (2.1) based
on a random triple (m°,~v, W) = (m°(n),y(n), W(n)) such that

(A0) W =W (n) ~ GOE(n) and is independent of (m®,~) = (m°(n),v(n)).

Recalling the concepts and definitions from Section 1.1, we assume that for some r € [2,00) and
71 € (0,00), the inputs to (2.1) also satisfy the following conditions as n — oo:

(A1) There exists a probability distribution 7 € P;(r) such that the empirical distribution v, () of
the components of v = y(n) satisfies d, (v,,(7),7) = 0.

(A2) [[mlln = (v " 20y [md )2 5 m1and [[m|ln, = (7 355 [m[7) V" = Oc(1).

A3) There exists a Lipschitz Fy: R — R such that taking ¥ ~ 7, we have E(Fy(7)?) < 72 and
1
(Mm% ¢(Y))n =11 350 fo(h, i) d(i) = ]E(l 0(’7)¢(’7)) for all Lipschitz ¢: R — R.



(A1) holds if for each n, the entries of v = (n) are drawn independently from a distribution = on R
with a finite 7** moment. In general, 7 can be thought of as a ‘limiting prior distribution’ in statistical
applications. (A2) includes a boundedness assumption on the empirical ¥ moment of m® = m°(n).
Both (A1) and (A2) are less stringent and more natural than analogous conditions on (2r — 2)
moments in the existing literature on AMP; see Remark 6.4, which also discusses (A3).

Given 7 € Pyi(r) from (Al) and 71 € (0,00) from (A2), the state evolution parameters (72 : k € N)
are defined inductively by

oo = E(fu(Ge9)?), (2.2)

where Gy, ~ N(0,72) and 4 ~ 7 are independent. Since the functions fj are Lipschitz and E(3%)1/2 <
E(]5|")"/" < 0o under (A1), it follows by induction that 77 € [0, 00) for all k.

We will make two further mild regularity assumptions. Suppose that if » > 2, then
(A4) 7({y € R: x> fi(z,y) is non-constant}) > 0 for each k € N.

This is a ‘non-degeneracy’ condition that ensures that 72 > 0 for all k£ € N; see also Lemma 2.2 below.
Henceforth, we will write u ® p’ for the product of two measures p, p'.

(A5) For each k € N, the set Dy, of discontinuities of f; satisfies (A ® 7)(Dy) = 0, where X denotes
Lebesgue measure on R.

This guarantees the existence of a deterministic limit for by = bg(n) in (2.1) as n — oo for each k
(see Remark 2.4 below), and is satisfied by the functions fj that are typically used in statistical
applications, such as those based on soft-thresholding functions ST;: u — sgn(u)(Ju| — t)4+ for ¢ > 0.
See Section 6.1 for some technical remarks on (A1)—(A5), which can be skipped on a first reading.

We are now ready to state our first master theorem, which is a substantial result in random ma-
trix theory. As mentioned in (i) above, this reveals in particular that the asymptotic distributional
behaviour of the AMP iterates is governed by the scalar recursion (2.2).

Theorem 2.1. Suppose that (A0)—(A5) hold for a sequence of symmetric AMP recursions (2.1)
indexed by n € N. Then for each k € N, we have dr(I/n(hk,’}/),N(O,T]g) ® 7T) 50 asn — oo, or
equivalently

" n

1 c
d(va(B*,7), NO, ) @m) = sup |= > o(hf, %) —EW(Gr7Y)| >0 asn—oo, (2.3)
PYEPLy(r,1) | T

where G, ~ N(0,7) and ¥ ~ 7 are independent.

In the AMP literature, this conclusion is usually stated as
Lm ok as _
- > p(hi, ) ®3 E(0(Gr, 7)) as n — oo, for every ¢ € PLy(r). (2.4)
i=1

In fact, “% can be strengthened to %, and the resulting version of (2.4) is equivalent to (2.3); in other
words, it can be upgraded automatically to a convergence statement that holds uniformly over the
class PLa(7, 1) of pseudo-Lipschitz test functions. See Remarks 6.1 and 6.2 for further details.

To gain some insight into the form of the recursion (2.1) and its asymptotic characterisation in The-
orem 2.1, suppose for simplicity that v = vy(n) = 0 € R” for all n, and first consider £k = 1. Since
m® = m%(n) is independent of W = W (n) for each n by (A0), it follows that h' = h'(n) = Wm0 is

conditionally Gaussian given m°. In fact, conditional on m?,

At and YO = ||m°||,Z 4+ {m® = Z + Al are identically distributed for each n,



where Z ~ N,(0,1,) is independent of ¢ ~ N(0,1/n), and where Al := (|m°||,, — 71)Z + (mP; see
Lemma 6.14, (6.5) and (6.20).

By (A2), |[m°[l, = 7 and |m°||l,, = O.(1) as n — oo, from which it follows (by the triangle
inequality for ||-||,,) that A, = (n™' 320 |JAH)YT 5 0; see Hi(a) at the start of Section 6.5,
This means that A! has asymptotically vanishing influence on the empirical distribution of the entries
of B0 L pl € R™ asn — 0, while the empirical distribution of the entries of 71 Z converges completely
in d, to N(0,7%) (essentially by the strong law of large numbers, or the concentration inequality in
Lemma 7.12). This yields the conclusion of Theorem 2.1 for h!, and also implies that

[mt2 = || f1(h, 0)[2 = Zfa 02 5 E(f1(G1,0)%) =73,

JmHn . = [ f1(h0)5 —erfl )" 5 E(1£1(G1,0)|") < oo.

These limits follow from the state evolution recursion (2.2) and the fact that f; is Lipschitz, whence
2, 1fa]" € PLa(r); see Corollary 7.21(b). Continuing inductively in this vein, we conclude that for
each fixed k € N, the Gaussian distribution N(0,77) in Theorem 2.1 is the d, limit of the empirical
distribution of the entries of h¥ = ﬁk(n) € R" in the ‘toy’ recursion

Rl = WOmP, mh = fk(lvzk,v), PR = Wk for k € N, (2.5)

where each W* = Wk (n) ~ GOE(n) is independent of m®, « (= 0 here) and WO, ..., W* 1 and hence
of k.

On the other hand, observe that in the original recursion (2.1), the same GOE(n) matrix W = W (n)
appears in every iteration, so W and mF are not in general independent for k € N, and in fact Wm*
is not asymptotically Gaussian in the above sense. To compensate for this, the Onsager correction
—bpmF~1 is designed specifically as a debiasing term to ensure that h*t1 = WmF — bym*~1 has the
same limiting behaviour as R*+1 in (2.5) above. Indeed, an important technical step in the proof
of Theorem 2.1 is to characterise the conditional distribution of Wm* given m°,~ and the previous
iterates h', ..., h* (Proposition 6.11), and then show that the ‘non-Gaussian components’ thereof are
asymptotically cancelled out by the Onsager term.

This ingenious conditioning technique was first developed by Bolthausen (2014) and Bayati and Mon-
tanari (2011), and later used extensively in the analysis of various other AMP iterations in which W is
drawn from a rotationally invariant matrix ensemble. For example, Berthier et al. (2020) introduced
a ‘Long AMP’ recursion in which each iterate h*t! is defined more explicitly in terms of the Gaus-
sian part of the conditional distribution of W fi(h*,~). For the symmetric AMP recursion (2.1), the
relevant results on conditional distributions are stated in Section 6.2, where we discuss the subtleties
in their derivation, and then rigorously proved in Section 6.3.

We give a technical summary of the proof of Theorem 2.1 in Section 6.4, where the key result is
Proposition 6.16, and defer the formal arguments to Section 6.5. The proof proceeds by induction on
k € N and actually establishes a more general result (Theorem 2.3 below) that implies Theorem 2.1:
in particular, for fixed k € N, the joint empirical distribution of the components of hl,..., h¥ € R
converges completely in d, to a Gaussian limit N (0, T*!) as n — oc.

The sequence (T¥l € R¥*F : k € N) of covariance matrices is defined recursively as an extension of
the state evolution (2.2), and we will see from (2.9) below that the covariances can be characterised
as limits of inner products (m*F~1, m*=1),, between iterates mF=1, m‘~! in (2.1) as n — oco. First, let
G ~ N(O,Tf) and Tl,l = 7'12, so that T = Var(Gy) = TM > 0. For a general k > 2, suppose

inductively that we have already defined a non-negative definite T*~1 € RE-Dx(:-1) with entries



Ty;._l] =T;,; for 1 <i,j <k—1, and then let

]E(Fo(’?) . fk—l(Gk—la'V)) for £ =1

2.6
E(f-1(Ge-1,7) - fr-1(Gr-1,7)) for £ =2,...k, (26)

Tie = Top = {

where Fp is as in (A3) and 5 ~ 7 is independent of (G1,...,Gr_1) ~ Ni_1(0, T*~1). Define T to
be the k x k matrix with entries TEI;] = Ti,j for 1 < 4,7 < k, so that T/*—1) is the top-left principal
(k — 1) x (k — 1) submatrix of T, For every a = (a1,...,a;) € R¥, we have

- _ 2 _

o' TWa = B{ (a1 Fo(3) + Lig acfe1(Ge1,79) 7} + a3 {rf — E(Fo(5)%)} > 0 (27)
since E(Fy(7)?) < ¢ by (A3), so Tl € RF*k is non-negative definite. In fact, we have the following:
Lemma 2.2. Under (A4), T € RF*¥ is positive definite and hence invertible for every k € N.

The proof of this fact is given in Section 6.6. By induction, we have 7',3 = E(fk,l(Gk,l, ’7)2) = Tk,k >0
for all kK € N, so (2.6) does indeed extend (2.2). Our second master theorem is the following:

Theorem 2.3. Under the hypotheses of Theorem 2.1, d, (I/n(hl, . .,hk,'y),Nk(O,T[k}) ® 7'(') 50 for
each fired k € N as n — oo, or equivalently

- - 1< c
dy(vn(h', .. h*, ), Ne(0, Ty @) = sup > (h, . hE ) ~E($(Gh, ., Gr 7)) | 2 0
YEPLy11(r,1) T 5
) (2.8)
as n — oo, where (G, ...,Gy) ~ Np(0, T and ¥ ~ 7 are independent. In particular,
Ty = c-lim (m*= 1 mf 1), for all k, 0> 1. (2.9)

n—oo

In statistical applications featuring AMP iterates of the form (vk’ =v*(n): k,n € N), we sometimes
require joint convergence guarantees of the form (2.8) in addition to results along the lines of the
original Theorem 2.1. For example, see Step (II) of the analysis of (3.28) in Section 3.3 and also Step 3
of the general recipe of Section 4.4. In both cases, we need to track the limiting covariances as well as
the limiting variances (state evolution parameters) to show that limy e limy, e [[0FH — 0%, = 0,
i.e. that the asymptotic differences between successive AMP iterates become negligible for large k.

Remark 2.4. The precise form of the Onsager coefficient by in (2.1) is essentially due to Stein’s
lemma; see (6.19) and Proposition 6.16(g) below. The latter shows that under (A5),

b (n) = (fu(h*,7))n = B(fi(Gr, 7)) = bk

for ef{ch k as n — oo. The conclusions of Theorems 2.1 and 2.3 remain valid if we replace by = bg(n)
with by in the recursion (2.1) for all k,n, in which case (A5) is no longer needed.

For 1 < j,¢ < k, since ¢: (z1,...,2k,y) — zjz¢ lies in PLyy1(2) € PLgyq(r), (2.8) implies that
(h, By, 5 E(G;G¢) = Tj’g. Thus, the limiting covariance structure of hl,..., h* is given by T
which in general is not a diagonal matrix. By contrast, while h* in the toy recursion (2.5) has the
same asymptotics as k¥ as n — oo, it turns out that 7L1, ey h* are asymptotically independent, in the
sense that the d, limit of the joint empirical distribution of their components is a centred Gaussian
with covariance diag(7Z, ..., 72).

2.2 Asymmetric AMP

For n,p € N, the abstract asymmetric AMP recursion (2.10) below is based on a matrix W € R"*P,
two vectors f € RP and v € R" of auxiliary information and two sequences (g, fr+1 : £ € Np) of
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Lipschitz functions gi, fre1: R? — R. Given ¢~ := 0 € R", by € R and m® € RP, we inductively
define

¥ = WmP — bpg" 1, ¢" = gr(e®, ), cki=n"t Y0 g (e, ),

B (2.10)
hk+1 = Wqu - Ckmkv mk+1 = fk+1(hk+176)7 bk+1 =n ! ‘1;:1 fl£;+1(h§':+17 BJ)

for k € No. Here, g;, f}. e R? — R are bounded, Borel measurable functions that agree with the
partial derivatives of g, fr41 respectively with respect to their first arguments, wherever the latter
are defined.

A master theorem for (2.10) is stated below as Theorem 2.5, whose hypotheses and conclusions are
similar to those of Theorems 2.1 and 2.3 for the symmetric iteration (2.1). Consider a sequence
of recursions (2.10) indexed by n € N and p = p,, for which n/p — § € (0,00) as n — oo. In
this asymptotic regime, suppose that there exist r € [2,00) and o9 € (0,00) for which the following
analogues of (A0)—(A5) hold:

(B0O) For each n, the matrix W = W(n) has entries Wj; i N(0,1/n) for 1 <i<mnand1<j <p,
and is independent of (m?, 8,7) = (m°(n), B(n),v(n)).
(B1) There exist probability distributions 73,75 € Pi(r) such that writing v,(8) and vy, (y) for

the empirical distributions of the components of 8 € RP and v € R” respectively, we have
dr (vp(B), 7'['5) 5 0 and d, (Vn(7), 75) 5 0.

(B2) v/p/nllm®lly = (n=" X2y [mfI*)/2 5 g9 and [[m]p, = (07" 225y [m") V" = Oc(1).

(B3) There exists a Lipschitz Fy: R — R such that taking 5 ~ 75, we have E(Fo(B)?) < o and
(m®,¢(8))p = _y fo(hY,8;) (8;) = E(Fu(B)p(B)) for all Lipschitz ¢: R — R.

(B4) For each k € Ny, we have 75 ({y € R : z +— gi(z,y) is non-constant}) > 0 and
773({1/ €R:z+ fi1(z,y) is non-constant}) > 0.

(B5) For each k € Ny, writing Dy, Cy11 for the sets of discontinuities of g}, f;. 41 respectively, we have
(A®@75)(Dy) = (A®@ 73)(Cry1) = 0, where A denotes Lebesgue measure on R.

State evolution: With gg > 0 as above, inductively define

Tl?—i—l = E(gk(G%a’V)Q) and 01?;+1 = 5_1E(fk+1(G2+1’B)2) (2.11)

for k € Ny, where we take G ~ N(0,02) to be independent of 3 ~ mg, and G} | ~ N(O,T,?_H) to be
independent of ¥ ~ 75.

Limiting covariance structure: Let nil = 2_]070 = 03 and T = TLl = 7'12, and f9r a general ke
N, suppose inductively that we have already defined non-negative definite matrices L%, Tkl ¢ Rkxk
with entries E[ = Yi_1,j-1 and T[k] =T, for 1 <4,7 < k. Then let

Sy Sy i {51E(FO<B> - fe(GE, B)) for £ =0 (2.12)

6_1E(f€( Evg)fk(Gz7B)) for 0=1,...,k,

where (Gl,...,GT) ~ N (0, T]) is independent of ¥ ~ s, and define TF+1 ¢ REFD>(E+) 1y

[k+1] =% 1.1 for 1 <i,j < k+1. Asin (2.7), it is easily verified that %1 is non-negative

deﬁmte In addition, let
Trire = Toprr = E(90-1(G7_1,7) - 9x(GT, 7)) foré=1,....k+1, (2.13)

where (G, ..., G9) ~ Ni41(0, 2F1) is independent of B ~ 75, and define T[kﬂ} =T, forl1 <i,j<
k+1, so that the resulting matrix T+ e REFDx(E+1) jg again non- negatlve definite. Under (B4), it
can be shown as in Lemma 2.2 that Z*, T are positive definite for all k € N, and also that (2.12)~
(2.13) extends (2.11), with 01371 =3k 141> 0 and T,? = Tk,k > 0 for all k.
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Theorem 2.5. Suppose that (B0)—(B5) hold for a sequence of asymmetric AMP recursions (2.10)
indexed by n € N and p = p, with n/p — 6 € (0,00). Then for each fized k € Ny, we have

~ 1 — c
T () NO. D) ) = sup |23 ek i) - (w<Gz,a>)\%0,
PYEPLy(r,1) |1 i
- (2.14)
dy (vp(W*T, ), N (0,73, ) ®75) = sup {j G(RET, By) — E (1) zH,B))'%o
$ePLy(r1) |P % =
dy (vn(€°, ... ", B), Niy1 (0, 1) @ )
1 — e
= s LS e o) < B(G G| S0
PYEPLgyo(r1) |1
_ (2.15)

d, (Vp(hla s >hk+176)7Nk+1(07 T[k+1]) ® WB)

1 L T T 2 C
= sup |- (b, WL B) —E(W(GT, ..., Ghyy B))| 50
1/)€PL]€+2(T‘,1) ijl

as n — 0o. Fquivalent statements hold with d,. in place of J,«

Together with the master theorems in Section 2.1, Theorem 2.5 can be generalised to abstract AMP
recursions with matrix-valued iterates; see Section 6.7.

Similarly to the discussion after Theorem 2.1, one can argue that for each k € Ny, the Gaussian
distributions N(0,07) and N(0,77,,) in (2.14) are the d, limits of the empirical distributions of the

entries of & € R™ and hFt! € RP respectively in the toy recursion
O = WOom0, AR .= Whg(eF ), &L= WL (RF B)  for ke Ny (2.16)

as m,p — oo with n/p — 6. Here, each iteration features a new matrix with i.i.d. N(0,1/n) entries
that is independent of everything thus far. In the original abstract iteration (2.10), where the same
Gaussian matrix W is used throughout, the Onsager correction terms —bg* ' and —c,m” are designed
to ensure that e¥ € R™ and h**! € RP have the same limiting behaviour as é* and ph+1 respectively.
We note however that the asymptotic joint empirical distributions in (2.15) are in general different
from those in (2.16). Indeed, the limiting covariance matrices in (2.16) are diagonal whereas ¥ and
T in (2.12)—(2.13) are usually not diagonal; see the end of Section 2.1 for a similar comparison of the
symmetric recursions (2.1) and (2.5).

One way to establish Theorem 2.5 is to analyse the asymmetric recursion (2.10) directly, by adapting
the techniques and arguments from the proof of Theorem 2.3 for the symmetric iteration (2.1). An
important first step is to obtain an analogue of Proposition 6.11 that characterises the conditional
distribution of each of the iterates in (2.10), given the inputs m°, 3,y and all the previous iterates. This
then sets up an inductive proof along the lines of Proposition 6.16 (Bayati and Montanari, 2011). Rush
and Venkataramanan (2018) established a finite-sample version of Theorem 2.5 under finite-sample
analogues of its hypotheses (see Remark 6.3).

There is an alternative derivation of Theorem 2.5 that proceeds by first embedding (2.10) within a
suitable symmetric recursion (featuring a GOE(n + p) matrix), whose output at iteration k € Ny
contains k! when k = 2¢ and e when k = 20+ 1 (Javanmard and Montanari, 2013; Berthier et al.,
2020). The construction of this augmented recursion is based on a slightly more general version of the
original symmetric iteration (2.1) that offers the additional flexibility to apply (two) different Lipschitz
functions to different components of each AMP iterate.
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3 Low-rank matrix estimation

3.1 An AMP algorithm for estimating a symmetric rank-one matrix

In this subsection, we will motivate and analyse an AMP algorithm for reconstructing a symmetric
rank-one matrix based on an observation

A= A(n) = %UUT + W e R™" (3.1)

for some n € N, where A\ > 0 is a deterministic scalar, v = v(n) € R™ is the signal (or ‘spike’) that we
wish to estimate, and W = W (n) ~ GOE(n) is a noise matrix. The asymptotic setting of interest to
us here is one where ||v]|, = n~ /2 ||v|| converges to 1 as n — oo; see (3.4) below.

A natural estimator of v is a principal eigenvector ¢ = p'(A) € R™ (with ||}, = 1) corresponding
to the largest eigenvalue A1(A) of the observation matrix A. A cornerstone of the spectral theory of
such ‘deformed’ GOE matrices is the so-called ‘BBP’ phase transition. This was first established in
the seminal paper of Baik et al. (2005) and later explored in greater generality by Baik and Silverstein
(2006), Féral and Péché (2007), Capitaine et al. (2009) and Benaych-Georges and Nadakuditi (2011),
among many others. See Johnstone and Paul (2018) for an accessible summary of this line of work,
which reveals that in the limiting regime where ||v||,, converges to 1, the eigenstructure of A = A(n)
for large n exhibits two different types of qualitative behaviour depending on whether A <1 or A > 1.
In particular, when n — oo, it follows from the concentration results in Knowles and Yin (2013,
Theorems 2.7 and 6.3) that

e [ A+ N1 >2 iftA>1 5 o [vV1I=)22 ifA>1
)q(A)—){ + > if > |{(p,v)] _>{ if >

He, vl 3.2
2 if A € (0,1], lel ol = o e )

see also Peng (2012, Theorem 3.1) for the former and Corollary 3.4 below for the latter.

In the ‘supercritical’ phase when A > 1, the effect of the spike v can be seen in the limiting expressions
above: with high probability, ¢ is at least partially aligned with v (although it does not estimate v
consistently) and A\ (A) is an outlier that is separated from the ‘bulk’ of the spectrum of A. Indeed, the
remaining eigenvalues of A are asymptotically distributed according to the Wigner semicircle law on
[—2,2], and it can be shown that the second-largest eigenvalue A\y(A) of A = A(n) satisfies Aa(A) = 2
as n — 00, so the limiting spectral gap A1(A4) — A2(A) is strictly positive.

On the other hand, in the ‘subcritical’ phase when A < 1, the noise matrix W obscures the signal
in (3.1) to such an extent that ¢ is asymptotically uninformative as an estimator of v, as evidenced
by the asymptotic orthogonality in (3.2), and A;(A) remains attached to the bulk of the eigenvalues
of A. In this low signal-to-noise regime, the limits for A\;(A) and ¢ in (3.2) are the same as for the
leading eigenvalue and eigenvector of W respectively.

A further limitation of the classical spectral estimator ¢ is that it is unable to exploit any additional
information about the structure of v that may be relevant for inference. For example, in some matrix
estimation problems such as hidden clique detection and non-negative or sparse principal component
analysis, there are natural constraints that force v to be non-negative or sparse, or to lie in some
finite set such as {0,1}" (Alon et al., 1998; Zou et al., 2006; Vu and Lei, 2013; Deshpande and
Montanari, 2015; Montanari and Richard, 2016). A Bayesian approach to modelling a structured
signal v is to assume that its components are drawn from some suitable prior distribution that is fully
or partially known. However, for general priors, a practical issue is the lack of efficient (i.e. polynomial-
time) algorithms for computing or accurately approximating the Bayes estimator of v with respect to
quadratic loss, namely the posterior mean E(v| A).

We will now present a generic (and computationally feasible) AMP procedure (3.3) for estimating v (cf.
Deshpande and Montanari, 2014; Deshpande et al., 2016; Montanari and Venkataramanan, 2021),
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and obtain an exact characterisation of its asymptotic performance in terms of a state evolution
recursion (Theorem 3.1 and Corollary 3.2). Guided by these theoretical guarantees, we will explain
in Sections 3.2 and 3.3 how the inputs to the algorithm can be specialised further to take advantage
of different types of prior information, and thereby produce estimators that outperform ¢ in terms of
asymptotic mean squared error.

Let (gx)72, be a sequence of Lipschitz functions on R with corresponding weak derivatives g;.. Given
ol =0~ ( ) = 0 € R™ and an initialiser v* = v%(n) € R" for some n € N, we recursively define
k= ok (n) , bp = br(n) € R and 9%+ = okl (n) € R™ by
1 n
= gk@h), b= (g = ) gk(), o= AR = et (3:3)
i=1

for k € Ny. This has a very similar form to the abstract recursion (2.1) that we studied in Section 2.1,
the main difference being that (3.3) is a valid algorithm with the data matrix A = A(n) in place of
the unobserved noise matrix W = W (n).

As mentioned in the Introduction, we can view (3.3) as a generalised power iteration, in which the
additional Onsager correction term —by0* ! is crucial for ensuring that the iterates v* have the desired
asymptotic distributional properties. In fact, we will see in Section 3.3 that for a specific choice of
linear functions gy given by (3.27), the corresponding recursion (3.3) is asymptotically equivalent to
a standard power iteration that converges to the principal eigenvector ¢ of A.

To set up our asymptotic framework, consider a sequence of recursions (3.3) indexed by n € N, for
which the following conditions hold:

(MO) The noise matrix W = W(n) ~ GOE(n) in (3.1) is independent of (2°,v) = (¢°(n),v(n)) for
each n.

(M1) There exist p9,00 € R and independent random variables U,V with E(U?) = E(V?) = 1, such
that

Zwvz,v, —E{¢(uoV + ooU, V) }| 5 0.

sup
PeEPL2(2,1)

In other words, writing ii° for the distribution of (uoV + ooU, V), and v, (v°,v) for the joint
empirical distribution of the components of 1%, v € R™ for n € N, we have

ds (Vn(vo,v), ﬂo) 50 or equivalently do (yn(vo,v),ﬂo) 0.

(M2) For each k € N, the function g; : R — R is continuous Lebesgue almost everywhere, i.e. the set
of discontinuities of g; has Lebesgue measure 0.

Henceforth, we will write 7 for the distribution of V| which can be viewed as the ‘limiting prior
distribution’ of the components of the signal v = v(n). Note that while v is only identifiable up to
sign in the original spiked model (3.1), knowledge of © may help us to distinguish v from —v in the
limit n — oo, for example if 7 has non-zero mean. By considering the PLy(2) functions (x,%) — 32,
(z,y) — zy and (x,7) — 22, we deduce from (M1) that

Jv]|2 = Zv S EWV? = (3.4)

)\@O,v>n 5 )\E(Vgo(ro + UOU)) =:pu1 and ||v0||n — E(go(ro + O'0U)2) =: a%. (3.5)

State evolution: Starting with p; € R and o7 € [0,00), we inductively define state evolution
parameters p; € R and oy € [0,00) for k € N by

per1 = AE(Vae(uV + ox @), oy = E(gr(uV + 0xG)?), (3.6)
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where V ~ 7 and G ~ N(0,1) are independent. Note that since each g is Lipschitz and E(V?) =
E(G?) = 1, we indeed have j1;; € R and o}, € [0, 00) for all k by induction; we will see below that these
represent the effective signal strength and effective noise level respectively at iteration k.

Limiting covariance structure: We now extend (3.6) by specifying the covarlance matrices of the
limiting Gaussian distributions in Theorem 3.1 below. Let S = 21 1 := 0% > 0. For a general k > 2,
suppose inductively that we have already defined a non-negative deﬁmte vl ¢ RE-Dx(E-1) with

entries E[k U_ Si,j for 1 <i,5 <k —1, and then let
Sy = Sy = E(go(toV + ooU) - gr—1(ptp—1V + 04—1Gr—1)) for =1 (3.7)
E(ge—1(pe—1V + 00-1Go-1) - g1 (r—1V + 0%-1Gr_1)) for £ =2,...,k,

where (01G1,...,04_1Gr_1) ~ Np_1(0,ZF1) is independent of (U, V) from (M1). Let £ be the
k x k matrix with entries il[?] = ii,j for 1 < 4,5 < k, so that =1 is the top-left principal
(k—1) x (k — 1) submatrix of ¥, It can be verified as in (2.7) that X* is non-negative definite. By
induction, 0,% = E(gk_l(,uk_lV + O'k_lG)z) =Y for all k € N, so (3.7) does indeed extend (3.6).

We are now ready to state the main result of this subsection, which for each k& € N establishes the
2-Wasserstein (dz) limit of the joint empirical distributions of the components of 0%, v, ... v, v € R®
as n — oo.

Theorem 3.1. Suppose that (M0)—(M2) hold for a sequence of AMP iterations (3.3), where for each
n € N, the symmetric matriz A = A(n) is generated according to the spiked model (3.1) for some fized
A > 0 that does not depend on n. Then for each k € N, we have

sSup Z¢ ) "'7”@)1}1) (¢(M0V+00Ua MlV-FUlGl,-.-,MkV—I—O'ka,V)) _C>0 (38)

PYEPLy42(2,1)

as n — oo, where (61G1,...,06Gy) ~ Ni(0, %) is independent of (U, V) from (M1). In other words,
writing UF for the distribution of (uoV + ooU, 1V + 01G1, ..., uxV + 01Gy, V), we have

gg(un(vo,vl, ok ), k) 50 or equivalently dQ(l/n<’UO,U1, ok ), k) 50 asn — .
Before discussing Theorem 3.1 and its proof, we note that as an immediate consequence of (3.8),
Corollary 3.2 below yields an exact expression for the asymptotic deviation of ©¥ = gg(v*) from v
with respect to any pseudo-Lipschitz loss function of order 2. In particular, the asymptotic mean
squared error and empirical correlation in (3.10) and (3.11) respectively depend only on A and the
state evolution parameters px41, ogt1-

Corollary 3.2. In the setting of Theorem 3.1, fix k € N and let n — co. Then taking Gy ~ N(0,1)
to be independent of V ~ m, we have

%Zib(@faw) S E{¢(gr(peV + oxGr), V) } (3.9)
=1

for all ¢ € PLa(2). Consequently,

2441

0% — |2 5 E{ (g (ukV + 0k Gr) — V)Q} = 0pyy — 3

+1 (3.10)

|(%, v)p < [E(Var(uxV + 0kGr)) | |pas]

= . 3.11)
5 (
|0 Hn”UHn \/E gk (uV + opG)? ) ACk41

and

Remark 3.3. Observe that ||[v*]|2 5 E((uiV +01Gr)?) = pi+of and [|[07712 = [lgk—1(v* 1) ||n 5 o2
for all k € N, so [[v¥|2 — ||[6*71|2 and ||0*7||2 are strongly consistent estimators of ui and o
respectively.
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Interpretation: Through the state evolution recursion (3.6), Corollary 3.2 establishes a precise
correspondence between the asymptotic behaviour of the AMP iterates (@k = %) :n € N) and
a univariate deconvolution problem, where we estimate V' by gx(urV + 0xGr) when given a single
noisy observation uzV + 0xGy. In this context, the quantity pj := (up/ox)? can be interpreted as
an effective signal-to-noise ratio, which arises naturally in (3.11) above. Returning to the spiked
model (3.1), we can think of ©¥ = ©%(n) = gx(v¥) as an estimate of v = v(n) based on an ‘effective
observation’ v* = v¥(n) whose components have approximately the same empirical distribution as
those of v + o€ when n is large, where £ = £(n) ~ N,(0, I,,) is independent of v.

Theorem 3.1 and Corollary 3.2 can be rigorously proved by means of an instructive application of
the master theorems for the abstract symmetric AMP iteration (2.1) in Section 2.1. In the next few
paragraphs (which can be skipped on a first reading), we will outline the key arguments in the setting
of Corollary 3.2; a full proof of the more general Theorem 3.1 can be found in Section 6.8.

In summary, we begin by rewriting the AMP algorithm (3.3) in terms of the ‘noise’ components
uF = ¥ (n) := v¥ — v of the effective observations v*, and aim to show that the corresponding noise
variables in the limiting univariate problem are indeed Gaussian (and independent of V'), with mean 0
and Variance o? given by (3.6). To this end, it can be seen that the resulting recursion (3.12) below
for (¥ : k € N) is very similar to an iteration of the abstract form (2.1), whose exact asymptotics are
given by Theorems 2.1 and 2.3. In addition to these main workhorse results, some additional technical
arguments are needed to take care of a ‘correction term’ in (3.12) below with asymptotically vanishing

influence.

The conclusion is that for each k, the joint empirical distribution v, (¥, v) of the entries of @*(n) =
v*(n) — ppv(n) and v = v(n) converges completely in dy to the distribution of (04Gy, V) as n — oo.
Equivalently, v, (v¥,v) converges completely in ds to the distribution of (jxV + 01,Gg, V) as n — oo,
whence the conclusion (3.9) of Corollary 3.2 follows straightforwardly.

Proof sketch for Corollary 3.2. More precisely, under the spiked model (3.1), A is the sum of inde-
pendent signal and noise matrices Avv' /n and W respectively, so (3.3) becomes v¥T! = vF*l(n) =
MNP v) v + W (vF) — brgr_1 (vF~1) for k,n € N. Rearranging this and defining

O = 0p(n) == XNOF 1 0) —
for all k and n, we see that ¥ = @*(n) = v*(n) — ppv(n) satisfies
=Wo' + 610, W = W@ + ) — begro1 (@ + pp—1v) + Gppv for k€N, (3.12)

where b, = bg(n) = (g}, (v*))n = (g}, (0" + ppv))n. Setting u' := Wi and dropping the final dx41v
term from the right hand side of (3.12), we obtain a related recursion

uF = uF L (n) .= W (u® + ) — bpgr—1 (uF 7 + pp_1v) for k € N, (3.13)

where b, = by(n) := (g}, (u* + pgv))n. This is an instance of (2.1) with fi, fi: R? — R given by
fe(z,y) = gr(z+py) and fi(x,y) = g (x+pxy) for z,y € R. Under (M0)—(M2), it is straightforward
to verify that (A0)—(Ab5) are satisfied with

= clim|[o|7 = ot and 7, =E(fu(0xGr,V)?) = E(ge(eV +0xGr)*) =0k (3.14)
for all k£ € N (by induction), in view of the state evolution recursion for (o : k € N) in (3.5)—(3.6). It
follows from Theorem 2.1 that for each k in (3.13), the joint empirical distribution v, (u*,v) converges
completely in ds to the distribution N(0,0%) ® 7 of (03,Gy, V) as n — oco.

It now remains to establish that the dxjv term in (3.12) has asymptotically negligible effect, in
the sense that the iterates in (3.12) remain close to those in (3.13) and hence have the same limiting
distributions. Specifically, it can be shown by induction on k € N that & (n) = 0, that ||a* —u*||, = 0
and hence that da (v, (%, v), N(0,07) ® ) % 0 as n — oo for each fixed k. The arguments involved
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are fairly routine, and are spelled out in detail in Section 6.8. We mention here that the first part of
the inductive step reveals the origins of the state evolution recursion for (y : k € N) in (3.5)—(3.6): it
follows from the inductive hypothesis da (v, (4", v), N(0,07) @ ) 5 0 that

N A o y c
A(vk,v>n = Zvigk(uf + prv;) — )\E(ng(ukV + akG)) = [t

i=1
as n — 00, so indeed dx41(n) = 0 as n — oco. O
We conclude this subsection by noting that for a given sequence of (random) spikes v = v(n) satis-
fying (M1), the quality of the estimates 9% = ©*(n) clearly depends on the vectors v° = v%(n) that

are used to initiate the AMP iterations, as well as the sequence of Lipschitz functions g;: R — R. In
the next two subsections, we will describe how these inputs to (3.3) can be suitably chosen to achieve
good estimation performance, based on the information that we have about the distribution of V.

3.2 Spectral initialisation

In the context of the spiked model (3.1), it is helpful to think of AMP as a method by which we can
potentially improve a ‘pilot’ estimator 9 = ©°(n) = go(v") of v = v(n), in the sense that we may be
able to increase the asymptotic empirical correlation in (3.11) (i.e. the effective signal-to-noise ratio)
by repeatedly iterating (3.3). To this end, a minimum requirement is that we obtain effective signal-
to-noise ratios pj41 that are strictly positive, since the corresponding estimates 9% = 9*(n) ought to
be at least partially aligned with v in the limit n — oo.

When E(V') # 0, we will see in Section 3.3 that if the functions gj are chosen appropriately, then it

suffices to take v = v%(n) = 1, = (c,...,c) € R" for each n, where ¢ € R is fixed. However, this

does not work when E(V') = 0: in this case, pug = c-lim,_,o0{cl,,v), = 0in (M1), and for any choice

of (gi), the state evolution recursion (3.6) then yields up = 0 and pp = (ux/ox)? = 0 for all k € N

(since V and G}, are independent). For each k, it follows from (3.11) that (¢*,v),, = 0 as n — 00, so
o% = 9¥(n) is asymptotically uninformative as an estimator of v = v(n).

Thus, when E(V') = 0, we require ug # 0 and pilot estimators that have non-zero asymptotic empirical
correlation with v. For n € N, consider initialising the AMP algorithm (3.3) with v* = ¢ for some
¢ # 0, where ¢ = ¢(n) is a normalised principal eigenvector of A = A(n) with |||, = 1. This is almost
surely well-defined up to its sign, and yields an initial estimate with the desired property precisely
when A > 1; indeed, recall from (3.2) that |(3,v)n|/||v]ln — V1 —=A=2 > 0 for such . Using the
orthogonal invariance of W ~ GOE(n), Proposition 3.4 below extends this convergence result to show
that {(¢(n),v(n)) : n € N} satisfies condition (M1) with p9 = v1 — A2, 09 =1/A and U ~ N(0,1),
provided that (¢, v),, > 0 for all n; see Remark 3.6 below for further discussion of this final issue.

Proposition 3.4. Suppose that V ~ m satisfies E(V?) = 1 and da(vn(v),7) = 0 as n — oo, where
Vn(v) =n"t 3" | 8, denotes the empirical distribution of v =wv(n) forn € N. If A > 1 in (3.1), and
each ¢ = p(n) is a principal eigenvector of A = A(n) whose direction is chosen so that (¢, v), > 0
for all n, then

sup
PePL2(2,1)

Zw (@i,01) — E{o (V1= A2V +A71Go, V) }| 5 0

as n — oo, where Go ~ N(0,1) is independent of V.

For proofs of more general results of this type for finite-rank perturbations of GOE matrices, see Mon-
tanari and Venkataramanan (2021, Lemma C.1 and Corollary C.3).

In the subsequent asymptotic analysis of the AMP algorithm (3.3) with spectral initialisation, an
additional technical challenge stems from the fact that ¢ = ¢(n) is not independent of the noise matrix
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W = W (n) for any n. This means that condition (M0) does not hold in general, so the theory from
Section 3.1 is not directly applicable in this setting. Nevertheless, Montanari and Venkataramanan
(2021) established Theorem 3.5 below to recover the desired conclusion for this particular initialisation,
with the same state evolution parameters py, oy as defined in (3.6) but a slightly modified limiting
covariance structure. For fixed ¢ # 0, let pp := ¢v/1 — A72 and 20 = 2070 = 08 = 02/)\2. For a
general k € N, suppose inductively that we have already defined a non-negative definite Slk=1] ¢ RExk
with entries EEI;_H =%,;;for 0<i,j <k—1, and then let

A1 E((,uOV + O'()GU) . gk_1<[tk_1v + O'k:—le,—l)) for £ =0,
E(ge—1(pe—1V + 00-1G—1) - g1 (pk—1V 4+ 04—1Gr—1))  for £=1,... k,

She=Spp = {

where (00Go,01G1,...,05—1Gp—1) ~ Ni(0, ¥~ is independent of V ~ m. Let ¥ be the (k +
1) x (k + 1) matrix with entries iy;] =%, ; for 0 < 4,j < k. Similarly to (3.7), ¥ is non-negative
definite, and if we take U ~ N(0, 1) to be independent of V' ~ 7 in the state evolution recursion (3.6),
then ik’k = U}f, by induction. However, unlike in Section 3.1, observe from the first line of (3.15)
that the limiting Gaussian variables GG1,Go, ... need not be independent of U = Gy. This reflects
the dependence between W and the initialiser v = ¢ for each n. To ensure that subsequent AMP
iterates in (3.3) have the correct asymptotics in this setting, we also set v=! = A7!c ¢ instead of
v~ =0.

Theorem 3.5. Suppose that A > 1 in the spiked model (3.1), and that the hypotheses of Proposition 3.4
are satisfied for a sequence of AMP algorithms (3.3) initialised with v° = v%(n) = cp(n) and v~ =
971 (n) = X lep(n) for each n € N, where ($,v), > 0 and ¢ # 0 is fived. Starting with pg =
eV1—=X"2,00=c/Aand U = Gy ~ N(0,1) in (3.5), define the state evolution parameters iy, o, LL¥
for k € N according to (3.6) and (3.15). Then under (M2), the convergence results (3.8)—(3.11) remain
valid.

To circumvent the difficulty mentioned above, Theorem 3.5 can be proved by first applying the existing
AMP machinery to a suitably modified version of the iteration (3.3) for which (MO0) is satisfied, and
then showing that this has the same asymptotics as the original procedure with spectral initialisation.
In the spiked model (3.1) where the signal matrix has rank 1, one approach along these lines is to
design a more tractable two-stage iteration, in which the input to (3.3) in the second phase is the
output of a surrogate power method that approximates v = ¢ . This ‘artificial’ first phase takes the
form of an AMP iteration with specially chosen linear threshold functions (see (3.27) in Section 3.3)
and a (non-spectral) initialiser that is independent of W. The success of this strategy relies on the fact
that the spectral gap A1(A) — A2(A) of A = A(n) has a strictly positive limit as n — co when A > 1,
as mentioned at the start of Section 3.1. For further details of applications of this proof technique in
the GAMP setting of Section 4, see Mondelli et al. (2021) and Mondelli and Venkataramanan (2020).

We refer the reader to Montanari and Venkataramanan (2021, Appendix A) for a different proof of
Theorem 3.5 that extends more readily to a wider class of AMP algorithms for general low-rank matrix
estimation (see Section 3.5). This involves studying a variant of (3.3) in which A = A(n) is replaced
with

AEA(n):Al;LA)

¢p' + PL <:;va + W) pt

for each n, where A (A) is the maximal eigenvalue of A, the matrix P := I — $@' /n represents the
projection onto the orthogonal complement of ¢, and (crucially) W ~ GOE(n) is independent of W
and v. To relate the simplified iteration based on A to the original AMP procedure, an important
technical step is to show that the conditional distributions of A and A given ((ﬁ, )q(A)) are close in
total variation distance when n is large.

Remark 3.6. In an estimation context where each v = v(n) is unknown, it is sometimes not possible
to consistently determine the sign of the leading eigenvector of A = A(n) that should be used as a
spectral initialiser, to ensure that it has non-negative asymptotic empirical correlation with v. For
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example, this is the case if the limiting prior distribution 7 is symmetric, i.e. V 2 _V. On the
event of probability 1 where A has a unique maximal eigenvalue, suppose that one of the two possible
directions for the corresponding eigenvector is chosen uniformly at random when carrying out spectral
initialisation. In other words, let v© = v%(n) = e for each n, where (4,v), > 0 and € = ¢(n) is a
Rademacher random variable that is independent of everything else. With this choice of v", there
are two different state evolution trajectories that can arise: for ¢ € {—1,1}, let pg(€’) := €'v/1 — A72
and o9, U be as above, and define i (€'), o (€), ¥ (€¢/) for k € N as per (3.6)~(3.7). For the resulting
iterates v* = v¥(n), Theorem 3.5 implies that as n — co, we have

sup Z¢ h) — E{¢(ur(e)V + ok (€)Gh, )| }

YePLy(2,1)

for each k € Ny, as well as appropriate analogues of (3.8)—(3.11). Since E{Qb(,u,k )V+ok(€)Gy, ) ‘ } is
random for each 1, the empirical distribution of the components of v*(n) may not converge (completely
in dg) to a deterministic limit as n — oo, unlike in earlier results. Instead, we see that for large n, the
behaviour of the AMP iterates is characterised by a state evolution recursion with a random initial
condition yio(e) that depends on v = v(n) through the (unknown) sign € = e(n).

3.3 Choosing the functions g

Recall that our goal is to specialise the general AMP algorithm (3.3) to produce estimates 9% = g, (v¥)
of v that exploit full or partial knowledge of the limiting prior distribution 7 from (M1). Corollary 3.2
suggests that we should aim to choose a sequence of Lipschitz ‘denoising’ functions g;: R — R for which
each gi(urV + o0 Gy) performs well as an estimator of V' ~ 7 in the limiting univariate problem, where
G ~ N(0,1) is independent of V' for k € N. More precisely, it would be desirable to ensure that the
effective signal-to-noise ratio py = (u /o )? is large for each k, since (3.11) tells us that the asymptotic
empirical correlation between 9* and v is given by VPrer1/A. In fact, the implication of Lemma 3.7
below is that achieving a high effective signal-to-noise ratio ought to be our first priority, even when the
ultimate objective is for 4% = gj,(v") to have low asymptotic estimation error E{t (gx(pxV+0rGy), V) }
with respect to some specific loss function ¢ € PLy(2).

Lemma 3.7. Let G ~ N(0,1) be independent of V ~ w. Then for any Borel measurable loss function
¥ R? = [0,00),
p»—>1nfE{z/J( (vVpV +G),V)} = R:

is non-increasing on [0,00), where the infimum is over all Borel measurable functions g: R — R. This
infimum is attained for all p € [0,00) if for example Y(x,y) = ¥(x —y) for some convex function ¥
with ¥(u) — oo as |u| — oco.

The intuition behind this result is straightforward: to minimise E{¢( (vVeV +G), )} jointly over
p (belonging to a given range) and all measurable g, we should always begin by takmg the largest
possible p (i.e. the least noisy /pV + G) before subsequently optimising over g. A formal proof of
Lemma 3.7 is deferred to Section 6.8. The arguments therein show also that the first assertion of the
lemma remains valid if the infimum is instead taken only over Lipschitz functions (which are more
relevant to the setting of AMP).

Note that for (known) u, o € R with (u/0)? = p, the quantity R, (p) is the 7-Bayes risk with respect
to 1 in a Bayesian mean estimation problem where we place a prior m on V and observe Y = yV 4+ oG
(as in the paragraph above), i.e. Y |V ~ N(uV,0?). If there exists a Borel measurable g*: R — R
that attains the infimum in the definition of Ry y(p), then g*(Y") is a m-Bayes estimator of V' (with
respect to ) based on Y.

Bayes-AMP: Suppose first that for some k € Ny, we are given the distribution 7 of V' and the state
evolution parameters iy, o (which depend on 1, og in (M1) as well as the functions go, g1, -, gx—1)-
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For convenience, when k = 0, we write Gy for the random variable U from (M1), and assume that its
distribution is also known. Let g;: R — R be any measurable function with

9:(pV + 01Gr) = E(V | iV + 01 Gy), (3.16)

which in principle can be computed based on Yy := uiV + 0pGg. In particular, for kK € N, we have
Gy, ~ N(0,1), in which case if o, > 0, then Y}, has a smooth (real analytic), strictly positive Lebesgue
density py on R. Specifically, p(y) := [ b0, (y — prx) dr(z) for y € R, where ¢, is the density of a
N(0,0%) random variable. Then by Tweedie’s formula (Robbins, 1956; Efron, 2011), we can take

. y+ o7 (logpr) (¥) Lo, 20 Y+ 07 (0)./pk) (Y) Lo, 20

For example, if 7 is the uniform distribution on {—1,1} and o) # 0, then g}(y) = tanh(ury/oz) for
y € R.

In the AMP literature, gj is referred to as the ‘Bayes optimal’ choice of threshold function in (3.3),
since the posterior mean g;(Y)) = E(V |Y}) is the Bayes estimator of V' based on Y}, with respect to
quadratic loss (often known as the minimum mean squared error (MMSE) estimator). Indeed, by the
characterisation of E(V |Y}) as an orthogonal projection,

E{(V - g(¥i)*} =E{(V - ;(¥0))*} + E{(g} — 9)°(V)} = E{(V — g;(¥i))*} (3.18)

for all measurable g: R — R. In addition,

2 * 2
B~ = S0 o

by the Cauchy-Schwarz inequality, with equality if g is a (non-zero) scalar multiple of g;. Thus, for
given pu, oy, the function g; simultaneously minimises the asymptotic mean squared error in (3.10) and

maximises the asymptotic empirical correlation (i.e. the effective signal-to-noise ratio p;_ ) in (3.11)
over all measurable g;: R — R.

The following result is a slight extension of Montanari and Venkataramanan (2021, Remark 2.3) (with
a different, simpler proof given in Section 6.8) that provides sufficient conditions on 7 under which g,
is Lipschitz and satisfies (M2).

Lemma 3.8. Suppose either that V' has a log-concave density, or that there exist independent random

variables Uy, Vo such that Uy is Gaussian, Vi is compactly supported and V 4 Uo + Vo. Then for
s ok 7 0, the function gi in (3.17) is smooth and Lipschitz on R.

Assuming now that we have complete knowledge of the distributions of U,V as well as A > 0 in (3.1)
and g, 00 from (M1), we can construct a ‘Bayes-AMP’ algorithm of the form (3.3) by recursively
defining (g; : k¥ € N) and state evolution sequences (u;, o0} : k € N) in accordance with (3.16,3.17)
and (3.6) respectively. We will write v®B = v¥B(n) for the resulting Bayes-AMP iterates (i.e. effective
observations) and 958 = 9%8(n) := g7 (v®B) for the Bayes-AMP estimates of v = v(n).

For each k € N, we have pj , = ME(Vgi(Ya)) = ME(g;(Yx)?) = Aojy1)? by (3.19), and since
E(V?) =1 by (M1), the effective signal-to-noise ratios in Bayes-AMP satisfy

it = (1 /ohi)? = N20h0)? = M E(gi(V)?) = X2(1 - E{(V — g;(v))*}). (3.20)

Thus, the state evolution recursion (3.6) for Bayes-AMP can be compactly written as

P4 = (po/00)%,  preq = A?(1 — mmseg(p;)) for k € No, (3.21)

where for p € [0,00) we denote by

mmsey(p) == E{(V —E(V | /pV + Gk))2}

20



the minimum mean squared error (i.e. the Bayes risk with respect to squared error loss ¥9: (z,y) —
(x — y)?) for the problem of reconstructing V based on the corrupted observation VPV + Gg. For
k € N, we have G, ~ N(0,1), in which case we simply write mmse(p) for mmsey(p) = Rx y,(p). For
concreteness, we set mmse(oco) = 0, which is consistent with the fact that mmse(p) — 0 as p — oo.

At each iteration k € N, it turns out that pj_ , is the highest effective signal-to-noise ratio that can
be achieved with any choice of functions (gx) in the generic AMP procedure (3.3).

Corollary 3.9. Consider any sequence of AMP iterations (vk =oF(n): k,n € N) of the form (3.3)
for which the hypotheses of Theorem 3.1 or 3.5 are satisfied with V ~ w and suitable pg,0q9. Let
(tg,or : k € Ny) and (pk = (ur/op)? + k € No) be the associated sequences of state evolution
parameters and effective signal-to-noise ratios respectively. Define (p;. : k € No) as in (3.20). Then
for each k € Ng and any ¢ € PLy(2), the estimates % = % (n) = gp(v*) satisfy

(8%, v)n] < VPRHL \/Pk+1 (3.22)

||vk|! Tell. X
and Zw (OF, v;) S E{¢(ge(1kV + 0kGr), V) } > R y(pi) asn — . (3.23)
=1

This follows from (3.11) and (3.19) above, as well as Lemma 3.7, which implies in particular that
p — mmse(p) is decreasing on [0, 00). See Section 6.8 for a full justification of Corollary 3.9.

Under the conditions of Lemma 3.8 above, the Bayes optimal functions g; are Lipschitz and sat-
isfy (M2). We can then apply the general results in Sections 3.1 and 3.2 to obtain the exact asymptotics
for Bayes-AMP, for which it follows that (3.22) holds with equality. In other words, at every iteration,
the Bayes-AMP estimate 5B = 95 (v*B) achieves the optimal asymptotic empirical correlation among
all AMP algorithms that are covered by the theory above. Moreover, with the initialisations in (i)
and (ii) below, Theorem 3.10 shows that Bayes-AMP achieves the objective set out at the start of
Section 3.2, namely that ¢*T1B is a strict improvement on 9% in terms of its asymptotic squared
error and empirical correlation (i.e. the effective signal-to-noise ratio pj_ ;) for each k. This means
that for large k and n, the performance of 9% = 9%8B(n) is approximately characterised by a fixed
point of the recursion in (3.21) to which (p}) converges monotonically; see Figure 2.

Theorem 3.10. Let (vk’B =8B 1 k,n e N) be a sequence of Bayes-AMP iterations that satisfies
either (i) or (ii) below.

(i) (Non-spectral initialisation) v = v%(n) = ¢l,, and v=! = v=(n) = 0 for each n, where ¢ € R
is fized. Suppose that the hypotheses of Theorem 3.1 are satisfied with E(V') # 0, in which case
to =0, 09 = c and pj = 0.

(ii) (Spectral initialisation) v° = v%(n) = c$(n) and v = v=1(n) = A~lep(n) for each n, where
¢ # 0 is fized and (p,v), > 0. Suppose that the hypotheses of Theorem 3.5 are satisfied with
A > 1, in which case pp = cvV'1 — A2, 09 = ¢/ and pf = \? — 1.

Suppose that V ~ 7 satisfies one of the conditions of Lemma 3.8. Then we have the following:

(a) The sequence (p; : k € No) of effective signal-to-noise ratios defined through (3.20) is strictly
increasing, and converges to the smallest strictly positive fized point of p = )\2(1 — mmse(p)),
which we denote by piyp = Pivp (V) € (0, 22].

(b) For k € N and a (convex, non-negative) loss function 1» € PLa(2), suppose that 9y R =R
is Lipschitz and attains the infimum in the definition of Rxy(py). Then the estimates oY =
oY (n) = g,’;u)(vk’B) satisfy (3.23) with equality, i.e. n=1 > 1 (9 f i) > Rey(pl) asn —
00, and Ry y(p%) 2 By (Pryr)-
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(c) The Bayes-AMP estimates "B = g;(vk’B) satisfy

* *
- 14kB 2 _ Pr41 Panp(A)
c-lim [[6%7 — o5, =1 — BV SV (3.24)
R VP01 o VPanp (M)
and  c-lim — = Ve as k — oo. 3.25
T TR, A ) (329)
PAMP [
. PAmp
P31 Prf
2%
C NE(V) — A*(1 — mmse(p)) - /\2(1 - mmse(p))
P= —
r —
=0 2 12 P5  Paup P =N =1 piup

Figure 2: ‘Cobweb diagrams’ illustrating the conclusion of Theorem 3.10(a) that p; 7 pAyp as k — oo, under
(i) and (ii) respectively with A = 1.7; note that 1 — mmse(0) = E(V)?:

Left, non-spectral initialisation: V ~ m = 38, + 155, with E(V) = 1/2 # 0 and E(V?) = 1: convergence to
Pamp occurs when pg = 0.

Right, spectral initialisation: V ~ 7 = £6_1 + 61, with E(V) = 0 and E(V?) = 1: convergence to pjyp occurs
only if p§ > 0.

The proof of Theorem 3.10 is given in Section 6.8. To understand the implications of (b) above,
suppose that we wish to use AMP to obtain estimates © = v(n) of v = v(n) with small (asymptotic)
01 estimation error n=!>"" | |3; — v;|. In view of (3.23) and Theorem 3.10(b), with 1 taken to
be absolute error loss 9;: (z,y) — |z — y|, we should first run Bayes-AMP to obtain the highest
possible effective signal-to-noise ratio p; at every iteration. Then for each k& € N, we should consider
Gy, ' R = R for which g;, (y) is a median of the conditional (i.e. posterior) distribution of V
given uiV + oG = y for (Lebesgue almost) every y € R. If we can find a Lipschitz g;;ﬂpl with this
property, then 9F%1 := Than (v*B) attains the lowest possible limiting mean absolute error Ry, (pr) =

inng{|V — g(\/ﬁ V + G)‘}, among all estimators obtained from the k** iteration of some AMP
algorithm of the form (3.3). In cases where there is no suitable Lipschitz g,’;wl, for example when
V has a discrete distribution, one possible modification of the approach above would be to replace
g;;w1 with a Lipschitz approximation when constructing the estimator, in the hope that the resulting
asymptotic ¢1 error is close to Rr .y, (0f)-

As for Theorem 3.10(c), one can compare the asymptotic mean squared error (3.24) and empirical
correlation (3.25) achieved by Bayes-AMP with the corresponding Bayes optimal quantities (i.e. the
best possible limiting values that can be attained by any estimator). In a spiked model (3.1) where
the entries of v = v(n) are i.i.d. with distribution 7, closed-form asymptotic expressions for the
Bayes estimator E(v | A) were rigorously established by Barbier et al. (2016) and Lelarge and Miolane
(2019). It turns out that the Bayes optimal performance is characterised by a fixed point py of p =
A2 (1 — mmse(p)) that maximises a specific free-energy functional; see Montanari and Venkataramanan
(2021, Section 2.4) for further details. Thus, we can precisely characterise the performance gap between
Bayes-AMP and Bayes optimal estimation for symmetric rank-one matrix estimation. In particular,
when the equation p = A?(1—mmse(p)) has a unique positive solution (as is the case for the U{—1,1}
prior in Figure 1), Bayes-AMP achieves the Bayes optimal performance. Furthermore, in cases where
pavp 7 Ph (1.e. AMP is not Bayes optimal), there is currently no known polynomial-time algorithm
that is superior to Bayes-AMP in terms of the limiting effective signal-to-noise ratio in (3.25).

We remark that the optimality of Bayes-AMP among polynomial-time algorithms is conjectured only
for certain classes of statistical problems such as low-rank matrix estimation and generalised linear
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models. For tensor PCA, Hopkins et al. (2015) proposed a polynomial-time algorithm based on the
sum-of-squares hierarchy that has strictly better estimation performance than AMP (Montanari and
Richard, 2014). Subsequently, Wein et al. (2019) developed generalised spectral methods based on
statistical physics that match the performance of the sum-of-squares algorithm for tensor PCA.

Remark 3.11. Suppose that the limiting prior distribution 7 is symmetric, i.e. V' 4 —V, in which
case v and —v are asymptotically indistinguishable. Then E(V) = 0, and as mentioned in Remark 3.6,
it is not possible to consistently choose the sign of the spectral initialiser in a data-driven way, so as
to ensure that (@, v), > 0 for each n. Nevertheless, the two possible state evolution trajectories for
Bayes-AMP (with spectral initialisation) are easily seen to be identical up to the sign of each py, so
the limits in (3.24) and (3.25) remain valid for

kB
min |[0%B —ev||?  and min (%7, €v)n

————————  respectively.
ee{-1,1} ce{-11} [05Bln]lv]ln

Remark 3.12. If the limiting prior distribution 7 is known but some or all of A, ug, o¢ are not, then
starting with 9° = ©°(n) for some n, we can construct an ‘empirical Bayes-AMP algorithm’ based on
estimates of uy, o for each k. Specifically, recalling Remark 3.3 and proceeding inductively, we can
use (3.17) to define g; based on

. k—1y2y1/2 . ke

i = (10417 = 19571 2) 2 a6 = (104,
and then obtain 9% = g7 (v*) and v**! via (3.3) for each k. Alternatively, since uf = A(0})? > 0 in
Bayes-AMP, we could instead take fiy = Ad7 = A||6¥71||2, where

is a strongly consistent estimator of A by (3.2). Yet another approach is to first define (py) recursively
by p1 := fi2/6% and ppi1 = 5\2(1 — mmse(py)) for each k. In view of (3.20), we can then estimate
Mk,U/% by pr+1/ A and Pr+1/ A2 respectively, and use these to define g and hence oF, v*+1 for each
k as above. The theoretical guarantees in Theorems 3.1 and 3.5 extend fairly straightforwardly to

empirical Bayes-AMP; see Montanari and Venkataramanan (2021, Lemma G.1).

Sparse signal recovery: To give another example where the AMP procedure (3.3) can be specialised
appropriately, suppose that the exact distribution m of V' is not known, but that for some fixed s € (0,1)
and every n € N, the spike v = v(n) is known to have at most sn non-zero entries. This implies that
7 satisfies 7({0}) > 1 — s. In line with the classical theory on denoising sparse vectors (Donoho
and Johnstone, 1994, 1998; Montanari, 2012, Section 9.3), we can take (gx)ken, to be a sequence of
soft-thresholding functions

gr(y) = STy, (y) := sen(y) |yl — tr)+,
so that the AMP algorithm (3.3) becomes

1 « ok
0 = STy, V%), b= - > Laroy = | nHO’ P = Aok — bpo* 1 for ke Ng.  (3.26)
=1

When each of the thresholds ¢; € (0,00) is suitably chosen in terms of A and the state evolution
parameter oy (or consistent estimators thereof), Montanari and Venkataramanan (2021) establish
lower bounds on the effective signal-to-noise ratios py = (ux/0%)? that hold uniformly over the class
of distributions 7 with 7#({0}) > 1 — s. In conjunction with Corollary 3.2, this analysis leads to a
theoretical guarantee on the performance of (3.26) for any sequence of ns-sparse spikes v = wv(n)
satisfying (M1); see Proposition 2.1 in the aforementioned paper.

We also mention that Barbier et al. (2020) recently established statistical and computational limits
for sparse signal recovery in an asymptotic regime where the expected number of non-zero entries of
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v = v(n) is a sublinear function of n. Specifically, for each n, the entries of v are drawn independently
from a prior 7, with 7,({0}) > 1 —s, and s, — 0 as n — oo. In this setting, the analysis makes use
of finite-sample versions of the AMP master theorems (see Remark 6.3).

In summary, the state evolution characterisation of the AMP algorithm (3.3) allows us to choose the
functions g in a principled way, depending on the prior information available about the signal v. A
poor choice of (gz) will lead to low effective signal-to-noise ratios px = (i /0x)?, but the asymptotic
convergence results (3.8)—(3.11) will continue to hold provided that the hypotheses of Theorem 3.1
or 3.5 are satisfied.

A key strength of the AMP framework is that it gives us the flexibility to choose non-linear functions gy,
such as the soft-thresholding functions above. Note that the MMSE denoising functions g; in (3.16)
are non-linear except in special cases (such as when V is Gaussian). Nevertheless, iterations with
linear g can sometimes be useful as a theoretical device for obtaining distributional information
about spectral estimators, as the following example shows; see also Mondelli and Venkataramanan
(2020) and Mondelli et al. (2021).

Connection with the power method: Suppose that we initialise (3.3) with ° = °(n) := v +¢,

where pg # 0 and £ = £(n) ~ N, (0, I,,), and define

A
B = /1+ p3, gk (x) := L forze R, —— for k e Np. (3.27)

Hhet1 2=
B /i o

These functions g are constructed in a such a way that the corresponding state evolution formula (3.6)
yields 0,% = 1 for every k, and parameters yuy, that coincide exactly with those defined in (3.27). Observe
now that the AMP iteration (3.3) corresponding to (3.27) yields (6* = ©%(n) : k € N) satisfying
Bott = vt = A?Y and

1 1
(ﬁk 3 ) P - g (M M) = A0 forkeN. (3.28)
k—1 k—1

The key steps in the theoretical analysis of (3.28) can be summarised as follows:

(I) When X > 1, some elementary analysis (e.g. based on the contraction mapping theorem) shows
that VA2 — 1 is a stable fixed point of the deterministic recursion for (px) in (3.27), and hence
that B, — X\ as kK — oo.

(IT) Using Theorem 3.1 and the covariance matrix defined in (3.7), we can obtain the dy limit of
the joint empirical distribution of the components of t¥+1 = ¢**+1(n) and 9*~! = k1 (n) as
n — oo; in particular, ||0**!]|, % 1. Tt then follows from (I) and routine arguments that
limy,_ o0 c-limy, s [|[0F T — %71||,, = 0. In other words, [|o**+! — 5¥~1||,, converges completely to

some deterministic limit ¢, as n — oo for each fixed k, and £, — 0 as k — oc.

(IT) Thus, writing (3.28) in the form At* = (A + A1)k 1 4+ 9y for k,n € N, where

_ ._ 1 INV ke 1 et ket
U = Ug(n) := {<ﬁk—|— Bk—l) — ()\—I— A)}U + 5}:—1(1} g,

we deduce from (I) and (II) that limg_, o c-limy, o0 ||9%]|n = 0.

Using these ingredients and the fact that the limiting spectral gap of A = A(n) is strictly positive
when A > 1, it can be established that

koA
lim c-lim 7‘ {0 A’k@n’
k—oon—oo  ||0F||,

=1.

This shows that the specific instance (3.28) of the AMP iteration is asymptotically equivalent to
the well-known power method for approximating ¢, although the dependence of ©° on the unknown v
means that we cannot use (3.28) as an algorithm in practice. Nevertheless, this asymptotic equivalence
ensures that we can apply Theorem 3.1 to obtain the ds convergence result in Proposition 3.4 for the
joint empirical distribution of the components of ¢ and the signal v.
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3.4 Confidence intervals and p-values

As a consequence of Theorem 3.1, recall from the discussion after Corollary 3.2 that for fixed k& and
large n, the AMP iterates (i.e. effective observations) v* = v*(n) in the generic procedure (3.3) have
the property that {(vF — pgvi)/ok : 1 < i < n} behaves approximately like an i.i.d. sample of size
n from the N(0,1) distribution. Thus, for a given a € [0,1], we would expect roughly n(l — «)
of these components to have absolute value at most z,/p := ®~1(1 — a/2), where @1 denotes the
quantile function of the N(0,1) distribution. Using this observation, we will now outline briefly
how to construct confidence intervals for the entries of v = v(n), as well as associated p-values. By

Remark 3.3, the (possibly unknown) state evolution parameters py, ox can be estimated consistently

by ik = fw(n) = (l0F)2 - \\vk*1\|i)l/2 and 63 = 61(n) = |01, respectively for each k € N, so we
define
. OF — 20706k VE 4 2490 k
JE(n,a) = [ L /2%, L /2Uk] and p} Epf(n)zQ{l—@(@)} (3.29)
H HE Ok

for k,n € N, 1 <i <n and a € [0,1]. Montanari and Venkataramanan (2021, Corollary 3.1) showed
that for fixed ¥ € N and a € [0, 1], the confidence intervals J¥(n,a),...,J¥(n,a) have asymptotic
mean coverage level 1 — «; specifically,

n

1 1l -

L z} Lmeitmey =1 == lim = z; P(ui(n) € Ji(n,)).
1= 1=

The first limit above can be established by considering Lipschitz approximations to indicator functions

of intervals and appealing to either Theorem 3.1 or 3.5 (for non-spectral and spectral initialisations

respectively). The dominated convergence theorem can then be applied to deduce the second equality

from the first. Note that for fixed k, a, the asymptotic width of each J¥(n,a) is 224/2/ Pk, Which is

minimised when the empirical Bayes-AMP iterates are used to construct these intervals.

In addition, suppose that the proportion of non-zero entries in the spike v = v(n) tends to § € (0, 1)
as n — 00. Then the result cited above asserts that the p-values defined in (3.29) are asymptotically
valid for the nulls AV, := {1 < i < n :v; = v;(n) = 0} in the following sense: for any sequence of
indices (ip(n) € Ny, : n € N) and all fixed k € N and a € [0, 1], we have lim,,_,o0 ]P’(pfo(n) <a)=a.

3.5 AMP for more general low-rank matrix estimation problems

Multivariate denoising functions: Thus far, we have only studied estimators o¥ = g;(v*) of the
signal v based on a single AMP iterate v*. One could attempt to improve estimation accuracy by
designing estimators g (v°,...,v"*) that also make use of all previous iterates, where gi: R*1 — R
is a Lipschitz function that is applied row-wise to (v% --- v¥). In the Gaussian spiked model (3.1),
consider a more general AMP algorithm with the same initialisers ¢!, v € R™ as in Section 3.1 or 3.2,
but with iterates inductively defined by

oF = gr (00 R, by = (05ge(0Y ) = 0T 050k (V). 0F) for 1< <k
- GLESD S ST (3.30)
for k € No. Here, 0;g;, is a weak derivative of the Lipschitz function (zo, z1 ..., z%) = gr(xo, 21 ..., 2k)

with respect to x; for 0 < j < k. In the setting of Section 3.1, the recursions (3.6)—(3.7) for the state
evolution parameters p, o, Y instead become

pit1 = AE(Vgr(pueV + Gi)), or1 = E(gr(prV + Gk)?),

I k - , (3.31)
Ske =30k = E(g—1(ppe—1V + Go—1) - gi—1(tk—1V + Gi—1)) for 1 <l <k.
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Here, e := (po, ..., pe) and Gg := (00U, 01GYy, . ..,00Gy) are (£ + 1)-dimensional random vectors for
0 < ¢ <k, with (01G1,...,0,Gy) ~ Ni(0,5¥) independent of (U, V) from (M1). In the case of spec-
tral initialisation, the recursion (3.15) for S generalises analogously. By relatively straightforward
extensions of the proofs of Theorem 2.3 and Corollary 3.2, it follows that

Sk, ui) S B{ (as e + Gi), V) (332
i=1

provided that the hypotheses of Theorem 3.1 or 3.5 are satisfied. The limiting univariate problem is
therefore to estimate V ~ 7 based on upV + G = (uoV + ooU, i1V + 01G1, . . ., iV + 0xGy).

If the prior distribution 7 and the initial pg, oo are known, then we can recursively define the Bayes-
AMP denoisers gy : RFt1 5 R and state evolution sequences (/f,;, Oy S ke N) via the posterior
means

gk iV + G) = E(V | pV + G}) (3.33)

and (3.31). Although we might hope that the resulting estimates 9% = g} (urV +G%) of v are superior
to those in Section 3.3, it turns out that in the setting of Theorem 3.10, they are in fact identical to
the Bayes-AMP estimates 9% defined earlier. This is a consequence of the Gaussianity of the noise
matrix W in the spiked model, which manifests itself in the following fact (whose proof is given in
Section 6.8).

Lemma 3.13. Let (v° = v%(n) : n € N) be a sequence of (non-spectral or spectral) initialisers that
satisfies either condition (i) or (ii) of Theorem 3.10. Consider the resulting Bayes-AMP iterations
(vk =v*(n) 1 k,n € N) of the form (3.30) with g;, and uj, o}, S s above. Then for every k € N,
the random variable V' ~  is conditionally independent of py,_,V + Gy _, given uiV + oGy, whence

gi(kV + GR) = E(V | piV + G) = E(V | iV + 07 Gh). (3.34)

Consequently, gy, depends only on its last argument and sz =0forl1<j<k-1, so (vk = v*(n) :
k,n € N) coincides with the sequence (vk’B =oMB(n) 1 kn ¢ N) of Bayes-AMP iterations based on
the univariate threshold functions g in (3.16,3.17).

Thus, the Bayes-AMP estimates 9% in Section 3.3 are actually Bayes optimal over a wider class of
estimators arising from AMP algorithms (3.30) with separable multivariate denoisers. In particular,
to define the Bayes-AMP denoising functions in this Gaussian setting, it suffices to track the state
evolution scalars uy, oy rather than the full limiting covariance matrices Sk As we will see below,
this is in sharp contrast to AMP iterations with general non-Gaussian rotationally invariant matrices.
Note also that the conditional independence in Lemma 3.13 is specific to Bayes-AMP, and is not
guaranteed to hold for the state evolution sequence and limiting random variables associated with a
general AMP iteration of the form (3.30).

Estimation of a rectangular rank-one matrix: Let A € R"*P be an observation matrix given by
A T /
A=An)=~w + W' (3.35)
n
iid

where W' is a Gaussian noise matrix with W/, ~ N(0,1/n) for 1 <i <n and 1 < j < p, and seek to
estimate one or both of the unknown vectors © € R" and v € R?.

An important example of this observation scheme is a spiked covariance model (Johnstone, 2006;
Johnstone and Lu, 2009) where ay,...,a, Y N,(0,%) with ¥ := (Avv' + I,)/n € RP*P. In this case,
the matrix A € R™*P with rows aq,...,a, is of the form (3.35) with u ~ N, (0, I,,).

By analogy with the symmetric case in Section 3.1, an AMP algorithm for the model (3.35) can be
obtained by replacing the Gaussian matrix W in the abstract asymmetric AMP iteration (2.10) with
the data matrix A (Rangan and Fletcher, 2012; Deshpande and Montanari, 2014). For k£ € Ny and

26



generic sequences of Lipschitz functions (fx)32, and (gx)72, satisfying (M2), the corresponding AMP
procedure takes the form

ub = Afip (V") — brgp_1 (W), cr =0t g (ub),

B (3.36)
M= AT g (uF) — e fro(0"), brpr =07 20 fly (0F )

for £k € Ny. Based on an appropriate state evolution recursion, analogues of Theorems 3.1 and 3.5
can be formulated for (3.36) with non-spectral and spectral initialisations respectively. These results
apply to an asymptotic regime where n, p — oo with n/p — ¢ for some 6 € (0,1), and where a version
of (M1) holds (with |ju|n, |||, —+ 1 and the empirical distributions of the components of u and v
converging completely in dg to suitable limits). A suitable spectral initialiser for (3.36) is 10 = ¢&, a
principal right singular vector of A with |||, = 1 (Montanari and Venkataramanan, 2021, Section 4).
The associated spectral threshold is at v/0: if n/p — 6 and X\ > 1/v/0, then the limiting empirical
correlation [(pf, v),|/||v||, is strictly positive (Paul, 2007; Bai and Silverstein, 2010).

Estimation of rank-s matrices for s > 1: The general rank-s spiked models take the form

S A . S A .
A= Z #vjv;r + W  (symmetric); A= Z #vjujT + W' (asymmetric) (3.37)
j=1 j=1

for some Ay > .-+ > X, where (v; € R" : 1 < j <) and (u; € RP : 1 < j < s) are sets of unknown
orthogonal vectors (with ||v; ||, |1, > 1 for all j), and where the Gaussian noise matrices W, W' are
asin (3.3) and (3.36) respectively. Parker et al. (2014a,b), Kabashima et al. (2016), Lesieur et al. (2017)
and Montanari and Venkataramanan (2021) proposed generalisations of the AMP algorithms (3.3)
and (3.36) for estimating w1, ..., us,v1,...,vs (and hence the signal matrices) in (3.37). For s > 1,
the main difference with the rank-one case is that the iterates in these procedures are matrices rather
than vectors.

More precisely, in the symmetric case, each iterate is an n x s matrix to which a row-wise thresholding
function is applied to obtain updated estimates of vy, ..., vs. When the initialiser is a matrix consisting
of eigenvectors corresponding to the s largest eigenvalues of A, a rigorous state evolution result was
obtained by Montanari and Venkataramanan (2021, Section 6). Similarly, in the rectangular case,
the iterates are n x s and p x s matrices and we can take the columns of the initialising matrix
to be right singular vectors of A. Additional complications arise when Ai,...,As are not pairwise
distinct. In these degenerate cases, not all of the vectors vy, ..., v, are identifiable up to sign in (3.37).
Indeed, if some A occurs with multiplicity » > 1, then by applying any orthogonal transformation that
fixes the r-dimensional subspace spanned by the corresponding signal vectors, we can obtain another
valid representation of the signal matrix while leaving A unchanged. There is therefore an inherent
ambiguity in the definition of the spectral initialisers above. By analogy with Remark 3.6 for the
s = 1 case, the AMP state evolution consequently has a random initialiser that is defined using a
Haar-distributed orthogonal matrix. Conditioned on this initialisation, the state evolution parameters
for the subsequent iterations are deterministic.

Universality: As mentioned in the Introduction, the theoretical framework for AMP was originally
built around Gaussian random matrices, but the conclusions of Theorems 3.1 and 3.5 (as well as
the master theorems in Section 2) have now been extended to encompass more general random ma-
trix ensembles. In so-called ‘spiked Wigner’ models of the form (3.1), the symmetric noise matrices
W = W(n) have independent upper-triangular entries (W;; : 1 < i < j < n) that are uniformly
subexponential across n € N with E(W;;) = 0 and Var(W;;) = (1 + d;5)/n. It was previously known
that the eigenstructure of the corresponding observation matrix A undergoes the BBP phase transition
described in Section 3.1 at the same spectral threshold A = 1 as for ‘spiked GOE’ matrices; see for
instance Anderson et al. (2010), Knowles and Yin (2013) and Perry et al. (2018). Recently, Chen and
Lam (2021, Examples 2.1 and 2.2) used the method of Slepian interpolation to prove that in AMP
algorithms of the form (3.30) based on matrices A from rank-one spiked Wigner models, the iterates
have the same asymptotics as in the original Gaussian setting, with or without spectral initialisation.
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In a different direction, Fan (2022) developed a more general class of AMP procedures for symmetric
and rectangular rank-one spiked models (3.1,3.35) in which the noise matrices are orthogonally in-
variant. In the symmetric case, this means that W = W (n) satisfies W 4 QTWQ for all deterministic
orthogonal @ € R™"*™ and it can be shown that the only such W with independent, mean-zero upper-

triangular entries are scalar multiples of GOE matrices (e.g. Mehta, 2004). For other orthogonally
invariant W, Opper et al. (2016) and Fan (2022, Section 3) modified the AMP algorithm (3.30) to

allow v¥*1 to depend on all previous iterates via
k
0% = gp(°,0h, ... o) and WP = Adk — Z b0/ ~1 for k € Ny, (3.38)

§=0

in a such a way that the joint empirical distributions have well-defined Wasserstein limits. To achieve
this, the technical crux is to design suitable Onsager coefficients b1, ...,bgr that depend on the
limiting spectral distribution of W (when it exists) through its moments and free cumulants, which
also determine the corresponding state evolution sequences. Asymptotic convergence results similar
in spirit to Theorems 3.1 and 3.10 can then be established for iterations of the form (3.38) and their
Bayes-AMP versions. In particular, for each k, the components of the effective observation v* behave
like those of pxv+ ox€ for large n, where £ ~ N, (0, I,) is independent of v as before but the recursions
for py, oy are significantly more involved than (3.31). As in Section 3.3, it turns out that for large
k, the Bayes-AMP estimates 0% of the spike v can substantially improve on the spectral estimator
(namely a leading eigenvector of the observation matrix A) in terms of asymptotic mean squared
error (Fan, 2022, Remark 3.2). Unlike in the Gaussian setting of Lemma 3.13 however, the Bayes
optimal denoisers g : RET1 — R may depend on all of their arguments and must be defined with
respect to the full limiting covariance structure (Fan, 2022, Remark 3.3).

4 GAMP for generalised linear models

In this section, we give a unified treatment of a class of AMP algorithms for models of the following
generic form: suppose that we generate a design matrix X € R"*P with rows x1,...,x, € RP, and
observe y = (y1,...,yn) € R™ satisfying

yi = h(z; B,e;) fori=1,...,n, (4.1)

where 8 = (B1,...,0p) is the target of inference, ¢ = (e1,...,&,) is a vector of noise variables and
h: R? — R is a known function. We will focus on the random design setting where x1,...,z, x
Ny(0,I,/n), which is a common assumption in high-dimensional statistics and compressed sensing.
Frequently, ¢1,...,&, are assumed to be independent of each other and of X, in which case (4.1)

becomes
yilwi ~ Qi(-| ] B), (4.2)
where Q;(-| z) denotes the distribution of h(z,¢;) for a fixed z € R and 1 < ¢ < n. In statistics, (4.2) is

traditionally referred to as a generalised linear model (GLM) for (z1,y1), ..., (n, yn) if the conditional
distributions of y; given z; have densities of exponential dispersion family form (Pace and Salvan, 1997)

u— a(o?,u) exp{ uO (i) = K(O(us)) } (4.3)

2
0;

with respect to either Lebesgue measure on R or counting measure on Q. In (4.3), the mean parameter
wi € M C R is related to x; via pu; = n_l(xiTﬁ) for some strictly increasing, twice differentiable link
function n, and o; € D C (0,00) is the dispersion parameter, while a, K, O are fixed functions with
K" >00onRand © = (K')~!. The GLM framework encompasses a broad class of parametric models,
including the standard linear model, phase retrieval (where y; = (] 8)2+¢; for 1 <4 < n), and logistic,
binomial and Poisson regression (e.g. McCullagh and Nelder, 1989; Agresti, 2015). Sometimes, ‘GLM’
is used as an umbrella term to describe more general models of the form (4.1,4.2).
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Likelihood-based inference for 8 in (4.2,4.3) is justified by classical asymptotic theory when p is fixed
and n — oo, or when p grows sufficiently slowly with n (Portnoy, 1984, 1985, 1988). However, in
modern high-dimensional regimes where n,p — 0o and the aspect ratio n/p of the design matrix X is
bounded, different tools are needed to construct and analyse estimators of 5, and it is in this context
that we introduce the GAMP paradigm below.

4.1 Master theorem for GAMP

The generalised AMP (GAMP) algorithm proposed by Rangan (2011) iteratively produces estimates
pF 0% of B € RP and 6 := X € R” respectively in (4.1), via update steps of the following form: given

7~1:=0€R", by € R and an initialiser 5 € R?, recursively define

0% == X% — bttt * = gu (6%, y), ek =m0 g (0F, i),

/Bk+1 — XTf‘k o Ck,ék, Bk+1 — fk+1(ﬂk+1)7 bk+1 — n*l ?:1 f]/€+1(ﬁ;€+l) (44)
for k € Ny. Here, g;: R> — R and f,,1: R — R are Lipschitz in their first argument, and gy R? 5 R,
. 4+1: R — R agree with the partial derivatives of g, fr+1 respectively with respect to their first
arguments, wherever the latter are defined. As in previous sections, these functions are understood to
act componentwise on their vector arguments in (4.4). The goal of Section 4 is to develop the theory
and applications of GAMP, whose statistical utility can be summarised in the following key points:
(i) Ezact asymptotic characterisation via state evolution: The Onsager correction terms —by#*~1,
—ckﬁk are designed to ensure that in a high-dimensional limiting regime where n,p — co with
n/p — 0 € (0,00), the empirical distributions of the entries of the iterates in (4.4) converge
to well-defined Wasserstein limits. These asymptotic distributions are characterised by the
state evolution recursion (4.6)—(4.7) below. Consequently, for each fixed k € Ny, the entries of
Bkﬂ € RP have approximately the same empirical distribution as those of fxy1(ur8+0r€) when
p is large; here, § € RP is the unknown signal, £ ~ N,(0,1,) is an independent noise vector,
Wi, o are the effective signal strength and noise level respectively, and fr11 can be viewed as a
denoising function. This result facilitates a targeted approach to inference for structured signals
B, whereby informed choices of (fx, gr : k € Ny) can be made to accommodate different types of
prior information (Section 4.2).

(ii) Link to convex optimisation problems: For suitable choices of fi, gx, the GAMP recursion (4.4)
can be interpreted as an alternating minimisation procedure for solving a convex optimisation
problem of the form (4.22), and the fixed points of this iteration are minimisers of the convex
objective function (Proposition 4.4 in Section 4.4). Together with the state evolution description
of (4.4), this forms the basis of a systematic approach to deriving exact performance guarantees
for the Lasso and other (penalised or unpenalised) M-estimators in high-dimensional GLMs
(Sections 4.5-4.7).

In this subsection, we address point (i) above and formally state a ‘master theorem’ for GAMP
(Theorem 4.2). Consider a sequence of recursions (4.4) indexed by n € N and p = p,,, where n/p —
0 € (0,00) as n — oo, and assume that

(GO) For gach n, the design matrix X = X(n) € R ? has i.i.d. N(0,1/n) entries and is independent
of (B%(n), B(n),e(n)) € RP x RP x R™.

At first sight, it would appear that the GAMP algorithm (4.4) is an instance of the abstract asymmetric
AMP recursion (2.10), but in models (4.1) where (GO) holds, the crucial difference in the probabilistic
structure is that the observation vector y = y(n) € R is in general not independent of X = X (n). This
means that condition (B0) does not hold with v = y, so the original master theorem for asymmetric
AMP (Theorem 2.5) cannot be directly applied in this setting, and in fact does not give the correct
limiting distributions for (4.4).
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Instead, Theorem 4.2 below is derived from a general state evolution result for matriz-valued AMP
iterations (Section 6.7), under suitable analogues of (B1)—(B5) on the inputs to the GAMP recur-
sions (4.4) as n — oo and n/p — §: for some r € [2,00), suppose that

(G1) There exist random variables 3 ~ m5 and € ~ Pr with E(3?) > 0 and E(|3|"), E(|2]") < oo, such
that writing v,(5) and v, (¢) for the empirical distributions of the components of § = 3(p) and
e = g(n) respectively, we have d, (up(ﬁ),ﬂB) 50 and d, (un(e), PE—) 50.

(G2) |81y = Oc(1) and there exists a non-negative definite 3y € R2*2 such that 50 := (3 £°) € RP*?
satisfies N o
s0Tgo _ L (BB BB c
,80 T,BO — ( - - R S
(57) n \(B)TB (BT 0 0

(G3) There exists a Lipschitz Fo: R — R such that (3%, ¢(8)), E(Fo(B)¢(B)) and E(Fy(B)?) <
(X0)22 for all Lipschitz ¢: R — R.

S|

(G4) For each k € Ny, the function fxy1 is non-constant on R, and gx: (z,u,v) — gi(u, h(z,v)) is
Lipschitz on R* with Ps({v : (z,u) — gi(2,u,v) is non-constant}) > 0.

We remark here that while (G2) is in general a stronger requirement than (B2), both (G2) and (G3)
are implied by (G1) if for some fixed ¢ € R we have 3% = 39(n) = cl, for all n. As in Section 3,
constraints on 8 = [3(n) such as sparsity or entrywise non-negativity will be reflected in the form of
the ‘limiting prior distribution’ 73. Note that

2 22
o =g (2 1) ) s

by (G1) and (G2). Also, the condition on &€ = e(n) in (G1) is satisfied if 1, ...,&, S P for each n.

State evolution: With > as in (G2), the state evolution parameters (Mk € R, 04 € [0,00), Xy €
R2*2: ke N) are recursively defined by

pi1 = E(0.9%(Z, Zy,, ), or1 = E(Gi(Z, Zk, 8)*) = E(gx(Zk, Y)?), (4.6)
o .1 ( ) E(5%) E{B frs1(pas18 + Uk+1Gk+1)}> (4.7)
M S \B{Bfer1 (1B + 0k41Grr1) B foit (1418 + 0%1Grs1)?} '

for k € Ny, where we take (Z, Zx) ~ N2(0, %) to be independent of & ~ Pz, define Y := h(Z, &), and
take Gry1 ~ N(0,1) to be independent of 3 ~ m5. Under (G4), it can be shown as in Lemma 2.2
that if o1 > 0, then o > 0 and X, is positive definite for all £ € N. In (4.6), 0,gx denotes the partial
derivative of gi with respect to its first argument; observe that by (G4), z — gx(z,u,v) is Lipschitz
and hence differentiable almost everywhere for all (u,v) € R?, so pyy1 is well-defined.

Stein’s lemma (Lemma 6.20) can be used to derive some alternative expressions for py11 that will be
useful later on; see Mondelli and Venkataramanan (2020, Proposition 3.1) or Section 6.9 for the proof
of the following lemma.

Lemma 4.1. For each k € N, letting Gy, ~ N(0,1) be independent of (Z,&), we have (Z, Zy, &) 4

(Z,pzrZ + Uz,kék,é), where

k= E(5?) Ty (4.8)
o B(P)E(fe(uB +0xCi)?) ~E(Bfu(uB + nGr)* _ o Th '
ok SE(B?) T

with ¥ = Xy,. Thus, py1 = E(0:9x(Z, pziZ + 024G, €)) and o2 = E(Gi(Z, pz 2 + 021G, €)%).

Moreover,

Z|Zy,Y) - E(Z| Z)
Var(Z | Zr)

Phe1 = 6—2 E(Zge(Z1.Y)) — pzp E(9,(Zk,Y)) = E<E(

E(5?) gk(Zk,Y)>. (4.9)
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Before stating the main result of this subsection, we make an further regularity assumption that is
similar to (B5).

(G5) For each k € Ny, writing Dy, C R? for the set of discontinuities of g}, we have IP’((Zk, Y)e Dk.) =
0, and f}, 41 1s continuous Lebesgue almost everywhere.

Theorem 4.2. Suppose that (GO)—(G5) hold for a sequence of GAMP recursions (4.4) indexed by n
and p = pp, with n/p — 6 € (0,00) and o1 > 0. Then for each k € Ny, we have

p

1 = > c
sup = Y (B, B) — E(¢(h1B + 0k 11Gri1, B)) ‘ =0, (4.10)
$EPLa(r,1) | P =
R - .
sup | = Y (05,05, €) — E(¢(nznZ + 024G, Z,)) ‘ 50 (4.11)
YEePLy(r,1) | i

as n,p — oo with n/p — &, where 0; = 0;(n) =z} B forn €N and 1 <i < n.

Writing v,(8%, 8) for the joint empirical distribution of the components of B*. 3 € RP, and ¥ for the
distribution of (ugf + oGy, B), we can express the conclusion of (4.10) as

cln(yp(ﬂk,ﬂ),ﬁk) 50, or equivalently dr(l/p(ﬁk,ﬁ), ﬁk) 50 asn— oo.

Likewise, (4.11) says that the joint empirical distribution v, (6%, 6, ) converges completely in d,. to the
distribution of (uzxZ + 024G, Z,8) 2 (Zy, Z, ).

Interpretation: Informally, when p is large, the components of 3* have approximately the same
empirical distribution as those of pi83 + ox€, where & ~ N,(0,1,) is independent of 3 € RP. By
analogy with the limiting univariate problem of estimating 3 ~ 75 based on a corrupted observation
3 + 01 Gy, we can regard B* as an effective observation and py, := (uy/oy) as an effective signal-to-
noise ratio; recall the discussion after Corollary 3.2.

Remark 4.3. Similarly to Remark 2.4, it turns out that in the setting of Theorem 4.2, condition (G5)
ensures that

1 & _
= > k05, yi) = E(gh(Zr, V) =: &,
=1

(4.12)

1 Zp ¢ E(fr o1 (trs1B + 0k41Grir) -
bk+1 = E flﬁ;+1(ﬁ‘;€+l) 5 ( k+1 5 ) —. bk+1
Jj=1

as n,p — oo with n/p — ¢, for each k € Ny. In fact, the theorem holds under (G0)—(G4) if b, cj, are
replaced with by, ¢, respectively in (4.4), in which case (G5) is not needed.

By defining an augmented state evolution that specifies the covariance structure of the limiting Gaus-
sians G1,Ga, ... and G1,Gs,..., we can establish the d, limits of the joint empirical distributions
vp(BL, ... , Bk, B) and v, (6°,...,60%, 0), similarly to (3.7) and Theorem 3.1. For simplicity of presen-
tation, we do not state this stronger conclusion. Its proof is identical in most respects to that of
Theorem 4.2, which we now summarise.

Proof (sketch) of Theorem 4.2. As mentioned previously, the overall objective is to handle the depen-
dence of y on X (through § = Xp3) in (4.4), and show that the ‘noise’ component ¥ = g*(n) :=
% — i of the effective observations is approximately Gaussian (and independent of 3) for large n.
To this end, consider rewriting the second update step as

B = BFH — B = X Tgi(0,60% ) — (ﬁ fe(B* + Mkﬁ)) <<62§k€2%275)>n> - (4.13)
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Here, gi(0,6%,€) = gr(0",y) = #* (applying gy componentwise), fi(8* + mB) = fr(8*) = B* and
D20k (2, u,v) := g}.(u, h(z,v)) agrees with the partial derivative of g with respect to its second argu-
ment, wherever the latter is defined. A useful feature of (4.13) is that unlike y, the noise vector ¢ is
independent of X by (G0). Since both  and % depend on X, this suggests treating 6* := (6 6¥) e R"*?
as a single entity, and rewriting the first update step in (4.4) as

0= (0 6" =X (B fulB"+ b)) - 3 1(0,6°,2) (o a3t + ukﬂ»p), (4.14)

where 2(f1(B* + u8))p = E(f1(8%))p = b. In doing so, we have recast (4.4) as a matrix-valued
AMP iteration (4.13)—(4.14) that is no longer a valid algorithm for practical purposes, but is more
amenable to theoretical analysis. Indeed, its asymptotics can be derived by applying a master theorem
for abstract recursions (6.52) of this type; see Section 6.7. The significance of the definition of g1 =
E(0.9k(Z, Zk,€)) = E(019k(Z, Z1,€)) in (4.6) is that the final term in (4.13) is a non-linear correction
based on the derivative (gradient) of g. The final term in (4.14) has a similar interpretation as a
multivariate analogue of the original by in (4.4), and together these ensure that the limiting empirical
distributions of the iterates in (4.13)—(4.14) are indeed Gaussian. O

4.2 Choosing the functions f;, g., and inference for

Asymptotic estimation error: Since the functions fj in (4.4) are Lipschitz by assumption, it follows
as in Corollary 3.2 that in the setting of Theorem 4.2 above, the asymptotic estimation error of 5*
with respect to any loss function ¥ € PLy(r) is given by

p
© Y08 8) S E{(fulmd + o1G). )} (4.15)
j=1

for each k € N, as n,p — oo with n/p — §. In particular, taking i (z,y) = |z — y|? for ¢ € [1,r], we
obtain the asymptotic normalised ¢, error c-lim, ;o0 p~ || 5% — Bll, = E{(fe(urB + 01Gi) — B)q}l/q.

Bayes-GAMP: If the limiting prior distribution 7, the limiting noise distribution P and the initial
Yo € R?*2 are known, then guided by Lemma 3.7, we can proceed as in Section 3.3 and choose fy, gk
in (4.4) so as to maximise the effective signal-to-noise ratios py, = (ug/o%)? and pzy == (uzr/0zk)>
for each k.

Specifically, given the matrix ¥ = ¥ € R?*2? in (4.7) for some k € Ny, we can obtain W7k Ok
from (4.8); conversely, given pz, oz, we can recover ¥ since $1; = 6~ 'E(5?2) is known, and (4.8)
yields Yo1 = X1z, and Xop = a%k + leMQZk' Now take (Z, Zy) ~ N2(0,%%) to be independent of
g~ P:,and let Y = h(Z,¢), so that Y and Z;jC are conditionally independent given Z. Based on the
joint distribution of (Z, Zg,Y), let g;:: R — R be a measurable function satisfying

E(Z | Zy,Y) - E(Z]| Z)

(Zk,Y) = 4.16
92, ¥) Var(Z | Z) ! (4.16)
where E(Z | Z) = myZ), with
Y21 Pz %3 X110, < J >_1
my ;= — = —5— vVar(Z | Z;), Var(Z | Zy) = Y11 — ==— = : = — + .
S, T oy, T4 G =2n =g = o v, ~ \E@) TP

Then by (4.6), (4.9) and the Cauchy—Schwarz inequality, we have

* 2
st = Pinr _ E(9i(Zk,Y) gr(Z1,Y))
e, E(gx(Z1, Y)?)

with equality when gy, is a (non-zero) scalar multiple of g;.

< E(g3(Zi, Y)?),
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Now given pyg, o for some k € N, we wish to find fr: R — R such that defining ¥ = ¥, as in (4.8),
the quantity

2 2 -2 —1
K7k Y52 2299
Pzk = = A = 2 - Zu

2 2 v—1 2
Ozk 222 — Y52 X5

is as large as possible. Since ¥1; = § 'E(B?) is fixed, this amounts to maximising

53 E(Bfu(mB + oxGr))”

Yoo E(fu(uB + 01Gr)?)

Again by the Cauchy—Schwarz inequality (see (3.19) in Section 3.3), this can be done by taking fx to
be any (non-zero) scalar multiple of f; satisfying

Fi (B + 01G) = E(B | B + 01Gh), (4.17)

in which case Y91 = X¥9p < ¥q1. An exact expression for f; is given by Tweedie’s formula (3.17),
and if 8 ~ mz satisfies the conditions of Lemma 3.8, then f; is Lipschitz. As we saw in (3.18), the

choice fi = f also minimises the asymptotic mean squared error E{( fr(ueB + oxGy) — 5)2}, for
given i, oy; in other words, f; is the Bayes optimal (i.e. MMSE) denoising function.

By recursively defining g, = g;; (or some scalar multiple thereof) and fr 1 = f;;, | for k € N using (4.16)
and (4.17), together with corresponding sequences (uy, 0}, 1% ., 0%, : k € N) of state evolution pa-
rameters through (4.6)—(4.7), we obtain a Bayes-GAMP algorithm of the form (4.4). A version of this
was originally derived by Rangan (2011, Section IV-B) as an approximation to a sum-product loopy
belief propagation algorithm. The limiting empirical distributions for the Bayes-GAMP iterates can
be obtained from Theorem 4.2, provided that the functions f; and g;: (z,u,v) — gi(u, h(z,v)) are
all Lipschitz and (GO)—(G5) are satisfied.

Even when 73 is not completely known, it can still be possible to tailor the choices of fg, gy to
wider classes of limiting prior distributions that induce certain types of structure in the signals 8. For
instance, if we are told that 5 € RP has at most sp non-zero entries for some s € (0,1) and every p = p,,
then as in Section 3.3, we can take each fj to be a soft-thresholding function S¢, : u — sgn(uw)(|u|—tg)+
for some ¢ > 0. Using an AMP recursion (4.19) of this form (for the linear model in Section 4.3)
with appropriately chosen thresholds ¢, Bayati and Montanari (2012) derived exact high-dimensional
asymptotics for the Lasso estimator; see Section 4.5.

Spectral initialisation: Under the conditions of Theorem 4.2, it follows from (4.15) and Lemma 4.1
that for each k € N, the estimates 3% in the generic GAMP procedure (4.4) satisfy <Bk, B)p =
p! Z§:1 B]’?Bj 5 E(Bfe(ukB + 01xGr)) = uzipE(B?) as n,p — oo with n/p — 6. To ensure that
pzk 7 0 for some k, and hence that the corresponding Bk has non-zero asymptotic empirical correla-
tion with the signal 3, it is sometimes necessary to start with pilot estimators BO € RP that themselves
have the property that c-limIHooon, B)p # 0. Indeed, suppose that the limiting random variables in
the state evolution recursion (4.6)—(4.7) are such that

E(3)=0 and E(Z|Y)=0 almost surely, (4.18)

where the latter condition is equivalent to (3.13) in Mondelli and Venkataramanan (2020). Now given
estimates BO € RP for which c—limn_mO(BO,B)p = §(3p)21 = 0, we see from Lemma 4.1 that pz9 =0
and Zp is independent of (Z,Y), whence g5(Zo,Y) =E(Z|Y)/ Var(Z) = 0 almost surely in (4.16) and
i =E(95(Z0,Y) go(Z0,Y)) = 0 by (4.9). This means that uz,1 E(5%) = 6(31)21 = E(Bf1(01G1)) =0
by the independence of 8 and G;. Continuing inductively, we conclude that p, = puzp = 0 for all
k € N, irrespective of the choices of gi, frr1 for k € Ny, so Bk is asymptotically uninformative as an

estimator of 5 € RP for every k € Nj.

Thus, while there are some GLMs (such as the linear model in Section 4.3) in which it suffices to take
B° = c1, for some fixed ¢ € R, a different initialiser is required when (4.18) holds. We note that the
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second condition therein is satisfied in the phase retrieval model, where y; = h(z, 3,¢;) = (z} 8)% +&;
for 1 < i < n, and more generally in all non-identifiable models of the form (4.1) where h(z,w) =
h(—z,w) for all z,w (and hence Q(-|z) = Q(-| —z) in (4.2) for all z). Indeed, for such functions h, we
have E(Z |Y) =E(Z |h(Z,£)) = —E(Z | h(Z,¢)) and hence E(Z|Y) = 0 almost surely.

Mondelli and Venkataramanan (2020) established a version of Theorem 4.2 for GAMP algorithms in
which 39 is taken to be a leading eigenvector of X DX € RP*P, where D = diag (9(v1),---,9(yn)) €
R™ ™ for some g: R — R. Since this spectral initialiser is correlated with the random design matrix
X, condition (GO) for the original Theorem 4.2 does not hold in general. As mentioned in Section 3.2,
the authors overcome this obstacle by analysing a two-phase artificial GAMP iteration in which the
first stage effectively approximates BO by the power method.

Confidence intervals and p-values: For fixed k& and large n, Theorem 4.2 tells us that {(sz —
prBi)/ok : 1 < i < n} behaves approximately like an i.i.d. sample of size n from the N(0, 1) distri-
bution. Thus, to carry out inference for 8, we can proceed similarly as in Section 3.4, to which we
refer the reader for further details. We mention here that if the state evolution parameters pyg, o

are unknown, then they can be estimated consistently by fiy := (||3¥||2 — Hf’kil\\721)1/2/113(32)1/2 and
6% := ||#*~1||,, provided that E(5?) > 0 is known. Indeed, by (4.10) and (4.11) respectively,

112 5 E((ueB + 00 Go)?) = B2 + o
12 = [lge 1 (051 )12 = 100,052, 8) | 5 B(Gk1(Z, Z4,8)%) = B(g_1(Zi, Y)?) = 07

for each k € N as n,p — oo with n/p — 4.

4.3 AMP for the linear model

Much of the early work on AMP (e.g. Donoho et al., 2009; Bayati and Montanari, 2011, 2012; Krzakala
et al., 2012) was centred around the standard linear model

y=XpB+e,
where €1,...,ep, % P have second moment ¢ > 0 and a finite 7 moment for some 7 € [2,00) (or
more generally where the empirical distribution v,(¢) = n=' Y1 | 6., converges completely in d, to
P: as n — o0). This is a special case of the model (4.1) with h(z,v) = z + v.

Given 771 =0 € R, by € R and an initial estimator 3° € RP, the original AMP algorithm of Donoho
et al. (2009) and Bayati and Montanari (2011) can be recovered by setting gi(u,v) := v—u for u,v € R
in the GAMP recursion (4.4), so that ¢ = (g, (0%, y)), = —1 and

) A e - kL 2 1«
Koy = XB bt B = (T B8, b= D a8 (419)
j=1

for k € Ng. Here, ¥ = gp(6F,y) =y — 0" =y — XBF + bh 1 is a ‘corrected’ residual at iteration k,
and fFT1 = X T#% + BF is the effective observation.

State evolution: The GAMP state evolution equations (4.6)—(4.7) simplify to the recursion
1 = = 2
k=1, of =? +E((Z - Zo)?), of =0+ EE{(ﬁ — k(B +0kGr))"} (4.20)
for k € N, where (Z, Zy) ~ No(0,%0), and 3 ~ 75 is independent of G, ~ N(0,1). Note that by (G2),

0? = 0?2 + climy, 0o n 7|8 — 50]\2, and that if the pilot estimate of 8 € RP is taken to be B0 =0eRP
for each p = p,, then Zy = 0 and 0?2 = 0% + E(Z2) = 0 + 6 'E(B?).
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Asymptotic estimation error: Under (GO0)—(G5) with r € [2,00), the main result of Bayati and
Montanari (2011, Theorem 1) on the asymptotic performance of the estimators 3¥ in (4.19) can be
stated as

sup
$EPLy(r,1)

P
;Z ,BJ E{w(fk + 0xGg), ﬁ)} 50 asn,p— oo withn/p — 4, (4.21)

for each k € N, where oy, is as in (4.20). This can be obtained as a special case of Theorem 4.2
and (4.15). Alternatively, (4.21) can be established via a direct reduction to an abstract asymmetric
AMP recursion of the type in Section 2.2; see Bayati and Montanari (2011, Section 3.3). This involves
writing (4.19) in terms of eF := ¢ — #% and A**1 := gF*1 — B which turn out to be the asymptotically
Gaussian ‘noise’ components of #¥ and B¥+! respectively.

Originally, the d, convergence result (4.21) was derived under a stronger version of (G1) that assumed
dor—2 convergence to limiting distributions 73, Pz with finite (2r —2)*" moments. In (G1), we relax this
to a more natural d, condition under which the conclusion still holds; see the first part of Remark 6.4.
We also mention that under suitable finite-sample analogues of the conditions above, a complementary
finite-sample version of (4.21) was established by Rush and Venkataramanan (2018) in the case r = 2;
see Remark 6.3.

Link to Bayes-GAMP: If the limiting prior distribution 75 is known, then to minimise the effective
noise variance JI%H, we can take fi in (4.19) to be the Bayes optimal f; from (4.17). In general,
gr: (u,v) = v — u does not coincide with g in (4.16). However, when Pz = N(0,0?) with o2 > 0,
BO = Bo(n) = 0 for every n and fj, = f; for each k € N, it turns out that (4.19) is an instance of a Bayes-
GAMP procedure (with g o g;) that maximises the effective signal-to-noise ratios py = (ux/o%)>
and pzj = (,LLZ7]€/O'Z,]€)2 at each iteration. Indeed, in this special case, it can be verified by direct

computation that

b))
gr(u,v) = ¢, <221U - U) = cp(u—v) = —cpgr(u, v)
22

for each k € No, where ¥ = % € R2%2 ig as in (4.7), with Xg1 = Y99 =0 < Y11 when k=0 and
Yo1 = 5_1E(5f,:(uk,3 + Uka)) = 5_1E(f;(uk,3 + Uka)z) =Ygy < X1 = 5_1E(,32) by (4.17) when
k €N, and

211 — a2

CcL = — <0
F Y11 — Yo + 02

is deterministic. Here, §(X11 — Xa2) E{(B E(B | B + orGy )2} is the minimum mean squared
error for the problem of estimating 3 based on pf3 + 03 Gy.

4.4 GAMP algorithms for convex optimisation

Given y € R" and X € R"*P with rows z1, ..., 2z, many statistical estimators of 5 in (4.1) are defined
as minimisers of objective functions of the form 3 — C(3; X,y) == >0 U(z; B, yi) + Z§:1 J(Bj), or
equivalently as solutions to constrained optimisation problems of the form

n P
minimise Zﬁ(él,yl) + Z J(B;) over (3,0) € RP x R" with § = X3, (4.22)
i=1 j=1

where £: R? — R is a loss function and J: R — R is a penalty function. In particular, consider a GLM
of the form (4.2) in which y; | (z;,3) ~ q(- |z B) for 1 <i < n, where ¢(-| 2) is a Lebesgue density on
R for each z € R. Then the maximum likelihood estimators (MLESs) of 8 and §# = X3 are given by

n

(BMVE,OMEE) = argmin Y —logq(yi |6;).
(B,0)ERP XR™ j—1
6=X3
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If in addition fi,...,0p i pj for some prior density ps, then the maximum a posteriori (MAP)

estimates of 5 and 6 are

n p
(BMAPMAT) = argmin (Z —logq(yi|6:) + > — logpg(ﬁj)> -
(B,0)ERPXR™ \ j=1 j=1
0=x3
Assuming henceforth that ¢ and J are convex in their first arguments, we will now design a GAMP
iteration (4.29) whose fixed points are solutions to the associated optimisation problem (4.22); see
Proposition 4.4 below. By exploiting this connection and applying the GAMP theory from Section 4.1,
we will explain later how to obtain a statistical payoff in the form of exact high-dimensional asymptotics
for estimators defined by (4.22).

To begin the construction, fix two sequences of deterministic scalars by, > 0 and ¢, < 0 for k € Ng.
These will later be assigned appropriate values in (4.29) below, but for the time being, we will treat
them as generic constants. For k € Ny, define g, gx: R? — R and fz.1: R — R by

1 a _
u(u,0) 1= argmin {6z, 0) + (- w2}, gu(u,) = SLLD Y (4.23)
z€R 2bk bk

fi (1) 1= argrin {J(z) - %’“ (z + :;)2} (4.24)

Note that since ¢ and J are assumed to be convex in their first arguments, gi(u,v) and fi+1(w) are
well-defined as unique minima of strongly convex functions. The pertinence of this specific choice
of gi, fra1 will become apparent through Proposition 4.4 below and its proof. At this point, it is
helpful to recall that for a convex function M: R — R and n > 0, the associated proximal operator
prox,: R — R is given by

prox,\i(2) := ar;gelﬁin {nM(t) + %(t — 2)2}’ (4.25)

and moreover that prox,,; is always non-decreasing and 1-Lipschitz (cf. Parikh and Boyd, 2013,
Sections 2.3 and 3.1). We see that gi(u,v) = proxg ,..)(u) and fi11(w) = prox_;/ (—w/¢) for
u,v,w € R, o gk, gk, fr+1 are all Lipschitz with constants 1, l_)gl and |¢x| ™! respectively, and hence
weakly differentiable with respect to their first arguments. Writing gy, g5, f;.,; for the corresponding
weak derivatives, we have

[ (w) >0, Gr(u,v) <1 and hence g (u,v) <0 (4.26)
for all u,v,w. If in addition ¢ and J are twice continuously differentiable, then J'(fry1(w)) —
(Ek Sfer1(w) + w) = 0 for each w, so it follows from the implicit function theorem that

/ " ~\—1 - —/ TN -1
Fhanw) = (J(fror(w) — )~ and similarly g (u,v) = (Bt (o (w)) + 1) (4.27)
for all u,v,w, where ¢” denotes the second partial derivative of £ with respect to its first argument.
We will now define a GAMP recursion of the form (4.4) as a precursor to the iteration (4.29) that

will subsequently be used to analyse the statistical properties of the solutions to the optimisation
problem (4.22). Given 57! :=0 € R", a fixed by > 0 and an initialiser 3° € RP, inductively define

0" = X 5" — s, 0" = gu(6",y), k=Tt N g OF v), 8= k(08 ),
/BkJrl = XT§I€ _ ckBk7 BkJrl = karl(/BkJrl)a karl — n*l 1;:1 fllg+1(ﬁj]?+1) (428)
for k € Nyg. Note that §¥ = (§* — 0%) /b, and that if £ and J are convex and twice continuously
differentiable with respect to their first arguments, then (4.27) yields
P

11, I 0(6F y;) 1 1
= —| — 94, i -1 = —— +, b = — .
o= (ot —1) =3 T b= 1S

i=1 j=1
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If the hypotheses of Theorem 4.2 are satisfied by a sequence of recursions (4.28), then the limiting
empirical distributions of the iterates therein are characterised by the associated state evolution pa-
rameters (tk, ok, X = k € N) defined through (4.6)—(4.7). Moreover, With (Z,Zy,) ~ N2(0,%) and

= h(Z £) as in Lemma 4.1 for each fixed k, recall from (4.12) that by — § L E(f{ (1B + 01Gk))

and ¢, — E(gk(Zk,Y)) as n,p — oo with n/p — 6 € (0,00).

Based on this observation, we will define b, and ¢, above to coincide with these limiting values, and
substitute these deterministic quantities for the random by, ¢ in (4.28) to obtain the following modified
recursion. As before, we start with §7! := 0 € R", by > 0, BO € RP, as well as a positive definite
Yo € R?*2 a5 in (G2). Given Bk 51 and by, O for a general k € Ny, we inductively define g, gi as
n (4.23), along with

0 = XB* —bps* 1, 0" := gr(0",y), o = E(g(Zr,Y)), & :=g(6",y),
B = X T8 — g%, B = fa (BMTY), b = 0 E(fl (k1 B+ 0k +1Grp))-
(4.29)

In (4.29), we take (Z,Zy) ~ N2(0,X;) and Y = h(Z,€) as above, and define the state evolution
parameters fig11,0k+1 as in (4.6) based on g, while using ¢ and (4.24) to specify fri1. Finally,
define X1 in terms of fri1, k11, 0k+1 according to (4.7). We emphasise that the functions g, fr+1
are indeed well-defined through (4.23)—(4.24) for all k since by > 0 > ¢ by (4.26) and the fact that
proxy; is non-constant for any convex M: R — R.

The iteration (4.29) has two important features that make it a useful theoretical tool. First, Remark 4.3
ensures that its iterates are characterised by the state evolution parameters (uy, o, X : £ € N) under
the hypotheses of Theorem 4.2. In addition, the following result highlights the significance of (4.29)
as an optimisation procedure for the original constrained problem (4.22).

Proposition 4.4 (Rangan et al., 2016, Theorem 1). In (4.22), suppose that { and J are convez in
their first arguments, and define the associated Lagrangian by

L(B,0,s) := Zz i i) Z J(Bj) +s" (6 - XP) (4.30)

j=1

for B €RP and 0, s € R™. Then the iterates in (4.29) satisfy

R ‘ T G =~ A
B4 = argmin { L(,0%,5%) — 15 - 3|12}, (4.31)
BeRp
R s 1 - R
681 = argmin {L(,Bkﬂ, 0,8") + ——16 — XB’“HHZ}7 (4.32)
Gern 2bg 11
ék—‘rl - X Ak—+1
ghtl — gk 4 (6" - X5 (4.33)
brt1

for k € Ng. Moreover, if (ﬁ*,@*,ﬁj‘,é*,é*) is a fived point of (4.29), then (B*,é*) s a solution to the
optimisation problem (4.22), i.e. B* € argminBeRPC(ﬁ;X, Y).

In fact, the proof we give in Section 6.9 reveals that Proposition 4.4 holds for any choice of deterministic
scalars b, > 0 and ¢ < 0 in the first column of (4.29), provided that these are also used to define
Gk, frt+1. The characterisation in (4.31)—(4.33) shows that the GAMP algorithm (4.29) is closely related
to (but not completely identical to) a ‘linearised’ Alternating Direction Method of Multipliers (ADMM)
procedure (Parikh and Boyd, 2013, Section 4.4.2) for optimising (4.22). Alternating algorithms of
this type are particularly well-suited to handling objective functions of the form (4.30) since each
minimisation step involves only one of J and ¢ (while (4.33) is a dual update step). The forms of the
quadratic penalties in (4.31)—(4.32) ensure that the ‘augmented Lagrangians’ therein are separable,
and hence can be minimised separately in each coordinate of 3 or . This is why BFFL gk+L are
obtained from B**1, 6¥+1 by componentwise applications of fiy1, Jr+1 respectively, whose expressions
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n (4.23)—(4.24) emerge naturally from (4.31)—(4.32). See also Boyd et al. (2011) for an accessible
introduction to ADMM, and Rangan et al. (2016) for further details on the connection between
GAMP and conventional convex optimisation algorithms.

Based on Proposition 4.4 and the reasoning above, we might expect the high-dimensional limiting
behaviour of the estimators 3* € argming p, ([5’ X, y) to be governed by some fixed point of the state
evolution for (4.29) (if it exists). To prove this, we might hope to be able to establish convergence of
both the GAMP iteration (4.29) and its state evolution to their respective fixed points (in the sense
of (4.36) below). We conclude this subsection by setting out a general strategy along these lines. In
Sections 4.5-4.7, we will go on to demonstrate that it unifies existing derivations of high-dimensional
asymptotic results for the Lasso, and M-estimators in the linear model and logistic regression model.

Step 1: For given ¢ and J (and fixed n and p = p,,), find a fixed point of (4.29) together with its state
evolution, satisfying

= XB* — b,§", 0 = 3«0, y), Cy 1= E(g;(Z*,Y)), §% = g.(0",y),
B = XTs" —apr, B =B, be i= 6 E(fL(1ef + 0.GL)).

Here, fs, x, g» are defined in terms of b, > 0, ¢, < 0 as in (4.23)(4.24), with (Z, Z.) ~ N2(0,%,) and
Y = h(Z,&), while G, ~ N(0,1) is independent of 3 ~ 75 and fi., 04, X, fi, gu satisfy (4.6)—(4.7). In
each of the subsequent examples, the system (4.34) reduces to a smaller set of (non-linear) equations.
The existence and uniqueness of a state evolution fixed point usually needs to be verified on a case-
by-case basis, and may depend on the values of parameters such as the limiting sampling ratio  and
the asymptotic signal strength E(3%)/§ (the variance of Z above).

(4.34)

Step 2: If Step 1 yields suitable fi, gx, gx, b«, G, then consider the following ‘stationary’ version
of (4.29) for each n and p = py:

k = XBk - B*gk—l, ék = g*(gkvy)’ ‘§k = g*(ek,y)v

gl = xTgh _ g jk BEHL . £ (B8R, (4.35)

Henceforth, we will use (4.35) as a theoretical device rather than as a practical algorithm, which gives
us the flexibility to initialise it with $~' = 0 € R” and an ‘oracle’ B0 = fe(uep + 04&) € RP, where
& ~ N,(0,I,) is independent of the signal 3 € RP. This is a convenient choice because it ensures that
Yo = X, and hence that the state evolution for (4.35) is stationary, i.e. pup = s, 0 = 0, and Xy = 3,
for all £ € N. In addition, as n,p — oo with n/p — § under (G1), the ds limit of the empirical
distribution of the entries of BO is the distribution of fi(u B + 0.Gy) by construction, and under the
hypotheses of Theorem 4.2, this is also true of Bk for each fized k € N by Remark 4.3. The remaining
technical challenge to establish the same distributional limit for the fixed point 3*, which solves the
optimisation problem (4.22) by Proposition 4.4.

Step 3: Show that the estimates 8* in (4.35) converge to B € argminEeRPC(B;X, y) in the sense

that
: _|18E - B2
lim c-lim ————

k—o00 p—00 p

= 0. (4.36)

In the examples in Sections 4.5—4.7, this is achieved by first establishing a ‘Cauchy property’

S+l Ak||2
c-lim u =0, c-lim
pP—00 D n—00 n

kil 2
Hsk+1 kH

for each k (using the limiting covariance structure mentioned after Theorem 4.2), and then proving
that for large k and p, the original convex cost function 5 — C(f5; X, y) is approximately minimised
by (¥ in the following sense: if 4% € R? belongs to the subgradient of C(-; X, ) at 5* for k € N and
p = py, then
~ k|12
lim clim 1 . (4.37)

k—oo p—co D
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If C(-; X, y) is strongly convex (on a subset of its domain that contains Bk, B*) with high probability,
then the desired conclusion (4.36) follows readily from (4.37) and the basic inequality C(5*; X,y) <
C(B*; X,y); see (98)-(100) in Donoho and Montanari (2016). Otherwise (as in the case of the Lasso
in Section 4.5), further work must be done to show that in a random design setting, it is vanishingly
unlikely that ||5*||, is small but ||5* — B*HP is large (cf. Bayati and Montanari, 2012, Theorem 1.8 and
Lemma 3.1).

4.5 AMP for the Lasso

In high-dimensional linear models y = X3 + €, the Lasso (Tibshirani, 1996) is a popular method for
obtaining sparse estimates of S € RP via fi-penalised least squares. Given X € R™P, ¢y € R™ and a
regularisation parameter A > 0, the Lasso estimator is defined by

R (1 . .
% € angmin {51y = XBI -+ A3l . (438)
BERP

In the random design setting of (GO) and (G1), Bayati and Montanari (2012) derived an exact ex-
pression (4.46) for the asymptotic estimation error of BYA as n,p — 0o with n/p — 0 € (0,00). By
following the GAMP recipe in Section 4.4, we will show how to design and calibrate an AMP iteration
that is central to the proof of their main result (Theorem 4.5 below).

To begin with, note that 3* solves a convex optimisation problem of the form (4.22) with £: (u,v) —
(u—v)%/2 and J: x + Mz|. For k € Ny, the corresponding gi, g, fx+1 in (4.23)—(4.24) are given by

u+6kv V— U
7 gk(fuﬂv):i_a

(u, v) = frar(w) = —STy s, <—w> - —STA(M), (4.39)

Ck Ck

where as in Section 3.3, we denote by ST; the soft-thresholding function w — sgn(w)(|w| — t)+ for
t > 0. Given 7~ =0 € R", by = by > 0 and 3° € RP, the resulting GAMP algorithm (4.29) can be
succinctly written as

Ph =y — XBF bt B =8T, (XTAR 4 BE) for ke N, (4.40)

where 7% := y — §%. Observe that (4.40) is (asymptotically equivalent to) an instance of the AMP
recursion (4.19) in Section 4.3 for the linear model, whose state evolution formula is given by (4.20),
with p, = 1 for all k. By (4.29) and (4.39), the deterministic scalars by, := by/(1 + by_1) > 0 and
the1 = A1+ bg) = —A/é > 0 in (4.40) are related to each other and the state evolution parameters
013 via

B E(ST;k(B—l—Uka)) P(’B—i—Uka‘ >tk)

ol =0 +E((Z - Zo)%), t1=A(1+b), b, = ; = 5 ,
—_ —_ 2 —_
E{ (B — STy, (B + 04xG N e P(|8 + 01Gr| > t
ok, =02+ {8 t’“(f 7G)) }, toe1 = A+ bty = A+ — (15 (;’“ o > 1) (4.41)

for k € N. Here,  ~ 75 and Gy ~ N(0,1) are independent, (Z, Zy) ~ N2(0, ), and 02 > 0 is the
second moment of Ps.

Proceeding as in Step 1 in Section 4.4, we now seek a fixed point (7, B, by, 0y by > 0) of (4.40)—(4.41)
satisfying

te — A

R A X ] (122
E{( - ST, (B + 0.G.))* B+ 0G| > 1)\
gty AOZSIOr 0 @IN] -y (1 PEReGlZt) T )
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where 3 ~ 75 and G, ~ N(0,1) are independent. Noting that the condition (4.42) simplifies to
B* = ST,. (B* +EATIX T (y — XB*)), we can either apply Proposition 4.4 or verify the Karush-Kuhn—
Tucker (KKT) conditions directly to deduce that 3* is a Lasso solution satisfying (4.38).

The next task is to show that for any A > 0 in (4.38) and §,0 > 0, there exist unique solutions
0« = 0x(A\,0,0) > 0 and t, = t.(\,0,0) to the non-linear equations in (4.43). To this end, Bayati and
Montanari (2012, Proposition 1.3) first verified that for fixed o > 0, there is a unique 6o = 74(0,0)
satisfying
E{ (B — STas. (B+5aG))"}

0

Qe
SN
N

provided that
v(a) = (1+a%)®(-a) - ag(a) < 7,

where ¢ and ® denote the standard Gaussian density and distribution functions respectively. Since
v: R — R is a strictly decreasing continuous function with range (0, 00), (4.44) holds for all positive
a > v71(§/2). In addition, some elementary calculus shows that for some ag = (6, 0) > v1(5/2),
the map

(4.44)

]

is a continuous bijection from (g, o0) to (0,00) (Bayati and Montanari, 2012, Proposition 1.4 and
Corollary 1.7), so that for any A > 0, there is a unique ay = (A, 9,0) > ag such that A = As (o).
It follows from this that o, = 7, and t, = a.o, are the unique solutions to (4.43).

= Agﬂ(a) = ad, (1 . P(|8 + 6aGx| > Oéda)>

For n € N and p = p,,, the resulting ‘stationary’ AMP iteration (4.35) in Step 2 in Section 4.4 takes
the form R ) ) )
=y — XBE b AR = ST, (XTAR 4 BF) for ke Ny, (4.45)

where 771 =0 € R?, b, = 6 ' P(|B + 0.G.| > t.), and 30 = STy, (8 + 0.£) € R? is an oracle initialiser
with £ ~ N, (0, I,) taken to be independent of the signal 5 € RP. Under the hypotheses of Theorem 4.2,
it follows from Remark 4.3 and (4.15) that for each fixed £ € Ny, the empirical distribution of the
entries of g% = ¥ (n) converges completely in d to the distribution of STy, (3 + 0.G%) as n,p — 00
with n/p — 0.

Theorem 4.5 below asserts that the same asymptotic conclusion holds for the fixed point B* of (4.45),
which is a Lasso solution by virtue of (4.42). The additional technical challenge in its proof is to show
that the AMP iterates % in (4.45) actually converge to a fixed point in the sense of (4.36), when we
take n,p — oo followed by k — oo (Bayati and Montanari, 2012, Theorem 1.8)." This constitutes Step
3 in Section 4.4, and as mentioned there, the arguments involved turn out to be highly non-trivial in
this case because the Lasso objective function in (4.38) is not strongly convex.

Theorem 4.5 (Bayati and Montanari, 2012, Theorem 1.5). Consider a sequence of linear models
y = X B+ ¢ satisfying (GO) and (G1) forr =2 asn,p — oo with n/p — 6 € (0,00). Suppose that the
limiting prior distribution 73 satisfies WB({O}) > 0, so that an asymptotically non-vanishing proportion
of the entries of 8 € RP are equal to 0. For A > 0, let BL’)‘ € RP be a Lasso estimator (4.38) for each
D= pn, and let o = 04(N,0,0) > 0 and t« = t«(\,d,0) > 0 be the unique solutions to (4.43). Then

) P(B, B)) — E{yp(STe. (B +0.G), B) } 50 (4.46)

M._l’@

sup
YePL2(2,1)

"Bayati and Montanari (2012) originally established this result for a AMP recursion (4.40) initialised with 5° = 0,
in which the thresholds are defined instead by tx+1 = asok+1 in (4.41) with a. = (A, d,0) as above, and the state
evolution sequence (o) is non-constant but converges to o.. Their analysis yields the same conclusion for (4.45), and
also shows that (4.48) holds even though %: (u,v) — L{ux0} is discontinuous.
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asn,p — oo withn/p — &, where B ~ 75 is independent of G ~ N(0,1). In particular, the asymptotic
mean squared error of the Lasso estimator is given by

.
i I =B _ e

p—0o0 p

B—ST:.(B+0.())°} = 8(c2 — 0?). (4.47)

We emphasise once again the complex, non-linear dependence of o, in (4.46) on the asymptotic
sparsity level m5({0}) and A,d,0 > 0 through (4.43), and also the fact the asymptotic guarantees
of Theorem 4.5 hold for a fized value of the regularisation parameter A > 0. Mousavi et al. (2018)
showed that the asymptotic mean squared error of S in (4.47) is a quasi-convex function of A (i.e.
decreasing on (0, \*] and increasing on [\*, 00) for some \* > 0), and moreover that

] BL,)\ 1 P B _ -
c-lim | lo = c¢-lim — Z ]]_{B;,/\#O} =P(STt, (B + 0.Gy) # 0) =P(|B + 0.G.| > t.) = 6bi(A, 6,0)

p—o0 p p—00 p J—l

(4.48)
is a decreasing function of A, as might be intuitively expected.

When the Lasso is used to perform variable selection (possibly with an adaptive choice of \), Su et al.
(2017) established a tradeoff between the false discovery proportion and false negative proportion
along the regularisation path A — B%* in the high-dimensional asymptotic regime above. To this
end, by extending the results of Bayati and Montanari (2012), they proved that these two quantities
converge uniformly to deterministic limits over A € [Amin, Amax], for any 0 < Apin < Amax-

Li and Wei (2021) derived precise asymptotics in the over-parametrised regime p < n for the minimum
01 norm interpolator
U= argmin B,
BERP, y=Xf3

which corresponds to taking the limit A \, 0 in the Lasso problem. To achieve this, they extended
the existing machinery outlined above to sequences of AMP iterations for Lasso estimators with
decreasing values of the regularisation parameter A\ = A, \, 0. Their analysis reveals that in the
regime n/p — § < 1, the asymptotic generalisation error of Blnt can exhibit several phases of descent
and ascent as § decreases (i.e. as the model complexity increases). This intriguing multiple descent
behaviour of the generalisation risk curve has been observed empirically for a variety of popular
procedures in statistics and machine learning, including random forests and neural networks (e.g.
Belkin et al., 2019; Geiger et al., 2019; Advani et al., 2020; Nakkiran et al., 2021). The theoretical
study of this phenomenon is a very active area of current research (e.g. Bartlett et al., 2020; Belkin
et al., 2020; d’Ascoli et al., 2020; Liang and Rakhlin, 2020; Mei and Montanari, 2020; Hastie et al.,
2022); see Dar et al. (2021) for a survey of recent developments.

Remark 4.6. The SLOPE estimator (Bogdan et al., 2015; Su and Candeés, 2016; Bellec et al., 2018)
is a generalisation of the Lasso that solves a regularised least squares problem in which the penalty is
a sorted ¢1 norm: for A\ > Ao > --- > X, > 0, define

P
BSLOPE(N, ., Ap) € argmin {1||y — X812+ Z )\j|ﬁ~’(j)}, (4.49)
ferr \2 j=1

where |3 Iy > | 3 l2) =+ > E; () are the absolute values of the entries of 3 arranged in decreasing
order. This is a convex optimisation problem that produces sparse solutions like the Lasso, but offers
more flexibility due to the choices available for A1, ..., \,. For example, SLOPE can be used to control
the false discovery rate in variable selection via a judicious choice of these regularisation parameters.
Note however that when the \; are distinct, the optimisation problem (4.49) is not of the form (4.22)
since the SLOPE penalty is not an additively separable function of the components of 8. Consequently,
the GAMP construction (4.29) in Section 4.4 is not applicable to this setting.

Nevertheless, Bu et al. (2021) show that an appropriately tuned AMP algorithm converges to the
SLOPE solution in the sense of (4.36), under assumptions similar to those for Theorem 4.5. This
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AMP iteration for SLOPE is somewhat similar to that for the Lasso, the main difference being that
the soft-thresholding function in (4.40) is replaced by the proximal operator associated with the SLOPE
penalty. This proximal operator is non-separable (i.e. does not act componentwise on its vector input),
which is why the analysis is based on master theorems recently obtained by Berthier et al. (2020) for
AMP recursions with non-separable denoising functions.

4.6 AMP for M-estimation in the linear model

Consider again the linear model y = X + ¢ from Section 4.3, and define an M-estimator of g € R?
by

n
M e argminz M(y; — z; B) (4.50)
BeRP =1

for some convex M: R — R that is bounded below. The existence of ﬁM is guaranteed if for example

M is strongly convex. Ifeq,..., ¢, g f= for some known (strictly positive log-concave) density fz, then
taking M = —log fz in (4.50) yields a maximum likelihood estimator of 3; see Diimbgen et al. (2011,
Section 3) for a maximum likelihood approach to estimating § when fz is unknown. Other popular
choices of M include squared error loss w — w?, Huber loss w — w?1yj,<p} + (2/w| — B)Bl{jy>p5)
(for robust regression) with B > 0, and quantile loss w + 7w — 1,0y (for quantile regression)
with 7 € (0,1). In a classical setting where the dimension p is fixed, x1,..., 2, id Px on RP and

€1,-..,En i P: on R for all n, Huber (1964, 1973) proved that

A M')? dP: -1
V(M - B) 4 Ny(0,=M) asn — oo, with ¥M:.= (j};(l\/l”)dﬂf (/Rp o dPX> ,  (4.51)

under appropriate regularity conditions on M and the score function S := M’; see also Huber and
Ronchetti (2009) and van der Vaart (1998, Example 5.28). When ¢ ~ P: has a differentiable density
fz, it follows from the Cauchy—Schwarz inequality that the variance functional

V(o) o ECEOY) 002, w2
OE(EE)” (pMdr)’

that appears in (4.51) is bounded below by the Fisher information I(P:) := [, (fL/ f2)? dP-, with

equality when M = —log fz (in which case the maximum likelihood estimator M s asymptotically
efficient).

In contrast to (4.51), Donoho and Montanari (2016) showed that the M-estimator M suffers from
variance inflation (and cannot be asymptotically efficient) in high-dimensional regimes where n, p — oo
with n/p — § € (1,00). AMP machinery plays a pivotal role in the analysis that leads to their main
result (stated as Theorem 4.7 below), and as in Section 4.5, we will now present the main steps within
the context of the GAMP framework of Sections 4.1 and 4.4.

Observing that the convex optimisation problem in (4.50) is an instance of (4.22) with ¢: (u,v) —
M(u—wv) and J = 0 (i.e. no penalty term), we first write down an associated GAMP algorithm (4.53)
based on the general construction in Section 4.4. For n > 0, define a ‘smoothed’ version of nM by

My () = min {M(0) + 5 (¢~ 2)°)
for z € R. (The function 7~'M, is called a Moreau envelope of M.) We note here that prox,;(z)
in (4.25) is the unique ¢ that achieves this minimum for each z € R, and also that M, is convex
and differentiable with S,(z) := (M;)'(2) = z — prox,(2) for all z; see for example Rockafellar
(1997, Theorem 31.5) and Parikh and Boyd (2013, Section 3.2). Moreover, S, is non-decreasing and
1-Lipschitz (cf. Parikh and Boyd, 2013, Sections 2.3 and 3.1).
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For k € Ny, the functions gg, gk, fr+1 in (4.23)—(4.24) are given by

Sgk(v —u) w

Jeri(w) = ——.

i (1,) = v = proxg (v —w) = ut S5, (0 —w), gelu) = e >

Given by > 0, 3% € R? and 70 := Yy — X°, we now write the GAMP algorithm (4.29) in terms of

#k =y — 0% and BFH! = fre1(BFTY = —F+1 /6, and obtain the recursion
. &b . . b
B+l — % XSy (PF) + BF, =y xR % Sp, (#F)  for k € No, (4.53)
k k
where by 1 = —1/(6¢). Moreover, expressing the state evolution recursion (4.6)—(4.7) for (4.29) in

terms of fiy := Sbpuy, 6 = Obyoy and 73, = E((Z — Zk)2)1/2 with (Z,Z;) ~ N(0,%), we have
70 =E((Z — Z)?)"/* and

fu1 = SE(Sy, (5 +7Gr)), Gip1 = 02 E(S;, (£ + mGr)?),
. 1 by o BBk — 1> + 6744 (4.54)
bk+1 = —— = = ) Tk+1 =

o¢y, 5E(85k (8 + Tka)) )

for k € Ng, where € ~ P; is independent of G}, ~ N(0,1).

Turning now to Step 1 in Section 4.4, we seek a fixed point (7*, B* . b, > 0, [y Ox, Tx) OF (4.53)—(4.54)
satisfying

0=0X"S; (), Pt =y — XB*+ S, (7), (4.55)
i =0E(S; 6+ 7G.) =1, 12=0E(S,.(+7G.)?), 6. =Vor, (4.56)

where & ~ P- is independent of Gy ~ N(0,1), and p. = fix/(6bs) and o, = ./ (0bs) are fixed points
of the original state evolution equation (4.6). By Proposition 4.4, 8* solves the M-estimation problem
in (4.50). Assuming that

M is continuously differentiable and S = M’ is absolutely continuous with sup S'(w) < oo, (4.57)
weR

Donoho and Montanari (2016, Lemma 6.5) showed that for any 7 > 0, the map b — E(S}(+7G.)) =:
F.(b) is continuous on (0,00) with limy,o Fr(b) = 0 and limy_,o, F7(b) = 1, and hence that there
exists b = b, > 0 satisfying E(S} (¢ + 7G.)) :_5_1 for 6 € (1,00). Using this, they deduced that

under (4.57), there exists a unique solution (74, bs) to (4.56) for any such § (Donoho and Montanari,
2016, Corollary 4.4).

The functions f., g, in Step 2 in Section 4.4 are given by f.: w — db,w and g, : (u,v) = S, (v—u)/l_)*,
so for n € N and p = p,, the ‘stationary’ AMP iteration (4.35) can be written as

B =X TSy (7R 4 BF, i =y — XML LS (7%)  for ke N, (4.58)

Here, 79 = y — X% and 3° = B+6.& = fulpef+04E) € RP, where £ ~ Np(0, 1) is independent of the
signal # € RP. This choice of oracle initialiser ensures that the corresponding state evolution sequence
is stationary with 7, = 7 for all k¥ € Ny. Then under the conditions (GO)—(G5) of Theorem 4.2 with
r = 2, it follows from Remark 4.3 and (4.10) that for each fixed k € N, the empirical distributions
of the components of #* — ¢ € R™ and Bk — B € RP converge completely in ds to N(0,72) and
N(0,52) = N(0,072) respectively as n,p — oo with n/p — 6 € (1, 00).

We remark that this result can in fact be derived by directly transforming (4.58) into an abstract
asymmetric AMP iteration of the form (2.10). Note in particular that since h(z,v) = z+v in (4.1) for
the linear model and S,, is 1-Lipschitz for all > 0, the function g, = G.: (z,u,v) — Sj_(z 4+ v —u) /by
in (G4) is indeed Lipschitz.
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As in Section 4.5, the remaining ingredient (Step 3 in Section 4.4) is to show that the iterates
Bk in (4.58) converge in the sense of (4.36) to some 3* satisfying (4.55), which is an M-estimator
by Proposition 4.4. Under (4.57) and the additional assumption that M is strongly convex, i.e.
infy,er S'(w) > 0, the conclusion of Donoho and Montanari (2016, Theorem 4.1) is indeed that

Ak Ax(|12
lim c-lim 7"/8 Bl =

k—o00 p—00 p

0. (4.59)

Together with the state evolution characterisation of the iterates in (4.58), this leads to the following
characterisation of the asymptotic performance of the M-estimator.

Theorem 4.7 (Donoho and Montanari, 2016, Theorem 4.2). Consider a sequence of linear models
y = X + ¢ satisfying (GO) and (G1), with n/p — 6 € (1,00) as n,p — oo. Assume that the loss
function M is continuously differentiable, and that the score function S = M’ is absolutely continuous

with 0 < inf,er S’ (w) < sup,er S'(w) < co. Let (4, by) be the unique fized point of (4.56). Then

sup
$EPLy(2,1)

I s _

5 2 V(B = 81, B)) — E(u(VonG. B))| = 0 (4.60)
j=1

as n,p — oo with n/p — &, where G ~ N(0,1). In particular, the asymptotic mean squared error of

M is given by

E 87 3 *GQ 2
G +mCF) _mfo_ 5 (4.61)

BN =B e - _

c-lim ———— =V (S; ;e + .G) = 5= T

poop E(S, (e+7G)° 1/0

Under condition (G1) on the signal vectors § € RP, Theorem 4.7 provides the limiting joint empirical
distribution of the entries of M, 3 € RP. It turns out that even in the absence of (G1), we have

p

sup |23 0B - B) — E(u(Vor.G))| 5 0,

$ePL1(2,1) |P =1

as evidenced by the fact that 3 does not appear in the state evolution recursion (4.56). Comparing
the variance functional V(S; ;& 4+ 7.G) in (4.61) with that in the classical setting, namely V(S;é&)
in (4.52), we emphasise the following points of difference. First, the asymptotic variance in the high-
dimensional setting depends on Sy = M;—)*, the score function of a regularised version of M (rather

than M itself). In addition, the ‘effective noise’ in the high-dimensional regime is & + 7,.G, rather than
. In fact, Donoho and Montanari (2016, Corollary 4.3) showed that

1 1
1—571 I(Pg)’

V(S e+ 1.G) > (4.62)

where I(P.)~! is the classical lower bound. This shows that the M-estimator is inefficient in high
dimensions, particularly so when ¢ is close to 1.

We also mention that Donoho and Montanari (2015, Theorem 2.2) extended the conclusion (4.60) to
M-estimators defined with respect to the Huber loss function, which is not strongly convex on R and
hence is not covered by Theorem 4.7. Donoho and Montanari (2016, Section 6) noted an interesting
connection between the Lasso and Huber M-estimators, as a special case (J: w — A|w]|) of a duality
relationship between the following optimisation problems:

(i) The regularised least squares problem
1 o P . .
minimise 5”17 — XB)1* + Z J(B;) over feR"
j=1
based on X € R(™=P)*" and i € R" P, with convex penalty J: R — R;
(ii) The unpenalised M-estimation problem (4.50) based on X € R™ ?, y € R" satisfying XX = 0

and 7 = Xy, with convex loss function M: w — min,cg {J(2) + (z — w)2/2}.
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4.7 GAMP for logistic regression

To further illustrate the generality and utility of the GAMP framework, we will now demonstrate how
it can be applied to a popular non-linear GLM, namely the logistic regression model with canonical
logit link. Suppose that we observe (x1,y1), ..., (Tn,yn) € RP x {0,1} with

o
i B

Plyi =112/ 6) = - T =] B). where ((2) = log(1 +¢°) (4.63)
+e%i

for 1 <14 < n. Equivalently, we may view this as an instance of the model (4.1) with ey, ... e en Ulo,1]

and h(z,v) = Ly,<¢r(z)}, 80 that y; = h(xg—ﬁ,ai) =1, <oy for each 7, and seek to estlmate B eRP
by maximum likelihood via '

BMLE ¢ a{gminz {C(mjﬁ) — ylzz:;rﬁ}, (4.64)

BERP ;=1

where the objective function in (4.64) is the negative log-likelihood. Albert and Anderson (1984)
showed that this MLE exists if and only if Xy := {z; : 1 < i < mn,y; = 0} and A} = {z; : 1 <
i <mn,y; = 1} are not (strongly) linearly separable, i.e. for any B # 0, there either exists z;, € &p
with x%ﬁ > 0 or z;; € &) with xl@ < 0. In the random design setting of (G0) where z1,...,z, i
Ny(0, I,/n) for each n and p = p,,, Candes and Sur (2020) established a sharp phase transition for the
existence of BMLE. Specifically, they proved that there exists a decreasing function sypg: (0,00) —
[0,00) with the following property: if the signals 3 € RP are such that n=%2||8| = rk € (0,00) as
n,p — oo with n/p — & € (1,00), then SMLE exists with probability tending to 0 if £ > sype(1/0),
and exists with probability tending to 1 if k < syLp(1/9).

Henceforth, we will restrict attention to the latter regime, and use the GAMP formalism in Sections 4.1
and 4.4 to explain how to derive a result of Sur and Candes (2019a,b) on the high-dimensional asymp-
totics of BMLE, which is formally stated as Theorem 4.8 below. Recall from (4.5) that for a sequence of
logistic regression models (4.63) satisfying (G1), the asymptotic signal strength x? = c-lim,, oo ||3]|%/n
is equal to E(32) /6. Noting that SMLF in (4.64) solves a convex optimisation problem of the form (4.22)
with J = 0 and £(u,v) = ((u) — vu, we see that the functions g, gi, fr+1 in (4.23)—(4.24) are given by

gx(u,v) = prokaC(u +bpv) = u + brv — l_)k('(proxl;kc(u + Ekv)),
w

gk (u,v) = v — ¢’ (proxg, - (u + brv)), frr1(w) = —— (4.65)

Ck

for k € Ny, since b¢’(prox,(u)) + prox,:(u) —u = 0 by the definition of prox,. in (4.25) for b > 0.

Given by > 0, 4% € R? and 6° := X3°, the GAMP recursion (4.29) therefore takes the form

~ - A 5 3
/Bk‘—i-l — 5bk+1XT{y — CI(pI'OXBkc(Hk + bky))} + %Bk’
gr+l — X[g’k+1 _ 5k+1{y — C’ (prokaC(Qk + Bk?/))}

for k € Ng, where by, = —1/(6¢;). Using (4.9) from Lemma 4.1, as well as (4.27), we now write the
corresponding state evolution recursion (4.6)—(4.7) for (4.66) in terms of fig := by uy and &y := dbyoy.
This yields

(4.66)

by 1 -1
b 1—-F
k1 = (5 ( { 1+ bk;C//(pI'OkaC Zk; + ka ) }) ’
8% .
ik = o IE(Z{Y ¢! (prox;, ¢ (Z + biY) )}) + i, (4.67)

Tieyr = 02D E({Y = ¢ (proxg, o (Zk + bxY) }2)
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for k € Ny, where given independent Z ~ N (0,E(52)/6), Gy ~ N(0,1) and & ~ P, we set
Y =W(Z.8) =1i<o(z)y  Zk = hznZ + 0z5Gre = finZ + 6 6,Gy

in view of (4.63), (4.8) and the definition of fri1 in (4.65). Sur and Candes (2019b, Section 3.1)
showed that (4.67) is equivalent to the original state evolution recursion they defined in Sur and
Candes (2019a, Section 4.1).

In accordance with Step 1 in Section 4.4, we seek a fixed point (B*, 0%, fix, G4, by > 0) of (4.66)—(4.67)
satisfying

XB — b, {y ¢ (proxb C (0% + byy) )} 0= XT{y ¢ (proxb 4(0* +l;*y))}, (4.68)
52 = 525315({1/ ¢! (proxs. ¢ (Z. +b.Y)) } ). 0=E(2{y - ((prox (Z. +B.Y)) }), (4.69)

1 1
b=k { 1+ b.¢" (proxg, ¢ (Z« + b.Y)) } (4.70)

where Z, = ji.Z + 6 /?6,G, with Z ~ N(0,E(5?)/6) independent of G, ~ N(0,1). It turns
out that there exists a unique solution (fis, &+, bs > 0) to (4.69)—(4.70) precisely when E(3%)/6 =
k2 < smre(1/6)? (Sur and Candes, 2019b, Lemma 7 and Remark 1), in which case MU exists with
probability tending to 1. By Proposition 4.4, 3* in (4.68) is an MLE for 8 in the logistic regression
model.

Proceeding as in Step 2 in Section 4.4, we can use the fixed points in (4.68)—(4.70) to construct a
stationary version of (4.66) based on f,: w — dbyw and gs: (u,v) — v—’ (prox,;*c(u+13*v)). For each
neNand p=p,, let 30 := 1,845, = f«(psB+04&) € RP be an oracle initialiser with £ ~ N, (0, I,,)
taken to be independent of the signal 8 € RP. Then setting 8° = X 3°, we inductively define

BkH = 51_)*XT{y—C’ (prox5*4(0k+l_)*y)) }+Bk, gr+l — XBk—l_)*{y—(’(proxl;*c(ﬁk—l—l_)*y))} (4.71)

for k € Ny. By the choice of BO above, the associated state evolution recursion (4.67) is stationary, i.e.
it = [« and o = 7, for all k € Ny. Consequently, under the hypotheses of Theorem 4.2 with r = 2,
it follows from Remark 4.3 that for each fixed k € N, the joint empirical distribution of the entries of
Bk, 3 € RP converges completely in do to the distribution of (fi«3+&.G, 3) as n,p — oo with n/p — 6,
where /3 ~ 75 is independent of G ~ N(0,1). On a technical note, we remark that the function

2 (2,0) 5 000, h(2, ) = Lo — € (bros, (-4 Bull o)

in (G4) is not Lipschitz since h: (z,v) = 1g,<¢(z)} is not continuous, so an additional approximation
argument is needed to formally justify the application of Theorem 4.2.

Finally, we discuss Step 3 in Section 4.4, whose aim is to show that the iterates in (4.71) converge in
the sense of (4.36) to a fixed point 3* = SMLF satisfying (4.68). This is the content of Sur and Candes
(2019b, Theorem 7), and follows from similar arguments to those used by Donoho and Montanari
(2016) to prove (4.59) for the M-estimators in Section 4.6. An additional technical obstacle in this
setting is that ¢: z — log(1 + €*) and hence the negative log-likelihood function in (4.64) are strongly
convex on compact sets but not on the entirety of their domains. One way to address this issue
is to show that 3%, AMLE are contained in some sufficiently large FEuclidean ball with overwhelming
probability. Indeed, it follows from the state evolution characterisation of (4.71) that [|3%||2/p = O.(1)
for each fixed k; in addition, Sur and Candes (2019b, Theorem 4) established the boundedness property
|BMEE|2 /p = O,(1) in the regime & < syre(1/0) where SMEE exists with probability tending to 1.

Theorem 4.8 (Sur and Candes, 2019a, Theorem 2). Consider a sequence of logistic regression mod-
els (4.63) satisfying (GO) and (G1) for r = 2 as n,p — oo with n/p — 0 € (1,00). Assume that
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E(5%)/6 = k% < smre(1/6)2, so that (4.64) defines a mazimum likelihood estimator BMLE wyith proba-
bility tending to 1, and there exist fix, 04, by satisfying (4.69)—(4.70). Then

p
Z B = B By) — E((6.G, B)) | 5 0

=1

sup
pePL2(2,1)

as n,p — oo with n/p — &, where G ~ N(0,1) is independent of 3 ~ m5. In particular,

[a—y

3
’B

. AMLE 1L AMLE < 52 IBMEE — 8|12 . 2 A2\ | <2
=D (B - fB)) S 72 BYLE _ i.3;)% 5 62, e R CO R

— et
Thus, for large p, the components of BMLE € R? have approximately the same empirical distribution as
those of fi.8 + 7.& (the oracle initialiser A0 in (4.71) above), so we can interpret fi, as an asymptotic
bias factor and 62 as a limiting variance. Sur and Candes (2019a) observe empirically that when
n,p — oo with 6 € (1,00), both the limiting bias and variance are larger than they would be in
classical settings where p is fixed or grows sufficiently slowly with n (in which case BMLE would be
asymptotically unbiased (with fi, = 1) and asymptotically efficient as n — oo). Their Figure 7
illustrates that this high-dimensional phenomenon becomes increasingly pronounced when either § is
reduced or « is enlarged; in fact, when x approaches the critical value sypg(1/9) for the existence of
BMLE, the value of fi, diverges to infinity, as does the ratio between &, and the Cramér—Rao lower

bound.

It is instructive to compare the high-dimensional asymptotic performance of BMLE in the logistic

model with that of the M-estimator (4.50) in the linear model. Note that while both estimators
exhibit variance inflation (as quantified by Theorems 4.7 and 4.8), only the former suffers from bias
inflation. Indeed, in the linear model, the AMP state evolution recursion (4.56) yields uj = 1 for all
k, and hence p, = 1 (implicitly) in Theorem 4.7 for the M-estimator; see also (4.20) in Section 4.3.

5 Conclusions and extensions

With the abstract AMP recursions in Section 2 as our starting point, we have shown how to design
and analyse AMP algorithms for estimating structured signals, both in low-rank spiked models with
Gaussian noise matrices and in GLMs with Gaussian design matrices. In high-dimensional asymptotic
regimes where the matrix dimensions scale proportionally to each other, we have illustrated how
to apply the abstract master theorems to derive precise state evolution characterisations of AMP
estimation performance, which we have stated as complete convergence guarantees.

In Section 4, we have presented a general recipe that uses AMP systematically to obtain exact ex-
pressions for the asymptotic error of penalised and unpenalised M-estimators in GLMs with Gaussian
design matrices. An alternative approach to deriving such guarantees is via Gaussian comparison
inequalities and the convex Gaussian min-max theorem (CGMT) (Thrampoulidis et al., 2015). These
techniques have recently been used to analyse the performance of regularised M-estimators (Thram-
poulidis et al., 2018), the Lasso (Miolane and Montanari, 2021), boosting (Liang and Sur, 2022) and
convex-constrained least squares estimators (Han, 2022), as well as to elucidate the so-called ‘double
descent’ phenomenon in over-parametrised binary classification models (Deng et al., 2019; Kini and
Thrampoulidis, 2020).

Remaining within the realm of Gaussian matrices, we mention that the results in this monograph can
be extended to AMP recursions with (i) non-separable denoising functions that do not act componen-
twise on their vector arguments, and can therefore take advantage of correlation between entries of
the signal (Ma et al., 2019; Berthier et al., 2020); (ii) matrices with independent entries and a block-
wise variance structure (Javanmard and Montanari, 2013). With a carefully chosen variance structure
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(‘spatial coupling’), AMP has been shown to achieve the information-theoretic limit for compressed
sensing (Donoho et al., 2013).

In the setting of AMP for asymmetric matrices in Section 2.2, the results of Theorem 2.5 can be
generalised to matrices with i.i.d. sub-Gaussian entries with mild additional assumptions (Bayati et al.,
2015; Chen and Lam, 2021). It is likely that the proof strategies in these papers can be developed
further to extend other theoretical results (such as Theorem 4.2 for GAMP) to these more general
random matrix ensembles.

When the data matrix does not have i.i.d. Gaussian entries, AMP is not guaranteed to converge, and
in fact can even diverge in sometimes pathological ways; see Rangan et al. (2019a) for a discussion of
this issue. For this reason, a number of other AMP-based algorithms have been introduced that allow
for this assumption to be weakened in various ways, such as Vector AMP (VAMP) (Rangan et al.,
2019b), orthogonal AMP (OAMP) (Ma and Ping, 2017; Takeuchi, 2020) and other generalisations of
AMP for rotationally invariant matrices (Opper et al., 2016; Fan, 2022).

Vector AMP (VAMP) is an iterative algorithm (based on Expectation Propagation) for estimation
in rotationally invariant linear models (Rangan et al., 2019b; Takeuchi, 2020, 2021b) and generalised
linear models (Schniter et al., 2016; Pandit et al., 2020). Rangan et al. (2019b) and Pandit et al.
(2020) showed that the asymptotic estimation error of VAMP (with optimal denoising functions)
coincides with the statistical physics-based prediction for the Bayes-optimal error whenever the state
evolution recursion has a unique fixed point. Orthogonal AMP (Ma and Ping, 2017; Takeuchi, 2020)
is an algorithm that is equivalent to VAMP for estimation in rotationally invariant linear models.
Recently, Ma et al. (2021) studied the performance of Expectation Propagation (an algorithm closely
related to VAMP) for rotationally invariant GLMs, and analysed the impact of the spectrum on
the estimation performance. VAMP has also been used to obtain the asymptotic risk of convex-
penalized estimators for rotationally invariant GLMs (Gerbelot et al., 2020a,b). A few lower complexity
alternatives to VAMP have also been proposed, including convolutional AMP (Takeuchi, 2021a),
Memory AMP for linear models (Liu et al., 2021), and Generalised Memory AMP for GLMs (Tian et
al., 2021).

Fan (2022) and Zhong et al. (2021) provide a master theorem for an abstract AMP recursion defined
via a rotationally invariant random matrix. Compared with the original Gaussian setting of Section 2,
AMP recursions with general rotationally invariant random matrices have two key differences, as seen
in (3.38): (i) the presence of multiple memory terms, accounting for all the preceding iterates, and
(ii) thresholding functions that act on all the preceding iterates rather than just the current one.
The abstract AMP recursion of Fan (2022) and Zhong et al. (2021) has been used to derive AMP
algorithms with state evolution guarantees for low-rank matrix estimation with rotationally invariant
noise (Opper et al., 2016; Cakmak and Opper, 2019; Fan, 2022; Zhong et al., 2021; Mondelli and
Venkataramanan, 2021), as discussed in Section 3.5. See also Venkataramanan et al. (2021) for an
application of this more general AMP framework to GLMs defined via rotationally invariant matrices.

Though the focus in this tutorial has been on low-rank matrix estimation and generalised linear models,
both AMP and Vector AMP have been applied to a number of other statistical problems including
tensor PCA (Montanari and Richard, 2014) and inference in multilayer neural networks (Manoel et al.,
2017; Fletcher et al., 2018; Emami et al., 2020). AMP has also been used to obtain lower bounds on the
limiting estimation error of a broad class of general first-order methods such as gradient descent and
mirror descent (Celentano et al., 2020). An active area of current research is to determine whether
AMP outperforms all other polynomial-time algorithms in low-rank matrix estimation and GLMs.
In these settings, the statistical-computational gap has been precisely characterised in terms of the
critical points of a ‘potential function’ (Lelarge and Miolane, 2019; Barbier et al., 2019). As mentioned
in Section 3.3, the performance of both Bayes-AMP and the Bayes optimal estimator correspond to
(possibly different) critical points of this function, and when the potential function has a single critical
point, Bayes-AMP achieves Bayes optimal performance. This connection suggests that AMP will play
an important role in understanding statistical-computational gaps in a wider context.
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6 Appendix: proofs and technical remarks

In addition to the definitions in Section 1.1, we introduce the following notation. The Moore—
Penrose pseudoinverse of a matrix A € R¥*¢ will be denoted by AT € R*. This satisfies AT =
(ATA)TAT (e.g. Barata and Hussein, 2012, Proposition 3.2), and if k = ¢ and A is invertible, then
AT = A~!. For non-negative, real-valued functions f, g, we write f < g if there exists a universal
constant C' > 0 such that f < C'g; more generally, given parameters a1, ..., an, we write f Sa,.an g
if there exists C' = Cy,,... oy > 0, depending only on o, ..., ay, such that f < Cg.

6.1 Technical remarks on the master theorems in Section 2.1

In this subsection, we will make some general observations that unify Theorems 2.1 and 2.3 with
other master theorems in the AMP literature (e.g. Bolthausen, 2014; Bayati and Montanari, 2011;
Javanmard and Montanari, 2013). There are a number of respects in which our results are presented
differently and/or in slightly greater generality, and we discuss each of these in turn.

Remark 6.1 (Complete convergence). In Section 6.4, we will also establish the following variants of
Theorem 2.1, neither of which implies the other (or the original theorem): for a sequence of symmetric
AMP recursions (2.1) satisfying (A0), (A4) and (A5), and an associated sequence of state evolution
parameters (77 : k € N) as in (2.2), the following hold for each fixed k € N as n — oo:

(a) Suppose that (A1)~(A3) hold with % and O,(1) in place of % and O.(1) respectively. Then
d, (Vn(hk, 7),N(0,72) ® ) 20, or equivalently d, (l/n(hk, 7),N(0,72) ® ) 0.

(b) Suppose instead that (A1)—(A3) hold with “3 and O, (1) in place of % and O.(1) respec-
tively, and moreover that (W(n) : n € N) is independent of (m°(n),v(n) : n € N). Then

dy (vn(h¥,7), N(0, %) @ ) ©5 0, or equivalently @(Vn(hk,v), (0,72) @) “3 0.

Stronger versions of these statements can be formulated as analogues of Theorem 2.3. We now ex-
plain why we have stated our AMP master theorems (and all subsequent asymptotic results in the
monograph) in terms of complete convergence.

e Complete convergence is stronger than almost sure convergence and convergence in probability, so
the conclusions of Theorems 2.1 and 2.3 provide stronger convergence guarantees than (a) and (b).

e In view of Remark 7.1, neither the conditions (A0)—(A3) nor their analogues in (a) impose any
restrictions on the dependence structure across n € N of the random triples (m°(n),y(n), W(n))
that generate the AMP iterates. By contrast, the additional assumption in (b) is somewhat un-
natural from a statistical point of view, except perhaps when (mo(n), y(n) :n € N) is taken to be
deterministic sequence that satisfies the other conditions in (b). Note however that this special case
is covered by Theorems 2.1 and 2.3, which yield stronger conclusions than (b), as mentioned above.

e The method of proof of Theorems 2.1 and 2.3 (via Proposition 6.16) is well-suited to complete
convergence and convergence in probability, but appears not to be able to handle almost sure
convergence directly; it is not clear whether (b) holds in general if we only assume (AO) rather
than the stronger independence condition above. The reason for this is that in many of the key
technical arguments, the convergence of some random sequence (X,,) of interest is established by first

identifying a more tractable sequence (Y;,) such that Y, 4 X, for all n. To show that X,, - x for
some deterministic z, or that X,, = O.(1), it suffices to prove that Y;, < z or ¥;, = O.(1) respectively

in view of Definition 1.1 of complete convergence. Similarly, Y, Lo implies that X, L 2, and
Y,, = O,(1) implies that X,, = O,(1). However, if ¥;, “' z, then it does not necessarily follow that
X, 3z, and if Y, = Og.5.(1), then it need not be the case that X, = Oq.s (1).
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Remark 6.2 (Uniformity over PLp(r, 1) and the link between pseudo-Lipschitz functions and Wasser-
stein convergence). Many asymptotic convergence results for AMP iterations are stated in the form

%Zw(st) ~ E(@/}(X'k)) € R as n — oo, for every 1) € PLp(r), (6.1)

where r € [2, 00), ~ denotes one of the three modes of stochastic convergence discussed in Remark 6.1,
the random vectors X k,Xﬁi take values in R? for some fixed D € N, and k € N is a fixed iteration
number; usually, each Xﬁi depends on the i*" coordinates of vector quantities in the first k iterations
of an AMP recursion indexed by n. Recalling the definition (1.4) of JT, we deduce from Corollary 7.21
that any conclusion of the form (6.1) can be automatically upgraded to a uniform statement

Jr(uﬁ,ﬁk) = sup Zw (Xk)) ~ 0 asn — o0 (6.2)

'lZJGPLD T, 1

featuring the same mode of convergence ~+ as in (6.1), where we write p* for the empirical distribution
of X,’jl, ..., XE on RP and ii* for the distribution of the limiting random vector X*. Furthermore,
by Corollary 7.21, both (6.1) and (6.2) are equivalent to the assertion that d,(u¥, i*) ~ 0. In essence,
this is because d,,d, are equivalent metrics, in the sense that they generate the same topology on
the space Pp(r) of probability distributions on RP with a finite 7" moment; see Theorem 7.17 and
Remark 7.18.

On a technical note, the measurability of the random quantities d, (1%, i%) and d,. (¥, i%) is guaranteed
by analytic considerations; it is shown in Proposition 7.16 that the supremum in (6.2) can instead be
taken over a deterministic countable subset 77 C PLp(r) of bounded Lipschitz functions.

Remark 6.3 (Finite-sample analysis). To complement and refine some of the asymptotic conclu-
sions of the type (6.1) for general AMP procedures, the relevant proof techniques have been adapted
to establish concentration inequalities for quantities of the form n=t > 7" (X%, — E(¢(X*)) for
k,n € N and fixed arbitrary ¢ € PLp(r, 1), under suitable assumptions. For » = 2, such finite-sample
guarantees were obtained for asymmetric recursions by Rush and Venkataramanan (2018) and for
symmetric recursions by Barbier et al. (2020). Their conclusions can be generalised to r > 2 with
the aid of Lemma 7.12, a general concentration result for sums of pseudo-Lipschitz functions of in-
dependent Gaussian random variables. It would be interesting to see whether the above results can
be extended to derive a stronger finite-sample analogue of Theorem 2.1 in the form of a concentra-
tion inequality for d, (v, (R*,7), N(0,7) ® ) = SUPyePLy (r 1) }n_l S (hE ) — E(¢(Gk,7}/)>‘ or
dy (v (h*,~), N(0,72) ® ) for k,n € N.

Remark 6.4 (Conditions (A2) and (A3)). For r > 2, conclusions of the form (6.1) have previously
been derived for general AMP iterations under a boundedness assumption on the (27 — 2)* moments
of the empirical distributions v,,(m°) for n € N. In (A2), we relax this to a boundedness condition
[m®||nr = Oc(1) on the empirical r"
would expect for a d, convergence result. To accommodate this weaker assumption, we apply Holder’s
inequality rather than the Cauchy—Schwarz inequality in Lemma 7.24, which is used in a key estimate
in the proof of Proposition 6.16(c) below; see (6.30) and (6.47). By making similar alterations to the
statements and proofs of other AMP results, it ought to be possible to avoid any mention of (21 —2)t
empirical moments.

moments, which is more natural and in line with what one

The primary purpose of (A3) is to ensure that the asymptotic dependence between different iterates
h, h! (as measured by the inner product (h’, h*),, between them) has a deterministic limiting expres-
sion, namely T,/ as defined in (2.6); see also Proposition 6.16(d,e,f). The existence of the limiting
covariance structure captured by (2.6) is crucial to the success of the proof strategy for Theorems 2.1
and 2.3; in fact, its existence is a necessary condition for the more general conclusion in Theorem 2.3,
as can be seen by taking ¢ (x1,...,xy) := 2z, therein for 1 < 5,0 < k.
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Remark 6.5. Since m € P1(r) by (A1), recall from Section 1.1 that if ¥ ~ 7, then E(¢(%)) = [p ¢ dr <
oo for all ¢ € PLy(r), the set of all pseudo-Lipschitz functions on R of order r. Thus, in (A3), given
Lipschitz functions Fpy, ¢ on R, Lemma 7.22 ensures that « — Fy(z)¢(x) lies in PL;(2) C PL;(r) since
r > 2, so E(Fy(7)¢(7)) is finite.

It can be shown by fairly routine arguments that the following condition implies the first condition
in (A2) as well as (A3); see Section 6.6 for a full justification.

(A1") There exists a Lipschitz function fo: R? — R and a probability distribution 70 € P1(2) such
that writing p° for the distribution of ( fo(ﬁ,"y),"y) when 77 ~ 7 and 4 ~ 7 are independent,

we have da (v, (m°,7), u°) = 0.

In applications, (A1") can be more convenient to verify than (A3). Note that if da (v, (h",7), ' ®) 5
0 with 7 as above, then (A17) holds with fo = fo.

Remark 6.6. At least when r = 2, the master theorems in Section 2 can be extended to abstract
recursions for which the non-degeneracy condition (A4) does not hold and the limiting covariance
matrices need not be positive definite. These degenerate cases can be handled by first perturbing the
Lipschitz functions fi; and then applying a continuity argument that has some similarities with the
proof of Theorem 3.1 in Section 6.8. One of the intermediate steps relies on the fact that |[W|ja—2 :=
sup,zo [|Wull2/|lull2 = Oc(1) for W ~ GOE(n) as n — oo (e.g. Anderson et al., 2010; Knowles and
Yin, 2013); see Javanmard and Montanari (2013, Section 4.2.1), Berthier et al. (2020, Section 5.4)
and Fan (2022, Appendix D) for further details.

These perturbation arguments do not generalise straightforwardly to d, convergence results for r # 2
since [|W||y—y := sup, o [[Wull-/|ull» is not O.(1) or even O,(1) for r € [1,2) U (2, 00]. Indeed, given
r € [1,2) and independent Z ~ N, (0, I,,) and { ~ N(0,1/n), Lemma 6.14 yields

d | —1/s re1/:
W lsr > [Weally = 072 Z + Cerlly = 0" 2 Z )l + 0p(1),

where || Z ||, = E(|Z1]")"" € (0,00). Moreover, |[W|,_ = |[|W||,/—,» whenever 1/r 4+ 1/r" = 1.

Remark 6.7. (A5) is a non-vacuous albeit very mild condition. For any Lipschitz f: R? — R, the
partial derivative % is bounded on its domain of definition, which is a Borel set of full Lebesgue
measure. Nevertheless, there are examples of Lipschitz f: R?2 — R for which % cannot be extended
to a function on R? that is continuous (A ® 7)-almost everywhere (see Remark 7.15). That said, it
is inconceivable that such pathological choices of fi would be made in any practical AMP procedure,
where the functions f; usually have the property that {x € R: (z,y) € Dy} is finite for every y € R,

and hence satisfy (A5).
6.2 Conditional distributions for symmetric AMP

In this subsection, we fix n € N, and in most places, we suppress the dependence on n of all quantities
such as W = W(n) and h* = h¥(n). When we refer to orthonormal sets, it is implicit that the
constituent vectors have unit Euclidean norm, i.e. that the underlying inner product is (-,-), not
(-, )n. All statements concerning conditional distributions can be understood formally in terms of
the rigorous definition of regular conditional probability, as outlined in Section 7.2. The proofs of the
results below are given in Section 6.3.

In the setting of Section 2.1, define the n x k matrices
Hy = Hi(n) := (hl hk), My, = Mg(n) = (mo mb ... mkil), Yi = Yi(n) := (yo yt - ykil),

where y/ = y/(n) := Wm/ = W1 4+ bym/~! for j = 0,1,...,k — 1. For convenience, we also define
My(n) = Yp(n) := 0 € R™. Then the symmetric AMP recursion (2.1) can be rewritten as WM, = Y
for k € N.
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Foreach 0 < k < n—1,let P, := MM,;" = Mk(M,ij,)JerT and PkL := I, — P, be the n x n matrices
representing the orthogonal projections onto Im(Mjy,) := span{m’ : 0 < j < k—1} and V}, := Im(My)*
respectively, and define r; := rank(M},) = dimIm(Mjy). Let m” := Plmk for 0 < k <n -1, so that
the span of m” is the orthogonal complement of Vj; within Vj. Furthermore, define $_; := {0, Q}
to be the trivial o-algebra, and for k € Ny, let

Si:=o(y,m I :1<j<k).

Then since by, m* are measurable functions of h* and ~, we see from (2.1) that
Sp=0(y,m’y :0<j<k-1), (6.3)
and that m°,...,m"* and ro,... ,Tk+1 are Sp-measurable for each —1 < k < n — 1. (It is not true in

general that P(rp = k) =1 for all 1 <k <n — 1, even in recursions (2.1) with non-pathological f.)

Our first task is to establish an important fact (Proposition 6.8) that will be used to derive the
(regular) conditional distributions of W and h**! given §; in Proposition 6.11 below, for each fixed

ke {0,1,...,n—1}. We will use the symbol 4 s’ to indicate (almost-sure) equality of conditional
distributions given 8, a notion that is defined formally in Section 7.2.

Proposition 6.8. Fiz 0 < k <n —1 and suppose as in (A0) that W ~ GOE(n) is independent of
(m0, 7). If Uy, is any Sy_1-measurable nx (n—ry,) matriz whose columns form an orthonormal basis of
Vi, then given 8y_1, the matrix Uk, WUk has conditional distribution GOE(n—ry) and is conditionally
independent of 8. Consequently, U WU, has conditional distribution GOE(n — 1) given 8, and if
W~ GOE(n) is independent of S, then UJWUk 4 I, U,;FVVUk

Remark 6.9. Consider the important special case where P(rp = k) = 1. Then under the hypotheses
of the proposition, U,I WU, ~ GOE(n — k) is conditionally independent of 8y given 8;_1, and is
independent of 8.

Remark 6.10. To explicitly construct a (random) U, with the above properties, consider applying
the Gram-Schmidt procedure to m?,...,m* 1 e;,...,e, € R” (in that order) and retaining only
the non-zero vectors in the output (which are all normalised to have unit Euclidean length). This
yields an 8j_;-measurable orthonormal basis m!, ..., m" of R?, where 7!, ..., m" are obtained from

m?,...,m* 1 and therefore span Im(M}), while mT’v+1 ...,m" span V = Im(Mj)*. Thus, we can

take U, = (et omn).

The main result of this subsection is Proposition 6.11 below, which plays a crucial role in the inductive
proof of the AMP master theorems given in Sections 6.4 and 6.5. For each k € {1,...,n — 1}, let

of =aF(n) = (af,...,af) = Mitm" = (M)} My)* M/ mF € R (6.4)

be a vector of projection coefficients satisfying Pym* = Mo = ZZ:l oy kmf1. When M, has full
rank (i.e. when r, = k), note that of = (MJMk)_lMlImk is the unique vector with this property.
In addition, let By := (0,0) € R? and By := diag(bo,...,bx_1) € R¥** for k € {2,...,n}, so that
Yie = Hp + (0 My_1)By, for all k € {1,...,n}.

Proposition 6.11. For n € N, consider a symmetric AMP recursion (2.1) for which (A0) holds.
For k € {0,1,...,n—1}, let both W* = W¥*(n) ~ GOE(n) and (ZFt1, (k1) = (ZkH( ), CFH(n)) ~
N,(0,1,) ® N(0,1/n) be independent of 8. Then

WL, WO and h' s, [|mO).Z" + 'm0 =: B0, (6.5)
and for each k € {1,...,n — 1}, we have
W Lls, WP, + (WP) P+ PEWEPL = viMt + (Vi M) P + P Pt (6.6)
WL s Heo + PEWFmY) + {(MH) THT m* — bem* =" 4 (0 My_y) Bkak}

k
d J—
Slse > of bl " |l (P ZF) 4 b 4 My (M) M) (’f’f § ok ot 1) (6.7)

. pktlk
—: pRFLE
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where vF¢ = vk (n) = HIm? — by M/ m*~! € R* for ¢ € {0,... k}.

The crux of the proof of Proposition 6.11 is to establish (6.6), which characterises the conditional
distribution of W given 8. It is intuitively helpful to think of this as being obtained by conditioning W
on the ‘linear constraints’ Wm? = 0, ..., Wm*~1 = ¢*~1. However, since m!,...,m*~! are random
and depend on W, this heuristic argument is not sufficient on its own to constitute a formal proof of
Proposition 6.11. For the benefit of readers interested in the technicalities, we give a more detailed

explanation below.

Observe that for fixed k¥ € N and deterministic y,a%, a',...,a* € R", the event Qa0 ok =17 =
y,m?=a’ bl =al,.. L hE = a’“} can be expressed as

Quao, ok ={7= ym® =a®, Wtl =2 forall 0< j <k -1} ={y=y,m’ =a®, WT}, = Z,}, (6.8)

where t/ := fj(a’,y) € R" and 27 := a/t! + (fj’-(aj,y»n fi—1(@ 1 y) for 0 < j < k-1, and T, :=
(O t! - tF ) and Zp = (20 21 - 2571 are fixed n x k matrices. Now for W ~ GOE(n) and any
fixed T € R™** of rank p, we can derive the conditional distribution of W given WT by writing

W =WP+ (P+PY) WP =wP+WP)TP- + PrwpP", (6.9)

where P := TT+ and Pt := I, — TT represent the orthogonal projections onto Im(7) and Im(T)*
respectively. The first two terms on the right hand side of (6.9) are measurable functions of WP =
(WT)T* (and hence WT), while the third term P+W P~ is independent of WT. Thus, E(W |WT) =
WP+ (WP)TPL. Moreover, we can write P+ = UU ", where the columns of U form an orthonormal
basis for Im(T)*, so that PLWPL = U(UTWU)UT, and UTWU ~ GOE(n — p) is independent of
WT. For Z € R™F this enables us to interpret ‘the conditional distribution of W given WT = Z’ as
the distribution of
ZTT +(ZTH) TP+ UTWU,
where W ~ GOE(n — p). We denote this distribution by £z(T).

In view of (6.8) and the assumption that W is independent of (m°,v) in (A0), it is then tempting to
argue heuristically that

W4y =y,m’ =a’ nt =a',... B* =d*} iI/V|‘{fy:y,m0 =ad®, WTy, = 7,V
d [4 )
= WIH{WT} = Zp} ~ Lz, (Tk),
and conclude on this basis that W has (regular) conditional distribution £, = Ly, () (Mk(w)) given
8x = a(y,m% hl,... h¥), noting that My (w) = T} and Y (w) = Zj, for w € Qy 40, o+~ However, this
line of reasoning appears to involve conditioning explicitly on an event of potentially zero probability,
and is not formally justified by the above argument; cf. the Borel paradox (Dudley, 2002, pp. 350-351)
for the associated hazards.

As mentioned above, the issue is that M}, is random and is in general not independent of W, whereas
the distributional claims in the previous paragraph relied on the fact that 1" was fixed. Nevertheless,
the key point is that the randomness of M and its dependence on W turn out not to cause irrec-
oncilable difficulties, due to the conditional independence established in Proposition 6.8. It follows
from this result that E(W |8y) = WP + (WPy) " P, so the conditional distributional equality (6.6)
in Proposition 6.11 and the decomposition (6.11) in its proof are the appropriate analogues of (6.9).

6.3 Proofs of results in Section 6.2

A key ingredient in the proof of Proposition 6.8 is Lemma 6.12 below, which extends the orthogonal
invariance property of the GOE(n) distribution. Given a finite collection of disjoint measurable spaces
(X1, A1), ..., (X, Ap), we equip the disjoint union | |;*; Xi with the o-algebra {|_|}?:1 Ay 2 Ay €
Ay, for all k:}
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Lemma 6.12. Let G C F be a sub-c-algebra and let X: (Q, F,P) — ||p_, R**k be a measurable
function. Suppose that there is a partition of Q into disjoint events Q1,. ..,y € G such that for each
k=1,...,m, the map X takes values in R™*"™ on Q. and has conditional distribution GOE(ny) given
G on Qy, for some (deterministic) ny € {1,...,n}. Moreover, let Q@ = (Q1 Q2): (, F,P) — ||, Ok
be a G-measurable function such that on each event €Yy, the map @ takes values in O, , and Q1,Q2
have Cy, and ny — £y columns respectively, for some (deterministic) ), € {1,...,nx — 1}. Then, given
G, we have the following:

(a) QT XQ has conditional distribution GOE(ny) on Q. for every k =1,...,m;
(b) Qy XQo has conditional distribution GOE(ny, — £;) on Q. for every k =1,...,m;

(c) QT XQ1 and Q) XQo are conditionally independent.

Remark 6.13. Note that if ny = - -+ = n,, = n, then under the first condition of the lemma, it follows
from Remark 7.4 that X has unconditional distribution GOE(n) and is independent of G. Thus, in the
instructive special case where m = 1 and 1 < ¢; < n = ny, the result above simplifies to the following;:
suppose that X ~ GOE(n), and is independent of G, and moreover that @ = (@1 Q2): (2, F,P) — O,
is a G-measurable map such that ()1, Q2 have 1 and n — ¢; columns respectively. Then

(a) QTXQ ~ GOE(n) and is independent of G;
(b) Qg XQa ~ GOE(n — ¢;) and is independent of G;
(¢) QTXQq and Qg X Q- are independent, and also conditionally independent given G.

Proof of Lemma 6.12. (a) For £ = 1,...,n, let A, and B, be the Borel o-algebras on X, := R**
and Y, := Qy respectively. Define ¢p: Xy x Yy — Xy by ¢¢(M,J) := JTMJ, and for J € Qy, let
ty: Xp — XypxYy be the map M — (M, J). Then the orthogonal invariance property of GOE(¢) can be
restated as GOE({) = GOE({)o(¢yo1;) ! for every J € Q. Thus, observing that ¢, (X, Q) = QT XQ
on 2, and applying Lemma 7.6(b) to ¢y, , we see that Q" XQ has conditional distribution GOE(ny,)
given G on (), as required.

(b) For k =1,...,m, let ¢y: X, — Xy, —p, denote the map that extracts the lower-right (ny — £x) x
(ng —£k) block of entries of an ny x ny matrix. Then ¢y (W) ~ GOE(ny —¥{) whenever W ~ GOE(ny),
so GOE(ng — /) = GOE(ny) owlzl = GOE(ng) o (¢n, ory)~? O@Z)J;l for every J € Q,,. We can therefore
apply Lemma 7.6(b) to ¢y o ¢, to conclude that Q;XQQ has conditional distribution GOE(ny — k)
given G on (.

(c) For w € Q, let P,, Q, and R, respectively denote the conditional distributions of QT XQ1,
Q) XQ and (QTXQ1,Q5 XQo) given G. For k = 1,...,m, let ¢ X, — R™*% denote the map
that extracts the first /5, columns of a nj x nj matrix. Now define ¥;: X,,, — Rtk Xny—t, by
Uy (M) = (Q;k(M),iﬂk(M)) Then (W) and ¢4 (W) are independent whenever W ~ GOE(ny), so
GOE(ny)o¥; ! = (GOE(ng) ot ) @ (GOE(ng) oty 1. Since (QT XQ1, Qg XQ2) = (¥10¢4)(X, Q) on
Qp, we may apply Lemma 7.6(b) to @Lk0¢nk, Y 0 ¢n,, and Yy 0, to deduce that R, = P, ®Q),, for all
w € Q. Since k € {1,...,m} was arbitrary, we conclude that R, = P, ®Q, for allw € Q = | |, Qy,
which together with Lemma 7.9(b) implies that Q" XQ; and Q4 XQ2 are conditionally independent
given G. O

Proof of Proposition 6.8. We argue by induction on k € {0,1,...,n — 1}. The case k = 0 is trivial
since W ~ GOE(n) and is independent of (m?, ) by assumption. For a general 1 < k <n — 1 (when
n > 2), let Ug_; be any 8;_s-measurable n x (n — rj,_;) matrix whose columns form an orthonormal
basis of Vj_1, and fix an arbitrary 8j_j-measurable n x (n — rg) matrix U, whose columns form an
orthonormal basis of V. Moreover, let E = Ej_1 be the event {ﬁLkil #0}={rr =7rp_1+1} € S_1,
and note that n —rp,_1 >n—k+1> 2.
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Next, define an 8j_j-measurable n x (n — ry_1) matrix U by setting U := (m*~' U;) on E and
U:= Uk on B¢ = {m k=l = = 0}. Lettmg U be the 8i—1-measurable n x (n —r;_1; — 1) matrix obtained
by removing the first column Ue, of U, we therefore have Uk — U on E and U, = U on E°. Now
U, Uj_; have orthonormal columns that span Vj_1, so Q := U," e 1U is an 8_1-measurable orthogonal
(n—7rk_1) X (n —rE_1) matrix such that U'wu=qQ" (Uk,_lWUk_l)Q. By the inductive hypothesis,
U ];rleUk_l has conditional distribution GOE(n — r,_1) given 8j_1, so it follows from parts (a) and
(b) respectively of Lemma 6.12 (with £ = 1 and N = n —rj_, > 2) that U WU and U WU
have conditional distributions GOE(n — r;_1) and GOE(n — rg—1 — 1) respectively given Sy_;. Since
U,;rWUk—UTWU on B¢ ={ry =rg_1} € 81 and UkWUk UTWUonE—{rk—rk 1+ 1} €
811, we deduce from Lemma 7.6(a) that U] WU}, has conditional distribution GOE(n — ry) given
Sk_1, as required.

In addition, it holds trivially that 0 and UTWU are conditionally independent given Sj,_;, and
Lemma 6.12(c) implies that UTW (Ue;) = QT(UJ_1WU]€_1)Q61 and UTWU are also condition-
ally independent given 8;_1. Since WmF ! = 0 on E¢ and Ue; = m* ™ on E, an application of
Lemma 7.9(a) shows that U Wm*~! (and hence o(8_1,UTWm"~ 1) by Lemma 7.8) is conditionally
independent of Uk WU, given 8;_1. Moreover, WP;,_q = VVMk_lef1 = Yk_letl, mk—1 mk_l, U
and P,cl_1 =UU" are Sj_1-measurable, so

Y =W (Pey 4 Py )mP T = (WR)mM T 4 (P + P 1)TW T

= (WPB—1)m 1 4 (WPe_y) ' + U (U T W) (6.10)
is measurable with respect to o(8;_ 1,UTW*]€ 1). Thus, given S;_1, we conclude that U/,;FWU;C is
conditionally independent of y*~1, and hence conditionally independent of 8 = o(8x_1,4"1) by
Lemma 7.8 and (6.3). Therefore, since U, WU}, has conditional distribution GOE(n — ;) given Sx_1,
it also has conditional distribution GOE(n — r) given o(8g—_1,8x) = Sk.

Finally, it remains to show that if W~ GOE(n) is independent of 8, then U, ];r W Uy, also has conditional
distribution GOE(n — ) given 8;. To see this, let m!,...,7m"™ be an Si-measurable orthonormal
basis of Im(My), obtained for example by applying the Gram-Schmidt procedure to m?,..., mF=1
as in Remark 6.10 above. Then taking ()1 = (ml ﬁz”@) and Qo = Uy, we see that Q = (Q1 Q)
satisfies the hypotheses of Lemma 6.12 with Q; = {ry =j} € 8y and ¢; =j <n=mn; for j=1,... k.
The desired conclusion now follows directly from Lemma 6.12(b), and this completes the inductive
step. ]

As mentioned above, the proof of Proposition 6.11 relies crucially on the final assertion in Proposi-
tion 6.8. To obtain the conditional distributional equalities in (6.5) and (6.7), we will also apply the
following elementary fact.

Lemma 6.14. If W ~ GOE(n) and u € R" is fized, then Wu 4 lullnZ + Cu, where Z ~ N,(0, I,,)
and ¢ ~ N(0,1/n) are independent.

Proof of Lemma 6.14. The result holds trivially when v = 0, and is also true when u = e; since
Wey ~ Ny, (0,diag(2/n,1/n,...,1/n)). For a general u € R"™\ {0}, let @ € R™*" be an orthogonal
matrix with Qe; = u/||ul|, so that Q" u = |lu|le;. Then

Wu QWQ u=QWe)llul £ Qler]lnZ + Cer)ull £ ulnZ + Cu,

as required, where we have used the orthogonal invariance of W ~ GOE(n), the result for e; and the
orthogonal invariance of Z ~ N, (0, I,,) respectively to obtain the distributional equalities above. [J

Proof of Proposition 6.11. We start by proving (6.6) for every k € {0,1,...,n — 1}. Let Uy, be any
8k_1-measurable n x (n — ) matrix whose columns form an orthonormal basis of Vj; see Remark 6.10
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for a specific construction of Uy,. Similarly to (6.10) in the proof of Proposition 6.8, we can write
W = WP+ (P + PF) "WhE
=WP, + (WP, " P + PrWP}
=WP,+ (WP, P + U (U, WU, U, (6.11)
i ’Sk ka + (WP]C)TPkJ‘ =+ Uk (U,IW’“U;C)UJ = WPk =+ (WPk)TPIg' + PkJ‘WkPIg',
where W* ~ GOE(n) is independent of 8. To justify the key distributional equality after (6.11), we
can apply Lemma 7.6(c); indeed, note that W Py, = YkM,j, Uy and P = Uk,U/,;r are Sp-measurable, and

that [J}IWU;C 4 Is,. U*,jwkﬁk by the final assertion of Proposition 6.8. By replacing W P, with YkM;'
in the display above, we obtain (6.6) for every k € {0,1,...,n—1}, as desired. Since [ —Py = Py~ = I,,

this specialises to W 4 Iso WO when k = 0, which is the first part of (6.5).
Using (6.6), we now derive the conditional distribution of h*+1 given 8, for k € {0,1,...,n—1}. When
k = 0, we have h' = Wm?, so the associated identity in (6.5) follows directly from the first part of (6.5),

Lemma 6.14 and Lemma 7.6((:). Turning now to (6.7) with k > 1, we have h**1 = Wm* — pm*—1
where by, m*~! are 8y-measurable, so we can deduce from (6.6) and Lemma 7.6(c) that

WLy VM mP + (VM) T PlmF + PEWE PEmF — b
= Yiof + (Ve M) TinF + PEWEmF) — bpmF~!
= Hypa® + (0 My_1)Bra* + (Hp M) T + PE(W*mP) — bm*=L, (6.12)
Indeed, to obtain the final equality above, observe that Yy, = Hy+ (0 My_1) By and B,I(O Mk_l)TﬁLk =

Bi,;r(() Mk_l)TPkLmk = 0 in view of the fact that PkiMk_l — 0. Since m” is 8j-measurable and
W* ~ GOE(n) is independent of 83 (and therefore has conditional distribution GOE(n) given 8y), it

follows from Lemmas 6.14 and 7.6(b) that W*m” 4 I, || || ZF+1 + CFHim*. Now since P and all
the other summands in (6.12) are 8x-measurable, a further application of Lemma 7.6(c) shows that
the random variable in (6.12) and

Hkak + PkL(” ) anZk—H + 5k+1mk) + (HkM]:r)Tﬂl”Lk - {bkmk_l — (0 Mk_1)Bkak}

k k
= aj b + P (|lm" o 25 4 (k) 4+ (H M) Tl — <bkmk_1 =) of bg_1m€_2> (6.13)
=1 =1

are identically distributed given 8j. Finally, recall that m”* = (I —P,)mF =mF — 25:1 o/g’ m‘1, and
that (M,5)TM,!m® = P m’ = Pym® = m’ for all 0 < £ < k — 1 by the definition of the projection
matrix Py = MM, . It follows that ij-(gk“rhk) = CkHmk and

k
(M+)THT k (M+) <H];I' E_ Za? H];I'mZ—1>
(=1
k
Z be_raf m'=2 = (M)T (bk MImFt = " af by M) mH).
(=1
Thus, since (M;")T = My(M,] My)", the random variable h*™1* defined in (6.7) is identical to that
n (6.13), so we conclude from (6.12) that hF+! < s, R*TLE | as required. O

6.4 Proof outline for the AMP master theorems in Section 2.1

Recalling the definition (2.6) of the limiting covariance matrices TI¥! € R¥** in Theorem 2.3, we first

outline a standard construction of a single random sequence (Gj : k € N) satisfying (G1,...,Gy) ~
N (0, TI¥) for each k. Let THLE+T . = (T1kt1s-- > Thpr1) € RF and

F=(ah,...,af) = (TH) "I THA1 ¢ RE (6.14)

a

o6



for each k € N, where the latter is well-defined since T* is positive definite under (A4) by Lemma 2.2.
It is easily verified that if (Gy,...,Ggt1) ~ NkH(O,T[kJFH), then Gy = (G1,...,Gk) and &gy =

Gra1 — G[E} a =Gl — Zéf:l 07? G are uncorrelated and hence independent. This means that

¥ Gy =FE(Gry1|G1,...,Gp)

|
™=

=1
for each k. Moreover, since T**! = Cov(Gy,...,Gy41) is positive definite and &, is a non-trivial
linear combination of Gy, ..., Gk1, it follows under (A4) that

0 < Var(§x+1) = Var(§g+1| G, - .-, G) = Var(Gy41 | Gh, - .., Gi)
= Var(Gg41) — Var(GEl;} ar)
= Thi1 k1 — (a%) TTM o
_ g - .
= r,fﬂ — (T[k},k+1)T(T[k}) TlRLE+L . 7_24-1 (6.15)

for k € N, so that 75,1 € (0,00) satisfies 73,, = Var(§,11) < Var(Gpi1) = 72.1- Now let Gy ~
N(0,72), and for k € N, inductively define

Mw

Gry1 = Gy + Tk+1Ck+17 (6.16)

=1

where Ck+1 ~ N(0,1) is independent of (G1,...,G}). Then (Gy : k € N) is a random sequence with
(G1,...,Gi) ~ Ni(0, T for each k, as desu"ed With the above definitions in place, we record here
some key identities. In view of (2.6), we certainly have

2 ifk=0=1
Cov(Gy,Gy) = E(GrGy) = Tk,g = E(Fo fr1(Gr_1,75 )) iftk>0=1 (6.17)
E(fe-1(Ge-1.7%) - fi-1(Gr-1,7)) if k>10>2,
where fi, fa,... are the Lipschitz functions in the AMP recursion (2.1), and 71 and Fj are as in (A2)
and (A3) respectively. This fact underlies an important assertion (Proposition 6.16(e) below) in our

inductive proof of the master theorems. Moreover, for k,¢ € N and any Lipschitz function ¢: R — R
with weak derivative ¢’, we have

E(Gr¢(Gr)) = E(¢'(Gr))E(GiGr) = E(¢'(Ge)) The- (6.18)

This follows from Stein’s lemma, a general formulation of which can be found in Tsybakov (2009,
Lemma 3.6) and Lemma 6.20.

Lemma 6.15 (Stein’s lemma). If Z ~ N(0,02) and p: R — R is an absolutely continuous function
with weak derivative ¢’ such that ¢'(Z) is integrable, then E(Zp(Z)) = oc*E(¢'(Z)).

Indeed, the first equality in (6.18) follows from Lemma 6.15 upon writing G = (Tk,g/TM) Gy + &y,
where &y has zero mean and is independent of Gy, so that E(ﬁke go(Gg)) =0.

Our choice of functions (fz)52, and (f})32, in (2.1) ensures that for any fixed y € R, we can take
= fo(-,y) and ¢’ = f}(-,y) in (6.18) to see that E(Gy, fo(Gr,y)) = (fé(ng y))E(GGy) for k¢ € N.
We deduce from this (and Lemma 7.7) that if 4 ~ 7 is independent of G1,Ga, ..., then

E(Gr fe(Ge,¥)) = E(fi(Ge,7))E(GrGyr) = by Ty (6.19)
for all k,¢ € N, where by := E(f;(G¢,%)). This forms part of assertion (f) in Proposition 6.16 below.
To complete our technical preparations for the main derivations below, we will set up a more explicit

connection between the Gaussian variables Giy1 ~ N(0,72,,) in (6.16) and the random vectors
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pFtLE = pk+LE () defined for n € Nand k € {0,1,...,n — 1} in (6.5) and (6.7) in Section 6.2 above.
For such n and k, Proposition 6.11 asserts that A*+1(n) and h*+1F(n) are identically distributed given
8k = 8r(n) = o(y,m° h7 : 1 < j < k), and we now write h*1#(n) = h¥*+1(n) + A*+1(n), where

ht=hl(n):=n2Z" and A= Al(n) = (||m?), — 1) Z + tm®, (6.20)
and

pFL = R (p Zaé W+ T ZF (6.21)

=1

k

AR = AkJrl( )': Z(af_ae)he‘i‘Mk(Mk Mk < k.k Zak k— 1)

(=1

= "l (PeZ*H) + (il — Trsa )Zk+l + ¢, (6.22)

Recall that (ZF+1, ¢F+1) = (ZF1(n),F+1(n)) ~ N, (0,I,) ® N(0,1/n) was taken to be independent
of 8, = 8x(n) in Proposition 6.11, where we also defined of = o*(n) and v** = v®¢(n) for 0 < ¢ < k.

In the decomposition above, we have defined A*t1 in (6.21) to mimic the expression for the limiting
Gaussian variable Gy, in (6.16). Contrasting the definitions of h¥*t%F and A**! in (6.7) and (6.21)
respectively for k € {0,1,...,n — 1}, we see that the random quantities o and |m*||, in (6.7)
are replaced in (6.21) with the deterministic & € R* and 7,1 € (0,00) from (6.14) and (6.15)
respectively; these turn out to be the correct limiting values in Proposition 6.16(i,j) below under the
non-degeneracy assumption (A4).

We are now in a position to state the main result of this subsection. To ease notation, we will often
suppress the dependence on n of quantities such as h¥ = hF(n), v®* = v¥f(n), of = o¥(n) and
AF = AF(n).

Proposition 6.16. For a sequence of symmetric AMP recursions (2.1) satisfying (A0)—(A5) as well
s (A4), the following hold as n — oo for each k € N:

(@) [|A¥ |l = 0;

(b) th”n,r = Oc(l) for1 <j<k;
M| = Oc(1) for 0 < j <k;

(c) n=1Y0 (R, ..., hE v = E(Q/)(Gl, e Gkﬁ)) for every ¢ € PLpi1(r);
(d) n_l Z:‘L:l m? ¢(h117 sy hfa’Y’L) _C> E(FO(S/) : gb(élv sy Gk?ﬁ/)) fOT’ every qb € PLkJ-‘rl(l);
(e) (I~ mt 1), S E(G;Gy) =T for 1 < j < k+1;

(f) (hi,m") = (W7, fo(R*,7))n = B(G; fe(Ge, 7)) = E(f)(Ge,7))E(G;Gy) = be Tjy for 1 < j,0 < k;
(W, m%)n =0 for 1 <j <k;

(9) bx = {f1.(h*,7))n = E(f1(Gr: 7)) = br:

(h) % /n = (H]Im* — by M[Tm*=)/n 50 for 0 < £ < k;
(i) oF 5 aF;

(G) 1M |ln = Tri1 = Var/2(Gei1 | Gu, ..., Gy).

Remark 6.17. Under (A4) and the alternative hypotheses of Remark 6.1(a), the assertions (a)—(j)
above remain valid if we replace <+ with % and O,(1) with O,(1) throughout.
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To establish Proposition 6.16, we proceed by induction on k € N and prove the assertions (a)—(i) one
at a time (in that order). Here, we will give a technical summary of the inductive argument (which can
be read alongside the detailed proof in Section 6.5) to highlight its overall structure and key features.
Henceforth, we write Hy(---) for parts (---) of the inductive hypothesis for k € N.

Hy (e, f): These are obtained as direct consequences of the inductive hypotheses Hy(c, d) by choosing
suitable pseudo-Lipschitz functions ¢ € PLg41(2) € PLg41(r) that depend on at most three of their
k + 1 arguments. We use H(d) to handle the inner products that feature m® and apply H(c) to
those that do not. In Hy(e), the limiting value of (m/=1, m*=1),, = (f;_1(W~1,7), fo_1(R*~1, 7))y is
shown to be

{ (i-1(Gi1,7) - fo1(Gor, 7)) = B(GiGr)  for2 < j0<k+1
E(Fo(9) - fj-1(Gj-1,7)) = E(G1G) for 1 =j <l<k+1,

where the two equalities are drawn from (6.17) and form the basis of the definition of the limiting co-
variances ijg in (2.6). Moreover, for 1 < j,¢ < k, the identity E(C_}jfg(@g,fy)) = E(fé(é’g,ﬁ))E(G’jG’g)
in the first line of Hy(f) comes from (6.19). These identities (6.17) and (6.19) ultimately provide the
crucial link between the limiting values of (h7,m®),, and b, (m/=*, m~1),, in Hy(h).

Hy (g, h): This is also derived from Hg(c), but since f;: R? — R need not lie in PLy(r), we instead
apply the analytic Lemmas 7.10 and 7.14 rather than imitate the proofs of Hy(e, f). See the proof of
Corollary 7.21(b) for a similar argument. Hy(h) follows immediately from Hy(e, f, g).

Hy(i,5): We see from Hy(e) that the matrices M, My/n € R¥*k converge completely to the limiting
covariance matrix T*! = Cov(Gy,...,G;) € R¥**, which is positive definite under (A4). In Hy (i),
we consider o = (M,] My, /n)*(M,!m*/n) € R¥, a vector of projection coefficients defined in (6.4).
It follows from Hy(e) that (M, My/n)* and M, m*/n converge completely to (TIF)=1 and TIKl++1
respectively, and hence that o 5 (TF)=1TELA+ = Gk as defined in (6.14). For Hj(j), we recall
the definitions at the start of Section 6.2 and write

ok 1k k k k ENTasT k
(15 = 1 Pem®(l5 = [m* 15 = [ Pem®[5 = [Im* |5 — (a*)" (M My/n) o

Applying Hk(e i) to the 1nd1v1dual terms on the right hand side above, we deduce that [|m*|2 5
Trr1 k1 — (@) TTH GF = 72, as defined in (6.15).

Hy1(a): Tt is thanks to the key fact Hy(h) and the presence of the Onsager term —bym*~! in the
original AMP recursion (2.1) (and subsequently in (6.7) in Proposition 6.11) that the ||-|/, , norm of
the second term in (6.22) converges completely to 0. Using Hy(b, 1, j) to handle some of the remaining
terms in this definition (6.22) of the deviation term A*+! we conclude that ||AF [, 5 0.

Hy.41(b): Using the distributional equality h*+1 £ pk+1k = pr+1 4 Ak+1 = S Ak T 2 4
A*+1 from Proposition 6.11 and (6.21,6.22), we deduce from Hjy1(a) and the inductive hypothesis
Hy.(b) that ||WF |, = O(1). Since ||7|lnr = Oc(1) by (A1) and fx 1 is Lipschitz, this in turn implies
that Hmk—i_l”nm = ||fk:(hk+1v')’)”n,r = Oc(1).

Hp11(c): This is the main assertion in Proposition 6.16; by Corollary 7.21(b), it is in fact equivalent
to the conclusion (2.8) of Theorem 2.3. We first condition on 8, = o(y,m% h/ : 1 < j < k) and
appeal to Proposition 6.11, which asserts that for each n > k, the conditional distribution of h¥+!1 =
hF+1(n) given 8y, is identical to that of AFT1F = pk+1LE(n) from (6.7). With AFTLE = ph+1 4 AR+L iy
place of h**! on the left hand side of Hy1(c), we use Hyi1(a,b) to show that the ‘deviation’ term
AFFL = AF+L(p) from (6.22) has asymptotically negligible effect, so that A*+1** can in fact be replaced
with 72*1 in all relevant expressions. In (6.21), h**1 was defined as S35, @l h! 4+ 741 Z5+1, where
Z?:l df h' is a deterministic linear combination of the previous iterates hl,... h*, and 7441 JAERT
a new Gaussian variable that has i.i.d. components and is independent of 8.

In view of this, the proof of Hyi1(c) can be completed in two stages (given by (6.42) and (6.40)
below): the influence of the latter Gaussian term can first be understood by appealing to Hy1(b)
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and a general concentration result for sums of pseudo-Lipschitz functions of independent Gaussians
(Lemma 7.12), before we subsequently reintroduce the randomness in v, m" ht, ..., h¥ and apply the
inductive hypothesis H(c) to account for this. The appearance of the new limiting Gaussian variable
Gry1 on the right hand side of Hyy1(c) (in addition to the existing Gy, ..., Gy from Hy(c)) can be
explained through its definition in (6.16), which matches up neatly with the definition (6.21) of R**1
and the two-stage argument we have just outlined; see (6.40) and (6.41) in the proof.

Hy+1(d): The proof of this is similar in spirit to that of Hy41(c), except that it also makes use of
condition (A3). Note also that Hj,1(d) applies only to Lipschitz ¢: R¥*? — R rather than general
¢ € PLgyo(r), but this is sufficient for our purposes in the subsequent proofs of Hy1(e, f).

The proofs we give for Hy11(c, d) combine aspects of the asymptotic and finite-sample arguments (see
Remark 6.3) in the existing AMP literature. Proposition E.1 in Fan (2022) provides the basis for an
alternative asymptotic approach, whose details we omit.

6.5 Proofs for Sections 2.1 and 6.1

Proof of Proposition 6.16. Since we are carrying out an asymptotic analysis, we may assume without
loss of generality that n > k in the proofs of Hg(a,...,7) for each k € N; this enables us to apply the
results on conditional distributions from Section 6.2. Note also that we use T, Ty1,T),1, Tn2 to refer
to different quantities of interest in different parts of the proof. In Lemma 7.2 and Remark 7.3, we
state versions of the continuous mapping theorem and Slutsky’s lemma for complete convergence, as
well the ‘arithmetic rules’ for o, and O, symbols. We will apply these repeatedly in the arguments
below, often without further comment or explanation.

First, we prove H;(a,b, ¢, d), which form the base case for the induction.

Hi(a): By (6.20), Al = A'(n) = (|m°), — 1)Z" + {'m®, where (Z',¢Y) = (ZY(n), ¢ (n)) ~
N,(0,1,) ® N(0,1/n) for each n. Taking ¢ ~ N(0,1), we have || L 12 I¢| % 0 by Example 1(a),
and |2, = (070 |ZH)YT S E(ICM)YT € (0,00) by Lemma 7.12 and Proposition 1.2. More-
over, [[|[m°||, — i 5 0 and |[|[mP)|,» = O.(1) by (A2). Putting everything together, we recall from
Remark 7.3 the ‘arithmetic rules’ (7.1) for o, and O, symbols, and conclude using the triangle inequal-
ity for |||, that

HA1||n,r < ‘HmOHn - 7'1‘ ||Zl||n,r + |51| ||m0||n,r = 0c(1) Oc(1) + 0c(1) Oc(1) = 0c(1).
H1(b): Recall from (6.5) in Proposition 6.11 and (6.20) that
b = hi(n) Ls, W' (n) + Al(n) = hMO(n) = K10 (6.23)

for each n € N, where h! = l~11(n~) =nZ! and Z' ~ N,(0,1,) is independent of 89 = (v, m"). Then
|AL],.r = 0c(1) by Hi(a) and ||hY|,, = 71| Z |0y = Oc(1) as in the proof of Hi(a), so

d ~
th n,r — th’o”n,r < ||h1||n,r‘ + ||A1”n,r = 00(1) + 00(1) = 06(1)-

We already have ||m°|,, = O.(1) by (A2). In addition, ||[y|ln,r = (n~2 320 %)Y 5 EB(157)Y"
by (A1), so ||¥]lnr = Oc(1). Letting L' > 0 be such that the function f; in the AMP recursion (2.1)
lies in PLo(1, L), we have | fi(z,y)| < |f1(0,0)| + L'(|z| + |y|) for all (z,y) € R?, so we can apply the
triangle inequality for [|-||,, to deduce that

||m1||n,r = ||f1(h1a7)||n,r < 1£1(0,0)] ||1n”n,r‘ + L/(thnn,r + H'V”n,r) = 0.(1).

H1(c): For each n, note that (v, h') i‘go (v, h40) by (6.23) and Lemma 7.6(c). Thus, for each fixed
Y € PLo(r), it follows that n=1 Y7 | ¥ (h}, ) 2 -1 Yoy w(hi’o,’yi) =: T}, for each n, so in view of
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the third bullet point in Remark 6.1, it is enough to show that T}, — IE(?,Z)(GH, 7)) as n — oo. To this
end, we write

Z¢ L)+ S {0 3) — (Bl )} =2 T + Too
=1

for each n, and aim to prove that T}, N E(¢(Gl,’7)) and Tho — 0, which together imply the desired
conclusion.

Before proceeding, we briefly describe the techniques that we use to determine the limit of (7},1) and
also to prove Hi(d) and Hii1(c,d) later on. It is instructive to consider the following two special
cases where the claim is easier to establish. If @ depends only on its first argument, then since
hl(n) = 1 Z*(n) and Z'(n) ~ N,(0,1,) for each n, the result follows readily from the concentration
inequality (7.6) in Lemma 7.12 and the characterisation of complete convergence in Proposition 1.2.
On the other hand, if ¥ depends only on its second argument, then since (7 = ~(n) :n € N)
satisfies (A1) by assumption, we can appeal directly to Corollary 7.21(b).

For general ¢ € PLy(r), we seek to combine these two different lines of reasoning by exploiting the
independence of h'(n) and 8y = 8¢(n) = (v, m°) for each n. This allows ~(n) and h'(n) to be handled
separately (to a large extent) when we decompose T,,; as a sum of E(T},1 |8o) and T,1 — E(Ty1 | 8o)
in (6.24) and (6.25) respectively. For the latter, it is helpful to first think of v(n) as being fixed when
applying Lemma 7.12 to the Gaussian h', before subsequently accounting for the randomness of v(n)
using (A1).

Define ¥: R — R by ¥(y) := E(¢(11Z,y)) with Z ~ N(0,1). For each n, since Z1 = Z'(n) ~
Ny (0,1,,) is independent of 8y = 8o(n) = o (v, m"), we deduce from Lemma 7.7 that E(¢(h}, v; ‘80) =
]E(@Z)(leil,%) |80) = W¥(y;) almost surely, for every 1 <i < n. Since ¥ € PL{(r) by Lemma 7.23(b),
it follows from (A1) and Corollary 7.21(b) that n =1 3°" | ¥(v;) 5 E(¥()) as n — oo, where 7 ~ .

A further application of Lemma 7.7 shows that if G1 ~ N(0,7%) is independent of ¥, then E(¥(%)) =
E(E{w(Gl,f’y) ‘f’y}): E(w(Gl,”’y)), so in summary, we have

1< . I c _
=2 E((hi,) [80) = - > () S E(¥(7)) = E((G1,7)). (6.24)
i=1 i=1
To complete the proof that T),; — E(z/J((_}l, ”y)), we must therefore show that
Z {(hi, %) —E(W(hi, )] 80)} =0 (6.25)

asn — oo. To this end, let L > 0 be such that 1) € PLy(r, L), and for each y € R, define v, ﬁy: R—R
by ¥y (2) := (112,y) and ¥y(z) = ¥y (2) — E(¢y(Z)), where Z ~ N(0,1). Then by Lemma 7.23(a),
there exists Ko > 0, depending only on 71 and , such that ¢, € PLy(r, KoL) with L, := L(1V|y|"™1).
For fixed n € N and y1,...,y, € R, define L = L(y1,...,yn) := (Ly,,---, Ly,). Let v’ :=7r/(r —1) €
(1,2] be the Hélder conjugate of r, so that 1/r + 1/r" = 1, and note that since |||, < |||, for
1 <p<p < oo, we have

ILlloo _ ILlle _ Ll v In, A\ 1, A\
nl/r’ < nl/r’ < nl/r/ = ”LHH,T/ = EZ|L%| < L ]—+nz;‘yl‘
=

=1

= L(L+ lylly, )" (6.26)
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By Lemma 7.12, there exists a universal constant C' > 0 such that if Z;,...,Z, S N(0,1), then

Pyt g1, yn) ._IP’<‘ Z% )

2 2/r
} nt nt
ol o) (o
(Cr)"Ko| L2 (Cr) Kol Lo
nl/’rt 2 nl/rt 2/r
ool (i) )
(Cr) Kol Ll (Cr) Kol L[5,

Er(nyt, Kol|Llln) = Er(nyt, Kol L(y1, -+ -y yn)|lns) (6.27)
for every ¢ > 0. Returning to (6.25), we see that

for all 1 < i < n, where the final equality follows from Lemma 7.7 and the fact that Z' = Z'(n) is
independent of 8§y = 8y(n) = o(y,m’). We deduce from this and (6.27) that

P(T}| > |80) = (] Zw%

for every n and € > 0, where the second equality is again obtained using Lemma 7.7, and io(n) =
IL(Y1s - - V)l < L(1 + nyHfl’r)l/T/ = O.(1) by (6.26) and (Al). Thus, by Proposition 1.2,
there exists Ly € (0,00) such that for n € N, the events Ag(n) := {Lo(n) < Lo} € 8o(n) satisfy
> oo 1 P(Ag(n)¢) < co. Moreover, for each n and € > 0, it follows from (6.28) that

> e ‘ 30> = P(n,2,71, ., m) < Ey(n,e, KoLo(n))  (6.28)

P({|Ty1] > e} 0 Ao(n)|80) = P(ITp1] > €[ 80)Lagn) < P(n,6,715 -+, 7m) Lag(n)
< ET (TL,E, KOEO(n))]lAO(n) < Er(n757KOE0)7
where we have used the fact that Ap(n) € S8p(n) to obtain the first equality above. Recalling the

expression for E,(n,e, KoLo) in (6.27), we see that Y oo E,(n,e, KoLg) < oo, and hence conclude
that for every ¢ > 0, we have

D B(Tol > ) < 37 P({IT] > e} 0 Ao(n Z
n=1 n=1

pnqg

E{P({|T},] > £} N Ao(n)|8o) }+ZIP (Ao(n

3
Il
N

Er(n,e, KoLo) + > P(Ag(n)°) < oo, (6.29)

n=1

e

i
I

which together with Proposition 1.2 implies (6.25). Together with (6.24), this shows that T, 5
E(¢(G1,7)), as claimed.

Next, we bound |T},2| for each n. Letting L > 0 be such that ) € PLy(r, L), we can apply Lemma 7.24
to see that

1 n
Tzl <~ [0y 3) = (B = Aly)|
i=1

< 257 L||A o (1 +Hh1’0!\7"_1+!!h10 AL+ 217155
Sr LA (1 4+ IR+ IANES + 115 ), (6.30)

where the final bound is obtained using the triangle inequality for |-||,, and the fact that (a+b)""! <
2r=2(a" "1 + "1 for a,b > 0. Now ||hL9) 4 At (1) by Hq(b) and ||Al]|,, = o.(1) by
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H1(a), 50 |Tna| = 0o(1)(1 4 O(1) + 0,(1)) = 0(1). We conclude that n=2 " o(hl,v) £ T, =
Toq + Tho = E(i/}(@l,”y)), as desired.

H1(d): For each n, we have (v, m", h') 4 (v, m°, h19) by (6.23) and Lemma 7.6(c), so for each fixed
¢ € PLy(1), it follows that

n n

1 d ~

n Z; O >'Yz = Zm d) "Yz Z; 0{¢ hz 7% - QZ)(hzla’Vz)} =: Th1 + Tha- (631)
1= 1

By similar (and slightly simpler) arguments to those in H;(c), we will prove that Tj; E(Fo(¥) -

gb(@l,ﬁ)) and Tho = 0 as n — 0o.

For Ty,1, define @: R — R by ®(y) := E(¢(11Z,y)) with Z ~ N(0,1). For each n, recalling once again
that Z' = Z'(n) ~ N,(0,1,,) is independent of 89 = 8g(n) = o(vy,m°), we deduce from Lemma 7.7
that IE(Q&(IN"L},%) ‘ 80) = ®(v;) almost surely, for every 1 < ¢ < n. Now since ® is Lipschitz by
Lemma 7.23(b), it follows from (A3) that if G; ~ N(0,72) is independent of 4 ~ 7, then

*Zm E(¢(hi, ) |80) = 1Zm?q’(%)
1

S E(Fo()®(®)) =E(F(¥) - E{¢(G1,7) |7})=E(Fo() - <Z>(G1,7)()- |
6.32

To complete the proof that T, — E(Fo(*_y) - (G, *‘y)), we must therefore show that

Ty =n IZmO{qﬁ L) —E(é(hl,7i)]80) } = 0. (6.33)

To this end, let L > 0 be such that ¢ € PLy(1,L) on R. For u,y € R, define ¢, ,: R — R by
Guy(z) = u{qﬁ(ﬁz,y) - IE((Z)(TlZ, y))}, where Z ~ N(0,1), so that ¢,y € PLa(1, L71|u|). Since
ZY ~ N, (0, 1,,), it follows from (7.12) in Remark 7.13 that for every v = (vy,...,v,) € R® and t > 0,

we have
J20) <ol autie) ool (et )
ex — —_—— ex — e
= XP CLr|vl2) [ =P CLm v

P(n,t,v) <‘ Zﬁbvz,yz
=: E.(n,t, LTi||v]|n), (6.34)

where C' > 0 is a suitable universal constant. Recalling once again that Z'is independent of 8y =
o(y,m°), we deduce using Lemma 7.7 that m{{¢(h},v) — E(¢(h},v) | S0)} = qﬁmom(Zil) for all
1 <¢ < n. Thus, for each n and € > 0, we have

1 n
ny

Since ||m°||,, = 71 by (A2), Proposition 1.2 ensures that the events Ag(n) := {||mP)|, < 71 +1} € 8o(n)

P(ITh| > =]80) = (

>e ’ 80) = P(n,e,m") < E.(n,e, LTy ||m°||,,). (6.35)

satisfy > o | P(Ag(n)¢) < oco. Moreover, for each n and € > 0, it follows from (6.34) that

P({|Tp,| > e} N Ag(n)|So) =P(|T)| > €| 80)1 5, (ny < P(n,s,mo)]lgo(n) (6.36)
< Er(n757L7'100)]l[10(n) < ET(TZ,€,LT100),

where we have used the fact that Ag(n) € 8o(n) to obtain the first equality above. Recalling the
expression for E,(n,e,Cp) in (6.34), we see that Y >~ | E.(n,e, LT1C)) < co. Thus, for every & > 0,
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we conclude as in (6.29) that

Z]P) il >e) < Z P({|T, il > e} n Ag(n +ZP
n=1 n=1

n=1

8

81

IN

E.(n,e, LT Co) + Z P(Ay(n)°) < o0, (6.37)

n=1

Il
-

which implies (6.33) in view of Proposition 1.2, and hence that Tp,1 - 7E(¢(G1)) in (6.31).

As for Ty2 in (6.31), let L > 0 be as above, so that ¢ € PLa(1, L). For each n, recalling from (6.23)
that h'9 = h! + Al we now apply the Cauchy-Schwarz inequality to see that

1 n Lo L n
Tl < = 3 1l [(h0,3) = S0 = AL )| < = 7 [mf] |AL] < Lm0 )] A
= =1

Since |m%, % 71 by (A2) and ||AlY], < ||AYn,r = 0.(1) by Hi(a), we conclude that T,y =
Oc(1) 0c(1) = 0.(1). This completes the proof of H;(d).

Turning to the inductive step, we consider a general k € N and suppose that Hy(b, ¢, d) have already
been established. The assertions Hgl(e,...,j) and Hy11(a,b,c,d) will now be proved, in that order.
Note that PLyy1(2) C PLg41(r) since r > 2.

Hp(e): In the case j = £ =1, we have |||m°||,, — 1| 5% 0 by (A2), so (m®,m®),, > 72 =T11 = E(G?)
by (6.17). Now fix j,£ € {2,...,k+ 1}. Then ¢je: (x1,...,2k,y) = fi—1(xj—1,9) fe—1(xr-1,y) lies
in PLy11(2) € PLgy1(r) by Lemma 7.22 and the fact that fj_1, f,—1 in the AMP recursion (2.1) are
Lipschitz by assumption. Thus, by taking 1 = v, in Hy(c), we see that

(m/ =, m* Zf] (W) fomr (R )

_>E(fJ 1( J—17 ) Je- 1(G€ 1LY )):T]’IZE(GJ'GZ),

where the final equalities are taken from (6.17). To handle the remaining case where {j,¢} = {1,k+1},
note that since fi is Lipschitz, the map ¢gi1: (z1,...,25,y) — fru(zk,y) lies in PLg41(1). Thus, by
taking ¢ = ¢p11 in Hg(d), we deduce that

(m" Zm Fu(h %) S E(Fo() - fe(Gr, ) = Tip1 = E(G1Grp1),

where the final equalities are again taken from (6.17).

Hy(f): This proof is very similar to that of Hy(e). First fix 1 < j,¢ < k. By Lemma 7.22, the function
(x1,..., 2k, y) = xj fe(ze, y) lies in PLyy1(2) € PLyy1(7), so by applying Hy(c) again, we deduce that

(n?,m"), = %th fo(he7) = B(Gife(Ge,7)) = E(f7(Ge, 7)) E(G;Ge) = by Ty,

i=1

where the final equalities are taken from (6.19). For the second part of Hy(f), we fix 1 < j < k and
apply Hy(d) with the PLy4 (1) function (x1,...,2%,y) — x; to see that

. 1 & - o
(?,mO)n = — > i b 5 E(Fo(7)G5) =
=1

by the independence of G; ~ N(0, 7']2) and 5 ~ .
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Hi(g): In view of Definition 1.1 of complete convergence, it suffices to show that if (5,) is any
sequence of random variables with 3, 4 (fL(h*,4))n for each n, then 3, “3 E(f;(Gk,7)). For any
such sequence (8,), we first seek to construct a random sequence ((nn, 0,) ER" xR :n € N) such

that (n,,60n) 4 (R*(n),~(n)) for each n, and ((f;(1n,0n))n : n € N) = (8, : n € N) almost surely as
random sequences. This can be done by applying Lemma 7.10, where we take g,: R x R® — R to
be the measurable function (z,y) — (fi(z,y))n =n"1 > " fi(zi,y;) for each n.

Since (1), 0,) 4 (R*(n),~(n)) for each n by construction, it follows from the inductive hypothesis Hy(c)
that 11 S0y @i, Oni) £ 0" S0 @(hE,70) 5 E((Gr, 7)) for every ¢ € PLa(r), where (Gy,7) ~
N(0,73) ® m =: k. Consequently, denoting by ¥ := v,,(n,0,) = n7 1Y 0, (i 6ni) the joint
empirical distribution of the components of 7, and 6,, for each n, we deduce using Corollary 7.21(a)
that d,. (%, i*) “3 0, and hence that (iif) converges weakly to % with probability 1. By (A5), fi is
bounded, Borel measurable and continuous i*-almost everywhere, so we may now apply Lemma 7.14

to conclude that B, = (ff.(n,0n))n = [go frdiE — [go frdi* = E(f}(Gk,?¥)) almost surely. This
completes the proof of Hy(g).

Hy(h): For 1 < ¢ <k, it follows from Hy(e, f, g) that
Uf’e/n = (h?,m")n — bg (m? 1, m 1), S b Ty —be T =0

for all 1 < j < k. For £ = 0, we have m~! = 0 by definition, so vf’o/n = (h,m°, 5 0 for all
1 < j < k by the second part of Hy(f).

Hi(i): Recall from (6.4) that o = (M, My/n)"(M,)mk/n) € R*. Tt follows from Hy(e) that
(M My/n)je = (m?=t,mt1), 5 T, and (M) mF/n); = (m/~1mF),, 5 Tk forall 1 < 5,0 < k.
In the notation of Section 6.4, this means that M, mF/n % TH*+1 ¢ RF and M, My/n 5 TH €
RF*k_ Under (A4), Lemma 2.2 ensures that TI¥! is positive definite and hence invertible, we now apply
the continuous mapping theorem for complete convergence (Lemma 7.2) to deduce that

o = (M, My /n) (M mP /n) S (T 7HTIRAHL — gk,
as defined in (6.14).
Hi(j): Recalling (6.4) as well as the definitions at the start of Section 6.2, we can write
(17, = [P m® 3 = P15 — [Pem® (7, = lmP|7 — (%) T (M My/n) o*

Now [|m*||2 = Tri1k41 = 72,4 and M, My /n 5 T € RF¥F by 74, (e), and oF 5 aF € RF by Hy (i),
so

& k T (g T koo ENTAk] ka2
1|5 = [[mP[15 = (@) T (M My/n) o 5 Tppa g — (@) TTH @b = 7,4,

as defined in (6.15).

Hy+1(a): Denote by Ry, ..., Rys the individual summands (in the order in which they appear) in the
definition (6.22) of AF*!1 = AFFl(n) € R™. To establish that |AF*!|,,. = 0, it suffices to show that
| Rpsllns — 0 for s = 1,...,5. Observe first that since o % aF € R* by Hy(i) and ||k, = O.(1)
for all 1 < ¢ < k by Hg(b), we have ||Ru1|lnr < Sob_ [ — @[ A )nr = S35 06(1) Oc(1) = 0(1).

As for Ry, we know from Hy(e) that (M, My/n)je = (m/~t,mf1), 5 T, for all 1 < 4,£ < k, so
M ,;r M /n 5 T ¢ RF¥% which is positive definite by Lemma 2.2. We can now apply the continuous
mapping theorem for complete convergence (Lemma 7.2) to deduce that (M, My /n)* 5 (T)~1; see
H;,(i) above for a similar argument. By Hy(h), we have v*/n 5 0 € RF for all 0 < ¢ < k, so

’LT}kE’LT)k() (M (kk Zak k,0— 1>£>07
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formally by Slutsky’s lemma for complete convergence (Lemma 7.2). Since ||m*~!||,,» = O.(1) for 1 <
€ <k by Hp(b), we have || Rugl|nr = ”Mkwkun,r < Zlgzl ‘ﬁ)ﬂ ”mgilnn,r = Z?:l 0¢(1) Oc(1) = oc(1).
Turning to R,s and introducing &, ..., &, N(0,1), we see from Lemma 6.18 that ||PpZ**!|,,.,
is stochastically dominated by Zle |§Z\/n1/r for each n > k. By Example 1(a), Zle &l /T <
kmax)<i<k |&] /0" = 00(1), 50 || PZ* | = 0. Since ||m” |, = Try1 € (0,00) by Hy(j), we deduce
that | Rns|[n,r = HmkH HPkaJrlHnr = oc(1).

For the remaining summands Rp4 and Rys, the arguments are similar to those in the proof of Hi(a).
Recall that (Z’f+1 ¢y = (Z¥ (n), (M (n)) ~ N,(0,1,) ® N(0,1/n). Introducing ¢ ~ N(0, 1), we
have [CFF1] £ n~1/2 || 5 0 by Example 1(a), and [ 2541, = (0=} S5 |21 )17 S E(|¢M)" e
(0,00) by Lemma 7.12 and Proposition 1.2. By Hj(j), we have ||[m¥|, — 7541 = 0c(1). Moreover,
af = aF 4 0.(1) = O(1) by Hy(i) and ||m*|,r = Oc(1) for 0 < £ < k by Hy(b), so it follows from (6.4)
that

k k
10 e = (I = Pi) m* e < lm* s+ Y @] [Im ™ oy = Oc(1) + D 0c(1) Oc(1) = Oc(1).
=1 (=1
Putting everything together, we see that
1Rnallnr + | R llnyr = 775 | H ICH M e = 06(1) Oc(1) + 06(1) Oc(1) = 0c(1).
We have now shown that || Rpsln, — 0 for s =1,...,5, so |AF],,,. < Z?:l | Rps||ns — 0.

Hy41(b): By the inductive hypothesis Hy(b), we have ||h7||,, = O.(1) for all 1 < j < k and ||m?||,, =
O.(1) forall 0 < j < k. Now let j = k+1. For each integer n > k, recall from (6.7) in Proposition 6.11
and (6.21) that

ak nf(n) + T 25 (n) + AM (), (6.38)

M»

thrl(n) i’Sk thrl,k(n) — ilkJrl( )+ AkJrl
/=1

where the deterministic @* € R¥ is taken from (6.14) and Z¥t1 = Zk+1(n) ~ Ny (0, I,) is independent
of 8 = 8x(n) = a(y,m% hl, ... h¥). Then ||AFFL||,, = 0.(1) by Hy1(a) and || 25|, = O.(1), as
in the last part of the proof of Hy11(a) above. It follows from this and H(b) that

B

d
A5l = |

<D AEHIE e + 1A e = Oc(1) + 0c(1) = Oc(1).
/=1

In addition, letting L' > 0 be such that fi,1 is L’-Lipschitz, we can argue as in the proof of H1(b) to
deduce that

5 e = Wn (B3 e < 1 Fir (0,00 4 /(IR o+ [1yllr) = Oc(1).

Hi+1(c): We again make use of the distributional equality (6.38), which together with Lemma 7.6(c)
implies that (v, h', ..., ¥, RFFT) 4 s, (7, ht, ..., hE RF*TLE) for each integer n > k. Thus, for any fixed
¥ € PLgyo(r), it follows that n= 237 o(hl,.. .,hf, WAL ) L U (), RE RV ) =

T,, for each such n, so it suffices to show that T}, — E(w(Gl, oo, Gr, G 1, )) We decompose T}, as

1 n
Ezw(h},...,hf,hf“,% Z{w o REREEYE Sy (Rl RE RETY )Y = Tt + Tg

(6.39)
for each n > k, and seek to establish that T),; — E(@b(@l, coey G, G, '_y)) and T),2 — 0 by imitating
and extending the analogous arguments in the proof of H;(c).
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For Ty, define U: R¥1 = R by W(xy,...,z4,79) = E{w(:nl, ey Tp, 25:1 d]g Ty + Trpi12, y)} with
Z ~ N(0,1). For each integer n > k, since Z¥! = ZFt1(n) ~ N,(0,1,) is independent of §; =
Sx(n) = a(y,m° hl,... h¥), we deduce from (6.38) and Lemma 7.7 that

E(w<h’zla v 7hf7ilf+17’yi) ‘Sk) = E{w(h;la .o -7h§7ZIZ:1 6‘? hf +7{k+12f+177i) ‘Sk} = \Il(hzl7 .. 7h7],€777,)

almost surely, for every 1 < i < n. Now since ¥ € PLy1(r) by Lemma 7.23(b), it follows from the
inductive hypothesis Hy(c) that

S

=1 =1

where the equality above holds almost surely for each n > k. Taking Z k1~ N(0,1) to be independent
of G := (G1,...,Gy) and 7, we apply Lemma 7.7 again to see that

E(\P(Gh ERR) Gk’? ’7)) = E(E{¢(61» SRR Gk’? Z?:l d? Gﬂ + 7I-k+lék+1a ’_Y) ‘ G[k]af_y}) (641)
=E{y(Gr,....Gr, b ab G+ *k+1€k+1ﬂ)} =E@W(Gy,. .., Gk Grt1,7)),

where the final equality follows from the definition of G, in (6.16). To complete the proof that
Th1 — E(w(él, o Gy Grg1, 7)), we must therefore show that

1< - - c
v = - S {whi, . BB ) = E (g, R BRI 4) [85) 5 0. (6.42)
=1

To this end, let L > 0 be such that 1) € PLg,o(r, L), and for each v = (x1,...,zx,y) € R define
Py, Qz)v: R — R by ¢y (2) := w(xla sy Ly 25:1 5/2 $€++k+lza y) and TZJU(Z) = wv(z)_E(d)v(z))v where
Z ~ N(0,1). Then by Lemma 7.23(a), there exists K} > 0, depending only on the deterministic
ak = (@If,.. .,d]]g), 7{k+1 and r, such that v, € PLy(r, KkLH”H) with LH”H =L(1lvVv HUHT_I). For a
fixed integer n > k and v, ... 0™ e RF*1 define L= f/(v(l),...,v(")) = (L||fu(1>|\a-~-7L||U(n>||)-
Let ' = r/(r — 1) € (1,2] be as in the proof of H;(c), so that 1/r + 1/r' = 1, and note that since
I-lr < []]lp for 1 < p <p’ < oo, we have

n ]./T‘l

1o < 12l _ I _ 1 AN LN~
nl/,’,./ S nl/rl S ’)’Ll/r, = HLHH,T’ - E Z (LH’U(””) S L 1 + g Zl HU ' HT ° (643)
1=

i=1

By Lemma 7.12, it follows as in (6.27) that there exists a universal constant C' > 0 such that if

iid
1<~ -
P(n,t,v(l), . ,v(n)) = P(’n Z; Vi) (Zi)| > t)

Z1,...,Zn ~ N(0,1), then
(ol (i) (i) )
<exp|1l—min < ) Z
(Cr)" K| L]l (Cr)" K[| Ll oo

<eo(i-mn{ (i) - (@riims) )
<exp|1—min _ , -
(Cr) K || L|n (Cr)" K| Lln

= Byt Kpl Lllngr) = By (n,t, Kyl |L (0D, o™, ) (6.44)
for every t > 0. Next, define the Sg-measurable vectors U,(:) = (hi,... ,hf,%) for 1 <14 < n. Returning

to (6.42) and recalling (6.38), we see that
w(hzla SR hf? Berl’ ’71) - E(w(hzl7 SUR) hf? Berlv IYZ) ’8/6) = wvl(ci) (szJrl) - E(wvl(cl)(Zerl) ’Sk)

T okt
=¥,0(Z)
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for all 1 <4 < n, where the final equality follows from Lemma 7.7 and the fact that Z¥+! = Zk+1(n)
is independent of 8 = 8i(n). We deduce from this and (6.44) that

B(T!| > < |84) = (] zw ()

> e ’ Sk> = (n,s,v,(:),.. v,(gn))

<E, (n,E,Kk“E(U( vl(ﬁn))Hn?T,) (6.45)

for every n > k and € > 0, where the second equality is again obtaineld ?sing Lemma 7.7. Now
by (6.43) and Holder’s inequality, which ensures that ||-|| = [|-]l2 < (k +1)27 7 ||-||, on R¥T! we have

v o n 1 n . 1/7"/
Li(n) == || L, ... 0} ))Hm' < L<1 + %Z B )

Sk {1+ ZZ (|RE])" + [%]") }W

=1 (=1
k 1/r!
(14 3 (1, + i) (6.46)
(=1

for each n > k. Since ||h?||nr = Oc(1) for 1 < £ < k by Hy(b) and ||y||n.» = O(1) by (A1), this means
that Ly(n) = O.(1). Thus, by Proposition 1.2, there exists Lj, € (0,00) such that for integers n > k,
the events Ag(n) := {Li(n) < L} € 8i(n) satisfy > pi1 P(Ag(n)€) < co. Moreover, for each n > k
and € > 0, it follows from (6.45) that

P({| 1| >€}ﬂAk ‘Sk) (|Trll1‘ >€‘Sk)ﬂAk(n) SP(n,g,v,gl),.. (n))ﬂAk( )
< Ey(n,e,KpLk(n))La,(n) < Er(n,e, KiLy),

where we have used the fact that Ag(n) € Sg(n) to obtain the first equality above. Recalling the
expression for E,(n,e, KxLy) in (6.44), we see that 3", | E.(n,e, KxLy) < 0o, and hence conclude
as in (6.29) that for every € > 0, we have

> P(T|>e) < }: P({|T0| > e} N Ag(n }:1PAk

n=k+1 n= k+1 n=k+1
[
< Z (n,e, KiLy,) + Z P(Ak(n)c) < 00,
n=k+1 n=k+1

which implies (6.42) in view of Proposition 1.2. Together with (6.40) and (6.41), this shows that
T1 5 E(Y(Gy,. .., Gr, Grs1,7)) in (6.39), as claimed.

The final step in the proof of Hj1(c) is to show that T,2 — 0 in (6.39). Letting L > 0 be such that
¥ € PLgyo(r, L), we can apply Lemma 7.24 as in (6.30) to see that

k 1,k k+1,k
|Tn2|< Z‘¢ ety 17 l+ avi)_w(h%w"ahfvhz—‘r _Af—i_l”yi)‘

< L(k+2)3

r—rl + Hhk-&-l,kHZTTI + Hhkz-l—l,k o Ak-i—lu;;l)

k
(1 Il
/=1

k
S LIAF, (1 FS RO+ R

S \A’f“r\;;,:) (6.47)
/=1

for each integer n > k. Now |RF+1F||,, . L |h*+1|,,, for each such n, and recall from Hy1(a) that
| AR, = 0c(1) and from Hyy1(b) that ||hfl,, = Oc(1) for 1 < ¢ < k+ 1. Thus, Tpa = 0
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by (6.47), and we conclude from (6.39) that n=' 37 h(hl, ... hE, W5V 7)) £ T = Ty + Tpp S

]E(v,/;(@l, ooy Gy Gt '_y)), as required.

Hp+1(d): The arguments in this proof are similar to those given for #H;(d) and Hyi1(c), so we
outline the key steps without going into the full details. By (6.38) and Lemma 7.6(c), we have

(v,mO, AL, ... WP BFHD) i’gk (v, mO, hY, ... hF WFHLE) for each n > k, so for fixed ¢ € PLj (1), it
follows that n= 1S m ¢(hl, ... b WE) L n=1 S0 om0 g(hl, ... hF BETYR) = T, for each such
n. Using (6.38), we now write

1 @ - 1 & 3

Tnzﬁzmggﬁ(h}a7hfvhf+17’71)+ﬁzm?{¢(hzl,,hf,thrl’k,’yl)*qb(hzl,,hf,hf+17’yl)}
i=1 i=1

=:Tp1 +Tho (648)

for each n > k, and aim to prove that Tp; — ]E(FO(S/) -p(Gy, ..., Gy, '_y)) and Tpa — 0, which together
imply the desired conclusion.

For Ty, recall once again from (6.21) or (6.38) that hE+(n) = o8 @k he(n) + 7101 24 (n) for each
n, where Zkt1 = ZF1(n) ~ N,(0,1,) is independent of 8 = Sx(n) = a(y,m° hl,... h¥). Define
O: RFF 5 Rby &(2q,...,25,y) = E{qb(:cl, ey They Z]Z:l o’zf Tp+Tre1Z, y)} with Z ~ N(0,1). Then
® € PLy41(1) by Lemma 7.23(b), and as in (6.40) and (6.41), it follows from the inductive hypothesis
Hp(d) and Lemma 7.7 that

LSt ! ki R o g .
n;mﬁE(qs(hz;’hz?hl ”YZ)‘Sk)_n;ml@(hl7"'7hz7’}/l)

S E(R(A) - (G, ....Gr 7))

1
=E(Fo(7) - 6(G1,-- -, Gk, Gry1,7))- (6.49)
Next, we show as in (6.42) that
1 < . . c
T, = - > o md{ (i, ... bR ) = E((hi, . By AT 4) | 8) } 5 0. (6.50)
i=1

To this end, for each u € R and v = (x1,...,71,y) € RFTL define Guws Puw: R = R by ¢y (2) =

u¢(a;1, e, Tk, Z];:l 075 Tp+ Thi12, y) and ¢y (2) 1= Py u(2) — E(qﬁu,v(Z)), where Z ~ N(0,1). Since
¢ € PLgyo(1), we deduce from Lemma 7.23(a) that there exists K’ > 0, depending only on the
deterministic &* = (@’f,...,o‘zﬁ), Try1 and 7, such that ¢, € PLi(1, LK'|u|) for each u € R and
v € R**!. Now define the 8;-measurable vectors U,(j) := (h},...,hF ;) for 1 <i <, asin (6.45), and
let E, be as in (6.34). Then by Lemma 7.7 and (7.12) in Remark 7.13, it follows as in (6.34), (6.44)

and (6.45) that for each n > k and ¢ > 0, we have

1 o - -
B(T0,| > ¢ Si) = P(‘nZ%o,w@(Zf ™
i=1

> ¢ ‘ sk> < Bo(n,e, LK'||m||,). (6.51)

Now m® = m%(n) is measurable with respect to 8¢ C 8x = 8y(n) for each n, and ||m°||, = O.(1)
by (A2), so we conclude as in (6.36) and (6.37) that >, P(|T},| > ¢) < oo for all € > 0. Thus,

T', 5 0 by Proposition 1.2, as claimed in (6.50).

Finally, we prove that T},5 - 0. Let L > 0 be such that ¢ € PLyo(1, L), and for n > k and 1 < i < n,

define o) = (hl, ... BE,BEPYR 5y and O = (R, BE R ) = (RL, L RE RETEE AR
as in (6.47), where the final equality is obtained from (6.22). As in the proof of H;(d), we now apply

the Cauchy-Schwarz inequality and the fact that ||-||, = ||-|ln2 < ||||lnr to see that

Tl < 3 Imillo (v = oE)] < 5 3 ImPIIAT < Llm® o] A"
i=1 =1
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Since ||m°||, > 71 by (A2) and ||AML, < JAFF|, = 0.(1) by Hyy1(a), we conclude that Ty =
oc(1), as required. Together with (6.48), (6.49), (6.50), this yields Hy1(d), and hence completes the
inductive step for Proposition 6.16. O

Proof of Remark 6.17. Under (A0), (A4) and (A5), if instead (A1)—(A3) hold with % and O.(1)
replaced with 2 and O,(1) respectively, then as explained in the third bullet point in Remark 6.1,
we can make the same replacements in the proof of Proposition 6.16 and most of the arguments go
through as before. However, a few alterations are required in the proofs of (c,d) and (g), which we
now describe.

First, in the proof of H;(d), the goal in (6.33) is now to show that T/, 5 0 as n — oo. Instead of
proceeding as in (6.36) and (6.37), we return to (6.35), where we note that if € > 0 is fixed and (A2)
takes the form ||m?, % 71, then P(|T",| > €]80) < Er(n,e, LTi||m°||n) = 0,(1) by Slutsky’s lemma
and the definition of E, in (6.34). Then for every ¢ > 0, it follows from the bounded convergence
theorem that P(|T),| > ) = E(P(|T,;] > £|8p)) — 0 as n — oo, so T),; 20, as desired.

In the proofs of Hgi1(c,d), the analogues of (6.42) and (6.50) can be derived from (6.45,6.46)
and (6.51) respectively in much the same way; for the former, since ||h*||,,, = Op(1) for 1 < ¢ < k by

the modified Hy (), (6.46) implies that Ly(n) Sgr LK (145, [R5 )Y = 0,(1).

In addition, Hy(g) now reads by = (f5(h*,7))n = E(f;(Gk,¥)) = br. To prove this, we can argue
along subsequences, similarly to the proof of Corollary 7.21(b). O

Proofs of Theorems 2.1 and 2.3. Theorem 2.1 follows from Theorem 2.3, which in turn is a immediate
consequence of Proposition 6.16(c) and Corollary 7.21(b). O

Proofs for Remark 6.1. (a) Convergence in probability: This is immediate from Remark 6.17 and
Corollary 7.21(b).

(b) Almost sure convergence: The random sequences T := (m%(n) : n € N) and I' := (y(n) : n € N)
take values in E := [[2; R", whose cylindrical and Borel o-algebras coincide by Kallenberg (1997,
Lemma 1.2). Let E* be the set of all (u,v) € E x E such that (A1)~(A3) hold when T = u = (u(n) :
n €N) and I' = v = (v(n) : n € N) are non-random. It can be verified that E* is a Borel subset of
ExFE.

For k € N, let fi* := N(0,72) ® 7 and uk := v, (h*,v) for n € N. In the special case where (Y,I') € E*
is deterministic, Theorem 2.1 implies that for each k, the resulting sequence of AMP iterates (hk(n) :
n € N) satisfies d,(uX, i*) = 0. Note that for each n, we can write d,(uk, i*) = d, (v, (h*,7), i*) =
gn(m°(n),y(n), W(n)) for some (non-random) Borel measurable g,: R" x R" x R"*™ — R. Indeed,
we see from (2.1) that h* = hF(n) is a deterministic Borel measurable function of m°(n), v(n) and
W (n). Moreover for all z,2’ € R™ and the corresponding empirical distributions vy, (z), v, (z") of their
components, we have

|dr (Vn(:c),ﬂk) —d, (Vn('f[?l),,ak)‘ <d, (Vn(a:),yn(x’)) < (nil Yoy | — :c;]r)l/r = ||z — 2'||nr

since d, is a metric, so x — d, (Vn(:c), ,ak) is continuous on R".

Since {(a1,az,...) € RY : lim,, .o a, = 0} is a Borel subset of R, we conclude that g: (u,v) ~
P{lim, o0 gn (u(n),v(n), W(n)) = 0} is a well-defined Borel measurable function on E x E satisfying
g(u,v) =1 for all (u,v) € E*.

Now suppose more generally that (Y,I') and (W(n) : n € N) are independent. If (T,I') € E* almost
surely, then for the corresponding sequence of AMP iterates (hk (n):n¢€ N) from (2.1),

P( lim d, (s, i*) = 0) = P Tim g (m°(n),7(n), W(n)) = 0)
- E{P(nlggo gn (m°(n), 7 (n), W (n)) =0 ) T, r)}
=E(g(T,T)) > E(g(T,T) Iyrryepy) = 1,
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where the thlrd equality follows from the 1ndependence assumption and Lemma 7.7. Therefore,
dp(pF, 1) 4370 as n — oo, and moreover d, (¥, i%) “3 0 by Corollary 7.21(a). O

6.6 Auxiliary results and proofs for Section 2

Proof of Lemma 2.2. We proceed by induction on k, noting first that the base case k = 1 is trivial
since T = 72 > 0 by (A4). Now for k > 2 and a = (ay,...,a;) € R¥, recall the expression (2.7)
for o' THa. If ay #0=as = --- = ag, then a' THlg = (a171)? > 0 as in the base case. On the
other hand, if ar, # 0 for some 2 < L < k, then by (A4), we can find By, C R with n(Bg) > 0
such that ;1 — arfr—1(xr—1,y) is non-constant whenever y € By. For all such y, note that

(X1, Th1) > Z?:Q agfo—1(xe—1,7) is non-constant on R¥~1. Now by the inductive hypothesis,
(G1,...,Gk_1) has a positive definite covariance matrix T*~1, so the random variable a;Fy(y) +
ZIZ:Q agfr—1(Gy—1,y) is non-degenerate whenever y € By. Since 4 ~ 7 is independent of G, ..., Gg_1

and P(y € Br) = n(Bg) > 0, it follows that a1 Fo(7) + S5y arfe_1(Ge_1,7) is also non-degenerate.
Thus, in all cases, it follows from (2.7) and (A3) that o' T/¥la > 0 whenever a # 0, as claimed. O

Proof of Remark 6.5. Since fo is Lipschitz and 7,5 € P1(2), we have JE{H(fO 7,7), )H } < o0, s0
uP € Py(2). By Corollary 7.21(b), an equivalent formulation of (A17) is that

wa mg,vi) < E{¢(fo(1,7),7) }

for all ¢ € PLy(2). In particular, (z,y) — 2% lies in PLy(2), so [m%2 = n~ 130 |mI? 5
IE( fo(ﬁ,f’y)Q) =: 72, which yields the first part of (A2). Moreover, the function F: R — R defined
by Fy(y) := E( fo(ﬁ,y)) is Lipschitz, and since 7,7 are independent, it follows from Lemma 7.7 and
Jensen’s inequality that

E(Fo(7)) = E{E(h(1,9)]7)"} < B{E(fo(m.7)*]7)} = 7.
For each Lipschitz ¢: R — R, Lemma 7.22 ensures that (x,y) — x¢(y) belongs to PLa(2), so

(m°, ¢ (v Zm ¢(i) = E(fo(1,7) - 6(7)) = E{E(fo(71,9)|7)¢(3)} = E(Fo(1)¢(%)),

where the final equality again follows from Lemma 7.7. Therefore, (A3) also holds. O

The following auxiliary result is used in the proof of Proposition 6.16(a) to control the third summand
in the deviation term A**1 defined in (6.22).

Lemma 6.18. Forn € N and k € {0,1.. — 1}, let Z*¥+1 = ZF+1(n) be as in Proposition 6.11, so

that Z*t1 ~ N, (0,1,,) is independent of Sk. If &1,..., & Y N(0,1) and r > 1, then ||P,ZF*Y|,, is

stochastically dominated by Zle |&i| [t/ (rv2)

Proof. Note that Py is an Sp-measurable projection matrix of rank rp < k. Since Zk+1 i inde-

pendent of S, it therefore has conditional distribution N, (0,1,) given 8; by Remark 7.4. Now let

1,00, &, i N(0,1) be independent of 8 and let {m!,. m'+} be any Sx-measurable orthonormal

basis of Im(M}) = Im(P), as in Remark 6.10. Recall that 1f Z ~ Np(0,1I,) and P € R™*" is a deter-

ministic projection matrix of rank p, then PZ ~ N(0, P), which is also the distribution of Y% _; (u;

when (i,...,¢ by N(0,1) and {uq,...,up} is any orthonormal basis of Im(P). We deduce from this

and Lemma 7.6(b) that PkaH and Z L §Z * both have conditional distribution N, (0, Py) given S.
This implies that HPkaHHnr =300k &m

n,re
Now for all 2 € R”, we have ||z|n, = n /" ||z]l, < n~YV2)|z||ly by Holder’s inequality and the
fact that |||l < |||l for 1 < p < p/. Since ||@m’||2 = 1 for all i by definition, it follows from this
and the triangle inequality for ||-[|, that || 325, &m [l < >ty 1l [ [ >k ‘&’/nl/(rvm <

Zi:l |&|/n'/ (V) Combining this with the conclusion of the previous paragraph yields the result. [
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6.7 AMP with matrix-valued iterates

As mentioned in Section 2.1, state evolution characterisations can be obtained for more general abstract
AMP recursions in which the iterates are matrices rather than vectors. Here, we will briefly describe
the extended version of the asymmetric iteration (2.10), which is used to establish the master theorem
for GAMP in Section 4.1.

For n,p € N, let W € R"*P 3 € RP and v € R” be as in (B0). For ¢g,fy € N, let (g, fxr1 : k € Np)
be two sequences of Lipschitz functions gi: R” x R — R and fy11: R x R — R‘?, which are
applied row-wise to matrices. Given Q! := 0 € R™# By € Re*fr and M° € RP*‘E | inductively
define

k = WMk - Qk_lBlja Qk = gk<Ek7fY)7 Ck = n_l Z?:l g;g(Ezkvp}/Z%

B (6.52)
H* = WM —MP e, M= f (M 8),  Bry =0t 0 fi (HPTLB))

for k € Ng. Here, EF and HJ]-CJrl denote the " and j** rows of E¥ € R™*s and HF1 ¢ RP*u

respectively. Also, g, : RYE xR — R *¢e and AR R xR — R¢*H are bounded, Borel measurable
functions that agree with the derivatives (Jacobians) of g, frx11 respectively with respect to their first
arguments, wherever the latter are defined.

Consider now a sequence of recursions (6.52) indexed by n and p = p,, with n/p — 0 € (0,00) as
n — oo, and assume appropriate analogues of (B0)—(B5) with r € [2,00). In particular, suppose
in place of (B2) that (MO)TMO/n 5 %y for some non-negative definite ¥y € R#*% and that

piYP Z LM |’" = O,(1). The state evolution recursion for (6.52) is then defined analogously to
that in (2 11) via

Tri1 = E(9x(G7,7) (G}, 7)) € ROt
St =0 " E(frs1(Ghy1. B) fis1(Ghpy, B) 1) € RIP¥LE

for k € Ny, where we take Gf ~ Ny (0,%%) to be independent of ¥ ~ 75, and G7 | ~ Ny (0, Try1)
to be independent of 8 ~ 3.

(6.53)

For k € Np, it can be shown that the empirical distributions of the rows of (E* ) and (H**! ) con-
verge completely in d, to Ny, (0, X;) @7 and Ny, (0, T41)®7g respectively as n, p — oo with n/p — 4.
Similarly as in Remark 2.4, these limiting distributions remain unchanged if one or both of Cy, Br+1
are replaced with the deterministic matrices Cy, := E(g,(G%,%)) and Byt := 6~ IE(fk+1(Gk+17B))
respectively. Moreover, by generalising the definitions (2.12)—(2.13) of the limiting covariance matrices
in line with (6.53), one can obtain the d, limits of the joint empirical distributions for (6.52) above.

The proofs of these results are conceptually very similar to that of Theorem 2.5. For further details,
see Javanmard and Montanari (2013), who first consider a generalisation of the symmetric itera-
tion (2.1) with matrix-valued iterates, and then handle the asymmetric case by a reduction argument.

6.8 Proofs for Section 3

Proof of Theorem 3.1. As described in the proof sketch on page 16, we introduce the recursion (3.13)
given by u! = ul(n) = Wa¥ = Wgo(v°) and
W = uF N (n) = W (u 4 ) — brgr—1 (WP + pp_1v)
= W fi(u*,v) = bifroa (u" 7, 0)

for k,n € N, where fi(2,y) = gi(2 + pry) and fi(z,y) = gi(x + pry) for z,y € R, and by = by(n) =
(gh,(uF + pgv)yn = (ff.(uF,v)),. First, we verify that this is an iteration of the form (2.1) to which
we can apply the master theorems from Section 2.1 for symmetric AMP. Indeed, it follows from (MO)
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and (M1) respectively that (3.13) satisfies (A0) and (A17"), where the latter holds with m® = v,
y=v,y=V ~m, 7 =U and fo(az,y) = fo(uoz + ogy) for z,y € R. By Remark 6.5, (A1T) implies
that (A1)-(A3) hold with r = 2 and 7 = c—limnﬁoo Hf}oﬂz = 02, As verified in (3.14), the state
evolution parameters (75, : k € N) for (3.13) satisfy 772 = o7 for all k in view of (3.6). Finally, by (M2),
each fi: R? — R is Lipschitz and the corresponding f;, satisfies (A5).

Consequently, for each k € N, it follows from Theorem 2.3 that

ZT/J ce, Uy ,’Ui) — E(lﬁ(/aﬂf + ooU, 01G1,. .. ,Uka,V)) 50

sup
1/J€PL]€+1 (2,1)

as n — 0o, where (01G1,...,0:Gr) ~ Ni(0,5¥]) is taken to be independent of (U, V) from (M1).
Since ®y: (z1,...,2%,y) — (1 + 1Y, ..., Tk + 4kY,y) is a linear map with Lipschitz constant Ly =
(i1, .-y pg, 1), we have E;z(d) o®y) € PLg41(2,1) whenever ¢ € PLi1(2,1), so it follows from the
display above that

sup Z@D /Uz) i +M1U27"‘7vf+ukviavi)

YEPLy,2(2,1)

— E(w(,u,gv + ooU, 11V + 01G1, ..., upV + 01 Gy, V))’ 50 (6.54)

as n — oo. Defining A* = A¥(n) := v* — (uF 4 o) € R™ for k,n € N, we can apply Lemma 7.24 to
see that

sup Zzp o) ob, . oF ) — () vt + v, oF o v)
’LZJGPL]H,Q (2,1) .
1/2 &
< <Z HNHZ> (1 + D (10l + Nl + pevlln) +2([10° 1 + Han)>
=1 =1
k 1/2 k
< (Z HAEHZ> (1 + 3 (1Al + 20 + pevlln) +2(]10°] + Han)> (6.55)
=1 =1
for all k and n, where |||, = ||-[ln2 = n~/?|-|| on R™. For every £ € N, it follows from (M1) and (6.54)
that
1Ol = E((koV +00U)?) = g + 05, |lvllz = E(V?) =1
1 n
and [lu’ + pev)? = - D (uf + pevi)* 5 E((eV + 00Ge)?) = i + 07 (6.56)
i=1

as n — oco. We will now establish by induction on k£ € N that
IA*, = [0 — (W* + pav)|]n =0 asn — oo (6.57)
and hence that the conclusion (3.8) of Theorem 3.1 holds for every k. For the base case k = 1, we
have ||v]|, — 1 by (3.4) and A(¢°,v),, = p1 by (3.5), so
1A ] = flot = (u! + p10)|n = |48° = (W + mv) n = (A2, 0)n — pua| 0]l = O
as n — o0o. It follows from this and (6.54)—(6.56) that (3.8) holds when k = 1. For a general k > 2,
we write

Ak—l—l Ak—i—l( ) _ Uk—l—l _ (uk—i-l + ,uk—l—lv)

= Agp(v") = bgr—1(v* 1) — (War(u® + pv) — begr—1 (u" ™ + p—1v) + pures1v)
= (Mo, gk(V™))n — por1)v + W (e (0") — gr(u” + pxv))

+ (Ekgk—1(uk_1 + pp—1v) — bkgk—l(vk_l))
—: Rt + Rua + Rys (6.58)
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for each n € N, and consider Ry1, Rp2, Ry3 in turn. First, since (z1, ..., 2k, y) — ygr(zr) belongs to
PLg+1(2) in view of Lemma 7.22, it follows from the inductive hypothesis (3.8) and the definition of
ft+1 in (3.6) that A(v, gr(v%))n = 71300 Avi gr(vF) 5 AE(Vgr(uieV + 0kGr)) = prsr1. Together
with (6.56), this implies that || Ru1ln = |Mv, g&(v®))n — trgi] [[v]ln = 0 as n — oo.

Next, since ||[W| = [|[W]law2 = O¢(1) (e.g. Anderson et al., 2010; Knowles and Yin, 2013) and g is
Li-Lipschitz for some L > 0, the inductive hypothesis (6.57) ensures that

1Rzl < [1W] lgx (") = gi(u® + ) ln < LW 0" = (u* + pgo) o = Lil W A = 0

as n — oo. Similarly, HA’“len 5 0 by induction and g1 is Li_1-Lipschitz for some Lj_1 > 0, so as
a first step towards controlling || Ry3||», we have

lgr—1 (" + p—10) = g1 (VF )l < Lt [AF ] 5 0.

Note that since (1,..., 2Tk, y) — gr_1(7s_1)? lies in PLy1(2) by Lemma 7.22, it follows from (6.54)
that

gk—1 (" + 1) |12 5 E(gh—1(pk—1V + 04-1Gr—1)?) = o}
as n — oo. Furthermore, since g; satisfies (M2), we can apply the inductive hypothesis (3.8) and
argue as in the proof of Proposition 6.16(f) to see that by = bi(n) = (g},(vF)), = n "1 30, gi.(vF) 5
E(g,(uxV + 03Gy)). Similar reasoning based on (6.54) yields by, = by(n) = n=* 31 gh (vF + pugv;) =
E(g,(1iV + 01Gr)), so bi(n) — by(n) < 0 as n — oo. Putting everything together, we conclude that

[ Ruslln < 10k = ielllgr—1(uF ™ + pg—10) | + [Belllgr—1 (0" + pr—1v) = g1 (0" ) [ln = 0,

and hence that [|A*1, < |Ruilln + | Ru2lln + | Ruzlln ~ 0 as n — co. Combining this with (6.54)—
(6.56) yields the desired conclusion (3.8), so the inductive step is complete. O

Proof of Corollary 3.2. For 1) € PLy(2), note that since gx: R — R is Lipschitz by assumption,
(zo, 21, ..., 2k, y) — ¥ (gk(2k),y) is a PLgy2(2) function to which we can apply (3.8). This yields (3.9),
which specialises to (3.10) when ¢ = 92: (z,y) — (z—vy)? is squared error loss. Finally, by considering
the PLy(2) functions (z,v) — ygr(z), (z,y) — gr(z)? and (x,7) — 32, we deduce from (3.9) that as
n — 0o, we have

(%, v)n = E(Vge(unV + 0kGr)) = piran

as in the paragraph after (6.58) above,
15417 = ng > S E(gr(mV + 0rGr)?) = 0hia

and ||lv)|2 5 E(V?) =1 as in (3.4). Combining these, we obtain (3.11). O

Proof of Lemma 3.8. Fix u # 0and o > 0, and let V'~ 7mand G ~ N(0,1) be independent. Then puV +
oG has Lebesgue density y — p(y) := [g ¢o(y — px) dr(z) > 0, where ¢5: 2z — ( ZWJ)_le_ZQ/(QUQ)
is the density of oG ~ N(0,02). Moreover, since all the derivatives of ¢, are bounded on R, we can
differentiate repeatedly under the integral sign to see that p{?)(y = Jr qb(j (y — px) dm(z) for all y and
j € Ny, so p is a smooth function on R. For each y € R, deﬁne my to be the distribution on R with
density (i.e. Radon-Nikodym derivative)

dmy Goly —pz)  _ Poly — pa)
dr fR b0 (y — pa’) dr (') p(y)

with respect to 7. It is easily verified that m, is the “conditional distribution of V' given uV +0G = y”,
formally in the sense of Remark 7.5(II). It follows from this and Dudley (2002, Theorem 10.2.5) that

(6.59)
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taking V,, ~ m, and defining g(y) := E(V,) = [paxdmy(z) for y € R, we have E(V|uV + 0G) =
g(nV 4+ oG). For each y, note that

Jaw oy — pa)dr(x)  fop= (yooly — px) + ¢4y — p)) dm(x) _ y+0>(logp)'(y)

fR b0 (y — px) dm(z) f]R ¢ (y — px) dr(z) H ’
(6.60)

9(y) =

0 (3.17) holds and g is infinitely differentiable on R, and by similar calculations,

1+ o?(logp)"(y) B ﬂch(l + ag(logp)”(y))
1 o2 p2

Jdy) = = %Var(vy) > 0.

We now consider in turn the two conditions on 7 in the statement of the lemma.

(i) If V ~ 7 has a log-concave density, then the density p of 4V + oG is also log-concave (Prékopa,
1980), so (logp)” <0 on R. Thus, 0 < ¢’ < |u|~! on R, so g is Lipschitz with constant |u|~!.

(ii) Suppose first that 7 is supported on a compact interval [a,b]. Then for each y € R, the distri-
bution 7, has a density with respect to 7 (by definition), so it is also supported on [a, b]. Thus,

Var(V,) < E{( (a +b) /2) } < (b—a)?/4 for all y, whence g is Lipschitz with constant
| (b — a)? /(40) and

2 2
w(b—a
—1 < o*(logp)"(y) < 8402) -1 (6.61)

More generally, suppose that 7 is the distribution of Uy 4 Vj, where Uy ~ N (0, 03) with o9 > 0,
and Vjy ~ mg is independent of Uy and supported on some compact interval [a,b]. Then p is the

density of uV + oG £ Uy + /o2 + p203 G, so it follows from (6.60) and (6.61) that

e )
1ho_ o < _
|l o2 + pi2og = Jul o? + pPog \4(0? + p2op)

on R. The expression on the right hand side is therefore a Lipschitz constant for g. 0

Proof of Lemma 3.7. Let 1: R? — [0, 00) be any measurable loss function, and fix s1, s3 € (0, 00) with
s1 > s9. Taking G’ ~ N(0,s% — s2), V ~ 7 and G ~ N(0,1) to be jointly independent, we first claim
that
Rep(s5?) = inf E{¢(g(V + 5:G),V)} = inf E{¢(§(V + 52G,G"),V)}, (6.62)
g

where the infima are taken over all measurable g: R — R and §: R> — R respectively. Indeed, the
first equality holds since V' + s2G' = s2(,/pV + G) when p = s 2 and the middle expression is clearly
bounded below by the final one, so it remains to prove the reverse inequality. For any fixed §: R? — R,
we have

a) :==E{¢(g(V + 52G, a), )}>1anE{¢( (V+5G),V)} = Ry (557

for all a € R, so it follows from Lemma 7.7 that E{w( (V + 52G,G"),V)} =E(¥(G")) > Rry(s3?),
and hence that (6.62) holds. Since (V,V + s2G + G') = (V,V + 51G), we deduce that

R7T71ZJ<32 lnf E{w( V + 592G, G/ )} < mf E{z/}( V + 859G + G/)7 V)}

i BV + 516V} = R o).

In addition, arguing as above for (6.62), we have
Rey(s7?) = inf E{¢(9(V + 51G),V)} < inf E(¢(a,V)) = inf E{¥(9(G),V)} = Ry (0).

Thus, p — Rr4(p) is non-increasing on [0, 00).
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Finally, fix p € (0,00) and for each y € R, let V, ~ m, be a random variable whose density with
respect to 7 is given by (6.59) with u = \/p and 0 = 1, so that 7, is the conditional (i.e. posterior)
distribution of V' given \/pV + G = y. It follows from Brown and Purves (1973, Theorem 3) that if
the posterior risk function
Tyt a > E(?/J(a, V;/))

attains its infimum on R for Lebesgue almost every y € R, then there exists a measurable g* =
gy: R — R with ¢g*(y) € argmin,cg E(¢(a, Vy)) for Lebesgue almost every y € R, whence Ry y(p) =
E{¢(9*(\/pV +G),V)}. This is the case (for every p) if 1(z,y) = ¥(x — y) for some convex function
U with ¥(u) — oo as |u| — oo, in which case ry: a — E(¢(Vy,a)) is convex with ry(a) — oo as
la| — oo, for each y € R. O

Corollary 6.19. Given independent random variables V.~ 7 and G ~ N(0,1), the function p —
mmse(p) :=E{(V —E(V | /pV + G))2} is non-increasing on [0,00). Moreover, if V satisfies one of
the conditions of Lemma 3.8, then p — mmse(p) is also continuous on (0, 00).

Proof of Corollary 6.19. Recall that whenever X,Y are random variables with E(X?) < oo, it follows
from an orthogonal decomposition of the type (3.18) that E{ (X —E(X | Y))2} = ming E{ (X—g(Y))Q},

where the minimum is over all measurable functions g: R — R. Thus, by Lemma 3.7, p — mmse(p)
is non-increasing on [0, c0).

Now fix s; > s3 > 0, and as in the proof of Lemma 3.7, let G’ ~ N (0,83 —s3), V ~ 7 and G ~ N(0, 1)

be jointly independent, so that (V,V + s2G + G') 4 (V,V + 51G). Then under the conditions of

Lemma 3.8, it follows from (i) and (ii) in its proof that there exists a Lipschitz g3: R — R with
G5(V + 52G) = E(V |V 4 52G) = E(V |55, 'V + G) and Lipschitz constant Ly, < Cr(1V s5?2), where
Cr > 0 depends only on 7. Thus,

mmse(s; %) < mmse(s; %) = mgin E{(V —g(V+ slG))Q}

<SE{(V-g(V+50)"}

=E{(V — g5(V + 5G + G"))*}

—E{(V = g5(V + 5G))*} + E{ (g5 (V + 52G) — g5(V + 2G + G"))*}

< mmse(s; %) + Ls, E(|G'|?)

< mmse(sy?) + Cx (s3s3 V 57)(s52 — s72). (6.63)
To justify the equality in the third-last line, note that ¢g5(V + s2G) = E(V |V + s2G,G’) by the
independence of G’ and (V,G), so for any measurable §: R? — R with E(§(V + s2G,G’)?) < oo, we

have E{ (V = g5(V +52G)) §(V 452G, G") } = 0. We deduce from (6.63) that p — mmse(p) is Lipschitz
on (p/, 00) for every p’ > 0, and hence that it is continuous on (0, c0). O

Proof of Corollary 3.9. Given any sequence of functions (gi) for which the corresponding AMP itera-
tions (3.3) satisfy the hypotheses of Theorem 3.1 or 3.5, we prove (3.22) by induction on k € Ny. For
each such k, it follows from (3.11) and (3.19) that as n — oo, we have

0 0Vl e E(V V +o0,G
Hflel Q\}IZII I \/p;ﬁ _ [E(Var(uV + 0xGi))| - \/E(E(vmwwkc*k)?) — /T = mmser(pr),
nil%lin \/E(gk(ukV + 04Gr)?)

where we set po = pf = (110/00)? and write G for the random variable U from (M1) when k = 0. Now

V1 —mmseg(pf) = /pi/A by (3.21), so p1 < p} and (3.22) holds when k = 0. For a general k € N,
we have pj, < pj. by induction, so since p — mmse(p) = mmsey(p) is non-increasing by Corollary 6.19,

we deduce that /1 — mmse(p;) < /1 — mmse(p}) = \/Pigp1/A and hence that pry1 < pj . This
completes the inductive step for (3.22).

As for (3.23), we can apply (3.9), the definition of Ry (p), the fact that p, < p; and Lemma 3.7 (in
that order) to conclude that n=* Y"1, V(OF, v;) 5 E{¢(gk(ukV+Uka), V)} > Ry x(pr) > Ry x(p%)s
as required. O
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Proof of Theorem 3.10. Under the conditions of Lemma 3.8, each g;: R — R is Lipschitz and satis-
fies (M2), and by Corollary 6.19, p — A?(1 — mmse(p)) =: my(p) is non-decreasing on [0, c0) and
continuous on (0, co).

(a) We will show that if either (i) or (ii) holds, then

pamp = Pamp(A) ==inf{p > 0:p=mr(p)} >0,  pg€[0,pAmpl, 1 >0,

. . . (6.64)
mx(p) = p for all p € [0, paip), Pry1 = ma(pg) for all k € No.

Note that since my(p) < A? for all p € [0,00), we always have php(A) < A2

(i) Non-spectral initialisation: In this case, (M1) holds with ugp = 0, 0p = 1, p§f = 0 and U = 1.
Since E(V) # 0 and E(V?) = 1 by (M1), p} = A*(1—mmse,(0)) = A*(1—Var(V)) = N2 E(V)? =
mx(0) > 0, and therefore p;_ ; = mx(pj;) for all k& € No. In addition, mx(p) > mx(0) = p] > p
for all p € [0, pT), so piyp = P > 0 and my(p) > p for all p € [0, piyp)-

(ii) Spectral initialisation: By Proposition 3.4, (M1) holds with U = Go ~ N(0, 1), so pj_ | = mx(p}.)

for all k € Ny. Since mmse(p) is the minimum value of E{ (V — g(,/pV + G))z} as g ranges over
all measurable functions,

1-E(V)2 ) Np

mx(p) 2>\2<1— inf E{(V—a(\/ﬁV—l—G)—b)Q}) =\ (1— T+ (1 E(V)) > T+,

a,beR
for all p € [0,00), where the equality above can be verified by a routine calculation. Recalling
that A > 1, we have my(p) > A?p/(1+ p) > p for all p € [0,A% — 1), so phyp > N2 —1=pf >0
and my(p) > p for all p € (0, piyp)- Moreover, pj = mx(p§) > p§ > 0.

To complete the proof of (a), note that if 0 < p; < piyp for some k € Ny, then by (6.64) and the
fact that p — my(p) is non-decreasing, we have 0 < pi < mx(p;) = pj1 < MA(PAMp) = Panp- Since
pi > 0, it follows by induction that (pj) is an increasing sequence that converges to some p* € (0, pi \p)-
By the continuity of my on (0,00), we conclude that p* = limy 00 pfyq = limg 0o ma(pf) = ma(p*)
and hence that p* = p}\p-

C

(b) Since k. 18 Lipschitz by assumption, it follows from Theorem 3.1 that n~tS @b(ﬁf ’w,vi) —
Ry (py); see the proof of Corollary 3.2. Moreover, p;. < pp,; by (a) and Ry is non-increasing by
Lemma 3.7, s0 Ry y () = Rry(piiq)-

(c) Since each g; is Lipschitz and p;  piyp by (a), this is an immediate consequence of (3.10)
and (3.11) from Corollary 3.2. O

Proof of Lemma 8.13. This proof proceeds by induction on k. We will first present the argument for
the non-spectral initialisation in Theorem 3.10 and then outline the appropriate modifications for the
spectral case.

(i) Non-spectral initialisation: Defining the state evolution parameters p;, o7, Y and limiting random
variables as in the paragraph containing (3.33), we claim that

Cov(akfk, ”@) = 2L nd VL (VG | WV 4 oiGr) (665)
P e FrpHe Py

for all kK > ¢ > 1, where we use the notation of Section 7.2 to denote conditional independence. For
k = 1, we have Var(o}G1/p}) = (oF/uj)? = 1/p;. Moreover, pfi_,V + G5_; = poV + ooU = cU
by condition (i) of Theorem 3.10, and U 1L (V, uiV + 0]{G1) by definition in (3.31). Therefore,
V AU cU | (uiV + 07Gy), which verifies (6.65) when k = 1.

7



For a general £ > 2 and 1 < ¢ < k, it follows from (3.31) and (3.33) that

ik,e = E(gz_l(u?_lV + 672‘_1) : 92—1(#2—1‘/ + GZ—l))
=E(E(V [uj_1V +Gi_q) - E(V | puj_1V + G5_1))
=E(VE(V |wi_1V +Gi_y)) = i/
=E(E(V [p;_,V +Gi_y)%) = (07)7,

(6.66)

where we have used the tower property of conditional expectation to obtain the last two equalities
above. Thus, p} = (u}/0%)? = A\uf and

“Gp oiG )Y 1 1
COV(Uk k,gg 6)— B~ (6.67)

A A N T A
Now for 1 < ¢ < k, let Z; := o0;Gy/p; and (4 = Zy — Zj, so that Cov((, Z;) = 0 by (6.67).
Since (C1,...,Ck—1,Zk) is a Gaussian random vector that is independent of (U, V), it follows that

(Ciy-+-yCh-1), Zk, U and V are mutually independent, whence V' L (cU, (1, ..., (o1, V+Z) | (V+2Zk)
by Lemma 7.8. Writing jV + 0} Ge = p;(V + Zg) = i (V + Zi) + ¢¢) for 1 < £ < k, we deduce that

VAU, iV + 001G, gV + 051 Gra) | (1Y + 0 G),

which completes the inductive step for (6.65). An immediate consequence of this conditional indepen-
dence is (3.34), which implies that gj depends only its last argument and sz = (0;g} (2°,. .. ,0"))n =0
for 1 < j <k — 1. Thus, with the denoising functions g; given by (3.34), we see by induction that
the state evolution recursion (3.31) reduces to that in (3.20), and hence that (3.30) coincides with the
Bayes-AMP iteration (v®B = v%B(n): k,n € N) in Section 3.3.

(ii) Spectral initialisation: In this case, the initial state evolution parameters are uf = v'1 — A% and
oy = 1/X\. We will show by induction that (6.65) holds for all & > ¢ > 0, with the convention
p* V4 G*, =0. The base case k = 0 is trivial since Var(cGo/us) = (o5/us)? = 1/p5 = 1/(A* = 1)
and the second part of (6.65) holds vacuously. For a general k € N, (6.66) once again holds for all
1 < ¢ <k, and for £ = 0, the appropriate generalisation of the first line of (3.15) yields

Sho = A E((15V + 05Go) - g1 (F_1V + Gr—1))
= AE((1gV + 03Go) - E(V | pe—yV + G_y))
= ATE(V(igV + 05Go)) = 1o/,
where we have used the tower property of conditional expectation in the second equality. It then
follows that (6.67) holds for all 0 < ¢ < k. Defining Z, and (; as above for 0 < ¢ < k, we deduce that

V 1L (Co,C1y -y Cha1,V + Z) | (V + Zi), and the rest of the argument is essentially the same as in
(i). O

6.9 Proofs for Section 4

The proof of Lemma 4.1 makes use of the following multivariate version of Stein’s lemma.

Lemma 6.20. Let g: R? — R be such that for j = 1,...,d, the function xj = g(x1,...,2q) 15
absolutely continuous for Lebesque almost every (1,...,2j-1,2Zj41,...,%4) € R~ with weak deriva-
tive 0jg: RY — R satisfying E(|0;9(X)|) < oo. Let Vg(z) := (81(x),...,0a(x)) for x € R If
X ~ Ny(0,%) with ¥ positive definite, then

E(Xg(X)) = SE(Vg(X)).

Proof. The result for ¥ = I; is stated as Tsybakov (2009, Lemma 3.6). For a general non-negative
definite ¥ € R4, let §(2) = g(X/22) for z € R%. Then V§j(z) = /2 Vg(X/22) for all z (Fourdrinier
et al., 2018, Theorem 2.1; Fan, 2022, Proposition E.5), so by taking Z ~ N4(0, 1;), we conclude that

E(Xg(X)) =x2E(2§(2)) = £?E(V§(2)) = SE(Vg(X)). O
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Proof of Lemma 4.1. The first assertion follows from the following standard fact: let (Xi, X2) be
a Gaussian random vector with E(X;) = E(X3) = 0 and %;; := Cov(X;, X;) for i,j € {1,2}. If
Y11 = Var(X)) is invertible, then AX; and X9 — AX; are uncorrelated and hence independent when
A = 22121’11. Thus, (Xl,XQ) i (Xl,AXl + G), where AXl = E(X2|X1) and G ~ N(O,ZQQ —
22121_11212) is independent of X;. For (4.8), we deduce from Lemma 6.20 that

E(Zgi(Z, Z,v)) = L11 E(O1Gk(Z, Zk,v)) + L12 E(029k(Z, Z, v))

for all v € R, where ¥ = ¥ is as in (4.7). Thus, since (Z, Zx) 4 (Z, pz 12 + UZ,kék) is independent
of £ in (4.6), and pzj = X21/X11 by the first part of the lemma,
E(ng(zk) Y)) = E(ng(za Z;, é)) =Xn E(algk(z’ Z, 6T)) + Y12 E(algk(zv Zk, 5)) (668)
E(3?
= ((S){Nkﬂ + pzk E(9:(Zk,Y)) }

which yields the first equality. Next, by the tower property of expectation, the final expression in (4.9)
can be written as
E(Z| %, Y) — B(Z| Z) Z-K(Z %)
E 7, Y)| =El ————F—= (4, Z
( Var(Z] Z1) 9(Z,Y) Var(Z| Zs) 9(Z, Zy,€) ).

Since Z is conditionally Gaussian given Z; and ¢ is independent of (Z, Zy), a further (conditional)
application of Stein’s lemma yields

7 —E(Z|Z) - E{(Z - E(Z| Z)) gx(Z, Z1,€) | Z1} _
—— G4, Z Zy | = 0 Z, 7 Z
( Var(Z | Z1,) 96(Z, Zk:€) | Zi Var(Z | Zy) E(013k(Z. 2k 9)| Zi).
so by taking expectations, we obtain the second identity for pgyq. O
Proof of Proposition 4.4. Consider the right hand side of (4.31) and write J(§) := ?:1 J(Bj) for

3 € RP. Using the expression for the Lagrangian (4.30), and ignoring terms that do not depend on B,
we obtain

argmin {L(B, ék,§k) — %HB — BkHQ} = argmm{ J(3)— BT X Tk — C HB - BkHQ}

BeRp BERP
. = ~ Ckll 5 XT§k—EkBk 2
= a%ger]g:n {J(ﬁ) -3 8+ &% (6.69)
o = k+112 .
:argmin{J(,@)—ck B—Fﬁ_ } = g,
BERP 2 Ck

where the third and final equalities follow from the definitions of g5t and G5! = fi, 1(851) re-
spectively in (4.29), with fxy1 as in (4.24). Similarly, in view of the definition of g in (4.23), we can
obtain (4.32) by completing the square. For (4.33), we can apply (4.29) to see that
1 _ ék+17_ pk+1 _ pr+1 _ (X?kﬂ _ 5k+1§k) i (ék+1 - Xﬁkﬂ)‘
br+1 br+1 b1
For the final assertion of Proposition 4.4, if (8%, 0%, B*, 6, §*) is a fixed point of the algorithm (4.29),
then 6* = Xp* by (4.33), and (for example by considering subgradients) it follows from (4.31)
and (4.32) respectively that

B* = argmin L(B, 6*, §*) = argmin {j(B) — (XB)T§*},

(6.70)

BeRP BeRP
0* = argmin L(B*, 0, §) = argmin {67(5, y) + 5T§*},
feRrn fern
where £(0,y) := 3.1, £(8;,y;). Thus, for all (3,6) € R” x R" with § = X3, we have
J(B) +10,y) = (J(B) = (XB)'5") + (€0, y) + 075
> (J(5) - (X/J’ )TE) + (U0 y) + (07)T57) = T(BY) + 40", y),
o (3*,6*) is a solution to the optimisation problem (4.22), as required. O
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7 Supplementary mathematical background

7.1 Basic properties of complete convergence

Proof of Proposition 1.2. For (a), suppose that > P(||X,||g > €) < oo for all € > 0. Then for any

sequence (Y;,) of E-valued random elements with Y, 4 X, for all n, the first Borel-Cantelli lemma
implies that P(||Y,||g > ¢ infinitely often) = 0 for all ¢ > 0 and hence that ¥;, — 0 almost surely.
This shows that X,, > 0. Conversely, suppose that > P(||X,||z > €) = oo for some ¢ > 0. Then

for a sequence (Y),) of independent E-valued random elements with Y, 4 X, for all n, the second
Borel-Cantelli lemma implies that P(||Y,,||z > ¢ infinitely often) = 1 and hence that Y;, - 0 almost
surely. Thus, X,, & 0.

The argument for (b) is similar. If Y P(|| X[z > C) < oo for all C' > 0, then X,, = O.(1) by the
first Borel-Cantelli lemma. Conversely, suppose that Y P(||X,||g > C) = oo for all C' > 0. Then

for a sequence (Y;,) of independent E-valued random elements with Y, g X, for all n, the second
Borel-Cantelli lemma implies that P(||Y,||z > C infinitely often) = 1 for all C' > 0 and hence that
limsup,,_,, [|Yn|lg = oo almost surely. Thus, (X,,) is not O.(1). O

Remark 7.1. For a random sequence (X,,) taking values in a Euclidean space (F, ||-||g), it can be seen
from Definition 1.1 and Proposition 1.2 that complete convergence (to a degenerate limit) is a property
of the marginal distributions of the random elements Xi, Xo,... and not of their joint dependence
structure (i.e. the specific coupling between them), so X7, Xs,... need not be defined on the same
probability space. Thus, just as for weak convergence or convergence in probability to a degenerate
limit (but not almost sure convergence), there is a meaningful notion of complete convergence for
sequences (fi,) of Borel probability measures on E: defining B(z,¢) := {2/ € E : |2/ — z||g < &} for
€ >0, we write g, — 0, if 3, pn (B(z,€)¢) < oo for all € > 0.

Example 1. Let (X,,) be any sequence of random variables for which there exist ¢1,c2, 8 > 0 such
that P(|X,,| > t) < ¢1 exp(—cat?) for all t > 0 and n € N. Let (a,) be a deterministic sequence of real
numbers. If a,, = o(1), then clearly a, X, = 0p(1), and if a,, = O(1), then a, X, = O,(1). Moreover:

(a) If |a,|®logn — 0, then for every ¢t > 0, there exists N € N such that cz(t/|an|)? > 2logn
for all n > N, so Y., P(lanX,| > t) < N+ 3, yeie 218" < co. Thus, an X, = oc(1) by
Proposition 1.2(a).

(b) If limsup,,_, ., |an|®logn < oo, then there exists ¢ > 0 and N € N such that ca(t/|a,|)? > 2logn
for all n > N, so >, P(lanXyn| >t) < oo asin (i). Thus, a,X,, = O.(1) by Proposition 1.2(b).

Suppose in addition that there exist ¢}, ¢y, 3’ > 0 such that P(|X,,| > t) > ¢, exp(—cyt?) for all t > 0
and n € N.

(¢) If liminf, o0 |an|? logn > 0, then there exist ¢ > 0 and N € N such that cy(t/]a,|)? < logn
foralln > N, so >, P(lanXn| > 1) > >, o n c1e”18" = oo, Thus, (a,X,) is not o.(1) in view
of Proposition 1.2(a).

(d) If |an|? logn — oo, then for every ¢t > 0, there exists N € N such that ¢,(t/|an|)? < logn
for all n > N, so >, P(la,Xyn| > t) = oo as in (iii). Thus, (a,Xy,) is not O.(1) in view of
Proposition 1.2(b).

For instance, suppose that X,, = X ~ N(0,1) for all n. Then X,, — X almost surely and X;,, = O,(1)
but (X,,) is not O.(1), and X,,/log/?n — 0 almost surely but (X,,/log'/?n) is not o.(1).

Using Proposition 1.2, it is straightforward to verify that the continuous mapping theorem and Slut-
sky’s lemma remain valid when stated in terms of complete convergence.
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Lemma 7.2. Let (X,,),(Y,) be sequences of random elements taking values in Euclidean spaces E, E’
respectively such that X, — = and Y, = y for some deterministic limits x € E and y € E'. Then
(X, Yy) = (z,y) in E x E' and g(X,) = g(x) in E' for any function g: E — E' that is continuous
at z. If in addition x lies in some open set U C E, then 1y, ¢t 50.

Consequently, X,, + Yy, — = + vy when E = E'. Moreover, X,,Y, — zy when E = R and E’' is
any Buclidean space (in the case of scalar multiplication), or when E = R¥** and E' = R’ for some
k,¢ € N (in the case of matriz multiplication). If in addition k = £ and =1 € E is well-defined, then
]l{Xn is not invertible} =0 and X;Yn 5 xily'

Proof. For the first part of the lemma, we apply Proposition 1.2(a). Since ||(Z,9)||%. & = [1ZI1%+7]|%
for any (z,9) € E x E’, we have

D PI(Xn Vo) = @ )llexer > €) < AP(1Xn — 25 > &/v2) + P(|[Ys — yllzr > £/V2)} < o0

for all € > 0, so (X,,Y,) — (z,y) by Proposition 1.2(a). If g: E — E’ is continuous at = € E, then
for each € > 0, there exists 6 > 0 such that ||g(Z) — g(z)|gr < € whenever ||Z — z||g < J, so

STPB(l9(Xa) — 9@z > €) < 3 B(I X, — 2l > 6) < ox.

This holds for all ¢ > 0, so g(X,,) = g(z) by Proposition 1.2(a). When z lies in some open set
U C E, there exists ¢ > 0 such that P(X,, ¢ U) < P(|X,, — X|[g > €), so 1yx,¢v} 5 0, again by
Proposition 1.2(a).

Having established the first part of the lemma, we can now apply the facts above to deduce the
remaining assertions. Indeed, when F = F’, the function g: (Z,9) — & + ¢ is continuous on E x F’
and we know that (X,,Y,) = (z,%), so it follows that X, +Y;, = z +y. When E = R or when
E = R and E' = R’ for some k,¢ € N, the scalar and matrix multiplication maps (respectively)
are continuous on E x E’. Therefore, it follows similarly that X,,Y, — xy.

If in addition & = ¢, then &+ = #! for all invertible # € E = R¥*¥ so the map & — &1 is
continuous on the set U of all invertible & € E, which is open. A further application of the continuous
mapping result above shows that if x is invertible, then 1 x, is not invertible} 5 0 and X1y, S a1y,
as required. O

Remark 7.3. By a similar application of Proposition 1.2, it can be shown that the stochastic o,
and O, symbols obey the ‘arithmetic rules’ of standard O notation. Written in compact form, some
examples of these are as follows (for sequences defined on spaces with compatible dimensions):

Oc(l) + Oc(l) - Oc(l)v Oc(l) + Oc(l) (1) Oc(l) + Oc(l) - Oc<1)7

0.(1) 0.(1) = 0.(1), 0u(1) 0c(1) = 0o(1), 0.0 o)) = 0,(1), TV

where the assertions in the second line apply to scalar multiplication or matrix multiplication as
appropriate. (The proofs are straightforward and are therefore omitted.) To give another example of
a basic fact that follows directly from Definition 1.1 or Proposition 1.2, let E, E' be Euclidean spaces
and suppose that g: E — E’ is bounded on every bounded subset of E. Then for any sequence (X,)
of E-valued random elements such that X, = O.(1), we also have g(X,) = O.(1).

7.2 Regular conditional distributions and conditional independence

First, we recall the notion of conditional expectation: if (2, F,P) is a probability space and G C F is a
sub-o-algebra, we write P|; for the restricted probability measure on (€2, G) given by P|; (B) := P(B)
for B e g. f Y:(Q,F,P) — R is a random variable with E(]Y]) < oo, then there exists a G-
measurable random variable Z = E(Y | G) with the property that E(Z1g) = E(Y1g) for all E € G
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(Dudley, 2002, Chapter 10.1). We call Z the conditional expectation of Y given G, noting that it is
unique up to P|;-almost sure equivalence. For F' € F, we also write P(F'|G) := E(1r|G).

If X is a measurable function from (£, 7, P) to a measurable space (X, A), we say that Pxig: Qx A —
[0,1] is a (regular) conditional distribution for X given G if

(i) for every w € Q, the set function Py g(w, ) is a probability measure on A;

(ii) for each A € A, the map Py|g(-, A) is G-measurable, and Pyg(w,A) = P(X1(4)|G)(w) for
P|g-almost every w € €, so that P(X~!(A) N E) = [ Px|g(w, A) dP(w) for all E € G.

We say that (X, .A) is a Borel space if there exist a Borel subset S C [0, 1] (equipped with the restriction
Bgs of the Borel o-algebra on [0,1] to S) and a bijection f: (X,.A4) — (S, Bg) such that both f and
f~! are measurable. Examples of Borel spaces (X, A) include Polish spaces (i.e. separable, completely
metrisable topological spaces) X equipped with their Borel o-algebras A (Kallenberg, 1997, Theorem
A1.6).

Whenever (X,.A) is a Borel space, there exists a conditional distribution Px|g, and moreover, if
P’ is another such conditional distribution, then P'(w,-) = Px|g(w,-) for P|s-almost every w € ;
see Kallenberg (1997, Theorem 5.3) and Dudley (2002, Theorem 10.2.2). For brevity, we will write
‘X has conditional distribution P = F,, given G on an event )y € G’ to mean that there exists a
conditional distribution Px|g, and we can take Px|g(w,-) = P, (-) for P|g-almost every w € €9. When
we omit the phrase ‘on an event (g € G’, we mean that the statement holds for P|;-almost every
w € Q.

For measurable X, X': (Q, F,P) — (X, A), we say that X, X' are identically distributed given G, and
write X i‘g X', if there exist conditional distributions Px|g and P, G for X, X’ respectively, and
P,(-) = Pxig(w,-) = P)/('|g(wv -) = P.(-) for P|s-almost every w € €.

Remark 7.4. For example, X has distribution @ on (X,.A4) and is independent of G if and only if X
has conditional distribution P, = @ for all w € €.

Remark 7.5. Let X: (Q,F,P) — (X,.A) be as above and consider the important special case where
G = o(Y) for some measurable map Y from (2, F,P) to a measurable space (Y,5). Denote by P
the joint distribution of (X,Y): (Q, F,P) — (X x Y, A® B) and by PY the (marginal) distribution
of Y on (Y,B). We note here that a random variable Z: (2, F,P) — R is (Y )-measurable if and
only if Z = goY for some measurable function g: (Y,B8) — R (i.e. ‘Z(w) depends on w only through
Y (w)’); see for example Dudley (2002, Theorem 4.2.8). Using this fact and the defining property (ii)
above, it can be verified (as in Dudley, 2002, Theorem 10.2.1) that there exists a regular conditional
distribution Px|s(y): 2 x A — [0, 1] if and only if there is a family of probability distributions (Qy)yey
on (X,.A) such that the following hold for every A € A:

(I) y — Qy(A) is a measurable function from (Y, B) to R;
(I P(Ax B) = P(X"YA)NY"YB)) = [ Qy(A)dPY (y) for all B € B,

In this case, for }P’|U(Y)—almost every w € (2, we have Px|5(v)(w, 4) = Qy () (A) for all A € A. Note
that (Qy)yey is only unique up to PY-almost sure equivalence, in the sense that if (Q)yey satisfies
(I) and Q, = @, for PY-almost every y € Y, then (Q,)yey also satisfies (II). In view of (I), the map
(y, A) = Qy(A) is said to be a probability kernel. An interpretation of (II) is that it makes precise
the notion of disintegrating the joint distribution P of (X,Y) into the marginal distribution PY of Y’
and the distributions (Qy),ey, where (for PY-almost every y € Y) we can view @, as the “conditional
distribution of X given Y = y”. Indeed, by analogy with the construction of the usual product measure
and Fubini’s theorem (e.g. Dudley, 2002, Chapter 4.4), it can be shown that if ¢: (X x Y, A B) - R
is P-integrable (i.e. ¢ is measurable and E(|¢(X,Y)|) < c0), then

(IIT) x ~ ¢(z,y) is A-measurable for all y € Y and Q,-integrable for PY-almost every y € J;
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(IV) y — fx x,y) dQy(x) is B-measurable and PY -integrable;
fxxy ¢(z,y) dP(z,y) fy (fx 8(x,y) dQy(x)) dPY (y).

This generalisation of Fubini’s theorem is sometimes known as the disintegration theorem, and is de-
rived from (II) using a monotone class argument; see Dudley (2002, Theorem 10.2.1(II)) and Kallenberg
(1997, Theorem 5.4).

Lemma 7.6. Let (X, A),(Y,B) be measurable spaces and let (Z,C) be a Borel space. Let ¢: (X x
Y, A® B) — (Z,C) be a measurable function and let G C F be a o-algebra.

(a) If E € G and X1, X2: (2, F,P) = (X, A) are measurable functions with conditional distributions
P =P, and Q = Q. respectively given G, then the measurable function X: (2, F,P) — (X, A)
satisfying X = X1 on E and X = Xy on E° has conditional distribution R(-) = Ry(-) :=
Pw(')]]-{wEE} + Qw(')]]-{wGEC} giwen G.

(b) ForD € AQB andy €Y, let DY :={zx € X : (z,y) € D} = L;l(D), where t,: X — X xY denotes
the map x — (z,y). Fiz Qo € G. Suppose that X : (Q, F,P) — (X,.A) has conditional distribution
P =P, given G on Qo, and that Y : (Q, F,P) — (Y, B) is G-measurable. If Z: (0, F,P) — (Z,C)
is a measurable map that agrees with ¢(X,Y) on Qq, then Z has conditional distribution P =
P,=P,o0(¢o by (w))  given G on Qo, so that P,(C) = Pw(qﬁ_l(C')Y(“’)) for all C € C and
w € Q.

(c) Suppose that X, X': (2, F,P) — (X,.A) are measurable functions satisfying X 4 lg X', and that
Y (Q,F,P) = (Y,B) is G-measurable. Then ¢(X,Y) Z|g o(X",Y).

The result in (b) has an intuitive interpretation. Suppose for simplicity that Q¢ = €2, and fix w € Q. Let
i := P, be taken from the conditional distribution of X given G, and assume that Y is G-measurable.
To obtain the corresponding P, from the conditional distribution of ¢(X,Y) given G, Lemma 7.6(b)
tells us that we can take P, to be the distribution of ¢(U, y), where U ~ p and y := Y (w). In essence,
the reason for this is that since Y is G-measurable, we can think of Y as being ‘fixed’ once we have
conditioned on G.

Proof. (a) The fact that R,(-) is a probability measure on A for P|;-almost every w € € follows
immediately from the corresponding facts for P,(:) and Q (). For each A € A, the map w — R, (4)
is a composition of G-measurable functions (since E € G by assumption), so is G-measurable.

For A€ A, let xa: X — {0,1} denote the indicator function of A. Then
xaoX = (XA OXl)ILE + (XA OXQ)]]_EC.
Since 1g and 1ge are G-measurable, it follows that

P(X7(A) | G)(w) =E((xao X1)lg | g) ) +E((xa0X2)lge | G)(w)
=E(xac X1 |G)(w)lp(w) +E((xa0X2) | G)(w)lge(w)
:Pw(A)]lE(w)+Qw( )L ge(w) = Ru(A)

for IP’|g-almost every w € {2, as required.

(b) This can be deduced from Kallenberg (1997, Theorem 5.4) and part (a) above, but we give a
direct proof here for completeness. Note that for P|;-almost every w € €2y, the set function F, is the
push-forward (image measure) of P, induced by the measurable map z + ¢ o Ly (,)(z) from (X, .A) to

(Z,C); thus, P, is indeed a probability measure for P|g-almost every w € €.

Now let D denote the collection of all D ¢ A® B for which w — P, (DY(“’)) is G-measurable and
P, (DY(“)) =P((X,Y)" ’ G)(w) for P|g-almost every w € Q. If D = A x B for some A € A and
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B € B, then DY) = Aif Y(w) € B, and DY —®1fY(w)¢B Thus,
(

Py(DY¥)) = Po(M) iy (weny = P(X T (A) | §) @)Ly wen)
:E(AOX‘Q) ) (x BOY)( )= E(( AOX)‘(XBOY)‘Q)(W)
~P((X.¥)'(D) | 9)(w
for P|g-almost every w € o, where we have used the fact that xp oY is G-measurable in the
penultimate equality. Thus D D {Ax B: A € A, B € B}, which is a m-system that generates D. Now
suppose that Dy, Do € D with D1 C Dy. Then
w Y (w Y (w Y (w Y (w
P,((Dy\ D1)Y@) = P, (D) )\Dl( N = Pw(DQ( ) —Pw(Dl( )
= P((X,Y) " (D2) | 6)( ((X Y)"H(D1) | ) (w)
=P((X,Y)” 1(192 \ Di) \ g)
for P| g-almost every w € €, so Dy \D1 eD. Finally, let (D,,) be an increasing sequence of sets in D,
and let D :=J°°, D,. Then DY) = (J> Dy ) and (X,Y)—l(D) = U°°:1(X,Y)—1(Dn), so that

PL(DY®) = lim PL(DY®) = lim P((X.Y)(Da) | §)() = B((X.Y)" (D) | 6) w

n—oo

for P|;-almost every w € €, where we have used the conditional monotone convergence theorem in
the final equality (Dudley, 2002, Theorem 10.1.7). Thus, D € D, and it follows from Dynkin’s lemma
that D = A® B.

Finally, if C' € C, then D := ¢~ 1(C) € A® B, so that for P|g-almost every w € Qo,
Po(¢~H(O)"™) = R, (DW) - P(( > H(D) [ G)(w)

=P((X,Y)" (D) | §)(w) - Tay(w ) P((X,Y)"(D) N Qo | G)(w)
=P(Z7(0) on | G)(w) =P(Z271(0) | G)(w)

as required, since Qg € G.

(c) This follows directly from (b) on setting Qo = Q. O

The following useful result is a special case of Kallenberg (1997, Theorem 5.4) and can be derived
using the definition of conditional expectation (Dudley, 2002, Problem 10.1.9), or alternatively using
regular conditional distributions and standard measure-theoretic devices (similarly to the proofs of
Lemma 7.6(b) above and Dudley (2002, Theorem 10.2.5)).

Lemma 7.7. Let X,Y be measurable functions from (Q,F,P) to measurable spaces (X,.A),(Y,B)
respectively, and let ¢: (X x Y, A® B) — R be a measurable function satisfying E(|¢(X,Y)|) < 0.
Let G C F be a o-algebra, and suppose that' Y is G-measurable. If X has distribution @ on (X, A) and
is independent of G, then E(¢(X,Y)|G)(w) = [y ¢(z,Y (w)) dQ(z) for P|;-almost every w € 2.

Next, for o-algebras Gi,Go,Gs C F, we say that Gy and Gy are conditionally independent given Gs,
and write G; 1L Gy | Gs, if P(A1 N A |G3) = P(A1]G3)P(A2 | G3) almost surely for all A; € G; and
Ay € Gy, or equivalently if P(A;|0(G2,G3)) = P(A;|G3) almost surely for all A; € G; (Kallenberg,
1997, Proposition 5.6). If this holds with G; = ¢(X) for some random variable X, we also say that X
and Gy are conditionally independent given Gs, and write X Il Gs | G3 (and similarly for Gy and Gs).
The following basic facts follow straightforwardly from the definition of conditional independence.

Lemma 7.8 (Kallenberg, 1997, Corollary 5.7(i)). We have G 1L G | G3 if and only if 0(G1,Gs) 1L
Ga | Gs.

Lemma 7.9. Let (X, A) and (Y, B) be measurable spaces and let G C F be a c-algebra.

(a) Fori=1,2, let X;: (Q,F,P) = (X, A) and Y;: (Q, F,P) — (Y,B) be measurable functions such
that X; 1L Y; | G. For E € G, let X: (, F,P) — (X,.A) be the measurable function satisfying
X =X on E and X = X9 on E¢, and define Y similarly. Then X 1LY | G.
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(b) Suppose that the measurable maps X : (Q, F,P) — (X, A) and Y: (2, F,P) — (Y,B) have con-
ditional distributions P = P,, and Q = Q,, respectively given G. Then X 1LY | G if and only if
(X,Y): (,F,P) - (X x Y, A® B) has conditional distribution R = R,, := P, ® Q,, given G.

Proof. (a) For fixed A € A and B € B, write x4: (X, A) — {0,1} and x5: (Y,B) — {0,1} for the
respective indicator functions, and for 7 = 1, 2, note that

E((xa0Xi) (xpoYi) | G) =P(X;7(A)nY,(B) [ G) =P(X;(4) | G)P(Y'(B) | 9)
=E(xa0Xi|G)E(xp0Yi|G)

almost surely, since X; 1L Y; | G. As in the proof of Lemma 7.6(a), we have x40 X = (x40 X1)1p +
(xac 0 Xa)lge and xpoY = (xpo Y1)l + (xBe © Y2)1 ge, so it follows that

P(XH(A)NYH(B)|G) =E((xacX)- XBOY 1 9)

(xaoX1) - (xpoY1)lp+ (xaoXs2)  (xpoYa)lpe | G)

(xaoX1)  (xpoV1) | G)1g +E((xao Xa)  (xpoY2) | §)1ge

xa0X1|G)E(xpoY1|G)1lg +E(xaoXa|G)E(xpoYa|G)lge
xa©°X1)lg+ (xao0 Xo)lge g) (( BOYl)]lEJr( BoYs)lge|G)
40 X|G)E(xpoY |G) =P(X 1(A) | G)P(Y1(B) | 9),

where we have used the fact that £ € G to obtain the third-last equality. Since this holds for all

A € A and B € B, the result follows.

E
E
E
E((
E

E(
(
(
(
((
(x

(b) For A € A and B € B, note that

P(X—l(A B)\g) (W) =P((X,Y) " (Ax B)| G)(w (7.2)
P(X~'(4) \9) P(YTH(B) | §)(w) = Pu(4) Qu(B )— w(A X B)

for P|g-almost every w € Q. Thus, if (X,Y’) has conditional distribution R = R, = P, ® Q. given
G, then for any A € A and B € B, the right hand sides of (7.2) and (7.3) agree for P|g-almost every
w € €, so the same is true of the left hand sides. This shows that X 1L Y | G.

Conversely, suppose that X 1L Y | g and let D be the collection of all D € A ® B such that
R,(D) = (P, ® Qu)(D) =P((X,Y) (D) | G)(w) for P|g-almost every w € Q. Then for any A € A
and B € B, the left hand sides of (7 2) and (7. 3) agree for P|s-almost every w € €2, so D contains a
m-system {A x B: A € A, B € B} that generates A ® B. Similarly to the proof of Lemma 7.6(b), it
can be verified that D is a d-system, so it follows from Dynkin’s lemma that D = A ® B, and hence
that (X,Y") has conditional distribution R = R, = P, ® Q,,, as required. O

7.3 Auxiliary probabilistic results

The following general result is used in the proofs of some important complete convergence statements
in Sections 6.4 and 7.4, specifically Proposition 6.16(g) and Corollary 7.21(b).

Lemma 7.10. Let (X,),(Y,) be sequences of measurable functions defined on (2, F,P) such that
X, Y, take values in Polish spaces E,, E!, respectively for each n € N. Suppose that there exist Borel

measurable functions gn: E, — E! such that Y, 4 gn(Xy) for each n. Then there ezists a sequence
of measurable functions X,: Q@ — E, such that X, 4 X, for all n and (gl(Xl),gg(Xg),...) =

(Y1,Ya,...) almost surely (viewed as random sequences taking values in [[,2 | E},, equipped with its
cylindrical (i.e. Borel) o-algebra).

This is an extension to random sequences of the following result for pairs of random elements: given
random elements X, Xo taking values in Ej, Ey respectively, let (Y7,Y2) ~ 7 be any coupling of

91(X1), g2(X2). Then there exists a coupling (X7, X3) ~ 7’ of X1, X5 such that (gl(X{),gg(Xé)) 4
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(Y1,Y2), i.e. @ = 7 o (g1,92)" . This can be proved by applying the gluing lemma from optimal

transport (Villani, 2003, Lemma 7.6) or a simpler version of the general argument below.

Given an arbitrary coupling (Y1, Y2,...) of the random elements g1(X1), g2(X2),..., the first (and
most important) step in the proof below is to ‘lift’ this to produce a suitable coupling (X1, X3, ...) of

the random elements X1, Xs,..., in such a way that (gl(X{),gg(Xé), .. ) 4 (Y1,Ys,...) as random
sequences. Intuitively, the key construction can be interpreted as the output of the following two-stage
procedure:

A) Denoting by 7 the (given) distribution of (Y1, Ys,...)on [[°2, E!, we first draw (Y{,Y,,...) ~ 7;
1Em 1, X2

n—

(B) Having obtained (Y7,Y5,...) = (y1,¥2,...) from Step A, we then generate X}, X5,... by sam-
. . 1 2 « o . . . .
p‘hng independently from @, ,Qy,,. .., where Qj denotes the “conditional distribution of X,
given gn(Xn) = yn”.

Step B ensures that X7, X}, ... are conditionally independent given (Y7,Y7,...). To make rigorous
sense of this informal description and to validate the construction, we use the language of disintegra-
tion of measures, as outlined in Remark 7.5. There are similarities here with the proof of the gluing
lemma (Villani, 2003, Lemma 7.6). To verify that the random sequences (g,(X},)) and (Y;,) have the
same distribution on [[>2 | EV . it suffices to show that they have the same finite-dimensional distribu-

tions, i.e. that (g1(X1),...,gn(X})) 4 (Y1,...,Y,) for all n. Finally, to upgrade all the distributional
equalities above to almost-sure equalities, we appeal to a general result from abstract probability
theory (Kallenberg, 1997, Corollary 5.11), which is also proved using disintegration techniques.

Remark 7.11. To guarantee the existence of a random sequence (f( 1, Xg, ... ) with a given distribution
on [[;2, E},, we require the underlying probability space (€2, F,P) to be rich enough to support a
sequence of independent U|0, 1] random variables. This can be assumed without loss of generality,
since otherwise we can work with the product space (€2 x [0, 1], F ® Bg 1), P ® po,1), where Bjg ;) and
to,1) denote the Borel o-algebra and Lebesgue measure on [0, 1] respectively.

Proof of Lemma 7.10. For each n, denote by By, 3], the Borel o-algebras of E,, E!, respectively. It
follows from Dudley (2002, Theorem 2.5.7) and Kallenberg (1997, Lemma 1.2) that [];_, E} and
[[j-, E; are Polish spaces with Borel o-algebras @’_, B} and @]_, B; respectively. Denote by fin, T
the distributions of Y, and (Y1,...,Y;) on (E., B),) and (H?Zl L Q5 B}) respectively. Since E, is
a Polish space, we know from Section 7.2 that there exists a regular conditional distribution for X,
given o (gn(Xy)). Equivalently, there is a family of probability distributions (Qy )yer:, on By satisfying

conditions (I) and (IT) in Remark 7.5, where we take X := X,,, Y := ¢, (X,,) LY, and PY = fn. It
follows from Remark 7.5(II) that P(X,, € A) = [, Q7 (A)du,(y) for all A € B, and moreover that

/, 15(y) dpn(y) = P(gn(Xn) € BN B') = P(X, € g, (B), gn(Xn) € B') = /B Qy (9, (B)) dpn(y)

(7.4)
for B, B’ € B;,. Thus, for all B € B;,, we have Qy(g,,*(B)) = 15(y) for pup-almost every y € Ej,.

n

For each n € N, we now define a new measure 7, on (H?:1 E;, ®?:1 B;) by

' (A) = /nﬂ_lEf(/Elm/nHA(xl""’x”)dQZ”@”) dQ;1<x1)) drn(rs-yn)  (T5)

for A € ®?:1 Bj. That this a well-defined probability measure follows from Remark 7.5(II1,1V) and
the monotone convergence theorem. For each n, we claim that

(1) mpp1(A X Epgr) = m,(A) for every A € Q7 By

(i) P(X, € A,) =7, (H;:ll E; x Ay,) for every Ay, € By;
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(iii) 7, = 7,0(g1,---,9n) "1, where (g1,...,9n): (H?Zl Ej, @), B;) — (H?Zl ELQ_, B;) denotes
the measurable map (z1,...,2n) = (g1(x1), ..., gn(zn)).

Property (i) is immediate from (7.5) and the fact that m,11(B x Ej,) = m,(B) for all B € @j_, Bj.
To verify (ii), observe that

LS B = [ L) Qg @)

J=1"J

= o QZn (An) d,un(yn) = P(Xn S An)a
where the final equality is obtained from Remark 7.5(II) as above. As for (iii), fix B; € By for 1 <j <n
and note that by (7.4) and (7.5), we have

777,1 (H?:l gfl(Bj)) = / - 31/1 (gfl(Bl)) T Zn (gﬁl(Bn)) dﬂ'n(yla .- 7yn)
i=1%;
= / ]]‘Bl (yl) t ILBn(yn) dﬂ-n(ylv cee 7yn) = 7"'n(l_[;'l:l Bj)'
[, 7
This means that 7, and 7/, 0(g1,...,g,) " agree on {H?Zl Bj:Bje B forall1<j< n}, a m-system
that generates @’_; B, so (iii) holds.

Since the distributions 7}, 75, ... on the Polish spaces E1, E1 x FEa,... satisfy the consistency con-
dition (i), we deduce from the Daniell-Kolmogorov extension theorem (Kallenberg, 1997, Theo-
rem 5.14) and Remark 7.11 that exists a sequence (X] )nen of random elements X, : Q — E, such
that (X{,...,X}) ~ 7, on [[;_, E; for each n. Then by (ii) and (iii) above, we have Xj, 2 x,
and (g1(X1),...,9n(X})) ~ 7, 0 (g1,...,9n)" " = m, for each n, where m, was defined to be the
distribution of (Y1,...,Y,). Thus, the sequences (g,(X},)) and (Y;) have the same finite-dimensional
distributions; in other words, their distributions agree on {H;V: 1 Bj x H;’i N1 E; : N e N, B €
B; foralll < j < N }, a collection of cylindrical sets that generate the cylindrical o-algebra B’ of
[[,2, E,. (By Kallenberg (1997, Lemma 1.2), B is the Borel o-algebra of [[>2; E/,.) We conclude

n—=

that (g1(X]), g2(X5),...) 4 (Y1,Y,...) as random sequences taking values in ([[7°, E,, B').

Finally, we apply Kallenberg (1997, Corollary 5.11) with T = [[>° | E,, S = [, E}, n = (X},),
£ = (Y,) and f: T — S given by f(z1,22,...) = (g1(21),92(x2),...); note that T, S are Polish
spaces (e.g. Dudley, 2002, Theorem 2.5.7) and that f is Borel measurable. Having already shown that
f(n) 4 ¢, we deduce from Kallenberg (1997, Corollary 5.11) that there exists (X,) =1 4 n = (X))
satisfying (gn(Xn)) = f(n) = & = (Y,) almost surely, as required. O

In the proofs of Proposition 6.16(a, c), we apply the concentration inequality below for sums of pseudo-
Lipschitz functions of independent Gaussian random variables.

Lemma 7.12. There exists a universal constant C' > 0 such that the following holds for all n € N,
r>2andt > 0:if Zy,...,2y Y N(0,1), L = (L1,...,Ly,) € (0,00)" and f; € PLyi(r,L;) for

1 <i<n, then

#([53 ez - w2 ) <1 min{ (157, ) (i) ) o

Proof. We first consider the case n = 1. For arbitrary r > 2 and L > 0, we may assume without loss
of generality that f = f; € PL(r, L) satisfies f(0) = 0, so that |f(z)| = |f(x) — f(0)| < L(|z| + |=|") <
2L(|z| V |z|") for all z € R. Thus, if Z ~ N(0,1), then

P(£(2) 2 5) < P(1Z] v |2 > s/(2L)) < e 2" (55)" (62)} (7.7)

87



for all s > 0, and

r/2 r
WSE(\Z\Jr]ZV): <\/Z+2ﬁr< ;1>> —i 0,

by direct computation. Now I'(z) < e'/(12%)(z/e)*\ /2 /x for all z > 0 by a non-asymptotic version of
Stirling’s formula; see for example Gordon (1994, Theorem 5) and Diimbgen et al. (2021, Lemma 10).
Since r > 2, we have (r 4 1)/e < r and (V2 — 1)7"/2 > 2(\/2 — 1) > 1/y/x. Therefore,

v 1 (1 re1\"7? 1 1 /1
P S 2 | < — [ —— 4 p7/2 /2, :
2—ﬂ<ﬁ+<e> e >—¢§<ﬁ” )< )

Thus, for ¢ > Lv,, we deduce from (7.7) and (7.8) that

< o-(E—y)”
< -3

< el—(ﬁ)% == (7.9)

where the third inequality follows from the fact that a?/" < |a — b|*/" 4+ b*/" for r > 2 as above
and any a,b > 0. Now (7.9) holds trivially for all ¢t € [0, Lv,) since 1 — (r + 1)~ {t/(2L)}*>/" >
1—(r+ 1)~ v./2)%" > 0 by (7.8), so (7.6) holds with C = 3 when n = 1.

We now derive (7.6) for general n > 2 with the aid of Theorem 3.1 and Proposition A.3 in Kuchibhotla
and Chakrabortty (2018); see also Theorem 1 and Corollary 2 in Bakhshizadeh et al. (2020). As in
Sections 2 and 3 of Kuchibhotla and Chakrabortty (2018), we begin by defining ¥3: [0,00) — [0, 00)
for each 8 > 0 by ¥g(z) = exp(z?) — 1. Moreover, for §,A > 0, let Ygr: [0,00) — [0,00) be the
continuous, strictly increasing function with inverse given by 195{\ (t) :=log/2(1 +t) + Aog"/P (1 4 1)
for t > 0. For a random variable X and a strictly increasing function g: [0,00) — [0, 00) satisfying
9(0) = 0, we write Z4(X) := inf{# > 0: E(g(|X|/0)) <1} € [0, 00], setting inf @ = co by convention.
Note that Z,(X) is precisely the g-Orlicz norm of X when g is convex, but that =, does not in general
define a norm when g is not convex (for example when g = ¥4 for g € (0, 1), as in the proof below).
For arbitrary n > 2,7 > 2 and L = (Ly,...,Ly) € (0,00)", let fi1,..., fn € PL(r,L;) and Z1, ..., Z, ig
N(0,1), and assume without loss of generality that X; := f;(Z;) satisfies E(X;) =0 for all 1 <i < n.
Setting 8 := 2/r € [0,1] and 6; := 2{4(r+1)}"/? L; for 1 < i < n, we now integrate up the bound (7.9)
to see that

o0

E(95(|1X:]/60:)) = /00011»(195(;)(”/0,-) > t)dt —/0 P(|X;] > Hiﬁgl(t)) dt

0
0

whence Zy, (X;) < 0; = 2{4(r + 1)}"/2 L; < oo. This shows that X, ..., X,, are independent, centred
sub-Weibull random variables of order 5 = 2/r, in the sense of Definition 2.2 in Kuchibhotla and
Chakrabortty (2018). Then applying Kuchibhotla and Chakrabortty (2018, Theorem 3.1) with a =
(1/n,...,1/n) € R" and b := (Eﬁﬁ (X1)/n, ..., Eg, (Xn)/n) in their notation, we deduce from (7.10)
that
n — (9,2]e /3\1/8 1/4 3+

E9px <12Xi> < 2eC3||b||2, where Cs o (216/5 /B)7(128m) [Te (7.11)

AN Ag = (417 /3/2) [[Blloc/[1bl]2-
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It then follows from Proposition A.3 in Kuchibhotla and Chakrabortty (2018) that
1 n
#(J5
n i=1
for all s > 0, and hence that

1 & 2 B
P(px|ze) <o -mn{ (o) (eegmrs) )
ne =)= 1eCplbll2) "\ 4eCyllb]l

for Ell t >0, where Cj := (418 /7/2) C5. Since B = 2/r and Eyg(Xi) < 2{4(r+ DY/2L;for 1 <i<n,
we have

i| > 4eC3lb||2 max(sl/Q,)\[gsl/ﬂ)> <el™s

nllbll, = || (o, (X1), -, Boy (X)) ], < 2040 + DY 72 |IL,

for p € {2,00}. Moreover, 2{4(r +1)}"/2Cy < 2{4(r + 1)}"/? Cs S {4e'/¢(r + 1)}, so we can indeed
find a suitable universal constant C' > 0 in (7.6) such that the desired conclusion holds for all n € N,
r>2 L= (Ly,...,L,) € (0,00)" and ¢ > 0, as required. O

Remark 7.13. When r > 2, f € PLy(r) and Z ~ N(0,1), the moment generating function of f(Z2)
may not be finite anywhere except at 0 if f(Z) has heavier tails than an exponential random variable
(for example when f(z) = sgn(z)|z|" for z € R). In these situations, the standard Chernoff method
fails, which is why we apply different techniques that can handle general sub-Weibull random variables.

While we are primarily concerned with the case r > 2 in the proof of Proposition 6.16, there is an
analogue of (7.6) when r € [1,2), namely

(‘ Z{fz i) —E(fi(Z z))}‘2t>Sexp<1—min{((j‘ﬁ||2>2,(C{LtHF)?/T}), (7.12)

where C' > 0 is a suitable universal constant and 7 := 2/(2 — r) € [2,00) is the Holder conjugate
of 2/r. This can be proved using a Chernoff bound (e.g. Boucheron et al., 2013, Exercise 2.27), or
alternatively using Kuchibhotla and Chakrabortty (2018, Theorem 3.1) once again, where we instead
take 8 := 2/r, Cj := de +2(2log2)™/? and A\ := (41+1/BC’ Ye/\v/2) ||b]7/]b]l2 in (7.11).

The proof of Proposition 6.16(g) makes use of the following straightforward consequence of the defi-
nition of weak convergence.

Lemma 7.14. On a Euclidean space E, if (un) is a sequence of Borel probability measures that
converges weakly to a Borel probability measure p, then ngdun — ngd,u for any bounded, Borel
measurable g: E — R that is continuous p-almost everywhere (in the sense that the set of discontinu-
ities of g has p-measure 0).

Proof. Writing A C E for the set of discontinuities of g, we have pu(A) = 0 by assumption. By
Skorokhod’s representation theorem (e.g. Kallenberg, 1997, Theorem 3.30), there exist random vari-
ables X, X1, Xs,... defined on a common probability space such that X ~ pu, X, ~ py, for all n
and X,, — X almost surely. Then g(X,,) — ¢(X) almost surely on the event {X € A°}, which has
probability u(A€) = 1, so an application of the dominated (or bounded) convergence theorem shows
that [, gdu, = E(g(Xn)) — E(g(X)) = [ gdu, as required. O

Remark 7.15. For each Lipschitz function fz: R?> — R in the AMP recursion (2.1), we assume
in (A5) that there exists some f; that satisfies the hypotheses of Lemma 7.14 above with p = A ® 7;
recall that A denotes Lebesgue measure on R and the probability distribution 7 is as in (A1). To see
why (A5) is a non-vacuous (albeit very mild) condition, consider Borel probability measures on R of
the form p = A ® v, where D > 2 and v is some probability measure on RP~1. We will now give an

example of a Lipschitz function G: RP — R whose partial derivative gG cannot be extended beyond

its domain of definition to a function g: RP — R that is continuous p-almost everywhere, for any u
of the above form.

89



Denote by C C [0,1] the fat Cantor set (e.g. Aliprantis and Burkinshaw, 1998, pp. 140-141), which
has the property that for all x € C' and € > 0, both (z — e,z +¢) N C and (x — e,z + €) N C° have
positive Lebesgue measure. Then for any f: R — R with f = 1o Lebesgue almost everywhere, we
have {f(u) : u € (x — e,z +¢)} = {0,1} for all x € C and € > 0, so f is discontinuous on C,
which has Lebesgue measure 1/2 > 0. Note that F: 2 — [ 1¢(t)dt is a Lipschitz function on
R with F'(z) = 1¢(x) for Lebesgue almost every x € R. Thus, for general D € N, the function
G: (z1,...,xp) — F(z1) is Lipschitz on RP. Moreover, if g: R”? — R agrees with g—g wherever the
latter is defined, then g is discontinuous on C' x RP~! which has strictly positive y-measure when
1= A® v as above.

7.4 Wasserstein convergence and pseudo-Lipschitz functions

Throughout this subsection, we fix D € N and r € [1,00), and write P(r) = Pp(r) for the set of
probability measures P on R? with [, [|z[|” dP(z) < oo (i.e. a finite r'* moment). For P,Q € P(r),

recall from Section 1.1 the definitions of d,(P, Q) and the r-Wasserstein distance d, (P, Q).

The primary purpose of this subsection is to establish Theorem 7.17 and its probabilistic Corollary 7.21,
which can be viewed as extensions of Villani (2003, Theorem 7.12). These show in particular that d,
and d, are metrics on P(r) that induce the same topology (Remark 7.18), and also formalise the link
between functions in PLp(r) and convergence in d, (or equivalently d,.).

As a first step towards the proof of Theorem 7.17, it is helpful to establish the following.

Proposition 7.16. There exists a countable set T! of bounded Lipschitz functions on RP with the
property that d,(P,Q) = supycry Jgp ¥ dP — [ @DdQ‘ € [0,00) for all P,Q € P(r).

A key property of the set T, we construct is that for any ¢ € PLp(r), there exists a sequence (1)) in
T! that converges uniformly to 1) on compact subsets of R”. In subsequent proofs, we will write Q(f)
as shorthand for fRD fdQ when Q is a signed Borel measure on R” and f: RP — R is a Q-integrable
function.

Proof. For N € N, let By = Bp(0,N) := {x € RP : ||z|| < N} and define fy(z) := (N — ||z|) VOA 1
for x € RP, so that fu is 1-Lipschitz on R”, fy =1 on By_; and fx = 0 on B . In the argument
below (and in the proof of Theorem 7.17), we will use fy as a substitute for the (discontinuous)
indicator function 1p, in several places. Note in particular that if g: By — R is Lipschitz on By,
then the function g: RP — R defined by g(z) := §(z)fn(z) is Lipschitz and supported on the compact
set By.

Recalling the definitions of d,, P(r) from (1.4) and writing ISiD(r, 1) for the set of all ¢ € PLp(r,1)
satisfying ¢(0) = 0, we see from (1.3) that

d.(P,Q)= swp [(P=Q)@) < swp (P+Q)(|]) < /RD(HafHJerIIT)d(P+Q)(96) < oo (7.13)

¢€PLp(r,1) $€PLp(r,1)
for all P,Q € P(r). If ¢ € ISED(T, 1), then
|6(2) = (v)| < lle =yl (L+ 2" + [ly]"™!) < (142N Y]z -y

for all z,y € By, so ¢|, belongs to the set of (1+ 2N7~1)-Lipschitz functions ¢g: By — R satisfying
9(0) = 0, which we denote by Gy. Since By is compact and Gy is uniformly bounded and equicon-
tinuous, Gy is therefore compact for the supremum norm on By by the Arzela—Ascoli theorem (e.g.
Dudley, 2002, Theorem 2.4.7). It is therefore totally bounded, so for each m € N, we can find a finite
subset 7'~lN,m C Gy such that for any g € Gy, there exists h € ﬁN,m with sup,¢c g, [9(z) —h(z)| < 1/m.
Each h € ﬁN,m can be associated with a function h: RP? — R defined by h(z) := h(z)fn(z). By
the reasoning in the previous paragraph, the collection Hy,,, of all such h is a finite set of bounded
Lipschitz functions supported on By.
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Consequently, 77 := [Jy meN HNm 18 a countable set of bounded Lipschitz functions on R”, and we

claim that this has the desired property that d,(P, Q) = supyery | (P — Q) ()] for any two probability
measures P, Q) € P(r). Indeed, for fixed P,Q € P(r), the function ¢, : & — ||z||+||z||" is integrable with
respect to both P and Q on R”, so by the dominated convergence theorem, we have P(¢TIL B]cv_l) —0
and Q(wrﬂ B?‘v_l) — 0 as N — oo. Thus, for an arbitrary € > 0, there exists a sufficiently large
N = N, , € Nsuch that P(wr]lBlcv_l) < e/4 and Q(l/}r]lB]cv_l) < /4. Choosing m = m. € N such that
1/m < e/4, we deduce frorr} the previous paragraph that for any ¢ € PL p(r, 1), there exists he ﬁN,m
such that sup,c g, [¢(x) —h(z)| < 1/m < /4. Letting h be the corresponding function in Hy ,, C T},

we have

(P = Q)@ < (P =Q)(6(1 = fn))| + (P = Q)(efn — h)| + (P — Q) (h)|

|
(P + Q)(\¢I(1 = fn)) + (P +Q)(|ofn — h) + supyer (P — Q)(¥)] (7.14)

<
<

by the triangle inequality. Since ¢ € }/)\-LD(T, 1), we have |p(x)| = |o(z) — ¢(0)] < ||z|| + ||z||" = ¥r(z)
for all x € RP, whence

(P+Q)(Iol(1 - fn)) < (P+Q)(lollpg_,) < (P+Q)(¥rlpg_,) <e/2

by our choice of N and the fact that 0 <1— fy <1pgg . Moreover,

(P+Q)|6fn — h)| < 25upsep, |6(2) fn(2) — h(@)] < 25up,epy |6(2) — h(z)| < 2/m < e/2

by our choice of h, so it follows from (7.14) that [(P — Q)(#)| < & + supyery [(P — Q)(1)|. Since this
holds for every ¢ € PL p(r,1) and all £ > 0, the result follows. dJ

Theorem 7.17. Let P € Pp(r) and let (P,) be a sequence of probability measures in Pp(r). Then
there exists a countable set T, C PLp(r) such that the following are equivalent:

(i) Jgp ¥ dPy — ot dP for all v € T,;
(ii) dr(Pn, P) — 0;
(iii) d(P,, P) — 0.

A suitable set T, C PLp(r) can be constructed by enlarging the set T, of bounded Lipschitz functions
defined in (the proof of ) Proposition 7.10.

Remark 7.18. Using Theorem 7.17, we can verify that d, is a metric on P(r) = Pp (r) that generates
the same topology as d,. Indeed, it is clear from (1.4) and (7.13) that d, takes values in [0, 00) and
satisfies the triangle inequality on P(r). In addition, if P,Q € P(r) are such that d,.(P,Q) = 0
then by taking P, = @ for all n in (ii) above, we deduce that d,(P,Q) = 0. Since d, is a metric on
P(r) (e.g. Villani, 2003, Theorem 7.3), this yields P = @, as required. In fact, (73(7"), dr) is a separable,
complete metric space (e.g. Panaretos and Zemel, 2020, Theorem 2.2.7 and Proposition 2.2.8), so by
the equivalence (ii) < (iii) in Theorem 7.17, the same is true of (P(r),d,).

Proof. (i) = (ii): As in the proof of Proposition 7.16, the function fx: z — (N — ||z||) V O A 1 once
again serves as a Lipschitz surrogate for the indicator function 15, of By = Bp(0,N) = {x € RP .
|z|| < N} for each N € N in the argument below; note that fy =1 on By_1, fy =0 on Bf; and fy
is 1-Lipschitz on R”. In view of this and the fact that v,: z ~ ||z|| + ||z||" belongs to PLp(r), the
function 1, (1 — fx) also lies in PLp(r) for every N € N.

Let ~N,m and Hy ,, be the finite sets constructed in the proof of Proposition 7.16 for each N,m € N,
and let T := Uy ey HNm- Since T is a set of bounded Lipschitz functions, we certainly have
T! C PLp(r). We claim that T, := T/ U {¢,(1 — fn) : N € N} is a countable subset of PLp(r) with
the required property. To see this, suppose that (i) holds for this set T, i.e. that P, (¢) — P(¢) for all
¥ € Ty. As noted in (7.13), we have d,.(P,, P) = sup¢6PLD(T71)|(Pn — P)(¢)| for all n, where PLp(r, 1)
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denotes the set of all ¢ € PLp(r, 1) satisfying ¢(0) = 0, so it suffices to show that the latter quantity
converges to 0.

We will consider a decomposition (7.15) similar to (7.14) in the proof of Proposition 7.16, taking par-
ticular care in this instance to ensure that the subsequent bounds hold uniformly over ¢ € PL p(r,1).
Observe that since ¥,.(1 — fx) — 0 pointwise on R” as N — oo, and 1,.(1 — fx) is dominated by the
P-integrable function ¢, on R” for each N, we have P(¢,(1— fn)) — 0 as N — oo by the dominated
convergence theorem. Thus, for an arbitrary ¢ > 0, there exists a sufficiently large N = N., € N
such that P(¢,(1 — fn)) < &/4, and we also fix m = m. € N such that 1/m < e/4. With this choice
of N and m, it follows from the defining property of H N,m that for any ¢ € f’ip(r, 1), there exists
hy € Hp.m such that Sup,ep, |0(x) — hy(z)| < 1/m < e/4. Letting hg be the corresponding function
in Hy,m as above, we have

[(Pn — P)( P)(¢(1 — fn))| +[(Po = P)(@fn — ho)l + (P — P)(hy)|

)< [(Pa
< (P + P61 ) + (Pa + PIoTN — )+ [P PO (119
by the triangle inequality. Now for every ¢ € PLD( 1), w have lp(x)| = |d(x) —p(0)| < |||+ ||z||” =

Yp(z) for all z € RP. Since P, (v, (1 — fn)) = P(¢r(1 — fn)) as n — oo by assumption, this implies
that

limsup sup (P, + P)(|9|(1 = fn)) <limsup (P, + P)(¢r(1 — fn)) = 2P (¢r(1 — fn)) < /2.

(7.16)
Moreover, for any ¢ € PLD(r 1), the functions ¢ fx and hg are both supported on By, and |¢pfy—hg| =
| — h¢| v <l|p— h¢| < ¢e/4 on By, so

limsup sup (Pn+ P)(|¢fn —hel) <2 sup  sup [¢p(z)fn(x) — he(z)| < eg/2. (7.17)
"0 $ePLp(r,1) ¢€PLp(r,1) *€BN

Finally, since Hy,, is finite and P,(¢) — P(v) for all ¢ € Hy,» C T, by assumption, we have

maXye ., |(Pn — P)(1)| — 0. Combining this with (7.15), (7.16) and (7.17), we conclude that

limsup d(P,, P) =limsup sup |(P, — P)(¢)| <e/2+¢/2=¢.

n—o0 n—o0 ¢)€15‘I:D(r,1)
Since € > 0 was arbitrary, the desired conclusion follows.

(i) = (iii): Suppose that d,(P,, P) — 0 and let ¢: R® — R be a (bounded) L-Lipschitz function,
for some L > 0. Then ¢(-) := ¢(-)/L € PLp(r,1), so P,(¢)) = LP,(¢)) = LP(¢)) = P(¢)). Hence

P, % p. Moreover, the function x — ||z||" belongs to PL(r, (r/2) V 1) since by Lemma 7.20 below,

_ . 2 _ _
[l = llyll"] < [l =yl (™=l < lz =yl (™=t +llyl™™) - (7.18)

for all z,y € R”, so fRD |z||" dPn(z) = [go ||| dP(x). We conclude that d,.(P,, P) — 0.

(i) = (i): We will show here that if (iii) holds, then P,(v)) — P(¢) for all ¢ € PLp(r). Indeed,
suppose that P, % P and Jeo " dPy(x) = [go [|2]|" dP(x). Now for L > 0 and any ¢ € PLp(r, L),
we have [¢(x)| < L||z||(1 + ||=z||"') < 2L(1 + |[z||") for all z € RP. Thus, since v is continuous on
RP and x ~ |(2)|/(1 + ||z[|") is bounded on R, it follows from (iii) and Diimbgen et al. (2011,
Lemma 4.5) that P,(¢) — P(v). O

Remark 7.19. The proof of the implication (i) = (ii) in Theorem 7.17 is similar to the argument
in Dudley (2002) showing that (b) implies (c) in his Theorem 11.3.3, where it is established that the
bounded Lipschitz metric induces the topology of weak convergence (of probability measures on a
separable metric space).
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To obtain a sharp pseudo-Lipschitz constant for x — ||z||" in (7.18) above, we apply the following
elementary inequality.

Lemma 7.20. If a,b> 0 and r > 1, then |a" — b"| < max(1,7/2)|a — b| (a" L + 0"~ 1).

Proof. Suppose without loss of generality that 0 < b < a. If 7 > 2, then ¢ > 7t"~! is convex on [0, c0),
SO

b b
t—>b a—t r
T — r—1 < r—1 r—1 — gy _ r—1 r—1 )
a’ —b /art dt_/ar<a_ba + b >dt Sla=0)(a " +b )

If r € [1,2], then 0 < (ab)" 1 (a®> ™ = b>7") =ab"" ! —ba" !, s0a” —b" < (a—b)(a™F +0"1). ]

When we have a sequence of possibly random probability measures P, = P, (w) on RP, we can apply
the deterministic Theorem 7.17 to obtain Corollary 7.21 below, in which we equip P(r) with the Borel
o-algebra B, = B(P(r)) associated with the d, (or equivalently the d,) metric. Note that d.(P,, P)
is measurable (i.e. a bona fide random variable) for each n by Proposition 7.16. The measurability
of d,(P,, P) is guaranteed by Villani (2009, Corollary 5.22); see also Panaretos and Zemel (2020,
Lemma 2.4.6).

Corollary 7.21. Fiz P € P(r) = Pp(r) and let (P,) be a sequence of random elements P, : Q — P(r).

(a) Then the following are equivalent:
(i) fRD YdP, €3 fRD Y dP for every ip € PLp(r);
(id) dr(Po, P) %3
(iii) d(P,, P) %%

0;

0.

(b) The same equivalences hold if the mode of convergence in (i)—(iii) is instead taken to be either
convergence in probability or complete convergence.

Thus, to establish the seemingly stronger conclusions in (ii) and (iii) for a random sequence of distri-
butions P,, a putative limit P € Pp(r) and any of the above modes of stochastic convergence, it is
sufficient (and sometimes more convenient) to show that the appropriate version of (i) holds for each
¥ € PLp(r) in turn. This is the approach we take in the proofs of the master theorems for symmetric
AMP (Theorems 2.1 and 2.3).

Proof. (a) The implications (ii) = (iii) = (i) are immediate from Theorem 7.17. As for (i) = (ii), note
that for each 1) € PLp(r) in (i), the event Q(¢)) of probability 1 on which [pp ¥ dP, — [pp 1 dP may
depend (a priori) on 9. The key point is that under (i), Theorem 7.17 ensures that this convergence
is actually uniform over PLp(r,1) on a countable intersection of such events (v)). More precisely,
letting 75, € PLp(r) be as in Theorem 7.17, we see that (1,,cp, (%) is an event of probability 1 on
which (ii) and (iii) hold.

(b) Convergence in probability:

(i) = (ii): First, we prove that if P, (1) 2 P(y) for each 1 € PLp(r), then d,(P,, P) 5 0, or
equivalently that every subsequence of (dr (Pp,P):n e N) has a further subsequence that converges
almost surely to 0. It suffices to show that for any subsequence (Q) = (P,,), there is a further
subsequence (Qy,) such that with probability 1, we have Qy,(¢¥) — P(¢) for all ¢ € T, C PLp(r);
indeed, the desired conclusion then follows directly from (a). To this end, enumerate the elements of
the countable set T, as 11,19,... and apply a diagonal argument: since Q (1) EaN P(¢1), we can
extract a subsequence (Qy, ,) of (Q) such that Qx, ,(¢1) 32 P(¢1) as £ — co. Continuing inductively,
we see that for each J € N, there exist a subsequence (Qy, ,) of (Qx o1, ,) and an event of probability
1 on which Q,,(¥j) — P(¢j) as £ — oo for all 1 < j < J. Finally, let Q, := Q,, for £ € N, and
observe that with probability 1, we have Q,,(¢;) — P(1;) as £ — oo for all j € N, as required.
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(ii) = (iii) = (i): As above, we can argue along subsequences of (P,) and then appeal directly to the
corresponding implications in (a).

Complete convergence:

(i) = (ii): Suppose that P, () 5 P(3) for every 1 € PLp(r). In view of Definition 1.1 of complete

convergence, it sufﬁces to show that if (8,) is any sequence of random variables with /3, = d (P, P)
for each n, then 3, “3 0. For any such sequence (ﬁn) we first seek to construct a sequence (Pn) of

random elements B, : Q — (P(r), CT,«) such that P, 4 P, on (P(r), BT) for each n and (Jr(pn, P):ne¢€
N) = (8n : n € N) almost surely as random sequences. Since (P(r), d,) is a Polish space, a suitable
(Isn) can be obtained by applying Lemma 7.10, where for each n, we take g, : (P(r),c?,n) — R to be
the 1-Lipschitz (and hence Borel measurable) function Q — d,.(P, Q).

For each ¢ € PLp(r), we see from the definition of d, in (1.4) that Q — Q(v)) = [pp ¥ dQ is also a 1-
Lipschitz (and hence Borel measurable) function from (P(r),d,) to R, so P,(): © — R is measurable
(i.e. a random variable). Now P, 4 P, for each n by construction, so for every ¢) € PLp(r), it follows

that P, (1)) = 4 P, (1) for each n and hence that P, (1) 3 P(1). Thus, by the implication (i) = (ii) in
(a) above, we conclude that 8, = d,(B,, P) — 0 almost surely, as required.

(ii) = (ili) = (i): To establish these remaining implications, observe that it suffices to show the
following: if F,,, G,: P(r) — R are Borel measurable functions for which it is known from (a) that
Fo(P,) 3 0 implies Gp(P,) 3 0, then F,(P,) = 0 implies G,(P,) = 0. To prove this, we

can proceed as in the argument for (i) = (ii): given any random sequence (8,) such that 3, 4

Gn(P,) for each n, Lemma 7.10 yields a sequence (P,) of random elements P,: Q — P(r) such that

Fo(P,) g Fo(P,) and B, = Gy, (P,) almost surely for each n. Then F,(P,) “3 0, so (a) implies that

Brn = Gn(P,) — 0 almost surely. This completes the proof. O
We conclude this subsection with some straightforward results on pseudo-Lipschitz functions.

Lemma 7.22. For D € N, if f € PLp(r) and g € PLp(s) for some r,s > 1, then fg € PLp(r + s)
and |f|P € PLp(pr) for allp > 1.

Proof. There exists L > 0 such that f € PLp(r, L) and g € PLp(s, L). Letting L' := LV|f(0)|V|g(0)],

we have .
[f(@)] < [£O)] + [f(z) = fO)] < L'+ [lz]| + [l=]|") < 2L°(1 + [|=]|")
l9(@)] < [g(0)] + lg(z) — g(0)] < L'(A + |l=f| + [l«]) < 2L°(1 + [|=[|*)
for all z € RP. Therefore, fixing arbitrary z,y € R? and setting a := ||z|| V ||y||, we see that

|f(x)g(z) — f(y)g(y)]
< |f@)]lg(@) — gl + lg(@)] | f(z) — f(y)|
<2L'L o =yl { (1 + l2”) (L+ 2l 4 w7 4+ O+ al”) (U el Hlyl7) 3
<2L'L|jz —y|| (24 2a"  + a" 4+ 2a° ! 4+ a® + 4a" 571
< 20L'L ||z —y|| (1 +a" )
< 20L'L |z =yl (1 + [l + [yl ).

This shows that fg € PLp(r+s). For p > 1, we have (a+b)P~! < (1Vv2P=2)(a?P~1 + 0P~ 1) for a,b > 0,
and it follows from Lemma 7.20 and (7.19) that

1F@)F = F@)P| < P |f@) - £(w)] (1@ P+ 1f @)l

N\p—1
gL@L) 2( Y2 oy <1+||x||T+||y||">(<1+||x|r’">f’*1+<1+HynT)p*)

Sp LIl =yl (™ + lly 1) (2 + ] 2707 4 fly | 2797)
Sp LILP~H = yll (1 + (|27 + [ly]1P7)

<2
o (7.19)
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for all 2,y € RP”. Thus, |f|P € PLp(pr), as required. O

Lemma 7.23. Let ¢ € PLp,(r,L) for some D € N, r > 1 and L > 0. Fiz c = (c1,...,cp) € RP
and T > 0.

(a) For fized x = (x1,...,2p) € RP, define ¥p: R — R by ¢ (2) := 1/)(:E1, . ,a:D,Ele Co Ty —|—7‘Z).
Then 1y € PL1(r, Lyy.+), where Loy := LT max{14 (2V 2" 1)1+ |¢[)"ta"1, (1 v 27 ~2)7 "1}
fora > 0.

(b) Let Z ~ N(0,1) and define U: RP — R by ¥(z1,...,2p) == E{¢(z1,...,zp, S cxe+77)}
Then ¥ € PLp(r, L;), where Ly := L(1 + ||c||) max{1 + (2 V 2" Y E(|7Z|"~1), (1 v 2" =2)(1 +
e}

Proof. For x = (21,...,2p) € RP and z € R, note first that

-1 -1
H (931, ., TD, 25:1 co Ty + 7'2) HT < (||:cH + |Zf:1 co x| + T’Z|)T
<{(@+ el + 7= (7.20)
<@V2AH{A+ el Ml (7.21)

where the three bounds above are obtained using the triangle inequality, the Cauchy—Schwarz inequal-
ity and the fact that (a +b)""1 < (1Vv2=2)(a""! +b"71) for a,b > 0.

(a) For 2,2 € R, we have

W}x(z> - %(Z,N
= }¢(:p1, ..., TD, ZgD:1 coxp+ TZ) — Ll)(l‘l, ..., XD, 25:1 co Ty + 7'2/)}
< Lt|z — ¢ {1 +2(1v 27"72)(1 + ||c||)r*1|]x\|7"71 +(1v 2”72) 7'T71(|Z|T71 + |z/\“1)}
< Ligyr 1z =21 (1 + |27+ 1771,
where the first bound follows from (7.21) and the fact that ¢ € PLp44(r, L).
(b) For z,y € RP, we have

(W (z) = ¥(y)]
SE{‘w(xl,...,xD,ZfZIng+7’Z) —@D(yl,...,yD,ZfZICKyg—FTZ)‘}
< LA+ ez =yl {1 +20v 2 ) E(r ™) + (v 2 )+ flel)™ (el + Iyl ) }
< Lellz =yl (L+ [l + lyl™),

where the second bound again follows from (7.20), (7.21) and the fact that ¢» € PLpy(r, L). O
Lemma 7.24. Suppose that ¢ € PLp(r, L) for some D € N, r € [2,00) and L > 0. Then for any
n € N and vectors 2* = (2f,...,2%) and y* = (v{,...,9%) for 1 <L < D, we have

1/r D
1 ¢ ¢ 0r— o r—
EZW(QT%’-n,x?)—l/J(y'l,--m% )| < LD2" (ZHQ? Yy ‘:z,r) (1+Z (It + ) )
— =1

Proof. For 1 < i < n, define X := (z},...,2P) and YO := (y},...,yP), and let v’ := r/(r — 1) €
(1,2] be the Holder conjugate of r, so that 1/r 4+ 1/r' = 1. Then since ¢ € PLp(r, L), an application
of Holder’s inequality yields the bound

1 (i
=1
1 a i r— 1) ||T—

< IS DX -y O (14 x| 1+HY< )
=1
1 - 7 )T 1/7“ 1 - 1) [|T— i r—1\7' 1/7’l

< (FX IO —yOr) (A e oty ) L @

=1 =1
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Since ||| = [|[|2 < D%_%HHT on R, we see that

n

D D
YD Nt =yt =Dy lat =yl (7.23)
(=1

i=1 (=1

n r_1
LS jxo —yop < 22
n 4 oon
=1
In addition, by applying the triangle inequality for ||-||,,» and arguing as in (7.23), we have

1~ o) 1/r!
+ (5o
=1

n T‘l

LS i@ty oY < (s xap)
- i) ||r— i) r— < - o)
(3 iy ) s (G321

=1

D r—1 D r—1
<1+ (Drlz r#ugr) i (Dz—lz uyfnz,r)

/=1 (=1

L D

T\ r= 01— Or—
<14 (DY) (It 1), (7.24)
/=1

where the final bound follows since |||, < |||l—1 on RP. Combining (7.22)-(7.24) yields the desired

conclusion. O
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