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Sorted ¢ regularization has been incorporated into many methods for
solving high-dimensional statistical estimation problems, including the SLOPE
estimator in linear regression. In this paper, we study how this relatively new
regularization technique improves variable selection by characterizing the
optimal SLOPE trade-off between the false discovery proportion (FDP) and
true positive proportion (TPP) or, equivalently, between measures of type I
error and power. Assuming a regime of linear sparsity and working under
Gaussian random designs, we obtain an upper bound on the optimal trade-off
for SLOPE, showing its capability of breaking the Donoho—Tanner power
limit. To put it into perspective, this limit is the highest possible power that
the Lasso, which is perhaps the most popular ¢1-based method, can achieve
even with arbitrarily strong effect sizes. Next, we derive a tight lower bound
that delineates the fundamental limit of sorted #; regularization in optimally
trading the FDP off for the TPP. Finally, we show that on any problem instance,
SLOPE with a certain regularization sequence outperforms the Lasso, in
the sense of having a smaller FDP, larger TPP and smaller ¢o estimation
risk simultaneously. Our proofs are based on a novel technique that reduces
a calculus of variations problem to a class of infinite-dimensional convex
optimization problems and a very recent result from approximate message
passing theory.

1. Introduction. Reconstructing the signal from noisy linear measurements is vital in
many disciplines, including statistical learning, signal processing, and biomedical imaging.
In many modern applications where the number of explanatory variables often exceeds the
number of measurements, the signal is often believed—or, wished—to be sparse in the sense
that most of its entries are zero or approximately zero. Put differently, this means that a
majority of the explanatory variables are simply irrelevant to the response of interest.

Accordingly, a host of methods have been developed to tackle these problems by leveraging
the sparsity of signals in high-dimensional linear regression. These methods often rely on,
among others, the concept of regularization to constrain the search space of the unknown
signals. Perhaps the most influential instantiation of this concept is ¢; regularization, which
gives rise to the Lasso method (Tibshirani, 1996). The optimal amount of regularization,
however, hinges on the sparsity level of the signal. Intuitively speaking, if the sparsity level is
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low, then more regularization should be imposed, and vice versa (see, for example, Abramovich
et al. (2006)).

This intuition necessitates the development of a regularization technique that is adaptive
to the sparsity level of signals, which is typically unknown in practical problems. To achieve
this desired adaptivity, Bogdan et al. (2015) introduced sorted ¢1 regularization. This new
regularization technique turns into a method called SLOPE in the setting of a linear regression
model

(1.1) y=XB+w,

where X is the n x p design matrix, 3 € R? are the regression coefficients, y € R is the
response, and w € R" is the noise term. Explicitly, SLOPE estimates the coefficients by
solving the convex programming problem

1 2\
(1.2) argmin o[ly — Xb| +;Ai|b\<i>’
1=
where [b|(1) > -+ > |b](,) are the order statistics in absolute value of b = (b1, ...,b,) and

A1 >+ > Ay > 0 (with at least one strict inequality) are the regularization parameters. The
sorted {1 penalty, > ©_, )\i\b\(i), is a norm, and the optimization problem for SLOPE is,
therefore, convex (see also Figueiredo and Nowak (2016)). As an important feature, the sorted
¢; norm penalizes larger entries more heavily than smaller ones. Indeed, this regularization
technique is shown to be adaptive to the degree of sparsity level and enables SLOPE to obtain
optimal estimation performance for certain problems (Su and Candes, 2016). Notably, in the
special case A\; = - -- = )\, the sorted ¢; norm reduces to the usual /; norm. Thus, the Lasso
can be regarded as a special instance of SLOPE.

A fundamental question, yet to be better addressed, is how to quantitatively characterize
the benefits of using the sorted ¢; regularization. To explore this question, Figure 1 compares
the model selection performance of SLOPE and the Lasso in terms of the false discovery
proportion (FDP) and true positive proportion (TPP) or, equivalently, between measures of
type I error and power. Needless to say, a model is preferred if its FDP is small while its TPP
is large. As the first impression conveyed by this figure, both methods seem to undergo a
trade-off between the FDP and TPP when the TPP is below a certain limit. More interestingly,
while nowhere on the Lasso path is the TPP above a limit, which is about 0.5707 in the left plot
of Figure 1 and 0.4343 in the right, SLOPE is able to pass the limit toward achieving full power.
To be sure, these contrasting patterns persist even for an arbitrarily large signal-to-noise ratio.
This distinction must be attributed to the flexibility of the SLOPE regularization sequence
(A1,...,Ap) compared to a single value as in the Lasso case. Recognizing this message, we
are tempted to ask (1) why the use of sorted ¢; regularization brings a significant benefit over
{4 regularization in the high TPP regime and, equally importantly, (2) why SLOPE exhibits a
trade-off between the FDP and TPP just as the Lasso does in the low TPP regime.

1.1. A peek at our results. To address these two questions, in this paper we characterize
the optimal trade-off of SLOPE between the TPP and FDP, uncovering several intriguing
findings of sorted ¢; regularization. Assuming TPP = u for 0 < u < 1, loosely speaking, the
trade-off curve gives the smallest possible value of the FDP of SLOPE using any regularization
sequence in the large system limit. To prepare for a rough description of our contributions, in
brief, we work in the setting where the design has i.i.d. Gaussian entries and the regression
coefficients f31,..., 03, are i.i.d. draws from a distribution that takes non-zero values with
a certain probability. Notably, it is generally nontrivial to define false discoveries in high
dimensions (G’Sell et al., 2013), which is not an issue however in the case of independent
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Fig 1: Comparison between SLOPE and the Lasso in terms of the TPP—FDP trade-off. Given
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an estimate 3, define its FDP = G720} and TPP = 58, 201 . The SLOPE

regularization sequence A) ;) 4, is defined in (2.5), with varying 0 <7 <1 and A > 0, and
w = 0.2 in the left plot and w = 0.3 in the right plot. The results of the Lasso are taken over
its entire solution path, and its highest TPP is about 0.5707 in the left plot and 0.4343 in
the right plot. Left: (n, p) = (300,1000), |{j : 5; # 0}|/p = 0.2, and w = 0 (noiseless); right:
(n,p) = (400,1000), [{j : B; # 0}|/p = 0.7, and w = 0. On both plots, non-zero entries of 3
are i.i.d. draws from the standard normal distribution. More specifications of the setup are
detailed in Section 2. The result presents 10 independent trials.

regressors. The assumption on the signal prior corresponds to the linear sparsity regime. In
addition, we assume that both n, p — oo and the sampling ratio n/p converges to a constant
(see more detailed assumptions in Section 2). From a technical viewpoint, these assumptions
allow us to make use of tools from approximate message passing (AMP) theory (Donoho
et al., 2009; Bayati and Montanari, 2011).

Breaking the Donoho—Tanner power limit. To explain the contrasting results presented
in Figure 1, we prove that under the aforementioned assumptions, SLOPE can achieve an
arbitrarily high TPP. Moving from sorted ¢; regularization to ¢; regularization, in stark
contrast, the Lasso exhibits the Donoho-Tanner (DT) power limit when n < p and the sparsity
is above a certain threshold (Donoho, 2006, 2005). Informally, the DT power limit is the
largest possible power that any estimate along the Lasso path can achieve in the large system
limit. For example, in the setting of Figure 1 this power limit is about 0.5676 in the left plot
and 0.4401 in the right plot. For SLOPE and a certain choice of the regularization sequence,
interestingly, we show that the asymptotic TPP-FDP trade-off of SLOPE beyond the DT
power limit is given by a simple Mdobius transformation, which is shown by the blue curve
in Figure 2. This M&bius transformation naturally serves as an upper bound on the (optimal)
SLOPE trade-off curve above the DT power limit.

Lower bound via convex optimization. Next, we address the second question by lower
bounding the optimal trade-off for SLOPE, followed by a comparison between the trade-offs
for the two methods in the low TPP regime. To put it into perspective, the Lasso trade-off
obtained by Su et al. (2017) is plotted as the green solid curve in Figure 2. Apart from the
simple fact that the SLOPE trade-off is better than or equal to the Lasso counterpart, however,
it requires new tools to take into account the structure of sorted ¢; regularization. To this end,
we develop a technique based on a class of infinite-dimensional convex optimization problems.
The resulting lower bound is shown in red in Figure 2. It is worth noting that the development
of this technique presents several novel ideas that might be of independent interest for other
regularization schemes.
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Instance superiority of SLOPE. The results illustrated so far are taken from an optimal-case
viewpoint. Moving to a more practical standpoint, we are interested in comparing the two
methods on a specific problem instance and, in particular, wish to find a SLOPE regularization
sequence that allows SLOPE to outperform the Lasso with any given penalty parameter in
terms of, for example, the TPP, the FDP, or the /5 estimation risk. Surprisingly, we prove that
on any problem instance, SLOPE can dominate the Lasso according to these three indicators
simultaneously. This comparison conveys the message that the flexibility of the sorted ¢;
regularization can turn into appreciable benefits. This result is formally stated in Theorem 3.
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Fig 2: Ilustration of the upper bound ¢* and lower bound ¢, for the SLOPE TPP-FDP trade-
off. The right plot is the zoom-in of the left. Here n/p = 0.3 and |{j : 3; # 0}|/p = 0.5 (see
more details in the working assumptions in Section 2). The Lasso trade-off curve shown in
green is truncated at the DT power limit about 0.3669 (Su et al., 2017). The optimal SLOPE
trade-off curve must lie between the two curves. Notably, the two bounds agree at TPP = 1.

1.2. Organization. The remainder of this paper is structured as follows. In Section 2, we
present the main results of this paper. Next, Section 3 introduces the AMP machinery at a
minimal level as a preparation for the proofs of our main results. In Section 4, we detail the
derivation of the lower bound based on variational calculus and infinite-dimensional convex
optimization. In Section 5, we specify the upper bound, especially the part given by a Mobius
transformation above the DT power limit. We conclude this paper in Section 6 by proposing
several future research directions. Omitted proofs are relegated to the appendix (Bu et al.,
2022).

2. Main results. Throughout this paper, we make the following working assumptions
to specify the design matrix X € R™*P, regression coefficients 3 € RP, and noise w € R™ in
the linear model (1.1), as well as the SLOPE regularization sequence A = (A,...,Ap). To
obviate any ambiguity, we consider a sequence of problems indexed by (n,p) with both n,p
tending to infinity.

(A1) The matrix X has i.i.d. N'(0,1/n) entries. The sampling ratio n/p converges to a
constant § > 0.

(A2) The entries of 3 are i.i.d. copies of a random variable II satisfying P(IT # 0) = ¢
for a constant 0 < ¢ < 1 and E(IT? max{0,logIT}) < oc. The noise vector w consists of
i.i.d. copies of a random variable W with bounded second moment 0% := E(W?) < cc.
(A3) The SLOPE regularization sequence A(p) = (A1,...,\p) is the order statistics of p
i.i.d. realizations of a (nontrivial) non-negative random variable A.
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Moreover, we assume that X', 3, and w are independent. Notice that the sparsity level of 3
is about ep and that each column of X has approximately a unit /5 norm. The noise variance
o2 can equal 0, meaning that our results apply to both noisy and noiseless settings. In (A3),
by “nontrivial” we mean that A is not always equal to 0. As an aside, SLOPE is reduced to the
Lasso if the distribution of A is a unit probability mass at some positive value.

The working assumptions are mainly driven by their necessity in AMP theory (Donoho
et al., 2009; Bayati and Montanari, 2011), which enables the use of the recent analysis of an
AMP algorithm when applied to solve SLOPE (Bu et al., 2020) (similar analysis is given in Hu
and Lu (2019) and requires similar assumptions). Regarding (A2), the condition P(IT # 0) = ¢,
which implies linear sparsity of the regression coefficients, is not required for AMP theory.
Rather, this condition is only made so that the TPP and FDP are well-defined. Besides, the
merit of the linear sparsity regime has been increasingly recognized in the high-dimensional
literature (Mousavi et al., 2018; Weng et al., 2018; Su, 2018; Sur et al., 2019; Wang et al.,
2019).

2.1. Bounds on the SLOPE trade-off. Our main result is the characterization of a trade-off
curve that teases apart asymptotically achievable TPP and FDP pairs from the asymptotically
unachievable pairs for SLOPE'. For any estimate (3, recall that its FDP and TPP are defined as

6 =0and B0} -, {26 #0and 5 #0)
{j: B; #0}] ’ [{j: B; # 0} ’
with the convention 0/0 = 0. When it comes to the SLOPE estimator, we use TPP(3, A) and

FDP(3, A) to denote its TPP and FDP, respectively.
Likewise, we define the thresholded FDP and TPP, namely,

Wi B=0and |3 > €} o {5185 #0and |5y > &}

2.2 FDP, = — , - s
(22) ¢ G B> G5, 20

which reduce to FDP and TPP when £ = 0. These thresholded versions of FDP and TPP are
introduced purely for technical reasons, and have been used in previous work on penalized
estimators like SLOPE including in Wang et al. (2020b). Specifically, the SLOPE estimator is
known to possibly have many elements that are very close to zero, but not strictly equal to zero,
causing the direct asymptotic analysis of the FDP and TPP defined in (2.1) to be difficult. We
refer interested readers to Hu and Lu (2019, Example 3 and Figure 3) for a concrete example
that illustrates such a phenomenon. Instead, we analyze asymptotic (in p) properties of FDP¢
and TPP¢ in (2.2) and then allow § — 0 to recover asymptotic properties of FDP and TPP
defined in (2.1).

Our main results are stated in the following two theorems, which give lower and upper
bounds on the optimal SLOPE trade-off. Taken together, they demonstrate a fundamental
separation between asymptotically achievable TPP—FDP pairs and the unachievable pairs
over all signal priors II and SLOPE regularization sequences A. Note that both the upper
bound ¢* and lower bound ¢, are defined on [0, 1] and completely determined by € and 6. The
expression for ¢* is given in (2.9), while ¢, is detailed in Section 4.

2.1 FDP =

THEOREM 1 (Lower bound). Under the working assumptions, namely (Al), (A2), and
(A3), the following inequality holds with probability tending to one:

FDP¢(83,A) = qx (TPP¢(8, A); 6, €) — ce,

IR code to reproduce the results, e.g., to calculate gx and ¢*, is available at https://github.com/
woodyx218/SLOPE_AMP.
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where q,(u;8,€) > 0 for all 0 <u < 1 and c¢ is some positive constant which tends to 0 as
&= 0.

THEOREM 2 (Upper bound). Under the working assumptions, namely (Al), (A2), and
(A3), for any 0 < u < 1, there exist a signal prior 11 and a SLOPE regularization prior A such
that the following inequalities hold with probability tending to one:

FDP¢(3,A) < ¢* (TPP¢(B,A);0,€) +ce(ILLA)  and | TPP¢(B,A) — u| < ce(II, A),

where q*(u;6,€) < 1 — € and c¢ is some positive constant which tends to 0 as § — 0.

REMARK 2.1. The probability is taken with respect to the randomness in the design
matrix, regression coefficients, noise, and SLOPE regularization sequence in the large system
limit n, p — oo. In relating to the assumptions made previously, this theorem holds even for
o2 = 0, the noiseless case.

The proofs of Theorem 1 and Theorem 2 are given in Section 4 and Section 5, respectively.
Most notably, our proof of Theorem 1 starts by formulating the problem of finding a tight
lower bound as a calculus of variations problem. Relying on several novel elements, we further
reduce this problem to a class of infinite-dimensional convex programs.

On the one hand, Theorem 1 says that it is impossible to achieve high power and a low FDP
simultaneously using any sorted ¢; regularization sequences, and this trade-off is specified
by ¢.. On the other hand, Theorem 2 demonstrates that SLOPE can achieve at least the
same trade-off as that given by ¢* by specifying a prior II and a regularization sequence A.
Indeed, the proof of this theorem is constructive in that we will show that SLOPE can come
arbitrarily close to any point on the curve ¢* (see Section 5). Another important observation
from Theorem 2 is that SLOPE can achieve any power levels, which is not necessarily the
case for ¢; regularization-based methods, as we show in Section 2.2.

Informally, let ¢ ., denote the optimal SLOPE trade-off curve. That is, gy . (u) is
asymptotically the minimum possible value of the FDP under the constraint that the TPP
is about u, over all possible SLOPE regularization sequences and signal priors (see formal
definition in Section 3). Combining the two theorems above, we readily see that the optimal
SLOPE trade-off must be sandwiched between ¢* and ¢:

q*(u) < As1ope (u) < q* (u)7

for all 0 <wu < 1. Consequently, the sharpness of the approximation to the SLOPE trade-off
rests on the gap between the two curves, and throughout the paper, we refer to the gap as
the function u — ¢*(u) — ¢, (u). Figure 3 illustrates several examples of the two curves for
various pairs of €, . Importantly, the plots show that the two bounds are very close to each
other, thereby demonstrating tightness of our bounds. In fact, the gap between g, and ¢* is an
upper bound of the gap between the analytical ¢* and the true trade-off gs opg. Furthermore, a
closer look at the plots reveals that the two curves seem to coincide exactly when the TPP is
below a certain value. In this regard, the SLOPE trade-off might have been uncovered exactly
in this regime of TPP. Future investigation is required to obtain a fine-grained comparison
between the two curves.

Looking at Figure 3, the reader may initially find the non-monotonicity of the trade-off
curves in € as surprising. We argue that this is due to the DT phase transition: in the case of the
Lasso, for fixed 4, it can be shown that the trade-off curves are monotonically increasing in
€; in other Words, G (u; 0, €1) > Grao(u; 9, €2) whenever €; > €. However, in some settings,
we empirically observe that TPP = 1 is achieved with a dense SLOPE estimator. When this
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Fig 3: Examples of the SLOPE trade-off bounds ¢* and g, for different (4, €) pairs. Top-left:
€ = 0.2; top-right: ¢ = 0.1; bottom-left: § = 0.9; bottom-right: § = 0.1. For a given 9, note
that the trade-off for SLOPE is not monotone with respect to e, which is a departure from
the Lasso counterpart (see Su et al. (2017, Figure 4)). Numerically, the upper and lower
bounds seem to coincide when the TPP is below a threshold (see more details in Figure 5). To
give more details, in one regime with § = 0.1, e = 0.5, the maximum gap between the upper
and lower bounds max,[¢*(u) — ¢, (u)] is less than 0.0235; whereas in another regime with
0 =0.5,¢ = 0.1, the maximum gap is always less than 0.0056.

occurs, s ope(1) = 1 — € and thus gs ope(1;0, €1) < gsLope(1; 9, €2). In words, the SLOPE trade-
off at TPP = 1 is monotonically decreasing in €. Therefore, the patterns may not be monotone
between the TPP upper limit ufy; and 1, shifting from increasing in € to decreasing in € at the
extreme. In short, the regime beyond DT phase limit is different for SLOPE and when SLOPE
enters this regime, breaking the monotonicity in € may occur.

To be complete, we remark that the message conveyed by these two theorems does not
contradict earlier results established for FDR control of SLOPE (Bogdan et al., 2013, 2015;
Brzyski et al., 2019; Kos and Bogdan, 2020). The crucial difference between the two sides
arises from the linear sparsity assumed in the present paper, which is a clear departure from the
much lower sparsity level considered in the literature. In this regard, our results complement
the literature by extending our understanding of the inferential properties of the SLOPE
method to an unchartered regime.

2.2. Breaking the Donoho—Tanner power limit. To better appreciate the trade-off results
presented in Theorem 2 for SLOPE, it is instructive to compare them with the TPP and FDP
trade-off for the Lasso, which is arguably the most popular method leveraging ¢; regularization.

To put it into perspective, first recall some results concerning the optimal trade-off between
the TPP and FDP for the Lasso. A surprising fact is that under the working assumptions,> the

ZNote that, in the case of the Lasso, (A3) is replaced by the assumption that A > 0 is a constant.
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Lasso cannot achieve full power even with an arbitrarily large signal-to-noise ratio when § < 1
(that is, X is “fat”) and the sparsity ratio € is above a threshold, which we denote by €*(9).
The dependence of this value on ¢ is specified by the parametric equations

20 o 20(5) =250
20(s) +s(2®(s) — 1)’ 26(s) + s(2®(s) — 1)’

for s > 0.3 For simplicity, henceforth (8, ¢) is said to be in the supercritical regime if § <
1,e > €*(0). Otherwise, it is in the subcritical regime when 6 < 1,¢e < €*(J), or § > 1 (that is,
X is “thin”). In the supercritical regime, Su et al. (2017) proved that the highest achievable
TPP of the Lasso, denoted u};, takes the form

(1=90)(e—¢€")
e(1—e¥)
Throughout the paper, u}, is referred to as the DT power limit. For completeness, in

the subcritical regime the Lasso can achieve any power level. As such, we formally set

us(6,6) =1 when 6 < 1,e <e*(d),0rd > 1.

This existing result, in conjunction with Theorem 2, immediately gives the following
contrasting result concerning the Lasso and SLOPE. We use TPP, (3, \) and FDP, (3, \)

to denote, respectively, the TPP and FDP of the Lasso with penalty parameter A. Likewise, we
use TPPg ops (3, A) and FDPg op: (3, A) to denote those of SLOPE as £ — 0.

(2.3) 0

(2.4) up(0,€):=1— <1

COROLLARY 2.2 (SLOPE breaks the DT power limit). In the supercritical regime, the
following conclusions hold under the working assumptions:

(a) The power of the Lasso satisfies TPP (3, \) < uf, with probability tending to one.
(b) Forany 0 < u < 1, there exists a SLOPE regularization prior A and a signal prior 11 such
that TPPg ope (3, X) > u with probability tending to one.

For illustration, Figure 1 in the introduction reflects this distinction between SLOPE and
the Lasso with u}(0.4,0.7) = 0.4401 in the right plot. Another illustration is the left plot
of Figure 1 and Figure 4, which is vertically truncated at u},(0.3,0.2) = 0.5676. Note that
SLOPE breaks the DT power limit, i.e. there are (3, ) pairs for which w5, < TPPg ope < 1,
while, as shown in the proof of Corollary 2.2, still preserving non-trivial FDP, i.e. FDPg op <
1 — €, where 1 — € would be the FDP associated with the trivial procedure that selects all
predictors.

Corollary 2.2 highlights the benefit of using sorted ¢; regularization over the less flexible ¢;
regularization in terms of power. As confirmed by Proposition 2.3 below, this sharp distinction
persists no matter how large the effect sizes are and, therefore, it must be attributed to the
flexibility of the SLOPE regularization sequence. As is well-known, the Lasso selects no more
than n variables. Worse, a significant proportion of false variables are always interspersed on
the Lasso path in the linear sparsity regime and, therefore, even though the Lasso can select up
to n > k variables, it would always miss a fraction of true variables, thereby imposing a limit
on the power. SLOPE, like Lasso, has a significant proportion of false variables interspersed
with discoveries. However, unlike Lasso, SLOPE does not bear the constraint that || B llo<n
owing to the flexibility of its regularization sequence. In fact, the corresponding constraint
for SLOPE is that the number of unique non-zero entries is no more than n (Su and Candes,
2016). This flexibility allows SLOPE to have arbitrarily high power regardless of the regime
that (9, €) belongs to.

31n the compressed sensing literature, €* corresponds to the sparsity level where the Donoho—Tanner phase
transition occurs (Donoho and Tanner, 2009b,a).
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Fig 4: The Mobius part of the SLOPE trade-off upper bound ¢*. The solid curve denotes
the upper bound specified by (d,¢) = (0.3,0.2). The green line is the Lasso part of ¢* and
the blue line is the Mobius part. The numerical pairs of the TPP and FDP are obtained from
experiments that are specified by the following parameters: n = 300, p = 1000, o = 0, signal
prior ITp/(e*/€) with M = 10000 in (2.6) (note that €*(0.3) = 0.087), and regularization prior
A /M /M w in (2.5) with varying w. Each pair is averaged over 50 independent trials.

Moving forward, we ask which regularization prior A and signal prior II are “flexible”
enough to enable SLOPE to break the DT power limit. To achieve desired flexibility, interest-
ingly, it only requires a simple two-level regularization sequence for SLOPE. Consider the
following two-level SLOPE regularization prior: given constants ¢ > b >0 and 0 < w < 1, let
A b = a with probability w and otherwise A,y ., = b. The SLOPE regularization sequence
drawn from this prior takes the form

(2.5 )\a,b,w::(a,a,---,a, b,b,---.,b )
S— ——
around wp  around (1—w)p

Next, for any M > 0 and 0 < ¢’ < 1, define the following signal prior:

M, w.p. €€,
(2.6) Oy (€)= M~ wp. e—e€,
0, wp. 1—e

Henceforth in this paper, denote by B3/(¢’) the regression coefficients sampled from
ITps(€'). In the following result, we take M — oo, rendering the nonzero entries of 3 (€’)
either very large or small.

Now we are ready to state the following result, which shows that SLOPE with the two-level
regularization sequence can approach any point on the Mobius transformation (2.7) arbitrarily
closely. This result also specifies the upper bound ¢* in Theorem 2 in the supercritical regime:

€(l—e)u—e(1—e

el—e)u—e(1—¢)’

for ujy, <wu <1 (above the DT power limit). Note that this function takes the form of a Mobius

(e—e)(1—c) |
=1—¢, which

€(l—e)—e(1—¢)
is the FDP achieved by the trivial procedure that simply selects all predictors.

2.7 q*(u;0,€) =

transformation. Notably, taking u = 1 gives ¢*(1;0,¢) =
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PROPOSITION 2.3.  For any ujy, < u < 1 in the supercritical regime, there exists w € (0, 1)
such that Xq ., and By (€ /€) (defined via the prior in (2.6)) make SLOPE approach the
point (u,q*(u)) in the sense that

lim lim lim (TPP¢(Bar(€*/€), Aapw) FDPe(Brr(€°/€), Aapw)) = (u,q* (),

M—o00 £€—0 n,p—00

where a = /M ,b=rv/M for a certain value 0 < r < 1.

Figure 4 provides a numerical example that corroborates this proposition.

This result in fact implies Theorem 2 for w5, < <1 in the supercritical regime. Note that
the first limit lim,, ;, . is taken in the sense of convergence in probability. See more details in
its proof in Section 5.1. It is worthwhile to mention that the three-component mixture (2.6) is
considered in Su et al. (2017) for the construction of favorable priors under sparsity constraint
(see a generalization in Wang et al. (2020a)). This mixture prior is used to ensure that the
effect sizes are either very strong or very weak. In particular, Proposition 2.3 remains true if
M and 1/M are replaced by any value diverging to infinity and any value converging to 0,
respectively.

2.3. Below the Donoho—Tanner power limit. Next, we continue to interpret Theorem 1
and Theorem 2, but with a focus on the regime below the DT power limit.

o o
© | o |
o o
© ©
= =
a a
T T
o o
N | ~ |
° Lasso Unachievable ° SLOPE Unachievable
g T T T T g T T T T
0.0 02 04 06 0.8 1.0 0.0 0.2 0.4 06 0.8 1.0
TPP TPP
o o
© | o |
o o
[(e] ©
= =
a a
W < | W < |
o o
s Lasso Unachievable aA SLOPE Unachievable
o o
d T T T T O T T T T
0.0 0.2 04 06 0.8 1.0 0.0 0.2 0.4 06 0.8 1.0

TPP TPP

Fig 5: Examples of the TPP-FDP trade-off curve, with (J, €) = (0.3,0.2) on the top panel and
(0.3,0.5) on the bottom. The left plot is the Lasso trade-off curve and the right plot describes
the SLOPE trade-off gain. Neither the Lasso nor SLOPE can approach the red regions. The
gray regions are sandwiched by the upper and lower bounds on the SLOPE trade-off.

First of all, the two right plots of Figure 5 show that the lower bound and the upper bound for

Jg.ops are very close to each other when 0 < TPP < uj; (recall that v, = 1 in the subcritical
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regime). As a matter of fact, the upper bound in this regime is given by Su et al. (2017), which
showed that, under the working assumptions, there exists a function ¢ (+; 9, €) such that

FDPLasso (167 )‘) 2 q:asso (TPPLaSSO(IB7 )‘)7 57 6) - 000017

holds with probability tending to one as n,p — oo. Here 0.0001 can be replaced by any
arbitrarily small positive constant. Moreover, ¢, is tight in the sense that the Lasso can come
arbitrarily close to any point on this curve by specifying a prior and a penalty parameter (see
refined results in Wang et al. (2020a)). Recognizing that the Lasso is an instance of SLOPE,
the tightness of ¢, allows us to set ¢*(u) = ¢/, (u) for 0 < u < uj,. To be more precise,
letting ¢*(u) be the largest positive root of the equation

2(1—€) [(1+2%)P(—z) — vp(x)] + (1 +22) - 6 1—u

28) [0+ 22)(1 = 20 (—2)) + 226(@)] =1 20(—a)’

we have
2(1 — ) P(—t*(u))
2(1 —€)®(—t*(u)) + eu’

q;:issu(u; 67 6) = lf u S U’ET(57 6),

(2.9) q*(u;0,€) =
e(l—eu—e(1—e¢)
e(l—e)u—e(1—¢)’

if u>wuk.(6,¢).

In the above expressions, ¢(-) and ®(-) are the probability density function and cumulative
distribution function of the standard normal distribution, respectively.

Returning to the lower bound, in stark contrast, the situation becomes much more challeng-
ing. To be sure, to obtain a lower bound requires a good understanding of the superiority of
sorted /1 regularization over its usual ¢; counterpart. From a theoretical viewpoint, a major
difficulty in the analysis of SLOPE arises from the non-separability of sorted ¢; regulariza-
tion. Note that the non-separability results from the sorting operation in the penalty term
> bl (i) in the SLOPE optimization program (1.2). To tackle this technical issue, in this
paper we formulate the SLOPE trade-off as a calculus of variations problem and further cast it
into infinite-dimensional convex optimization problems (see more details in Section 4).

In a nutshell, the flexibility of the SLOPE regularization sequence seems to only bring up
limited improvement on the trade-off between the TPP and FDP below the DT power limit.
However, the two right plots of Figure 5 present a noticeable departure between the two bounds
when the TPP is slightly below ;. This departure is not an artifact of our analysis. Indeed,
in Section 5.3 we provide a problem instance whose asymptotic TPP and FDP trade-off falls
strictly between the upper bound and the lower bound:

g.(w) +0.0001 < FDP < ¢*(u) — 0.0001,

and TPP =~ u < u}, with probability tending to one.

2.4. On model selection and estimation. An important but less-emphasized point is that
the above-mentioned comparison between the two methods is over the lower envelope of
all the instance-specific problems. In this regard, it would be too quick to conclude that the
flexibility of the penalty sequence does not gain any benefits for SLOPE, even at points where
g«(u) may be very close to ¢, (u). Under the working hypotheses, indeed, we can formally
prove that SLOPE is superior to the Lasso in the sense that we can always find a SLOPE
regularization prior that strictly improves the Lasso on the same linear regression problem in
terms of both model selection and estimation. Below, we let 3 denote the SLOPE or the Lasso
estimate, and use the subscript to distinguish between the two methods.
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THEOREM 3. Under the working assumptions, namely (Al), (A2), and (A3), given any
bounded signal prior 11 and any Lasso regularization parameter \ > 0, there exists a SLOPE
regularization A\ such that the following inequalities hold simultaneously with probability
tending to one:

(a) TPPSLOPE(ﬁ7 A) > TPPLasso (/67 A)!
(b) FDPSLOPE(B? A) < FDPLasSD(ﬁ? )\)’

©) [Bsiors(B,A) = BI% < [|1Brase (8, A) — BII.

This theorem shows that SLOPE can outperform the Lasso from both the model selection
and estimation viewpoints. We stress, however, that the result is non-constructive in that
it does not provide the actual SLOPE penalty vector A giving the good performance—it
only claims that one exists. In practice, one would likely want to find a SLOPE sequence to
optimize performance along one attribute only, depending on the goal (i.e., by considering
model selection or estimation separately). The task of finding optimally performing SLOPE
penalty sequences for any given fixed prior is an important open question, which we leave for
future work.

The proof strategy of Theorem 3 leverages a simple form of SLOPE regularization se-
quences that admits two distinct values (see (2.5)). Due to space constraints, we relegate the
proof of this theorem to Appendix A. It is somewhat surprising that such a simple two-level
sequence can already exploit the benefits of using SLOPE over the Lasso.

As an aside, we remark that SLOPE has been shown to achieve the asymptotically exact
minimax estimation when the sparsity level is much lower than considered in the present
paper, largely owing to the adaptivity of sorted ¢; regularization (Su and Candes, 2016). When
it comes to the Lasso, however, cross validation is needed to select a penalty parameter that
enables the Lasso to achieve similar estimation performance, which however is not exact as
the constant is not sharp (Bellec et al., 2018).

3. Preliminaries for Proofs. In this section, we collect some preliminary results about
SLOPE and AMP theory that allow us to get analytic expressions of the TPP and FDP
asymptotically. Informally speaking, the AMP theory given in Bu et al. (2020, Theorem
3) characterizes the asymptotic joint distribution of the SLOPE estimator B and the true
regression coefficients 3 (similar results are given in Hu and Lu (2019, Theorem 1) using
the convex Gaussian minimax theory (CGMT) instead of AMP). Notably, since B depends
on (8, ), when studying asymptotic properties of ,@, we will work with their asymptotic
distributions (IT, A). In this way, we drop the dependence on finite-sample quantities like 7, p
and the sparsity level |{j : §; # 0}| and instead work with asymptotic quantities such as (J, €)
henceforth.

To be specific, under pseudo-Lipschitz functions (see Bu et al. (2020, Definition 3.1)) on
(E , ), the asymptotic distribution of the SLOPE (including the Lasso) estimator 3, which we
denote as II, can be described as

= D
3.1) 0=, 0T+ 72),

where Z is an independent standard normal and the superscript D means "in distribution". We
will refer to ) (to be introduced in (3.5)) as the limiting scalar function in Hu and Lu (2019),
and (7, A) is the unique solution to the state evolution and the calibration equations

1 2
(3.2) =024 5B (1 g0, (U4 72) 1)

(3.3) AZAr (1 - %E (”h+TZ,AT(H + TZ))) .
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In order to discuss properties of the limiting scalar function 7, we first introduce the SLOPE

proximal operator on (y,8) € RP x RP, where 6 is proportional to X and §; > 6y > --- >
6, > 0 with at least one inequality. We define the proximal operator as

g1 2
(34 prox ;(y;6) := axg min { Zly — |+ Jo(b) }.

where Jg(b) = >_"_, 0;|b|(;). In the Lasso case when the penalty parameter is a constant, the
proximal operator reduces to the soft-thresholding function:

prox ;(y; 0) = Nt (y; 0) := sign(y) - max{|y| — 0,0}.

Generally speaking, the SLOPE proximal operator in (3.4) is adaptive and non-separable,
in the sense that an element of the output generally will depend on all elements of the input.
As a concrete example, we obtain via Algorithm 1 that the proximal operator for SLOPE is
given by

prox ;([20,13,10,6,4]; [12,10,5,5,5]) = ne([20, 13,10, 6,4];[12,9,6,5,5]) = [8,4,4,1,0].

On the one hand, the adaptivity arises from the fact that larger penalties are applied to
larger elements of the input. On the other hand, for example, two elements of input [13, 10]
are not directly thresholded by the penalty [10, 5], but rather an averaging step is triggered by
the existence of the other inputs, which gives an effective threshold of [9, 6]. This is illustrated
in Figure 6.

S S S —
oy —— y-0 —e— proxy(y, 0)

] 0 ° © —
24 . . 24 R
. . : e w1 \
© 4 o - o4

i 2 3 4 5 i 2 3 4 5 i 2 3 4 5

Index Index Index

Fig 6: Illustration of how the SLOPE proximal operator can be interpreted as using an
effective threshold. The leftmost figure plots two vectors y and 8. The middle image plots
their difference y — 6 and the rightmost image plots the output of the proximal operator

prox ;(y; 6).

Although the SLOPE proximal operator given in (3.4) is non-separable, nevertheless, as
introduced in Hu and Lu (2019, Proposition 1), the SLOPE proximal operator is asymptotically
separable: for sequences {8(p)} and {v(p)} growing in p with empirical distributions that
weakly converge to distributions © and V, respectively, there exists a limiting scalar function
7 (determined by © and V') such that as p — oo,

(3.5) ~lprox  (w(2):8(0) ~ 1y o (0(p)) [ = 0.

The work in Hu and Lu (2019) discusses many properties of this limiting scalar function, 7.
Indeed, it is shown to be odd, increasing, Lipschitz continuous with constant 1 and applied
coordinate-wise to v(p) (hence it is separable; see Hu and Lu (2019, Proposition 2)). In
more details, 7, 9(:6) takes a scalar input, x, and performs soft-thresholding with a penalty
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adaptive to x in a way that depends on V' and ©, meaning there is an input-dependent penalty
Av,e(z) such that 1, o (z) = nsore(z; Av,0 () ). More details on the adaptive penalty function

that relates the SLOPE proximal operator to the soft-thresholding function can be found in
Appendix C.

We now discuss in more detail the so-called state evolution and calibration equations given
in (3.2) and (3.3). We refer to A, which is defined implicitly via (3.3), as the normalized
penalty distribution. Notice that A only differs from the original penalty distribution A by a
constant factor. In fact, there exists a one-to-one mapping between A and A by Bu et al. (2020,
Proposition 2.6), allowing one to analyze in either regime flexibly. Moreover, for a fixed II, the
quantity 7(A) can be uniquely derived from (3.2) and, as shown in Bu et al. (2020, Corollary
3.4), it can be used to characterize the estimation error via || B-p 12/p — 6(7% — 02). In this
work, we will use 7 := 7(II, A) as a factor to define the normalized prior,

m(IL,A) :=1II/7(IL, A),

and, in particular, when it is clear from the context, we will use (I, A) and (7, A) interchange-
ably since there exists a bijective calibration between the original problem instance and the
normalized one provided by the fixed point recursion for the state evolution and the calibration
mappings, (3.2) and (3.3). We refer the interested readers to Appendix B for a discussion of
many nice properties of this fixed point recursion, such as the explicit form of the divergence
n'.

Under the characterization of the asymptotic SLOPE distribution given in (3.1), we define
FDP°(II, A) and TPP>(II, A) as the large system limits of FDP and TPP. The proof of
convergence in probability is given in the next lemma. We will eventually let £ — 0, and in
order for the FDP and TPP to converge, we consider FDP; and TPP; in (2.2) with § in the set

(3.6) == {¢: PII(IL,A) = ) = 0},
where I is the limiting distribution of Bj, defined in (3.1).

LEMMA 3.1. Under the working assumptions, namely (Al), (A2), and (A3), for £ € Z in
(3.6), the SLOPE estimator (3(X) with the penalty sequence X satisfies
(=P (|, 0, (72| >€)

_{5:1Bi > &8, =0} B FDPE(IT, A) o=

FDP¢ (83, )

14521851 > €} P (| ga, M+ 72)| >€)
i 2|53 i #0
TPP(B,\) = U “{BJJ |: ;ji’fé}f 12 rppe(in a) = (|t rmar @ +72) > ¢).

where superscript P denotes convergence in probability, Z is a standard normal independent
of I, and (1,A) is the unique solution to the state evolution (3.2) and calibration (3.3).
Furthermore, IT* := (I1|II # 0) is the signal prior distribution of the non-zero elements.

By the continuity of the probability measure, we obtain

1—¢)P 7 0
lim FDPZ° (11, A) = FDP™(IL, A) := -9 (777r+z,A( )# )
an P (0, ,a(m+2)#0)

Jim TPPZ*(I1, A) = TPP (H,A)::P(nﬁm(w +Z)7é0>.
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Here, m = II/7 is the normalized prior distribution and 7* := IT* /7. We give the proof of
Lemma 3.1 in Appendix D.1 by extending Bogdan et al. (2013, Theorem B.1).

Following the notions of FDP*° and TPP> given in Lemma 3.1, we mathematically define
the SLOPE trade-off curve as the envelope of all achievable SLOPE (TPP>°, FDP°) pairs:

2 S€) = inf FDP>°(II, A).
Gsioe (130, €) (LAY TP (ILA)—u LA)

To study the SLOPE trade-off, we will make use of a critical concept, the zero-threshold
a(IT, A), which will be defined in Definition 4.1. Using the zero threshold, the limiting values
in (3.7) can be simplified to

TPP™ (I, A) =P(|7* + Z| > a(I1, A)),
(3.8) 2(1 — €)@(—a(IL, A
2(1 —€)®(—a(Il,A)) +e- TPP>(II,A)
Note from the equations above that for fixed TPP*>° = u, the formula of FDP® is decreasing

in «. Therefore we consider the maximum of feasible zero-thresholds,

a*(u) = sup a(IT, A),
(IT,A): TPP> =y

in order to derive the minimum FDP*° on the SLOPE trade-off
2(1 —e)®(—a*(u))
2(1 —€)®(—a*(u)) +eu’

(3.9) Qg ope (U3 0, €) ==

4. Lower bound of SLOPE trade-off. The main purpose of this section is to provide
a lower bound ¢, on ¢ ... We accomplish this by (equivalently) giving an upper bound
for a*(u) for fixed u, which we denote as t.(u). As we shall see, in contrast to Lasso,
our derivation for SLOPE requires non-standard tools from the calculus of variations and
quadratic optimization programming. The optimization problem is a constrained one involving
the SLOPE penalty and the probability density function of the normalized prior 7 as the
decision variables, subject to the fixed TPP = u and the monotonicity of the penalty.

To construct the upper bound ¢, (u), we examine the state evolution (3.2), which gives

2

8> %E (nH-i‘TZ,AT(H +72) — H>2 - %E (777r+Z,A<7T +7) - ”)2'

Rearranging the above inequality yields the state evolution condition

2
@.1) E(LA):=E (n (r+2) — 7r) <.

T+Z,A

Here the quantity F/(II, A) can be viewed as the asymptotic mean squared error between the
SLOPE estimator and the truth, scaled by 1/72, since || 8- B||/p — T2E(I1, A) in probability
by Bu et al. (2020, Corollary 3.4).

Before we proceed, we first introduce an important (scalar) quantity that governs the
sparsity, the TPP, and the FDP of the SLOPE estimator and will be used throughout the paper.

DEFINITION 4.1.  Let (II, A) be a pair of prior and penalty distributions (or, equivalently,
the normalized (, A)) and suppose o(I1, A) is a positive number such thatn_ , , (x) =0 if

and only if |x| < a(I1, A). Then we say that « = «(I1, A) is the zero-threshold.



16

Intuitively, the zero-threshold is a positive threshold, below which, the input is mapped
to zero. Note that the necessary condition (4.1) sets the feasible domain of (7, A) pairs and
thus prescribes limits to the zero-threshold «. In the Lasso case, the zero-threshold is indeed
equivalent to the normalized penalty scalar A; but in SLOPE, it is a quantity derived from
the normalized penalty distribution A in a highly nontrivial manner (see Proposition C.5 for
details).

Next, we state another useful definition. Recall from Section 3 that the limiting scalar
function 1 of SLOPE is separable and assigns a different penalty to different inputs. We

therefore define the effective penalty function accordingly.

DEFINITION 4.2.  Given a normalized pair of prior and penalty (w,A), the effective
penalty function Ae: R — R is a function such that

Mot (3 et () =1, 4 ()

It is not hard to show that Xeff is well-defined. In fact, given n we can represent Keff

T+Z,A°
via the zero-threshold from Definition 4.1, namely,

=1, 5 A®) ifx > a(m A),
Xeff(x) =4 T+ "77T+Z A(J)) if z < _O‘(WvA)a
a(m,A) if |z| < a(m, A).

Equipped with this effective penalty function, we can rewrite the state evolution condition
(4.1) as

~ —~ 2
Fa[Aeff>p7r*] =E (nsoft(W + Z§Aeff(7r + Z)) — 77) < 57

in which the functional objective F, is defined on the effective penalty function ;&eﬂ‘ as well as
the probability density function of 77*. Note here that 7* and 7 determine each other uniquely

since 7 := 7|7 # 0. We provide an explicit expression for Fy[Aes, pr+] in (G.1).

Since the constraint (3.2) remains the same if 7 is replaced by ||, we assume 7 > 0 without
loss of generality. We minimize F, [Xefﬁ pr+| over the functional space of (;&eff, px+) through
a relaxed variational problem:

i F, A
Amin o [Aet, p]

4.2) st Aegr(a) > a,Aly(z) > 0forall 2z >

/OO p(t)dt =1, /oo [@(t — ) + P(—t — a)]p(t)dt = u.
0 0

Here the function A is implicitly defined on [a, 00) as Agg(z) = a for 0 < z < « and
p is a probability measure defined on [0,0c0). We remark that the constraints for Ag in
problem (4.2) are derived from the properties of Keff in Appendix C, i.e. Al; > 0 comes from
Fact C.3 and the boundary condition Ag(a) > o comes from Proposition C.5. Because some
additional properties of Keff may have been excluded in the relaxation, these constraints are
only necessary and may not be sufficient. Therefore,

Amin Fy [:&effva*] > min Iy, [Aeffa P]»
(Aeffypfr*) (Aeﬁ’p
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with the inequality possibly being strict, provided the left optimization problem above is
solved subject to (i) At corresponds to the effective penalty in the limiting scalar function;
and (ii) p, is a probability density function such that TPP>® =P(|7* + Z| > o) = u.

Leveraging the above relaxation (4.2), in order to lower bound ¢, .. in (3.9), we can
analogously define the maximum feasible zero-threshold o*(u) and upper bound it with ¢, (u)
as follows:

4.3)

o™ (u) :=sup {a : min Fa[;&eff,pﬂ-*] < (5} <ty(u):=sup {a : min Fy[Aes, p] < 5} .
(HvA) (Aeffyp
With these definitions in place, we are now in a position to describe the procedure to find
the optimal prior and the optimal penalty in problem (4.2), given TPP> = v and o(IT, A) = cv.

4.1. Optimal prior is three-point prior. 'To solve problem (4.2), we must search over all
possible distributions 7*, which is generally infeasible. To overcome this obstacle, we use
the concept of extreme points (i.e. points that do not lie on the line connecting any other
two points of the same set) to show that the optimal 7* for problem (4.2) is a two-point
distribution, having probability mass at only two non-negative (and possibly infinite) values
(t1,t2). In doing so, we significantly reduce the search domain, from infinite dimensional to
two-dimensional. Because 7 has an additional point mass at 0, the optimal prior 7 (that can
achieve minimum FDP when accompanied with the properly chosen penalty) is a three-point
prior taking values at (0, t1,%2). We recall that the two-point 77* is consistent to the Lasso result
in Su et al. (2017, Section 2.5), where the optimal 7* is the infinity-or-nothing distribution
with ¢ = O+,t2 = Q.

To see that 7* admits a two-point form, suppose that (A%, p*) is the global minimum of
problem (4.2). Then clearly p* is also the global minimum of the following linear problem
(4.4) with linear constraints.

Ipnzigl Fo [A:ffa P]

St /OOo p(B)dt =1, /Ooo[cp(t ) 4 B(—t — a)]p(t)dt = u.

Intuitively, since there are two constraints, we need two parameters (which will be t1,5) to
characterize the minimum. We formalize this intuition in the next lemma (proved in Appendix
G) and show that p* indeed takes the form of a sum of two Dirac delta functions.

4.4)

LEMMA 4.3. If p* is a global minimum of problem (4.4), then
P (t) =p16(t —t1) +p2d(t — t2)
for some constants p1,pa,t1,ts, and p1 +ps =1, p1,p2 > 0.
The above specific form of the optimal p* allows us to search over all (¢;,t3), each pair of

which uniquely corresponds to either a single-point prior p(¢;t1,t2) = 0(t — t1) if t; = to, or
a two-point prior by

p(titi,t2) =p16(t — t1) + p20(t — t2),

u— [(I)(tg - oz) + ‘P(—tg — oz)}
[@(tl — a) + (I)(—tl — Oz)] — [(I)(tg - Oé) + (I)(—tQ — Oé)] ’
pa(t1,t2) =1 —pi(t1,t2),

4.5) pi1(ti,t2) =
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where the last two equations come from the constraints in problem (4.4).

In light of Lemma 4.3, each pair (¢1,¢2) forms a different instantiation of problem (4.2),
which will be problem (4.6) and whose optimal penalty is denoted by A% (-;¢1,%2) so as to be
explicitly dependent on (¢1,¢2). Before we proceed to optimize the penalty Ag(-;1,%2), we
assure the skeptical reader that our procedure — doing a grid search on (¢1,t2) and considering
the minimal value of all programs (4.6) parameterized by (t1,t2) to be equivalent to the
minimal value of problem (4.2) — is indeed a valid approach. This claim is theoretically
grounded by noting that Fi, [A%(-;t1,t2), p(-;t1,12)] is continuous in (¢, ¢2). Continuity can
be seen from a perturbation analysis of the optimal value in problem (4.6). In our case, the
perturbation analysis is not hard since the constraint is independent of (¢1,¢2) and F,, depends
on A’ in a strongly-convex manner: a small perturbation in (¢1,t2) only results in a small
perturbation in A’ and thus in Fi[Alg(-;t1,12), p(+;t1,t2)]. We refer the curious reader to a
line of perturbation analysis for such optimization problems in Bonnans and Shapiro (2013);
Shapiro (1992); Bonnans and Shapiro (1998).

4.2. Characterizing the optimal penalty analytically. By Lemma 4.3, we reduce the
multivariate non-convex problem (4.2) to a set of univariate convex problems (4.6) over A.g.
In this section, we describe the optimal penalty function A;(-;1,%2), which is the solution to
the problem below:

HAHH Fa[Aeffap(';tlatZ)]
(4.6) o
st Agr(a) >, Alg(z)>0forall z > a.

This is a quadratic problem with a non-holonomic constraint. To see this, we can expand
the objective functional F}, from (G.1) and split it into a functional integral that involves A.¢
and other terms which do not, i.e.

Fa[Aeffap(';tl,t2)] — /

«

o0

L(z Aet)dz + et} | (o — t1) = D(~a — 1)

+ epat? [@(a ) — B(—a— tg)} .

This split changes our objective functional from Fy,[Aes, p(+;t1,t2)] to the new functional
f;o L(Z, Aeff)dz with

“4.7)
L(z,Acetr) : =2(1 — €)(2 — Acr(2))*¢(2)

+ ey <(z 1~ Aur(2)’6(z —t1) + (= 2 — 11 + Ae(2)) 2 b(—2 — tl))

+ eps ((z —ty — Aeit(2)) 20z — ta) + (= 2 — to + Auir(2)) p(—2 — t2)) :

We will numerically optimize the functional f;o L(z, Aetr)dz together with the constraints
in problem (4.6). In addition, although we cannot derive the analytic form of A% (-;t1,%2)
from problem (4.6), we can still analytically characterize it at points z where the monotonicity
constraint is non-binding (that is, when A (-;¢1,%2) is strictly increasing in a neighborhood
of 2), as shown in Appendix E.1.

4.3. Searching over the optimal penalty numerically. To solve the functional optimiza-
tion problem (4.6), we approximate it by a discrete optimization problem via Euler’s finite
difference method. Specifically, we approximate the function L(z, A¢x) (and hence F,,) on a
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discretized uniform grid of z and solve the resulting quadratic programming problem with
linear constraints.

To this end, we denote vectors z = [o,a + Az, + 2Az,--- ,a + mAz] and A =
[Aer(ar), Aegr(a + Az), -+ Aegr(a + mAz)] for some small Az and large m. Then prob-
lem (4.6) is discretized into the convex quadratic program

min Fa(A;tl,tg)

Ak
1000 a
(4.8) 11 0 -0 0
s.t 0-11--0]A> :
0--0—11 0

in which the new objective Fa(A; t1,t2) (derived in (G.2) and also presented below) is the
discretized objective of F,[Aegr, p(+;t1,t2)] from problem (4.6).

As Az — 0 and m — oo, problem (4.8) recovers problem (4.6) by well-known convergence
theory for Euler’s finite difference method. To simplify the exposition, we write the objective
of problem (4.8) in matrix and vector notation as follows:

Q=diag | 2(1 - )o(2) +¢ Y pj |6z —t;) +o(-z— ;)] | .

j=1,2
d=2(1-z(z) +¢ Y p;|(z = t;)o(z — 1)) + (= +1))6(z + ;).
§=1,2
and observe that
Fu(Asty t2) = (ATQA —2ATd)Az +¢ 3 pjt2 [@(a — 1) — B(—a — tj)} .
=12

The discretized problem (4.8) is equivalent to a standard quadratic programming problem,
whose objective is the discrete version of f;o L(z,Aetr)dz in (4.7),

1
in ~A'QA-A'"d
min 5AQ

1 00--0 o

4.9) 1100 0
s.t. 0-11---0]A>

0--0—-11 0

4.4. Solving the quadratic program. Here we briefly discuss our numerical approach to
solving the quadratic program (4.9). Generally speaking, quadratic programming problems
do not admit closed-form solutions. However, they can be efficiently solved by classical
numerical methods, including the interior point method (Dikin, 1967; Sra et al., 2012), active
set method (Murty and Yu, 1988; Ferreau et al., 2014) and other dual methods (Goldfarb and
Idnani, 1983; Frank and Wolfe, 1956). In this work, we use the dual method in Goldfarb and
Idnani (1983), as implemented in the R library quadprog, to solve (4.9).

We remark that problem (4.9) is not the only way to discretize problem (4.6) and we now
mention other approaches, which can result in better discretization accuracy. The discretization
of problem (4.6) contains two parts: (i) a numerical integration to approximate the objective
and (ii) a numerical differentiation to approximate the constraints.
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When formulating the quadratic programming problem (4.9), we chose to apply the left
endpoint rule to approximate the objective integral [ L(z, Aer)dz in (4.7) by (ATQA —
2ATd)Az, as well as the backward finite difference (with first-order accuracy) to describe
the constraint Al;(z) > 0. Alternatively, one can use different numerical quadratures to
approximate the integral fofo L(z, Aet)dz or use a change of variable to approximate a different
integral. We can also apply different finite differences to discretize the monotonicity constraint
in problem (4.6).

4.4.1. Numerical integration to approximate the objective. More specifically, for the
approximation of the objective in problem (4.6), we can alternatively apply numerical quadra-
tures such as the trapezoid rule, Simpson’s rule, or Gauss-Laguerre quadrature (Salzer and
Zucker, 1949) to improve the numerical integration for f;o L(z, Aegr)dz. On the other hand,
we may use a change of variable z = {*- + « to transform the integral f;o L(z)dz over an

infinite interval [cv, 00) to the integral fol L <ﬁ + a) (1%7”;)2 over a finite interval [0, 1]. This

new integral can then be approximated by the same left endpoint rule (or other rules) but with
different Q and d.

4.4.2. Numerical differentiation to approximate the constraints. As for the monotonicity
constraint A/(z) > 0, we may alternatively use other difference methods, e.g. the central
difference, or higher-order accuracies. Doing so will result in a different matrix that left-
multiplies A in the constraint of (4.9).

In conclusion, different numerical integration and differentiation schemes will lead to other
formulations of the quadratic programming that are different from (4.9). We do not pursue
these additional numerical aspects in the present work.

4.5. Summary. To summarize everything so far, the procedure of finding the lower bound
g« (u) involves the following steps: fixing TPP>® = u, we search over a line of zero-thresholds
{a}; for each a, we search over a two-dimensional finite grid of (¢1,¢2), each pair defining
a standard quadratic programming problem (4.9); we then solve the quadratic problem and
reject (t1,t9) if the minimal value of the equivalent problem (4.8) is larger than §; if all
(t1,t2) are rejected, then the current zero-threshold «v is too large to be valid. We set the
largest valid zero-threshold as ¢, (u) in (4.3) and write the lower bound of the FDP> as

Gx(u) = 2(3(_15;3("_(;@()3‘% Note that g, (u) > 0 for any possible ¢, (u).

We finally mention that, in addition to minimizing FDP at a fixed TPP over all penalty-
prior pairs, our quadratic programming approach also works when the prior 11 is fixed. The
fixed prior scenario has been extensively studied in Hu and Lu (2019), who optimize over
the limiting scalar function 7 while we are optimizing over the penalty function A.g. Our
approach adds a new angle that can be algorithmically more efficient. We defer the details of

the procedure to Appendix J.

4.6. Differences between SLOPE and Lasso. We end this section by discussing why deriv-
ing the SLOPE trade-off is fundamentally more complicated than the Lasso case. We highlight
that the variational problem (4.2) is non-convex, even though it is convex with respect to each
variable Ay and p (i.e. it is bi-convex but non-convex). Generally speaking, approximate
solutions to non-convex problems are not accompanied by theoretical guarantees, except for
some special cases. Our bi-convex problem (4.2) cannot be solved by alternating descent,
namely, fixing one variable, optimizing over the other and then alternating. Furthermore, our
constraints only add another layer of complexity to the problem: in particular, the monotonicity
constraint of A is non-holonomic (i.e. the constraint A/, > 0 does not depend explicitly on

Actr).
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More precisely, the difficulty in directly solving the problem (4.2) is two-fold. The first
difficulty lies in the search for the optimal penalty. For the Lasso case, the penalty distribution
A and the penalty function Xeff are not adaptive to the input and hence they both equal the
zero-threshold «.. Therefore, we can perform a grid search on A € R and simply optimize over
p. However, for SLOPE, the penalty Keff is a function and hence it is intractable to search over
the SLOPE penalty function space. The functional form of the penalty is the reason we must
rely on the calculus of variations to study the associated optimization problem.

To demonstrate the second difficulty, we again consider the convex problem (4.4), which is
over the probability density function p, assuming the optimal penalty A; has been obtained.
In the Lasso case, it was shown in Su et al. (2017, Equation (C.2)) that the optimal 7* is
the infinity-or-nothing distribution: P(7* =0) =1 — ¢’ and P(7* = 00) = €. In other words,
given A;, we can easily derive the optimal p. However, a key concavity result in Su et al.
(2017, Lemma C.1), which holds for Lasso and determines the optimal 7*, unfortunately
breaks in SLOPE. Therefore, the optimal form of 7* is inaccessible for SLOPE with existing
tools, even if the optimal penalty A% is known.

5. Upper bound of SLOPE trade-off. In this section, we rigorously analyze the SLOPE
trade-off upper boundary curve ¢* (defined in (2.9)). As stated in Theorem 2, ¢* takes two
forms: below the DT power limit, i.e. when TPP* < 5, for u}, defined in (2.4), we have
q" = qf,...» and beyond the DT power limit, ¢* is a Mobius curve.

We start by giving some intuition for why the domain of ¢* is the entire interval [0, 1],
whereas, the Lasso trade-off curve is only defined on [0, uj;). Intuitively, SLOPE is capable
of overcoming the DT power limit and achieving 100% TPP since it is possible for SLOPE
estimators to select all p features, hence, by the definition of TPP (see Section 2.1), one can
find a completely dense SLOPE estimator whose TPP is automatically 1. This is not true
for the Lasso, since it can select atr most n out of p features. The corresponding constraint
for the SLOPE estimator follows from the AMP calibration in (3.3) (discussed in detail in
Appendix B), namely it says that the number of unique absolute values in the entries of the
SLOPE estimator is at most n out of p. However, this does not directly constrain the sparsity
of SLOPE estimator, and thus it can still be dense. In other words, the SLOPE estimator
always satisfies the following:

(5.1) the number of unique non-zero magnitude | B\Z| in B (p) <n.

Notice that, in the Lasso sub-case, the above implies a direct sparsity constraint |{: : BZ #*
0}| < n as just discussed, since all non-zero entries in Lasso have unique magnitudes. We
also remark that the asymptotically (5.1) is a necessary and sufficient condition to satisfy the
constraint (3.3).

With this intuition, we are prepared to prove Theorem 2 and show that ¢* indeed serves as
an upper bound of ¢, .. Following Proposition 2.3, we have the tightness of ¢* when u > ;.
We will further discuss the proof of Proposition 2.3 in Section 5.1, but leave the full details for
Appendix D.4. The tightness of ¢* when u < ujj, follows from the existing tightness result on
the Lasso trade-off (see Su et al. (2017, Section 2.5)), since the Lasso is a sub-case of SLOPE
and ¢* matches the Lasso trade-off curve for u < uj,. Hence, we have the corollary below.

COROLLARY 5.1.  For any 0 <u < 1, there exists an € € |0, €* /€], and values r(u) €
[0,1] and w(u) € [0,1], both depending on u, such that the penalty A = A A () T 0 (10)
(defined in (2.5)) and the prior B (€') (defined in (2.6)) make SLOPE approach the point
(u,q*(u)) in the sense
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lim lim li TPP ), ), FDP A * .
imlim Lim  (TPPe(Ba(€), A), FDPe(Bu (€), X)) = (u,¢"(w))

Moreover, when u < uf,, we can set r(u) = 1, without specifying w(u), and € = €' (u) will
also depend on u. When u > uf,, we fix € = €* /e and set r(u) via (5.2) and w(u) via (5.3)
below.

An interesting aspect of this result is that there are two different strategies for attaining
q*(u), depending on whether TPP>° = w is above or below the DT power limit. In both cases,
we use a two-level penalty A VT () B (1) and a sparse prior (see (2.6)) with very small
and very large non-zeros. However, when TPP™ = u < u},, the strategy for attaining ¢*(u)
is to vary the proportion of strong signals (which equals e¢’ and ¢ varies with w), but when
u > ul,, sharpness in the Mobius part of ¢* is attained by keeping the sequence of priors fixed
and instead tuning the ratio between strong and weak penalties.

The sharpness result of Corollary 5.1 shows that over the entire domain, ¢* is arbitrar-
ily closely achievable, thus, ¢*(u) must serve as the upper bound of the minimum FDP*°,
g ope (1), hence we have completed the proof of Theorem 2.

5.1. Mobius upper bound is achievable. In this section, we will sketch the proof of
Proposition 2.3, which is used to prove Corollary 5.1 in the regime u > w;. To complement
Proposition 2.3 and Corollary 5.1, for concreteness, we give a specific prior and penalty pair
in (2.7) that approaches ¢*(u) when u > wuf,. The fully rigorous proof of Proposition 2.3,
together with the derivation of (r,w), is given in Appendix D.4.

Before we sketch the proof, we will provide some intuition for what makes the specific
choice of priors and penalties behave effectively in terms of reducing the FDP*° while still
driving TPP*® to 1, in order that we are able to approach ¢*(u) for all u > u},. We remind the
reader that, because there is a one-to-one correspondence between original instance (II, A)
and the normalized (7, A), we will use the two notations interchangeably.

First, for fixed TPP> = u, we can reduce the FDP*° through a smart use of the priors
defined in (2.6), where many elements equal 0 exactly, while some non-zero elements are
small (equal to 1/M) and others large (equal to M) with M tending to oo. This is the same
strategy as was used for demonstrating the achievability of the Lasso curve in Su et al. (2017),
and the intuition that we present here is based on this analysis. At a high level, extremely strong
signals are unlikely to be missed, and thus the TPP*° can be high at the cost of rendering
the constraint (4.1) tight. On the other hand, weak signals help reduce the FDP because
they are not counted toward the number of false positives and have little influence on (4.1).
Mathematically speaking, for the Lasso, Su et al. (2017, Lemma C.1) revealed a concave
relationship in I between the normalized estimation error E(I1, A) = E(n_ LZA (m+2)—m)?
in (4.1) and the sparsity IP’(nWJrZ’A(W + Z) #0), which also depends on the pair (I, A). We
remind the reader that, because there is a one-to-one correspondence between original instance
(I, A) and the normalized (7, A), we will use the two notations interchangeably. The idea is
that minimizing FDP*° corresponds to minimizing the sparsity (this can be seen, for example,
by the relationship in (5.11) where (I, A) denotes the sparsity). Therefore, to find a prior IT
that satisfies the state evolution condition (4.1), while minimizing the sparsity, the optimal
(normalized) distribution for the non-zero elements, 7*, for the Lasso case has probability
masses concentrated at the endpoints of the domain, namely 0" and oo. In this way, the form
of the signal prior II contributes to reducing the FDP*° by mixing the weak effects [3; with
the zero effects.
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Combining the priors discussed above, with a special subset of the possible penalties,
namely the two-level penalties defined in (2.5), we are able to reduce the FDP>° while still
increasing the TPP* to its maximum value of 1, hence attaining ¢*(u) for all u > ;.
Interestingly, the fact that SLOPE can do this, is through its penalty, which mixes the weak
predictors BZ and the zero predictors (see Figure 4). This mix-up is in fact triggered by the
averaging step in the SLOPE proximal operator (see Algorithm 1; the averaging is determined
by the sorted ¢; norm in the SLOPE problem), which creates non-zero magnitudes that are
shared by some predictors and hence maintains the quota of unique magnitudes in (5.1). As
a consequence, the SLOPE estimator can overcome the DT power limit (and reach higher
TPP>°) without violating the uniqueness constraint (5.1) on its magnitudes.

When constructing the two-level penalties just discussed, we must choose a pair (r,w)
that, respectively, defines the downweighting of the v/M used for the smaller penalty and
the proportion of penalties getting each value. Concretely speaking, in Proposition 2.3 and
Corollary 5.1, we set

2¢ — " —eu

(5.2) r(u) =& ! <2(6_6*)> [t (uly).

where €* and v}, define the DT power limit and are given in (2.3)-(2.4) and ¢* is defined in
(2.8). Moreover,

(5.3)
2(1—¢v)

_*
w(u) =€ + 1,

[@(—t*(u;m (it (i)

where r in the above is shorthand for the r(u) from (5.2).

Without going into details, the key reason for choosing such pair (r,w) is so that the
sequence of two-level penalties have two different penalization effects: for one, the SLOPE
estimator 77_ +z A(7r + Z) is equivalent to a Lasso estimator 7 (7 + Z;t*(u},)) in the sense

of (5.4); for the other, the SLOPE estimator is equivalent to a different Lasso estimator
Nsoft (T + Z;7t* (uf;)) in the sense of (5.5).
To be precise, it can be shown that

P
Neyz AT+ Z) = 1sor( + Z5 " (uiy)),
and
4 E(, g a7+ 2) = m)% = E(non(m + Z5 1 (uy)) — 7)?,

so when considering the asymptotic magnitude of the elements of the SLOPE estimator, or its
asymptotic estimation error (4.1), we can analyze the limiting scalar function instead using a
soft-thresholding function with threshold given by ¢*(uj,). Moreover, this implies that SLOPE
satisfies the state evolution constraint (4.1) in a similar way to how the Lasso satisfies its
corresponding state evolution constraint.

However, analysis of the asymptotic sparsity of the SLOPE estimator or of its asymptotic
TPP and FDP, relies on the fact that one can prove

(5.5) P(nﬁ+Z,A(7r + Z) #0) = P(nsoe(m + Z; 7t (upy)) #0),

Hence, again, instead of analyzing the limiting scalar function one can analyze a soft-
thresholding function, but now with a smaller threshold given by rt*(u},) for some 0 <r <1
defined in (5.2). Reducing the threshold in this way functions to improve the attainable TPP-
FDP over the comparable Lasso problem by allowing more elements in the estimate with
non-zero values. We visualize the above claims in Figure 4(d).
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Essentially, the state evolution condition (4.1) must always hold, but it uses the larger
pseudo zero-threshold ¢*(u},), while inference is conducted on the true, but smaller, zero-
threshold r¢*(u}, ). In this way, we can extend attainability of ¢, to attainability ¢*, while
still working within the state evolution constraint (4.1).

5.2. Infinity-or-nothing prior has FDP above upper bound. The goal of this section is to
provide some intuition for the Mobius form of the curve ¢*(u) when w is larger than the DT
power limit. This will be done by demonstrating that, in the case of infinity-or-nothing priors,
with a special subset of penalties, the SLOPE FDP is always above ¢* in Proposition 5.2.
This also motivates the achievability results of Section 5.1, as the proof given in Section 5.1
essentially tries to construct prior penalty pairs such that the inequality in Proposition 5.2
becomes an equality. While we only consider infinity-or-nothing priors here, we remark that in
the Lasso case these are actually the optimal priors (ses Su et al. (2017, Section 2.5)), meaning
that they achieve the minimum FDP*° given TPP*°.

PROPOSITION 5.2. Under the working assumptions, namely (Al), (A2), and (A3), for
€ € Zin (3.6), assuming that (3 is sampled i.i.d. from (2.6) for any € € [0,1], M — oo, and
that X is the order statistics of i.i.d. realization of a non-negative A with P(A = maxA) > e€/,
the following inequality holds with probability tending to one:

FDP¢(Bar(€'), A) > ¢* (TPP¢(Brr(€), A); 0,€) — ce(Tpr(€'), A),

for some positive constant c¢ which tends to 0 as § — 0.

PROOF OF PROPOSITION 5.2. Asin Section 4, we assume 7 > ( without loss of generality
since the analysis holds if we replace 7 by |7|. Consider a subset of priors, namely the infinity-
or-nothing priors: for some € € [0, 1],

00 Ww.p. €€,

(5.6) Too(€) = { 0 wp.l_e

Although the infinity-or-nothing prior in (5.6) does not satisfy the assumption (A2) that
P(TT # 0) = P(7 # 0) = , this does not affect our discussion®.

In fact, as demonstrated by Lemma 5.3 below, for infinity-or-nothing priors, the state
evolution constraint (4.1) guarantees that ¢’ < ¢*/e. Since €* is the same for the Lasso and
SLOPE, this means that the maximum proportion of co signals in the infinity-or-nothing prior
is the same for both as well.

LEMMA 5.3.  Under assumptions in Proposition 5.2, we must have €' € [0, €* /€].

The proof of Lemma 5.3 is given in Appendix D.3. It turns out that the DT threshold €*
plays an important role in understanding the relationship between the sparsity and TPP*°.
Before illustrating this relationship, we introduce the concept of sparsity. In a finite dimension,
the sparsity of SLOPE estimator is |{j : Bj # 0}|. However, as p — oo, the count of non-
zeros will also go to infinity, meaning a quantity like lim,, |{; : Bj # 0}] is not well-defined.
Therefore we introduce the asymptotic sparsity of the SLOPE estimator via the distributional
characterization in (3.1), denoting the limit in probability by plim,

(5.7) R(TLA) =P (1, \(7+ Z) #0) =P (T1#0) = plim|{j : B; # 0}|/p.

“The infinity-or-nothing prior can be approximated arbitrarily closely by a sequence of priors that satisfy the
assumption. For example, let M/ — oo and consider 7 (¢') defined in (2.6).



CHARACTERIZING THE SLOPE TRADE-OFF 25

Making use of the DT threshold €*(J), we show in Lemma 5.4 that the sparsity (I, A)
sets an upper bound on achievable TPP>°.

LEMMA 5.4. Consider SLOPE based on the pair (II,A) with 11 from (2.6) and set
M — cc. Then with the asymptotic sparsity 0 < k(II,A) < 15, we have TPP®(II, A) <
u*(k(IL, A);€,0) where

1-— %, ifd <1ande>e*(9),

1, otherwise.

(5.8) u(K;€,0) := {

PROOF OF LEMMA 5.4. We will only prove TPP>(II,A) <1 — % when § <

1 and € > €*(J). We note that the bound on u«* given in (5.8) when 6 > 1 or € < €*(§) is trivial
since, by definition, TPP>°(II, A) < 1.

As M — oo in (2.6), the prior m converges to the infinity-or-nothing priors 7o (€') in
(5.6). In addition, 7 = 7, (¢’ /€). By the intermediate value theorem, there must exist some
¢’ € [0,1] such that

TPP®(ILLA) =P(|7* + Z| > a)= (1 — €)P(|Z] > o) + € P(|oo + Z| > «)
=2(1—-€)YP(—a)+¢.
Here the first equality is given by (3.8) and o = «(II, A) is the zero-threshold in Definition 4.1.
The second equality follows from substituting the infinity-or-nothing 7*. Therefore, the
asymptotic sparsity in (5.7) is

K(ILA)=P(lr+ Z| > a) = (1 —¢)P(|Z] > a) + e TPP® =2(1 — ee')®(—a) + €€/,
where the first equality follows by the definition of the zero-threshold in Definition 4.1, the
second uses that TPP*°(II, A) = P(|7* 4+ Z| > «), and the third is the result from the previous

equation.
Some rearrangement gives

~ R(ILA) —e€

 2(1—e€)
Simple calculus shows that the TPP*°(II, A) in (5.9) is an increasing function of €. To see
this, notice that the derivative is (1—9(—x) > 0. Given that €’ < ¢*/e by Lemma 5.3, we have

_ ¢ o /
and TPP™(IL,A) = (1—e )(1%(1'1,1,\) e€) L
— €€

(5.9  ®(—a)

(1—ee’)?
1— ) (k(ILA) —e- & * — —
P, Ay < Lo DWILA) Ze ) e (Ao m)le—e)
l—e- < € e(1—e¥)

O

In fact, Lemma 5.4 is an extension of Su et al. (2017, Lemma C.2) (restated in Corol-
lary 2.2(a)), which claims that, in the Lasso case, for all priors including those are not
infinity-or-nothing, TPP> < u*(d;€, ). In particular, we remark that u*(J; €, d) is equivalent
to uf, (9, €), since any Lasso estimator has an asymptotic sparsity no larger than ¢.

As an immediate consequence of Lemma 5.4, we can reversely set a lower bound on the
sparsity (I, A) given TPP*°(II, A). This is achieved by inverting the mapping in (5.8) and
setting u* = TPP*°:

o0 *
(5.10) K(H,A)Zl—e(l TPP(II,A))(1 — € )

€ — €*

>To distinguish from the Lasso, we note that SLOPE can reach x = 1 and thus gives a dense solution whose
TPPis 1.
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Finally, leveraging the lower bound on the sparsity, we can minimize the FDP* by minimizing
the sparsity (I, A), since by definition
e - TPP>(II, A)
k(IL,A)
Plugging (5.10) into (5.11), we finish the proof that FDP> > ¢*(TPP*°) for the SLOPE
when we restrict the priors to be infinity-or-nothing: with TPP*> = v,

€U 6U(1 — 6) - 5*(1 - 6)
FDP*(IT, A) > ¢*(u; 6,¢) 1= 1 — = ‘
(T, A) = q"(u; 6,€) |00 cu(l—e) — e (1—o)

€e—e*

(5.11) FDP>(IL,A) =1 —

O]

5.3. Gap between upper and lower bounds. Considering Figure 2, we observe that the
upper and lower boundary curves, ¢, and ¢*, can be visually and numerically close to each
other, especially when TPP> < u%,. One may wonder whether these boundaries actually
coincide below the DT power limit. We answer this question in the negative and show
analytically that there may exist pairs of (TPP>°,FDP>) with the FDP*° strictly below
q*(TPP*°) when TPP* < u},. In other words, there are instances where (TPP>°, FDP*°)
points lie between the boundary curves g, and ¢*.

PROPOSITION 5.5.  For some (9, €), there exists TPP™ < u}.(9,€) defined in (2.4) such
that

¢ (TPP™®) < FDP™ < ¢*(TPP>).

In the following, we prove Proposition 5.5 by constructing a specific problem instance
(IT, A) which has FDP* falling between the bounds. By showing that the gap between ¢*(u)
and ¢, (u) indeed exists, we rigorously demonstrate a gap between ¢*(u) and the unknown
SLOPE trade-off gg op.

We note that, for the Lasso trade-off at (u,q*(u)), the zero-threshold a(II, ) = t*(u)
(defined in (2.8)) exactly and the state evolution constraint (4.1) is binding, i.e. E(II, \) = §
(see Su et al. (2017, Lemma C.4, Lemma C.5)).

Fixing TPP*>® = u, our strategy (detailed in Appendix E) is to construct (7, A) for SLOPE
such that «(m, A) = t*(u) as well but the state evolution constraint (4.1) is not binding, i.e.
E(II, A) < ¢. If such a construction succeeds, we can use a strictly larger zero-threshold than
t*(w) that can increase until E(II, A) > 6. Then, by using a larger zero-threshold, the SLOPE
FDP° is guaranteed to be strictly smaller than ¢*(TPP>°) by (3.8). Thus we will complete
the proof that ¢, (u) < ¢*(u) for some u < uj;.

To construct (7, A) satistying a(m, A) = t*(u) with E(II, A) <, we leverage our empiri-
cal observation that the optimal priors 7*, in the sense of problem (4.2), which achieves the
lower bound g, are oftentimes either infinity-or-nothing or constant. This motivates us to
consider constant priors 7* = t1, for some constant ¢; (i.e. p; = 1,t; = t5 in (4.5)), and hence

t1 W.p. €,
m=
0 wpl-—e
In fact, conditioning on «(II, A) = t* and TPP* = u, the constant ¢ (u) is uniquely deter-
mined by (3.8):
P(|t1+ Z| > t*(u)) =u,

where Z is a standard normal.



CHARACTERIZING THE SLOPE TRADE-OFF 27

Next, we use a common tool in the calculus of variations, known as the Euler-Lagrange
equation (detailed in Appendix E.2), to construct an effective penalty function A.¢(z) ana-
lytically on the interval [0, c0). The explicit form of Ac(z) is defined in (E.1) with a = t*.
We emphasize that the constructed A.¢ may not be a feasible SLOPE penalty function in the
sense that it may violate the constraints in problem (4.6); however, if A is increasing, then
the optimal SLOPE effective penalty must be A, as it is the minimizer of the unconstrained
version of problem (4.6) and clearly satisfies the constraints. In the case that A is feasible,
we compare F(I1, A) = Fy. () [Aesr, pr,] With § to determine whether ¢* (u) > g4 (u).

We now give a concrete example, which is elaborated in Appendix E.3. When 6 = 0.3,¢ =
0.2,IT* = 4.9006, TPP* = v}, = 0.5676, the maximum Lasso zero-threshold ¢*(u},) =
1.1924 and the minimum Lasso FDP*> = 0.6216. We can construct the SLOPE penalty
A that has the same zero-threshold and achieves E(I1, A) = 0.2773 < §. We can further con-
struct the SLOPE penalty with larger zero-threshold, up to 1.2567, eventually have the SLOPE
FDP* = 0.5954, which is much smaller than the minimum Lasso FDP*°. In fact, our method
can construct SLOPE penalty that outperforms the Lasso trade-off for any TPP> € (0.5283, 1],
as shown in Figure 8.

6. Discussion. In this paper, we have investigated the possible advantages of employing
sorted ¢; regularization in model selection instead of the usual ¢; regularization. Focusing on
SLOPE, which instantiates sorted ¢; regularization, our main results are presented by lower
and upper bounds on the trade-off between false and true positive rates. On the one hand,
the two tight bounds together demonstrate that type I and type II errors cannot both be small
simultaneously using the SLOPE method with any regularization sequences, no matter how
large the effect sizes are. This is the same situation as the Lasso (Su et al., 2017), which
instantiates ¢; regularization. More importantly, our results on the other hand highlight several
benefits of using sorted ¢; regularization. First, SLOPE is shown to be capable of achieving
arbitrarily high power, thereby breaking the DT power limit. For comparison, the Lasso cannot
pass the DT power limit in the supercritical regime, no matter how strong the effect sizes
are. Second, moving to the regime below the DT power limit, we provide a problem instance
where the SLOPE TPP and FDP trade-off is strictly better than the Lasso. Third, we introduce
a comparison theorem which shows that any solution along the Lasso path can be dominated
by a certain SLOPE estimate in terms of both the TPP and FDP and the estimation risk. In
other words, the flexibility of sorted ¢; regularization can always improve on the usual ¢;
regularization in the instance-specific setting.

The assumptions underlying the above-mentioned results include the random designs that
have independent Gaussian entries and linear sparsity. In the venerable literature on high-
dimensional regression, however, a more common sparsity regime is sublinear regimes where
k/p tends to zero. As such, it is crucial to keep in mind the distinction in the sparsity regime
when interpreting the results in this paper. From a technical viewpoint, our assumptions
here enable the use of tools from AMP theory and in particular a very recent technique for
tackling non-separable penalties. To obtain the lower bound, moreover, we have introduced
several novel elements that might be useful in establishing trade-offs for estimators using
other penalties.

In closing, we propose several directions for future research. Perhaps the most pressing
question is to obtain the exact optimal trade-off for SLOPE. Regarding this question, a closer
look at Figure 3 and Figure 5 suggests that our lower and upper bounds seem to coincide
exactly when the TPP is small. If so, part of the optimal trade-off would already be specified.
Having shown the advantage of SLOPE over the Lasso, a question of practical importance
is to develop an approach to selecting regularization sequences for SLOPE to realize these
benefits. Next, we would welcome extensions of our results to other methods using sorted
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¢y regularization, such as the group SLOPE (Brzyski et al., 2019). For this purpose, our
optimization-based technique for the variational calculus problems would likely serve as
an effective tool. Recognizing that we have made heavy use of the two-level regularization
sequences in many of our results, one is tempted to examine the possible benefits of using
multi-level sequences for SLOPE (Zhang and Bu, 2021). Finally, a challenging question is to
investigate the SLOPE trade-off under correlated design matrices; the recent development by
Celentano et al. (2020) can be a stepping stone for this highly desirable generalization.
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