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We study Bayesian estimation of finite mixture models in a general setup where the number of components is

unknown and allowed to grow with the sample size. An assumption on growing number of components is a

natural one as the degree of heterogeneity present in the sample can grow and new components can arise as

sample size increases, allowing full flexibility in modeling the complexity of data. This however will lead to a

high-dimensional model which poses great challenges for estimation. We novelly employ the idea of a sample

size dependent prior in a Bayesian model and establish a number of important theoretical results. We first show

that under mild conditions on the prior, the posterior distribution concentrates around the true mixing distribution

at a near optimal rate with respect to the Wasserstein distance. Under a separation condition on the true mixing

distribution, we further show that a better and adaptive convergence rate can be achieved, and the number of

components can be consistently estimated. Furthermore, we derive optimal convergence rates for the higher-order

mixture models where the number of components diverges arbitrarily fast. In addition, we suggest a simple recipe

for using Dirichlet process (DP) mixture prior for estimating the finite mixture models and provide theoretical

guarantees. In particular, we provide a novel solution for adopting the number of clusters in a DP mixture model

as an estimate of the number of components in a finite mixture model. Simulation study and real data applications

are carried out demonstrating the utilities of our method.

Keywords: Gaussian mixtures; finite mixture models; growing number of components; mixing distribution

estimation; posterior contraction rates; Dirichlet processes

1. Introduction

Finite mixture models are powerful tools for modeling heterogeneous data, which have been used in a

wide range of applications in statistics and machine learning including density estimation [26], cluster-

ing [12], document modeling [4], image generation [40] and designing generative adversarial networks

[9], just to name a few. To date, a large number of methods, both frequentist and Bayesian, have been

proposed in the literature for various estimation problems related to finite mixture models. Rather than

listing a large body of related work here, we refer the readers to the book [13] and a review paper [29]

for recent advances on finite mixture modeling. Our work focuses on the estimation of the finite mixture

itself, i.e., estimating the parameters of a mixture model such as the mixing distribution and the num-

ber of mixing components, from a Bayesian perspective. Although a number of important Bayesian

methods have dealt with the problem of finite mixture estimation, many interesting questions remain

open. Most of the Bayesian work in the literature assume the number of components is either known

or fixed. The minimax optimal convergence rate for estimating the mixing distribution has not been

achieved by Bayesian methods even for the fixed set up. Further, posterior consistency on the number

of components has not been established except for some special cases. This paper aims to bridge these

gaps through establishing a number of new theoretical results under the general framework of finite

mixture modeling with growing number of components. Allowing the number of components k� to

grow is a natural assumption and even required in many situations, for instance, in topic modelling [3]
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and computer vision [18], where we expect that when the size of the sample grows so will the degree

of heterogeneity present in the sample.

To have a better understanding of some of the theoretical gaps, it is important to review some of

the major developments in the literature. A pioneering work on characterizing convergence rates for

mixing distribution estimation in finite mixture models is due to Chen [7] which established a point-

wise convergence rate Cν�n−1/4 for estimating the mixing distribution under the L1 distance, where n

denotes the sample size and the Cν� is a constant depending on the true mixing distribution ν�.1 This

convergence result holds for the so-called strongly identifiable mixtures which include the Gaussian lo-

cation mixtures as special cases, and so do those stated below. Nguyen [36] and Scricciolo [45] derived

the n−1/4 point-wise posterior contraction rate under the second-order Wasserstein distance. Ho and

Nguyen [21] proved that the maximum likelihood estimator can also achieve this point-wise rate. Un-

der the first-order Wasserstein distance, a better point-wise convergence rate Cν�n−1/2 can be obtained.

Heinrich and Kahn [20], Ho, Nguyen and Ritov [22] and Guha, Ho and Nguyen [19] established the

n−1/2 point-wise rate for the minimum Kolmogorov distance estimator, minimum Hellinger distance

estimator and Bayesian procedure with the mixture of finite mixtures (MFM) prior, respectively. On

the other hand, for the continuous mixtures where the mixing distribution admits a density function,

Martin [27] derived a near n−1/2 point-wise rate of the mixing density estimation for their predictive

recursion algorithm [35,48].

However, due to a lack of uniformity in the constant Cν� , their analysis has been restricted to the

fixed truth setup, with the number of components assumed to be either known or fixed. Also note that

these point-wise rates are not upper bounds of the actual minimax optimal rates of mixing distribution

estimation, which were later derived by Heinrich and Kahn [20]. It was shown that the minimax op-

timal convergence rate of mixing distribution estimation for strongly identifiable mixtures, is of order

n−1/(4(k�−k0)+2), where k� and k0 denote the total number of components and the number of well-

separated components of the true mixing distribution, respectively. In other words, the minimax rate

deteriorates with the factor k� − k0 which can be viewed as the degree of overspecification. Heinrich

and Kahn [20] also proposed a minimax optimal minimum Kolmogorov distance estimator which how-

ever can be computationally expensive. More recently, Wu and Yang [49] proposed a computationally

tractable estimator called the denoised method of moments estimator for Gaussian mixture models,

and showed that this estimator achieves the minimax rate. However, these minimax optimal estimators

require the knowledge of the number of components k�, which is not practical. On the other hand, no

Bayesian procedure has yet been able to yield a minimax optimal rate.

In general, one does not have the prior knowledge on the number of components, and selecting an

appropriate value of the number of components is a crucial step in providing accurate estimates of the

true mixing distribution. With too many components, one may suffer from large variances whereas too

few components may lead to biased estimators. Also estimating the number of components may be of

interest itself in practice especially when each component has a physical interpretation. A widely used

approach to choose the number of components is based on a model selection criterion before estimating

parameters, and a few consistent model selection criteria are available in the literature such as complete

likelihood [2], the Bayesian information criteria (BIC) [25], the singular Bayesian information criteria

(sBIC) [8] and the Bayes factor [6].

A Bayesian approach is an attractive alternative due to its ability to estimate both the number of

components and parameters in a unified manner. A natural strategy to infer a mixture model with an

unknown number of components is to also impose a prior on the number of components k. By doing so,

it provides a way of not only choosing the best number of components (i.e., model selection), but also

1Chen [7] did not realize that the multiplicative constant Cν� depends on the true mixing distribution, thus they argued that the

rate n−1/4 is the minimax optimal rate. This mistake was later corrected by Heinrich and Kahn [20].
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combining results from different mixture models with possibly varying number of components (i.e.,

model averaging). One notable disadvantage for such models is that posterior computations may be

challenging, since it requires developing Monte Carlo Markov chain (MCMC) algorithms for sampling

from a parameter space of varying dimensions, which often results in poor mixing or slow convergence

of the Markov chain to the stationary distribution. Several MCMC methods have been proposed to cir-

cumvent this issue including [32,37,41,47]. On the theoretical side, Guha, Ho and Nguyen [19] derived

the n−1/2 point-wise posterior contraction rate for this type of prior distribution. They also obtained

posterior consistency of the fixed number of components under the strong identifiability condition.

Another promising approach is to use over-fitted mixtures. This approach considers a mixture model

with the number of components larger than the true one and estimates the true model by discarding

spurious components. Rousseau and Mengersen [43] studied asymptotic properties of the over-fitted

mixtures and proved with a prior on weights of a mixture using a Dirichlet distribution with a suitably

selected hyperparameter, the spurious components vanishes asymptotically at the rate n−1/2 loga n for

some a > 0 under the posterior distribution.

Our work considers a Bayesian procedure which imposes appropriate priors on both the number of

components and the mixing parameters in a general setup where the number of the mixing components

is allowed to grow with sample size. We consider a general class of priors and provide assumptions on

the prior on the number of components, the mixing weights as well as the atoms of the mixing distri-

bution, that lead to optimal convergence of the posterior. Our work contributes in both methodological

and theoretical development, and obtains collection of important results which can be summarized in

the following.

1. We design sample size dependent priors and provide mild and explicit conditions on them, based

on which near-optimal posterior contraction rate of the mixing distribution estimation is derived

with respect to the Wasserstein distance (Theorem 2.2). Under a separation condition on the

mixing components, we further show that a better and adaptive optimal posterior contraction rate

can be obtained (Theorem 2.3 and Corollary 2.5). To our knowledge, this is the first minimax

optimality result in the Bayesian literature.

2. We derive the posterior consistency of the number of components even when the true number

of components diverges (Theorem 2.6). To the best of our knowledge, this is the first result on

the posterior consistency of the number of components in a general setup where the true mixing

distribution varies as the sample size grows.

3. We propose an optimal Bayesian procedure for estimating higher-order mixture models in which

the number of components diverges arbitrarily fast (Theorem 2.7).

4. We extend our analysis to general mixture models beyond Gaussian location mixtures with grow-

ing number of components. We show that the proposed Bayesian procedure maintain the same

theoretical properties even in this setup.

5. We investigate some theoretical properties of the Dirichlet process (DP) mixture models and pro-

vide a pathway for using DP models for inference of the finite mixture models (Section 3). The

DP prior for the mixing distribution, which only generates infinite mixtures, cannot provide a

meaningful posterior distribution for the number of components. We suggest a recipe for using

the posterior distribution of the number of clusters as the estimate of the true number of compo-

nents and provide theoretical guarantees. (Theorem 3.1). For mixing distribution estimation, the

performance of the DP is inferior in view of the convergence rate (Theorem 3.2).

The rest of this paper is organized as follows. In Section 2, we introduce the notation, finite Gaussian

location mixture models, and the prior distribution. Then we present the main results of the paper,

including optimal posterior contraction rates of the mixing distribution, and posterior consistency of the

number of components. Moreover, we study theoretical properties of the proposed Bayesian procedures
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for estimating general mixture models. In Section 3, we analyze theoretical properties of DP mixture

models for estimating the finite Gaussian mixtures. In Section 4, numerical studies including both

simulation study and real data analysis are conducted for illustrating our theory. Proofs are deferred to

Appendix A. In Appendix B, we provide another theoretical analysis for general mixture models with

a fixed number of components under different conditions and proof techniques.

2. Main results

2.1. Notations

We first introduce some notation that will be used throughout the paper. We denote by 1(·) the indi-

cator function. For a positive integer n ∈ N, we let [n] := {1,2, . . . ,n}. For a d-dimensional real vector

x := (x1, . . . , xd) ∈ Rd , we denote ‖x‖0 :=
∑d

j=1
1(xj � 0) and ‖x‖∞ :=max1≤ j≤d |xj |. For two positive

sequences {an}n∈N and {bn}n∈N, we write an � bn if there exists a positive constant C > 0 such that

an ≤ Cbn for any n ∈ N. Moreover, we write an � bn if bn � an and write an � bn if an � bn and

an � bn. For n random variables X1, . . . ,Xn, we use the shorthand notation X1:n := (X1, . . . ,Xn). Let δθ
denote a Dirac measure at θ.

Let (X,X) be a measurable space equipped with a Lebesgue measure λ. Let P(X) be the set of all

distributions supported on X. For G ∈ P(X), let PG denote the probability or the expectation under

the probability measure G. We denote by pG the probability density function of G with respect to the

Lebesgue measure λ if it exists. For n ∈ N, let P
(n)
G

be the probability or the expectation under the

product measure and p
(n)
G

its density function. For two probability densities p1 and p2, we denote by

KL(p1,p2) the Kullback-Leibler (KL) divergence from p2 to p1 and by KL2(p1,p2) the KL variations,

i.e., KL(p1,p2) :=
∫

log
(
p1(x)
p2(x)

)
p1(x)λ(dx) and KL2(p1,p2) :=

∫ {
log

(
p1(x)
p2(x)

) }2

p1(x)λ(dx). For ζ > 0,

a space of certain distributions G and a distribution G0 ∈ G, we define a ζ-KL neighborhood of G0 by

BKL(ζ,G0,G) :=
{
G ∈ G : KL(pG0

,pG) < ζ2,KL2(pG0
,pG) < ζ2

}
.

For a real-valued function f on X, let ‖ f ‖q :=
(∫

| f (x)|qλ(dx)
) 1/q

for q > 0 and ‖ f ‖∞ :=

supx∈X | f (x)|. For G ∈ P(R), we denote by mh(G) the h-th moment of G, i.e., mh(G) :=
∫

xhPG(dx).
The r-th moment vector is defined by m1:r (G) :=

(
m1(G), · · · ,mr (G)

)
.

2.2. Gaussian location mixtures

In this paper, we initially consider the Gaussian location mixture model in one dimension:

X1, . . . ,Xn
iid∼

k∑
j=1

wjN(θ j,σ2), (2.1)

where θ1, . . . , θk ∈ R are the atoms and (w1, . . . ,wk) ∈ ∆k are the mixing weights. Here we define

∆k :=

⎧⎪⎪⎨
⎪⎪⎩
(w1, . . . ,wk ) ∈ [0,1]k :

k∑
j=1

wj = 1

⎫⎪⎪⎬
⎪⎪⎭
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for k ∈ N. We assume that the variance σ2 is known and without loss of generality σ2
= 1. With the

convolution denoted with the symbol ∗, we simply write

ν ∗Φ =
k∑
j=1

wjN(θ j,1)

for the mixing distribution ν :=
∑k

j=1 wjδθ j , where Φ denotes the standard normal distribution. For a

set Θ ⊂ R and k ∈ N, we define the set of k-atomic distributions

Mk(Θ) :=

⎧⎪⎪⎨
⎪⎪⎩

k∑
j=1

wjδθ j : (w1, . . . ,wk ) ∈ ∆k, θ1, . . . , θk ∈ Θ
⎫⎪⎪⎬
⎪⎪⎭
.

Note that Mk(Θ) ⊂ Mk+1(Θ) for every k ∈ N. The parameter space is given by M(Θ) :=
⋃

k∈NMk(Θ).
Note that M(Θ) ⊂ P(Θ).

For mixture models, the Wasserstein distance is widely used as a performance measure for the mixing

distribution estimation. To define the Wasserstein distance between two atomic distributions, we first

define

Q(w,w′) :=

⎧⎪⎪⎨
⎪⎪⎩
(pjh)j∈[k],h∈[k′] ∈ [0,1]k×k′ :

k′∑
h=1

pjh = wj,

k∑
j=1

pjh = w
′
h,∀ j ∈ [k],h ∈ [k ′]

⎫⎪⎪⎬
⎪⎪⎭
,

for given two weight vectors w ∈ ∆k and w
′ ∈ ∆k′ , which is a set of joint distributions on [k] × [k ′]

with marginal distributions w and w
′. For any q ≥ 1, the q-th order Wasserstein distance between two

atomic distributions ν :=
∑k

j=1 wjδθ j and ν′ :=
∑k′

h=1
w
′
h
δθ′

h
is defined as

Wq(ν,ν′) := inf
p∈Q(w,w′)

���
k∑
j=1

k′∑
h=1

pjh |θ j − θ ′h |
q���

1/q

.

2.3. Prior distribution

We first assume that the true data generating process is given as ν� ∗ Φ where ν� ∈ Mk�([−L,L]),
L > 0 for some k� ∈ N, which is the true number of mixing components. For simplicity, we write

Mk :=Mk([−L,L]) for each k ∈ N and M :=M([−L,L]) := ∪∞
k=1

Mk([−L,L]). We consider a general

model in which the true mixing distribution ν� ∈Mk� can vary with sample size n as well as the true

number of components k� can vary with n. This is a critical difference from the existing Bayesian

literature on mixture models which assumed a fixed true mixing distribution [19,36,45].

We assume an upper bound k̄n � log n/log log n on the true number of components k�. This as-

sumption alleviates some technical difficulties, and can be justified by the following remark. Since the

minimax optimal convergence rate of mixing distribution estimation for large mixtures ν� ∈Mk� with

k� � log n/log log n is the same as the one for mixtures ν� ∈ M with any order, which is a slow rate

of log log n/log n (See Proposition 9 of [49]), without assuming k� � log n/log log n, we may not ob-

tain improved convergence rates. We will also show that one can develop a Bayesian procedure that

attains this minimax rate without knowing the upper bound of the true number of components. See

Theorem 2.7 in Section 2.5.
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We now introduce our prior distribution on the finite Gaussian mixture model. The prior distribution

first samples the number of components k from Π(k) and then samples the atoms θ ∈ [−L,L]k and

weights w ∈ ∆k fromΠ(θ |k) andΠ(w |k), respectively. Thus the prior distribution induces a distribution

on M = ∪k∈NMk .

We impose the following conditions on the prior.

Assumption P. Recall that k̄n is the known upper bound on the true number of components. The prior

distribution Π satisfies the following conditions:

(P1) The prior distribution on the number of components k is sample size dependent. There are a

constant c1 > 0 and a sufficiently large constant A > 0 such that for any sample size n ∈ N and

any k◦ ∈ N,

Π(k = k◦ + 1)
Π(k = k◦) ≤ c1e−Ak̄n logn. (2.2)

Additionally, there are constants c2 > 0 and c3 > 0 such that for any n ∈ N and any k† ∈ [k̄n],

Π(k = k†) ≥ c2e−(c3 k̄n logn)k† . (2.3)

(P2) For any k ∈ N and any (w0
1
, . . . ,w0

k
) ∈ ∆k , there are positive constants c4 and c5 such that for

any η ∈ (0,1/k),

Π
���

k∑
j=1

|wj − w
0
j | ≤ η

��k���
≥ c4η

c5k . (2.4)

(P3) For any k ∈ N and any θ0 ∈ [−L,L]k , there are positive constants c6 and c7 such that for any

η > 0,

Π

(
max

1≤ j≤k
|θ j − θ0

j | ≤ η
��k

)
≥ c6η

c7k . (2.5)

In (P1), we require a prior distribution to heavily penalize mixture models with a large number of

components, and further assume that the degree of the penalization becomes more severe of an appro-

priate order as sample size grows. This enables the resulting posterior distribution not to overestimate

the number of components.

Remark 1. The idea of using a same size dependent prior to control model complexity is not new and

have frequently appeared in the Bayesian literature, e.g., prior distributions on sparsity in the multivari-

ate normal mean model [5], sparsity in nonparametric regression [24], the number of communities in

the stochastic block model [14] and the number of factors in the factor model [38].

We now provide some examples of prior distributions satisfying Assumption P. In the following

examples, the constant A > 0 is the same as the one appearing in (2.2).

Example 1. The mixture of finite mixture (MFM) prior considered in [19,26,32] is a hierarchical prior

consisting of distributions on the number of components, the weights and the atoms. Assumption P is

met by the MFM prior with appropriate choices of each distribution. The geometric distribution with

probability mass function Π(k) = (1 − pn)k−1pn on k with pn := 1 − a exp(−Ak̄n log n) for arbitrary

a > 0, satisfies (P1). Also, the Poisson-like distribution on N such that Π(k) = e−λnλk−1
n /(k − 1)! with
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λn := a exp(−Ak̄n log n) for arbitrary a > 0 satisfies (P1). The Dirichlet distribution DIR(κ1, . . . , κk ) on

the mixing weights with κj ∈ (κ0,1) for every j ∈ [k] and some κ0 ∈ (0,1) satisfies (P2), see Lemma A.6.

If the prior distribution on θ behaves like a uniform distribution up to a multiplicative constant, then

(P3) holds.

Example 2. Consider a Binomial prior distribution on the number of components such that k − 1 ∼
BINOM(k̄n − 1,pn) with pn := a exp(−2Ak̄n log n) for arbitrary a > 0. Then this prior satisfies (2.2)

since

(
k̄n − 1

k◦

)
/
(
k̄n − 1

k◦ − 1

)
≤ k̄n � elog logn and 1 − pn ≤ 1. Also it satisfies (2.3) since 1 − pn � 1. The

MFM prior with this Binomial prior distribution satisfies Assumption P.

Example 3. The spike and slab prior distribution on the unnormalized weights can satisfy (P1) and

(P2). Suppose that we consider an over-fitted mixture model ν =
∑k̄n

j=1
wjδθ j . Let S := { j ∈ [k̄n] : wj >

0}, a set of indices corresponding to nonzero weights. Then we can write ν =
∑

j∈S wjδθ j . Let w̃ ≡
(w̃j )j∈[k̄n] be the independent random variables where w̃1 is generated from GAMMA(κ,b) and the other

variables, i.e., w̃2, . . . , w̃k̄n
, are generated from a spike and slab distribution (1−pn)δ0+pnGAMMA(κ,b)

with pn := a exp(−2Ak̄n log n) for a > 0, b > 0 and κ ∈ (0,1). If we define the number of components

as the number of nonzero elements in w̃ and the weights as a normalized version of (w̃j )j∈S , i.e.,

k := ‖w̃‖0 and wj := w̃j/‖w̃‖1 for j ∈ S, then k − 1 follows BINOM(k̄n − 1,pn) and (wj )j∈S follows

DIR(κ, . . . , κ). Thus Assumption P holds by Examples 1 and 2.

2.4. Posterior concentration

In this section, we present concentration properties of the posterior distribution Π(·|X1:n) defined be-

low, with the prior given in Section 2.3 and the data from the Gaussian mixture model in (2.1):

Π(dν |X1:n) :=
p
(n)
ν∗Φ(X1:n)Π(dν)∫
p
(n)
ν∗Φ(X1:n)Π(dν)

. (2.6)

We first show that our posterior distribution does not overestimate the number of components.

Theorem 2.1. Assume that k� ≤ k̄n � log n/log log n. Then with the prior distribution Π satisfying

Assumption P, we have

inf
ν�∈Mk�

P
(n)
ν�∗Φ

[
Π(ν ∈Mk� |X1:n)

]
→ 1. (2.7)

The following theorem shows the optimal concentration property of the posterior distribution of the

mixing distribution.

Theorem 2.2. Under the same assumptions of Theorem 2.1, we have

sup
ν�∈Mk�

P
(n)
ν�∗Φ

[
Π

(
W1(ν,ν�) ≥ M ε̄n,k�

��X1:n

) ]
= o(1) (2.8)

for some universal constant M > 0, where

ε̄n,k� := (k�) 3
2

(
log2 n

n

) 1
4k�−2

. (2.9)
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If the number of components k� is fixed, the convergence rate in Theorem 2.2 is equivalent to the

minimax optimal rate n−1/(4k�−2) [49, Proposition 7] up to at most a logarithmic factor. An additional

logarithmic factor is common in the nonparametric Bayesian literature, which often arises due to the

popular “prior mass and testing” proof technique which we also adopt in this paper. We refer to the

papers [15,23] for discussions about this phenomenon.

To improve the convergence rate in Theorem 2.2, one may assume that atoms are well separated and

the weights are bounded away from zero. We introduce the formal definition related to this notion.

Definition 1. An atomic distribution ν :=
∑k

j=1 wjδθ j is said to be k0 (γ,ω)-separated for k0 ∈ [k],
γ > 0 and ω > 0 if there exists a partition S1, . . . ,Sk0

of [k] such that

• |θ j − θ j′ | ≥ γ for any j ∈ Sl , j ′ ∈ Sl′ and any l, l ′ ∈ [k0] with l � l ′;
• ∑

j∈Sl wj ≥ ω for any l ∈ [k0].

We let Mk ,k0 ,γ,ω
:=

{
ν ∈Mk : ν is k0 (γ,ω)-separated

}
.

In the next theorem, we derive the optimal posterior contraction rate of the mixing distribution under

the separation assumption. We call this contraction rate an adaptive rate because the result is achieved

without any knowledge of the number of well-separated components k0 of the true mixing distribution.

Theorem 2.3. Assume that k� ≤ k̄n � log n/log log n and γω > M ′ε̄n,k� for a sufficiently large con-

stant M ′ > 0, where ε̄n,k� is the rate defined in (2.9). Then with the prior distribution Π satisfying

Assumption P, we have

sup
ν�∈Mk�,k0 ,γ ,ω

P
(n)
ν�∗Φ

[
Π

(
W1(ν,ν�) ≥ Mεn,k�,k0 ,γ

��X1:n

) ]
= o(1), (2.10)

for some universal constant M > 0, where

εn,k�,k0,γ
:= (k�)

6k�−4k0+3

4(k�−k0)+2 γ
− 2k0−2

2(k�−k0)+1

(
log2 n

n

) 1
4(k�−k0)+2

. (2.11)

Remark 2. A nice surprise from the result of Theorem 2.3 is that our Bayesian procedure can achieve

a better convergence rate than the one in Theorem 2.2 without requiring any further condition on the

prior distribution. This is because of fact that the condition γω > M ′ε̄n guarantees that the mixing

distribution ν is k0 (a0γ,0)-separated asymptotically for some constant a0 ∈ (0,1) under the posterior

distribution, provided that Theorem 2.2 holds.

In view of Proposition 2.4 presented below, the convergence rate in Theorem 2.3 is minimax optimal

[20, Theorem 3.2] up to a logarithmic factor if the model parameters k�, k0 and γ are fixed constants.

Heinrich and Kahn [20] established the minimax optimal rate n−1/(4(k�−k0)+2) of the estimation of the

mixing distribution satisfying the locally varying condition. Namely, they showed that for fixed k� ∈ N,

k0 ∈ [k�] and ν0 ∈Mk0
\Mk0−1, it follows that

inf
{ν̂}

sup

ν�∈Mk� :W1(ν�,ν0)≤ε†n
P
(n)
ν�∗Φ

[
W1(ν̂, ν�)

]
� n

− 1
4(k�−k0)+2 , (2.12)

where the infimum ranges over all possible sequences of estimators and ε
†
n := n−1/(4(k�−k0)+2)+ι for

some ι > 0 (In fact, the above lower bound holds not only for the Gaussian location mixtures but
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also general mixtures satisfying the strong identifiability condition provided in Definition 2). In other

words, the above minimax argument is about the true mixing distribution which does not vary globally

but locally. This locally varying condition is seemingly different from the separation condition given in

Definition 1, but in fact the former is a sufficient condition of the latter. Intuitively, we can expect that

the true distribution ν� ∈Mk� close to ν0 ∈Mk0
\Mk0−1 has at least k0 well-separated components,

and therefore satisfies the separation condition. We formally state this argument in the next proposition.

Proposition 2.4. Let k0 ∈ N and ν0 :=
∑k0

j=1
w0jδθ0 j

∈Mk0
\Mk0−1. Define

γ(ν0) := min
j ,h∈[k0]:j�h

|θ0j − θ0h |

ω(ν0) := min
j∈[k0]

w0j .

Let k ∈ {k0, k0 + 1, . . . } and c ∈ (0,1/4). Then we have{
ν ∈Mk : W1(ν,ν0) < cγ(ν0)ω(ν0)

}
⊂M

k ,k0 ,(1−2c)γ(ν0), 1−4c
1−3c

ω(ν0). (2.13)

Due to Proposition 2.4, it is clear that our Bayesian procedure is also near-optimal for the estimation

of the mixing distribution under the locally varying condition. We merely state the result.

Corollary 2.5. Assume k� ≤ k̄n � log n/log log n. Let k0 ∈ N be a fixed constant such that k0 ≤ k�, and

let ν0 ∈ Mk0
\Mk0−1 be a fixed distribution. Moreover, assume that the prior distribution Π satisfies

Assumption P. Then there exist universal constants τ > 0 and M > 0 such that

sup
ν�∈Mk� :W1(ν�,ν0)<τ

P
(n)
ν�∗Φ

[
Π

(
W1(ν,ν�) ≥ Mεn,k�,k0 ,1

��X1:n

) ]
= o(1), (2.14)

where εn,k�,k0 ,1 is the rate in (2.9) with γ = 1, i.e., εn,k�,k0 ,1 = (k�)
6k�−4k0+3

4(k�−k0)+2

(
log2 n

n

) 1
4(k�−k0)+2

.

As a byproduct, we can obtain the posterior consistency of the true number of components when

the true mixing distribution ν� is perfectly separated, that is, k� = k0. Note that in this case, ν� ∈
Mk� \Mk�−1. The following theorem states this formally.

Theorem 2.6. Assume that k� ≤ k̄n � log n/log log n and

γω > M ′ max{ε̄n,k�, εn,k�,k�,γ} (2.15)

for a sufficiently large constant M ′ > 0, where ε̄n,k� and εn,k�,k�,γ are the rates defined in (2.9) and

(2.11) with k0 = k�, respectively. Then with the prior distribution Π satisfying Assumption P, we have

inf
ν�∈Mk�,k�,γ,ω

P
(n)
ν�∗Φ

[
Π

(
ν ∈Mk� \Mk�−1 |X1:n

) ]
→ 1. (2.16)

The condition (2.15) provides a threshold for detection. This condition plays a similar role as the

beta-min condition for variable selection in linear regression [5,28].

Guha, Ho and Nguyen [19] obtained the consistency result with a similar prior distribution to ours,

but their analysis is restricted to the fixed truth cases.
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2.5. Higher-order mixtures

In Section 2, we have assumed that k� � log n/log log n. This assumption is justified by the minimax

result for the estimation of the higher-order mixtures presented by [49]. In this section, we prove that

there is a Bayesian procedure which is similar to the one considered in Section 2, but does not assume

a known upper bound of the number of components, can attain this minimax optimality. In this case,

we impose a milder condition than (P1) on the prior.

(P1′) There are constants c1 > 0, c2 > 0 and b0 > 0 such that for any n ∈ N and k◦ ∈ N,

Π(k = k◦) ≥ c1e−(c2 logb0 n)k◦ . (2.17)

It is clear that any prior distribution satisfying (P1) satisfies (P1′) with b0 = 2 since k̄n � log n. Also,

Assumption (P1′) can be met by the Poisson and geometric distribution with constant mean and success

probability, respectively, which do not satisfy (P1).

The next theorem provides the convergence rate of mixing distribution estimation without any re-

striction on the true number of components.

Theorem 2.7. Then with the prior distribution Π satisfying (P1′), (P2) and (P3), we have

sup
ν�∈M

P
(n)
ν�∗Φ

[
Π

(
W1(ν,ν�) ≥ M

log log n

log n

��X1:n

) ]
= o(1) (2.18)

for some universal constant M > 0.

If the true mixing distribution ν� belongs to Mk� with k� � log n/log log n, the convergence rate in

the above theorem is rate-exact optimal [49, Theorem 5].

Indeed, the above result holds even when the true generating process is given by µ� ∗Φ with µ� ∈
P([−L,L]), which includes continuous or infinite mixtures.

2.6. Extension to general mixture models

In this section, we extend our analysis for the Gaussian location mixture model to general mixture

models with potentially growing number of components. For a mixing distribution ν ∈ M(Θ) and a

family {F(·, θ) : θ ∈ Θ} of distribution functions on R for Θ ⊂ R, we let ν • F denote the distribution

having a density function

pν•F (·) :=

∫
f (·, θ)ν(dθ), (2.19)

where f (·, θ) stands for the probability density function of F(·, θ). We call F(·, ·) and f (·, ·) a kernel

distribution function and a kernel density function, respectively.

We impose the following set of assumptions on the kernel distribution function.

Assumption F. The family
{

F(·, θ) : θ ∈ Θ
}

of distribution functions on R satisfies the following con-

ditions:

(F1) Θ is a compact subset of R with nonempty interior.
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(F2) There is a constant c1 > 0 such that)) f (·, θ1) − f (·, θ2)
))
∞ ≤ c1 |θ1 − θ2 | (2.20)

for any θ1, θ2 ∈ Θ. Moreover, there are constants c2 > 0 and r ∈ (0,1] such that

∫
pν1•F (x)

(
pν1•F (x)
pν2•F (x)

) r
λ(dx) ≤ c2 (2.21)

for any ν1, ν2 ∈M(Θ).
(F3) For any k ∈ N, there exists an estimator M̂k of the moment mk(ν) based on the sample

X1, . . . ,Xn
iid∼ Pν•F such that

P
(n)
ν•F M̂k =mk(ν) (2.22)

P
(n)
ν•F

(
M̂k − mk(ν)

) 2

�
1

n
(c3 +

√
k)2k (2.23)

for any ν ∈M(Θ) for some constant c3 > 0.

Assumption (F2) helps us establish a lower bound of a KL neighborhood of the true distribution

ν� • F by using the prior concentration conditions in Assumption P. This assumption is held for a

wide range of choices of kernel density function, for example, the Gaussian location family [36] and

more generally, location family of exponential power distributions [44]. Also, the Gaussian scale family

satisfies Assumption (F2) as shown in the next example.

Example 4 (Gaussian scale family). Let F be the kernel distribution function such that F(x,σ) =
Φσ(x), where Φσ denotes the distribution function of N(0,σ2). Consider the Gaussian scale family{

F(·,σ) : σ ∈ [1/L,L]
}

for L > 1. Then this family satisfies (2.20) since

��� ∂
∂σ

f (x,σ)
��
σ=σ0

��� <∞ for any

σ0 ∈ [1/L,L] and x ∈ R. For (2.21), let r0 := 1/(2L4). Fix two mixing distributions ν1 :=
∑k1

j=1
w1, jδσ1, j

and ν2 :=
∑k2

j=1
w2, jδσ2, j

. Without loss of generality, we assume σi,1 < σi,2 < · · · < σi,ki , for all i = 1,2.

Then

∫
pν1•F (x)

(
pν1•F (x)
pν2•F (x)

) r0

λ(dx)�
∫

e

− 1

2σ2
1,k1

x2

e

− r0

2σ2
1,k1

x2
+

r0

2σ2
2,1

x2

λ(dx)

≤
∫

e
− 1

2L2
x2
+

r0L
2

2
x2

λ(dx)

=

∫
e
− 1

4L2
x2

λ(dx) <∞,

which verifies (2.21).

Assumption (F3) requires the existence of the unbiased estimator of the moment of every order

whose variance is bounded by certain quantity depending on the order. This condition enables us to use

the theoretical tool developed in Wu and Yang [49], who studied an estimator of the mixing distribution

based on the method of moments for the Gaussian location mixture model. Indeed, in the proof of our

results for the Gaussian location mixture model, provided in Appendix A.2, we found the moment

estimator (A.4) that satisfies Assumption (F3). We give some examples that satisfy Assumption (F3).
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Example 5 (Gaussian location family). Our Lemma A.1 proves that the Gaussian location family

satisfies (F3).

Example 6 (Gaussian scale family). Consider the Gaussian scale family {Φσ : σ > 0}. It is easy to

see that the moment estimator M̂k =
∑n

i=1 Xk
i
/E(Zk) with Z ∼ N(0,1) satisfies (2.22) and (2.23).

Example 7 (Quadratic variance exponential family (QVEF)). An exponential family of which the

variance of each distribution is at most a quadratic function of its mean is called a QVEF [33]. The

class of QVEFs includes Poisson, gamma, binomial, and negative binomial distributions. If the family

of distribution functions
{

F(·, θ) : θ ∈ Θ
}

is a QVEF, then (F3) is satisfied. Indeed, Equations (8.8) and

(8.6) of [33] verify (2.22) and (2.23), respectively.

Remark 3. As a reviewer pointed out, Assumption (F3) is somewhat strong and a number of mixture

models do not satisfy this. For example, although the Cauchy location mixture model with f (x, θ) =
(π(1 + (x − θ)2)−1 is strongly identifiable (by [7, Theorem 3]) and so can be analyzed under a different

theoretical framework given in Appendix B, it does not satisfy Assumption (F3) since the Cauchy

distribution does not have finite moments of order greater than or equal to 1.

Since we consider a general set of atoms Θ ⊂ R rather than the interval [−L,L] to include, for ex-

ample, scale mixtures and exponential family mixtures, Assumption (P3) is slightly modified to Equa-

tion (2.5) being met for any k ∈ N and θ0 ∈ Θk . We also assume the kernel distribution function F(·, ·)
is known, i.e., no misspecification of the kernel distribution function. That is, we consider the posterior

distribution denoted by ΠF (·|X1:n), which is defined as

ΠF (dν |X1:n) :=
p
(n)
ν•F (X1:n)Π(dν)∫
p
(n)
ν•F (X1:n)Π(dν)

. (2.24)

Then all the results in Section 2 can be recovered by the posterior distributionΠF (·|X1:n) on the mixture

model that satisfies Assumption F.

Theorem 2.8. Assume that k� ≤ k̄n � log n/log log n. Moreover, assume that the family {F(·, θ) : θ ∈
Θ} of distribution functions on R satisfies Assumption F and the prior distribution Π satisfies Assump-

tion P. Then the followings are hold:

(a) It follows that

inf
ν�∈Mk�

P
(n)
ν�•F

[
ΠF (ν ∈Mk� |X1:n)

]
→ 1; (2.25)

(b) There exists an universal constant M1 > 0 such that

sup
ν�∈Mk�

P
(n)
ν�•F

[
ΠF

(
W1(ν,ν�) ≥ M1ε̄n,k�

��X1:n

) ]
= o(1), (2.26)

where ε̄n,k� is the rate defined in (2.9);

(c) There exist universal constants M2 > 0 and M3 > 0 such that if γω > M2ε̄n,k� then

sup
ν�∈Mk�,k0 ,γ ,ω

P
(n)
ν�•F

[
ΠF

(
W1(ν,ν�) ≥ M3εn,k�,k0 ,γ

��X1:n

) ]
= o(1), (2.27)

where εn,k�,k0 ,γ is the rate defined in (2.11);
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(d) There exist universal constants τ > 0 and M4 > 0 such that

sup
ν�∈Mk� :W1(ν�,ν0)<τ

P
(n)
ν�•F

[
ΠF

(
W1(ν,ν�) ≥ M4εn,k�,k0 ,1

��X1:n

) ]
= o(1) (2.28)

for any fixed distribution ν0 ∈Mk0
\Mk0−1;

(e) There exists an universal constant M5 > 0 such that if γω > M5 max{ε̄n,k�, εn,k�,k�,γ} then

inf
ν�∈Mk�,k�,γ,ω

P
(n)
ν�•F

[
ΠF

(
ν ∈Mk� \Mk�−1 |X1:n

) ]
→ 1. (2.29)

The proof of the theorem is straightforward, but for the sake of completeness, we provide it in

Appendix A.7.

We have considered mixture models with the number of components k� satisfying k� ≤ k̄n �

log n/log log n for general kernel functions. For higher-order mixture models with general kernel func-

tions, we can obtain the same convergence rate as the one in Theorem 2.7, which proves convergence

rates for higher-order Gaussian location mixtures.

Theorem 2.9. Assume that the family {F(·, θ) : θ ∈ Θ} of distribution functions on R satisfies Assump-

tion F and the prior distribution Π satisfies (P1′), (P2) and (P3). Then

sup
ν�∈M

P
(n)
ν�•F

[
ΠF

(
W1(ν,ν�) ≥ M

log log n

log n

��X1:n

) ]
= o(1) (2.30)

for some universal constant M > 0.

3. Dirichlet process mixtures for inference of finite mixtures

In this section, we consider Dirichlet process (DP) prior [11] on the mixing distribution which results in

an infinite mixture model– the popular Dirichlet process (DP) mixture model. Although a DP mixture

model is minimax optimal in density estimation [16,17], it suffers from a very slow convergence rate

of (log n)−1/2 in estimating the mixing distribution of the Gaussian location mixtures as shown by

[36]. Their result assumes that the number of component k� is fixed. We consider the DP prior for

the mixture distribution estimation and derive the posterior contraction rates in the most general set up

by allowing the number of the components of the true mixing distribution to grow. Further more, we

adopt a natural strategy of using the number of the clusters T of the data to estimate the number of

components and we establish posterior consistency of such a procedure.

Note that the DP prior does not satisfy Assumption (P1), and thus the theorems in Section 2.4 do

not cover the case of DP prior. This section aims to separately analyze concentration properties of the

posterior of the DP mixture models.

In our Gaussian location mixture setup, the DP is a distribution on infinite-atomic distributions of

the form

ν̃ :=

∞∑
j=1

wjδθ j (3.1)

where w1,w2, · · · ∈ [0,1] are mixing weights such that
∑∞

j=1 wj = 1 and θ1, θ2, · · · ∈ [−L,L]. We let

M∞ be the set of distributions of the form (3.1). The DP with a concentration parameter κ > 0 and
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base distribution H, denoted by DP(κ,H), can be expressed by the following stick-breaking generation

process [46]: wj = Ej

∏j−1

h=1
(1−Eh) where Ej

iid∼ BETA(1, κ) and θ j
iid∼ H. Since every wj generated from

the above procedure is positive with probability 1, one can say that ΠDP(ν̃ ∈M∞ \M) = 1. This implies

that every mixing distribution generated from the posterior of the DP mixture model has infinite number

of components, therefore the posterior distribution of the number of components k cannot provide any

reasonable estimate of the true number of components.

One possible solution is to use an additional post-processing procedure for the posterior distribu-

tion. For example, Guha, Ho and Nguyen [19] proposed the operator T to infinite mixing distributions

which removes weak components (in a sense that the corresponding weights are very small) and merges

similar components (whose atoms are very close) of an infinite mixing distribution so that T(ν̃) is a

finite mixing distribution. They proved that for a fixed truth ν� ∈ Mk� \Mk�−1, the posterior distri-

bution of the finite mixing distribution T(ν̃) obtained after post processing concentrates to the model

Mk� \Mk�−1 under the DP prior distribution with a fixed concentration parameter.

We propose another way to infer the number of components with the DP prior. Our idea is to use the

posterior distribution of the number of clusters, say Tn, of the data X1:n as an estimate of the number

of components. Note that for i ∈ [n], Xi
iid∼ ν̃ ∗Φ can be written equivalently with the latent assignment

variable Zi ∈ N as

Zi
iid∼ w[ν̃] :=

∞∑
j=1

wjδj,

Xi |Zi
ind∼ N(θZi

,1).

where w[ν̃] ∈ P(N) can be viewed as the distribution on N such that w[ν̃](J) = ν̃({θ j : j ∈ J}) for any

J ⊂ N. The number of clusters Tn is defined by

Tn := Tn(Z1:n) :=

���{ j ∈ N : ∃i ∈ [n] s.t. Zi = j
}��� .

Here we consider the joint posterior distribution of the mixing distribution ν̃ and the latent assign-

ment variable Z1:n conditioned on the data X1:n, which is given as

ΠDP(dν̃,Z1:n |X1:n) :=

[∏n
i=1 φ(Xi − θZi

)pw[ν̃](Zi)
]
ΠDP(dν̃)∫ ∑

Z1:n ∈Nn

[∏n
i=1 φ(Xi − θZi

)pw[ν̃](Zi)
]
ΠDP(dν̃)

, (3.2)

where φ(·) denotes the probability density function of the standard normal distribution andΠDP denotes

the DP prior.

Note that the data are still assumed to be generated from the finite Gaussian mixture model ν� ∗Φ
where ν� ∈ Mk� for k� ∈ N but we allow the number of components to grow at an arbitrary fast

speed. Even in such general situations, we show in the following theorem that the DP prior with a

suitably chosen concentration parameter can provide a nearly tight upper bound of the true number of

components.

Theorem 3.1. With the DP prior DP(κn,H), where κn � n−a0 for a0 > 0 and H is the uniform distribu-

tion on [−L,L], we have

sup
ν�∈Mk�

P
(n)
ν�∗Φ

[
ΠDP(Tn > Ck�|X1:n)

]
= o(1) (3.3)

for some constant C > 1 depending only on the prior distribution.
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Miller and Harrison [30,31] showed that the posterior distribution of the number of clusters does

not concentrate at the true number of components if one uses the DP prior with a constant concen-

tration parameter. In particular, if the true data generating process is N(0,1) = δ0 ∗ Φ, the posterior

probability that the number of components is equal to the true number of components (i.e., 1) goes

to zero [30, Theorem 5.1]. Our proposed sample size dependent concentration parameter resolves this

inconsistency. See our simulation study in Section 4 for numerical confirmations.

Remark 4. Under the MFM prior of [32], which is an example of prior distributions considered in

Section 2, the posterior distribution of Tn is asymptotically the same as the one of k. Miller and Har-

rison [32] proved that |Π(k = k◦ |X1:n) − Π(Tn = k◦ |X1:n)| → 0 almost surely for k◦ ∈ N as long as

Π(k = k ′) > 0 for any k ′ ∈ [k◦]. In view of this fact, the number of clusters Tn can be used to infer the

true number of clusters k� even if we use the MFM prior distribution.

Remark 5. One may wonder whether the choice of the concentration parameter κn � n−a0 would lead

to slower posterior contraction rate when the DP mixture model is used for density estimation as a DP

mixture model is commonly adopted for. It turns out that it would not. In fact, even for κn � n−a0 , one

can show that there is a universal constant M > 0 such that

P
(n)
ν�∗Φ

⎡⎢⎢⎢⎢⎣
ΠDP

(
H(pν̃∗Φ,pν�∗Φ) ≥ M

logc n
√

n
|X1:n

) ⎤⎥⎥⎥⎥⎦
= o(1)

for any ν� ∈ P([−L,L]), for some c > 0. One can easily check the above result. Following the proof

of Theorem 5.1 of [17] and applying Lemma A.6, we can see that the prior concentration near the true

mixing distribution is lower bounded by (n−a0)c1 logn � exp(−a0c1 log2 n) for some c1 > 0. Thus usual

prior mass and testing approach leads to the conclusion in the preceding display for estimating the

density.

For the estimation of the mixing distribution (of general order), we obtain the following convergence

rate for the DP mixture model.

Theorem 3.2. With the DP prior DP(κn,H), where exp(−c0 logb0 n) � κn � 1 for some b0 > 0 and

c0 > 0 and H is the uniform distribution on [−L,L], we have

sup
ν�∈M

P
(n)
ν�∗Φ

[
ΠDP

(
W1(ν̃, ν�) ≥ M

log log n

log n

��X1:n

) ]
= o(1) (3.4)

for some universal constant M > 0.

As one can see from our theorem above, if the true mixing distribution is of high order such that

k� � log n/log log n, the posterior of the DP mixture model attains the minimax optimality [49, The-

orem 5]. However, unlike the Bayesian procedure proposed in Section 2, we conjecture that posterior

of the DP mixture model cannot obtain an improved convergence rate for estimating a mixing distribu-

tion when the true number of components grows slowly, say k� � log n/log log n, because it tends to

produce many redundant components. Nguyen [36] analyzed the posterior of Dirichlet process mixture

endowed with a fixed concentration parameter for estimating mixing distribution with a fixed num-

ber of components and obtain a slow convergence rate (log n)−1/2 with respect to the second-order

Wasserstein distance.
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4. Numerical examples

4.1. Simulation study

We conduct numerical experiments to validate our theoretical findings. For the prior distribution, we

use a MFM prior consisting of a Poisson distribution with mean λ on the number of components, the

Dirichlet distribution on the weights and the uniform distribution on the atoms. For the Dirichlet dis-

tribution prior on the mixing weights, we fix its concentration parameter as a k-dimensional vector

of 1’s. For the mean parameter of the Poisson distribution, we consider the following two choices:

the constant one and the one decaying with an appropriate order depending on the sample size. We

call the former MFM_const and the latter MFM_vary. Note that MFM_vary is motivated by our

theory. Python codes for reproducing the results in this section are available at https://github.com/il-

sangohn/bayes_mixture

4.1.1. Inference for the mixing distribution

We compare the performance of the proposed Bayesian method with other competitors. We consider

the denoised method of moment (DMM) estimator proposed by [49] and the maximum a posteriori

(MAP) estimator with the Dirichlet distribution prior on the weights and the uniform distribution prior

on the atoms. In the implementation of the DMM algorithm, we use the authors’ Python codes which

are available on their github repository (https://github.com/albuso0/mixture). We consider the MAP

estimators of two types of mixture models: exact-fitted and over-fitted mixtures. The number of com-

ponents of the exact-fitted mixture is exactly equal to the true number of components and the one of

the over-fitted mixture is some upper bound k̄ of the true number of components, in this simulation,

we set k̄ = 2k�. We call the MAP estimator of the exact-fitted mixture MAP_exact and the one of

the over-fitted mixture MAP_over. We use the standard expectation-maximization (EM) algorithm to

obtain MAP estimators. For the proposed Bayesian method, we use the posterior mode of the mixing

distribution as an estimator. We obtain such a mode by applying the EM algorithm to mixture models

with the different numbers of components and selecting the best number of components k̂ which max-

imizes the posterior density of the mode. We consider the two choices of the mean parameter of the

Poisson prior, λn = exp(−0.05 log2 n/log log n)) (MFM_vary) and λn = 1 (MFM_const). For all the

four Bayesian methods, we set the support of the uniform distribution prior the interval [−6,6] and the

concentration parameter of the Dirichlet distribution prior the vector of 1’s.

We generated synthetic data sets from a Gaussian mixture model ν� ∗Φ with ν� :=
∑k�

j=1 w
�
j
δθ�

j
. We

consider the following four different cases of the true mixing distribution.

Case 1 (Well-separated) θ� = (−3,−1,1,3), w�
= ( 1

4
, 1

4
, 1

4
, 1

4
)

Case 2 (Overlapped components) θ� = (−1.5,−1,1,3), w�
= ( 1

4
, 1

4
, 1

4
, 1

4
)

Case 3 (Weak component) θ� = (−3,−1,1,3), w�
= ( 2

5
, 1

10
, 1

4
, 1

4
)

Case 4 (Higher-order) θ� = (−6,−4,−2,0,2,4,6), w�
= ( 1

7
, . . . , 1

7
)

For Case 1, all the true components are well-separated. The true components from Case 2 and Case

3 are not well-separated. In Case 2, there are two close atoms and in Case 3, there is a weak com-

ponent. Case 4 is a higher-order mixture setup. For each setup, we let the sample size n range over

{250,500, . . . ,2000}. We repeat this data generation 50 times for each experiment and report the aver-

age of the first order Wasserstein distance between each estimator and the true mixing distribution.

Figure 1 displays the average of the the first order Wasserstein errors of the five estimators for the

four cases of the data generating process. Contrary to its theoretical optimality, DMM performs the

worst among the five estimators for all the scenarios. The performance gap of DMM to the Bayesian
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Figure 1. The average (curve) and the standard deviation (band) of the first-order Wasserstein errors of five esti-

mators by sample size.

methods are the largest for Case 4. We observed that there is numerical instability of the DMM im-

plementation when the number of components is larger than 5, which results in failure of compu-

tation. Thus we fixed the number of components as 4 instead of 7. This leads to the poor perfor-

mance of the method. The overall result seems to inconsistent to the simulation result of the DMM

paper [49], which showed better or at least competitive performance of DMM compared to the MAP

estimators. But the simulation setup is different. The authors of [49] considered the two simulation

scenarios, the first case where the true five number of components are very close to each other (in-

deed, θ� = (−0.236,−0.168,−0.987,0.299,0.150) and w
�
= (0.123,0.552,0.010,0.080,0.235)) so that

the corresponding mixture density seems to be unimodal, and the second case where there are only two

components of the true mixing distribution. Thus, we conjecture that DMM performs worse for mixture

densities with many modes. However, as one of the reviewers pointed out, this conjecture could be

potentially ungrounded. Another possible reason behind this is numerical instability. Since moments

typically span several orders of magnitude, semidefinite programming in DMM procedures can suffer

from numerical instabilities (see [1]). This could be the reason behind the relatively poor performance

of DMM estimator.

Generally, all the four Bayesian methods performs almost similar. For Case 1, the over-fitted mixture

model MAP_over performs worse than the other Bayesian methods, but does similar for the other three

cases. For Case 2 and Case 3, MFM_vary tends to select the smaller mixture than the true mixture, in

general, its posterior distribution is maximized at k = 3 which is less than the true one k� = 4. Note that
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this does not contradict our theoretical results where we establish the consistent estimation of the num-

ber of well-separated components, which might be equal to 3 in these two cases. This leads to slightly

better performance for Case 2 where overlapped components exist and slightly worse performance for

Case 3 where weak components exist. Overall, knowing the true number of components does not give

substantial improvement of empirical performance. Our theory for optimal estimation of the mixing

distribution is built on the result of vanishing posterior probability of overestimation of the number of

components (Theorem 2.1). It would be interesting to investigate the optimality of Bayesian posteriors

that do not enjoy such asymptotic property, for instance, the overfitted Bayesian mixture model.

4.1.2. Inference for the number of components

In this experiment, we assess the performance of the proposed Bayesian procedure and the DP mixture

model with sample size dependent hyperparameters. We generated the Gaussian mixture with atoms

(−2,0,2) and equal weights (1/3,1/3,1/3). Five independent data sets are generated from this Gaussian

mixture model for each sample size n ∈ {50,100,250,1000,2500}. We compare four Bayesian methods:

the two MFM models with Poisson mean parameter λn = 10 exp

(
− 1

5
log2 n

log logn

)
(MFM_vary) and λn = 1

(MFM_const) and the two DP mixtures models with concentration parameter κn = 20/n (DP_vary)

and κn = 0.4 (DP_const). We use the uniform distribution on [−6,6] for both the prior on the atoms

for the MFM and the base distribution for the DP mixture.

For posterior computation for the MFM models, we employ the reversible jump MCMC algorithm

of [41]. For each posterior computation, we ran a single Markov chain with length 105,000. We saved

every 100-th sample after a burn-in period of 5,000 samples. On the other hand, we use Neal’s Algo-

rithm 8 [34] for non-conjugate priors to compute the posterior distributions of the DP mixtures.

Figure 2 presents the posterior distributions of the number of components for the two MFMs and

of the number of cluster for the two DP mixtures, respectively. It clearly shows that the diminishing

choices of hyperparameter advocated by our theory outperforms the constant counterparts. It is worth

to notice that the posterior distribution of DP_vary captures the true number of components well

for large samples. It is a widely observed that the DP mixture tends to produce redundant clusters, in

particular, Miller and Harrison [32] and Guha, Ho and Nguyen [19] observed this phenomenon in their

simulation studies, however our simulation shows that a sample size dependent concentration parameter

inversely related to the sample size can circumvent this issue.

4.2. Real data analysis

4.2.1. Galaxy data

In this section, we consider an application to the galaxy data of Roeder [42] which record velocity

measurements (1,000 Km/sec) of 82 galaxies from the Corona Borealis region. This data set has been

widely used as a benchmark for mixture modelling methods, e.g., [8,10,37,47]

To gain flexibility, we used the Gaussian location-scale mixture model instead of the Gaussian loca-

tion mixture model that we have focused on. We considered the MFM and DP prior distributions. The

MFM prior consists of POISSON(λ) on the number of components, DIR(1, . . . ,1) on the mixing weights,

UNIF([0,40]) on the location parameter and GAMMA(1,1) on the scale parameter. We fitted the model

with the MFM prior with five different values of the mean parameter λ of the Poisson distribution:

3,1,0.5,0.1 and 0.01. The base distribution of the DP for the location parameter is chosen to be the

same as the MFM, but we choose the inverse gamma distribution in order to employ conjugacy. We

fitted the DP mixture model with five different values of the concentration parameter κ, which are the

same as λ.
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Figure 2. Posterior distribution of the number of components for the MFM and of the number of clusters for the

DP mixture. The true number of components is 3.

Figure 3 presents a posterior distribution of the number of components for the MFM and the one of

the number of clusters for the DP mixture. The shape of the posterior distribution is substantially dif-

ferent by the choices of the hyperparameters λ for the MFM and κ for the DP. The posterior distribution

of the number of clusters for the DP mixture model with a small concentration parameter concentrates

near the value of 3, as the posterior distribution of the number of components for the MFM does. This

result implies that the DP mixture can be used as a proxy of the MFM for estimating the number of

components when the small concentration parameter is used, as our theory suggests. Figure 4 displays

posterior predictive densities for the MFM and DP mixture as well as histogram of the galaxy data. For

density estimation, it also seems that the choice of the hyperparameters is more critical than the choice

among the MFM and DP mixture.

4.2.2. Old faithful geyser eruption data

In this section, we consider the Old faithful geyser eruption data which consists of two measure-

ments, duration time and waiting time to the next eruption, taken on n = 272 eruptions for the Old

Faithful geyser in Yellowstone National Park. We analyzed the data using the multivariate Gaussian

location-scale mixture model
∑k

j=1 wjN(θ j,Σj ) where (w1, . . . ,wk ) ∈ ∆k are weights, θ1, . . . , θk are

2-dimensional vectors and Σ1, . . . ,Σk are 2 × 2 symmetric positive definite matrices. We first stan-

dardized the data and imposed the following MFM prior distribution: k ∼ POISSON(λ), (w1, . . . ,wk ) ∼
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Figure 3. Posterior distribution of the number of components for the MFM and of the number of clusters for the

DP mixture for the galaxy data

DIR(1, . . . ,1), θ j iid∼ UNIF([−2,2]2) and Σj
iid∼ WISHART(5, 1

10
I), where I ∈ R2×2 denotes the identity ma-

trix. We considered four different values of the mean parameter λ of the Poisson distribution: 1,0.1,0.01

and 0.001.

Figure 5 displays the posterior distribution of the number of components by the value of λ. We

see that the smaller the parameter λ, the more the posterior distribution concentrates on the value of

2, which seems to be enough to explain the data, see the scatter plot of the data in Figure 6. This

result implies that our sample size dependent prior distribution may work even for the multivariate

Gaussian location-scale mixture model which is much more complex than the univariate Gaussian

location mixture model. Figure 6 presents the posterior predictive density by the value of λ. There is

not much difference in four posterior predictive density estimates.
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Figure 5. Posterior distribution of the number of components for the old Faithful geyser eruption data

Figure 6. Scatterplot of the old Faithful geyser eruption data with contour plot of the posterior predictive density
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Supplementary Material

Supplement to “Optimal Bayesian estimation of Gaussian mixtures with growing number of com-

ponents” (DOI: 10.3150/22-BEJ1495SUPP; .pdf). The proofs of all the Theorems are contained in Ap-

pendix A of Ohn and Lin [39]. Analysis of general mixture models in the framework of Heinrich and

Kahn [20] is provided in Appendix B of Ohn and Lin [39].
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