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We study Bayesian estimation of finite mixture models in a general setup where the number of components is
unknown and allowed to grow with the sample size. An assumption on growing number of components is a
natural one as the degree of heterogeneity present in the sample can grow and new components can arise as
sample size increases, allowing full flexibility in modeling the complexity of data. This however will lead to a
high-dimensional model which poses great challenges for estimation. We novelly employ the idea of a sample
size dependent prior in a Bayesian model and establish a number of important theoretical results. We first show
that under mild conditions on the prior, the posterior distribution concentrates around the true mixing distribution
at a near optimal rate with respect to the Wasserstein distance. Under a separation condition on the true mixing
distribution, we further show that a better and adaptive convergence rate can be achieved, and the number of
components can be consistently estimated. Furthermore, we derive optimal convergence rates for the higher-order
mixture models where the number of components diverges arbitrarily fast. In addition, we suggest a simple recipe
for using Dirichlet process (DP) mixture prior for estimating the finite mixture models and provide theoretical
guarantees. In particular, we provide a novel solution for adopting the number of clusters in a DP mixture model
as an estimate of the number of components in a finite mixture model. Simulation study and real data applications
are carried out demonstrating the utilities of our method.

Keywords: Gaussian mixtures; finite mixture models; growing number of components; mixing distribution
estimation; posterior contraction rates; Dirichlet processes

1. Introduction

Finite mixture models are powerful tools for modeling heterogeneous data, which have been used in a
wide range of applications in statistics and machine learning including density estimation [26], cluster-
ing [12], document modeling [4], image generation [40] and designing generative adversarial networks
[9], just to name a few. To date, a large number of methods, both frequentist and Bayesian, have been
proposed in the literature for various estimation problems related to finite mixture models. Rather than
listing a large body of related work here, we refer the readers to the book [13] and a review paper [29]
for recent advances on finite mixture modeling. Our work focuses on the estimation of the finite mixture
itself, i.e., estimating the parameters of a mixture model such as the mixing distribution and the num-
ber of mixing components, from a Bayesian perspective. Although a number of important Bayesian
methods have dealt with the problem of finite mixture estimation, many interesting questions remain
open. Most of the Bayesian work in the literature assume the number of components is either known
or fixed. The minimax optimal convergence rate for estimating the mixing distribution has not been
achieved by Bayesian methods even for the fixed set up. Further, posterior consistency on the number
of components has not been established except for some special cases. This paper aims to bridge these
gaps through establishing a number of new theoretical results under the general framework of finite
mixture modeling with growing number of components. Allowing the number of components k* to
grow is a natural assumption and even required in many situations, for instance, in topic modelling [3]
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and computer vision [18], where we expect that when the size of the sample grows so will the degree
of heterogeneity present in the sample.

To have a better understanding of some of the theoretical gaps, it is important to review some of
the major developments in the literature. A pioneering work on characterizing convergence rates for
mixing distribution estimation in finite mixture models is due to Chen [7] which established a point-
wise convergence rate C,~n~/* for estimating the mixing distribution under the L, distance, where n
denotes the sample size and the C,+ is a constant depending on the true mixing distribution v*.! This
convergence result holds for the so-called strongly identifiable mixtures which include the Gaussian lo-
cation mixtures as special cases, and so do those stated below. Nguyen [36] and Scricciolo [45] derived
the n~'/* point-wise posterior contraction rate under the second-order Wasserstein distance. Ho and
Nguyen [21] proved that the maximum likelihood estimator can also achieve this point-wise rate. Un-
der the first-order Wasserstein distance, a better point-wise convergence rate C,+n~ /2 can be obtained.
Heinrich and Kahn [20], Ho, Nguyen and Ritov [22] and Guha, Ho and Nguyen [19] established the
n~1/2 point-wise rate for the minimum Kolmogorov distance estimator, minimum Hellinger distance
estimator and Bayesian procedure with the mixture of finite mixtures (MFM) prior, respectively. On
the other hand, for the continuous mixtures where the mixing distribution admits a density function,
Martin [27] derived a near n~'/2 point-wise rate of the mixing density estimation for their predictive
recursion algorithm [35,48].

However, due to a lack of uniformity in the constant C,«, their analysis has been restricted to the
fixed truth setup, with the number of components assumed to be either known or fixed. Also note that
these point-wise rates are not upper bounds of the actual minimax optimal rates of mixing distribution
estimation, which were later derived by Heinrich and Kahn [20]. It was shown that the minimax op-
timal convergence rate of mixing distribution estimation for strongly identifiable mixtures, is of order
n Y (4(1‘*’1‘0)*2), where k* and k( denote the foral number of components and the number of well-
separated components of the true mixing distribution, respectively. In other words, the minimax rate
deteriorates with the factor k* — ko which can be viewed as the degree of overspecification. Heinrich
and Kahn [20] also proposed a minimax optimal minimum Kolmogorov distance estimator which how-
ever can be computationally expensive. More recently, Wu and Yang [49] proposed a computationally
tractable estimator called the denoised method of moments estimator for Gaussian mixture models,
and showed that this estimator achieves the minimax rate. However, these minimax optimal estimators
require the knowledge of the number of components k*, which is not practical. On the other hand, no
Bayesian procedure has yet been able to yield a minimax optimal rate.

In general, one does not have the prior knowledge on the number of components, and selecting an
appropriate value of the number of components is a crucial step in providing accurate estimates of the
true mixing distribution. With too many components, one may suffer from large variances whereas too
few components may lead to biased estimators. Also estimating the number of components may be of
interest itself in practice especially when each component has a physical interpretation. A widely used
approach to choose the number of components is based on a model selection criterion before estimating
parameters, and a few consistent model selection criteria are available in the literature such as complete
likelihood [2], the Bayesian information criteria (BIC) [25], the singular Bayesian information criteria
(sBIC) [8] and the Bayes factor [6].

A Bayesian approach is an attractive alternative due to its ability to estimate both the number of
components and parameters in a unified manner. A natural strategy to infer a mixture model with an
unknown number of components is to also impose a prior on the number of components k. By doing so,
it provides a way of not only choosing the best number of components (i.e., model selection), but also

IChen [7] did not realize that the multiplicative constant C,,« depends on the true mixing distribution, thus they argued that the

rate n~1/# is the minimax optimal rate. This mistake was later corrected by Heinrich and Kahn [20].
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combining results from different mixture models with possibly varying number of components (i.e.,
model averaging). One notable disadvantage for such models is that posterior computations may be
challenging, since it requires developing Monte Carlo Markov chain (MCMC) algorithms for sampling
from a parameter space of varying dimensions, which often results in poor mixing or slow convergence
of the Markov chain to the stationary distribution. Several MCMC methods have been proposed to cir-
cumvent this issue including [32,37,41,47]. On the theoretical side, Guha, Ho and Nguyen [19] derived
the n~!/2 point-wise posterior contraction rate for this type of prior distribution. They also obtained
posterior consistency of the fixed number of components under the strong identifiability condition.
Another promising approach is to use over-fitted mixtures. This approach considers a mixture model
with the number of components larger than the true one and estimates the true model by discarding
spurious components. Rousseau and Mengersen [43] studied asymptotic properties of the over-fitted
mixtures and proved with a prior on weights of a mixture using a Dirichlet distribution with a suitably
selected hyperparameter, the spurious components vanishes asymptotically at the rate n~'/2log® n for
some a > 0 under the posterior distribution.

Our work considers a Bayesian procedure which imposes appropriate priors on both the number of
components and the mixing parameters in a general setup where the number of the mixing components
is allowed to grow with sample size. We consider a general class of priors and provide assumptions on
the prior on the number of components, the mixing weights as well as the atoms of the mixing distri-
bution, that lead to optimal convergence of the posterior. Our work contributes in both methodological
and theoretical development, and obtains collection of important results which can be summarized in
the following.

1. We design sample size dependent priors and provide mild and explicit conditions on them, based
on which near-optimal posterior contraction rate of the mixing distribution estimation is derived
with respect to the Wasserstein distance (Theorem 2.2). Under a separation condition on the
mixing components, we further show that a better and adaptive optimal posterior contraction rate
can be obtained (Theorem 2.3 and Corollary 2.5). To our knowledge, this is the first minimax
optimality result in the Bayesian literature.

2. We derive the posterior consistency of the number of components even when the true number
of components diverges (Theorem 2.6). To the best of our knowledge, this is the first result on
the posterior consistency of the number of components in a general setup where the true mixing
distribution varies as the sample size grows.

3. We propose an optimal Bayesian procedure for estimating higher-order mixture models in which
the number of components diverges arbitrarily fast (Theorem 2.7).

4. We extend our analysis to general mixture models beyond Gaussian location mixtures with grow-
ing number of components. We show that the proposed Bayesian procedure maintain the same
theoretical properties even in this setup.

5. We investigate some theoretical properties of the Dirichlet process (DP) mixture models and pro-
vide a pathway for using DP models for inference of the finite mixture models (Section 3). The
DP prior for the mixing distribution, which only generates infinite mixtures, cannot provide a
meaningful posterior distribution for the number of components. We suggest a recipe for using
the posterior distribution of the number of clusters as the estimate of the true number of compo-
nents and provide theoretical guarantees. (Theorem 3.1). For mixing distribution estimation, the
performance of the DP is inferior in view of the convergence rate (Theorem 3.2).

The rest of this paper is organized as follows. In Section 2, we introduce the notation, finite Gaussian
location mixture models, and the prior distribution. Then we present the main results of the paper,
including optimal posterior contraction rates of the mixing distribution, and posterior consistency of the
number of components. Moreover, we study theoretical properties of the proposed Bayesian procedures
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for estimating general mixture models. In Section 3, we analyze theoretical properties of DP mixture
models for estimating the finite Gaussian mixtures. In Section 4, numerical studies including both
simulation study and real data analysis are conducted for illustrating our theory. Proofs are deferred to
Appendix A. In Appendix B, we provide another theoretical analysis for general mixture models with
a fixed number of components under different conditions and proof techniques.

2. Main results

2.1. Notations

We first introduce some notation that will be used throughout the paper. We denote by 1(-) the indi-
cator function. For a positive integer n € N, we let [n] := {1,2,...,n}. For a d-dimensional real vector
X 1= (xq,...,xq) € RZ, we denote ||x||p := Z;lzl 1(x; # 0) and ||x||e := max<j<g |x;|. For two positive
sequences {ay tnen and {by, }nen, We write a, < b, if there exists a positive constant C > 0 such that
an < Cb,, for any n € N. Moreover, we write a, = b, if b, < a, and write a, < b, if a, < b, and
an Z by. For n random variables X, ..., X,, we use the shorthand notation X, := (Xj,...,Xy). Let §g
denote a Dirac measure at 6.

Let (X,X) be a measurable space equipped with a Lebesgue measure A. Let P (X) be the set of all
distributions supported on X. For G € P(X), let P denote the probability or the expectation under
the probability measure G. We denote by pg the probability density function of G with respect to the
Lebesgue measure A if it exists. For n € N, let P(C';l) be the probability or the expectation under the

product measure and p(G") its density function. For two probability densities p; and p,, we denote by

KL(p1,p>) the Kullback-Leibler (KL) divergence from p; to p; and by KL>(py,p2) the KL variations,

2
ic., KL(p1.p2) = [ Tog (24 ) pr(x)Adn) and KLa(pr.p2) = [ {log (’,;;Eﬁi)} P1(x)A(d). For £ >0,
a space of certain distributions G and a distribution Gy € G, we define a {-KL neighborhood of G by

Bu(£.G0.6) = |G € G : KLpGy 1) < L2 KLapaypa) < 2]
. 1/q
For a real-valued function f on X, let ||fll, := (/|f(x)|q/l(dx)) for ¢ > 0 and || f|le :=

sup,.cx | f(x)]. For G € P(R), we denote by my,(G) the h-th moment of G, i.e., my(G) := thPG(dx).
The r-th moment vector is defined by my.,(G) := (m(G),- - ,m,(G)).

2.2. Gaussian location mixtures

In this paper, we initially consider the Gaussian location mixture model in one dimension:

k
Xiveo o X S wiN@;, 02), @1
j=1
where 01,...,60; € R are the atoms and (wy,...,wy) € Ay are the mixing weights. Here we define

3
A= wi,...,wie) €[0,1]F :ZWJ' =1
=1
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for k € N. We assume that the variance o2 is known and without loss of generality o> = 1. With the
convolution denoted with the symbol %, we simply write

k
yx®= wiN(6},1)

j=1

for the mixing distribution v := Zj?: W jég}., where @ denotes the standard normal distribution. For a
set ® c R and k € N, we define the set of k-atomic distributions

k
Mk(®) = ZW](SQJ. Z(W],. . .,Wk) € Ar,01,...,0, €0
J=1

Note that My (®) C My, 1(0) for every k € N. The parameter space is given by M(0) := [y epy Mi(9).
Note that M(©) c P(0).

For mixture models, the Wasserstein distance is widely used as a performance measure for the mixing
distribution estimation. To define the Wasserstein distance between two atomic distributions, we first
define

K k
Quw,w') 1= 4 (pjn)jeirrneiry € 10, 110K ijh = Wj:ZPjh =wpVjelklhelk']t,
h=1 j=1

for given two weight vectors w € A, and w’ € Ag/, which is a set of joint distributions on [k] X [k’]
with marginal distributions w and w’. For any ¢g > 1, the g-th order Wasserstein distance between two
atomic distributions v := Zj?:l wjdg, and v’ := Zi:l w;lé% is defined as

K K 1/q
W,(v,v"):=  inf w0 —0r19
/ peQ(w.w) ;;p’ soTh

2.3. Prior distribution

We first assume that the true data generating process is given as v* = ® where v* € My« ([-L,L]),
L > 0 for some k* € N, which is the true number of mixing components. For simplicity, we write
My := Mi([-L,L]) for each k € N and M := M([-L,L]) := U;"_, My ([-L,L]). We consider a general
model in which the true mixing distribution v* € My can vary with sample size n as well as the true
number of components k* can vary with n. This is a critical difference from the existing Bayesian
literature on mixture models which assumed a fixed true mixing distribution [19,36,45].

We assume an upper bound k, < logn/loglogn on the true number of components k*. This as-
sumption alleviates some technical difficulties, and can be justified by the following remark. Since the
minimax optimal convergence rate of mixing distribution estimation for large mixtures v* € M with
k* < logn/loglogn is the same as the one for mixtures v* € M with any order, which is a slow rate
of loglogn/logn (See Proposition 9 of [49]), without assuming k* < logn/loglogn, we may not ob-
tain improved convergence rates. We will also show that one can develop a Bayesian procedure that
attains this minimax rate without knowing the upper bound of the true number of components. See
Theorem 2.7 in Section 2.5.
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We now introduce our prior distribution on the finite Gaussian mixture model. The prior distribution
first samples the number of components k from II(k) and then samples the atoms 6 € [-L,L]¥ and
weights w € Ay from I1(6|k) and TT1(w|k), respectively. Thus the prior distribution induces a distribution
on M = U, nyMg.

We impose the following conditions on the prior.

Assumption P. Recall that k,, is the known upper bound on the true number of components. The prior
distribution IT satisfies the following conditions:

(P1) The prior distribution on the number of components k is sample size dependent. There are a
constant ¢; > 0 and a sufficiently large constant A > 0 such that for any sample size n € N and
any k° € N,

H(k = ko + 1) _A]; lo
— < n 081 2.2
k= %) <cie (2.2)

Additionally, there are constants ¢, > 0 and c3 > 0 such that for any n € N and any k' € [k,],

T(k = k) > cye(c3kn logmk” 2.3)

Oor an € N and any (w7,...,w,; ) € Ag, there are positive constants ¢4 and cs such that for
(P2) For any k € N and any (w? 9) € A, th positi d h that f

any 17 € (0,1/k),

II

k
[wj — w;.)| < I]|k > ¢4k, 2.4)

j=1

(P3) For any k € N and any 6° € [-L, L]¥, there are positive constants cg and ¢ such that for any
n>0,

I

-6 < > cenc7k
llélja;(kwj HJI < 7]|k) > cen7". (2.5)

In (P1), we require a prior distribution to heavily penalize mixture models with a large number of
components, and further assume that the degree of the penalization becomes more severe of an appro-
priate order as sample size grows. This enables the resulting posterior distribution not to overestimate
the number of components.

Remark 1. The idea of using a same size dependent prior to control model complexity is not new and
have frequently appeared in the Bayesian literature, e.g., prior distributions on sparsity in the multivari-
ate normal mean model [5], sparsity in nonparametric regression [24], the number of communities in
the stochastic block model [14] and the number of factors in the factor model [38].

We now provide some examples of prior distributions satisfying Assumption P. In the following
examples, the constant A > 0 is the same as the one appearing in (2.2).

Example 1. The mixture of finite mixture (MFM) prior considered in [19,26,32] is a hierarchical prior
consisting of distributions on the number of components, the weights and the atoms. Assumption P is
met by the MFM prior with appropriate choices of each distribution. The geometric distribution with
probability mass function I1(k) = (1 — p,,)*"'p, on k with p,, := 1 — aexp(—Ak, logn) for arbitrary
a > 0, satisfies (P1). Also, the Poisson-like distribution on N such that TT(k) = e~ 2%X~1 /(k — 1)! with
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A := aexp(—Ak,, logn) for arbitrary a > 0 satisfies (P1). The Dirichlet distribution DIR(«,. . .,&%) on
the mixing weights with «; € (xp, 1) for every j € [k] and some kg € (0, 1) satisfies (P2), see Lemma A.6.
If the prior distribution on 8 behaves like a uniform distribution up to a multiplicative constant, then
(P3) holds.

Example 2. Consider a Binomial prior distribution on the number of components such that k — 1 ~
BINOM(ky, — 1,p,) with py, := aexp(—2Aky logn) for arbitrary a > 0. Then this prior satisfies (2.2)
1 < kp <eloglogn and 1 — p,, < 1. Also it satisfies (2.3) since 1 — p, > 1. The
MEM prior with this Binomial prior distribution satisfies Assumption P.

. kn—1\ (kn —
smce( i )/(kO—

Example 3. The spike and slab prior distribution on the unnormalized weights can satisfy (P1) and
(P2). Suppose that we consider an over-fitted mixture model v = 2;21 w;jdg,. Let S :={j € (k] : wji >

0}, a set of indices corresponding to nonzero weights. Then we can write v = };cgwjdg,. Let w =
(W) e[k, be the independent random variables where Wy is generated from GAMMA(k, b) and the other
variables, i.e., W»,. . ., W,;n , are generated from a spike and slab distribution (1 — p;, )6 + p,GAMMA(k, b)
with p,, := aexp(-2Ak, logn) for a > 0, b > 0 and « € (0,1). If we define the number of components
as the number of nonzero elements in W and the weights as a normalized version of (W;);cs, i.e.,
k= ||Wwllo and w; :=Ww;/||w||; for j € S, then k — 1 follows BINOM(k,, — 1,p,) and (wj)jes follows
DIR(K, .. .,&). Thus Assumption P holds by Examples 1 and 2.

2.4. Posterior concentration

In this section, we present concentration properties of the posterior distribution I1(:|X;.;,) defined be-
low, with the prior given in Section 2.3 and the data from the Gaussian mixture model in (2.1):

P (X1)TI(dY)
[P (X)TI(d)

We first show that our posterior distribution does not overestimate the number of components.

(dv|Xi:p) :=

(2.6)

Theorem 2.1. Assume that k* < k,, < logn/loglogn. Then with the prior distribution Tl satisfying
Assumption P, we have

inf P [ € My |X1:)] — L. 2.7)

(
V*EMk* v

The following theorem shows the optimal concentration property of the posterior distribution of the
mixing distribution.

Theorem 2.2. Under the same assumptions of Theorem 2.1, we have

(n)
sup P [
v* €Mk* v

n (Wl(v, v*) > Mén,k*|X1;n)] = o(1) 2.8)

for some universal constant M > 0, where

1

log2 n|%*-2
. .

&y pr = (k)2 ( (2.9)
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If the number of components k* is fixed, the convergence rate in Theorem 2.2 is equivalent to the
minimax optimal rate n~!/ (4k*-2) 149, Proposition 7] up to at most a logarithmic factor. An additional
logarithmic factor is common in the nonparametric Bayesian literature, which often arises due to the
popular “prior mass and testing” proof technique which we also adopt in this paper. We refer to the
papers [15,23] for discussions about this phenomenon.

To improve the convergence rate in Theorem 2.2, one may assume that atoms are well separated and
the weights are bounded away from zero. We introduce the formal definition related to this notion.

Definition 1. An atomic distribution v := Z;?:l wjdg; is said to be ko (y,w)-separated for ko € [k],
¥ > 0 and w > 0 if there exists a partition Sj,. .., Sk, of [k] such that

e |0, —6;|>yforany j €S, j €Sy andanyl,l’ € [ko] with [ #1’;
® Yjes, wj > wforany [ €[ko].

We let M ky.y. := {v € My 1 v is ko (y,w)-separated}.

In the next theorem, we derive the optimal posterior contraction rate of the mixing distribution under
the separation assumption. We call this contraction rate an adaptive rate because the result is achieved
without any knowledge of the number of well-separated components k¢ of the true mixing distribution.

Theorem 2.3. Assume that k* < k, < logn/loglogn and yw > M'E,  for a sufficiently large con-
stant M’ > 0, where &, y~ is the rate defined in (2.9). Then with the prior distribution 11 satisfying
Assumption P, we have

sup Pf/’i)* o

*
VIEMx ko0

m (Wl(v, V) > Men,k*,ko,y’Xlzn)] = o(1), (2.10)

for some universal constant M > 0, where

En ic* gy = (KF) K02y 2T .11
n

6k* —4ko+3 2kg-2 (10g2 n) Wlk()m
Remark 2. A nice surprise from the result of Theorem 2.3 is that our Bayesian procedure can achieve
a better convergence rate than the one in Theorem 2.2 without requiring any further condition on the
prior distribution. This is because of fact that the condition yw > M’éE, guarantees that the mixing
distribution v is kg (agy,0)-separated asymptotically for some constant ag € (0,1) under the posterior
distribution, provided that Theorem 2.2 holds.

In view of Proposition 2.4 presented below, the convergence rate in Theorem 2.3 is minimax optimal
[20, Theorem 3.2] up to a logarithmic factor if the model parameters k*, ko and y are fixed constants.
Heinrich and Kahn [20] established the minimax optimal rate n~ /@K ~ko)+2) of the estimation of the
mixing distribution satisfying the locally varying condition. Namely, they showed that for fixed k* € N,
ko € [k*] and vg € My, \ My, -1, it follows that

1
inf sup PU L [Wi(9v*)] 2 Ko, 2.12)

. . V¥
{V}V*E/\/(k*:Wl(v*,vo)gs,'1

where the infimum ranges over all possible sequences of estimators and e,I i= VK —ko)+D+e for
some ¢ > 0 (In fact, the above lower bound holds not only for the Gaussian location mixtures but
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also general mixtures satisfying the strong identifiability condition provided in Definition 2). In other
words, the above minimax argument is about the true mixing distribution which does not vary globally
but locally. This locally varying condition is seemingly different from the separation condition given in
Definition 1, but in fact the former is a sufficient condition of the latter. Intuitively, we can expect that
the true distribution v* € My« close to vp € My, \ My, has at least ko well-separated components,
and therefore satisfies the separation condition. We formally state this argument in the next proposition.

Proposition 2.4. Let ko € N and vy := 27):1 wo;06,; € Mk, \ Miy-1. Define

Vo) = min Bo; — 6
y(vo) j,he[kol:#h| oj — Oon|

w(vp) = min wy;.
jelkol

Let k € {ko,kg+ 1,...} and c € (0,1/4). Then we have

{v € My : Wi(v,v) < cy(vo)w(vo)} C Mk,ko,(1—2c)y(v0), 1=4¢ 1) ()" (2.13)

1-3¢

Due to Proposition 2.4, it is clear that our Bayesian procedure is also near-optimal for the estimation
of the mixing distribution under the locally varying condition. We merely state the result.

Corollary 2.5. Assume k* < k, <logn/loglogn. Let ko € N be a fixed constant such that ko < k*, and
let v € My, \ My,-1 be a fixed distribution. Moreover, assume that the prior distribution I1 satisfies
Assumption P. Then there exist universal constants T > 0 and M > 0 such that

sup Pf/'i)*q)

v¥e M« Wi (v*,vp)<t

n (Wl(v, V¥) 2 Méy o ko 1 |X1;n)] =o(1), (2.14)

where €, i« i, 1 is the rate in (2.9) withy = 1, i.e., €, jx ;.1 = (k*) 4> ~ko)+2 -

1
6k* —4k(+3 (logzn) m
As a byproduct, we can obtain the posterior consistency of the true number of components when
the true mixing distribution v* is perfectly separated, that is, k* = ko. Note that in this case, v* €
M \ My«_q. The following theorem states this formally.

Theorem 2.6. Assume that k* < k,, <logn/loglogn and
Yw > M’ max{gn’k*,en,k*’k*’y} (215)

for a sufficiently large constant M’ > 0, where &, j» and €,  x ,, are the rates defined in (2.9) and
(2.11) with ko = k*, respectively. Then with the prior distribution 11 satisfying Assumption P, we have

inf PUY [T (v € Mix \ Myw 11 X10) | = 1. (2.16)

V*EMk*,k*,y,w v*ad

The condition (2.15) provides a threshold for detection. This condition plays a similar role as the
beta-min condition for variable selection in linear regression [5,28].

Guha, Ho and Nguyen [19] obtained the consistency result with a similar prior distribution to ours,
but their analysis is restricted to the fixed truth cases.
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2.5. Higher-order mixtures

In Section 2, we have assumed that k* < logn/loglogn. This assumption is justified by the minimax
result for the estimation of the higher-order mixtures presented by [49]. In this section, we prove that
there is a Bayesian procedure which is similar to the one considered in Section 2, but does not assume
a known upper bound of the number of components, can attain this minimax optimality. In this case,
we impose a milder condition than (P1) on the prior.

(P1’) There are constants ¢; > 0, ¢, > 0 and by > 0 such that for any n € N and k° € N,
TI(k = k°) > ¢ e~ (c2log”0mk® (2.17)

It is clear that any prior distribution satisfying (P1) satisfies (P1”) with by = 2 since k, < logn. Also,
Assumption (P1’) can be met by the Poisson and geometric distribution with constant mean and success
probability, respectively, which do not satisfy (P1).

The next theorem provides the convergence rate of mixing distribution estimation without any re-
striction on the true number of components.

Theorem 2.7. Then with the prior distribution 11 satisfying (P1’), (P2) and (P3), we have

sup Pf,'i)* o

v*eM

) (2.18)

logl
I1 (W](V,V*) >M 08 0gn|X1:n)

logn

for some universal constant M > 0.

If the true mixing distribution v* belongs to My with k* < logn/loglogn, the convergence rate in
the above theorem is rate-exact optimal [49, Theorem 5].

Indeed, the above result holds even when the true generating process is given by u* = ® with yu* €
P([-L,L]), which includes continuous or infinite mixtures.

2.6. Extension to general mixture models

In this section, we extend our analysis for the Gaussian location mixture model to general mixture
models with potentially growing number of components. For a mixing distribution v € M(®) and a
family {F(-,0) : 6 € ®} of distribution functions on R for ® C R, we let v o F' denote the distribution
having a density function

DPver(+) = / f(.0)v(db), (2.19)

where f(-,0) stands for the probability density function of F(-,6). We call F(:,-) and f(-,-) a kernel
distribution function and a kernel density function, respectively.
We impose the following set of assumptions on the kernel distribution function.

Assumption F. The family {F (,0):0¢€ ®} of distribution functions on R satisfies the following con-
ditions:

(F1) O is a compact subset of R with nonempty interior.
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(F2) There is a constant ¢; > 0 such that

[1£(.01) = £ (02|, < 1161 — 65| (2.20)
for any 61,6, € ®. Moreover, there are constants ¢, > 0 and r € (0, 1] such that
@)\
PvieF(X
/ Prer(X) | === | Adx) < (2.21)
szcF(x)

for any vq,v, € M(0O).
(F3) For any k € N, there exists an estimator M of the moment my(v) based on the sample

Xi,...,. X, iid P,eF such that

P M = mi(v) (2.22)
~ 2 ]
PO (M=) S —(es + VIO (2.23)

for any v € M(@®) for some constant c3 > 0.

Assumption (F2) helps us establish a lower bound of a KL neighborhood of the true distribution
v* e F by using the prior concentration conditions in Assumption P. This assumption is held for a
wide range of choices of kernel density function, for example, the Gaussian location family [36] and
more generally, location family of exponential power distributions [44]. Also, the Gaussian scale family
satisfies Assumption (F2) as shown in the next example.

Example 4 (Gaussian scale family). Let F' be the kernel distribution function such that F(x,0) =

®,(x), where @, denotes the distribution function of N(0,0-2). Consider the Gaussian scale family
{F(,0):0 €[1/L,L]} for L > 1. Then this family satisfies (2.20) since %f(x, o-)\(r:(ro| < oo for any
o0 €[1/L,L] and x € R. For (2.21), let ro := 1/(2L*). Fix two mixing distributions v; := 2?1:1 wi,j0c
and v, := 2?2:1 w2,j00 ;- Without loss of generality, we assume 0; | <0y <--+ < 0k, foralli =1,2.
Then

1 2 0 L] 2

"o - x X249 x
/pvl.F(x)(M) ﬂ(d_x)g‘/e ik e Ml P70 y(dy)

DPvyoF (x)

2
1 2. nL% »
S/e 2T 1(dx)

_1l_ 2
:/e 427 A(dx) < oo,
which verifies (2.21).

Assumption (F3) requires the existence of the unbiased estimator of the moment of every order
whose variance is bounded by certain quantity depending on the order. This condition enables us to use
the theoretical tool developed in Wu and Yang [49], who studied an estimator of the mixing distribution
based on the method of moments for the Gaussian location mixture model. Indeed, in the proof of our
results for the Gaussian location mixture model, provided in Appendix A.2, we found the moment
estimator (A.4) that satisfies Assumption (F3). We give some examples that satisfy Assumption (F3).
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Example 5 (Gaussian location family). Our Lemma A.l proves that the Gaussian location family
satisfies (F3).

Example 6 (Gaussian scale family). Consider the Gaussian scale family {®, : o~ > 0}. It is easy to
see that the moment estimator My = ¥*, X /E(Z¥) with Z ~ N(0, 1) satisfies (2.22) and (2.23).

Example 7 (Quadratic variance exponential family (QVEF)). An exponential family of which the
variance of each distribution is at most a quadratic function of its mean is called a QVEF [33]. The
class of QVEFs includes Poisson, gamma, binomial, and negative binomial distributions. If the family
of distribution functions {F (,0):0¢€ ®} is a QVEF, then (F3) is satisfied. Indeed, Equations (8.8) and
(8.6) of [33] verify (2.22) and (2.23), respectively.

Remark 3. As a reviewer pointed out, Assumption (F3) is somewhat strong and a number of mixture
models do not satisfy this. For example, although the Cauchy location mixture model with f(x,6) =
(m(1 + (x — 6)®)~! is strongly identifiable (by [7, Theorem 3]) and so can be analyzed under a different
theoretical framework given in Appendix B, it does not satisfy Assumption (F3) since the Cauchy
distribution does not have finite moments of order greater than or equal to 1.

Since we consider a general set of atoms ® C R rather than the interval [-L, L] to include, for ex-
ample, scale mixtures and exponential family mixtures, Assumption (P3) is slightly modified to Equa-
tion (2.5) being met for any k € N and 8% € ®@*. We also assume the kernel distribution function F(-,-)
is known, i.e., no misspecification of the kernel distribution function. That is, we consider the posterior
distribution denoted by I1f(+| X;.;,), which is defined as

P (X1)TI(dy)
_/pf,r:)p (Xl n)H(dV)

Then all the results in Section 2 can be recovered by the posterior distribution ITg(-| X[, ) on the mixture
model that satisfies Assumption F.

Hp(dv]|Xip) =

(2.24)

Theorem 2.8. Assume that k* < k,, < logn/loglogn. Moreover, assume that the family {F(-,0): 0 €
O} of distribution functions on R satisfies Assumption F and the prior distribution 11 satisfies Assump-
tion P. Then the followings are hold:

(a) It follows that
inf P [Hp(e M [Xp)] = 1; (2.25)

VX EMx

(b) There exists an universal constant M| > 0 such that

(n)

v*eF

sup P

v¥e M x

e (Wl(v, VY > M, gn,k*|x1;n)] = o(1), (2.26)

where &, i is the rate defined in (2.9);
(c) There exist universal constants M > 0 and M3 > 0 such that if yw > M»§, i~ then

sup V*eF

*
v EMk*,ko,y,w

g (Wl(v, v¥) > M3€n,k*,ko,y|X1:n)] =o(1), (2.27)

where €, i i,y is the rate defined in (2.11);



Optimal Bayesian estimation of Gaussian mixtures 1207

(d) There exist universal constants T > 0 and My > 0 such that

(n)
sup PV*.F
v* GM,{* ‘W (V* ,V())<T

Mp (Wi, 7%) 2 M4en,k*,k0,llxlzn)] =o() (28

for any fixed distribution vo € My, \ My,-1;
(e) There exists an universal constant Ms > 0 such that if yw > Ms max{&, y,€, x> k* , } then

inf PU [ME (v € Mix \ My Xi1:0) | = 1. (2.29)

V¥EMix 1% 5w v*eF

The proof of the theorem is straightforward, but for the sake of completeness, we provide it in
Appendix A.7.

We have considered mixture models with the number of components k* satisfying k* < k, <
logn/loglogn for general kernel functions. For higher-order mixture models with general kernel func-
tions, we can obtain the same convergence rate as the one in Theorem 2.7, which proves convergence
rates for higher-order Gaussian location mixtures.

Theorem 2.9. Assume that the family {F(-,0) : 0 € ®} of distribution functions on R satisfies Assump-
tion F and the prior distribution 11 satisfies (P1’), (P2) and (P3). Then

Sup Pi’i). F

v*eM

=o(1) (2.30)

logl
HF (Wl(V,V*) > M—2 ogn|X1:n)

logn

for some universal constant M > 0.

3. Dirichlet process mixtures for inference of finite mixtures

In this section, we consider Dirichlet process (DP) prior [11] on the mixing distribution which results in
an infinite mixture model- the popular Dirichlet process (DP) mixture model. Although a DP mixture
model is minimax optimal in density estimation [16,17], it suffers from a very slow convergence rate
of (logn)~!/? in estimating the mixing distribution of the Gaussian location mixtures as shown by
[36]. Their result assumes that the number of component k* is fixed. We consider the DP prior for
the mixture distribution estimation and derive the posterior contraction rates in the most general set up
by allowing the number of the components of the true mixing distribution to grow. Further more, we
adopt a natural strategy of using the number of the clusters T of the data to estimate the number of
components and we establish posterior consistency of such a procedure.

Note that the DP prior does not satisfy Assumption (P1), and thus the theorems in Section 2.4 do
not cover the case of DP prior. This section aims to separately analyze concentration properties of the
posterior of the DP mixture models.

In our Gaussian location mixture setup, the DP is a distribution on infinite-atomic distributions of
the form

ji= Zw,(sgj 3.1

where wi,wy,--- € [0,1] are mixing weights such that Z;’;l wj =1 and 61,6,,--- € [-L,L]. We let
Mo be the set of distributions of the form (3.1). The DP with a concentration parameter x > 0 and
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base distribution H, denoted by DP(k,H), can be expressed by the followmg stick-breaking generation

process [46]: w; = (l Ej) where E ~ BETA(l k) and 9 . Since every w; generated from
the above procedure 1s posmve with probablhty 1, one can say that Ipp(7 € Mo \ M) = 1. This implies
that every mixing distribution generated from the posterior of the DP mixture model has infinite number
of components, therefore the posterior distribution of the number of components k cannot provide any
reasonable estimate of the true number of components.

One possible solution is to use an additional post-processing procedure for the posterior distribu-
tion. For example, Guha, Ho and Nguyen [19] proposed the operator 7 to infinite mixing distributions
which removes weak components (in a sense that the corresponding weights are very small) and merges
similar components (whose atoms are very close) of an infinite mixing distribution so that 7(¥) is a
finite mixing distribution. They proved that for a fixed truth v* € My« \ My«_;, the posterior distri-
bution of the finite mixing distribution 7 (¥) obtained after post processing concentrates to the model
M« \ Myx_1 under the DP prior distribution with a fixed concentration parameter.

We propose another way to infer the number of components with the DP prior. Our idea is to use the
posterior distribution of the number of clusters say T,, of the data X;.,, as an estimate of the number

of components. Note that for i € [n], X; '~ 45 « ® can be written equivalently with the latent assignment
variable Z; € N as

g 11d ~
WJ >

Xi1Z; "' N(0,.1).

where w[7] € P(N) can be viewed as the distribution on N such that w[7](J) = #({6; : j € J}) for any
J € N. The number of clusters T, is defined by

Here we consider the joint posterior distribution of the mixing distribution ¥ and the latent assign-
ment variable Z;.,, conditioned on the data Xj.,, which is given as

| Ty 60X = 02)pw151(Z0) | Toe(@9)

[ 22, enn [I—[?:l d(X; — QZi)pw[f/](Zi)] pp(d?)

pp(d¥, Z1:p| X1:n) 1= , (3.2)

where ¢(-) denotes the probability density function of the standard normal distribution and Iy, denotes
the DP prior.

Note that the data are still assumed to be generated from the finite Gaussian mixture model v* * ®
where v* € M+ for k* € N but we allow the number of components to grow at an arbitrary fast
speed. Even in such general situations, we show in the following theorem that the DP prior with a
suitably chosen concentration parameter can provide a nearly tight upper bound of the true number of
components.

Theorem 3.1. With the DP prior DP(ky, H), where k,, < n=% for ag > 0 and H is the uniform distribu-
tion on [-L, L], we have

sup pi [HDP(Tn > Ck*|X1:n)] =o(1) G-3)

y* D
v¥e M«

for some constant C > 1 depending only on the prior distribution.
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Miller and Harrison [30,31] showed that the posterior distribution of the number of clusters does
not concentrate at the true number of components if one uses the DP prior with a constant concen-
tration parameter. In particular, if the true data generating process is N(0,1) = &y * @, the posterior
probability that the number of components is equal to the true number of components (i.e., 1) goes
to zero [30, Theorem 5.1]. Our proposed sample size dependent concentration parameter resolves this
inconsistency. See our simulation study in Section 4 for numerical confirmations.

Remark 4. Under the MFM prior of [32], which is an example of prior distributions considered in
Section 2, the posterior distribution of 7;, is asymptotically the same as the one of k. Miller and Har-
rison [32] proved that [TI(k = k°|X}.,) — II(T}, = k°|X1:5)] — O almost surely for k° € N as long as
II(k = k") > 0 for any k” € [k°]. In view of this fact, the number of clusters 7}, can be used to infer the
true number of clusters k* even if we use the MFM prior distribution.

Remark 5. One may wonder whether the choice of the concentration parameter «, < n~“ would lead
to slower posterior contraction rate when the DP mixture model is used for density estimation as a DP
mixture model is commonly adopted for. It turns out that it would not. In fact, even for «,, < n=%0, one
can show that there is a universal constant M > 0 such that

log®

n
P‘(,T*q) pp [ (P, Pyrsd) = M |X1:0 || = 0(1)

n

for any v* € P([-L,L]), for some ¢ > 0. One can easily check the above result. Following the proof
of Theorem 5.1 of [17] and applying Lemma A.6, we can see that the prior concentration near the true
mixing distribution is lower bounded by (n~%0)€11°2" > exp(—agc; log® n) for some ¢; > 0. Thus usual
prior mass and testing approach leads to the conclusion in the preceding display for estimating the
density.

For the estimation of the mixing distribution (of general order), we obtain the following convergence
rate for the DP mixture model.

Theorem 3.2. With the DP prior DP(kn, H), where exp(—colog? n) < kn S 1 for some by > 0 and
co > 0 and H is the uniform distribution on [—-L, L], we have

(n)

AR

sup P =o(1) (3.4)

v*eM

log1
Typ (Wl(v, y*) > MoE 08N Og”|X1;,1)
logn

Jor some universal constant M > Q.

As one can see from our theorem above, if the true mixing distribution is of high order such that
k* < logn/loglogn, the posterior of the DP mixture model attains the minimax optimality [49, The-
orem 5]. However, unlike the Bayesian procedure proposed in Section 2, we conjecture that posterior
of the DP mixture model cannot obtain an improved convergence rate for estimating a mixing distribu-
tion when the true number of components grows slowly, say k* < logn/loglogn, because it tends to
produce many redundant components. Nguyen [36] analyzed the posterior of Dirichlet process mixture
endowed with a fixed concentration parameter for estimating mixing distribution with a fixed num-
ber of components and obtain a slow convergence rate (logn)~'/2 with respect to the second-order
Wasserstein distance.



1210 I Ohnand L. Lin

4. Numerical examples

4.1. Simulation study

We conduct numerical experiments to validate our theoretical findings. For the prior distribution, we
use a MFM prior consisting of a Poisson distribution with mean A on the number of components, the
Dirichlet distribution on the weights and the uniform distribution on the atoms. For the Dirichlet dis-
tribution prior on the mixing weights, we fix its concentration parameter as a k-dimensional vector
of 1’s. For the mean parameter of the Poisson distribution, we consider the following two choices:
the constant one and the one decaying with an appropriate order depending on the sample size. We
call the former MFM_const and the latter MFM_vary. Note that MFM_vary is motivated by our
theory. Python codes for reproducing the results in this section are available at https://github.com/il-
sangohn/bayes_mixture

4.1.1. Inference for the mixing distribution

We compare the performance of the proposed Bayesian method with other competitors. We consider
the denoised method of moment (DMM) estimator proposed by [49] and the maximum a posteriori
(MAP) estimator with the Dirichlet distribution prior on the weights and the uniform distribution prior
on the atoms. In the implementation of the DMM algorithm, we use the authors’ Python codes which
are available on their github repository (https://github.com/albusoO/mixture). We consider the MAP
estimators of two types of mixture models: exact-fitted and over-fitted mixtures. The number of com-
ponents of the exact-fitted mixture is exactly equal to the true number of components and the one of
the over-fitted mixture is some upper bound k of the true number of components, in this simulation,
we set k = 2k*. We call the MAP estimator of the exact-fitted mixture MAP_exact and the one of
the over-fitted mixture MAP_ over. We use the standard expectation-maximization (EM) algorithm to
obtain MAP estimators. For the proposed Bayesian method, we use the posterior mode of the mixing
distribution as an estimator. We obtain such a mode by applying the EM algorithm to mixture models
with the different numbers of components and selecting the best number of components k which max-
imizes the posterior density of the mode. We consider the two choices of the mean parameter of the
Poisson prior, 1, = exp(—0.05log? n/loglogn)) (MEM_vary) and A, = 1 (MFM_const). For all the
four Bayesian methods, we set the support of the uniform distribution prior the interval [-6,6] and the
concentration parameter of the Dirichlet distribution prior the vector of 1’s.

We generated synthetic data sets from a Gaussian mixture model v* * @ with v* := Z];; W;(SH;. We

consider the following four different cases of the true mixing distribution.

Case 1 (Well-separated) 6* = (-3,-1,1,3), w* = (}, 1.1 1)

Case 2 (Overlapped components) 6* = (-1.5,-1,1,3), w* = (%, 4—1‘, %, %)
Case 3 (Weak component) * = (-3,-1,1,3), w* = (%, %, J—P zlt)
Case 4 (Higher-order) 6* = (—6,-4,-2,0,2,4,6), w* = (},...,1)

For Case 1, all the true components are well-separated. The true components from Case 2 and Case
3 are not well-separated. In Case 2, there are two close atoms and in Case 3, there is a weak com-
ponent. Case 4 is a higher-order mixture setup. For each setup, we let the sample size n range over
{250,500,...,2000}. We repeat this data generation 50 times for each experiment and report the aver-
age of the first order Wasserstein distance between each estimator and the true mixing distribution.
Figure 1 displays the average of the the first order Wasserstein errors of the five estimators for the
four cases of the data generating process. Contrary to its theoretical optimality, DMM performs the
worst among the five estimators for all the scenarios. The performance gap of DMM to the Bayesian
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Figure 1. The average (curve) and the standard deviation (band) of the first-order Wasserstein errors of five esti-
mators by sample size.

methods are the largest for Case 4. We observed that there is numerical instability of the DMM im-
plementation when the number of components is larger than 5, which results in failure of compu-
tation. Thus we fixed the number of components as 4 instead of 7. This leads to the poor perfor-
mance of the method. The overall result seems to inconsistent to the simulation result of the DMM
paper [49], which showed better or at least competitive performance of DMM compared to the MAP
estimators. But the simulation setup is different. The authors of [49] considered the two simulation
scenarios, the first case where the true five number of components are very close to each other (in-
deed, 60* = (-0.236,—0.168,-0.987,0.299,0.150) and w* = (0.123,0.552,0.010,0.080,0.235)) so that
the corresponding mixture density seems to be unimodal, and the second case where there are only two
components of the true mixing distribution. Thus, we conjecture that DMM performs worse for mixture
densities with many modes. However, as one of the reviewers pointed out, this conjecture could be
potentially ungrounded. Another possible reason behind this is numerical instability. Since moments
typically span several orders of magnitude, semidefinite programming in DMM procedures can suffer
from numerical instabilities (see [1]). This could be the reason behind the relatively poor performance
of DMM estimator.

Generally, all the four Bayesian methods performs almost similar. For Case 1, the over-fitted mixture
model MAP_ over performs worse than the other Bayesian methods, but does similar for the other three
cases. For Case 2 and Case 3, MFM_vary tends to select the smaller mixture than the true mixture, in
general, its posterior distribution is maximized at k = 3 which is less than the true one k* = 4. Note that
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this does not contradict our theoretical results where we establish the consistent estimation of the num-
ber of well-separated components, which might be equal to 3 in these two cases. This leads to slightly
better performance for Case 2 where overlapped components exist and slightly worse performance for
Case 3 where weak components exist. Overall, knowing the true number of components does not give
substantial improvement of empirical performance. Our theory for optimal estimation of the mixing
distribution is built on the result of vanishing posterior probability of overestimation of the number of
components (Theorem 2.1). It would be interesting to investigate the optimality of Bayesian posteriors
that do not enjoy such asymptotic property, for instance, the overfitted Bayesian mixture model.

4.1.2. Inference for the number of components

In this experiment, we assess the performance of the proposed Bayesian procedure and the DP mixture
model with sample size dependent hyperparameters. We generated the Gaussian mixture with atoms
(=2,0,2) and equal weights (1/3,1/3,1/3). Five independent data sets are generated from this Gaussian
mixture model for each sample size n € {50, 100,250, 1000,2500}. We compare four Bayesian methods:

1 log®n
5 loglogn

the two MFM models with Poisson mean parameter 4,, = 10exp ( (MFM_vary)and 4, =1

(MFM_const) and the two DP mixtures models with concentration parameter «, = 20/n (DP_vary)
and k, = 0.4 (DP_const). We use the uniform distribution on [—6,6] for both the prior on the atoms
for the MFM and the base distribution for the DP mixture.

For posterior computation for the MFM models, we employ the reversible jump MCMC algorithm
of [41]. For each posterior computation, we ran a single Markov chain with length 105,000. We saved
every 100-th sample after a burn-in period of 5,000 samples. On the other hand, we use Neal’s Algo-
rithm 8 [34] for non-conjugate priors to compute the posterior distributions of the DP mixtures.

Figure 2 presents the posterior distributions of the number of components for the two MFMs and
of the number of cluster for the two DP mixtures, respectively. It clearly shows that the diminishing
choices of hyperparameter advocated by our theory outperforms the constant counterparts. It is worth
to notice that the posterior distribution of DP_vary captures the true number of components well
for large samples. It is a widely observed that the DP mixture tends to produce redundant clusters, in
particular, Miller and Harrison [32] and Guha, Ho and Nguyen [19] observed this phenomenon in their
simulation studies, however our simulation shows that a sample size dependent concentration parameter
inversely related to the sample size can circumvent this issue.

4.2. Real data analysis

4.2.1. Galaxy data

In this section, we consider an application to the galaxy data of Roeder [42] which record velocity
measurements (1,000 Km/sec) of 82 galaxies from the Corona Borealis region. This data set has been
widely used as a benchmark for mixture modelling methods, e.g., [8,10,37,47]

To gain flexibility, we used the Gaussian location-scale mixture model instead of the Gaussian loca-
tion mixture model that we have focused on. We considered the MFM and DP prior distributions. The
MFM prior consists of POISSON(1) on the number of components, DIR(1,. .., 1) on the mixing weights,
UNIF([0,40]) on the location parameter and GAMMAC(1, 1) on the scale parameter. We fitted the model
with the MFM prior with five different values of the mean parameter A of the Poisson distribution:
3,1,0.5,0.1 and 0.01. The base distribution of the DP for the location parameter is chosen to be the
same as the MFM, but we choose the inverse gamma distribution in order to employ conjugacy. We
fitted the DP mixture model with five different values of the concentration parameter «, which are the
same as A.
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Figure 2. Posterior distribution of the number of components for the MFM and of the number of clusters for the
DP mixture. The true number of components is 3.

Figure 3 presents a posterior distribution of the number of components for the MFM and the one of
the number of clusters for the DP mixture. The shape of the posterior distribution is substantially dif-
ferent by the choices of the hyperparameters A for the MFM and « for the DP. The posterior distribution
of the number of clusters for the DP mixture model with a small concentration parameter concentrates
near the value of 3, as the posterior distribution of the number of components for the MFM does. This
result implies that the DP mixture can be used as a proxy of the MFM for estimating the number of
components when the small concentration parameter is used, as our theory suggests. Figure 4 displays
posterior predictive densities for the MFM and DP mixture as well as histogram of the galaxy data. For
density estimation, it also seems that the choice of the hyperparameters is more critical than the choice
among the MFM and DP mixture.

4.2.2. Old faithful geyser eruption data

In this section, we consider the Old faithful geyser eruption data which consists of two measure-
ments, duration time and waiting time to the next eruption, taken on n = 272 eruptions for the Old
Faithful geyser in Yellowstone National Park. We analyzed the data using the multivariate Gaussian
location-scale mixture model Z?Zl wiN(0;,Z;) where (wi,...,wx) € Ay are weights, 61,...,0; are
2-dimensional vectors and Xi,...,%; are 2 X 2 symmetric positive definite matrices. We first stan-
dardized the data and imposed the following MEM prior distribution: k ~ POISSON(A), (wy,...,wg) ~



1214

10

I Ohnand L. Lin

~—&— A=3
- A=1
oL - A=05 08
z — A=01 z
2 06 —~—a=001 | B4
2 e
Q Q
s s
Q 04 @ E 04
8 8
a o a
0.2 0.2
0.0 T t T— ety ? 0.0
2 4 6 8 10 12 14
Number of components Number of clusters
(a) MFM (b) DP

Figure 3. Posterior distribution of the number of components for the MFM and of the number of clusters for the
DP mixture for the galaxy data

DIR(L,...,1), 6; i UNIF([-2,2]?) and bp B WISHART(S, 1]—01), where I € R?*? denotes the identity ma-
trix. We considered four different values of the mean parameter A of the Poisson distribution: 1,0.1,0.01
and 0.001.

Figure 5 displays the posterior distribution of the number of components by the value of 1. We
see that the smaller the parameter A, the more the posterior distribution concentrates on the value of
2, which seems to be enough to explain the data, see the scatter plot of the data in Figure 6. This
result implies that our sample size dependent prior distribution may work even for the multivariate
Gaussian location-scale mixture model which is much more complex than the univariate Gaussian
location mixture model. Figure 6 presents the posterior predictive density by the value of A. There is
not much difference in four posterior predictive density estimates.
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Figure 5. Posterior distribution of the number of components for the old Faithful geyser eruption data

10

4 =4 o
= o @

Posterior probability

)
N

0.0 T

—a— A=1
- A=0.1
- A=0.01
- A=0.001

Number of components

100 100
2 ey % s
o . : 4 o .
w . ‘(\» 20 o
Ewn . L Ewn .
F® et g ® :
= ,/ ). = § ). "
50 el 50 N e 24
L L'
a : a :
30 T T T T T 30 T T T T T T
0 2 3 4 5 6 b | 2 3 4 5 6
Eruption time Eruption time
@A=1 (b)A=0.1
100 100
%0 -'Q Py % %0
% o
o PR\ = -2 » m
Emn . s = En
2 2_-¢ . 2
2 g - & £ g
50 N -0 50
L XY
40 40
30 T T 30 T T T T
0 2 3 4 5 6 73 0 1 2 3 4 5 6
Eruption time Eruption time
(c)A=0.01 (d) A=0.001

1215

Figure 6. Scatterplot of the old Faithful geyser eruption data with contour plot of the posterior predictive density

Funding

We acknowledge the generous support of NSF grants DMS CAREER 1654579 and DMS 2113642.



1216 1. Ohn and L. Lin
Supplementary Material

Supplement to “Optimal Bayesian estimation of Gaussian mixtures with growing number of com-
ponents” (DOI: 10.3150/22-BEJ1495SUPP; .pdf). The proofs of all the Theorems are contained in Ap-
pendix A of Ohn and Lin [39]. Analysis of general mixture models in the framework of Heinrich and
Kahn [20] is provided in Appendix B of Ohn and Lin [39].
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