

1 THE RHODOEXPLORER PLATFORM FOR RED ALGAL GENOMICS AND WHOLE
2 GENOME ASSEMBLIES FOR SEVERAL GRACILARIA SPECIES

3 Agnieszka P. Lipinska^{1,3#,*,!}, Stacy A. Krueger-Hadfield^{2,#,*!,}, Olivier Godfroy³, Simon Dittami³,
4 Lígia Ayres-Ostrock^{4,5}, Guido Bonhond⁶, Loraine Brillet-Guéguen^{3,7}, Susana Coelho¹, Erwan
5 Corre⁷, Guillaume Cossard¹, Christophe Destombe⁸, Paul Epperlein¹, Sylvain Faugeron^{8,9},
6 Elizabeth Ficko-Blean³, Jessica Beltrán^{8,9}, Emma Lavaut⁸, Arthur Le Bars^{7,10}, Fabiana Marchi⁴,
7 Stéphane Mauger⁸, Gurvan Michel³, Philippe Potin³, Delphine Scornet³, Erik E. Sotka¹¹, Florian
8 Weinberger¹², Mariana Cabral de Oliveira⁴, Marie-Laure Guillemin^{8,13,14}, Estela M. Plastino⁴,
9 Myriam Valero⁸

10

11 ¹ Department of Algal Development and Evolution, Max Planck Institute for Biology Tübingen,
12 Tübingen, Germany

13 ² Department of Biology, University of Alabama at Birmingham, 1300 University Blvd,
14 Birmingham, AL, 35294

15 ³ Sorbonne Université, CNRS, UMR 8227, Laboratory of Integrative Biology of Marine Models,
16 Station Biologique de Roscoff, Roscoff, France

17 ⁴ Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Rua do Matão
18 277, Cidade Universitária 05508-090, São Paulo, SP, Brasil.

19 ⁵ Hortimare - Breeding & Propagating Seaweed. Altonstraat 25A 1704 CC Heerhugowaard. The
20 Netherlands

21 ⁶ Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky
22 University Oldenburg, Schleusenstrasse 1, 26382, Wilhelmshaven, Germany

23 ⁷ CNRS, Sorbonne Université, FR2424, ABiMS-IFB, Station Biologique, 29680, Roscoff, France

24 ⁸ CNRS, Sorbonne Université, Pontificia Universidad Católica de Chile, Universidad Austral de
25 Chile, IRL 3614, Evolutionary Biology and Ecology of Algae, Station Biologique de Roscoff, CS
26 90074, F-29688 Roscoff, France

27 ⁹ Núcleo Milenio MASH, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de
28 Chile, Santiago, Chile

29 ¹⁰ CNRS, Institut Français de Bioinformatique, IFB-core, UMS 3601, Évry, France

30 ¹¹ Department of Biology, College of Charleston, Charleston SC 29412

31 ¹² GEOMAR Helmholtz-Zentrum für Ozeanforschung, Marine Ecology Division, Düsternbrooker
32 Weg 20, 24105 Kiel, Germany

33 ¹³ Núcleo Milenio MASH, Facultad de Ciencias, Instituto de Ciencias Ambientales y Evolutivas,
34 Universidad Austral de Chile, Casilla 567, Valdivia, Chile

35 ¹⁴ Centro FONDAP de Investigación de Ecosistemas Marinos de Altas Latitudes (IDEAL),
36 Valdivia, Chile

37

38 # Shared first authors

39 ! Current address: Virginia Institute of Marine Science, Eastern Shore Laboratory, 40 Atlantic
40 Ave, Wachapreague, VA 23480, sakh@vims.edu

41 * Authors for correspondence: **Agnieszka P. Lipinska**, Department of Algal Development and
42 Evolution, Max Planck Institute for Developmental Biology, Tuebingen, Germany, +49-7071-
43 601-1370, alipinska@tuebingen.mpg.de; **Stacy A. Krueger-Hadfield**, Department of Biology,
44 University of Alabama at Birmingham, 1300 University Blvd, Birmingham, AL, 35294, +1-205-
45 934-6034, sakh@uab.edu & Virginia Institute of Marine Science, Eastern Shore Laboratory, 40
46 Atlantic Ave, Wachapreague, VA 23480, sakh@vims.edu

47

48 *ABSTRACT*

49 Macroalgal (seaweed) genomic resources are generally lacking as compared to other eukaryotic
50 taxa, and this is particularly true in the red algae (Rhodophyta). Understanding red algal
51 genomes is critical to understanding eukaryotic evolution given that red algal genes are spread
52 across eukaryotic lineages from secondary endosymbiosis and red algae diverged early in the
53 Archaeoplastids. The Gracilariales are highly diverse and widely distributed order whose species
54 can serve as ecosystem engineers in intertidal habitats, including several notorious introduced
55 species. The genus *Gracilaria* is cultivated worldwide, in part for its production of agar and
56 other bioactive compounds with downstream pharmaceutical and industrial applications. This
57 genus is also emerging as a model for algal evolutionary ecology. Here, we report new whole
58 genome assemblies for two species (*G. chilensis* and *G. gracilis*), a draft genome assembly of *G.*
59 *caudata*, and genome annotation of the previously published *G. vermiculophylla* genome. To
60 facilitate accessibility and comparative analysis, we integrated these data in a newly created web-
61 based portal dedicated to red algal genomics (<https://rhodoexplorer.sb-roscoff.fr>). These
62 genomes will provide a resource for understanding algal biology and, more broadly, eukaryotic
63 evolution.

64

65 *KEYWORDS*

66 evolution, ecology, omics, ploidy, Rhodophyta

67 *SIGNIFICANCE STATEMENT*

68 The Gracilariales are an ecologically and economically important red algal order found
69 throughout the coastal regions of the world. Understanding the biology, ecology, and evolution

70 of species in this order, and that of red algae more broadly, has been hampered by the limited
71 phylogenetic coverage of genomic resources. Here, we present whole genome assemblies and
72 gene annotations for four *Gracilaria* species that will serve as a key resource for algal research
73 on evolution, ecology, biotechnology and aquaculture.

74

75 *INTRODUCTION*

76 Red algae (Rhodophyta) represent a lineage of photosynthetic eukaryotes in the
77 Archaeoplastids that diverged from green algae around 1700 MYA (Yang et al. 2016). Within the
78 Rhodophyta, the Cyanidiophyceae were the earliest to diverge approximately 1200 MYA, while
79 the Florideophyceae diverged more recently (i.e., 412 MYA; Yang et al. 2016) and constitute the
80 most speciose group (Graham et al. 2016). In this context, the genomic resources currently
81 available (Table S1) represent only a fraction of the evolutionary diversity of red algae, limiting
82 our capacity to reconstruct the evolutionary history of the unique features of this group.

83 The Florideophyceae have a life cycle in which haploid male and female gametophytes
84 alternate with a diploid tetrasporophyte (Figure S1). After fertilization, the zygote develops on
85 the female into a cystocarp, in which the zygote is mitotically copied. Male gametes (spermatia)
86 and spores are non-motile, and the female gamete (carpogonium) is retained on the female
87 thallus. The cystocarp was thought to have evolved in response to low fertilization success
88 (Searles 1980), but recent work has shown that many males fertilize a single female (Engel et al.
89 1999, Krueger-Hadfield et al. 2015) and that animal-mediated fertilization can increase
90 reproductive success (Lavaut et al. 2022). Many species have ‘isomorphic’ gametophytes and
91 tetrasporophytes, which are hard to discern without the aid of molecular tools (e.g., sex-linked

92 markers, Martinez et al. 1999; Guillemin et al. 2012; or microsatellites, Krueger-Hadfield et al.
93 2016).

94 Here, we focus on four *Gracilaria*¹ species spanning roughly 170 million years of
95 evolution (Lyra et al. 2021). These species were chosen based on their evolutionary, ecological,
96 and/or economic importance. Species in the genus *Gracilaria* produce agars in their cell wall
97 (Popper et al. 2011), they can be propagated vegetatively, and serve as ecosystem engineers in
98 intertidal zone (Kain and Destombe 1995). The four taxa chosen can be divided into three clades
99 based on their molecular divergence: (i) *G. chilensis* and *G. vermiculophylla*, (ii) *G. caudata*, and
100 (iii) *G. gracilis* (Lyra et al. 2021). *Gracilaria gracilis* and *G. caudata* are evolutionarily more
101 distinct than the phylogenetic group that contains *G. chilensis* and *G. vermiculophylla*.
102 *Gracilaria chilensis* C.J. Bird et al. is an important crop along the Chilean coastline, where it has
103 been both harvested and subsequently planted after a crash in natural stands likely due to
104 overharvesting (Buschmann et al. 2001). The artificial selection for tetrasporophytes has resulted
105 in early stages of domestication (Valero et al. 2017) and loss of sexual reproduction (Guillemin
106 et al. 2008). *Gracilaria vermiculophylla* (Ohmi) Papenfuss is a successful invader in many of the
107 bays and estuaries of North America, northwestern Africa, and Europe (Krueger-Hadfield et al.
108 2017). The invasion success was likely facilitated by adaptive shifts in temperature and salinity
109 tolerance (e.g., Sotka et al. 2018) and to biofoulers (e.g., Bonthond et al. 2020), as well as the
110 ability to asexually fragment (Krueger-Hadfield et al. 2016). *Gracilaria caudata* J. Agardh can
111 form dense stands in the intertidal zone (Plastino and Oliveira 1997) and has been subjected to
112 intense harvesting pressure, leading to declines in native populations (Hayashi et al. 2014, see
113 also Ayres-Ostrock et al. 2019). For this species, we re-analyzed the genome published by

¹ There is controversy over the systematics of *Gracilaria* Greville, but for the purposes of this paper, we consider the four species as belonging to the genus *Gracilaria* (*sensu* Lyra et al. 2021, Guiry and Guiry 2022).

114 Flanagan et al. (2021). Finally, *Gracilaria gracilis* (Stackhouse) Steentoft, L.M. Irvine &
115 Farnham is a long-lived species that inhabits tidepools along European coastlines. This species
116 serves as model species to test hypotheses related to the evolution of sex (e.g., alternation of
117 haploid and diploid phases in life cycles, Destombe et al. 1989, 1992, 1993, Hughes and Otto
118 1999; mating system and sexual selection, Richerd et al. 1993, Engel et al. 2002).

119 The availability of genomic and genetic resources for these four *Gracilaria* species
120 should aid in our understanding of the evolutionary ecology of red algae in their dynamic
121 environment, during invasions of new habitats, under cultivation practices, and in response to
122 climate change. Moreover, these new resources will add to the existing genomic data and
123 illuminate key processes in eukaryotic evolution. The Rhodoexplorer – Red Algal Genome
124 Database currently includes the *Gracilaria* species discussed here but will include all the high-
125 quality genomic resources available for the Rhodophyta (e.g., genomes, transcriptomes), thereby
126 providing a unique resource for comparative analyses.

127

128 *RESULTS AND DISCUSSION*

129 **Genome Assembly**

130 Final genome assembly sizes, based on long and short read sequencing, ranged from 76
131 to 80 Mbp for *G. gracilis* and *G. chilensis*, respectively. In addition, we created a draft genome
132 assembly based on the Illumina sequencing only for *G. caudata* (32 Mbp) and reassembled the
133 genome of *G. vermiculophylla* (Flanagan et al. 2021) to a final 47 Mbp after bacterial
134 contamination removal. The above genome assemblies were comparable to the genomes of *G.*
135 *domingensis* (78 Mbp, Nakamura-Gouvea et al. 2022) and *G. changii* (36 Mbp, Ho et al. 2017).
136 PacBio assemblies of *G. chilensis* and *G. gracilis* produced in this study (< 300 contigs per

137 genome) are the most contiguous red macroalgal genomes presently available in public
138 databases, apart from *G. vermiculophylla* and *P. yezoensis* where the addition of a HiC library
139 enabled scaffolding nearly at the chromosome level (Wang et al. 2020, Flanagan et al. 2021).
140 Despite the differences in assembly size, BUSCO scores were similar across the long read-
141 sequenced *G. gracilis* and *G. chilensis*, and the more fragmented *G. caudata* genome, with 81.6
142 to 83.6% of conserved proteins present (Eukaryota_odb10, Manni et al. 2021, Simão et al. 2015;
143 Table 1). The re-assembled genome of *G. vermiculophylla* contained 71.8% of the conserved
144 proteins. Given the diversity of Rhodophyta and the lack of lineage-specific databases, these
145 results are in the expected range. A recent study estimated the presence of conserved eukaryotic
146 genes (Eukaryota_odb10) in red algal genomes at a median level of 69% (Hanschen et al. 2020).

147 Red algal genomes are repeat-rich, with half or more of their genomic sequence being
148 constituted by repetitive elements, as reported previously for *Porphyra umbilicalis* (43.9%,
149 Brawley et al. 2017), *Pyropia yezoensis* (48%, Wang et al. 2020) and *Chondrus crispus* (73%,
150 Collen et al. 2013). In agreement with this general trend, between 45.7-66.2% of the *Gracilaria*
151 genomes corresponded to repetitive elements (Figure 1 and Table 1).

152

153 **Gene prediction and Annotation**

154 Gene prediction yielded a total of 8,042, 9,065 and 9,674 coding sequences for *G.*
155 *chilensis*, *G. caudata* and *G. gracilis* (Table 1), which was comparable with other red macroalgal
156 genomes, *Chondrus crispus* (9,815 genes, Collen et al. 2013) and *Gracilaria changii* genome
157 (10,912 genes, Ho et al. 2022). In addition, we annotated the reassembled genome of *G.*
158 *vermiculophylla*, which yielded fewer genes (7,048). Among these genes, 70.6-76.6% did not
159 contain any introns, as typical for the compact genomes of red algae (Qiu et al. 2015). Most

160 *Gracilaria* genes had homologous sequences in the Uniprot database (84.2-89.7%) and were
161 annotated with at least one INTERPRO hit (91.7-93.6%). Between 47.9% and 54.4% of genes
162 were associated with GO annotations.

163 Orthofinder analyses enabled us to identify 4,666 core groups of orthologous proteins
164 present in all four of the sequenced genomes (Figure 1B) versus 408-620 orthogroups or orphan
165 genes specific to only one of the sequenced species (Figure 1B). Among the species-specific
166 sequences, the rate of GO annotation was lower than for the entire dataset, ranging from 12.7%
167 for *G. chilensis* to 18.2% for *G. caudata*. The fact that the two species *G. caudata* and *G. gracilis*
168 share more genes between them than with the phylogenetic group of *G. chilensis* and *G.*
169 *vermiculophylla* was expected due to divergence between the two clades of *Gracilaria* species.
170 Both the annotated and the unknown species-specific genes constitute attractive targets to study
171 their role in adaptation and speciation.

172

173 **Rhodoexplorer – Red Algal Genome Database**

174 In addition to depositing the raw reads and sequenced genome in a public repository (see
175 Data Availability section), all four genomes were also integrated into the newly created
176 Rhodoexplorer Red Algal Genome Database (<https://rhodoexplorer.sb-roscoff.fr>), hosted at the
177 ABiMS bioinformatic platform. This platform will gradually include more red algal genomes in
178 the future. The services provided include:

179 ● Information about the sequenced strains, with links to external databases (NCBI,
180 WoRMS, Algaebase)
181 ● Assembly and annotation metrics

182 ● Data downloads: genomic, genes and proteomic datasets, structural and functional
183 annotations, orthology clusters, etc.

184 ● A BLAST interface with a selection of red algal genomes, predicted and *de novo*
185 assembled transcriptomes and proteomes.

186 ● Visualization tools: a genome browser to visualize the predicted genes and the RNAseq
187 data mapped on the genome and a web interface to visualize functional annotations and
188 retrieve individual protein sequences.

189

190 *MATERIALS AND METHODS*

191 **Sampling of the biological material**

192 Adult female and male *Gracilaria* thalli, all bearing reproductive structures, used for the
193 sequencing were collected from natural populations: *G. chilensis* in Lenca (Chile, -41.607, -
194 72.692), *G. vermiculophylla* in Charleston, SC (USA, 32.752, -79.900), *G. caudata* in Paracuru,
195 CE (Brazil, -3.399, -39.012), and *G. gracilis* in Cape Gris-Nez (France, 50.872, 1.584).
196 *Gracilaria caudata* and *G. chilensis* were maintained as clonal, unicellular cultures under
197 laboratory conditions prior to nucleic acid extractions (see *Culture conditions*). Field-collected
198 *G. gracilis* and *G. vermiculophylla* thalli were transported to the laboratory, examined under a
199 microscope, and cleaned of contaminants. If visible, cystocarps were excised prior to
200 preservation of the thalli at -80°C before further use. Table S2 provides details of the *Gracilaria*
201 species used in this study.

202

203 **Culture conditions**

204 Cultures were initiated either from lab crosses or from tetraspores released by field-
205 collected tetrasporophytes. *Gracilaria caudata* was grown in the modified von Stosch nutrient
206 solution (Ursi and Plastino 2001) diluted to 25% in seawater (32 psu), with weekly renewals.
207 The algae were kept in culture chambers at 25°C under fluorescent illumination of 70 $\mu\text{mol.m-2.s-1}$ 14h photoperiod, following previously established optimal growth conditions (Yokoya and
208 Oliveira 1992a,b). *Gracilaria chilensis* was grown in Provasoli medium (McLachlan 1973),
209 changed weekly during the first two months and twice a week thereafter. Cultures were kept at
210 13°C under 40-60 $\mu\text{mol.m-2.s-1}$ of light with 12h day length.
212

213 **Nucleic acid extraction, library preparation, and sequencing**

214 Genomic DNA was extracted from mature male gametophytes using DNeasy PowerPlant
215 Pro Kit for *G. caudata* or an in-house protocol based on Faugeron et al. (2001) for *G. chilensis*
216 and *G. gracilis*. The concentration and purity of DNA were measured with NanoDrop and Qubit
217 before sequencing on an Illumina HiSeq 2500 (125 bp PE reads for *G. chilensis* and *G. gracilis*;
218 100bp PE reads for *G. caudata*) or PacBio Sequel II with sheared gDNA large insert library (*G.*
219 *gracilis* and *G. chilensis*) (Table S2).

220 For genome annotation, total RNA was extracted from mature thalli of male and female
221 gametophytes of *G. chilensis* (2 males and 2 females), *G. caudata* (4 males and 4 females), and
222 *G. gracilis* (1 male and 1 female) using the Rneasy Mini Plant Kit (Qiagen) following the
223 manufacturer's instructions. Total RNA was extracted from *G. vermiculophylla* (4 males and 4
224 females) using the Macherey Nagel Nucleospin RNA for Plant kit following the manufacturer's
225 instructions. Paired-end 150bp Illumina reads were generated with Illumina HiSeq 2500 Table
226 S2).

227

228 **Genome assembly**

229 De novo genome assemblies for *G. gracilis* and *G. chilensis* were generated based on
230 203-fold and 116-fold coverage of PacBio long reads, respectively. Briefly, bacterial sequences
231 were removed from raw data (subreads) using Blobtools v1.1.1 (Laetsch and Blaxter 2017). For
232 each species, two independant assemblies were generated using CANU (Koren et al., 2017) and
233 FLYE (Kolmogorov et al., 2019). Based on congruity (QUAST v.5.0.2 – Mikheenko, et al.,
234 2018) and BUSCO score (Simão FA, et al. 2015) the best assemby was kept and polished using
235 three iterations of RACON v.1.4.20. Finally, PacBio sequencing error were corrected using
236 150bp paired-end Illumina reads with PILON v.1.23 software (Walker et al. 2014). The draft
237 genome assembly of *G. caudata*. was generated using 171-fold coverage of 150bp paired-end
238 Illumina reads only. First, a meta-genome was produced using metaSPAdes v3.12.0 (Nurk et al.
239 2017) and bacterails contigs were detected using Blobtools. Reads corresponding to eukaryotic
240 contigs were then assembled using SPAdes v3.12.0 (Bankevich et al. 2012). Quality of all *de*
241 *novo* genome assemblies was assessed with QUAST and DNAseq remapping for congruity and
242 BUSCO and RNAseq mapping for completeness.

243 For *G. vermiculophylla*, we updated the existing chromosome-scale genome assembly
244 (Flanagan et al. 2021) by reassembling the Illumina reads using SPAdes v 3.12.0 (Bankevich et
245 al. 2012) and scaffolding with Hi-C libraries, following the Dovetail Genomics proprietary
246 pipeline (Elbers et al. 2019). This process ameliorated the genome continuity (N50 increased
247 from 2.06Mb to 2.68Mb) and completeness (BUSCO score increased from 57,6% to 65,9% of
248 complete genes using the Eukaryota_odb10 dataset).

249 We used Blobtools v1.1.1 (Laetsch and Blaxter 2017) with maximal accuracy settings to
250 validate the quality of the four *Gracilaria* genome assemblies and identify potential bacterial
251 contaminations. In brief, DNAseq reads of each species were first mapped to their corresponding
252 reference genome using HISAT2 v 2.2.1 (Kim et al. 2019). Next, BAM coverage files produced
253 by HISAT2, Diamond blastx v2.0.11 (Buchfink et al. 2015, 2021) hit-file against non-redundant
254 protein sequences archive from NCBI (-sensitive, -max-target-seqs 1, -e-value 1e – 20), and
255 Blast v2.12.0 (Camacho et al. 2009) output against nucleotide archive from NCBI (-
256 max_target_seqs 10 -max_hsps 1 -evalue 1e – 20) were used as input for Blobtools. Genomic
257 scaffolds classified as bacterial or with a coverage of less than 1 (sum of coverages for each
258 sequence across all coverage files) were removed from the assembly. Genome assembly
259 completeness was assessed using BUSCO scores with the eukaryotic data set (Eukaryota_odb10,
260 Simão et al. 2015, Manni et al. 2021).

261 Chloroplastic and mitochondrial genomes of each species were reconstructed from
262 Illumina raw reads using NovoPlasty (Dierckxsens et al. 2016) through the European Galaxy
263 web portal (<https://usegalaxy.eu/>). Annotation of those *de novo* organellar genomes were done
264 using the GeSeq web tool (Tillich et al. 2017 – [https://chlorobox.mpimp-
265 golm.mpg.de/geseq.html](https://chlorobox.mpimp-golm.mpg.de/geseq.html)). Public sequences from *Gracilaria caudata* voucher SPF:57390
266 (NC_039146, NC_039139), *Gracilaria chilensis* voucher CNU050183 (KP728466, KT266788),
267 *Gracilaria gracilis* voucher SPF:55734 (NC_039141, NC_039148) and *Gracilaria*
268 *vermiculophylla* (MN853882, MH396022) were retrieved from NCBI and used as seeds and
269 references for both assembly and annotation.

270

271 **Genome annotation**

272 Each reference genome was first masked using RepeatMasker v4.0.9 (Smit et al. 2015)
273 with Dfam v3.0 database (Wheeler et al. 2013) and a customized repeat library produced from
274 concatenated outputs of RepeatScout v1.0.6 (Price et al. 2005) and TransposonPSI v1.0.0 (Hass
275 2007-2011). Initial quality assessment of the RNA-Seq reads was performed with FastQC
276 v0.11.9 (Andrews et al. 2010), and reads were trimmed using Trimmomatic v0.39 (TRAILING:3
277 SLIDINGWINDOW:4:15 MINLEN:50; Bolger et al. 2014). Clean reads were mapped to the
278 reference genome assembly using HISAT2 v 2.2.1 (Kim et al. 2019). The resulting alignment
279 files were used to annotate protein-coding genes with BRAKER2 v2.1.6 pipeline (Bruna et al.
280 2021). Functional annotation of the reference transcriptomes was performed using eggNOG-
281 mapper (Huerta-Cepas et al. 2019, Cantalapiedra et al. 2021).

282 All code used for genomes assembly and annotation is available on the Gitpage
283 dedicated to the genome database project [https://abims-
284 sbr.gitlab.io/rhodoexplorer/doc/data_process/](https://abims-sbr.gitlab.io/rhodoexplorer/doc/data_process/).

285

286 **Rhodoexplorer – Red Algal Genome Database**

287 The main web portal (<https://rhodoexplorer.sb-roscoff.fr>) has been implemented using the
288 Python web framework Django, with data stored in a relational database (PostgreSQL).

289 For each red algal species, an integrated environment of visualization tools has been
290 deployed based on the Galaxy Genome Annotation (GGA) project (Bretaud et al. 2019). Each
291 GGA environment deployed for the Rhodoexplorer genome database includes: Chado – a
292 PostgreSQL relational database schema for storing biological data (Mungall et al. 2007);
293 JBrowse – a web-based genome browser (Buels et al. 2016); Tripal – a Drupal-based application
294 for creating biological websites (Sanderson et al. 2013); Elasticsearch – a distributed, free and

295 open search and analytics engine for all types of data
296 (<https://www.elastic.co/products/elasticsearch>); Galaxy – a browser accessible workbench for
297 scientific computing used as a data loading orchestrator for administrators (The Galaxy
298 Community 2022). To facilitate the deployment and the administration of the GGA service, a set
299 of Python tools has been developed (http://gitlab.sb-roscoff.fr/abims/e-infra/gga_load_data)
300 allowing mass deployment of Docker containers and automated data loading through Galaxy
301 with the Bioblend API (Sloggett et al 2013).

302 The BLAST interface (<https://blast.sb-roscoff.fr/rhodoexplorer/>) includes an
303 implementation of the BLAST algorithm using SequenceServer (Priyam et al. 2019) graphical.
304 The documentation website for navigating the platform web portal and resources
305 (<https://abims-sbr.gitlab.io/rhodoexplorer/doc/>) is published from a GitLab repository, with
306 Pages and MkDocs, a static site generator.

307 The entire informatic infrastructure is deployed and maintained on the ABiMS
308 Bioinformatics platform of the Roscoff Biological Station, part of the national infrastructure
309 French Bioinformatic Institute.

310

311 *SUPPLEMENTARY MATERIAL*

312 Supplementary Figure S1: Life cycle of *Gracilaria*.
313 Supplementary Table S1: Available red algal genomic resources.
314 Supplementary Table S2: Species used in this study.

315 *ACKNOWLEDGEMENTS*

316 This project was supported by start-up funds from the College of Arts and Sciences at the
317 University of Alabama at Birmingham to SAKH; ANID NCN2021-033 and FONDECYT

318 1221456 and 1221477 to MLG, JB and SF; the International Research Networks DEBMA
319 “Diversity, Evolution and Biotechnology of Marine Algae” (CNRS GDRI 0803) and DABMA
320 “Diversity, Adaptation, and Biotechnology of Marine Algae” (CNRS IRN 00022); the ERC
321 (grant number 864038 to SMC); and the ANR project IDEALG (ANR-10-BTBR-04,
322 “Investissements d'Avenir, Biotechnologies-Bioressources”). We are grateful to the Roscoff
323 Bioinformatics platform ABiMS (<http://abims.sb-roscoff.fr>), part of the Institut Français de
324 Bioinformatique (ANR-11-INBS-0013) and BioGenouest network, and the Max Planck Institute
325 for Biology Tübingen for providing computational resources. We also wish to thank Kristy Hill-
326 Spanik, Rosário Petti, and Vivian Viana for field and technical support.

327

328 *DATA AVAILABILITY*
329 Sequencing data has been deposited in the SRA database under BioProjects PRJNA936482,
330 PRJNA931233, PRJNA938301, PRJNA938403. The accession numbers for the raw sequence
331 data are provided in Table S2.
332 *Gracilaria chilensis*, *Gracilaria gracilis*, and *Gracilaria caudata* Whole Genome Shotgun
333 project have been deposited at DDBJ/ENA/GenBank under the accessions JARGXX0000000000,
334 JARGSG0000000000 and JASCIV0000000000, respectively. *Gracilaria vermiculophylla* updated
335 assembly has been deposited under JAHNZQ0000000000.
336

337 REFERENCES

338 Ayres-Ostrock LM, et al. 2019. Dual influence of terrestrial and marine historical processes on
339 the phylogeography of the Brazilian intertidal red alga *Gracilaria caudata*. *J Phycol* 55: 1096-
340 1114.

341

342 Andrews. 2010. FastQC: A quality control tool for high throughput sequence data [Online].
343 Available online at: <http://www.bioinformatics.babraham.ac.uk/projects/fastqc/>

344

345 Bankevich A, et al. 2012. SPAdes: A new genome assembly algorithm and its applications to
346 single-cell sequencing. *J Comp Biol* 19: 455-477.

347

348 Bolger Am, Lohse M, Usadel B 2014. Trimmomatic: a flexible trimmer for Illumina sequence
349 data. *Bioinformatics* 30: 2114-2120.

350

351 Bonhond G, et al. 2020. How do microbiota associated with an invasive seaweed vary across
352 scales? *Mol Ecol* 29:2094–2108.

353

354 Brawley SH et al. 2017. Insights into the red algae and eukaryotic evolution from the genome of
355 *Porphyra umbilicalis* (Bangiophyceae, Rhodophyta). *PNAS* 114: E6361–E6370.

356

357 Bretaudeau A, et al. 2019. Galaxy genome annotation: easier genome annotation using Galaxy
358 and GMOD tools [version 1; not peer reviewed]. F1000Research 8:1026.
359 <https://doi.org/10.7490/f1000research.1116992.1>

360

361 Bruna T, et al. 2021 BRAKER2: automatic eukaryotic genome annotation with GeneMark-EP+
362 and AUGUSTUS supported by a protein database. NAR Genom Bioinform. 3(1):lqaa108.

363

364 Buels R, et al. 2016. JBrowse: a dynamic web platform for genome visualization and analysis.
365 Genome Biol. 17:66. <https://doi.org/10.1186/s13059-016-0924-1>

366

367 Buchfink B, Xie C, Huson DH 2015. Fast and sensitive protein alignment using DIAMOND. Nat
368 Meth 12: 59-60.

369

370 Buchfink B, Reuter K, Drost H-G. 2021. Sensitive protein alignments at tree-of-life scale using
371 DIAMOND. Nat Meth 18: 366-368.

372

373 Buschmann AH, et al. 2001. Red algal farming in Chile: a review. Aquaculture 194: 203–220.

374

375 Camacho C, et al. 2009. BLAST+: architecture and applications. BMC Bioinform. 10: 421.

376

377 Cantalapiedra CP, et al. 2021. eggNOG-mapper v2: Functional Annotation, Orthology
378 Assignments, and Domain Prediction at the Metagenomic Scale. Mol Biol Evol 38: 5825-5829.

379

380 Challis R. 2017 Assembly-stats, Assembly statistic visualisation.
381 <https://github.com/rjchallis/assembly-stats/tree/17.02>
382
383 Collén J, et al. 2013. Genome structure and metabolic features in the red seaweed *Chondrus*
384 *crispus* shed light on evolution of the Archaeplastida. PNAS.110: 5247-5252.
385
386 Destombe C, et al. 1989. What controls haploid-diploid ratio in the red alga, *Gracilaria*
387 *verrucosa*? J Evol Biol 2:317–338.
388
389 Destombe C, et al. 1992. Differences in dispersal abilities of haploid and diploid spores of
390 *Gracilaria verrucosa* (Gracilariales, Rhodophyta). Bot Mar 35:93–8.
391
392 Destombe C, et al. 1993. Differences in response between haploid and diploid isomorphic phases
393 of *Gracilaria verrucosa* (Rhodophyta:Gigartinales) exposed to artificial environmental
394 conditions. Hydrobiologia 260:131–137.
395
396 Dierckxsens, N., Mardulyn, P., & Smits, G. (2016). NOVOPlasty: de novoassembly of organelle
397 genomes from whole genome data. *Nucleic Acids Research*, gkw955.
398 <https://doi.org/10.1093/nar/gkw955>
399
400 Elbers JP, et al. 2019. Improving Illumina assemblies with Hi-C and long reads: An example
401 with North African dromedary. Mol Ecol Res. 19: 1015-1026.
402

403 Engel CR, et al. 1999. Performance of non-motile male gametes in the sea: analysis of paternity
404 and fertilization success in a natural population of a red seaweed, *Gracilaria gracilis*. Proc Royal
405 Soc. B 266: 1879-1886.

406

407 Engel CR, et al. 2002. Non-random mating in controlled multiple-donor crosses in *Gracilaria gracilis*
408 (Gracilariaeae, Rhodophyta). European Journal of Phycology 37:179-190.

409

410 Faugeron S, et al. 2001. Hierarchical Spatial Structure and Discriminant Analysis of Genetic
411 Diversity in the Red Alga *Mazzaella Laminarioides* (gigartinales, Rhodophyta). J Phycol
412 37:705–716.

413

414 Flanagan BA, et al. 2021. Founder effects shape linkage disequilibrium and genomic diversity of
415 a partially clonal invader. Mol Ecol 30:1962-1978.

416

417 The Galaxy Community. 2022. The Galaxy platform for accessible, reproducible and
418 collaborative biomedical analyses: 2022 update, Nucleic Acids Res. 50: W345–W351.
419 doi:10.1093/nar/gkac247

420

421 Graham LE, et al. 2016. *Algae*. Madison: LJLM Press. 720 pp.

422

423 Guillemain ML, et al. 2008. Genetic variation in wild and cultivated populations of the haploid–
424 diploid red alga *Gracilaria chilensis*: how farming practices favor asexual reproduction and
425 heterozygosity. *Evol* 62:1500–1519.

426

427 Guillemain ML, Huanel OR, Martinez EA 2012. Characterization of genetic markers linked to sex
428 determination in the haploid-diploid red alga *Gracilaria chilensis*. *J Phycol* 48:365–72.

429

430 Guiry MD, Guiry GM 2022. *AlgaeBase*. World-wide electronic publication, National University
431 of Ireland, Galway. <https://www.algaebase.org>

432

433 Haas BJ 2007-2011. TransposonPSI. <http://transposonpsi.sourceforge.net>

434

435 Hanschen ER, et al. 2020. An evaluation of methodology to determine algal genome
436 completeness. *Algal Res*, 51:102019.

437

438 Hayashi L, et al. 2014. Cultivation of red seaweeds: a Latin American perspective. *J Appl Phycol*
439 26:719–727.

440

441 Ho, C.-L., Lee, W.-K., & Lim, E.-L. 2018. Unraveling the nuclear and chloroplast genomes of an
442 agar producing red macroalga, *Gracilaria changii* (Rhodophyta, Gracilariales). *Genomics* 110:
443 124–133.

444

445 Huerta-Cepas J, et al. 2019. eggNOG 5.0: a hierarchical, functionally and phylogenetically
446 annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acid Res 47:
447 D309-D314.

448

449 Hughes JS, Otto SP 1999. Ecology and the evolution of biphasic life cycles. Am Nat 154:306–
450 320.

451

452 Kain JM, Destombe C 1995. A review of the life history, reproduction and phenology of
453 *Gracilaria*. J Appl Phycol 7:269–281.

454

455 Kim D, et al. 2019. Graph-based genome alignment and genotyping with HISAT2 and HISAT-
456 genotype. Nat Biotechnol 37: 907–915.

457

458 Kolmogorov M, Yuan J, Lin Y and Pevzner P "Assembly of Long Error-Prone Reads Using
459 Repeat Graphs", Nature Biotechnology, 2019 [doi:10.1038/s41587-019-0072-8](https://doi.org/10.1038/s41587-019-0072-8)

460

461 Koren S, Walenz BP, Berlin K, Miller JR, Phillippy AM. [Canu: scalable and accurate long-read](#)
462 [assembly via adaptive k-mer weighting and repeat separation](#). Genome Research. (2017).
463 doi:10.1101/gr.215087.116

464

465 Krueger-Hadfield SA, et al. 2015. O father where art thou? Paternity analyses in a natural
466 population of the haploid–diploid seaweed *Chondrus crispus*. Heredity 114: 185-194.

467

468 Krueger-Hadfield SA, et al. 2016. Invasion of novel habitats uncouples haplo-diplontic life
469 cycles. *Mol Ecol* 25:3801–3816.

470

471 Krueger-Hadfield SA, et al. 2017. Genetic identification of source and likely vector of a
472 widespread marine invader. *Ecol Evol* 7:4432–4447.

473

474 Lavaut E, et al. 2022. Pollinators of the sea: A discovery of animal-mediated fertilization in
475 seaweed. *Science* 377:528-530.

476

477 Laetsch DR, Blaxter ML 2017. KinFin: Software for taxon-aware analysis of clustered protein
478 sequences. *G3* 7: 3349-3357.

479

480 Lyra GDM, et al. 2021. Phylogenomics, divergence time estimation and trait evolution provide a
481 new look into the Gracilariales (Rhodophyta). *Mol Phylogenetics Evol* 165:107294.

482

483 Martinez, EA., Destombe, C., Quillet, MC., & Valero, M. 1999. Identification of random
484 amplified polymorphic DNA (RAPD) markers highly linked to sex determination in the red alga
485 *Gracilaria gracilis*. *Mol Ecol* 8: 1533-1538.

486

487 Manni M, et al. 2021. BUSCO: Assessing genomic data quality and beyond. *Current Protocols*.
488 <https://currentprotocols.onlinelibrary.wiley.com/doi/full/10.1002/cpz1.323>

489

490 Mikheenko A, Prjibelski A, Saveliev V, Antipov D, Gurevich A, Versatile genome assembly
491 evaluation with QUAST-LG. *Bioinformatics* (2018) 34 (13): i142-i150.
492 doi:[10.1093/bioinformatics/bty266](https://doi.org/10.1093/bioinformatics/bty266)

493

494 Mungall CJ, et al. 2007. A Chado case study: an ontology-based modular schema for
495 representing genome-associated biological information. *Bioinformatics* 23: i337–i346.
496 <https://doi.org/10.1093/bioinformatics/btm189>

497

498 McLachlan J. 1973. Growth media – marine. In: *Handbook of Phycological Methods, Culture*
499 *Methods and Growth Measurements*; ed.: Janet R. Stein; pp. 25 – 52

500

501 Nakamura-Gouvea N, et al. (2022). Insights into agar and secondary metabolite pathways from
502 the genome of the red alga *Gracilaria domingensis* (Rhodophyta, Gracilariales). *J Phycol* 58:
503 406–423.

504

505 Nurk S, Meleshko D, Korobeynikov A and Pevzner P. 2017. metaSPAdes: a new versatile
506 metagenomic assembler. *Genome Research*. 27: 824-834. 10.1101/gr.213959.116

507

508 Plastino EM, Oliveira EC 1997. *Gracilaria caudata* J. Agardh (Gracilariales, Rhodophyta) –
509 restoring an old name for a common western Atlantic alga. *Phycologia* 36:225–332.

510

511 Popper ZA, et al. 2011. Evolution and diversity of plant cell walls: from algae to flowering
512 plants. *Ann Rev Plant Biol* 62: 567-590.

513

514 Price AL, Jones NC, Pevzner PA 2005. De novo identification of repeat families in large
515 genomes. To appear in Proceedings of the 13 Annual International conference on Intelligent
516 Systems for Molecular Biology (ISMB-05). Detroit, Michigan.

517

518 Priyam A. et al. 2019. Sequenceserver: a modern graphical user interface for custom BLAST
519 databases. Mol Biol Evol 36: 2922–2924. doi: 10.1093/molbev/msz185

520

521 Qiu H, et al. 2015. Evidence of ancient genome reduction in red algae (Rhodophyta). J Phycol
522 51: 624–636.

523

524 Richerd S, et al. 1993. Variation of reproductive success in a haplo-diploid red alga, *Gracilaria*
525 *verrucosa*: effects of parental identities and crossing distance. American Journal of Botany
526 80:1379-1391

527

528 Sanderson LA, et al. 2013. Tripal v1.1: a standards-based toolkit for construction of online
529 genetic and genomic databases, Database, 2013: bat075. <https://doi.org/10.1093/database/bat075>

530

531 Sloggett C, Goonasekera N, Afgan E. 2013. BioBlend: automating pipeline analyses within
532 Galaxy and CloudMan. Bioinformatics 29: 1685-1686. doi:10.1093/bioinformatics/btt199

533

534 Simão FA, et al. 2015. BUSCO: assessing genome assembly and annotation completeness with
535 single-copy orthologs. *Bioinformatics* 31: 3210-3212.

536

537 Smit, AFA, Hubley, R & Green, P. *RepeatMasker Open-4.0*. 2013-2015
538 <http://www.repeatmasker.org>

539

540 Searles RB 1980. The strategy of the red algal life history. *Am Nat* 115:113–120.

541

542 Sotka EE, et al. 2018. Combining niche shift and population genetic analyses predicts rapid
543 phenotypic evolution during invasion. *Evol Appl* 11:781-793.

544

545 Tillich M, Lehwerk P, Pellizzer T, Ulbricht-Jones ES, Fischer A, Bock R and Greiner S (2017)
546 GeSeq – versatile and accurate annotation of organelle genomes. *Nucleic Acids Research* 45:
547 [W6-W11](#)

548

549 Ursi S, Plastino EM 2001. Crescimento in vitro de linhagens de coloração vermelha e verde clara
550 de *Gracilaria birdiae* (Gracilariales, Rhodophyta) em dois meios de cultura: análise de diferentes
551 estádios reprodutivos. *Rev. Brasil. Bot.* 24: 585-592.

552

553 Valero M et al. 2017. Perspectives on domestication research for sustainable seaweed
554 aquaculture. *Perspectives in Phycology* 4: 33-46.

555

556 Walker BJ, Abeel T, Shea T, Priest M, Abouelliel A, Sakthikumar S, Cuomo CA, Zeng Q,

557 Wortman J, Young SK, Earl AM (2014) Pilon: An Integrated Tool for Comprehensive Microbial

558 Variant Detection and Genome Assembly Improvement. *PLoS ONE* 9(11): e112963.

559 doi:10.1371/journal.pone.0112963

560 Wang D, et al. 2020. *Pyropia yezoensis* genome reveals diverse mechanisms of carbon

561 acquisition in the intertidal environment. *Nat Commun.* 11:4028.

562

563 Wheeler TJ, et al. 2013. Dfam: a database of repetitive DNA based on profile hidden Markov

564 models. *Nucleic Acids Res.* 41: D70–D82.

565

566 Yang EC, et al. 2016. Divergence time estimates and the evolution of major lineages in the

567 florideophyte red algae. *Sci Rep.*, 6:21361.

568

569 Yokoya NS, Oliveira EC 1992a. Effects of salinity on the growth rate, morphology and water

570 content of some Brazilian red algae of economic importance. *Cienc Mar* 18:49–64.

571

572 Yokoya NS, Oliveira EC 1992b. Temperature response of economically important red algae and

573 their potential for mariculture in Brazilian waters. *J Appl Phycol* 4:339–345.

574

575

576

577

578

579

580

581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600

601 *TABLES*

602 **Table 1:** Assembly statistics.

	<i>G. chilensis</i>	<i>G. vermiculophylla</i>	<i>G. caudata</i>	<i>G. gracilis</i>
Strain	NLEC103-M9	HapMaleFtJ-2017	M-176_S67	GNS1m
Sequencing	PacBio	Illumina, HiC	Illumina	PacBio
Genome size	76.07 Mbp	44.95 Mbp	30.28 Mbp	72.49 Mbp
Contigs	138	4240	5535	279
GC contents	48.9%	49.5%	49.9%	46.6%
N50	1.56 Mbp	2.56 Mbp	20.8 Kbp	563 Kbp
L50	18	6	396	38

Repeat content	66.2%	48.3%	45.7%	60.7%
Protein-coding genes	7943	6807	8737	9460
Av. gene length	1404 bp	1751 bp	1409 bp	1643 bp
Genes w. interpro / Uniprot 90*	93.4% / 88.8%	93.6% / 89.7%	91.7% / 86.5%	92.0% / 84.2%
Genes with GO annotation	52.7%	54.4%	49.9%	47.9%
Genes with intron	23.4%	24.1%	28.6%	29.4%
Busco complete	75.3%	65.1%	73.0%	77.3%
Busco fragmented	6.3%	6.7%	8.6 %	6.3%
Busco missing	18.4%	28.2%	18.4%	16.4%

603 * e-value cutoff 1e-5

604

605 *FIGURE LEGENDS*

606 Fig. 1. A) Genome assembly metrics of *Gracilaria chilensis* (top left), *Gracilaria*
 607 *vermiculophylla* (top right), *Gracilaria caudata* (bottom left) and *Gracilaria gracilis* (bottom
 608 right), (Challis 2017, <https://github.com/rjchallis/assembly-stats>). The inner radius (red) of the
 609 circular plot represents the length of the longest scaffold in the assembly and the proportion of
 610 the assembly that it represents. The cumulative number of scaffolds within a given percentage of
 611 the genome is plotted in light purple originating at the center of the plot. The N50 and N90

612 scaffold lengths are indicated by dark and light orange, respectively. Genome scaffolds are
613 plotted in gray from the circumference and the length of segment at a given percentage indicates
614 the cumulative percentage of the assembly that is contained within scaffolds of at least that
615 length. The GC content is marked by the dark blue outer circle. Complete, fragmented and
616 duplicated BUSCO genes are shown in green in the upper right corner. B) Venn diagram of
617 shared and species-specific orthogroups and orphan genes among the four sequenced *G.* species.
618 C) *G. chilensis* (top left), *G. vermiculophylla* (top right), *G. caudata* (bottom left) and *G.*
619 *gracilis* (bottom right). Photo credit in order: M-L. Guillemin, S. Krueger-Hadfield, E. M.
620 Plastino, C. Destombe.

621

622 Fig. S1. Life cycle of *Gracilaria*. The life cycle consists of an alternation between haploid
623 dioecious gametophytes and a diploid tetrasporophyte. The tetrasporophyte produces meiospores
624 through meiosis, which develop as gametophytes after release. The sex of the gametophytes is
625 determined by haploid sex chromosomes (UV system). Spores that receive the V sex
626 chromosome develop as male gametophytes whereas spores that carry U chromosome will
627 produce female gametophytes. After fertilization, the zygote develops within the
628 carposporophyte on the female gametophyte and is mitotically amplified—producing thousands
629 of diploid carpospores that after release will give rise to tetrasporophytes.

630

631

632

633

634

635

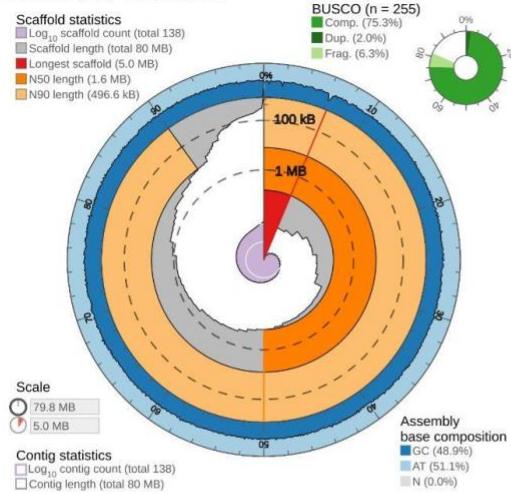
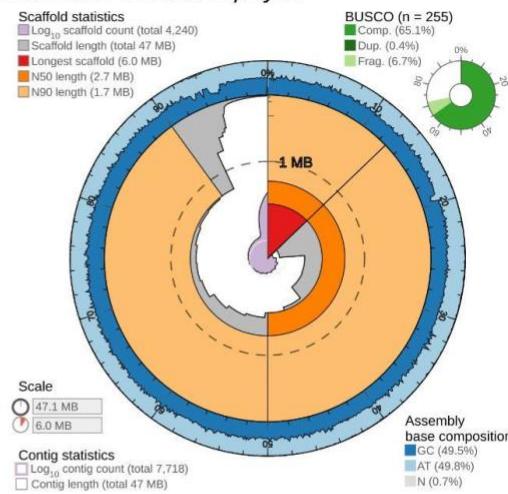
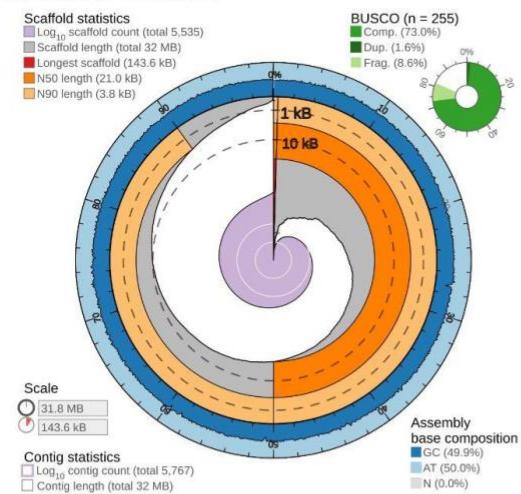
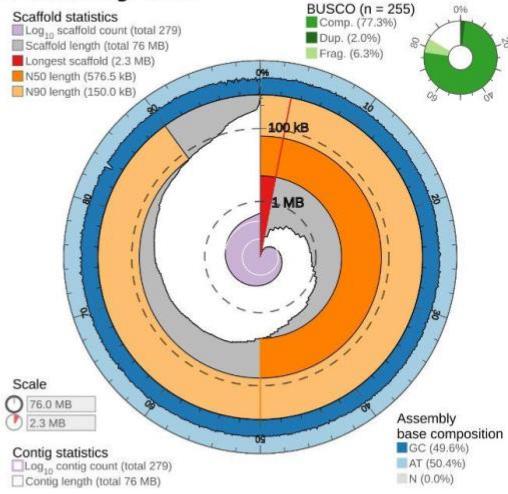
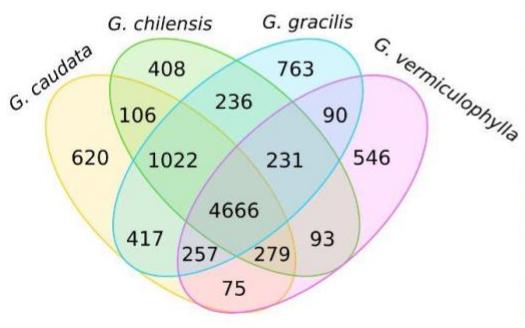
636

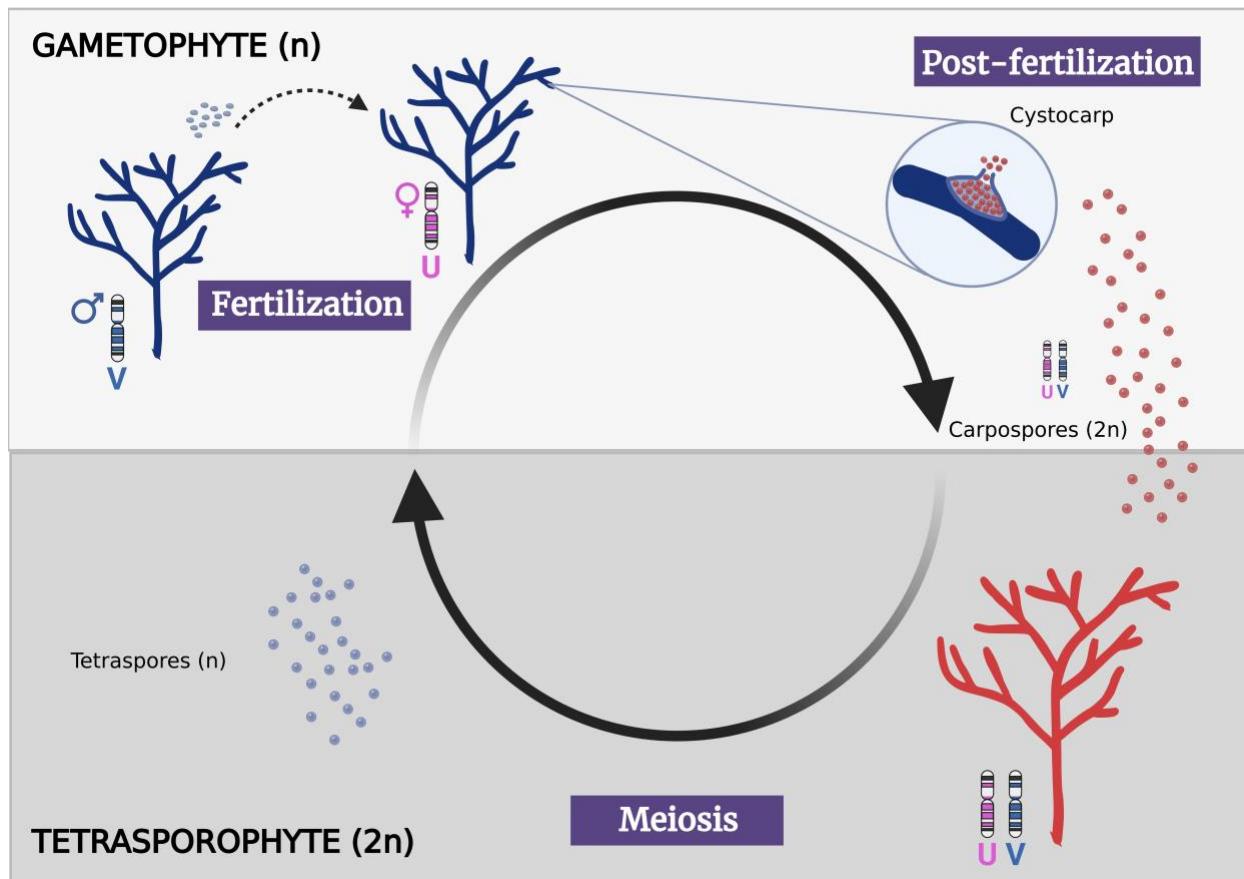
637

638

639

640






641


642

643

644

645

A *Gracilaria chilensis**Gracilaria vermiculophylla**Gracilaria caudata**Gracilaria gracilis***B****C**

649 Supplementary Figure S1: Life cycle of *Gracilaria*.

650
651
652
653
654
655
656
657

658 **Supplementary Table S1:** Available red algal whole genome sequences. M=multicellular,
 659 U=unicellular.

Species	Order	N50	U/M	Citation
<i>Chondrus crispus</i>	Gigartinales	250kb	M	https://doi.org/10.1073/pnas.1221259110
<i>Galdieria sulphuraria</i>	Cyanidiales	230kb	U	https://doi.org/10.7554/eLife.45017
<i>Galdieria phlegrea</i>	Cyanidiales	201kb	U	https://doi.org/10.7554/eLife.45017
<i>Gracilaria changii</i>	Gracilariales	17kb	M	https://doi.org/10.1016/j.ygeno.2017.09.003
<i>Gracilaria domingensis</i>	Gracilariales	189kb	M	https://doi.org/10.1111/jpy.13238
<i>Gracilaria vermiculophylla</i>	Gracilariales	2Mb	M	https://doi.org/10.1111/mec.15854
<i>Gracilariopsis chorda</i>	Gracilariales	220kb	M	https://doi.org/10.1093/molbev/msy081
<i>Gracilariopsis lemaneiformis</i>	Gracilariales	35kb	M	https://doi.org/10.1186/s12870-018-1309-2
<i>Calliarthron tuberculosum</i>	Corallinales	n/a	M	https://doi.org/10.1016/j.cub.2011.01.037
<i>Porphyridium purpureum</i>	Porphyridiales	20kb	U	https://doi.org/10.1038/ncomms2931
<i>Porphyra umbilicalis</i>	Bangiales	202kb	M	https://doi.org/10.1073/pnas.1703088114
<i>Neoporphryra haitanensis</i>	Bangiales	650kb	M	https://doi.org/10.1093/molbev/msab315
<i>Neopyropia yezoensis</i>	Bangiales	34Mb	M	https://doi.org/10.1038/s41467-020-17689-1
<i>Kappaphycus alvarezii</i>	Gigartinales	849kb	M	https://doi.org/10.1101/2020.02.15.950402
<i>Asparagopsis taxiformis</i>	Bonnemaisoniales	2kb	M	https://doi.org/10.1021/acschembio.0c00299

<i>Cyanidium caldarium</i>	Cyanidiales	13kb	U	https://www.ncbi.nlm.nih.gov/genome/7354*
<i>Cyanidiococcus yangmingshanensis</i>	Cyanidiales	653kb	U	https://doi.org/10.1111/jpy.13056
<i>Cyanidioschyzon merolae</i>	Cyanidioschyzonales	846kb	U	https://doi.org/10.1186/1741-7007-5-28 https://doi.org/10.1038/nature02398

660 * no publication associated
 661 n/a data no longer accessible
 662

663 **Supplementary Table S2:** Species used in this study

Species	Strain name	Isolation location	Sex	Type of data	Accession numbers
<i>Gracilaria chilensis</i>	NLEC103-F17	Lenca, Region of Puerto Montt, Chile	Female	RNAseq	SRR23519128
	NLEC103-F17		Female	DNaseq	SRR23519124
	NLEC103-F20	Lenca, Region of Puerto Montt, Chile (-41.607, -72.692)	Female	RNAseq	SRR23519127
	NLEC103-F20		Female	DNaseq	SRR23519123
	NLEC103-M9	Puerto Montt, Chile (-41.607, -72.692)	Male	RNAseq	SRR23519129
	NLEC103-M9		Male	DNaseq	SRR23519122, SRR23519125
	NLEC103-M1		Male	RNAseq	SRR23519130
	NLEC103-M2		Male	DNaseq	SRR23519126
<i>Gracilaria gracilis</i>	GNS1m	Cap-Gris-Nez Northern France (50.872, 1.584)	Male	DNaseq	SRR23565662, SRR23565669
	GNS1m		Male	RNAseq	SRR23565661, SRR23565660, SRR23565659, SRR23565670
	GNS1f	Cap-Gris-Nez Northern France (50.872, 1.584)	Female	DNaseq	SRR23565672, SRR23565663
	GNS1f		Female	RNAseq	SRR23565671, SRR23565666, SRR23565665, SRR23565664

Species	Strain name	Isolation location	Sex	Type of data	Accession numbers
<i>Gracilaria caudata</i>	GNH218m		Male	DNaseq	SRR23565667
	GNH47aAf		Female	DNaseq	SRR23565668
	172F		Female	DNaseq	SRR23610505
	172F		Female	RNAseq	SRR23610508
	174F		Female	DNaseq	SRR23610506
	174F		Female	RNAseq	SRR23610509
	176M	Pedra Rachada beach, Paracuru, Ceará, Brazil (-3.399, -39.012)	Male	DNaseq	SRR23610514
	176M		Male	RNAseq	SRR23610511
	178M		Male	DNaseq	SRR23610513
	178M		Male	RNAseq	SRR23610515
	179M		Male	RNAseq	SRR23610516
	177M		Male	RNAseq	SRR23610512
	175F		Female	RNAseq	SRR23610510
	171F		Female	RNAseq	SRR23610507
<i>Gracilaria vermiculophylla</i>	Gver_F		Female	DNaseq	SRR23609120
	fjs03mal		Male	RNAseq	SRR23609119
	fjs33mal		Male	RNAseq	SRR23609118
	fjs36mal-New	Charleston, SC, USA (32.752, -79.900)	Male	RNAseq	SRR23609117
	Fjs50mal-New		Male	RNAseq	SRR23609116
	fjs34fem		Female	RNAseq	SRR23609115
	fjs39fem		Female	RNAseq	SRR23609114
	fjs40fem		Female	RNAseq	SRR23609113
	fjsfem		Female	RNAseq	SRR23609112

664

665