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Abstract
The incubation period is a key characteristic of an infectious disease. In the outbreak
of a novel infectious disease, accurate evaluation of the incubation period distribution
is critical for designing effective prevention and control measures . Estimation of the
incubation period distribution based on limited information from retrospective inspec-
tion of infected cases is highly challenging due to censoring and truncation. In this
paper, we consider a semiparametric regression model for the incubation period and
propose a sieve maximum likelihood approach for estimation based on the symptom
onset time, travel history, and basic demographics of reported cases. The approach
properly accounts for the pandemic growth and selection bias in data collection. We
also develop an efficient computation method and establish the asymptotic properties
of the proposed estimators. We demonstrate the feasibility and advantages of the pro-
posed methods through extensive simulation studies and provide an application to a
dataset on the outbreak of COVID-19.

Keywords COVID-19 · Cox proportional hazards model · Sieve estimation ·
Survival analysis · Truncated data

1 Introduction

The incubation period is an important epidemiological feature of infectious diseases.
It is defined as the time elapsed from infection of the disease to the onset of symptoms.
Accurate evaluation of the incubation period distribution of a novel infectious disease
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can inform effective prevention and control measures, such as the appropriate dura-
tion of quarantine and the time to reopen workplaces, schools, and restaurants after a
lockdown. Also, the distribution of the incubation period can be used to estimate the
reproduction number R0 and to predict transmission dynamics and epidemic trends.
Typically, early in a pandemic, only limited information, such as the travel history,
contact history, symptom onset date, or hospitalization date of infected cases, is avail-
able for analyzing the incubation period. As a result, estimation of the incubation
period distribution is highly challenging.

This study is motivated by the outbreak of coronavirus disease 2019 (COVID-19),
which first occurred in early December 2019 in Wuhan, China. Our study is based on
the data collected by Zhao et al. (2021), which contain information typically available
early in disease outbreaks. The dataset consists of confirmedCOVID-19 cases reported
by local health agencies at 14 locations, including 8 cities/provinces inmainlandChina
and 6 countries/regions in East Asia, collected in mid to late February 2020. These
cases had visited or were residents ofWuhan beforeWuhan’s lockdown on 23 January
2020 and were diagnosed after arrival at the 14 locations. Because Wuhan was the
first center of epidemic outbreak, the cases were plausibly infected during their stay
at Wuhan. Available information of the cases includes basic demographics, date of
arrival at Wuhan (for travellers), date of departure fromWuhan, and date of symptom
onset.

Estimation of the incubation period distribution is complicated by censoring and
truncation. First, the start of the incubation period, that is, the infection time, is not
observed but is only known to fall within an interval (e.g., the stay at Wuhan in our
example), which we refer to as the exposure period. Also, a subject may be tested to
be infected before symptom onset and is not followed thereafter, in which case the
symptom onset time is right-censored. Since both the infection and symptom onset
times may be censored, we say that the data are doubly-censored. In addition, data
were collected retrospectively, so only subjects whowere infected during the exposure
period could be included in the dataset, and the infection time is thus right-truncated.

Several investigators have studied the analysis of doubly-censored data for the
estimation of incubation period distribution. Goggins et al. (1999) considered a
full-likelihood approach that includes both the infection time and incubation period
distributions in the likelihood and proposed a Monte-Carlo EM algorithm for com-
putation. Sun et al. (1999, 2004) proposed a two-step approach, where the infection
time distribution is estimated using the intervals containing the infection times, and
the incubation period distribution is estimated using estimating equations based on
the estimated infection time distribution. Pan (2001) proposed a multiple-imputation
approach to impute the infection time and applied conventional estimation methods
to the imputed datasets. Reich et al. (2009) considered interval-censored infection
and symptom onset times, that is, doubly interval-censored data, and studied max-
imum likelihood estimation under a parametric model without covariates. Dejardin
and Lesaffre (2013) considered a full-likelihood approach and developed a stochas-
tic EM algorithm for doubly interval-censored data. Li and Owzar (2016) considered
doubly interval-censored data and allowed the infection time and incubation period
to be associated. Li et al. (2020) considered interval-censored infection times and a
mixture of exactly-observed and interval-censored symptom onset times.
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Semiparametric regression of doubly-censored data 89

Although our data structure bears superficial resemblance with those considered in
the literature on the analysis of doubly-censored data, there are important differences
that make the current analysis substantially more difficult. In particular, information
on the infection time is very limited in the current study. First, there is essentially only
one “observation time” for the infection (e.g., the time of departure fromWuhan in our
example), so the infection time is subject to case-1 interval censoring instead of general
interval censoring, yielding much less information. Second, subjects with infection
time larger than the observation time could not be observed, so there is a severe
truncation problem. In fact, the observation times alone contain no information about
the infection time distribution. Thus, imputation or estimating-equation approaches of
Sun et al. (1999, 2004), Pan (2001), and Li et al. (2020), which require a consistent
estimator of the infection time distribution, are not applicable.

We propose a likelihood approach to estimate the incubation period distribution. In
particular, we jointlymodel the infection time and time to symptom onset, while taking
into account the censoring and truncation issues and the growth of the pandemic over
time. We assume a semiparametric Cox proportional hazards model for the incubation
period, propose a sieve maximum likelihood approach for estimation, and devise an
efficient computation method. We also establish the consistency, rate of convergence,
and asymptotic normality of the proposed estimators.

The current study differs from most existing work on incubation period analysis
for COVID-19 in two important aspects. First, most existing studies are based on
parametric models (Backer et al. 2020; Lauer et al. 2020; Linton et al. 2020; Deng
et al. 2020; Qin et al. 2020), whereas we consider a flexible semiparametric model
with a nonparametric baseline hazard function. In particular, based on infected sub-
jects’ time to symptom onset since their departure from Wuhan, Deng et al. (2020)
and Qin et al. (2020) estimated the (parametric) incubation period distribution using
renewal process theory with the incubation period treated as a renewal and the dura-
tion between departure and symptom onset as a forward recurrence time. Second, we
allow the incubation period distribution to depend on covariates, such as sex and age.
While most existing studies focused on the overall incubation period, some studies
suggested that the incubation period distribution may differ across patients from dif-
ferent subpopoulations. For example, Dai et al. (2020) and Tan et al. (2020) found
that older subjects have longer median incubation period than younger subjects, and
Xiao et al. (2021) suggested that the incubation period distribution is associated with
the meteorological temperature of the area. A regression framework allows us to more
precisely evaluate the incubation period distribution for given subpopulations. Such
evaluations are important for designing targeted quarantine and isolation policies.

The rest of this paper is structured as follows. In Sect. 2, we formulate the model,
define the sieve maximum likelihood estimator (MLE), and describe the numerical
implementation of the proposed methods. In Sect. 3, we present asymptotic properties
of the proposed estimators. In Sect. 4, we report the results from simulation studies,
and in Sect. 5, we present the analysis results of the COVID-19 dataset. We make
some concluding remarks in Sect. 6. Technical details are relegated to the Appendix.
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2 Methods

For a generic subject, let τ be the exposure start time, measured from a fixed initial
calendar time. Let S be the time to infection since the exposure start, ˜E be the time to
symptomonset since the exposure start, and X be a p-vector of covariates. Assume that
κ(t;α, r , τ ) ≡ αer(t+τ) is the hazard of infection at time t (since the exposure start),
where α and r are positive parameters, α represents the hazard at the initial calendar
time, and r characterizes the growth of the pandemic. This model assumes that the
hazard of infection grows exponentially with rate r since the initial calendar time.
When α → 0, the model reduces to the model for the time to infection considered in
Zhao et al. (2021). Assume that the incubation period (˜E − S) follows the proportional
hazardsmodel with covariates X , so the hazard function is λ(t; X) = λ(t)eX

Tβ , where
λ is an unspecified baseline hazard function, andβ is a vector of regression parameters.
Assume that S and (˜E − S) are independent.

Suppose that each subject is exposed to the risk of infection until timeU (measured
from the exposure start), and a subject can be observed only if the infection occurs
before U . Assume that U is independent of (S, ˜E). The conditional density of (S, ˜E)

given X , U , and the event {S < U } is

f (S, ˜E | X, U , S < U )

= fT (˜E − S | X, S) fS(S | U , S < U )

= λ(˜E − S)eX
Tβ exp

{

− Λ(˜E − S)eX
Tβ
}κ(S;α, r , τ )e−K (S;α,r ,τ )

1 − e−K (U ;α,r ,τ )
,

where Λ(t) = ∫ t
0 λ(s) ds, K (t;α, r , τ ) = ∫ t

0 κ(s;α, r , τ ) ds, and fT and fS are
(conditional) densities of (˜E − S) and S, respectively.

We allow the symptom onset time to be right-censored. Let C be the censoring
time (measured from the exposure start), E ≡ min(˜E, C) be the observed event or
censoring time, and Δ ≡ I (˜E ≤ C) be the event indicator. Also, S is unobserved
but is only known to fall within (0, U ). For a sample of size n, the observed data
consist of (Ui , τi , Ei ,Δi , X i ) for i = 1, . . . , n. The conditional likelihood function
for (β, α, r , λ) given the event that infection occurs before the end of exposure is

Ln(β, α, r , λ)

=
n
∏

i=1

eΔi XT
i β

1 − e−K (Ui ;α,r ,τi )

∫ min(Ei ,Ui )

0
λ(Ei − s)Δi exp

{

− Λ(Ei − s)eX
T
i β
}

× κ(s;α, r , τi )e
−K (s;α,r ,τi ) ds.

The conditional likelihood incorporates the infection time distribution and thereby
accounts for the pandemic growth over time. Also, because only subjects who were
infected during the exposure period could be observed, there is selection bias induced
by truncation of infection times. To account for such selection bias, we consider the
conditional likelihood given S < U .
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Because the (conditional) likelihood function involves the nonparametric function
λ,maximum likelihood estimation is highly challenging or even infeasible.Wepropose
a sieve maximum likelihood approach and approximate λ by B-spline functions. In
particular, let b1, . . . , bmn be a set of B-spline functions of order l over a knot sequence
0 = t1 = · · · = tl < tl+1 < · · · < tmn < tmn+1 = · · · = tmn+l = ζ for some fixed
time point ζ . In practice, we can set ζ = maxi Ei . Define the sieve space

Bn =
⎧

⎨

⎩

mn
∑

j=1

γ j b j : M−1
n ≤ γ j ≤ Mn for j = 1, . . . , mn

⎫

⎬

⎭

for some diverging sequence Mn . LetA be a prespecified compact set inRp×R
+×R

+
that denotes the parameter space for the Euclidean parameters. The sieve MLE is
(̂βn, α̂n, r̂n,̂λn) = argmax(β,α,r)∈A,λ∈Bn Ln(β, α, r , λ).

We propose to log-transform the positive parameters and use a hybrid of gradient
descent and the Newton–Raphson mehod to compute the sieve MLE. In particular,
in early iterations, we update the parameter estimates using the gradient descent
method on the log-likelihood function. Let Uϑ be the vector of first derivatives of
log Ln(β, α, r ,

∑

j γ j b j ) with respect to ϑ ≡ (βT, logα, log r , log γ T)T. We initial-

ize the parameter vector at ̂ϑ
(0)

, and at the j th iteration, we use the gradient descent
method to update ϑ by

̂ϑ
( j)
n = ̂ϑ ( j−1)

n − a jUϑ

∣

∣

∣

ϑ=̂ϑ ( j−1)
n

,

where ̂ϑ
( j−1)
n is the current parameter estimates, and a j is some negative num-

ber determined by the Armijo backtracking method. We first set a j to be the
Barzilai–Borwein step size (Sun and Yuan 2006, pp. 126–127). Specifically, let

s j = ̂ϑ
( j−1)
n − ̂ϑ

( j−2)
n and y j = Uϑ |

ϑ=̂ϑ ( j−1)
n

− Uϑ |
ϑ=̂ϑ ( j−2)

n
. We initially set

a j = sTj s j/sTj y j for j ≥ 2 and a j = −0.01 for j = 1. If the updated log-
likelihood value does not pass the Armijo–Goldstein condition, that is, if it is smaller

than log Ln(̂ϑ
( j−1)
n ) + 10−4a j‖Uϑ

∣

∣

ϑ=̂ϑ ( j−1)
n

‖2 under the current value of a j , then we

recalculate the parameter estimates with a j discounted by a multiplicative factor of
0.8 until the resulting log-likelihood value passes the condition. When the norm of the
score statistic is smaller than a certain threshold, we perform the Newton–Raphson
algorithm until convergence. In particular, at the j th iteration, the Newton-Raphson
algorithm updates ϑ by

̂ϑ
( j)
n = ̂ϑ ( j−1)

n − I−1
ϑ Uϑ

∣

∣

∣

ϑ=̂ϑ ( j−1)
n

,

where Iϑ is the Hessian matrix for log Ln with respect to ϑ .
When the parameter estimates are not close enough to the maximum, the Hessian

matrix Iϑ may not be negative definite, and there is a direction in the parameter space
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along which the log-likelihood function is locally convex. In this case, the Newton–
Raphson step should not be performed, and instead we update the parameter estimates
along this direction of convexity. Let g denote the eigenvector that corresponds to the

largest (positive) eigenvalue of Iϑ . We update ϑ by ̂ϑ
( j)
n = ̂ϑ ( j−1)

n − a j g, where a j

is selected similarly as in gradient descent.
To compute the log-likelihood function and its derivatives, we use the Legendre–

Gauss quadrature to approximate the integrations involved. Because the log-likelihood
may possess multiple local maxima, we set the initial parameter values based on a
grid search to increase the chance of obtaining the global maximum. In particular,
we define a grid for (α, r). At each grid point (α∗, r∗), we compute the maximizer
of the log-likelihood with respect to (β, γ ), denoted by (β(α∗, r∗), γ (α∗, r∗)), at
(α, r) = (α∗, r∗). The parameter values (β(α∗, r∗), α∗, r∗, γ (α∗, r∗)) that yield the
largest likelihood value is set to be the initial values for the gradient methods.

When the sample size is small, the likelihood may be maximized at the boundary
value of 0 for some positive parameters. In this case, the maximum does not exist for
the log-transformed parameters, and the algorithm may return error values at extreme
parameter values. To avoid these problems, we propose to set a (small) lower boundary
for the positive parameters. When the proposed updated parameter values exceed the
boundary, then we update the parameters along the proposed direction but with a step
size that keeps all parameters within the boundary.

To estimate the standard error of the Euclidean parameter estimators, we treat the
model as fully parametric, with parameters (β, α, r , γ ). Let̂I be the observed infor-
mation matrix under this parametric model evaluated at the sieve MLE. We estimate
the variance of (̂β, α̂, r̂) by the corresponding elements of̂I

−1
.

3 Asymptotic properties of the sieveMLE

Let θ = (ξ , λ) = (β, α, r , λ) denote the collection of all parameters, θ0 = (ξ0, λ0)

the true value of θ , and̂θn = (̂ξn,̂λn) the sieve MLE of θ . The regularity conditions
below are needed for the forthcoming theorems.

(C1) The true parameter value ξ0 is an interior point of A. The function λ0(·) has a
positive lower bound and bounded qth derivative on [0, ζ ] for some q ≥ 2 and
positive constant ζ .

(C2) The distribution of X has a bounded support inRp. If aTX = b with probability
one for some constants a ∈ R

p and b ∈ R, then a = 0 and b = 0.
(C3) Conditional on X , S and (˜E − S) are independent, and they are independent of

C and U . Also, 0 ≤ U < C ≤ ζ , and the support of U includes [0, ζ0] for some
positive constant ζ0 ≤ ζ . The joint density function of C and U is continuously
differentiable on its support. In addition, Pr(C = ζ | X) ≥ c0 almost surely
for some positive constant c0.

(C4) The knots (t1, . . . , tmn+l) satisfy

max j=l+1,...,mn+1 |t j − t j−1|
min j=l+1,...,mn+1 |t j − t j−1| < K
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for some positive constant K , and the number of knots satisfies mn = O(nν)

for some ν ∈ (0, 1/3), and Mn = O(log log n).
(C5) The exposure start time is uniformly bounded, that is, there exists a positive

constant K such that Pr(τ ∈ [0, K ]) = 1.

Remark 1 Condition (C1) is typical for semiparametric regression models, and con-
dition (C2) is necessary for the identifiability of the regression parameters. Condition
(C3) ensures that the supports of C and U are wide enough to allow the identification
of λ over the interval [0, ζ ]. Condition (C4) controls the rates at which the number
of B-spline functions and the maximum spline coefficient value diverge to infinity.
Condition (C5) requires that the exposure start time is uniformly bounded.

Define the distance d(θ1, θ2) = (‖ξ1 − ξ2‖2 + ‖λ1 − λ2‖2L2[0,ζ ]
)1/2, where ‖ · ‖

denotes the Euclidean norm and ‖ · ‖L2[0,ζ ] denotes the L2-norm over [0, ζ ]. We have
the following results.

Theorem 1 Under conditions (C1)–(C5), d(̂θn, θ0) → 0 almost surely, and

d(̂θn, θ0) = Op[n−min{qν, (1−ν)/2}]

as n → ∞, where q is given in (C1).

Theorem 2 Assume that conditions (C1)–(C5) hold, q > 2, and 1/{2(q + 1)} < ν <

1/5. We have

√
n(̂ξn − ξ0) →d N {0, I−1(ξ0)},

where I(ξ0) is the information matrix for ξ defined in the proof of this theorem.

The proofs of Theorems 1 and 2 are given in the Appendix.

4 Simulation studies

We set Ui ∼ Uniform(0, 10) and τi ∼ Uniform(0, 10) for i = 1, . . . , n, where Ui

and τi are independent. We set β = (0.5,−0.5)T, λ(t) = 0.05 + 0.015t , r = 0.2
or 0.3, and α = 0.01 or 0.1. The (nontruncated) means of time to infection and the
truncation rates under different values of α and r are given in Table 1. We generated
X ≡ (X1, X2)

T with X1 ∼ N(0, 1) and X2 ∼ Bernoulli(0.5), where X1 and X2
are independent. The mean incubation period is about 9.4. We set a universal right
censoring time for ˜E at 30, resulting in a censoring proportion of around 2–3%. This
low censoring rate is to match the real data, where most subjects were identified to be
infected at symptom onset, and only subjects who underwent the disease test before
symptom onset would be censored. We set the sample size to be n = 400 or 800.

We set the degree of B-spline functions b j ’s to be 2 and a single (inner) grid
point to be 8, which is approximately the median of (˜E − S). The grid for the initial
values of (α, r) is {0.001, 0.005, 0.01, 0.05, 0.1}×{0.1, 0.2, 0.3, 0.4, 0.5}. We set the
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Table 1 Mean times to infection
and truncation rates in the
simulation studies

α r Mean time to infection Truncation Rate

10−10 0.2 99.2 ≈ 1

0.3 65.8 ≈ 1

0.01 0.2 9.0 0.75

0.3 5.9 0.56

0.1 0.2 2.6 0.25

0.3 1.7 0.17

Table 2 Simulation results under the correct model with n = 400

Setting Parameter True Bias ESD SEE Cov

1 β1 0.500 0.007 0.062 0.060 0.94

β2 −0.500 −0.009 0.111 0.110 0.95

α 0.010 0.004 0.031 0.019 0.94

r 0.200 0.013 0.104 0.107 0.91

2 β1 0.500 0.006 0.060 0.060 0.94

β2 −0.500 −0.010 0.108 0.109 0.96

α 0.010 0.005 0.022 0.016 0.93

r 0.300 0.019 0.110 0.100 0.93

3 β1 0.500 0.005 0.059 0.058 0.95

β2 −0.500 −0.007 0.109 0.107 0.94

α 0.100 0.018 0.144 0.095 0.95

r* 0.200 0.051 0.149 0.111 0.91

4 β1 0.500 0.006 0.060 0.058 0.94

β2 −0.500 −0.007 0.109 0.106 0.95

α 0.100 0.017 0.168 0.113 0.96

r** 0.300 0.074 0.191 0.154 0.90

* The true value and bias for log r are −1.609 and 0.004
** The true value and bias for log r are −1.204 and 0.041
“True” stands for the true parameter value, “ESD” stands for the empirical standard deviation of the estimated
values, “SEE” stands for the mean standard error estimates, and “Cov” stands for the empirical coverage
of the 95% confidence interval. The number of replicates in which one or more parameter estimates are at
the boundary for Settings 1–4 are 50, 18, 4, and 3, respectively. Replicates with estimates at the boundary
are discarded

lower boundary for the positive parameters to be 10−8. We present the bias, empirical
standard deviation, mean standard error estimates, and empirical coverage of 95%
confidence interval for the Euclidean parameters in Tables 2 and 3; the results are based
on 1000 replicates. For α and r , the coverages are calculated under the logarithm scale.
We also plot the averaged estimated cumulative baseline hazard functions in Fig. 1 for
n = 400; the results for n = 800 are visually identical and thus are omitted.

For β1 and β2, the estimators are virtually unbiased in all settings, the standard
error estimates closely resemble the empirical standard deviations, and the empirical
coverages are close to the nominal 95% level. The mean estimated cumulative base-
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Table 3 Simulation results under the correct model with n = 800

Setting Parameter True Bias ESD SEE Cov

1 β1 0.500 0.003 0.043 0.042 0.96

β2 −0.500 −0.005 0.078 0.078 0.94

α 0.010 0.001 0.012 0.010 0.95

r 0.200 0.002 0.077 0.079 0.93

2 β1 0.500 0.002 0.042 0.042 0.95

β2 −0.500 −0.004 0.077 0.077 0.96

α 0.010 0.003 0.013 0.009 0.94

r 0.300 0.008 0.069 0.068 0.95

3 β1 0.500 0.001 0.041 0.041 0.95

β2 −0.500 −0.006 0.076 0.076 0.95

α 0.100 0.010 0.066 0.058 0.95

r* 0.200 0.018 0.079 0.070 0.93

4 β1 0.500 0.002 0.040 0.040 0.95

β2 −0.500 −0.005 0.075 0.075 0.96

α 0.100 0.006 0.062 0.057 0.97

r** 0.300 0.036 0.127 0.105 0.93

* The true value and bias for log r are −1.609 and 0.017
** The true value and bias for log r are −1.204 and 0.050
See NOTE to Table 2. The number of replicates in which one or more parameter estimates are at the
boundary for Settings 1–4 are 17, 1, 0, and 0, respectively. Replicates with estimates at the boundary are
discarded

line hazard functions closely resemble the true functions. Under n = 400, the average
values of α̂ and r̂ may not be close to the true values due to some extreme estimates,
and the standard error estimates may be smaller than the empirical standard devia-
tions, yielding under-coverage of the confidence intervals. The performance of the
estimators is much better under n = 800, suggesting that the suboptimal performance
in some cases is due to insufficient sample size. After all, the actual time to infection
is never observed and is always mixed with the incubation period, leading to limited
information for the estimation of the infection time distribution. When the true values
of α and r are small, α̂ and γ̂1 (the intercept of̂λ) are at the boundary for a number of
replicates, and the number is substantially smaller under a larger sample size. In some
cases, r̂ has a substantial bias. This is due to skewness of the distribution of r̂ , and the
bias of log r̂ can be much smaller.

We investigate the performance of the proposedmethods under a substantially larger
right-censoring proportion. This corresponds to the scenariowheremany subjectswere
tested to be infected before symptom onset (and were not followed thereafter). In
particular, we generated the data as described above but set a universal censoring time
of 15, resulting in a censoring proportion of about 20–35%. Because the information
available for the baseline hazard function is much less due to early censoring, we set
the degree of B-spline functions to be 1 instead of 2. The results for the Euclidean
parameters, based on n = 400 and 1000 replicates, are presented in Table 4. The
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Fig. 1 Estimated cumulative baseline hazard functions under the correct model with n = 400

estimated cumulative baseline hazard functions are virtually indistinguishable from
the true function and are not presented. Under a larger censoring proportion, the
standard error of the estimators are generally larger. The performance of the point and
interval estimators has similar pattern as that under a small censoring rate.

To investigate the robustness of the methods, we considered misspecified infection
time distributions. In particular, we considered S from the Weibull distribution with
shape parameter equal to 2 and scale parameter equal to 5e−0.1τ and also S = exp(Z),
where Z is normal with mean 1.2e−0.2τ and variance 0.64. Other variables were
generated according to the original setting. We set the degree of B-spline functions
to be 2, n = 800, and number of replicates to be 1000. We present the summaries
for the estimators of β1 and β2 in Table 5 and the averaged estimated cumulative
baseline hazard functions in Fig. 2. Undermisspecified infection time distributions, the
estimation and inference of β are still highly satisfactory. As expected, the estimated
cumulative hazard function departs from the true function, but the overall bias is tiny.
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Table 4 Simulation results under the correct model with n = 400 and a large censoring proportion

Setting Parameter True Bias ESD SEE Cov

1 β1 0.500 0.007 0.072 0.071 0.95

β2 −0.500 −0.008 0.134 0.133 0.95

α 0.010 0.004 0.025 0.019 0.95

r 0.200 0.008 0.104 0.105 0.92

2 β1 0.500 0.006 0.068 0.070 0.96

β2 −0.500 −0.009 0.131 0.130 0.95

α 0.010 0.006 0.026 0.017 0.93

r 0.300 0.018 0.109 0.100 0.93

3 β1 0.500 0.005 0.067 0.065 0.94

β2 −0.500 −0.005 0.124 0.122 0.96

α 0.100 0.023 0.214 0.108 0.95

r* 0.200 0.050 0.148 0.112 0.91

4 β1 0.500 0.005 0.066 0.063 0.94

β2 −0.500 −0.004 0.121 0.118 0.94

α 0.100 0.016 0.151 0.099 0.96

r** 0.300 0.061 0.181 0.151 0.91

* The true value and bias for log r are −1.609 and −0.012
** The true value and bias for log r are −1.204 and 0.011
See NOTE to Table 2. The number of replicates in which one or more parameter estimates are at the
boundary for Settings 1–4 are 27, 4, 3, and 0, respectively. Replicates with estimates at the boundary are
discarded

Table 5 Simulation results under misspecified infection time distributions

Setting Parameter True Bias ESD SEE Cov

Weibull β1 0.500 0.008 0.041 0.042 0.95

β2 −0.500 −0.011 0.079 0.076 0.94

Lognormal β1 0.500 0.001 0.040 0.041 0.96

β2 −0.500 −0.005 0.077 0.075 0.94

See NOTE to Table 2. The number of replicates in which in which one or more parameter estimates are
at the boundary for Setting Weibull and Setting Lognormal are 154 and 40, respectively. Replicates with
estimates at the boundary are discarded

We compared the proposed methods with two simple methods, namely midpoint
imputation and interval-censored data regression. For midpoint imputation, if Ei >

Ui , then we set the time to infection to be Ui/2, such that the incubation period is
(or is censored at) Ei − Ui/2. If Ei ≤ Ui , then we set the time to infection to be
Ei/2, such that the incubation period is Ei/2. We then apply the standard maximum
partial-likelihood estimation method on the imputed dataset. For interval-censored
data regression, we treat the incubation period as interval-censored within the smallest
interval known to contain the incubation period. In particular, if Ei ≥ Ui , then we set
the incubation period to be interval-censored between (Ei − Ui , Ei ) for Δi = 1 and
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Fig. 2 Estimated cumulative baseline hazard functions under misspecified infection time distributions

right-censored at Ei − Ui for Δi = 0. If Ei < Ui , then we set the incubation period
to be interval-censored between (0, Ei ); right censoring is assumed to be impossible
under Ei < Ui . Then, we approximate the baseline hazard function using the same
spline functions as in the proposed methods and estimate the parameters using (sieve)
MLE. This approach is similar to the “interval-reduced” method of Reich et al. (2009),
who considered a parametricmodelwith no covariates. Note that this approach is based
on the likelihood

n
∏

i=1

{

e−Λ((Ei −Ui )+)eX
T
i β − e−Λ(Ei )e

XTi β
}Δi
{

e−Λ(Ei −Ui )e
XTi β
}1−Δi

,

where a+ denotes max(a, 0). If Δi = 1 for i = 1, . . . , n and κ(s;α, r , τi ) does not
depend on s, then this likelihood is proportional to the proposed conditional likelihood,
but this likelihood is in general incorrect.

The summary results, based on n = 800 and 1000 replicates, for the estimators ofβ1
and β2 are presented in Table 6, and the averaged estimated cumulative baseline hazard
functions are presented in Fig. 3. Because they do not consider the pandemic growth
over time, both methods yield biased estimation of the cumulative baseline hazard
function. Midpoint imputation yields biased point estimation and interval estimation
with under-coverage. The bias under the interval-censored data regression is small,
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Fig. 3 Estimated cumulative baseline hazard functions using alternative simple methods

but the standard error estimates tend to be smaller than the corresponding standard
deviation.

When the initial hazard of infection α is small, accurate estimation of the parameter
is difficult. In fact, as α → 0, the density of S becomes proportional to ers , and the
conditional density of S given S < U does not involve α. To investigate the effect
of inaccurate estimation of α when the true value of α is small, we consider an extra
set of simulation studies as follows. We generated the data according to the original
setting but with α = 10−10; the mean incubation times are given in Table 1. Then, we
perform estimation with α (incorrectly) fixed to be 10−8. This mimics the situation
where the true value of α is beyond the lower boundary of 10−8. We considered
sample sizes of n = 400 and 800. The point estimates, standard error estimates,
and coverages of the Euclidean parameters based on 1000 replicates are presented in
Table 7. In the calculation of the standard error estimates, we remove the row and
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Table 7 Simulation results under α = 10−10

Setting n Parameter True Bias ESD SEE Cov

1 400 β1 0.500 0.005 0.060 0.060 0.96

β2 −0.500 −0.012 0.112 0.110 0.95

r 0.200 0.007 0.093 0.091 0.91

2 400 β1 0.500 0.006 0.060 0.060 0.95

β2 −0.500 −0.012 0.113 0.110 0.94

r 0.300 0.007 0.098 0.096 0.92

3 800 β1 0.500 0.003 0.042 0.042 0.95

β2 −0.500 −0.006 0.079 0.078 0.95

r 0.200 0.000 0.067 0.066 0.94

4 800 β1 0.500 0.004 0.043 0.042 0.96

β2 −0.500 −0.007 0.077 0.078 0.97

r 0.300 0.000 0.067 0.070 0.95

SeeNOTE to Table 2.The number of replicates inwhich one ormore parameter estimates are at the boundary
for Settings 1–4 are 45, 57, 7, and 9, respectively. Replicates with estimates at the boundary are discarded

column corresponding to α in the information matrix, essentially treating α as known
(at 10−8).

In all cases, the biases of all parameters are small, the standard error estimates
resemble the corresponding standard deviations, and the empirical coverages are close
to the nominal 95% level. Similar to the results presented in Fig. 1, the estimated
cumulative baseline hazard functions closely resembles the true function and are not
presented. Due to misspecification of the value of α, some positive parameters are
estimated at the boundary, and the number of replicates at the boundary is substantially
smaller under a larger sample size. Note that in the calculation of the standard error
estimates, we essentially treat α as known (at an incorrect value), but the standard error
estimates and confidence intervals of the other parameters are still reliable.We suggest
that in general, when parameters are estimated at the boundary, we can treat them as
known and only evaluate the standard error estimates of the remaining parameters. In
fact, in all simulation studies, if we kept the replicates with parameter estimates at the
boundary and estimated the standard error of the remaining parameters in this way,
the summary results would still be highly similar to the presented results.

5 Real data analysis

Weanalyzed the data set processed by Zhao et al. (2021)mentioned in Sect. 1. The data
recorded confirmed COVID-19 cases from 14 locations, and the subjects were from or
had visited Wuhan between 1 December 2019 and 23 January 2020; the data set was
based on information from press releases of official health agencies. After removing
subjects whose source of infection was not clear and those who miss information on
the exposure/symptoms onset, 462 subjects with information on the period of stay at
Wuhan, symptoms onset date, sex, and age are available. We set the initial calendar
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time (from which the exposure start time is measured) to be 1 December 2019 and
τ = 0 for subjects who were from Wuhan. The symptoms onset dates of 6 subjects
are right-censored. In the sample, 59.7% of the subjects are of age 50 or younger, and
53.9% are male.

We fit the proposed model with covariates age and sex, where age is dichotomized
into 50 or younger versus older than 50.We consideredB-spline functionswith degrees
1, 2, and 3 and number of (inner) grid points of 1 to 5 and selected the model using
AIC. The location of the inner grid points were chosen to be equi-distant quantiles
of Gamma(1.8075, 0.3305); this is the estimated distribution of the incubation period
in Zhao et al. (2021). The AIC selected degree 1 with 2 grid points. Same as the
simulation studies, we set a lower boundary of 10−8 for the positive parameters.

The estimated values of α and γ1 are at the boundary of 10−8. The estimated
coefficient for age is 0.2502, with standard error 0.1067, such that older subjects tend
to have a shorter incubation period; this effect is significant at 5% significance level.
This result is in disagreement with some findings in the literature (Dai et al. 2020; Tan
et al. 2020). Nevertheless, as reported in Fig. 4 of Kong (2020), there is no consistent
trend between the duration of the incubation period and age over different studies.
The difference between the current results and those reported in the literature may be
due to differences in patient samples. The estimated coefficient for sex is −0.0827,
with standard error 0.1042, such that females tend to have a shorter incubation period
than males. The estimated value of r is 0.3044, which is close to the estimated values
of 0.28–0.41 reported in Zhao et al. (2021). This corresponds to a daily increase of
hazard of infection by a multiplicative factor of 1.36. Fig. 4 shows the estimated
survival functions of different subgroups.

6 Discussion

In this paper, we consider the estimation of the incubation period distribution, where
the time to infection is subject to interval censoring and truncation, and the time
to symptom onset is subject to (potential) right censoring. We consider a flexible
semiparametric regression model for the incubation period distribution and propose
a sieve MLE. We establish the consistency and rate of convergence of all estimators
and the asymptotic normality of the Euclidean parameter estimators.

One major challenge in model estimation is that information about the infection
time is very limited. The infection time S is never observed and is mixed with the
incubation period, and infection is only known to have occurred beforeU . In addition,
only subjects with S ≤ U could be observed. Therefore, the likelihood contribution
from U on the distribution of S is P(S ≤ U | S ≤ U ) = 1, that is, U alone does
not contain any information on the distribution of S. As a result, existing multiple
imputation approaches, such as Sun et al. (1999, 2004), are not feasible, because
these approaches require estimation of the infection time distribution solely using the
intervals containing the infection times.

We propose to use grid search to select the initial values for the estimation. This
step is essential, because the likelihood may exhibit multiple local maxima especially
over different values of r . To illustrate how the local maxima may arise, we plot the
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Fig. 4 Estimated survival functions for different subgroups

conditional cumulative distribution functions (CDF) of S given S < U in Fig. 5,
where U = 10, τ = 0, α = 0.5 or 0.001, and r = −0.5,−0.25, 0, 0.25, or 0.5. For
α = 0.001, the CDF at different values of r are well-separated, and the likelihood
function usually does not exhibit multiple local maxima. By contrast, for α = 0.5, the
CDF at positive and negative values of r may be closer to each other than they are to
the CDF at r = 0. In this case, when the true value of r is 0.25, the likelihood may
exhibit a local maximum at around 0.25 and at a negative value of r (or at zero if r is
restricted to be nonnegative). As a result, when the initial value of r is very close to
zero or negative, the gradient methods may not be able to update r towards the positive
direction.

For satisfactory estimation of all model parameters, the dataset should contain both
large and small values of U . A smaller value of U allows the infection time to be
more precisely determined, in turn providing more information to the estimation of
the incubation period distribution. In fact, in the regularity conditions, we assume that
the support ofU includes a small interval [0, ζ0] in order to guarantee the identifiability
of the incubation period distribution. On the other hand, a larger value of U provides
more information to the estimation of the infection time distribution.

We assume a simple distribution for the time to infection, where the hazard
increases exponentially at a constant rate over time, and the distribution is equal
for all subjects. A possible extension is to consider more flexible models for the time
to infection. For example, if a major pandemic-related event, such as a lock-down,
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Fig. 5 Conditional CDF of S

occurs at time τ ′, then we may allow the hazard growth rate to change after τ ′, with
κ(t) = αer1(t+τ)+r2(t+τ−τ ′)+ for some parameters r1 and r2, where a+ = max(0, a).
Also, we may consider a regression model for S that depends on X or some external
covariates. In general, we can assume a nonparametric or semiparametric regression
model for S and estimate the model by sieve estimation. However, because only
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severely-limited information is available for the estimation of the distribution of S,
such flexible models should be considered only when the sample size is large.

We assumed the Cox proportional hazards model for the incubation period.
Although the Cox model is flexible in that the baseline hazard function is nonparamet-
ric, it assumes a particular structure for the covariates effect. It would be of interest to
develop model checking techniques for the incubation period distribution. However,
this would be highly challenging, as the incubation period is mixed with the infection
time distribution in the likelihood, and existing methods are not applicable.
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Appendix: Technical proofs

This appendix includes the proofs of Theorems 1 and 2. We assume that τ = 0
for simplicity of presentation. Let L(θ) denote the likelihood function for a generic
subject:

L(θ) = eΔXTβ

1 − exp
{

− ∫ U
0 αert dt

}

∫ min(E,U )

0
λ(E − s)Δ exp

{

−Λ(E − s)eX
Tβ
}

× αers exp

{

−
∫ s

0
αert dt

}

ds.

(S1)

Let P and Pn denote the true and empirical measures, respectively. Before proving
Theorems 1 and 2, we present and prove the following lemma.

Lemma 1 Assume that conditions (C1)–(C3) hold. If there exists a set of parameters
˜θ such that L(˜θ) = L(θ0) with probability 1, then˜θ = θ0.

Proof of Lemma 1 Suppose that L(˜θ) = L(θ0) almost surely. Set Δ = 1 and let
U → 0. By the L’Hospital’s rule and taking derivatives with respect to U on both the
numerator and denominator of L , we obtain

λ(E)eX
Tβ exp

{

−Λ(E)eX
Tβ
}

= λ0(E)eX
Tβ0 exp

{

−Λ0(E)eX
Tβ0

}

,

and further by taking integration, exp{−Λ(E)eX
Tβ} = exp{−Λ0(E)eX

Tβ0}. Thus,
under conditions (C1)–(C3), we have β = β0 and λ(t) = λ0(t) for t ∈ [0, ζ ].
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Next we show that α = α0 and r = r0. Setting Δ = 1, we have

L(θ) = 1

FS(U ;α, r)

∫ min(E,U )

0
fT (E − s;β, λ) fS(s;α, r) ds

= 1

FS(U ;α, r)

∫ min(E,U )

0
fT (t;β, λ) fS(E − t;α, r) dt,

where fT (t;β, λ) = λ(t)eX
Tβ exp

{− Λ(t)eX
Tβ
}

is the density function of the incu-
bation time (˜E − S), fS(s;α, r) = αers exp

{− ∫ s
0 αert dt

}

is the density function of
the infection time S, and FS(t;α, r) = ∫ t

0 fS(s;α, r)ds is the distribution function of
S. Taking the first derivative of L with respect to E and setting E → 0, we obtain

1

FS(U ;α, r)
fT (0;β, λ) fS(0;α, r) = 1

FS(U ;α0, r0)
fT (0;β0, λ0) fS(0;α0, r0).

(S2)

Taking the second derivative of L with respect to E and let E → 0, we have

1

FS(U ;α, r)

{

f ′
T (0;β, λ) fS(0;α, r) + fT (0;β, λ) f ′

S(0;α, r)
}

= 1

FS(U ;α0, r0)

{

f ′
T (0;β0, λ0) fS(0;α0, r0) + fT (0;β0, λ0) f ′

S(0;α0, r0)
}

,

(S3)

where f ′
T (·;β, λ) and f ′

S(·;α, r) are the derivatives of fT (·;β, λ) and fS(·;α, r),
respectively. Note that β = β0, λ = λ0, fS(0;α, r) = α and f ′

S(0;α, r) = αr . From
(S2) and (S3), it is easy to obtain that α = α0 and r = r0. ��
Proof of Theorem 1 Define l(θ) = log L(θ),Ln = {l(θ) : θ ∈ Θn}, andΘn = A×Bn ,
whereA andBn are defined in Sect. 2.Note that Mn = O(log log n) and

∑mn
k=1 bk(t) =

1 for any t . By the mean-value theorem for integrals, for any θ ∈ Θn ,

min(E, U )/{log n (log log n)}
1 − exp

{− ∫ U
0 αert dt

}
� L(θ) � min(E, U ) log log n

1 − exp
{− ∫ U

0 αert dt
}
,

where A � B means that A ≤ cB for some positive constant c.
By the mean-value theorem, one can easily show that for any θ1 ≡ (β1, α1, r1, λ1)

and θ2 ≡ (β2, α2, r2, λ2) in Θn ,

|l(θ1) − l(θ2)| � log n (log log n)3(‖β1 − β2‖ + |α1 − α2| + |r1 − r2| + ‖γ 1 − γ 2‖∞),

where γ j = (γ j1, . . . , γ j,mn )
T such that λ j (t) = ∑mn

k=1 γ jkbk(t) for j = 1, 2. Thus,
by Lemma 2.5 of van de Geer (2000), the covering number of Ln satisfies for any
ε > 0,

N {ε,Ln, L1(Pn)} �
{

log n(log log n)3
}p+2+mn Mmn

n ε−(p+2+mn).
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In addition, note thatPl(θ)2 � (log log n)2 for θ ∈ Θn . Following the proof of Lemma
2 of Zhou et al. (2017), we can show that

sup
θ∈Θn

∣

∣Pnl(θ) − Pl(θ)
∣

∣→ 0 (S4)

almost surely.
By condition (C1) and Jackson’s Theorem (de Boor 2001, p. 149), there exists

λn ∈ Bn such that ‖λn − λ0‖∞ ≡ supt∈[0,ζ ] |λn(t) − λ0(t)| = O(n−qν). We have
d(θn, θ0) = O(n−qν), where θn = (ξ0, λn). By the definition of the sieve MLE,
Pnl(̂θn) ≥ Pnl(θn), so

Pl(θ0) − Pl(̂θn) ≤ |Pl(θ0) − Pl(θn)| + |(Pn − P)l(θn)| + |(Pn − P)l(̂θn)|. (S5)

By (S4), the last two terms on the right-hand side of (S5) converge to zero almost surely.
By the mean-value theorem, the first term on the right-hand side of (S5) converges to
zero. The left-hand side of (S5) is non-negative by the property of Kullback–Leibler
divergence, and thus it converges to zero almost surely.

Define Kε = {θ ∈ Θn : d(θ , θ0) ≥ ε} for ε > 0. If̂θn ∈ Kε , then ζn ≡ Pl(θ0) −
Pl(̂θn) ≥ Pl(θ0) − supθ∈Kε

Pl(θ) ≡ δε . That is, {̂θn ∈ Kε} ⊆ {ζn ≥ δε}. By Lemma
1 and the property of Kullback-Leibler divergence, we have δε > 0 for any ε > 0. By
(S5), ζn → 0 almost surely. Thus, ∩∞

k=1 ∪∞
n=k {̂θn ∈ Kε} ⊆ ∩∞

k=1 ∪∞
n=k {ζn ≥ δε} has

probability zero asymptotically for any ε > 0, which implies d(̂θn, θ0) → 0 almost
surely.

To prove the rate of convergence of ̂θn , we first use Theorem 3.4.1 of van der
Vaart and Wellner (1996) to establish a suboptimal convergence rate. Then, based
on this convergence rate, we show that the sieve MLE is uniformly consistent.
Finally, based on this uniform consistency, we improve the convergence rate to the
desired rate using Theorem 3.4.1 of van der Vaart and Wellner (1996) again. Let
δn = K1(log log n)1/2 n−qν for some positive constant K1. For δ > δn , define
Ln,δ = {l(θ) − l(θn) : θ ∈ Θn, δ/2 < dn(θ, θn) < δ}, where dn(θ , θn) =
d(θ , θn)/(log log n)1/2. Let H(θ1, θ2) ≡ [ ∫ {

L(θ1)
1/2 − L(θ2)

1/2
}2 dμ

]1/2 be the
Hellinger distance between θ1 and θ2, where μ is the dominating measure. Note that
log(x) ≤ 2(

√
x − 1) for x ≥ 0, and thus

P
{

l(θ) − l(θ0)
}

� − H(θ , θ0)
2 � −(log log n)−1 P

{

L(θ) − L(θ0)
}2

. (S6)

By the mean-value theorem,

P
{

L(θ) − L(θ0)
}2 ≥ P

{

L̇ξ (θ0)
T(ξ − ξ0) + L̇λ(θ0)[λ − λ0]

}2 + O
{

d(θ , θ0)
4},

where L̇ξ (θ) is the derivative of L(θ) with respect to ξ , and L̇λ(θ)[h] is the derivative
of L(θ) with respect to λ along the submodel λε = λ + εh.

We define a norm space G = R
p+2 × L2[0, ζ ] with a norm ‖g‖1 = (‖g1‖2 +

‖g2‖2L2[0,ζ ]
)1/2, where g = (g1, g2) ∈ G with g1 = (gTβ, gα, gr )

T ∈ R
p+2 and
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108 K. Y. Wong et al.

g2 ∈ L2[0, ζ ]. In addition, define a seminorm ‖·‖2 onG, with ‖g‖22 = P
{

L̇ξ (θ0)
Tg1+

L̇λ(θ0)[g2]
}2. By the Minkowski inequality, this seminorm is well-defined. If we can

show that ‖g‖2 = 0 implies g = 0, then ‖ · ‖2 is a norm. In fact, if ‖g‖2 = 0 for some
g = (g1, g2) = (gβ, gα, gr , g2) ∈ G, then L̇ξ (θ0)

Tg1 + L̇λ(θ0)[g2] = 0 almost
surely. As in the proof of Lemma 1, we let U → 0 and obtain

∂˜L

∂β
(β, λ0)

Tgβ

∣

∣

∣

∣

β=β0

+ ∂˜L

∂ε
(β0, λ + εg2)

∣

∣

∣

∣

ε=0
= 0 (S7)

almost surely, where ˜L(β, λ) = λ(E)ΔeX
TβΔ exp

{ − Λ(E)eX
Tβ
}

. Letting Δ =
1 in (S7) and taking integration of ˜L with respect to E , we can derive that
∫ E
0

{

λ0(u)XTgβ + g2(u)
}

du = 0. Therefore,
∫ t
0

{

λ0(u)XTgβ + g2(u)
}

du = 0
for any t ∈ [0, ζ ], which implies XTgβ + g2(t)/λ0(t) = 0. By condition (C2), we
have gβ = 0 and g2(t) = 0 for t ∈ [0, ζ ]. Similarly as in the proof of Lemma 1, we
can show that gα = gr = 0. Thus, g = 0, and ‖ · ‖2 is indeed a norm on G.

It is easy to see that ‖g‖2 ≤ K2‖g‖1 for some positive constant K2. By the bounded
inverse theorem in the Banach space, we have ‖g‖2 ≥ K3‖g‖1 for some K3 > 0.
Hence, by (S6), P

{

l(θ) − l(θ0)
}

� −(log log n)−1
[

d(θ , θ0)
2 + O{d(θ, θ0)

4}] �
−dn(θ, θ0)

2 for small enough dn(θ , θn). For any l(θ) − l(θn) ∈ Ln,δ , by the mean-
value theorem, we have

P
{

l(θ) − l(θn)
} = P

{

l(θ) − l(θ0)
}+ P

{

l(θ0) − l(θn)
}

≤ −K4dn(θ , θ0)
2 + K5d(θn, θ0)

2

≤ −K4dn(θ , θn)2 + K4dn(θn, θ0)
2 + K5n−2qν

≤ −K4δ
2/4 + K4K5(log log n)−1 n−2qν + K5n−2qν,

where K4 and K5 are positive constants. Therefore, for large enough K1, we have

sup
f ∈Ln,δ

P f ≤ −K6δ
2 (S8)

for all δ > δn and some positive constant K6.
By the mean-value theorem, |l(θ1)− l(θ2)| ≤ K7 log n(log log n)3

(‖ξ1 − ξ2‖∞ +
‖λ1 − λ2‖∞

)

for some K7 > 0. Let Ψn = {θ ∈ Θn : d(θ , θn) < δ}. We have

log N[ ]{ε,Ln,δ, L2(P)} ≤ log N
{

K −1
7 (log n)−1(log log n)−7/2ε/2, Ψn, ‖ · ‖∞

}

.

Let Φn = {γ ∈ R
mn : ‖γ − γ n‖ < m1/2

n δ}, where γ n is the coefficient vector for λn .
By Theorem 5.2 of de Boor (1976), we have N (ε, Ψn, ‖·‖∞) ≤ N (K −1

8 ε,Φn, ‖·‖∞)

for some K8 > 0. Furthermore, by Lemma 0.4 of Wu and Zhang (2012), we obtain
log N (ε,Φn, ‖ · ‖∞) � mn log(δ/ε). Combining the above results, we have for 0 <

ε < δ,

log N[ ]{ε,Ln,δ, L2(P)} ≤ K9mn log
{

log n(log log n)7/2δ/ε
}
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for some K9 > 0. The bracketing integral of Ln,δ satisfies

˜J[ ]{δ,Ln,δ, L2(P)} =
∫ δ

0

√

1 + log N[ ]{ε,Ln,δ, L2(P)} dε

≤
∫ δ

0

√

1 + K9mn log
{

log n(log log n)7/2δ/ε
}

dε

�
∫ δ

0
m1/2

n
{

log n(log log n)7/2δ/ε
}1/2 dε

= m1/2
n (log n)1/2(log log n)7/4δ.

As shown in the proof of consistency, sup f ∈Ln,δ
‖ f ‖∞ = O(log log n), and for

l(θ) − l(θn) ∈ Ln,δ , P{l(θ) − l(θn)}2 ≤ K10(log n)2(log log n)6 d(θ , θn)2 ≤
K10(log n)2(log log n)7δ2 for some K10 > 0. Then, by Lemma 3.4.2 of van der Vaart
and Wellner (1996), we have

E‖√n(Pn − P)‖Ln,δ

� ˜J[ ]
{

K10 log n(log log n)7/2δ,Ln,δ, L2(P)
}

×
[

1 +
˜J[ ]
{

K10 log n(log log n)7/2δ,Ln,δ, L2(P)
}

(log n)2(log log n)7δ2
√

n
log log n

]

� φn(δ), (S9)

where φn(δ) = m1/2
n (log n)3/2 (log log n)21/4δ + mnn−1/2 log n(log log n)9/2. One

can easily see that φn(δ)/δ is decreasing in δ.
Let rn = nmin{qν, (1−ν)/2}/{(log n)3/2 (log log n)21/4}. Then, we have rn � δ−1

n
and r2n φn(1/rn) � n1/2. Because Pnl(̂θn) ≥ Pnl(θn), dn(̂θn, θn) ≤ dn(̂θn, θ0)

+dn(θn, θ0) → 0 in probability, and that (S8) and (S9) hold, we conclude that
rndn(̂θn, θn) = Op(1) by Theorem 3.4.1 of van der Vaart and Wellner (1996). Thus,
rndn(̂θn, θ0) ≤ rndn(̂θn, θn) + rndn(θn, θ0) ≤ Op(1) + o(1) = Op(1).

To show that̂θn is consistent under the supremum norm, note that

‖̂λn − λn‖∞ =
∥

∥

∥

∥

∥

mn
∑

k=1

(γ̂k − γnk)bk(t)

∥

∥

∥

∥

∥

∞
≤

mn
∑

k=1

|γ̂k − γnk | ‖bk‖∞ ≤ m1/2
n ‖γ̂ − γ n‖,

where γ̂ = (γ̂1, . . . , γ̂mn )
T and γ n = (γn1, . . . , γn,mn )

T. By Theorem 5.2 of de Boor

(1976), ‖γ̂ − γ n‖ � m1/2
n ‖̂λn − λn‖L2[0,ζ ] = Op

{

nν/2(log log n)1/2r−1
n

}

. Therefore,
‖̂λn −λ0‖∞ ≤ ‖̂λn −λn‖∞ +‖λn −λ0‖∞ = Op

{

nν(log log n)1/2r−1
n

}+ O(n−qν) =
op(1), since ν < 1/3 and q ≥ 2.

Let̂θ
∗
n = argmaxθ∈Θ∗

n
Ln(θ), where Θ∗

n = A × B∗
n , and

B∗
n =

{
mn
∑

j=1

γ j b j : M−1 ≤ γ j ≤ M for j = 1, . . . , mn

}
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for some large enough positive constant M . Following similar arguments as the above,
we can show that ρnd(̂θ

∗
n, θ0) = Op(1) with ρn = nmin{qν,(1−ν)/2}. Because ‖̂λn −

λ0‖∞ = op(1),̂θn and̂θ
∗
n are asymptotically equivalent, that is, Pr(̂θn = ̂θ∗

n) → 1
as n → ∞. We conclude that ρnd(̂θn, θ0) = Op(1), which completes the proof. ��

Proof of Theorem 2 Let fS(t;α, r) = αert exp
{−∫ t

0 αers ds
}

denote the density func-
tion of the infection time S, and FS(t;α, r) = ∫ t

0 fS(s;α, r) ds = 1 − exp
{ −

∫ t
0 αers dt

}

denote the distribution function of S. The score function for ξ is

lξ (ξ , λ) =
⎛

⎝

lβ(ξ , λ)

lα(ξ , λ)

lr (ξ , λ)

⎞

⎠

with

lβ(ξ , λ) = 1

L(θ)

[

1

FS(U ; α, r)

∫ min(E,U )

0
exp
{

XTβ − Λ(E − s)eX
Tβ
}

[

Δλ(E − s) − λ(E − s)ΔeX
TβΔΛ(E − s)

]

fS(s; α, r) ds

]

X

lα(ξ , λ) = 1

L(θ)

[ ∫ min(E,U )

0
λ(E − s)ΔeX

TβΔ exp
{

−Λ(E − s)eX
Tβ
} ∂

∂α

{

fS(s; α, r)

FS(U ; α, r)

}

ds

]

lr (ξ , λ) = 1

L(θ)

[ ∫ min(E,U )

0
λ(E − s)ΔeX

TβΔ exp
{

−Λ(E − s)eX
Tβ
} ∂

∂r

{

fS(s; α, r)

FS(U ; α, r)

}

ds

]

.

In addition, for h ∈ L2[0, ζ ], the score function forλ along the submodelλε,h = λ+εh
is

lλ(ξ , λ)[h] = 1

L(θ)

[

1

FS(U ;α, r)

∫ min(E,U )

0
exp
{

XTβ − Λ(E − s)eX
Tβ
}

{

Δh(E − s) − λ(E − s)ΔeX
TβΔ

∫ E−s

0
h(u) du

}

fS(s;α, r) ds

]

.

For a vector of functions h = (h1, . . . , h p+2)
T, lλ(ξ , λ)[h] denotes (lλ(ξ , λ)[h1],

. . . , lλ(ξ , λ)[h p+2])T. Let h∗ be the least-favorable direction, a (p + 2)-dimensional
vector with components in L2[0, ζ ], such that

l∗λ lλ[h∗] = l∗λ lξ , (S10)

where lξ and lλ[h∗] are evaluated at (ξ0, λ0), and l∗λ is the adjoint operator of lλ.
We will show the existence of h∗ later. From (S10), we can see that each component
of h∗ is continuously differentiable under conditions (C1) and (C3). Therefore, there
exists h∗

n ∈ B p+2
n such that ‖h∗

n − h∗‖∞ = O(n−ν). Since Pn lλ(̂ξn,̂λn)[h∗
n] = 0 and

Plλ(ξ0, λ0)[h∗ − h∗
n] = 0, we have
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Pn lλ(̂ξn,̂λn)[h∗]
= Pn lλ(̂ξn,̂λn)[h∗] − Pn lλ(̂ξn,̂λn)[h∗

n]
= (Pn − P)lλ(̂ξn,̂λn)[h∗ − h∗

n] + P{lλ(̂ξn,̂λn)[h∗ − h∗
n] − lλ(ξ0, λ0)[h∗ − h∗

n]}.

By the mean-value theorem and that ν > 1/{2(q + 1)}, the second term on the right-
hand side above is Op[n−νn−min{qν,(1−ν)/2}] = op(n−1/2).Wewill show later that the
first term is op(n−1/2). Thus, Pn lλ(̂ξn,̂λn)[h∗] = op(n−1/2). Since Pn lξ (̂ξn,̂λn) =
Plξ (ξ0, λ0) = Plλ(ξ0, λ0)[h∗] = 0, we have

(Pn − P)lξ (̂ξn,̂λn) = −{Plξ (̂ξn,̂λn) − Plξ (ξ0, λ0)
}

(Pn − P)lλ(̂ξn,̂λn)[h∗] = −{Plλ(̂ξn,̂λn)[h∗] − Plλ(ξ0, λ0)[h∗]}+ op(n
−1/2).

Further, note that d(̂θn, θ0)
2 = op(n−1/2) if 1/(4q) < ν < 1/2. We apply the Taylor

series expansion about (ξ0, λ0) to the right-hand sides of the above two equations and
obtain

(Pn − P)lξ (̂ξn,̂λn) = −Plξξ (̂ξn − ξ0) − Plξλ[̂λn − λ0] + op(n
−1/2) (S11)

(Pn − P)lλ(̂ξn,̂λn)[h∗] = −Plλξ [h∗](̂ξn − ξ0) − Plλλ[h∗,̂λn − λ0] + op(n
−1/2),

(S12)

where lξξ is the derivative of lξ with respect to ξ , lξλ[h] is the derivative of lξ along
the submodel λε,h = λ + εh, lλξ [h] is the derivative of lλ[h] with respect to ξ , and
lλλ[h1, h2] is the derivative of lλ[h1] along the submodel λε,h2 = λ + εh2. All of
these derivatives are evaluated at (ξ0, λ0). From (S10), we have Plλλ[h∗,̂λn − λ0] =
Plξλ[̂λn − λ0].

Thus, taking difference of (S11) and (S12) yields

√
n(Pn − P){lξ (̂ξn,̂λn) − lλ(̂ξn,̂λn)[h∗]}
= P

{

(lξ − lλ[h∗])(lξ − lλ[h∗])T}√n(̂ξn − ξ0) + op(1),

where lξ − lλ[h∗] is evaluated at (ξ0, λ0). We will show that the matrix I(ξ0) ≡
P
[{lξ − lλ[h∗]}{lξ − lλ[h∗]}T] is invertible, and lξ (̂ξn,̂λn) − lλ(̂ξn,̂λn)[h∗] belongs

to a Donsker class and converges in the L2(P)-norm to lξ − lλ[h∗]. It then follows
that

√
n‖̂ξn − ξ0‖ = Op(1) and

√
n(̂ξn − ξ0) = I(ξ0)

−1√n(Pn − P)(lξ − lλ[h∗]) + op(1),

which yields the desired result by the central limit theorem.
It remains to show that (i) the least favorable direction h∗ satisfying (S10) exists;

(ii) the matrix I(ξ0) ≡ P
{

(lξ − lλ[h∗])(lξ − lλ[h∗])T} is invertible; (iii) lξ (̂ξn,̂λn)−
lλ(̂ξn,̂λn)[h∗] belongs to a Donsker class and converges in the L2(P)-norm to lξ −
lλ[h∗]; and (iv) (Pn − P)lλ(̂ξn,̂λn)[h∗ − h∗

n] = op(n−1/2), where h∗
n ∈ B p+2

n such
that ‖h∗

n − h∗‖∞ = O(n−ν).
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To show (i), we consider the linear operator Γ = l∗λlλ from L2[0, ζ ] to itself. We

equip L2[0, ζ ] with an inner product 〈h1, h2〉 = ∫ ζ

0 h1(t)h2(t) dt . In addition, we
define a seminorm on L2[0, ζ ] as ‖h‖Γ = 〈Γ (h), h〉1/2. We first show that ‖ · ‖Γ is in
fact a norm. If ‖h‖Γ = 0, then P{lλ[h]2} = 〈Γ (h), h〉 = 0. It follows that lλ[h] = 0
almost surely, which yields

1

FS(U ;α0, r0)

∫ min(E,U )

0
exp
{

XTβ0 − Λ0(E − s)eX
Tβ0
}

×
{

Δh(E − s) − λ0(E − s)ΔeX
Tβ0Δ

∫ E−s

0
h(u) du

}

fS(s;α0, r0) ds = 0.

Setting U → 0, we have

exp
{

XTβ0 − Λ0(E)eX
Tβ0
}

{

Δh(E) − λ0(E)ΔeX
Tβ0Δ

∫ E

0
h(u) du

}

= 0.

Setting Δ = 1 and taking integration with respect to E , we obtain
∫ E
0 h(u) du = 0

almost surely, which implies h(t) = 0 for t ∈ [0, ζ ]. Therefore, ‖ · ‖Γ is a norm. It
is easy to see that ‖h‖Γ ≤ K1〈h, h〉1/2 for some K1 > 0. By the bounded inverse
theorem in the Banach space, we have 〈h, h〉1/2 ≤ K2‖h‖Γ for some K2 > 0, that is,
〈Γ (h), h〉 ≥ K2〈h, h〉. By the Lax-Milgram theorem, the solution h∗ to (S10) exists.

Nowwe prove (ii). If the matrix I(ξ0) is singular, then there exists a nonzero vector
w = (wT

β,wα,wr )
T such thatwT

P
{

(lξ −lλ[h∗])(lξ −lλ[h∗])T}w = 0, which implies

that the score function along the submodel ξ ε,w = ξ0+εw and λε,wTh∗ = λ0+εwTh∗

is zero almost surely. Decompose h∗ = (h∗T
β , h∗

α, h∗
r )

T. Setting U → 0, we have

exp
{

XTβ0 − Λ0(E)eX
Tβ0
}

{

Δ˜h(E) − λ0(E)ΔeX
Tβ0Δ

∫ E

0

˜h(u) du

}

= 0,

where˜h(t) = wT
β{λ0(t)X + h∗

β(t)}. Set Δ = 1, and take integration with respect to

E . We obtain
∫ E
0
˜h(u) du = 0 with probability one. Therefore,

∫ t
0
˜h(u) du = 0 for

t ∈ [0, ζ ], which implies that wT
βX + wTh∗

β(t)/λ0(t) = 0. By condition (C2), we
have wβ = 0. Similarly as in the proof of Lemma 1, we can show that wα = wr = 0.
Thus, I(ξ0) is invertible.

To show (iii), we consider the classes Gξ = {lξ (ξ , λ) : ξ ∈ A, λ ∈ Ψ } and
Gλ = {lλ(ξ , λ)[h] : ξ ∈ A, λ ∈ Ψ , h ∈ BVω[0, ζ ]}, where Ψ = {λ ∈ L2[0, ζ ] :
1/M ≤ λ ≤ M and ‖λ‖TV ≤ C}, ‖ · ‖TV denotes the total variation norm, BVω[0, ζ ]
denotes the set of all functions on [0, ζ ] that are of total variation bounded by ω, and
M , C and ω are positive constants. In the proof of convergence rate, we have shown
that ‖̂λn − λ0‖∞ = op(1). Further note that

‖̂λn − λ0‖TV ≤ ‖̂λn − λn‖TV + ‖λn − λ0‖TV
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≤
mn
∑

k=1

|γ̂k − γ0k | ‖b′
k‖∞ + o(1)

� m3/2
n ‖γ̂ − γ 0‖ + o(1),

where b′
k is the derivative of bk . If q > 2 and ν < 1/5, then m3/2

n ‖γ̂ − γ 0‖ =
Op[n2ν−min{qν,(1−ν)/2}] = op(1). Thus, Pr(̂λn ∈ Ψ ) → 1 as n → ∞. From (S10),
we can see that each component of h∗ is continuously differentiable and thus belongs
to BVω[0, ζ ]. If we can show that Gξ and Gλ are Donsker, then the first part of (iii)
follows. To show that Gξ is Donsker, we derive its bracketing number. By the mean-
value theorem, we can obtain that for any (ξ1, λ1) ≡ (β1, α1, r1, λ1) and (ξ2, λ2) ≡
(β2, α2, r2, λ2) with ξ1, ξ2 ∈ A and λ1, λ2 ∈ Ψ ,

|lξ (ξ1, λ1) − lξ (ξ2, λ2)| � ‖β1 − β2‖ + |α1 − α2| + |r1 − r2| + ‖λ1 − λ2‖L2[0,ζ ].

Note that the compact set A can be covered by K3ε
−(p+2) number of ε-brackets

for some K3 > 0. Also, by Example 19.11 of van der Vaart (1998), we have
N[ ](ε, Ψ , L2[0, ζ ]) ≤ eK4/ε for some K4 > 0. Therefore, N[ ]{ε,Gξ , L2(P)} �
ε−(p+2)eK5/ε for some K5 > 0, so log N[ ]{ε,Gξ , L2(P)} � ε−1, and further

J[ ]{1,Gξ , L2(P)} =
∫ 1

0

√

log N[ ]{ε,Gξ , L2(P)} dε �
∫ 1

0
ε−1/2 dε < ∞.

It follows from Theorem 19.5 of van der Vaart (1998) that Gξ is Donsker. Simi-
larly, we can show that Gλ is also Donsker. The L2(P) convergence of lξ (̂ξn,̂λn) −
lλ(̂ξn,̂λn)[h∗] follows from the mean-value theorem. Thus, (iii) is proved.

Lastly, (iv) follows from the Donsker property of Gλ by Corollary 2.3.12 of van der
Vaart and Wellner (1996). This completes the proof. ��
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