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Abstract—Polyanskiy [1] proposed a framework for the MAC
problem with a large number of users, where users employ a
common codebook in the finite blocklength regime. In this work,
we extend [1] to the case when the number of active users is
random and there is also a delay constraint. We first define a
random-access channel and derive the general converse bound.
Our bound captures the basic tradeoff between the required
energy and the delay constraint. Then we propose an achievable
bound for block transmission. In this case, all packets are
transmitted in the second half of the block to avoid interference.
We then study treating interference as noise (TIN) with both
single user and multiple users. Last, we derive an achievable
bound for the packet splitting model, which allows users to
split each packet into two parts with different blocklengths. Our
numerical results indicate that, when the delay is large, TIN is
effective; on the other hand, packet splitting outperforms as the
delay decreases.

I. INTRODUCTION

With the rapid development of Internet of Things, wireless
communications such as video streaming, smart home and
smart cities involve a massive number of devices with delay
constraints. The relationship between delay and energy in
wireless communications has attracted many research efforts.
Having a delay constraint can certainly guarantee the QoS of
end users. However, the desire of energy conservation is the
opposite of delay-sensitive communications. This calls for a
good understanding of the tradeoff between energy and delay.

On one hand, the fundamental limit on the energy efficiency
achievable for the MAC under a finite-blocklength (FBL)
constraint was derived in [1]. The framework in [1] has
recently been extended to the quasi-static fading channel [2],
multiple-antenna channel [3], [4], and a setup with common
alarm messages [5]. In the achievability bound of [1] and in
most of its extensions, the number of active users is assumed
to be fixed and known to the receiver. However, in practice
packets are often generated randomly and consequently the
number of active users at any time instant is random. An
achievability bound for the Gaussian MAC with unknown
number of active users was presented in [6]. The authors
considered both mis-detection and false alarms, which can
serve as a benchmark for unsourced multiple access with
random user activities. In our work, we loosen this constraint
and consider the case in which the number of active users is
a random variable but known to the receiver.

On the other hand, energy consumption of communica-
tions is becoming an increasing focus in next-generation
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communication systems. With the help of FBL theory, it is
possible to precisely analyze what is the actual energy needed
to meet a given delay constraint. The energy-delay tradeoff
for communication over fading channels has been studied
in [7]–[9]. An adaptive blocklength framework to minimize
the important quantity of end-to-end delay for the single-user
case was proposed in [10]. In [11], the authors employed
variable-length coding to jointly encode packets to obtain
an optimal reliability-latency tradeoff under variable-length
FBL coding. The authors of [12] studied the energy-delay
tradeoff between power control and link adaption based on
a Markov queuing model. The authors of [13] studied the
delay of rate adaptation systems with imperfect channel state
information (CSI), where FBL coding was used to reduce the
transmission delay. However, there is still no research work
on the theoretical performance limit for this problem.

To summarize, a new theoretical framework aiming to
address the tradeoff between delay constraints and energy
consumption in the FBL regime with random packet gener-
ation is still missing. This paper consists of three parts. In
part one, we first extend Polyanskiy’s bound [1] to the case
where the number of active users is random yet known to the
receiver. We derive a general converse bound with the tradeoff
between the required energy and the delay constraint. We then
assume that packets are transmitted in the last half of blocks
to avoid interference. We develop an achievable bound for the
Gaussian MAC under this assumption. In part two, we allow
packets to be transmitted at any time interval. In this case we
consider the achievability results for treating interference as
noise (TIN) with both single-user and joint decoding schemes.
Our results show that TIN performs well when the delay is
large. In part three, we develop a packet splitting model, which
allows users to split one packet into two different blocklengths.
Achievability bound shows that packet splitting outperforms
when the delay is small.

The remainder of the paper is organized as follows. In
Section II, we present our system model. We propose a general
converse random-coding bounds for the Gaussian MAC with
a delay constraint in Section III. The achievable bound for
block transmission is developed in Section IV. In Section
V, we consider the continuous user arrival case and study
achievability bounds for the TIN model. In Section VI, we
evaluate the packet splitting model. We present numerical
results and discussions in Section VII. Section VIII concludes
the paper.



II. SYSTEM MODEL

Consider a MAC channel with Ktotal users subject to a strict
delay constraint. At each point in time tTp, t ∈ Z a user
generates a packet with probability Pp. Tp is the packet timing,
which we will later set to 1 without loss of generality. This
has to be decoded at time (t + d)Tp (d ∈ Z+). An (M,d, ϵ)
code consists of the following

• An encoder f : [M ] → X d.
• A decoder g : Yd → 2M ; the decoder at time t outputs

the list of messages that were transmitted at time t− d.
Following [1] we only care about obtaining a list of messages,
not from which transmitters they are transmitted. Additionally,
all users employ the same codebook. Correspondingly there
are two type of errors: first is E′

j ≜ {Mj(t − d) /∈ g(y(t))},
the probability that a transmitted message is not in the list
of decoded messages. Second is the possibility that two
transmitters transmitted the same message at the same time,
which results in a collision since they use the same codebook;
this type of error depends on exactly what type of transmission
scheme is used, but as argued in [1] the probability of this type
of error is small. We call the total error probability Ej . We
now have the condition that the average (per-user) probability
of error (PUPE) satisfies

1

Ktotal
EKa

Ka∑
j=1

P(Ej)

 ≤ ϵ. (1)

In general, packets will cause interference to each other.
Consider the situation at time t. Assume that messages trans-
mitted before time t− d have been decoded correctly, except
a small fraction. The contribution from these messages can
therefore be subtracted from the received signal, and will
not cause interference. The decoder has to decode messages
transmitted at time t − d. Messages transmitted at time
t − d < t′ ≤ t will then cause interference. We consider two
extreme cases of this situation. In the first block transmission
scheme, interference is completely avoided. The relationship
between n and d is n = L · d, where L is the bandwidth. In
the TIN and packet splitting scheme, no attempt is made to
manage interference. Any user can transmit a packet at any
time, which leads to n = 2 · L · d.

III. GENERAL CONVERSE BOUND

In order to find a converse, we consider a simplified system
model. All users think the system is subject to a delay
constraint d so that they have to finish transmission after time
d. However, the receiver is allowed to wait till time T to
decode all packets transmitted prior to T − d. We let T → ∞
to avoid endpoint affects. This gives a converse, as the receiver
is still allowed to decode a packet immediately, resulting in

Theorem 1. Every (M,n,Ktotal, Pp, ϵ, P ) random-access
code must satisfy

n

2
E[log 2π(1 + PB)]− 1

2
log(2π) ≥ MH

(
E[Ka]

M

)

−E[Ka](ϵ log
Me

ϵE[Ka]
+H(ϵ)) (2)

Here: H(x) = x log 1
x + (1 − x) log 1

1−x , and B ∼ B(d ∗
Ktotal, Pp), Ka ∼ B(Ktotal, Pp)

Proof. The proof is based on [14]. At each point in time t an
active user transmits one of M messages. Let U ∈ {0, 1}MT ,
where Ut,i = 1 if message number i is transmitted at time
t. Similarly Ût,i = 1 if the decoder outputs message i for
time t. We let d(·, ·) denote Hamming distance. Let KT =∑T

t=1 Ka(t). We can then write the error criterion (1) as

lim
T→∞

1

T
E[d(U, Û)] ≤ lim

T→∞

2

T
E[KT ]ϵ = 2E[Ka]ϵ (3)

where U ∼ Uniform
[(

TM
KT

)]
. We now have the Markov chain

U → XT → Y T → Û (4)

where at each point in time the received signal is

Yi =

i∑
t=i−d+1

Xt,1 +Xt,2 + · · ·+Xt,Ka(t) + Z (5)

here each Xt,i and Z are actually vectors of length L, with
each component of Xt,i subject to a power constraint P . This
is a channel with state Ka(t) and memory d. We can bound
the capacity as

I(XT ;Y T |KT
a ) = h(Y T |KT

a )− h(Y T |XT ,KT
a ) (6)

= h(Y T |KT
a )−

T∑
i=1

h(Yi|Xi) (7)

≤
T∑

i=1

h(Yi|KT
a )− h(Yi|Xi) (8)

= Th(Yi|KT
a )− Th(Yi|Xi). (9)

It is clear that h(Yi|KT
a ) is maximized if the components of

Xt,i are iid Gaussian with power P . Then

h(Yi|KT
a ) =

1

2
E[log 2πe(1 + PB)] (10)

where the expectation is over B ∼ B(d ∗Ktotal, Pp).
We now consider constraint (3). We need to find

minE[I(U ; Û)] subject to the constraint. Different from [14],
we have the expectation over KT . However, from [14] we still
have

H(U |Û) ≤ ϵE[KT ] log
eMT

ϵEE
+ E[KT ]H(ϵ) (11)

and therefore the rate corresponding to ϵ is bounded by

R(ϵ) ≥ 1

T
E
[
log

(
MT

KT

)]
−
(
E[Ka] log

eM

ϵE[Ka]
+ E[Ka]H(ϵ)

)
. (12)
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Fig. 1: General Converse

According to [15, Section 13.2],

log

(
MT

KT

)
≥ MTH

(
KT

MT

)
+

1

2
log

MT

8KT (MT −KT )
(13)

By the LLN, KT

T

P→ E[Ka], and since the argument is
uniformly integrable, we also have

lim
T→∞

1

T
E
[
log

(
MT

KT

)]
≥ MTH

(
E[Ka]

M

)
. (14)

IV. BLOCK TRANSMISSION

In block transmission, transmitters send packet only during
the second half of intervals and are then jointly decoded so
as to completely avoid interference (see Fig.2). All packets
that were generated between t0 and t0+Ld/2 are transmitted
at time t0 + Ld/2, and decoded at time t0 + Ld. Hence, the
expectation of the number of active users is Ktotal · Pp · d/2.
The energy critically depends on the two parameters Ktotal

and d, and the aim is to find the energy per bit required for
transmission.

A. An Achievability Bound

We first give a random-coding achievability bound.

Theorem 2. (Random-coding bound with random Ka): Fix
P ′ < P , there exists an (M,n, d,Ktotal, Pp, ϵ) random-access
code satisfying the power constraint P and

ϵ ≤ 2

dKtotal

KT∑
K=0

P(KT = K)(
K∑
t=1

t

K
p(t) + p0), (15)

where

p0 =
2

dM

(
KT

2

)
+KTP[

1

n

n∑
j=1

Z2
j >

P

P ′ ], (16)

p(t) = e−nE(t), (17)

E(t) = max
ρ,ρ1∈[0,1]

−ρρ1tR1 − ρ1R2 + E0(ρ, ρ1), (18)

E0(ρ, ρ1) = ρ1a+ ln(1− ρ1P2b), (19)

with a = ρ ln(1 + P ′tλ) + ln(1 + P ′tµ), b = ρλ − µ
1+P ′tµ ,

µ = ρλ
1+P ′tλ , λ = P ′t−1+

√
D

4(1+ρρ1)P ′t , D = (P ′t− 1)2 + 4P ′t 1+ρρ1

1+ρ ,
R1 = 1

n log dM/2− 1
nt log(t!), and R2 = 1

n log
(
KT

t

)
.

Proof. We generate the Md/2 codewords ci · · · cMd/2 ∼
N (0, P ′) with power P ′ < P , each user before transmitting
ci makes sure that ||ci||2 ≤ nP . The decoder receives

Y = c1 + c2 + · · ·+ cKT
+ Z. (20)

Now we define the sum-codewords as c(S) =
∑

i∈S ci. Then
the maximum likelihood decoder is

Ŝ = argmin
S

||c(S)− Y ||. (21)

The error rate is defined as per-user (PUPE) as in (1). We
assume t of KT messages are mis-decoded, which is the same
event as when we let S0 ⊂ [KT ] of messages be replaced with
S′
0 ⊂ {KT +1, · · · , dM/2} and |S0| = |S′

0| = t. The received
symbol becomes

Y = c([KT ]\S0) + c(S0) + Z. (22)

We can define an error event as F (S0, S
′
0) = {||c(S0) −

c(S′
0) + Z|| < ||Z||}. Then,

P[t-misdecoded] ≤ P[
⋃

S0∈(KT
t )

⋃
S′
0∈(

dM/2−KT
t )

F (S0, S
′
0)].

(23)

Next, given c(S0) and Z, it holds for every λ > − 1
2tP ′ that

P[F (S0, S
′
0)|c(S0), Z] ≤ eλ||Z||2E[e−λ||c(S0)−c(S′

0)+Z||2 ]

= (1 + 2λtP ′)−n exp (λ||Z||2 − −λ||c(S0) + Z||2

1 + 2λtP ′ ), (24)
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Fig. 2: The Block Transmission

where the inequality in (24) follows from the Chernoff bound
and by computing the expectation using

E[e−λ||
√
aZ+u||22 ] = (1 + 2λa)−n/2 exp (− λ||u||22

1 + 2λa
) (25)

for ∀λ > − 1
2a , Z ∼ N (0, 1).

Then, we apply Gallager’s ρ-trick for any ρ ∈ [0, 1] to obtain

P[F (S0)|c(S0), Z] ≤
(
dM/2−KT

t

)ρ

(1 + 2λtP ′)−nρ/2

· exp (λρ(||Z||2 − ||c(S0) + Z||2

1 + 2λtP ′ )). (26)

Taking the expectation over c(S0) using (25) and Gallager’s
ρ-trick for any ρ1 ∈ [0, 1], we have

P[∪F (S0)] ≤
(
KT

t

)ρ1
(
dM/2−KT

t

)ρρ1

e−nρ1a(1− ρ1b)
−n

= p(t). (27)

V. TIN

The disadvantage of block transmission is that packet length
is limited to d/2. In the second transmission method, each user
transmits a packet as soon as it becomes available and the
packet length therefore can be the full length d. As mentioned
above, messages transmitted at time t − d < t′ ≤ t will then
cause interference; we treat this interference as noise (TIN).

A. Single-user Decoding

In single-user decoding, each packet is decoded separately
while treating all other packets as interference. We include this
as a benchmark.

Theorem 3. (Single User Decoding TIN Model) Consider a
single user decoding TIN model with random Ka, the error
of probability ϵ for a given power P is bounded by

ϵ ≤ 2√
n
(
log 2√
2π

+ 2B1) +Q(B2) +B1, (28)

where

B1 =

E[ 15K3
aP

3

8(1+KaP )3 ]−
3
8E[

KaP
1+KaP

]E[ K2
aP

2+4
(1+KaP )2 ] + E3[ KaP

1+KaP
]

8
√
n/2(E[ K2

aP
2+4

(1+KaP )2 ]− E2[ KaP
1+KaP

])3/2
,

B2 =

√
n/2E[ KaP

1+KaP
]− log dM−1

2√
n/2(E[ K2

aP
2+4

(1+KaP )2 ]− E2[ KaP
1+KaP

])1/2
,

Proof. Consider a single user was transmitted at time t, the
received signal can be equivalently expressed as

Yi = Xi + Z + Zi
I , (29)

where Z ∼ N (0, 1), ZI ∼ N (0, PKi
I) with Ki

I =
∑i

j=1 K
j
a.

Kj
a ∼ B(Ktotal, Pp) denotes the number of active users in the

jth packet.
We consider the average error probability of the TIN model

from the dependence testing bound [16]

ϵ ≤ P[i(X;Y ) ≤ log
dM − 1

2
]

+
dM − 1

2
P[i(X;Y ) > log

dM − 1

2
], (30)

The information density can be calculated as

i(xn; yn) = log
(2π(1 +KIP ))−

n
2 exp (− ||yn−xn||2

2(1+KIP ) )

(2π(1 +KIP + P ))−
n
2 exp (− ||yn||2

2(1+KIP+P ) )

=

n∑
j=1

WT j , (31)

First, in order to use the central limit theorem, we need to
show that the information density satisfies the Lindenberg-
Feller condition as follows

lim
n→∞

∑n
j=1 E|WT j − E(WT j)|4

(
∑n

j=1 Var(WT j))2
= 0, (32)

where the calculation is based on E[g(X)] ≤ 1, with g(X) =
1

Xn , n = 2, 3, · · · and X ∼ B(Ktotal, Pp).
To upper bound the probability of error, we derive the Berry-

Esseen ratio as follows

B1 =
T

Var3/2
=

∑n
j=1 E[|WT j − E[WT j ]|3]
(
∑n

j=1 Var[WT j ])
3
2

. (33)

By the Berry-Esseen theorem [16], the first part of the
dependence testing bound (30) can be bounded as

P[
n∑

j=1

WT j ≤ log
dM − 1

2
] ≤ Q(B2) +B1. (34)
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The second part can be expressed as

dM − 1

2
P[

n∑
j=1

WT j > log
dM − 1

2
] ≤ 2√

n
(
log 2√
2π

+ 2B1).

(35)

Finally, by substituting (34) and (35) into (30), we obtain the
final result.

B. Joint Decoding

In joint decoding, messages transmitted at the same time
are jointly decoded; only those transmitted later are treated as
interference.

Theorem 4. (Joint Decoding TIN Model) Fix P ′ < P , there
exists an (M,n, d,Ktotal, Pp, ϵ) random-access code with Ka-
random number of active users satisfying the power constraint
P and

ϵ ≤ 1

dKtotal

KT∑
K=0

P(KT = K)(
K∑
t=1

t

K
A(t)c(t)−

1
2 + p0),

(36)

where

p0 =

(
KT

2

)
dM

+KTP[
1

n

n∑
j=1

Z2
j >

P

P ′ ], (37)

A(t) = max
ρ,ρ1∈[0,1]

(
KT

t

)ρ1
(
dM −KT

t

)ρρ1

(1 + 2λtP ′)−ρρ1
n
2 (1 + 2tP ′µ)−ρ1

n
2 , (38)

c(t) = max
ρ,ρ1∈[0,1]

(1− 2γ)n − 2γnKtotalPp(1− 2γ)n−1

+ 4γ2n(n− 1)

2
KtotalPp(1− Pp)(1− 2γ)n−2, (39)

µ = ρλ
1+2tP ′λ , and γ = λρρ1 − µρ1

1+2tP ′µ .

Proof. Consider that c1, · · · , cKT
were transmitted at time t,

the received signal can be equivalently expressed as

Yi =

KT∑
X + Z + Zi

I , (40)

where Z ∼ N (0, 1) and Zi
I ∼ N (0, PKi

I) follows from (29).

We can similarly rewrite the probability of error event like
in Section IV as

P[F (S0, S
′
0)|c(S0), Z, ZI ]

≤ eλ||Z+ZI ||22E[e−λ||c(S0)−c(S′
0)+Z+ZI ||22 ]

= eλ||Z+ZI ||2(1 + 2λtP ′)−
n
2 exp (−λ||c(S0) + Z + ZI ||22

1 + 2λtP ′ ).

Next, we use Gallager’s ρ-trick for any ρ ∈ [0, 1] to get

P[F (S0)|c(S0), Z, ZI ]

≤
(
dM −KT

t

)ρ

(1 + 2λtP ′)−ρn
2

· exp (λρ(||Z + ZI ||22 −
||c(S0) + Z + ZI ||22

1 + 2λtP ′ )). (41)

Applying (25) again to calculate the expectation of c(S0), we
get

P[F (S0)|Z,ZI ]

≤
(
dM −KT

t

)ρ

(1 + 2λtP ′)−ρn
2 (1 + 2tP ′µ)−

n
2

· exp (λρ||Z + ZI ||22(1−
1

(1 + 2λtP ′)(1 + 2tP ′µ)
)), (42)

where µ = ρλ
1+2tP ′λ . Employing Gallager’s ρ-trick for any

ρ1 ∈ [0, 1] and (25) again, we have

P[
⋃
S0

F (S0)] ≤ A(t)E[
n∏

k=1

(1− 2γ − 2γKk
I )

− 1
2 ], (43)

where γ = λρρ1 − µρ1

1+2tP ′µ . Finally, we calculate the expec-
tation and upper bound it to have the result.

VI. PACKET SPLITTING

The advantage of TIN is that the packet length can be
longer than d/2, but noise quickly deteriorates the performance
as the spectral efficiency increases (see Fig. 5 later). We
therefore consider a transmission scheme that can be seen
as a compromise between TIN and block transmission. The
transmission system we consider is shown in Fig. 4. An active
user separately transmits its message in two parts. The first
part of the message is encoded to a variable length packet
of length dm. The second part of the message is transmitted
with the blocklength d/2. The number of information bits
needs to be allocated differently in each half. Based on dm,
to make it simple the number of information bits is evenly
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L
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2
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Fig. 4: The Packet Splitting Model

divided, i.e. the first half transmits k · dm

d bits. This is not
necessarily the best solution. However, compared with block
transmission, a packet can be transmitted over longer than d/2,
while the receiver can jointly decode all packets without any
interference.

Theorem 5. (Packet Splitting Model) The error of probability
ϵ for a given power P is bounded by

ϵ ≤ G(t1) +
dmM − 1

2
G(t2) (t1 < 0, t2 > 0) (44)

Proof. The information density can be calculated as

i(xn; yn) =

n/2∑
i=1

1

2
log σ2

Yi
+

1

2
log e · ( y

2
i

σ2
Yi

− Z2
i ) (45)

where Zi ∼ N (0, 1),

σ2
Yi

=


1 + (K1

a)
2P i = 1 ∼ L

1 + (K1
a +K2

a)
2P i = L ∼ 2L

...
1 + (

∑dm

i=1 K
i
a)

2P i = (dm − 1)L ∼ dmL
(46)

and

yi =


K1

a

√
P + Z j = 1 ∼ L

(K1
a +K2

a)
√
P + Z j = L ∼ 2L

...∑dm

i=1 K
i
a

√
P + Z j = (dm − 1)L ∼ dmL

(47)
To evaluate the distribution of i(X;Y ), a number of other
inequalities must be used. Applying 1 + x ≤ ex, we have

i(X;Y ) ≤
n/2∑
i=1

1

2
(

i∑
j=1

Kj
a)

2P

− 1

2
log e · [

n/2∑
i=1

Z2
i −

n/2∑
i=1

2Zi(
i∑

j=1

Kj
a)
√
P − n

2
].

(48)

Now, using the Chernoff bound, we can obtain a bound of the
left tail, for t1 < 0

P[i(X;Y ) ≤ log
dmM − 1

2
] ≤ M(t1)(

dmM − 1

2
)−t1 = G(t1)

(49)

and on the right tail, for t2 > 0

P[i(X;Y ) > log
dmM − 1

2
] ≤ M(t2)(

dmM − 1

2
)−t2 = G(t2).

(50)

The moment-generating function M(t) can be calculated as

M(t) = (1 +
1

2
tPKtotalPp(1− Pp)(

dm∑
d=1

d!)) · (e tn
4 )

· (e− t
2 (1− 2t)−

n
4 ). (51)

Plugging (49) and (50) into the dependence testing bound (30),
we have the final result.

VII. NUMERICAL RESULTS

In this section we plot some numerical results for the bounds
developed above. In Fig. 5 we compare various strategies in
the following setting: Ka ∼ B(Ktotal, Pp) with Ktotal = 3000
and Pp = 0.01. Each active users is sending k = 100 bits and
the target per-user probability of error is 0.1. The blocklength
n varies of delay d as n = Ld in block transmission,
n = 2Ld for the TIN and n = (dm + d/2)L with packet
splitting. Specifically, we set bandwidth L to 3000 in our
simulations. We use the average energy per bit Eb

N0
= nP

2k
as the performance measure.

The general converse gives the lower bound for all different
schemes. We observe that for large delay, TIN outperforms
block transmission, but for smaller delay the energy per bit
rapidly increases. This is not surprising as the interference
then becomes much larger than the noise. It is seen that the
energy increases very rapidly when the delay is small and
packet splitting is significantly better than block transmission.
In principle, packet splitting should always be better than block
transmission. In fact, if the first half transmit zero bits, the



scheme is the same as block transmission. However, the reason
it is worse when the delay is large is because the way we split
the packets is suboptimal. We leave the optimal way to split
information bits to future work.
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Theorem 1: General Converse
Theorem 2: Block Transmission(Ach)
Theorem 3: TIN Single User decoding
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Fig. 5: The tradeoff between the energy per bit and the
delay constraint for the general converse bound and different
achievabletransmission schemes.

VIII. CONCLUSIONS

We investigated the tradeoff between the delay constraint
and energy consumption in the FBL regime when the number
of active users is random. We derived a general random-
coding converse bound for uncoordinated MAC. Our bound
can serve as a benchmark to assess the performance of
practical schemes. We also developed achievable bounds for
three different schemes: block transmission, TIN, and packet
splitting. Numerical results show that for uncoordinated MAC,
the TIN model outperforms when the delay is large whereas
the packet splitting model is better when the delay is relatively
small.

It is seen from Fig. 5 that there is still a large gap between
the general converse and the achievable performance of packet
splitting. The challenge is to devise transmission schemes that
can close this gap. This is what we will consider in future
works.
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