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AbstractÐWeakly-supervised Temporal Action Localization
(W-TAL) aims to train a model to localize all action instances
potentially from different classes in an untrimmed video, using
a training dataset that has video-level action class labels but
has no detailed annotations on the start and end timestamps of
action instances. We propose to solve the W-TAL problem from
the feature learning aspect, with a new architecture, termed F3-
Net, which includes (1) a Feature Weakening (FW) module that
can identify and randomly weaken either the most discriminative
action or the most discriminative background features over the
training iterations to force the network to precisely localize the
action instances in both discriminative and ambiguous action-
related frames, without spreading to the background intervals;
(2) a Feature Contextualization (FC) module that can infer the
global contexts among video segments and attentionally fuse them
with the local contexts from individual video segments to generate
more representative features; and (3) a Feature Discrimination
(FD) module that can highlight the most discriminative video
segments/classes corresponding to each class/segment, respec-
tively, for localizing multiple action instances from different
classes within a video. Experimental results on THUMOS14
and ActivityNet1.3 demonstrate the state-of-the-art performance
of our F3-Net, and the FW and FC are also effective plug-in
modules to improve other methods. This project will be available
at https://moniruzzamanmd.github.io/F3-Net/

Index TermsÐTemporal action localization, Feature weaken-
ing, Feature contextualization, Feature discrimination

I. INTRODUCTION

TEMPORAL action Localization, which localizes action

instances (i.e., time intervals) in untrimmed videos along

the temporal dimension, is one of the challenging video

understanding tasks. The methods with high performance are

under the fully-supervised setting, which requires the video-

level action class labels for each training video along with the

detailed temporal annotations (start and end time-stamps) of

each action instance within the training video [1], [2], [3], [4],

[5], [6], [7], [8], [9], [10], [11], [12], [13]. Since the fully-

supervised approach requires a lot of annotation efforts, re-

cently, Weakly-supervised Temporal Action Localization (W-

TAL) methods which learn to localize action instances in

untrimmed videos based on training datasets with only video-

level labels, have been developed [14], [15], [16], [17], [18].
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Challenges and motivation: The W-TAL task is challeng-

ing from a few aspects:

(1) Actions in ambiguous frames: Many W-TAL methods

have achieved good results in coarse localization [14], [19],

[20], [21], [22], but they remain unsatisfactory to locate the

complete time intervals of action instances. The main reason

comes from that, the networks look only at the highly discrimi-

native frames, but apart from the highly discriminative frames,

there are some ambiguous frames which are possible to

contain action instances and are overlooked by those weakly-

supervised networks. The action instances are supposed to be

completely localized in both highly discriminative intervals

and ambiguous intervals, without spreading to the background

intervals which contain unrelated frames, as shown in Fig. 1.

Therefore, the motivated research question is: how to design

a feature learning module that can identify and intentionally

weaken the most discriminative action and background fea-

tures so that the network can be enforced to discover the action

instances in both discriminative and ambiguous intervals for

the complete temporal action localization?

(2) Local and global contexts: Temporal contextual infor-

mation is important for the temporal action localization. The

most typical approach is to divide a video into short video

segments first, and then use a pre-trained network to extract

features from each segment independently, which refers to

the local contexts. However, this process neglects the global

contexts, which provide essential clues for the temporal action

localization. For example, as shown in Fig. 2, the ªLong Jumpº

action usually contains the ªrunningº and the ªjumpingº video

segments. Although these two kinds of video segments have

their distinct characteristics, they also share common features

considering the ªLong Jumpº action. Therefore, the research

question is: how to design a feature contextualization module

that can infer the global contexts between video segments

and fuse them with the local contexts from individual video

segments, generating more representative features for the

temporal action localization?

(3) Multi-class multi-instance temporal action localization:

An untrimmed video may contain multiple action instances

with different action class labels. After splitting the video

into segments, a video segment may contain multiple action

classes, and an action class may have multiple instances in

separated video segments. As shown in Fig. 3, the third

video segment contains both ªCricket Bowlingº and ªCricket

Shotº actions, and the ªCricket Bowlingº action has two

action instances in the first and third video segments, while
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Fig. 1. An illustration of background, ambiguous, and highly discriminative frames. The background frames are not related to the action. The ambiguous
frames are possible to contain action instances. The highly discriminative frames are highly related to the action class. It is expected to localize the action
instances in both highly discriminative and ambiguous action frames for the complete temporal action localization.

Fig. 2. An illustration of the local and global contexts. The local contexts
are extracted from each video segment independently, while the global
contexts are computed by exploiting the relationships between different video
segments. We introduce a feature contextualization module to attentionally
fuse both the local and global contexts into contextualized features for accurate
action localization in the temporal domain.

the ªcricket shotº action has two action instances in the

second and third video segments. Therefore, the motivated

research question is: how to design a feature discrimination

module that can highlight both the most discriminative video

segments corresponding to each action class, and the most

discriminative classes within each video segment, eventually

improving the performance of temporal action localization?

Our proposal and contributions: Our three research

questions to address the three corresponding challenges are

motivated from the feature learning perspective, leading to

a novel network architecture, termed F3-Net, which includes

Feature Weakening (FW), Feature Contextualization (FC), and

Feature Discrimination (FD) modules in a unified network, as

shown in Fig. 4. Our main contributions are four-fold:

• We introduce a new FW module that can identify and

randomly weaken either the most discriminative action

or the most discriminative background features over

the training iterations to force the network to precisely

localize the action instances in both discriminative and

ambiguous action-related frames, without spreading to the

background intervals.

Fig. 3. An illustration of the multi-class multi-instance temporal action
localization. Highlighting the discriminative video segments related to action
classes and the discriminative action classes within each video segment can
be useful for multi-class multi-instance temporal action localization.

• We present a new FC module that first explores the

correlative information between different segments in a

video to extract the global contexts, and then attentionally

fuses both the local and global contexts into more rep-

resentative contextualized features for accurate temporal

action localization.

• We introduce a new FD module that explicitly highlights

both the most discriminative video segments correspond-

ing to each action class, and the most discriminative

classes within each video segment, for localizing multiple

action instances from different classes within a video.

• Our F3-Net based on the three feature learning modules

outperforms all the related methods on the THUMOS14

and ActivityNet1.3 datasets, and we also validate that the

FW and FC modules are effective plug-in modules to

improve the performance of the previous methods.

II. RELATED WORKS

Different from action recognition [23], [24], [25], [26],

[27], [28], [29], [30], [31], [32], [33], [34], [35], [36], [37],

the temporal action localization task aims to localize action

instances with temporal boundaries. W-TAL methods address
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this problem without temporal annotations. From the aspects of

feature learning and pseudo-labeling strategy, we summarize

the W-TAL methods into four categories.

Feature weakening-related methods: The feature weak-

ening related methods first identify the most discriminative

features and then weaken them to pay more attentions to

less discriminative features for the complete temporal action

localization. Motivated by the object completeness modeling

in object detection task [38], [39], [40], Hide-and-Seek [41]

first hid random frame sequences to force the network to

discover different action parts for the action completeness

modeling. Recently, Step-by-Step Erasion [42] and ACM-

BANet [15] trained the network in multiple steps, where

during each training step, the network first identified the most

discriminative video segments, which were then intentionally

weakened to force the network to discover the action instances

from the remaining segments. However, it is difficult to set a

proper number of training steps, and the attention regions may

gradually expand to the background intervals as the number of

training steps increases, which significantly decreases the lo-

calization performance. To overcome these problems, we train

our network in a single step with a novel feature weakening

module that randomly weakens either the most discriminative

action or the background features over the training iterations

to force the network to precisely localize the action instances

in both discriminative and ambiguous action-related frames,

without spreading to the background intervals.

Note, the proposed Feature Weakening (FW) module may

seem to be conceptually similar to the Dropout regularization.

However, the Dropout regularization randomly zeros out the

hidden nodes of the neural network, while our FW identifies

and randomly weakens either the most discriminative action

or the background features to force the network to further

discover more action related frames in the ambiguous intervals.

Feature contextualization-related methods: Most of the

existing W-TAL methods [14], [19], [20], [22], [43] neglected

the global contexts and only utilized the local contexts for

the temporal action localization. The feature contextualization-

related methods aim to exploit both the local and global

contexts in a video, and then fuse them to generate more

representative contextualized features for the temporal action

localization. Recently, ContextLoc [44] modeled the local

and global contexts in a unified framework for the fully-

supervised temporal action localization. More recently, AUMN

[45] introduced a weakly-supervised temporal action localiza-

tion network that computes the relationships between different

segments in a video to extract the global contexts, which

are then fused with the local contexts by simply performing

the element-wise summation. However, the element-wise sum-

mation provides a fixed importance to the local and global

contexts during the fusion. Differently, we present a new fea-

ture contextualization module that first explores the correlative

information between different segments in a video to extract

the global contexts, and then learns attention weights on local

and global contexts to fuse them accordingly, to generate

more representative contextualized features for the accurate

temporal action localization.

Feature discrimination-related methods: The feature

discriminative-related methods learn to highlight the most

discriminative features by designing W-TAL networks with

attention mechanisms and different loss terms. UntrimmedNet

[19] proposed attention mechanisms to highlight the most

discriminative frames for the W-TAL task. STPN [20] intro-

duced a sparse temporal pooling network to focus on key

video segments. AutoLoc [22] introduced a contrastive loss

function based on the class activation sequence, and Paul

et al. [14] utilized pairwise video similarity constraints to

localize the discriminative video segments in the temporal

domain corresponding to each action class. 3C-Net [21]

utilized category, counting, and center losses to highlight

the class-wise discriminative video segments in untrimmed

videos. RPN [46] adopted a clustering loss and A2CL-PT [47]

employed a triplet loss to highlight the discriminative action

frames from the background frames. Recently, some works

[18], [48], [49] explicitly modeled the background class to

suppress the background frames for the W-TAL task. More

recently, FAC-Net [43] introduced a multi-branch architecture

to highlight the most discriminative video segments by main-

taining the foreground-action consistency. FTCL [50] designed

Fine-grained Sequence Distance (FSD) and Longest Common

Subsequence (LCS) contrasting objectives for the W-TAL task.

Although these methods achieve remarkable progress, they

only highlight the most discriminative video segments cor-

responding to each action class. However, as shown in Fig. 3,

an action class may have multiple instances in separated video

segments, and a video segment may contain multiple action

classes. Therefore, highlighting the most discriminative video

segments related to action classes and the most discriminative

action classes within each video segment can be very useful

for multi-class multi-instance temporal action localization. To

address this challenge, we design our feature discrimina-

tion module to highlight both the most discriminative video

segments corresponding to each action class, and the most

discriminative classes within each video segment.

Pseudo label-related methods: Pseudo label-related meth-

ods iteratively refine a W-TAL network by leveraging segment-

wise pseudo labels to distinguish the foreground and back-

ground segments. At first, the RefineLoc [51] introduced the

pseudo-labeling strategy in W-TAL, where the pseudo labels

were generated from the previous detection results to itera-

tively refine the action localization network. Later, different

methods tried to generate high-quality pseudo labels to refine

the W-TAL networks. For example, EM-MIL [52] utilized an

expectation-maximization framework to generate the pseudo

labels, while UGCT [17] generated the pseudo labels from the

modality collaborative learning and uncertainty estimation to

learn more robust attention weights. More recently, Huang et

al. [53] introduced a representative snippet summarization and

propagation framework to generate the pseudo labels. How-

ever, since the pseudo label-related methods usually generate

the initial pseudo labels from the Class Activation Scores

(CAS) of an existing W-TAL network, the performances of

these methods heavily relied on the quality of the CAS of that

W-TAL network.

In this paper, we propose to solve the W-TAL problem

from the feature learning aspect. Table I summarizes the in-
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TABLE I
INNOVATIONS OF OUR FEATURE WEAKENING, FEATURE CONTEXTUALIZATION, AND FEATURE DISCRIMINATION COMPARED TO RELATED METHODS.

Existing methods related to feature weakening Innovation of our feature weakening

Existing feature weakening-related methods (e.g., [15], [42])

trained the network in multiple steps. During each step, the

network first identified the most discriminative features, which

were then erased or weakened to force the network to discover

the action instances from the remaining features.

Limitation: It is difficult to set a proper number of training

steps to discover different complementary action segments for

different action classes, and the attention regions may gradu-

ally expand to the background intervals as the training steps

increase, which downgrades the localization performance.

We train our network in a single step with a novel feature

weakening module that randomly weakens either the most

discriminative action or the most discriminative background

features over the training iterations to force the network to

precisely localize the action instances in both the discrimina-

tive and ambiguous action-related segments, without spreading

to the background intervals.

Please refer to Fig. 5 and Sec. III-B for the details.

Existing methods related to feature contextualization Innovation of our feature contextualization

Existing feature contextualization-related methods (e.g., [45])

first explored the correlative information between different

segments in a video to extract the global contexts, which were

then fused with the local contexts by simply performing the

element-wise summation.

Limitation: The element-wise summation provides a fixed

importance to the local and global contexts during the fusion.

We introduce a new feature contextualization module that first

explores the correlative information between different seg-

ments in a video to extract the global contexts, and then learns

attention weights on local and global contexts to fuse them

accordingly, to generate more representative contextualized

features for the accurate temporal action localization.

Please refer to Fig. 6 and Sec. III-C for the details.

Existing methods related to feature discrimination Innovation of our feature discrimination

Existing feature discrimination-related methods (e.g., [14],

[43], [49]) highlighted the most discriminative video segments

corresponding to each action class.

Limitation: These methods did not explicitly highlight the

most discriminative action classes within each video segment,

which can be useful for multi-class multi-instance temporal

action localization.

We design our feature discrimination module to highlight both

the most discriminative video segments corresponding to each

action class, and the most discriminative classes within each

video segment.

Please refer to Fig. 7 and Sec. III-D for the details.

novations of our feature weakening, feature contextualization,

and feature discrimination modules, compared to the existing

methods.

III. METHODOLOGY

The workflow of our W-TAL framework is illustrated in

Fig. 4. During the training, given untrimmed videos and

their video-level ground-truth labels, we perform a feature

embedding (Sec. III-A), a Feature Weakening (FW) module

(Sec. III-B), a Feature Contextualization (FC) module (Sec.

III-C), and a Feature Discrimination (FD) module (Sec. III-D).

Given a testing video, we not only recognize its action classes

but also localize the temporal window of each action instance.

Note, the FW module is deactivated during the testing.

A. Feature Embedding

Given an untrimmed video V = {st}
T
t=1, which is divided

into T non-overlapping video segments, we extract the D-

dimensional features for each video segment st by a pre-

trained I3D network [36], generating the feature map of video

V as X ∈ R
T×D. Since the extracted features from I3D

are learned for the action recognition task originally, we load

the feature map X into a two-layer temporal convolutional

network to generate the embedded feature map Xe ∈ R
T×D,

which is tuned for the W-TAL task.

B. Feature Weakening (FW) Module

Usually, the W-TAL methods follow a localization-by-

classification pipeline. Unfortunately, the action classification

network tends to focus on the most discriminative features

to pursue its classification accuracy, and the discriminative

features may be from the most salient portion of the action

time interval, which is not sufficient for the temporal action

localization task. Ideally, the action instances are supposed to

be precisely localized in time intervals with both discrimina-

tive and ambiguous action-related features, without spreading

to the background intervals. To overcome this challenge,

we introduce a Feature Weakening (FW) module to identify

and randomly weaken either the discriminative action or the

discriminative background features so that the network can be

enforced to discover the action instances in both discriminative

and ambiguous action intervals for complete localization.

Since the W-TAL networks aim to produce high confidence

scores for the target action classes for the action-related

segments and low confidence scores for all action classes

for the background segments, the networks learn to highlight

the action-related segments and suppress the background seg-

ments, eventually, produce large embedded feature magnitudes

for the action-related segments and small magnitudes for the

background segments. Therefore, we identify the discrimina-

tive action, ambiguous, and background features based on the
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Fig. 4. The workflow of our F3-Net. During the training, given untrimmed videos and their video-level ground-truth labels, the F3-Net first performs the
feature embedding. Then, a Feature Weakening (FW) module is designed for action completeness modeling. Thereafter, a Feature Contextualization (FC)
module is designed to generate contextualized features. Finally, a Feature Discrimination (FD) module is designed to highlight the most discriminative video
segments/classes corresponding to each class/segment, respectively. Given a testing video, the F3-Net not only recognizes its action classes, but also localizes
the temporal window of each action instance. Note, the FW module is deactivated during the testing.

Fig. 5. Illustration of our Feature Weakening (FW) module. During the training, the FW module selects and weakens the most discriminative action and
background features based on feature magnitudes. The embedded feature maps with weakened action/background features are randomly selected during the
training so that the network is forced to discover the action instances in both discriminative and ambiguous frames for the complete temporal action localization
and reduce the distraction from background frames. The FW module is deactivated during the testing phase.

embedded feature magnitude. As shown in Fig. 5, first, we

apply the L2 norm on the embedded feature map Xe ∈ R
T×D

to compute the segment-wise feature magnitude row-by-row.

Then, we treat the top kact and bottom kbkg features in

terms of the feature magnitude as the highly discriminative

action and background features, respectively. We consider the

remaining features in Xe as ambiguous features. After that,

we generate the feature map with weakened action features,

Xact
w ∈ R

T×D, by multiplying the discriminative action fea-

tures with a weakening factor ϵ (ϵ ∈ [0, 1]), where the ambigu-

ous and background features are unchanged. In this way, we

weaken the most discriminative action features and encourage

the network to look at ambiguous features. However, if we

persistently use the feature map with weakened action features,

the discriminative action features are always weakened during

the training phase and the network may wrongly shift its

focus to unexpected background segments. To remedy this,

from the feature map Xe, we generate another feature map

named as feature map with weakened background features,

Xbkg
w ∈ R

T×D, by multiplying the background features with

a weakening factor ϵ (ϵ ∈ [0, 1]), where the ambiguous

and discriminative action features are unchanged. Finally, the

output of the FW module, Xw, randomly selects either Xact
w

or Xbkg
w with equal chances at every training iteration. With

such a FW module, the network is forced to discover action

instances in both discriminative and ambiguous intervals, and
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Fig. 6. Typical self-attention module vs. our Feature Contextualization (FC) module.

neglect the distractions brought by the background. It should

be noted that the FW module is only used during the training.

During the testing phase, the FW module is deactivated, i.e.,

the embedded feature map is directly fed into the feature

contextualization module, as shown in Fig. 4.

C. Feature Contextualization (FC) Module

The features of all video segments, Xl ∈ R
T×D, which

is either the Xw during training or the Xe during testing,

contains the local context information of individual segments.

We design a Feature Contextualization (FC) module to explore

the correlation between different video segments to extract the

global contexts, and then attentionally fuse the local and global

contexts to generate representative contextualized features.

Specifically, our FC module first uses a fully-connected

layer to encode the local features Xl into a set of compact

queries Q ∈ R
T×D/m, where m is a hyper-parameter to

control the memory reading efficiency. Since we are looking

for the correlation between video segments, we compute dot

products of a query with all queries, followed by a softmax

function, to obtain a T × T matrix, which contains the

relevance of each segment to other segments. Then, with

this matrix, we obtain the global contexts Xg ∈ R
T×D by

aggregating the local contexts, which can be formulated as:

Xg = (softmax(QQT ))Xl (1)

The Xg is finally merged with the Xl to get the contextualized

features Xc ∈ R
T×D. One simple way to combine the local

and global context features is the element-wise summation,

i.e., Xc = Xl +Xg , as shown in Fig. 6(a). This fusion gives

static equal weights to the local and global contexts.

Differently, we propose to learn the attention weights on

local and global contexts first, and then fuse them accordingly,

as shown in Fig. 6(b). Specifically, we first use fully-connected

layers to compute the attention scores λl ∈ R
T×1 and

λg ∈ R
T×1 from Xl ∈ R

T×D and Xg ∈ R
T×D, respectively.

Then, we apply the softamx across these two attention scores

to normalize them and perform attention-weighted merging to

fuse the local and global contexts, as follows:

Xc = λl ⊗Xl + λg ⊗Xg (2)

where ⊗ represents the element-wise multiplication. We find

that the use of the attention-weighted merging leads to

improvement in performance when compared to traditional

element-wise summation, to be shown in ablation studies.

D. Feature Discrimination (FD) Module

We design a Feature Discrimination (FD) module to high-

light both the most discriminative video segments for each

action class and the most discriminative classes within each

video segment. As shown in Fig. 7, first, we randomly

initialize a class-agnostic foreground classifier wf ∈ R
1×D

(i.e., the classifier learns weights to classify all action classes

(foreground) without depending on any specific action class)

and a class-specific classifier Wcs ∈ R
(C+1)×D (i.e., the clas-

sifier learns weights depending on the action classes and the

background class), where C represents the number of action

classes, and the (C+1)th class corresponds to the background.

With the help of these two classifiers, we design three branches

in the FD module: (1) Action-only classification branch via

class-agnostic attention (CA); (2) Action-only classification

branch via class-specific attention (CS); and (3) Action and

background classification branch (AB).

Complementarity of three branches in the FD module:

The CA branch first uses a class-agnostic attention to generate

the foreground activation scores and then classifies a video in

regard to only the C action classes. The CS branch first uses

a class-specific attention to highlight the most discriminative

video segments for each class and the most discriminative

classes within each video segment, and then classifies a video
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Fig. 7. Illustration of our Feature Discrimination (FD) module. The action-only classification branch via class-agnostic attention (CA) computes the foreground
activation scores, while the action-only classification branch via class-specific attention (CS) explicitly highlights the most discriminative video segments for
each class and the most discriminative classes within each video segment. Both branches classify the video by focusing on action classes. The action-background
classification branch (AB) classifies the input video regarding the action classes and the background class.

in regard to only the C action classes. The training objectives

of these two branches are aligned, which regularizes the

consistency between the foreground and the C action classes

of CS that localizes the action-related frames of various actions

in class activation scores (CAS) as foreground. On the other

hand, the AB branch classifies an input video in regard to

both the C action classes and the (C+1)th background class,

which helps our FD suppress activations from background

segments, leading to effective action-background separation.

During training, we employ all three branches and jointly

train them to learn the background class as well as the action

classes. Without the AB branch, the CS branch cannot learn

the background class, nor computes the attention scores be-

tween action and background class, thus background segments

might be classified wrongly as action classes. Therefore, the

joint optimization of these three branches can maintain the

consistency between the foreground and the C action classes

of CS, and also separate the C action classes from the (C+1)th
background class.

Action-only classification branch via class-agnostic at-

tention (CA): We first calculate the cosine similarity between

the wf and Xc to obtain the foreground attention score

a ∈ R
T×1, as follows:

a(t) = cos(Xc(t, ·),wf ), t ∈ [1, T ] (3)

The foreground attention score vector a is passed through a

softmax layer to get the normalized foreground attention score:

ã ∈ [0, 1]T . Then, the aggregated foreground feature vector

z ∈ R
1×D of the video is computed by:

z =
∑

t

ã(t)Xc(t, ·) (4)

The video-level classification result ỹca ∈ R
C+1 for the CA

branch is finally obtained by computing the cosine similarity

between the z and Wcs, and then passing the similarity scores

through a softmax layer:

ỹca(j) =
exp(cos(z,Wcs(j, ·))∑
i exp(cos(z,Wcs(i, ·))

, j ∈ [1, C + 1] (5)

The classification loss of the CA branch is defined by:

ℓca =

C+1∑

j=1

−yca(j) log ỹca(j) (6)

where yca = [yca(1), ...,yca(C), 0] is the ground-truth vector,

in which yca(c) is set to 1 if a video contains action class c.

Since this branch aims to classify an input video only on action

classes, the label for the background is set to 0.

Action-only classification branch via class-specific atten-

tion (CS): Given the Xc, we compute the cosine similarities

between Xc and Wcs to obtain the segment-level Class

Activation Scores (CAS) P ∈ R
T×(C+1) as:

P(t, j) = cos(Xc(t, ·),Wcs(j, ·)) (7)

where t and j represent the t-th video segment and the j-th

class, respectively.

Now, we aim to highlight the discriminative video segments

for each class. To achieve this goal, first, we apply the softmax

on P along the temporal dimension, and obtain the normalized

class activation scores: P̃ ∈ R
T×(C+1). Then, we perform an

element-wise multiplication between the normalized activation

scores of each class and the contextualized features to generate
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the class-specific feature maps Fc ∈ R
(C+1)×T×D, highlight-

ing the most discriminative video segments for the C action

classes and the background, as follows:

Fc(j, ·, ·) = P̃(·, j)⊗Xc (8)

where Fc(j, ·, ·) ∈ R
T×D represents the feature map that

highlights the discriminative video segments for the j-th class.

Later, to highlight the discriminative classes within each

video segment, first, we reshape class-specific feature maps

Fc ∈ R
(C+1)×T×D into segment-specific feature maps Fs ∈

R
T×(C+1)×D, i.e., for each video segment t, we get a feature

map Fs(t) ∈ R
(C+1)×D, which has C + 1 classes and each

class corresponds to a D-dimensional feature vector. Then, we

apply class-wise attention mechanism on top of the segment-

specific feature maps to highlight the most representative

classes within each segment. Specifically, the feature map

within a segment Fs(t) ∈ R
(C+1)×D is fed into a fully-

connected layer followed by a softmax function to compute

the class-wise attention score watt(t) = [0, 1]C+1 for that

segment. After that, by performing the element-wise multipli-

cation between the feature map of each segment and the class-

wise attention score, we get the segment-specific attention-

weighted feature maps F̃s ∈ R
T×(C+1)×D, highlighting the

discriminative classes for T segments, as follows:

F̃s(t, ·, ·) = Fs(t, ·, ·)⊗watt(t) (9)

where F̃s(t, ·, ·) ∈ R
(C+1)×D represents the feature map that

highlights the most discriminative classes for the t-th segment.

Since the weakly-supervised learning only has video-level

ground truth rather than the fine-grained segment-level one, we

aggregate the F̃s ∈ R
T×(C+1)×D, using the average pooling

along the temporal dimension, to generate the class-wise

features U ∈ R
(C+1)×D for the entire video. The classification

score ỹcs ∈ R
C+1 for the entire video for this CS branch

is obtained by computing the cosine similarity between the

wf and U, and then passing the similarity scores through a

softmax layer, as follows:

ỹcs(j) =
exp(cos(U(j, ·),wf ))∑
i exp(cos(U(i, ·),wf ))

(10)

The classification loss of the CS branch is defined by:

ℓcs =

C+1∑

j=1

−ycs(j) log ỹcs(j) (11)

where ycs = [ycs(1), ...,ycs(C), 0] is the ground-truth vector,

in which ycs(c) is set to 1 if a video contains action class

c. Since this branch also aims to classify videos focusing on

action classes, the label for the background is set to 0.

Action and background classification branch (AB): We

use this branch to classify an input video regarding both the

action classes and the background class. In the AB branch,

first, we get the classification score ψab ∈ R
C+1 for the entire

video by aggregating the segment-wise class-activation score

with the normalized class-activation score, as follows:

ψab(j) =
∑

t

P(t, j)P̃(t, j) (12)

The classification score is then passed through the softmax to

get the video-level prediction: ỹab = softmax(ψab) ∈ R
(C+1).

The classification loss of the AB branch is defined by:

ℓab =
C+1∑

j=1

−yab(j) log ỹab(j) (13)

where yab = [yab(1), ...,yab(C), 1] is the ground-truth vector,

in which yab(c) is set to 1 if this video contains the action

class c. The label for the background class is set to 1, con-

sidering that all untrimmed videos in training dataset contain

background frames.

E. Network Training and Inference

Training: We compose the three video-level classification

losses as follow:

ℓTotal = αℓca + βℓcs + γℓab (14)

where α, β, γ are the balancing hyper-parameters.

Inference: We take a three-step inference to perform the

temporal action localization. First, we threshold on video-

level prediction (Eq. 5) of the CA branch and reject the

action classes whose prediction score is lower than 0.1. Then,

following [15], [43], [49], for each of the remaining action

classes, we apply a set of thresholds on the CAS (Eq. 7) of the

CS branch to generate action proposals. Finally, we perform

the class-wise Non-Maximal Suppression (NMS) to keep the

highly overlapped proposals, which are the final proposals.

IV. EXPERIMENTS

A. Datasets and Metrics

THUMOS14 [62]: THUMOS14 has temporal boundary

annotations for 200 validation videos and 213 testing videos,

which belong to 20 classes. Following the literature [14], [18],

[19], [20], [22], [43], [48], [49], [58], [63], we train our model

on the validation set without using the temporal annotations

and evaluate it on the test set.

ActivityNet1.3 [64]: ActivityNet1.3 dataset covers 200

action classes, which has temporal boundary annotations for

10,024 videos for training, 4926 videos for validation, and

5044 videos for testing. Since the testing labels are withheld,

following the literature [18], [20], [43], [48], [49], [63], we

train our model on the training set without using the temporal

annotations and evaluate it on the validation set.

Evaluation metrics: We evaluate the temporal action local-

ization performance with the mean Average Precision (mAP)

values under different intersection over union (IoU) thresholds.

B. Implementation Details

First, we generate video segments from both RGB and

Optic-flow by sliding a non-overlapping temporal window of

16 frames. Then, we use a pre-trained I3D [36] network to

extract 1024 dimensional feature vectors for both streams. We

separately train our F3-Net for both streams, and collect the

generated proposals from both networks during inference. By

validation, we set kact = kbkg = 0.7, the memory controlling

hyper-parameter m = 2, weakening factor ϵ = 0.8, the

balancing hyper-parameters α = 0.1, β = 1.0, and γ = 0.1.
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TABLE II
RESULTS ON THE THUMOS14 TEST SET. AVG INDICATES THE AVERAGE MAP AT IOU THRESHOLDS 0.1:0.1:0.5.

Category Method IoU → 0.1 0.2 0.3 0.4 0.5 AVG

Step-by-step erasion [42], MM2018 45.8 39.0 31.1 22.5 15.9 30.9
(i) Methods related to feature weakening A2CL-PT (I3D) [47] (ECCV’20) 61.2 56.1 48.1 39.0 30.1 46.9

ACM-BANet (I3D) [15], MM2020 64.6 57.7 48.9 40.9 32.3 48.9

(ii) Methods related to feature contextualization AUMN [45], CVPR2021 66.2 61.9 54.9 44.4 33.3 52.1

STPN (I3D) [20], CVPR2018 52.0 44.7 35.5 25.8 16.9 35.0
W-TALC (I3D) [14], ECCV2018 55.2 49.6 40.1 31.1 22.8 39.8
3C-Net (I3D) [21], ICCV2019 56.8 49.8 40.9 32.3 24.6 40.9
RPN (I3D) [46], AAAI2020 62.3 57.0 48.2 37.2 27.9 46.5
CoLA (I3D) [54], CVPR2021 66.2 59.5 51.5 41.9 32.2 50.3
D2-Net (I3D) [16], ICCV2021 65.7 60.2 52.3 43.4 36.0 51.5

(iii) Methods related to feature discrimination WSAL-BM (I3D) [48], ICCV2019 60.4 56.0 46.6 37.5 26.8 45.5
BaS-Net (I3D) [49], AAAI2020 58.2 52.3 44.6 36.0 27.0 43.6
HAM-Net (I3D) [55], AAAI2021 65.4 59.0 50.3 41.1 31.0 49.4
ACS-Net (I3D) [56], AAAI2021 - - 51.4 42.7 32.4 -
UM (I3D) [18], AAAI2021 67.5 61.2 52.3 43.4 33.7 51.6
FAC-Net (I3D) [43], ICCV2021 67.6 62.1 52.6 44.3 33.4 52.0
ACM-Net (I3D) [57], arXiv2021 68.9 62.7 55.0 44.6 34.6 53.2
FTCL (I3D) [50], CVPR2022 69.6 63.4 55.2 45.2 35.6 53.8

FW+FC+FD F3-Net (Ours) 69.4 63.6 54.2 46.0 36.5 53.9

RefineLoc (I3D) [51], ECCV2020 - - 40.8 - 23.1 -
DGAM (I3D) [58], CVPR2020 60.0 54.2 46.8 38.2 28.8 45.6
EM-MIL (I3D) [52], ECCV2020 59.1 52.7 45.5 36.8 30.5 45.0
TSCN (I3D) [59], ECCV2020 63.4 57.6 47.8 37.7 28.7 47.0

(iv) Pseudo label-related method TSCN [59] + UGCT (I3D) [17], CVPR2021 67.5 62.1 55.3 45.2 33.3 52.7
WSAL-BM [48] + UGCT (I3D) [17], CVPR2021 69.2 62.9 55.5 46.5 35.9 54.0
DCC (I3D) [60], CVPR2022 69.0 63.8 55.9 45.9 35.7 54.1
ASM-Loc (I3D) [61], CVPR2022 71.2 65.5 57.1 46.8 36.6 55.4
FAC-Net [43] + RSKP (I3D) [53], CVPR2022 71.3 65.3 55.8 47.5 38.2 55.6

FW+FC+FD + Pseudo label F3-Net (Ours) + RSKP (I3D) [53] 72.0 66.1 56.5 48.2 38.9 56.3

TABLE III
RESULTS ON ACTIVITYNET1.3 VALIDATION SET. AVG INDICATES THE AVERAGE MAP AT IOU THRESHOLDS 0.5:0.05:0.95.

Category Method IoU → 0.5 0.75 0.95 AVG

(i) Methods related to feature weakening A2CL-PT (I3D) [47], ECCV2020 36.8 22.0 5.2 22.5
ACM-BANet (I3D) [15], MM2020 37.6 24.7 6.5 24.4

(ii) Methods related to feature contextualization AUMN (I3D) [45], CVPR2021 38.3 23.5 5.2 23.5

BaS-Net (I3D) [49], AAAI2020 34.5 22.5 4.9 22.2
(iii) Methods related to feature discrimination UM (I3D) [18], AAAI2021 37.0 23.9 5.7 23.7

FAC-Net (I3D) [43], ICCV2021 37.6 24.2 6.0 24.0

FW+FC+FD F3-Net (Ours) 38.1 24.9 6.6 24.6

TSCN (I3D) [59], ECCV2020 35.3 21.4 5.3 21.7
TSCN [59] + UGCT (I3D) [17], CVPR2021 38.1 21.2 5.4 22.8

(iv) Pseudo label-related methods WSAL-BM [48] + UGCT (I3D) [17], CVPR2021 39.0 21.4 5.1 23.0
DCC (I3D) [60], CVPR2022 38.8 24.2 5.7 24.3
FAC-Net [43] + RSKP (I3D) [53], CVPR2022 40.6 24.6 5.9 25.0
ASM-Loc (I3D) [61], CVPR2022 41.0 24.9 6.2 25.1

FW+FC+FD + Pseudo label F3-Net (Ours) + RSKP (I3D) [53] 39.9 25.0 6.7 25.2

C. Comparisons with the State-of-the-art

Table II and III compare the results of our F3-Net with re-

cent W-TAL methods on the THUMOS14 and ActivityNet1.3,

respectively. We separate the W-TAL methods into four cate-

gories: (i) Methods related to feature weakening; (ii) Methods

related to feature contextualization; (iii) Methods related to

feature discrimination; and (iv) Pseudo label-related methods.

Our F3-Net vs. the W-TAL methods designed from the

feature learning aspect: Since we propose to solve the W-

TAL problem from the feature learning aspect, we mainly

compare our F3-Net with other W-TAL methods designed

from the feature learning aspect, i.e., the feature weakening,

the feature contextualization, and the feature discrimination-

related methods, for the fair comparison. As shown in Table II

and III, our F3-Net achieves superior performance compared

to the latest feature weakening, feature contextualization,

and feature discrimination-related W-TAL methods on both

THUMOS14 and ActivityNet 1.3, respectively.

Our F3-Net vs. pseudo label-related W-TAL methods:

Our F3-Net achieves superior performance compared to many

pseudo label-related methods. The performance of our F3-Net

is slightly inferior compared to the latest pseudo label-related

methods such as ASM-Loc [61] and FAC-Net [43]+RSKP

[53]. These pseudo label-related methods improve the perfor-

mance by refining the W-TAL networks with segment-level

pseudo labels over the training iterations, while our F3-Net

achieves competitive performance without refining our F3-Net

with segment-level pseudo labels. However, the performance

of our F3-Net can be further improved by considering the
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TABLE IV
ABLATION STUDIES OF DIFFERENT ARCHITECTURES ON THUMOS14 DATASET.

Method FW FC
FD

0.1 0.2 0.3 0.4 0.5 AVG(0.1:0.1:0.5)
AB CA CS

Ours ✓ ✓ ✓ ✓ ✓ 69.4 63.6 54.2 46.0 36.5 53.9

Case 1 ✗ ✓ ✓ ✓ ✓ 68.7 62.9 53.6 45.6 35.8 53.3
Case 2 ✓ ✗ ✓ ✓ ✓ 68.5 62.7 53.5 45.3 35.1 53.0
Case 3 ✓ ✓ ✗ ✓ ✓ 66.4 61.1 51.8 43.7 33.9 51.4
Case 4 ✓ ✓ ✓ ✗ ✓ 65.1 60.2 50.6 43.1 32.8 50.4
Case 5 ✓ ✓ ✓ ✓ ✗ 62.9 56.4 45.9 36.3 27.6 45.8

TABLE V
EFFECTIVENESS OF OUR FEATURE CONTEXTUALIZATION (FC) OVER

SELF-ATTENTION.

Method 0.1 0.2 0.3 0.4 0.5

Our F3-Net with Self-attention 68.6 62.9 53.8 45.6 35.7
Our F3-Net with FC 69.4 63.6 54.2 46.0 36.5

pseudo-labeling strategy. As shown in the last rows of Table

II and Table III, with the pseudo label refinement (e.g., RSKP

[53]), we achieve further boost in performances and establish

a new state-of-the-art performances on both the THUMOS14

and ActivityNet 1.3 datasets, respectively, on most metrics.

D. Ablation Studies

Ablation studies on different modules and branches:

We conduct a series of ablation studies on the THUMOS14

dataset to evaluate the influence of FW, FC, and FD modules

(specifically, each branch inside the FD module).

• Case 1: We apply our F3-Net without the FW module.

• Case 2: We apply our F3-Net without the FC module.

• Case 3: We perform the experiment without the AB

branch in FD module.

• Case 4: We conduct the experiment without the CA

branch in FD module.

• Case 5: We perform the experiment without the CS

branch in FD module.

As shown in Table IV, each algorithm component con-

tributes to our approach, and our F3-Net that combines all

modules and branches achieves the best performance.

Effectiveness of FC over self-attention: We first plug the

self-attention module Fig. (6(a)) into our approach, and then

replace it with our FC module (Fig. 6(b)). We find that our

FC improves the performance when compared with the self-

attention module on the THUMOS14, as shown in Table V.

Effectiveness of our FW and FC modules as plug-ins

on existing W-TAL methods: To test the effectiveness of

our FW and FC modules on existing methods, we plug them

into two latest W-TAL methods [15], [43]. As shown in Table

VI, we find that both the FW and FC modules can boost the

performance of ACM-BANet [15] and FAC-Net [43].

E. Qualitative Analysis

We visualize some qualitative results in Fig. 8, where we

show activation scores of the predicted classes according to

different branches in our FD and different modules:

• FD (CS): The CS branch in our FD module localizes all

the action instances roughly and has some false positives.

TABLE VI
FW AND FC AS PLUG-IN’S ON OTHER METHODS.

Method FW FC 0.1 0.2 0.3 0.4 0.5

ACM-BANet [15] ✗ ✗ 64.6 57.7 48.9 40.9 32.3
ACM-BANet [15] ✓ ✗ 65.1 58.3 49.7 42.1 33.5
ACM-BANet [15] ✗ ✓ 65.8 58.8 50.1 42.2 33.3
ACM-BANet [15] ✓ ✓ 66.4 59.6 50.8 42.9 34.1

FAC-Net [43] ✗ ✗ 67.6 62.1 52.6 44.3 33.4
FAC-Net [43] ✓ ✗ 68.0 62.5 53.3 45.5 35.4
FAC-Net [43] ✗ ✓ 68.5 62.6 53.3 45.1 34.9
FAC-Net [43] ✓ ✓ 69.0 63.2 53.8 45.9 36.0

• FD (CS+CA): The CA branch collaborates with the

CS branch to improve the performance on the localized

instances by localizing more actual-action-related frames.

• FD (CS+CA+AB): The AB branch explicitly models the

background class and helps the FD suppress activations

from background frames, removing false positives.

• FD (CS+CA+AB) + FC: The FC module helps us get

smooth localization by exploiting the local and global

contexts.

• FD (CS+CA+AB) + FC + FW: Finally, the FW module

further improves the performance by localizing the action

instances in ambiguous frames.

In the FW module, we assume that the features of ac-

tion segments generally have larger magnitudes than those

of background segments. As shown in Fig. 9, we validate

our assumption by performing the qualitative analysis on the

feature magnitudes of different segments for different videos.

Fig. 9 shows that features of action segments have larger

magnitudes compared to ones from background segments.

F. Discussions

In our proposed F3-Net, we first introduce a new FW

module for action completeness modeling. The existing feature

weakening-related methods [15], [42] trained the W-TAL

network in multiple steps. During each training step, the W-

TAL network first identifies discriminative features, which are

then erased and fed into the network of the next training step.

However, one key problem is that the attention regions may

gradually expand to the background intervals mistakenly as

the training steps increase, which downgrades the localization

performance. Differently, we train our network in a single step

with a novel FW module that first identifies and then randomly

weakens either the discriminative action or the discriminative

background features over the training iterations to force the

network to precisely localize the action instances in both the

discriminative and ambiguous action-related frames, without
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Fig. 8. Qualitative results. With many background frames, the video (a) and (b) contain multiple instances of ªLong Jumpº and ªJavelin Throwº actions,
respectively. We show the activation scores of the predicted action classes under five settings: three cases on different branches in the FD module, and the
effects of FC and FW in addition to the FD with all branches.

spreading to the background intervals. Since our FW module

prohibits attentions from spreading to background intervals,

we achieve better performance compared to the existing fea-

ture weakening-related methods.

On the other hand, we also introduce a new FC module

to generate more representative features for temporal ac-

tion localization. The existing feature contextualization-related

methods (e.g., [45]) first explored the correlative information

between different segments in a video to extract the global

contexts, which were then fused with the local contexts by

simply performing the element-wise summation. In contrast,

our FC module learns attention weights on local and global

contexts to fuse them accordingly. Intuitively, the conventional

element-wise summation is predefined, which provides fixed

importance to the local and global contexts during the fusion.

On the other hand, the attention-weighted fusion in our FC

module automatically learns the attention weights to atten-

tionally fuse the local and global contexts. Since the attention-

weighted fusion automatically learns the attention weights, it

provides varying importance to the local and global contexts

during the fusion, which generates more representative contex-

tualized features and achieves better performance compared to

the element-wise summation that provides fixed importance.

Furthermore, we design a novel FD module to highlight

the most discriminative video segments/classes correspond-

ing to each class/segment, respectively. The existing feature

discrimination-related methods (e.g., [14], [43], [49]) only

highlighted the most discriminative video segments corre-

sponding to each action class. But, an action class may have

multiple instances in separated video segments and a video

segment may contain multiple action classes. Since our FD

module highlights both the most discriminative video segments

corresponding to each action class and the most discrimi-

native classes within each video segment, we achieve better

performance compared to the previous feature discrimination-

related methods that only highlight the most discriminative

video segments corresponding to each action class.

Although we achieve state-of-the-art performances, the lo-

calization performance is not 100% correct yet. Most of the

failure cases are related to false positives, i.e., the network

wrongly localizes the background frames as foreground, par-

ticularly the background frames which are visually similar
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Fig. 9. Visualization of feature magnitudes of different video segments. The video (a) contains multiple instances of the ªThrow Discusº action, video (b)
contains multiple instances of the ªPole Vaultº action, video (c) contains multiple instances of the ªDivingº action, and video (d) contains multiple instances
of the ªHigh Jumpº action. Generally, features of action segments have larger magnitudes compared to ones from background segments.

Fig. 10. Visualization of false positive cases. The video (a) contains the
ªBilliardsº action and video (b) contains the ªGolf Swingº action, where
some background frames are wrongly localized as foreground since they are
visually similar and frequently co-occur with the action-related frames, but
do not belong to the actual actions.

and frequently co-occur with the action-related frames, but

do not belong to the actual actions, as shown in Fig. 10.

These background frames can be viewed as hard negative

samples, which are inherently difficult to suppress with weak

supervision. In the future, we will investigate how to mingle

the fully and weakly-supervised localization so that accurate

localization can be achieved with less annotation efforts.

V. CONCLUSION

We propose an F3-Net for W-TAL, including three mod-

ules: (1) The FW module to discover the action instances

in both discriminative and ambiguous frames for localizing

the complete action interval; (2) The FC module to utilize

the local and global contexts, generating more representative

contextualized features; and (3) The FD module to highlight

the most discriminative video segments/classes corresponding

to each class/segment, respectively. Our F3-Net outperforms

related W-TAL methods on THUMOS14 and ActivityNet1.3.

Besides, our FW and FC modules are effective plug-in’s to

improve other methods.
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