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Abstract—Weakly-supervised Temporal Action Localization
(W-TAL) aims to train a model to localize all action instances
potentially from different classes in an untrimmed video, using
a training dataset that has video-level action class labels but
has no detailed annotations on the start and end timestamps of
action instances. We propose to solve the W-TAL problem from
the feature learning aspect, with a new architecture, termed F3-
Net, which includes (1) a Feature Weakening (FW) module that
can identify and randomly weaken either the most discriminative
action or the most discriminative background features over the
training iterations to force the network to precisely localize the
action instances in both discriminative and ambiguous action-
related frames, without spreading to the background intervals;
(2) a Feature Contextualization (FC) module that can infer the
global contexts among video segments and attentionally fuse them
with the local contexts from individual video segments to generate
more representative features; and (3) a Feature Discrimination
(FD) module that can highlight the most discriminative video
segments/classes corresponding to each class/segment, respec-
tively, for localizing multiple action instances from different
classes within a video. Experimental results on THUMOS14
and ActivityNetl.3 demonstrate the state-of-the-art performance
of our F3-Net, and the FW and FC are also effective plug-in
modules to improve other methods. This project will be available
at https://moniruzzamanmd.github.io/F3-Net/

Index Terms—Temporal action localization, Feature weaken-
ing, Feature contextualization, Feature discrimination

I. INTRODUCTION

EMPORAL action Localization, which localizes action

instances (i.e., time intervals) in untrimmed videos along
the temporal dimension, is one of the challenging video
understanding tasks. The methods with high performance are
under the fully-supervised setting, which requires the video-
level action class labels for each training video along with the
detailed temporal annotations (start and end time-stamps) of
each action instance within the training video [1], [2], [3], [4],
[5], [6], [71, [8], [9], [10], [11], [12], [13]. Since the fully-
supervised approach requires a lot of annotation efforts, re-
cently, Weakly-supervised Temporal Action Localization (W-
TAL) methods which learn to localize action instances in
untrimmed videos based on training datasets with only video-
level labels, have been developed [14], [15], [16], [17], [18].
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Challenges and motivation: The W-TAL task is challeng-
ing from a few aspects:

(1) Actions in ambiguous frames: Many W-TAL methods
have achieved good results in coarse localization [14], [19],
[20], [21], [22], but they remain unsatisfactory to locate the
complete time intervals of action instances. The main reason
comes from that, the networks look only at the highly discrimi-
native frames, but apart from the highly discriminative frames,
there are some ambiguous frames which are possible to
contain action instances and are overlooked by those weakly-
supervised networks. The action instances are supposed to be
completely localized in both highly discriminative intervals
and ambiguous intervals, without spreading to the background
intervals which contain unrelated frames, as shown in Fig. 1.
Therefore, the motivated research question is: how to design
a feature learning module that can identify and intentionally
weaken the most discriminative action and background fea-
tures so that the network can be enforced to discover the action
instances in both discriminative and ambiguous intervals for
the complete temporal action localization?

(2) Local and global contexts: Temporal contextual infor-
mation is important for the temporal action localization. The
most typical approach is to divide a video into short video
segments first, and then use a pre-trained network to extract
features from each segment independently, which refers to
the local contexts. However, this process neglects the global
contexts, which provide essential clues for the temporal action
localization. For example, as shown in Fig. 2, the “Long Jump”
action usually contains the “running” and the “jumping” video
segments. Although these two kinds of video segments have
their distinct characteristics, they also share common features
considering the “Long Jump” action. Therefore, the research
question is: how to design a feature contextualization module
that can infer the global contexts between video segments
and fuse them with the local contexts from individual video
segments, generating more representative features for the
temporal action localization?

(3) Multi-class multi-instance temporal action localization:
An untrimmed video may contain multiple action instances
with different action class labels. After splitting the video
into segments, a video segment may contain multiple action
classes, and an action class may have multiple instances in
separated video segments. As shown in Fig. 3, the third
video segment contains both “Cricket Bowling” and “Cricket
Shot” actions, and the “Cricket Bowling” action has two
action instances in the first and third video segments, while
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Fig. 1. An illustration of background, ambiguous, and highly discriminative frames. The background frames are not related to the action. The ambiguous
frames are possible to contain action instances. The highly discriminative frames are highly related to the action class. It is expected to localize the action
instances in both highly discriminative and ambiguous action frames for the complete temporal action localization.
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Fig. 2. An illustration of the local and global contexts. The local contexts
are extracted from each video segment independently, while the global
contexts are computed by exploiting the relationships between different video
segments. We introduce a feature contextualization module to attentionally
fuse both the local and global contexts into contextualized features for accurate
action localization in the temporal domain.

the “cricket shot” action has two action instances in the
second and third video segments. Therefore, the motivated
research question is: how to design a feature discrimination
module that can highlight both the most discriminative video
segments corresponding to each action class, and the most
discriminative classes within each video segment, eventually
improving the performance of temporal action localization?
Our proposal and contributions: Our three research
questions to address the three corresponding challenges are
motivated from the feature learning perspective, leading to
a novel network architecture, termed F3-Net, which includes
Feature Weakening (FW), Feature Contextualization (FC), and
Feature Discrimination (FD) modules in a unified network, as
shown in Fig. 4. Our main contributions are four-fold:

o We introduce a new FW module that can identify and
randomly weaken either the most discriminative action
or the most discriminative background features over
the training iterations to force the network to precisely
localize the action instances in both discriminative and
ambiguous action-related frames, without spreading to the
background intervals.
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Fig. 3. An illustration of the multi-class multi-instance temporal action
localization. Highlighting the discriminative video segments related to action
classes and the discriminative action classes within each video segment can
be useful for multi-class multi-instance temporal action localization.

e We present a new FC module that first explores the
correlative information between different segments in a
video to extract the global contexts, and then attentionally
fuses both the local and global contexts into more rep-
resentative contextualized features for accurate temporal
action localization.

o We introduce a new FD module that explicitly highlights
both the most discriminative video segments correspond-
ing to each action class, and the most discriminative
classes within each video segment, for localizing multiple
action instances from different classes within a video.

o Our F3-Net based on the three feature learning modules
outperforms all the related methods on the THUMOS 14
and ActivityNetl.3 datasets, and we also validate that the
FW and FC modules are effective plug-in modules to
improve the performance of the previous methods.

II. RELATED WORKS

Different from action recognition [23], [24], [25], [26],
(271, [28], [29], [30], [31], [32], [33], [34], [35], [36], [37],
the temporal action localization task aims to localize action
instances with temporal boundaries. W-TAL methods address



this problem without temporal annotations. From the aspects of
feature learning and pseudo-labeling strategy, we summarize
the W-TAL methods into four categories.

Feature weakening-related methods: The feature weak-
ening related methods first identify the most discriminative
features and then weaken them to pay more attentions to
less discriminative features for the complete temporal action
localization. Motivated by the object completeness modeling
in object detection task [38], [39], [40], Hide-and-Seek [41]
first hid random frame sequences to force the network to
discover different action parts for the action completeness
modeling. Recently, Step-by-Step Erasion [42] and ACM-
BANet [15] trained the network in multiple steps, where
during each training step, the network first identified the most
discriminative video segments, which were then intentionally
weakened to force the network to discover the action instances
from the remaining segments. However, it is difficult to set a
proper number of training steps, and the attention regions may
gradually expand to the background intervals as the number of
training steps increases, which significantly decreases the lo-
calization performance. To overcome these problems, we train
our network in a single step with a novel feature weakening
module that randomly weakens either the most discriminative
action or the background features over the training iterations
to force the network to precisely localize the action instances
in both discriminative and ambiguous action-related frames,
without spreading to the background intervals.

Note, the proposed Feature Weakening (FW) module may
seem to be conceptually similar to the Dropout regularization.
However, the Dropout regularization randomly zeros out the
hidden nodes of the neural network, while our FW identifies
and randomly weakens either the most discriminative action
or the background features to force the network to further
discover more action related frames in the ambiguous intervals.

Feature contextualization-related methods: Most of the
existing W-TAL methods [14], [19], [20], [22], [43] neglected
the global contexts and only utilized the local contexts for
the temporal action localization. The feature contextualization-
related methods aim to exploit both the local and global
contexts in a video, and then fuse them to generate more
representative contextualized features for the temporal action
localization. Recently, ContextLoc [44] modeled the local
and global contexts in a unified framework for the fully-
supervised temporal action localization. More recently, AUMN
[45] introduced a weakly-supervised temporal action localiza-
tion network that computes the relationships between different
segments in a video to extract the global contexts, which
are then fused with the local contexts by simply performing
the element-wise summation. However, the element-wise sum-
mation provides a fixed importance to the local and global
contexts during the fusion. Differently, we present a new fea-
ture contextualization module that first explores the correlative
information between different segments in a video to extract
the global contexts, and then learns attention weights on local
and global contexts to fuse them accordingly, to generate
more representative contextualized features for the accurate
temporal action localization.

Feature discrimination-related methods: The feature

discriminative-related methods learn to highlight the most
discriminative features by designing W-TAL networks with
attention mechanisms and different loss terms. UntrimmedNet
[19] proposed attention mechanisms to highlight the most
discriminative frames for the W-TAL task. STPN [20] intro-
duced a sparse temporal pooling network to focus on key
video segments. AutoLoc [22] introduced a contrastive loss
function based on the class activation sequence, and Paul
et al. [14] utilized pairwise video similarity constraints to
localize the discriminative video segments in the temporal
domain corresponding to each action class. 3C-Net [21]
utilized category, counting, and center losses to highlight
the class-wise discriminative video segments in untrimmed
videos. RPN [46] adopted a clustering loss and A2CL-PT [47]
employed a triplet loss to highlight the discriminative action
frames from the background frames. Recently, some works
[18], [48], [49] explicitly modeled the background class to
suppress the background frames for the W-TAL task. More
recently, FAC-Net [43] introduced a multi-branch architecture
to highlight the most discriminative video segments by main-
taining the foreground-action consistency. FTCL [50] designed
Fine-grained Sequence Distance (FSD) and Longest Common
Subsequence (LCS) contrasting objectives for the W-TAL task.
Although these methods achieve remarkable progress, they
only highlight the most discriminative video segments cor-
responding to each action class. However, as shown in Fig. 3,
an action class may have multiple instances in separated video
segments, and a video segment may contain multiple action
classes. Therefore, highlighting the most discriminative video
segments related to action classes and the most discriminative
action classes within each video segment can be very useful
for multi-class multi-instance temporal action localization. 7o
address this challenge, we design our feature discrimina-
tion module to highlight both the most discriminative video
segments corresponding to each action class, and the most
discriminative classes within each video segment.

Pseudo label-related methods: Pseudo label-related meth-
ods iteratively refine a W-TAL network by leveraging segment-
wise pseudo labels to distinguish the foreground and back-
ground segments. At first, the RefineLoc [51] introduced the
pseudo-labeling strategy in W-TAL, where the pseudo labels
were generated from the previous detection results to itera-
tively refine the action localization network. Later, different
methods tried to generate high-quality pseudo labels to refine
the W-TAL networks. For example, EM-MIL [52] utilized an
expectation-maximization framework to generate the pseudo
labels, while UGCT [17] generated the pseudo labels from the
modality collaborative learning and uncertainty estimation to
learn more robust attention weights. More recently, Huang et
al. [53] introduced a representative snippet summarization and
propagation framework to generate the pseudo labels. How-
ever, since the pseudo label-related methods usually generate
the initial pseudo labels from the Class Activation Scores
(CAS) of an existing W-TAL network, the performances of
these methods heavily relied on the quality of the CAS of that
W-TAL network.

In this paper, we propose to solve the W-TAL problem
from the feature learning aspect. Table I summarizes the in-



TABLE I
INNOVATIONS OF OUR FEATURE WEAKENING, FEATURE CONTEXTUALIZATION, AND FEATURE DISCRIMINATION COMPARED TO RELATED METHODS.

Existing methods related to feature weakening

Innovation of our feature weakening

Existing feature weakening-related methods (e.g., [15], [42])
trained the network in multiple steps. During each step, the
network first identified the most discriminative features, which
were then erased or weakened to force the network to discover
the action instances from the remaining features.

Limitation: It is difficult to set a proper number of training
steps to discover different complementary action segments for
different action classes, and the attention regions may gradu-
ally expand to the background intervals as the training steps
increase, which downgrades the localization performance.

We train our network in a single step with a novel feature
weakening module that randomly weakens either the most
discriminative action or the most discriminative background
features over the training iterations to force the network to
precisely localize the action instances in both the discrimina-
tive and ambiguous action-related segments, without spreading
to the background intervals.

Please refer to Fig. 5 and Sec. III-B for the details.

Existing methods related to feature contextualization

Innovation of our feature contextualization

Existing feature contextualization-related methods (e.g., [45])
first explored the correlative information between different
segments in a video to extract the global contexts, which were
then fused with the local contexts by simply performing the
element-wise summation.

Limitation: The element-wise summation provides a fixed
importance to the local and global contexts during the fusion.

We introduce a new feature contextualization module that first
explores the correlative information between different seg-
ments in a video to extract the global contexts, and then learns
attention weights on local and global contexts to fuse them
accordingly, to generate more representative contextualized
features for the accurate temporal action localization.

Please refer to Fig. 6 and Sec. III-C for the details.

Existing methods related to feature discrimination

Innovation of our feature discrimination

Existing feature discrimination-related methods (e.g., [14],
[43], [49]) highlighted the most discriminative video segments
corresponding to each action class.

Limitation: These methods did not explicitly highlight the
most discriminative action classes within each video segment,
which can be useful for multi-class multi-instance temporal
action localization.

We design our feature discrimination module to highlight both
the most discriminative video segments corresponding to each
action class, and the most discriminative classes within each
video segment.

Please refer to Fig. 7 and Sec. III-D for the details.

novations of our feature weakening, feature contextualization,
and feature discrimination modules, compared to the existing
methods.

III. METHODOLOGY

The workflow of our W-TAL framework is illustrated in
Fig. 4. During the training, given untrimmed videos and
their video-level ground-truth labels, we perform a feature
embedding (Sec. III-A), a Feature Weakening (FW) module
(Sec. III-B), a Feature Contextualization (FC) module (Sec.
III-C), and a Feature Discrimination (FD) module (Sec. III-D).
Given a testing video, we not only recognize its action classes
but also localize the temporal window of each action instance.
Note, the FW module is deactivated during the testing.

A. Feature Embedding

Given an untrimmed video V = {s;}7_,, which is divided
into T non-overlapping video segments, we extract the D-
dimensional features for each video segment s; by a pre-
trained 13D network [36], generating the feature map of video
V as X € RTXP, Since the extracted features from 13D
are learned for the action recognition task originally, we load
the feature map X into a two-layer temporal convolutional
network to generate the embedded feature map X, € RT*P,
which is tuned for the W-TAL task.

B. Feature Weakening (FW) Module

Usually, the W-TAL methods follow a localization-by-
classification pipeline. Unfortunately, the action classification
network tends to focus on the most discriminative features
to pursue its classification accuracy, and the discriminative
features may be from the most salient portion of the action
time interval, which is not sufficient for the temporal action
localization task. Ideally, the action instances are supposed to
be precisely localized in time intervals with both discrimina-
tive and ambiguous action-related features, without spreading
to the background intervals. To overcome this challenge,
we introduce a Feature Weakening (FW) module to identify
and randomly weaken either the discriminative action or the
discriminative background features so that the network can be
enforced to discover the action instances in both discriminative
and ambiguous action intervals for complete localization.

Since the W-TAL networks aim to produce high confidence
scores for the target action classes for the action-related
segments and low confidence scores for all action classes
for the background segments, the networks learn to highlight
the action-related segments and suppress the background seg-
ments, eventually, produce large embedded feature magnitudes
for the action-related segments and small magnitudes for the
background segments. Therefore, we identify the discrimina-
tive action, ambiguous, and background features based on the
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Fig. 4. The workflow of our F3-Net. During the training, given untrimmed videos and their video-level ground-truth labels, the F3-Net first performs the
feature embedding. Then, a Feature Weakening (FW) module is designed for action completeness modeling. Thereafter, a Feature Contextualization (FC)
module is designed to generate contextualized features. Finally, a Feature Discrimination (FD) module is designed to highlight the most discriminative video
segments/classes corresponding to each class/segment, respectively. Given a testing video, the F3-Net not only recognizes its action classes, but also localizes
the temporal window of each action instance. Note, the FW module is deactivated during the testing.
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Fig. 5. TIllustration of our Feature Weakening (FW) module. During the training, the FW module selects and weakens the most discriminative action and
background features based on feature magnitudes. The embedded feature maps with weakened action/background features are randomly selected during the
training so that the network is forced to discover the action instances in both discriminative and ambiguous frames for the complete temporal action localization
and reduce the distraction from background frames. The FW module is deactivated during the testing phase.

embedded feature magnitude. As shown in Fig. 5, first, we
apply the L2 norm on the embedded feature map X, € R7*P
to compute the segment-wise feature magnitude row-by-row.
Then, we treat the top k%! and bottom kP%9 features in
terms of the feature magnitude as the highly discriminative
action and background features, respectively. We consider the
remaining features in X. as ambiguous features. After that,
we generate the feature map with weakened action features,
Xaet ¢ RT*D | by multiplying the discriminative action fea-
tures with a weakening factor ¢ (e € [0, 1]), where the ambigu-
ous and background features are unchanged. In this way, we
weaken the most discriminative action features and encourage
the network to look at ambiguous features. However, if we

persistently use the feature map with weakened action features,
the discriminative action features are always weakened during
the training phase and the network may wrongly shift its
focus to unexpected background segments. To remedy this,
from the feature map X., we generate another feature map
named as feature map with weakened background features,
Xbkg ¢ RT*P by multiplying the background features with
a weakening factor € (e € [0,1]), where the ambiguous
and discriminative action features are unchanged. Finally, the
output of the FW module, X,,, randomly selects either X%¢!
or X%%9 with equal chances at every training iteration. With
such a FW module, the network is forced to discover action
instances in both discriminative and ambiguous intervals, and
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Fig. 6. Typical self-attention module vs. our Feature Contextualization (FC) module.

neglect the distractions brought by the background. It should
be noted that the FW module is only used during the training.
During the testing phase, the FW module is deactivated, i.e.,
the embedded feature map is directly fed into the feature
contextualization module, as shown in Fig. 4.

C. Feature Contextualization (FC) Module

The features of all video segments, X; € RT*P_ which
is either the X,, during training or the X, during testing,
contains the local context information of individual segments.
We design a Feature Contextualization (FC) module to explore
the correlation between different video segments to extract the
global contexts, and then attentionally fuse the local and global
contexts to generate representative contextualized features.

Specifically, our FC module first uses a fully-connected
layer to encode the local features X; into a set of compact
queries Q € RT*P/™_ where m is a hyper-parameter to
control the memory reading efficiency. Since we are looking
for the correlation between video segments, we compute dot
products of a query with all queries, followed by a softmax
function, to obtain a 7' x T matrix, which contains the
relevance of each segment to other segments. Then, with
this matrix, we obtain the global contexts X, € RT*P by
aggregating the local contexts, which can be formulated as:

X, = (softmax(QQ"))X, (1)

The X, is finally merged with the X to get the contextualized
features X, € RT*P. One simple way to combine the local
and global context features is the element-wise summation,
ie., X, = X; + X, as shown in Fig. 6(a). This fusion gives
static equal weights to the local and global contexts.
Differently, we propose to learn the attention weights on
local and global contexts first, and then fuse them accordingly,
as shown in Fig. 6(b). Specifically, we first use fully-connected
layers to compute the attention scores \; € RT*! and

Ag € RT*! from X; € RT*P and X, € RT*P, respectively.
Then, we apply the softamx across these two attention scores
to normalize them and perform attention-weighted merging to
fuse the local and global contexts, as follows:

where ® represents the element-wise multiplication. We find
that the use of the attention-weighted merging leads to
improvement in performance when compared to traditional
element-wise summation, to be shown in ablation studies.

D. Feature Discrimination (FD) Module

We design a Feature Discrimination (FD) module to high-
light both the most discriminative video segments for each
action class and the most discriminative classes within each
video segment. As shown in Fig. 7, first, we randomly
initialize a class-agnostic foreground classifier wjy € R1xP
(i.e., the classifier learns weights to classify all action classes
(foreground) without depending on any specific action class)
and a class-specific classifier W, € RCTD*D (i e the clas-
sifier learns weights depending on the action classes and the
background class), where C represents the number of action
classes, and the (C'+1)th class corresponds to the background.
With the help of these two classifiers, we design three branches
in the FD module: (1) Action-only classification branch via
class-agnostic attention (CA); (2) Action-only classification
branch via class-specific attention (CS); and (3) Action and
background classification branch (AB).

Complementarity of three branches in the FD module:
The CA branch first uses a class-agnostic attention to generate
the foreground activation scores and then classifies a video in
regard to only the C' action classes. The CS branch first uses
a class-specific attention to highlight the most discriminative
video segments for each class and the most discriminative
classes within each video segment, and then classifies a video
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Fig. 7. Illustration of our Feature Discrimination (FD) module. The action-only classification branch via class-agnostic attention (CA) computes the foreground
activation scores, while the action-only classification branch via class-specific attention (CS) explicitly highlights the most discriminative video segments for
each class and the most discriminative classes within each video segment. Both branches classify the video by focusing on action classes. The action-background
classification branch (AB) classifies the input video regarding the action classes and the background class.

in regard to only the C' action classes. The training objectives
of these two branches are aligned, which regularizes the
consistency between the foreground and the C' action classes
of CS that localizes the action-related frames of various actions
in class activation scores (CAS) as foreground. On the other
hand, the AB branch classifies an input video in regard to
both the C action classes and the (C + 1)th background class,
which helps our FD suppress activations from background
segments, leading to effective action-background separation.
During training, we employ all three branches and jointly
train them to learn the background class as well as the action
classes. Without the AB branch, the CS branch cannot learn
the background class, nor computes the attention scores be-
tween action and background class, thus background segments
might be classified wrongly as action classes. Therefore, the
joint optimization of these three branches can maintain the
consistency between the foreground and the C' action classes
of CS, and also separate the C' action classes from the (C'+1)th
background class.

Action-only classification branch via class-agnostic at-
tention (CA): We first calculate the cosine similarity between
the w; and X, to obtain the foreground attention score
a € RT*1 ag follows:

3)

The foreground attention score vector a is passed through a
softmax layer to get the normalized foreground attention score:

€ [0,1]T. Then, the aggregated foreground feature vector
z € R™P of the video is computed by:

z=Y a(t)X(t,")

t

a(t) = COS(XC(ta ')a Wf)v € [L T]

“4)

The video-level classification result y., € RE*1! for the CA
branch is finally obtained by computing the cosine similarity
between the z and W, and then passing the similarity scores
through a softmax layer:

CXp(COS(Z, Wcs (.]7 ))
>, exp(cos(z, Wes(4,-))’
The classification loss of the CA branch is defined by:

e1,C+1] (5)

Yea(s) =

C+1

leg = Z *YCa(j) log S’ca(j)

j=1

(6)

where Yco = [Yea(1), -, Yea(C), 0] is the ground-truth vector,
in which y.q(c) is set to 1 if a video contains action class c.
Since this branch aims to classify an input video only on action
classes, the label for the background is set to 0.

Action-only classification branch via class-specific atten-
tion (CS): Given the X, we compute the cosine similarities
between X. and W, to obtain the segment-level Class
Activation Scores (CAS) P € RTX(C+1) aq:

P(tvj) = COS(XC(tv')vWCS(jv')) (7N

where ¢ and j represent the ¢-th video segment and the j-th
class, respectively.

Now, we aim to highlight the discriminative video segments
for each class. To achieve this goal, first, we apply the softmax
on P along the temporal~dimension, and obtain the normalized
class activation scores: P € RT*(C+1)_ Then, we perform an
element-wise multiplication between the normalized activation
scores of each class and the contextualized features to generate



the class-specific feature maps F. € R(CTDXTXD hishlight-
ing the most discriminative video segments for the C action
classes and the background, as follows:

where F.(j,-,-) € RTXD represents the feature map that
highlights the discriminative video segments for the j-th class.
Later, to highlight the discriminative classes within each
video segment, first, we reshape class-specific feature maps
F. € RCTDXTXD into segment-specific feature maps Fy €
RTX(C+1)xD e  for each video segment t, we get a feature
map Fy(t) € RIE+DXD which has C + 1 classes and each
class corresponds to a D-dimensional feature vector. Then, we
apply class-wise attention mechanism on top of the segment-
specific feature maps to highlight the most representative
classes within each segment. Specifically, the feature map
within a segment F(t) € RCTUXD js fed into a fully-
connected layer followed by a softmax function to compute
the class-wise attention score Way(t) = [0,1]9T! for that
segment. After that, by performing the element-wise multipli-
cation between the feature map of each segment and the class-
wise attention score, we get the segment-specific attention-
weighted feature maps F, € R7*(C+1)xD highlighting the
discriminative classes for 7' segments, as follows:

Fs(tv Y ) = Fs(ta K ) ® Watt(t) ©))

where F(t,-,-) € RICTVXD represents the feature map that
highlights the most discriminative classes for the ¢-th segment.

Since the weakly-supervised learning only has video-level
ground truth rather than the fine-grained segment-level one, we
aggregate the F, € RT*(C+1)xD yging the average pooling
along the temporal dimension, to generate the class-wise
features U € R(€+D*D for the entire video. The classification
score ¥.s € REH! for the entire video for this CS branch
is obtained by computing the cosine similarity between the
wy and U, and then passing the similarity scores through a
softmax layer, as follows:

exp(cos(U(4,-),wy))

Vol = 5 epleos( U w7
The classification loss of the CS branch is defined by:
C+1
ch - Z 7)’(:3(].) logyce(]) (11)
j=1

where yes = [Yes(1), ..., ¥es(C), 0] is the ground-truth vector,
in which y.s(c) is set to 1 if a video contains action class
c. Since this branch also aims to classify videos focusing on
action classes, the label for the background is set to 0.

Action and background classification branch (AB): We
use this branch to classify an input video regarding both the
action classes and the background class. In the AB branch,
first, we get the classification score 1, € R+ for the entire
video by aggregating the segment-wise class-activation score
with the normalized class-activation score, as follows:

Yan(§) = > P(t, )P (L, 5) (12)

The classification score is then passed through the softmax to
get the video-level prediction: ., = softmax(1),5) € R(CH1),
The classification loss of the AB branch is defined by:

C+1
lap =Y ~Yab(§) 10g Fan(5)

j=1

13)

where Yap = [Yab(1), ..., Yan(C), 1] is the ground-truth vector,
in which yg;(c) is set to 1 if this video contains the action
class c. The label for the background class is set to 1, con-
sidering that all untrimmed videos in training dataset contain
background frames.

E. Network Training and Inference

Training: We compose the three video-level classification
losses as follow:

Lrotat = aleq + Bles + 'Yéab

where «, (3, v are the balancing hyper-parameters.
Inference: We take a three-step inference to perform the
temporal action localization. First, we threshold on video-
level prediction (Eq. 5) of the CA branch and reject the
action classes whose prediction score is lower than 0.1. Then,
following [15], [43], [49], for each of the remaining action
classes, we apply a set of thresholds on the CAS (Eq. 7) of the
CS branch to generate action proposals. Finally, we perform
the class-wise Non-Maximal Suppression (NMS) to keep the
highly overlapped proposals, which are the final proposals.

(14)

IV. EXPERIMENTS
A. Datasets and Metrics

THUMOS14 [62]: THUMOSI14 has temporal boundary
annotations for 200 validation videos and 213 testing videos,
which belong to 20 classes. Following the literature [14], [18],
[19], [20], [22], [43], [48], [49], [58], [63], we train our model
on the validation set without using the temporal annotations
and evaluate it on the test set.

ActivityNetl.3 [64]: ActivityNetl.3 dataset covers 200
action classes, which has temporal boundary annotations for
10,024 videos for training, 4926 videos for validation, and
5044 videos for testing. Since the testing labels are withheld,
following the literature [18], [20], [43], [48], [49], [63], we
train our model on the training set without using the temporal
annotations and evaluate it on the validation set.

Evaluation metrics: We evaluate the temporal action local-
ization performance with the mean Average Precision (mAP)
values under different intersection over union (IoU) thresholds.

B. Implementation Details

First, we generate video segments from both RGB and
Optic-flow by sliding a non-overlapping temporal window of
16 frames. Then, we use a pre-trained 13D [36] network to
extract 1024 dimensional feature vectors for both streams. We
separately train our F3-Net for both streams, and collect the
generated proposals from both networks during inference. By
validation, we set k%t = kP*9 = (.7, the memory controlling
hyper-parameter m = 2, weakening factor ¢ = 0.8, the
balancing hyper-parameters o = 0.1, 8 = 1.0, and v = 0.1.



TABLE II

RESULTS ON THE THUMOS 14 TEST SET. AVG INDICATES THE AVERAGE MAP AT IoU THRESHOLDS 0.1:0.1:0.5.

[ Category [ Method ToU — [ 0.1 0.2 0.3 0.4 0.5 [ AVG |
Step-by-step erasion [42], MM2018 45.8  39.0 31.1 22.5 159 | 309
(i) Methods related to feature weakening A2CL-PT (I3D) [47] (ECCV’20) 61.2 56.1 438.1 39.0 30.1 | 46.9
ACM-BANet (I3D) [15], MM2020 64.6 57.7 48.9 40.9 32.3 | 489
(i1) Methods related to feature contextualization | AUMN [45], CVPR2021 66.2 61.9 54.9 44 4 333 | 52.1
STPN (I3D) [20], CVPR2018 52.0 447 35.5 25.8 169 | 35.0
W-TALC (I3D) [14], ECCV2018 552 49.6 40.1 31.1 22.8 | 39.8
3C-Net (I3D) [21], ICCV2019 56.8 49.8 40.9 32.3 24.6 | 409
RPN (I3D) [46], AAAI2020 623 570 48.2 37.2 279 | 46.5
CoLA (I3D) [54], CVPR2021 66.2 595 51.5 41.9 32.2 | 50.3
D2-Net (I3D) [16], ICCV2021 65.7 60.2 52.3 43.4 36.0 | 51.5
(iii) Methods related to feature discrimination WSAL-BM (I3D) [48], ICCV2019 604 56.0 46.6 37.5 26.8 | 455
BaS-Net (I3D) [49], AAATI2020 582 523 44.6 36.0 27.0 | 43.6
HAM-Net (I3D) [55], AAAI2021 654 59.0 50.3 41.1 31.0 | 494
ACS-Net (I3D) [56], AAAI2021 - - 51.4 42.7 324 | -
UM (I3D) [18], AAAI2021 67.5 61.2 52.3 43.4 33.7 | 51.6
FAC-Net (I3D) [43], ICCV2021 67.6 62.1 52.6 443 334 | 52.0
ACM-Net (I3D) [57], arXiv2021 68.9 62.7 55.0 44.6 346 | 53.2
FTCL (I3D) [50], CVPR2022 69.6 634 55.2 45.2 35.6 | 53.8
FW+FC+FD F3-Net (Ours) 69.4  63.6 54.2 46.0 36.5 | 539
RefineLoc (I3D) [51], ECCV2020 - - 40.8 - 23.1 | -
DGAM (I3D) [58], CVPR2020 60.0 54.2 46.8 38.2 28.8 | 45.6
EM-MIL (I3D) [52], ECCV2020 59.1 527 45.5 36.8 30.5 | 45.0
TSCN (I3D) [59], ECCV2020 63.4 57.6 47.8 37.7 28.7 | 47.0
(iv) Pseudo label-related method TSCN [59] + UGCT (I3D) [17], CVPR2021 67.5 62.1 55.3 45.2 333 | 527
WSAL-BM [48] + UGCT (I3D) [17], CVPR2021 | 69.2 62.9 55.5 46.5 359 | 54.0
DCC (I3D) [60], CVPR2022 69.0 63.8 55.9 459 357 | 54.1
ASM-Loc (I3D) [61], CVPR2022 712 655 57.1 46.8 36.6 | 55.4
FAC-Net [43] + RSKP (I3D) [53], CVPR2022 713 653 55.8 475 38.2 | 55.6
FW+FC+FD + Pseudo label F3-Net (Ours) + RSKP (I3D) [53] 72.0  66.1 56.5 48.2 389 | 56.3
TABLE III
RESULTS ON ACTIVITYNET1.3 VALIDATION SET. AVG INDICATES THE AVERAGE MAP AT IoU THRESHOLDS 0.5:0.05:0.95.
[ Category | Method IoU — [ 0.5 0.75 095 T AVG |
(i) Methods related to feature weakening A2CL-PT (I3D) [47], ECCV2020 36.8 22.0 5.2 22.5
ACM-BANet (I3D) [15], MM2020 37.6 24.7 6.5 24.4
(i1) Methods related to feature contextualization | AUMN (I3D) [45], CVPR2021 38.3 23.5 5.2 23.5
BaS-Net (I3D) [49], AAAI2020 345 22.5 4.9 22.2
(iii) Methods related to feature discrimination UM (I3D) [18], AAAI2021 37.0 239 5.7 23.7
FAC-Net (I3D) [43], ICCV2021 37.6 24.2 6.0 24.0
FW+FC+FD F3-Net (Ours) 38.1 24.9 6.6 24.6
TSCN (I3D) [59], ECCV2020 35.3 21.4 5.3 21.7
TSCN [59] + UGCT (I3D) [17], CVPR2021 38.1 21.2 54 22.8
(iv) Pseudo label-related methods WSAL-BM [48] + UGCT (I3D) [17], CVPR2021 | 39.0 21.4 5.1 23.0
DCC (I3D) [60], CVPR2022 38.8 24.2 5.7 24.3
FAC-Net [43] + RSKP (I3D) [53], CVPR2022 40.6 24.6 59 25.0
ASM-Loc (I3D) [61], CVPR2022 41.0 24.9 6.2 25.1
FW+FC+FD + Pseudo label F3-Net (Ours) + RSKP (I3D) [53] 39.9 25.0 6.7 25.2

C. Comparisons with the State-of-the-art

Table IT and III compare the results of our F3-Net with re-
cent W-TAL methods on the THUMOS14 and ActivityNet1.3,
respectively. We separate the W-TAL methods into four cate-
gories: (i) Methods related to feature weakening; (ii) Methods
related to feature contextualization; (iii) Methods related to
feature discrimination; and (iv) Pseudo label-related methods.

Our F3-Net vs. the W-TAL methods designed from the
feature learning aspect: Since we propose to solve the W-
TAL problem from the feature learning aspect, we mainly
compare our F3-Net with other W-TAL methods designed
from the feature learning aspect, i.e., the feature weakening,
the feature contextualization, and the feature discrimination-
related methods, for the fair comparison. As shown in Table II

and III, our F3-Net achieves superior performance compared
to the latest feature weakening, feature contextualization,
and feature discrimination-related W-TAL methods on both
THUMOS14 and ActivityNet 1.3, respectively.

Our F3-Net vs. pseudo label-related W-TAL methods:
Our F3-Net achieves superior performance compared to many
pseudo label-related methods. The performance of our F3-Net
is slightly inferior compared to the latest pseudo label-related
methods such as ASM-Loc [61] and FAC-Net [43]+RSKP
[53]. These pseudo label-related methods improve the perfor-
mance by refining the W-TAL networks with segment-level
pseudo labels over the training iterations, while our F3-Net
achieves competitive performance without refining our F3-Net
with segment-level pseudo labels. However, the performance
of our F3-Net can be further improved by considering the



TABLE IV
ABLATION STUDIES OF DIFFERENT ARCHITECTURES ON THUMOS 14 DATASET.
Method FwW FC D 0.1 0.2 0.3 0.4 0.5 AVG(0.1:0.1:0.5)
NG A o : ) : ) 5 | AVG(0.1:0.1:0.
Ours v v v v v 694 63.6 542 46.0 36.5 53.9
Case 1 X v v v v 68.7 629 53.6 456 358 533
Case 2 v X v v v 68.5 627 535 453 351 53.0
Case 3 v v X v v 664 61.1 518 437 339 514
Case 4 v v v X v 65.1 602 506 43.1 328 50.4
Case 5 v v v v X 629 564 459 363 276 45.8
TABLE V TABLE VI
EFFECTIVENESS OF OUR FEATURE CONTEXTUALIZATION (FC) OVER FW AND FC AS PLUG-IN’S ON OTHER METHODS.
SELF-ATTENTION.
Method [ F'W | FC [ 00 02 03 04 05
Method [01 02 03 04 05 ACM-BANet [15] X X | 646 577 489 409 323
Our F3-Net with Self-attention | 68.6 629 538 456 35.7 ACM-BANet [15] v X 65.1 583 49.7 421 335
Our F3-Net with FC 694 63.6 542 46.0 36.5 ACM-BANet [15] X v 65.8 588 50.1 422 333
ACM-BANet [15] v v 664 59.6 50.8 429 34.1
FAC-Net [43] X X 67.6 621 52,6 443 334
pseudo-labeling strategy. As shown in the last rows of Table ?ﬁg'get E“;} ){ )\; ggg 2§~2 ggg j‘éf gig
. -IN€ . . . . .
II and Table I'II, with the pseudq label refinement (e.g., RSKP FAC-Net [43] v v | 690 632 538 459 360
[53]), we achieve further boost in performances and establish
a new state-of-the-art performances on both the THUMOS14
and ActivityNet 1.3 datasets, respectively, on most metrics. e FD (CS+CA): The CA branch collaborates with the

D. Ablation Studies

Ablation studies on different modules and branches:
We conduct a series of ablation studies on the THUMOS14
dataset to evaluate the influence of FW, FC, and FD modules
(specifically, each branch inside the FD module).

o Case 1: We apply our F3-Net without the FW module.

o Case 2: We apply our F3-Net without the FC module.

o Case 3: We perform the experiment without the AB

branch in FD module.

o Case 4: We conduct the experiment without the CA

branch in FD module.

o Case 5: We perform the experiment without the CS

branch in FD module.

As shown in Table IV, each algorithm component con-
tributes to our approach, and our F3-Net that combines all
modules and branches achieves the best performance.

Effectiveness of FC over self-attention: We first plug the
self-attention module Fig. (6(a)) into our approach, and then
replace it with our FC module (Fig. 6(b)). We find that our
FC improves the performance when compared with the self-
attention module on the THUMOS 14, as shown in Table V.

Effectiveness of our FW and FC modules as plug-ins
on existing W-TAL methods: To test the effectiveness of
our FW and FC modules on existing methods, we plug them
into two latest W-TAL methods [15], [43]. As shown in Table
VI, we find that both the FW and FC modules can boost the
performance of ACM-BANet [15] and FAC-Net [43].

E. Qualitative Analysis

We visualize some qualitative results in Fig. 8, where we
show activation scores of the predicted classes according to
different branches in our FD and different modules:

e FD (CS): The CS branch in our FD module localizes all

the action instances roughly and has some false positives.

CS branch to improve the performance on the localized
instances by localizing more actual-action-related frames.

o FD (CS+CA+AB): The AB branch explicitly models the
background class and helps the FD suppress activations
from background frames, removing false positives.

e« FD (CS+CA+AB) + FC: The FC module helps us get
smooth localization by exploiting the local and global
contexts.

o FD (CS+CA+AB) + FC + FW: Finally, the FW module
further improves the performance by localizing the action
instances in ambiguous frames.

In the FW module, we assume that the features of ac-
tion segments generally have larger magnitudes than those
of background segments. As shown in Fig. 9, we validate
our assumption by performing the qualitative analysis on the
feature magnitudes of different segments for different videos.
Fig. 9 shows that features of action segments have larger
magnitudes compared to ones from background segments.

F. Discussions

In our proposed F3-Net, we first introduce a new FW
module for action completeness modeling. The existing feature
weakening-related methods [15], [42] trained the W-TAL
network in multiple steps. During each training step, the W-
TAL network first identifies discriminative features, which are
then erased and fed into the network of the next training step.
However, one key problem is that the attention regions may
gradually expand to the background intervals mistakenly as
the training steps increase, which downgrades the localization
performance. Differently, we train our network in a single step
with a novel FW module that first identifies and then randomly
weakens either the discriminative action or the discriminative
background features over the training iterations to force the
network to precisely localize the action instances in both the
discriminative and ambiguous action-related frames, without
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(@) An example video of “Long Jump” action

FD (CS)

FD (CS + CA)

FD (CS + CA + AB)

FD (CS+ CA + AB) +
FC

FD (CS+CA+AB) +
FC+FW

FD (CS)

FD (CS + CA)

FD (CS + CA + AB)

FD (CS + CA + AB) +
FC

FD (CS + CA + AB) +
FC+FW

Fig. 8. Qualitative results. With many background frames, the video (a) and (b) contain multiple instances of “Long Jump” and “Javelin Throw” actions,
respectively. We show the activation scores of the predicted action classes under five settings: three cases on different branches in the FD module, and the

effects of FC and FW in addition to the FD with all branches.

spreading to the background intervals. Since our FW module
prohibits attentions from spreading to background intervals,
we achieve better performance compared to the existing fea-
ture weakening-related methods.

On the other hand, we also introduce a new FC module
to generate more representative features for temporal ac-
tion localization. The existing feature contextualization-related
methods (e.g., [45]) first explored the correlative information
between different segments in a video to extract the global
contexts, which were then fused with the local contexts by
simply performing the element-wise summation. In contrast,
our FC module learns attention weights on local and global
contexts to fuse them accordingly. Intuitively, the conventional
element-wise summation is predefined, which provides fixed
importance to the local and global contexts during the fusion.
On the other hand, the attention-weighted fusion in our FC
module automatically learns the attention weights to atten-
tionally fuse the local and global contexts. Since the attention-
weighted fusion automatically learns the attention weights, it
provides varying importance to the local and global contexts
during the fusion, which generates more representative contex-

tualized features and achieves better performance compared to
the element-wise summation that provides fixed importance.

Furthermore, we design a novel FD module to highlight
the most discriminative video segments/classes correspond-
ing to each class/segment, respectively. The existing feature
discrimination-related methods (e.g., [14], [43], [49]) only
highlighted the most discriminative video segments corre-
sponding to each action class. But, an action class may have
multiple instances in separated video segments and a video
segment may contain multiple action classes. Since our FD
module highlights both the most discriminative video segments
corresponding to each action class and the most discrimi-
native classes within each video segment, we achieve better
performance compared to the previous feature discrimination-
related methods that only highlight the most discriminative
video segments corresponding to each action class.

Although we achieve state-of-the-art performances, the lo-
calization performance is not 100% correct yet. Most of the
failure cases are related to false positives, i.e., the network
wrongly localizes the background frames as foreground, par-
ticularly the background frames which are visually similar



(a) An example video of “Throw Discus” action
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Fig. 9. Visualization of feature magnitudes of different video segments. The video (a) contains multiple instances of the “Throw Discus”

action, video (b)

contains multiple instances of the “Pole Vault” action, video (c) contains multiple instances of the “Diving” action, and video (d) contains multiple instances
of the “High Jump” action. Generally, features of action segments have larger magnitudes compared to ones from background segments.

(a) An example video of “Billiards” action
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Fig. 10. Visualization of false positive cases. The video (a) contains the
“Billiards” action and video (b) contains the “Golf Swing” action, where
some background frames are wrongly localized as foreground since they are
visually similar and frequently co-occur with the action-related frames, but
do not belong to the actual actions.

and frequently co-occur with the action-related frames, but
do not belong to the actual actions, as shown in Fig. 10.
These background frames can be viewed as hard negative
samples, which are inherently difficult to suppress with weak
supervision. In the future, we will investigate how to mingle
the fully and weakly-supervised localization so that accurate
localization can be achieved with less annotation efforts.

V. CONCLUSION

We propose an F3-Net for W-TAL, including three mod-
ules: (1) The FW module to discover the action instances
in both discriminative and ambiguous frames for localizing
the complete action interval; (2) The FC module to utilize
the local and global contexts, generating more representative
contextualized features; and (3) The FD module to highlight
the most discriminative video segments/classes corresponding
to each class/segment, respectively. Our F3-Net outperforms
related W-TAL methods on THUMOS14 and ActivityNetl.3.
Besides, our FW and FC modules are effective plug-in’s to
improve other methods.
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