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Abstract—In this paper, we explore the problem of Weakly-
supervised Temporal Action Localization (W-TAL), where the
task is to localize the temporal boundaries of all action instances in
an untrimmed video with only video-level supervision. The
existing W-TA L  methods achieve a good action localization per-
formance by separating the discriminative action and background
frames. However, there is still a large performance gap between
the weakly and fully supervised methods. The main reason
comes from that there are plenty of ambiguous action and
background frames in addition to the discriminative action and
background frames. Due to the lack of temporal annotations in
W-TAL, the ambiguous background frames may be localized as
foreground and the ambiguous action frames may be suppressed
as background, which result in false positives and false negatives,
respectively. In this paper, we introduce a novel collaborative
Foreground, Background, and Action Modeling Network (FBA-
Net) to suppress the background (i.e., both the discriminative
and ambiguous background) frames, and localize the actual-
action-related (i.e., both the discriminative and ambiguous action)
frames as foreground, for the precise temporal action localization.
We design our FBA-Net with three branches: the foreground
modeling (FM) branch, the background modeling (BM) branch,
and the class-specific action and background modeling (CM)
branch. The CM branch learns to highlight the video frames
related to C  action classes, and separate the action-related frames
of C  action classes from the ( C  +  1)th background class. The
collaboration between FM and CM regularizes the consistency
between the FM and the C  action classes of CM, which reduces
the false negative rate by localizing different actual-action-related
(i.e., both the discriminative and ambiguous action) frames in a
video as foreground. On the other hand, the collaboration
between BM and CM regularizes the consistency between the
BM and the ( C  +  1)th background class of CM, which reduces
the false positive rate by suppressing both the discriminative
and ambiguous background frames. Furthermore, the collabora-
tion between FM and BM enforces more effective foreground-
background separation. To evaluate the effectiveness of our
FBA-Net, we perform extensive experiments on two challenging
datasets, THUMOS14 and ActivityNet1.3. The experiments show
that our FBA-Net attains superior results.

Index Terms—Temporal action localization, foreground mod-
eling, background modeling, action modeling.

I . INTRODUC T I ON

EMPORAL Action Localization (TAL), localizing the
temporal boundaries of all action instances in an
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untrimmed video, is an important yet challenging task for
video understanding, which has potential applications in high-
level tasks such as video surveillance [1], video summarization
[2], and others. Most existing methods [3], [4], [5], [6],
[7], [8], [9], [10] are trained in a fully-supervised manner
and achieve a remarkable performance, which expect that
the manually annotated temporal boundaries of all action
instances are accessible during the training phase. However,
collecting such annotations for a fully-supervised setting has
several pitfalls. For example, the precise temporal boundary
annotation at the frame level is costly, time-consuming, and
error-prone, which undermines the potential development of
fully-supervised methods in real-world applications. This lim-
itation motivates the research community to deal with the
Weakly-supervised Temporal Action Localization (W-TAL),
where only video-level labels are provided for the network
training (i.e., what actions are included in a video is known
during the training, but the exact timestamps of the action in
the video are unknown). Compared with precise temporal
boundary annotations of action instances of various action
classes, collecting only video-level labels for network training
is much easier and more practical. In this paper, we explore
the temporal action localization task with such weak labels.

Most of the existing W-TAL methods follow a localization-
by-classification pipeline [11], [12], [13], [14], [15], [16], [17],
[18], [19], [20], which can be divided into two main tech-
niques, attention mechanisms and Multiple Instance Learning
(MIL). The attention-based algorithms first learn to highlight
the most discriminative video segments based on their rele-
vance to the action class, and then classify the video into the
corresponding action classes. On the other hand, the MIL-
based algorithms treat the entire untrimmed video as a bag
containing both positive instances (action-related frames) and
negative instances (non-action background frames), where they
first classify individual frames into action classes and then
employ top-k aggregation techniques to get the video-level
prediction. Both techniques learn a sequence of class-specific
scores, named as Class Activation Scores (CAS), which helps
to locate the action-related frames (defined as foreground
frames in this paper) in the video based on their contribution
to the video-level classification. Therefore, the temporal action
localization performance depends to a large extent on the
quality of the CAS.  The quality of C A S  is likely to improve in
fully-supervised settings, where detailed temporal annotations
are available during the training. However, due to the lack
of such annotations, usually, a classification loss is used in
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Fig. 1. An untrimmed video contains “Throw Discus” and “Shot Put” actions with many background frames for the Weakly-supervised Temporal Action
Localization (W-TAL). Apart from the discriminative action (highly related to the actual actions) and discriminative background (not related to the actual
actions) frames, there are a plenty of ambiguous action (less discriminative but related to the actual actions) and ambiguous background (frequently co-occur with
the actual-action-related frames, but do not belong to the actual actions) frames. Existing W-TAL methods achieve a good performance by separating the
discriminative action and background frames. However, due to the lack of temporal annotations, some ambiguous background frames may be treated as
foreground and some ambiguous action frames may be treated as background, yielding false positives and false negatives, respectively. It is desired to suppress
both the discriminative and ambiguous background frames, and localize both the discriminative and ambiguous action frames as the foreground, for the precise
temporal action localization.

Fig. 2. We introduce a novel collaborative foreground, background, and action Modeling Network (FBA-Net) that consists of three branches, i.e., the foreground
modeling (FM) branch, the background modeling (BM) branch, and the class-specific action and background modeling (CM) branch. The FM branch learns to
highlight the foreground frames (both the discriminative and ambiguous action frames), without depending on any specific action class. The BM branch learns to
highlight the background frames (both discriminative and ambiguous ones). The CM branch learns to highlight the video frames related to C  action classes, and
separate the action-related frames of C  action classes from the ( C  + 1)th background class. The collaboration between FM and CM branches regularizes the
consistency between the FM and the C  action classes of CM, which reduces the false negative rate by localizing the actual-action-related (both the
discriminative and ambiguous action) frames of various actions as foreground. On the other hand, the collaboration between BM and CM branches regularizes the
consistency between the BM and the ( C  +  1)th background class of CM, which reduces the false positive rate by separating both the discriminative and
ambiguous background frames from the action-related frames of various actions. Furthermore, the collaboration between FM and BM branches enforces more
effective foreground-background separation.

weakly-supervised settings to highlight the foreground frames
in CAS.  In such weakly-supervised settings, some background
frames (i.e., the video frames that contain no related action)
may be treated as foreground and some foreground frames
may be treated as background, yielding false positives and
false negatives, respectively, in the learned CAS.

Recently, the latest W-TAL methods [16], [17], [20], [21],
[22], [23], [24], [25] pay a significant amount of attentions
to develop techniques for separating the discriminative action
and background frames to reduce the false positive and false

negative rates. Although these W-TAL methods achieve a good
performance, there is still a big performance gap between the
weakly and fully supervised methods. As shown in Fig. 1, the
main reason comes from that the untrimmed video contains
a significant number of ambiguous action and background
frames in addition to the discriminative action and background
frames. Due to the lack of temporal annotations in W-TAL, the
ambiguous background frames may be localized as foreground
since they provide strong clues for the action classification
and the ambiguous action frames may be suppressed as
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background since they are less discriminative compared to the
actual actions, which result in false positives and false nega-
tives, respectively. Therefore, the motivated research question
is: how to design a W-TAL network that can suppress both
the discriminative and ambiguous background frames, and
localize both the discriminative and ambiguous action frames
as the foreground for the precise temporal action localization?

Our proposal and contribution: Motivated by the above
research question, in this paper, we introduce a novel col-
laborative foreground, background, and action modeling Net-
work (FBA-Net) that consists of three branches, i.e., the
foreground modeling (FM) branch, the background modeling
(BM) branch, and the class-specific action and background
modeling (CM) branch, for the temporal action localization in
untrimmed videos, as shown in Fig. 2. Our main contributions
are six-fold:

• We introduce the CM branch, where we build the collabo-
ration between C  action classes and the ( C  +  1)th back-
ground class. The collaboration within the CM branch
learns to highlight the video frames related to C  action
classes, and separate the action-related frames of C  action
classes from the ( C  +  1)th background class.

• We introduce the collaborative FM and CM branches,
where the collaboration between FM and CM regularizes
the consistency between the FM and the C  action classes
of CM that reduces the false negative rate by localizing
the actual-action-related (both the discriminative and am-
biguous action) frames of various actions as foreground.

• We introduce the collaborative BM and CM branches,
where the collaboration between BM and CM regularizes
the consistency between the BM and the ( C  +  1)th
background class of CM that reduces the false positive
rate by separating both the discriminative and ambiguous
background frames from the action-related frames of C
action classes.

• We introduce the collaboration between FM and BM by
inserting a separation loss that enforces more effective
foreground-background separation.

• We propose a novel W-TAL network, called FBA-Net,
which integrates FM, BM, and CM branches to reduce
the false positive and false negative rates by suppressing
the background (i.e., both the discriminative and am-
biguous background) frames and localizing the actual-
action-related (i.e., both the discriminative and ambiguous
action) frames, respectively.

• We conduct extensive experiments on the challenging
THUMOS14 and ActivityNet1.3 datasets. The results
show that our FBA-Net achieves superior performance
compared to the latest W-TAL methods.

I I . R E L AT E D  W O R K S

Fully-supervised temporal action localization: The fully-
supervised methods rely on precise frame-level temporal an-
notations for the temporal action localization task. Motivated
by the success of the object detection framework [26], [27],
[28], [29], [30], [31], several recent works [5], [6], [32],
[33], [34], [35], [36], [37], [38] addressed the temporal action

localization problem by adopting a two-stage framework,
i.e., action proposals are generated first and then fed into a
classification module. More recently, several works [7], [8],
[9], [39], [40], [41] developed trainable proposal architectures
to localize the start time and end time of the action instances.
Even though these methods achieve impressive performance,
they heavily rely on precise temporal annotations.

Weakly-supervised temporal action localization: We
summarize these W-TAL methods into four categories.

Metric learning-based methods: The metric learning-based
methods aim to highlight the most discriminative action-
related features by reducing the intra-class and increasing
the inter-class variations of feature representations. Paul et
al. [12] used a co-activity similarity loss to enforce the
feature similarity between the localized instances of the same
class within different videos. 3C-Net [42] utilized category,
counting, and center losses to learn the class-wise attention and
localize the action instances in untrimmed videos. RPN [43]
adopted a clustering loss to separate the discriminative action
and background frames by learning the intra-compact features.
A2CL-PT [44] employed the triplet loss to distinguish the
background features from the action-related features for each
video. Although these methods achieve remarkable progress,
the main challenge for these methods is that they only focus on
the most discriminative action frames but ignore the ambigu-
ous action frames, which results in incomplete localization.

Erasing-based methods: The erasing-based methods aim to
discover different but complementary action instances for the
complete temporal action localization by iteratively erasing
the most discriminative features from the feature map. The
erasing strategy was first developed to model the completeness
of objects in object detection task [45], [46], [47]. Recently,
Hide-and-Seek [48] hid random frame sequences to force the
network to discover different action parts for the temporal
action localization task. More recently, Step-by-Step Erasion
[49] and ACM-BANet [17] utilized an iterative multi-pass
erasing strategy for discovering different action segments in
CAS.  During each iteration, these methods first identify the
most discriminative features, which are then erased from the
feature map and fed into the network of the next iteration.
However, it is difficult to define a proper number of itera-
tions to discover different complementary action segments for
different action classes.

Pseudo label-based methods: Due to the lack of fine-
grained temporal annotations, most of the existing W-TAL
methods follow a localization-by-classification pipeline. The
pseudo label-based methods seek to generate snippet-wise
pseudo labels for bridging the gap between classification and
localization. Recently, RefineLoc [50] iteratively generated
the snippet-wise pseudo labels from the previous detection
results, which were then used to supervise the W-TAL methods
to learn snippet-wise foreground and background attention
weights. EM-MIL [51] utilized an expectation-maximization
framework to generate the pseudo-labels. TSCN [52] intro-
duced an iterative refinement training method, where the
snippet-wise pseudo labels were generated from the two-
stream late fusion attention sequence. More recently, UGCT
[53] introduced an uncertainty guided collaborative training
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Fig. 3. Vanilla multi-branch architecture vs. our FBA-Net for the W-TAL.

strategy, where the pseudo labels were generated from modal-
ity collaborative learning and uncertainty estimation to learn
more robust attention weights. However, the pseudo label-
based methods usually first utilize an existing W-TAL network
as the classification head to generate the initial pseudo labels,
and then iteratively refine that W-TAL network with the pseudo
labels to improve the localization performance. Therefore, the
performances of the pseudo label-based algorithms heavily
rely on the performances of the existing methods. At the same
time, it is also difficult to set a proper number of iterations to
achieve optimal performances.

Multi-branch architecture-based methods: The multi-
branch architecture-based methods aim to separate the action
and background frames by inserting additional regularization
terms between different branches or using the weight-sharing
strategy with different training objectives. Recently, CMCS
[14] introduced a multi-branch network with a diversity loss to
discover different action parts for the action completeness
modeling. HAM-Net [54] proposed a hybrid attention
mechanism that includes soft, semi-soft and hard attentions to
localize action instances. Huang et al. [19] introduced a two-
branch relational prototypical network, where the prior
knowledge about label dependencies was used to generate
relational prototypes. More recently, some methods [16], [17],
[21] introduced an asymmetrical multi-branch architecture
with a weight-sharing strategy to separate the foreground and
background frames. For example, BaS-Net [16] introduced
a base branch and a background suppression branch,
where both branches share the weights of a class-specific
classifier with different training objectives. The base branch

classifies an input video regarding the action classes and the
background class, while the background suppression branch
classifies an input video focusing only on action classes.
The weight-sharing strategy with different training objectives
ensures that the class-specific classifier learns to separate
the foreground and background frames. However, although
these methods show a good performance in separating the
discriminative action and background frames, the foreground
localized through these methods may localize the ambiguous
background frames that result in false positives, while the
background suppressed through these methods may suppress
the ambiguous action frames that result in false negatives. Our
method belongs to the category of multi-branch architectures.
As summarized in Fig. 3, in contrast to the existing multi-
branch architecture-based methods, we introduce a novel
foreground, background, and action modeling network (FBA-
Net) to suppress both the discriminative and ambiguous
background frames, and localize the actual-action-related
frames (i.e., both the discriminative and ambiguous action
frames) as the foreground, for the precise temporal action
localization.

I I I . ME T HODO L OGY

In this section, we present our collaborative foreground,
background, and action modeling network (FBA-Net) in detail.

A. Feature Embedding
Following the recent W-TAL methods [15], [16], [17], [20],

[24], for a given untrimmed video V ,  we first divide it into T
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Fig. 4. Illustration of our FBA-Net. The FM branch first uses the foreground classifier w in its front to compute the foreground activation scores, and then
uses the class-specific classifier W c s  at the end to classify a video in regard to only the C  action classes. The BM branch uses the background classifier w
in its front to compute the background activation scores first, and then uses the class-specific classifier W c s  at the end to classify a video in regard to only
the ( C  +  1)th background class. The CM branch first uses the class-specific classifier W c s  in its front to compute the Class Activation Scores (CAS), and
then uses both the foreground classifier w to classify a video in regard to only the C  action classes and the background classifier w to classify a video
in regard to only the ( C  +  1)th background class. These three branches build four types of collaboration: (1) The collaboration within the CM branch learns
to highlight the video frames related to C  action classes, and separate the action-related frames of C  action classes from the ( C  + 1)th background class; (2)
The collaboration between FM and CM regularizes the consistency between the FM and the C  action classes of CM, which localizes the actual-action-related
(i.e., both the discriminative and ambiguous action) frames of various actions in C A S  as foreground; (3) The collaboration between BM and CM regularizes
the consistency between the BM and the ( C  +  1)th background class of CM, which separates both the discriminative and ambiguous background frames
from the action-related frames of C  action classes; and (4) The collaboration between FM and BM by inserting a separation loss enforces more effective
foreground-background separation. The classifiers themselves also collaborate with each other via some shared weights.

non-overlapping video segments (i.e., V  =  {s t } T       ). Then, we
feed each video segment st into the pretrained I3D [55] net-
work to extract its D-dimensional feature vector x t  � R 1 × D .
After that, we stack all segment features to generate a feature
map for the entire video, X  =  [x1 ; ...; xT ] � R T × D .  Since the
I3D network is pretrained on action recognition tasks, it is
desired to map the extracted features to W-TAL related
features. Therefore, on top of the feature map X ,  we apply
two convolution layers with ReLU activation to generate the
embedded feature map, X e m b  � R T × D ,  for the W-TAL task.

B. Collaborative Foreground, Background, and Action Mod-
eling Network (FBA-Net)

We design a collaborative foreground, background, and
action modeling network (FBA-Net) with collaborative clas-
sifiers to suppress both the discriminative and ambiguous
background frames, and localize both the discriminative and
ambiguous action frames as foreground, for the precise lo-
calization. For this purpose, as shown in Fig. 4, on top of
the embedded feature map, we incorporate three branches: (1)
Foreground modeling (FM) branch to generate the foreground
activation scores that highlight the foreground segments, i.e.,

the video segments (both discriminative and ambiguous ones)
related to various actions, without depending on any specific
action class; (2) Background modeling (BM) branch to gener-
ate the background activation scores that highlight the back-
ground video segments (both discriminative and ambiguous
ones); and (3) Class-specific action and background modeling
(CM) branch to generate the class activation scores, which
highlight the video segments depending on action classes and
separate the background segments from the action segments.

1) Classifiers: The FM, BM, and CM branches collaborate
with each other via sharing their corresponding classifiers,
where the classifiers also collaborate with each other via some
shared weights. Usually, the W-TAL methods [11], [12], [13],
[15], [24], [38], [42], [56] utilized a class-specific classifier
W  � R C × D  and a class-agnostic classifier wca � R 1 × D  for the
action localization task, where C  represents the number of
action classes. With only video-level action class annota-tions,
both the class-specific classifier and the class-agnostic
classifier can easily highlight the discriminative action frames
and suppress the discriminative background frames. But, there
are some ambiguous action and background frames, which are
hard to localize and suppress, respectively.
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Differently, in addition to C  action classes, we design our
class-specific classifier W c s  � R ( C + 1 ) × D  with an additional
background class to separate both the discriminative and
ambiguous background frames. Specifically, first, we randomly
initialize a class-specific classifier W c s  � R ( C + 1 ) × D  and a
class-agnostic classifier wca � R 1 × D ,  where the ( C  +  1)-th
class in W c s  corresponds to the background class. Since the
( C  +  1)-th row of W c s  corresponds to the background class,
we directly use the weights of the ( C  +  1)-th row of W c s  to
define the background classifier wbg, as follows:

wbg =  W c s ( C  +  1, ·), wbg � R 1 × D (1)

On the other hand, we define the foreground classifier wf g
with the fusion of the class-agnostic classifier wca and the
negative weights of the background classifier (−wbg ). We use
both the wca and (−wbg ) classifiers to generate the foreground
classifier for the following reasons:

• Since the foreground classifier learns attention weights
in a class-agnostic way (i.e., without depending on any
specific action class), we consider the class-agnostic
classifier wca for generating the foreground classifier.

• Meanwhile, the activation score generated from the fore-
ground classifier has the opposite meaning of the ac-
tivation score generated by the background classifier.
Therefore, we also consider the negative weights of the
background classifier (−wbg ) for generating the fore-
ground classifier.

• The fusion of the wca     and (−wbg ) generates better
foreground classifier compared to the individual wca
classifier or the (−wbg ) classifier, which will be validated
in the experiment section.

Formally, we define the foreground classifier wf g , as follows:

wf g =  αwca +  (1 −  α)(−wbg ), wf g � R 1 × D (2)

where α is the combination factor (α � [0, 1]). Ablation
studies on different α values are performed in experiments
to show the contribution of wca and (−wbg ) classifiers to
generate the foreground classifier. Usually, the existing W-TAL
methods utilized only a class-agnostic classifier wca � R 1 × D  to
represent the foreground classifier. But, the class-agnostic
classifier may highlight only the discriminative action frames.
Differently, we design our foreground classifier with the fusion
of the class-agnostic classifier and the negative weights of
the background classifier. Since the background classifier
generates the background activation scores that highlight both
the discriminative and ambiguous background frames, and the
activation scores generated from the foreground classifier have
the opposite meaning of the activation scores generated by
the background classifier, utilizing the negative weights of the
background classifier in addition to the class-agnostic classifier
encourages the foreground classifier to generate the foreground
activation scores that highlight both the discriminative and
ambiguous action frames.

Note, since the classifiers wbg and wf g are defined based
on W c s  and wca as Eq. 1 and Eq. 2, respectively, only the
classifiers W c s  and wca are to be learned from training.

2) Overview of the Collaborative Three Branch Archi-
tecture): With the help of a foreground classifier wf g , a
background classifier wbg and a class-specific classifier W c s ,
we design the FM, BM, and CM branches on top of the Xe m b ,  as
follows:

• The FM branch first uses the foreground classifier wf g in
its front to compute the foreground activation scores, and
then uses the class-specific classifier W c s  at the end to
classify a video in regard to only the C  action classes.

• The BM branch uses the background classifier wbg in
its front to compute the background activation scores
first, and then uses the class-specific classifier W c s  at the
end to classify a video in regard to only the ( C  +  1)th
background class.

• The CM branch first uses the class-specific classifier
W c s  in its front to compute the Class Activation Scores
(CAS), and then uses both the foreground classifier wf g
to classify a video in regard to only the C  action classes
and the background classifier wbg to classify a video in
regard to only the ( C  +  1)th background class.

As shown in Fig. 2 and Fig. 4, we build four types of
collaboration among the three branches:

Collaboration between C  action classes and the (C + 1)th
background class within the CM branch: The video-level
prediction via foreground classifier within the CM branch
aims to classify an input video in regard to only the C
action classes, while the video-level prediction via background
classifier within the CM branch aims to classify an input video
in regard to only the ( C  +  1)th background class. Therefore,
the CM branch learns to highlight the video frames related to C
action classes, and separate the action-related frames of C
action classes from the ( C  +  1)th background class.

Collaboration between FM and CM branches: The FM
and CM branches collaborate with each other via sharing a
foreground classifier wf g     and a class-specific classifier
W c s .  In addition to sharing classifiers, the FM and CM
also collaborate with each other by enforcing consistency in
their training objectives. The video-level prediction of the FM
branch aims to classify a video in regard to only the C  action
classes, while the video-level prediction via the foreground
classifier within the CM branch also aims to classify an input
video in regard to only the C  action classes. Therefore, the
training objectives of these two branches are aligned, which
regularizes the consistency between the FM and the C  action
classes of CM. Since the FM branch learns to generate the
foreground activation scores that highlight both the discrimi-
native and ambiguous action-related frames, regularizing the
consistency between the FM and the C  action classes of CM
localizes the actual-action-related (i.e., both the discriminative
and ambiguous action) frames of various actions in C A S  as
foreground.

Collaboration between BM and CM branches: The BM
and CM branches collaborate with each other via sharing a
background classifier wbg     and a class-specific classifier
W c s .  In addition to sharing classifiers, the BM and CM
also collaborate with each other by enforcing consistency in
their training objectives. The video-level prediction of the
BM branch aims to classify a video in regard to only the
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( C  +  1)th background class, while the video-level prediction
via the background classifier within the CM branch also aims to
classify an input video in regard to only the ( C  +  1)th
background class. Therefore, the training objectives of these
two branches are aligned, which regularizes the consistency
between the BM and the ( C  +  1)th background class of
CM. Since the BM branch learns to generate the background
activation scores that highlight both the discriminative and
ambiguous background frames, regularizing the consistency
between the BM and the ( C  +  1)th background class of CM
separates both the discriminative and ambiguous background
frames from the action-related frames of C  action classes.

Collaboration between FM and BM branches: The FM
and BM branches collaborate with each other via sharing a
class-specific classifier W c s ,  and by inserting a separation
loss between them. The collaboration between FM and BM
branches enforces more effective foreground-background sepa-
ration, leading to improve the action localization performance.

3) Foreground Modeling (FM) Branch: We first compute
the cosine similarity between the embedded feature map X e m b
and the foreground classifier wf g to get the foreground acti-
vation scores sf g � R T × 1 ,  are then passed through a softamx
layer to obtain the foreground attention scores s̃f g  � R T × 1 ,

as follows:

sf g (t) =  cos(Xemb (t, ·), wf g ), (3)
exp(sf g (t))

f g
i  exp(sf g (i))

Note that the W-TAL methods usually utilize the cosine
similarity or the dot product to calculate the similarity. The
dot product is magnitude sensitive while the cosine similarity,
which measures the angle of two input vectors, has a bounded
value range [−1, 1]. Therefore, the cosine similarity does not
depend on the magnitude of the two vectors. Since the action
localization is achieved by thresholding the segment-wise
classification scores, the cosine similarity ensures stable clas-
sification scores to provide better localization performances
for different videos and action classes. Therefore, we utilize
the cosine similarity over the dot product in our FBA-Net.

After that, we aim to perform a pooling operation to get the
attentionally-pooled foreground feature vector x f g  � R 1 × D

from the embedded feature map X e m b  and the foreground at-
tention scores s̃f g . Rather than using the conventional pooling
mechanism (e.g., average or max pooling), we perform the
pooling operation through a feature aggregation process. For-
mally, we obtain the attentionally-pooled foreground feature
vector x f g  � R 1 × D  of the video through a feature aggregation
process, as follows:

x f g  =  
X

s̃ f g ( t ) X e m b ( t , · ) , x f g  � R 1 × D (5)
t

Finally, based on the class-specific classifier W c s  and the xf g ,
we compute the video-level class activation scores p F M  �
R ( C + 1 )  for the FM branch, as follows:

pf g      (c) =  cos(xf g , Wcs (c, ·)) (6)

The p F M       � R ( C + 1 )      is then passed through a softmax
layer to get the video-level prediction p̃ F M  � R ( C + 1 ) .  The
classification loss of the FM branch is defined by the cross-
entropy loss, as follows:

C + 1

L F M  = − y f g      (c) log p̃f g      (c) (7)
c = 1

where y F M  (c) is the video-level label for the c-th class
of the video. Since the FM branch aims to classify an
input video regarding only action classes, we set y F M      =
[ y F M  (1), ..., yF M (c), ..., yF M (C ), 0], in which y F M  (c) is set
to 1 if a video contains action class c.

4) Background Modeling (BM) Branch: Similar to FM
branch, we first calculate the cosine similarity between the
embedded feature map X e m b  � R T × D  and the background
classifier wbg      � R 1 × D      to get the background activation
scores sbg      � R T × 1 .  The sbg      � R T × 1      is then passed
through a softmax layer to get the background attention scores
s̃bg     � R T × 1 .  After that, we obtain the attentionally-pooled
background feature vector xbg � R 1 × D  of the video through a
feature aggregation process, as follows:

xbg =  
X

s̃b g ( t )X e m b (t , · ) , xbg � R 1 × D (8)
t

Finally, we calculate the cosine similarity between W c s  �
R ( C + 1 ) × D  and xbg � R 1 × D  to compute the video-level class
activation scores p B M      � R ( C + 1 )  for the BM branch. The
p B M  � R ( C + 1 )  is then passed through a softmax layer to get
the video-level prediction p̃ B M  � R ( C + 1 ) .  The classification
loss of the BM branch is defined by the cross-entropy loss:

C + 1

L B M  = − y B M  (c) log p̃ B M  (c) (9)
c = 1

where y B M  (c) is the video-level label for the c-th class of the
video. Since the BM branch aims to classify an input video re-
garding only the background class, we set y B M  =  [0, ..., 0, 1],
in which only the background class is set to 1.

5) Class-specific Action and Background Modeling (CM)
Branch: For the class-specific action and background mod-
eling (CM) branch, we first compute the cosine similarity
between the embedded feature map X e m b  � R T × D  and the
class-specific classifier W c s  � R ( C + 1 ) × D  to get the segment-
level class activation scores S c s  � R T × ( C + 1 ) ,  and then, we
apply softamx along the temporal dimension of S c s  to get
the normalized class activation scores S c s  � R T × ( C + 1 ) ,  as
follows:

Scs (t, c) =  cos(Xemb (t, ·), Wcs (c, ·)), (10)
exp(Scs (t, c))

c s
k  exp(Scs (k, c))

where t and c represent the t-th segment of the input video
and the c-th class, respectively. We compute the class-specific
features F c s      � R ( C + 1 ) × D  for the entire video through a
feature aggregation process, as follows:
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Fc s (c)  =  
X

S c s ( t , c )X e m b ( t , · ) , F c s  � R ( C + 1 ) × D       (12)
t

Now, on top of the class-specific features F c s ,  we perform the
video-level predictions via both foreground and background
classifiers.

Video-level prediction via foreground classifier: First, we
compute the cosine similarity between the class-specific fea-
tures F c s  � R ( C + 1 ) × D  and the foreground classifier wf g �
R 1 × D  to get the video-level class activation scores p C M  �
R ( C + 1 ) ,  as follows:

p C M  (c) =  cos(Fcs (c, ·), wf g ) (13)

The p C M      � R ( C + 1 )  is then passed through the softmax
layer to get the video-level prediction p̃ C M  � R ( C + 1 ) .  The
classification loss for the video-level prediction via foreground
classifier of CM branch is defined by a cross-entropy loss:

C + 1

L C M  = − y C M  (c) log p̃ C M  (c) (14)
c = 1

where y C M  (c) is the video-level label for the c-th class
of the video. Since the video-level prediction via fore-
ground classifier of CM branch aims to classify an in-put
video regarding only action classes, we set y C M       =  [ y C M

(1), ..., yC M (c), ..., yC M (C ), 0], in which y C M  (c) is set to 1 if
a video contains action class c.

Video-level prediction via background classifier: We com-
pute the cosine similarity between the class-specific features
F c s  and the background classifier wbg � R 1 × D  to get the
video-level class activation scores p C M  � R ( C + 1 ) ,  as follows:

pbg     (c) =  cos(Fcs (c, ·), wbg ) (15)

The p C M  � R ( C + 1 )  is then passed through the softmax layer to
get the video-level prediction p̃ C M  � R ( C + 1 ) .  The clas-
sification loss for the video-level prediction via background
classifier of CM branch is defined by a cross-entropy loss:

C + 1

L C M  = − y C M  (c) log p̃ C M  (c) (16)
c = 1

where y C M  (c) is the video-level label for the c-th class of the
video. Since the video-level prediction via background classi-
fier of CM branch aims to classify an input video in regard
to only the background class, we set y C M  =  [0, ..., 0, 1], in
which only the background class is set to 1.

C. Training
The feature embedding, the class-specific classifier W c s  and

the class-agnostic classifier wca, and the three branches in
the proposed FBA-Net, are jointly-trained by minimizing the
following loss function:

L T o t a l  =  λ1 L f g      + λ2 L b g       + λ 3 L f g      + λ4 L b g       + λ 5 L f g − b g

Note, the background classifier wbg and the foreground clas-
sifier wf g     are defined based on W c s  and wca as Eq. 1
and Eq. 2, respectively, so wbg and wf g are not learned
independently in the training process. The λ1, λ2, λ3, λ4,
and λ5 are the balancing hyper-parameters to control the
corresponding weights among the loss terms. In addition to the
four classification losses in our FBA-Net, we also introduce
a foreground-background separation loss L f g − b g  to encour-
age the generation of more distinguishable foreground and
background features, eventually leading to better localization.
Thanks to the FM and BM branches, from which we get the
attentionally-pooled foreground x f g  (Eq. 5) and background
xbg (Eq. 8) feature representations, respectively, we insert
the foreground-background separation loss between the FM
and BM branches (Fig. 4) to learn separable foreground and
background feature representations, as follows:

L f g − b g  =  max(0, cos(xf g , xbg )) (18)

D. Temporal Action Localization in Inference
During the inference, given a test video, we first apply the

threshold on video level prediction p F M      � R ( C + 1 )  of the
FM branch and select the classes whose confidence scores in
˜ F M  are above 0.1. Then, following the literature [16], [17],
[20], for the selected classes, we apply a set of thresholds
on the class activation scores S c s  of the CM branch to get
the candidate action proposals. Finally, we perform class-
wise Non-Maximum-Suppression (NMS) to retain the highly
overlapped action proposals as the final localization.

I V. E X P E R I M E N T S

A. Datasets and Metrics
THUMOS14 [67]: The THUMOS14 dataset contains tem-

poral annotations for 200 validation and 213 test videos from
20 action classes. As in [11], [12], [13], [15], [16], [17], [20],
[24], [68], we use the validation and test sets for training and
evaluating, respectively.

ActivityNet1.3 [69]: The ActivityNet1.3 dataset has annota-
tions of 200 categories in 10,024 training and 4926 validation
videos. As in [14], [15], [16], [17], [20], we use the training
and validation sets to respectively train and evaluate.

Evaluation metrics: Following the standard protocol, we
evaluate the W-TAL performance with the mean Average
Precision (mAP) values under different intersection over union
(IoU) thresholds.

B. Implementation Details
For the feature extraction, we divide an untrimmed video

by sliding a non-overlapping temporal window of 16 frames
for both RGB and Optic-flow, which are then fed into the
spatial and flow streams of a pre-trained I3D [55] network to
extract 1024 dimensional feature vectors for both streams, re-
spectively. We separately train our FBA-Net for both RGB and
flow streams, and collect the generated proposals from both
streams during testing. By validation, we set hyper-parameters
λ1 =  0.1, λ2 =  0.1, λ3 =  1.0, λ4 =  0.1, λ5 =  0.0001.
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TA B L E  I
L O C A L I Z AT I O N  P E R F O R M A N C E C O M PA R I S O N W I T H S TAT E - O F - T H E - A R T  M E T H O D S IN T E R M S  O F MAP (%) U N D E R D I F F E R E N T  IOU T H R E S H O L D S  ON T H E

THUMOS14 T E S T  S E T.  AV G I N D I C AT E S  T H E  AV E R A G E  MAP A T  IOU T H R E S H O L D S  0.1:0.1:0.7. +  M E A N S T H E  M E T H O D U T I L I Z E S  A D D I T I O N A L  W E A K
S U P E RV I S I O N , E .G. , T H E  N U M B E R O F A C T I O N I N S TA N C E S  IN V I D E O S .

Supervision Category

Full

Weak+

Method IoU →
R-C3D [8], ICCV ’17
TAL-Net [7], CVPR’18
GTAN [9], CVPR ’19
ContextLoc [57], ICCV ’21
RefactorNet [58], ICCV ’21
S TA R  (I3D) [59], AAAI ’19
3C-Net (I3D) [42], ICCV ’19
BM (I3D) [21], ICCV ’19

0.1 0.2
54.5 51.5
59.8 57.1
69.1 63.7

-             -
-             -

68.8 60.0
59.1 53.5
64.2 59.5

0.3 0.4
44.8 35.6
53.2 48.5
57.8 47.2
68.3        63.8
70.7        65.4
48.7 34.7
44.2 34.1
49.1 38.4

0.5 0.6 0.7 AVG
28.9 - - -
42.8      33.8      20.8        45.1
38.8 - - -
54.3      41.8      26.2 -
58.6      47.0      32.1 -
23.0 - - -
26.6 -           8.1 -
27.5      17.3         8.6        37.8

Weak Metric learning-based
method

Weak Erasing-based method

Weak Pseudo label-based method

Weak Multi-branch architecture-
based method

Weak Multi-branch + Pseudo label

STPN (I3D) [13], CVPR’18
W-TALC (I3D) [12], ECCV ’18
RPN (I3D) [43], AAAI ’20
C o LA  (I3D) [60], CVPR’21
D2-Net (I3D) [56], ICCV ’21
Step-by-step erasion [49], MM’18
A2CL-PT (I3D) [44] ECCV ’20
ACM-BANet (I3D) [17], MM’20
RefineLoc (I3D) [50], ECCV ’20
DGAM (I3D) [61], CVPR’20
EM-MIL (I3D) [51], ECCV ’20
TSCN (I3D) [52], ECCV ’20
TSCN [52] + UGCT (I3D) [53], CVPR ’21
BM [21] + UGCT (I3D) [53], CVPR’21
DCC [62], CVPR’22
ASM-Loc [63], CVPR’22
RSKP (I3D) [64], CVPR ’22
CMCS (I3D) [14], CVPR’19
BM (I3D) [21], ICCV ’19
BaS-Net (I3D) [16], AAAI ’20
HAM-Net (I3D) [54], AAAI ’21
ACS-Net (I3D) [65], AAAI ’21
UM (I3D) [15], AAAI ’21
FAC-Net (I3D) [20], ICCV ’21
ACM-Net (I3D) [66], TIP’21
FBA-Net (Ours)
FBA-Net (Ours) + RSKP (I3D) [64]

52.0 44.7
55.2 49.6
62.3 57.0
66.2 59.5
65.7 60.2
45.8 39.0
61.2 56.1
64.6 57.7
-             -
60.0 54.2
59.1 52.7
63.4 57.6
67.5 62.1
69.2 62.9
69.0 63.8
71.2 65.5
71.3 65.3
57.4 50.8
60.4 56.0
58.2 52.3
65.4 59.0
-             -
67.5 61.2
67.6 62.1
68.9 62.7
69.2 63.3
71.9 65.8

35.5 25.8
40.1 31.1
48.2 37.2
51.5 41.9
52.3 43.4
31.1 22.5
48.1 39.0
48.9 40.9
40.8 32.7
46.8 38.2
45.5 36.8
47.8 37.7
55.3 45.2
55.5 46.5
55.9 45.9
57.1 46.8
55.8 47.5
41.2 32.1
46.6 37.5
44.6 36.0
50.3 41.1
51.4 42.7
52.3 43.4
52.6 44.3
55.0 44.6
54.2 46.3
56.7 48.6

16.9 9.9 4.3 27.0
22.8           - 7.6          -
27.9      16.7 8.1 36.8
32.2      22.0      13.1 40.9
36.0           -             -            -
15.9           -             -            -
30.1      19.2      10.6 37.8
32.3      21.9      13.5 40.0
23.1       13.3 5.3           -
28.8      19.8      11.4 37.0
30.5      22.7      16.4 37.7
28.7      19.4      10.2 37.8
33.3      20.7 9.5 41.9
35.9      23.8      11.4 43.6
35.7      24.3      13.7 44.0
36.6      25.2      13.4 45.1
38.2      25.4      12.5 45.1
23.1      15.0 7.0 32.4
26.8      17.6 9.0 36.3
27.0      18.6      10.4 35.3
31.0      20.7      11.1 39.8
32.4       22.0       11.7           -
33.7      22.9      12.1 41.9
33.4      22.5      12.7 42.2
34.6      21.8      10.8 42.6
36.9      23.6      13.1 43.8
39.3      26.4      14.2 46.1

C. Comparison with the State-of-the-art
Table I  summarizes the performance on the THUMOS14

dataset for action localization methods in the past few years
for the different levels of supervision. Since we explore the
W-TAL problem, regarding the design choice of the W-TAL
methods, we mainly separate them into four categories: (i)
Metric learning-based methods: use different loss terms to
separate the action-background features; (ii) Erasing-based
methods: iteratively erase the most discriminative features to
discover different action parts; (iii) Pseudo label-based meth-
ods: iteratively generate the snippet-wise pseudo labels from a
W-TAL network and then use them to refine that W-TAL net-
work to distinguish the foreground and background snippets;
and (iv) Multi-branch network-based methods: parallelly pro-
cess multiple branches by inserting additional regularization
terms or using the weight-sharing strategy with different train-
ing objectives to make branches different or complementary.
Since our method is a multi-branch architecture, we mainly
compare our method with other latest state-of-the-art multi-
branch architecture-based methods for a fair comparison. As
shown in Table I, our FBA-Net achieves superior performance
compared to other multi-branch architecture-based methods.
At the same time, our FBA-Net also achieves promising

performance compared to the metric learning-based, erasing-
based, and many pseudo label-based methods. The perfor-
mance of our method is slightly inferior compared to the latest
pseudo label-based methods such as ASM-Loc [63] and RSKP
[64]. The pseudo label-based methods usually first utilize an
existing W-TAL network as the classification head to generate
the pseudo labels, and then use them to refine that W-TAL
network to improve the localization performance, while our
FBA-Net achieves the comparable performance even without
refining our FBA-Net with pseudo labels. However, motivated
by the performance improvement of the pseudo label-based
methods, we can apply the pseudo-labeling strategy to our
multi-branch architecture to further improve the localization
performance. More specifically, as shown in the last row of
Table I, we incorporate the latest pseudo label-based RSKP
[64] algorithm to refine our FBA-Net with pseudo labels, and
we achieve further improvement and establish a new state-of-
the-art performance on the THUMOS14 dataset.

Table I I  presents the performance of our algorithm on the
validation set of ActivityNet1.3 dataset, showing the superior
performance compared to other state-of-the-art multi-branch
architecture and erasing-based methods, and the comparable
performance compared to the pseudo label-based methods.
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TA B L E  II
R E S U L T S  ON T H E  A C T I V I T Y N E T 1 . 3 VA L I D AT I O N  S E T.  AV G I N D I C AT E S  T H E  AV E R A G E  MAP A T  IOU T H R E S H O L D S  0.5:0.05:0.95.

Supervision Category Method IoU → 0.5 0.75 0.95 AVG

Full

Weak Erasing-based method

Weak Pseudo label-based method

Weak Multi-branch architecture-based method

Weak Multi-branch + Pseudo label

TAL-Net [7], CVPR’18 38.2 18.3 1.3 20.2
BSN [41], ECCV ’18 46.5 30.0 8.0 30.0
GTAN [9], CVPR ’19 52.6 34.1 8.9 34.3
A2CL-PT (I3D) [44], ECCV2020 36.8 22.0 5.2 22.5
ACM-BANet (I3D) [17], MM2020 37.6 24.7 6.5 24.4
TSCN (I3D) [52], ECCV2020 35.3 21.4 5.3 21.7
TSCN [52] + UGCT (I3D) [53], CVPR2021 38.1 21.2 5.4 22.8
WSAL-BM [21] + UGCT (I3D) [53], CVPR2021 39.0 21.4 5.1 23.0
DCC [62], CVPR2022 38.8 24.2 5.7 24.3
FAC-Net [20] + RSKP (I3D) [64], CVPR2022 40.6 24.6 5.9 25.0
ASM-Loc [63], CVPR2022 41.0 24.9 6.2 25.1
CMCS (I3D) [14], CVPR2019 34.0 20.9 5.7 21.2
BaS-Net (I3D) [16], AAAI2020 34.5 22.5 4.9 22.2
UM (I3D) [15], AAAI2021 37.0 23.9 5.7 23.7
FAC-Net (I3D) [20], ICCV2021 37.6 24.2 6.0 24.0
FBA-Net (Ours) 38.0 24.8 6.7 24.6
FBA-Net (Ours) + RSKP (I3D) [64] 39.8 25.0 6.8 25.3

TA B L E  II I
A B L AT I O N  S T U D I E S  O F D I F F E R E N T  A R C H I T E C T U R E S  ON THUMOS14

D AT A S E T .  L F M  : T H E  FM B R A N C H ;  L B M  : T H E  BM B R A N C H ; L C M  : T H E
CM B R A N C H  W I T H T H E  V I D E O - L E V E L  P R E D I C T I O N V I A  F O R E G RO U N D

C L A S S I F I E R ;  L b g       : T H E  CM B R A N C H  W I T H T H E  V I D E O - L E V E L

P R E D I C T I O N V I A  B A C K G R O U N D  C L A S S I F I E R

     L
F M L B M L C M L C M 0.1 0.2 0.3 0.4 0.5
✓ ✓ ✓ ✓ 69.2 63.3 54.2 46.3 36.9
✗ ✓ ✓ ✓ 64.7 59.0 49.4 42.5 33.4
✓ ✗ ✓ ✓ 67.2 60.7 51.6 44.4 34.3
✓ ✓ ✗ ✓ 60.2 52.3 42.1 34.0 25.3
✓ ✓ ✓ ✗ 68.1 62.6 53.0 44.6 34.5

TA B L E  V
P E R F O R M A N C E O F OU R F BA - N E T  R E G A R D I N G  T H E  C O M B I NAT I O N

F A C T O R  (α IN EQ. 2) ON THUMOS14 D AT A S E T .

Combination factor (α) 0.1 0.2 0.3 0.4 0.5
α =  1 67.1     60.9 52.0 43.5 33.9
α =  0 68.0     62.2 53.2 45.3 35.6
α =  0.5 69.2     63.3 54.2 46.3 36.9

TA B L E  V I
P E R F O R M A N C E O F OU R F BA - N E T  R E G A R D I N G  D I F F E R E N T  S I M I L A R I T Y

M E A S U R E S  ON THUMOS14 D AT A S E T .

TA B L E  I V
E F F E C T I V E N E S S  O F OU R F O R E G R O U N D - B A C K G R O U N D S E PA R AT I O N L O S S .

Similarity measure
Dot-product
Cosine similarity

0.1 0.2
67.4     61.1
69.2     63.3

0.3 0.4 0.5
51.8      43.4         33.1
54.2      46.3         36.9

Method IoU → 0.1 0.2 0.3 0.4 0.5
FBA-Net without L                    68.8     63.0       54.0      46.1         36.6
FBA-Net with L f g − b g                  69.2     63.3       54.2      46.3         36.9

Likewise, our FBA-Net with RSKP [64] surpasses the pseudo
label-based methods and obtains a new state-of-the-art perfor-
mance on ActivityNet1.3 dataset, on most metrics

D. Ablation Studies
Ablation studies on different branches: As shown in Table

III, to systematically evaluate the contribution of each branch,
we perform a number of ablation experiments on THUMOS14:
(i) We apply our FBA-Net without L F M  (i.e., without the
foreground modeling (FM) branch); (ii) We perform the ex-
periments without L B M  (i.e., without the background mod-
eling (BM) branch); (iii) We perform the experiment without
L C M  (i.e., without the video-level prediction via foreground
classifier in the class-specific action and background modeling
(CM) branch); and (iv) We perform the experiment without
L C M  (i.e., without the video-level prediction via background
classifier in the CM branch). As shown in Table III, we can
clearly see that each branch is contributing to our FBA-Net to
improve the localization performance. Our FBA-Net achieves
the best performance from the combination of all branches.

Effectiveness of foreground-background separation loss:
As shown in Table IV, we configure our FBA-Net without
and with the foreground-background separation loss L f g −b g ,
to check its effectiveness on THUMOS14 dataset. We find
that the foreground-background separation loss improves the
localization performance slightly, indicating that more future
works are needed to generate more distinguishable foreground
and background features.

Ablation studies on different combination factors for
the foreground classifier: In Eq.2, a combination factor (α) is
introduced to combine the class-agnostic classifier and the
negative weights of the background classifier to define the
foreground classifier. The performance of our network for
different values of α’s on THUMOS14 dataset is summarized
in Table V. We find that the average fusion (i.e., α =  0.5)
of the class-agnostic classifier and the negative weights of
the background classifier to generate the foreground classifier
leads to a larger improvement compared to the individual
class-agnostic classifier (i.e., α =  1) or the negative weights
of the background classifier (i.e., α =  0).

Effectiveness cosine similarity over dot-product: We
utilize the cosine rather than the commonly used dot product to
calculate the similarity. As shown in Table VI, we find that the
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Fig. 5. Qualitative results. With many background frames, the video (a) contains multiple instances of “Throw Discus” and “Shot Put” actions, and the video
(b) contains multiple instances of the “Pole Vault” action. The AM branch coarsely localizes the action instances of different classes. The collaboration between
FM and CM branches reduces the false negative rate by localizing more actual-action-related frames, while the collaboration between BM and CM branches
reduces the false positive rate by suppressing more background frames. The FBA-Net that comprises all three branches reduces both the false positive and false
negative rates.

cosine similarity obtains much higher performance compared
to the dot product for our action localization task. The main
reason on the performance improvement comes from that, the
dot product is magnitude sensitive while the cosine similarity
ignores the magnitude of the feature and ensures stable clas-
sification scores, eventually, leading to better performance.

Model complexity: Although our FBA-Net consists of
three branches, our FBA-Net only learns the parameters of

a class-specific classifier W c s      � R ( C + 1 ) × D      and a class-
agnostic classifier wca � R 1 × D  with a commonly used feature
embedding module. Hence, the model complexity does not
increase. With a single Tesla V100 GPU, it only takes about
15 and 40 minutes to train our FBA-Net on THUMOS14
and ActivityNet1.3, respectively, while it also takes almost a
similar time to train each branch independently.
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E. Qualitative Analysis

We visualize some qualitative results in Fig. 5, where
the Fig. 5(a) contains multiple instances of multiple actions
(“Throw Discus” and “Shot Put”), and the Fig. 5(b) contains
multiple instances of a single action (“Pole Vault”), with many
background frames. We show the activation scores of the
predicted classes for different branches in our FBA-Net. We
show the activation scores of the predicted classes for different
branches in our FBA-Net:

• CM: The CM branch localizes the discriminative action
frames and suppresses the discriminative background
frames, yielding a coarse localization with many false
positives and false negatives.

• FM+CM: The FM branch collaborates with the CM
branch to reduce the false negative rate by localizing more
actual-action-related frames, i.e., the FM+CM localizes
both the discriminative and ambiguous action frames.

• BM+CM: The BM branch collaborates with the CM
branch to reduce the false positive rate by suppressing
more background frames, i.e., BM+CM suppresses both
the discriminative and ambiguous background frames.

• FM+BM+CM (FBA-Net): The FBA-Net that comprises
all the FM, BM, and CM branches reduces both the
false negative and false positive rates by localizing both
the discriminative and ambiguous action frames, and
suppressing both the discriminative and ambiguous back-
ground frames, respectively.

V. CO N C L US I O N

We introduced a W-TAL approach, called FBA-Net, that
comprises a foreground modeling (FM) branch, a background
modeling (BM) branch, and a class-specific action and back-
ground modeling (CM) branch. The collaboration within the
CM branch learns to highlight the video frames related to
various actions, and separate the background frames from
the action frames. The collaboration between FM and CM
branches reduces the false negative rate by localizing dif-
ferent actual-action-related (i.e., both the discriminative and
ambiguous action) frames in a video as foreground, while
the collaboration between BM and CM branches reduces the
false positive rate by suppressing both the discriminative and
ambiguous background frames. Furthermore, the collaboration
between FM and BM enforces more effective foreground-
background separation. The experimental results show that
our FBA-Net achieves superior localization performances on
THUMOS14 and ActivityNet1.3 datasets.
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