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Abstract—Future action anticipation aims to infer future
actions from the observation of a small set of past video
frames. In this paper, we propose a novel Jointly-learnt Action
Anticipation Network (J-AAN) via Self-Knowledge Distillation
(Self-KD) and cycle consistency for future action anticipation. In
contrast to the current state-of-the-art methods which an-
ticipate the future actions either directly or recursively, our
proposed J-AAN anticipates the future actions jointly in both
direct and recursive ways. However, when dealing with future
action anticipation, one important challenge to address is the
future’s uncertainty since multiple action sequences may come
from or be followed by the same action. Training an action
anticipation model with one-hot-encoded hard labels that assign
zero probabilities to incorrect yet semantically similar actions
may not handle the uncertain future. To address this challenge,
we design a Self-KD mechanism to train our J-AAN, where the J-
AAN gradually distills its own knowledge during the training to
soften the hard labels to model the uncertainty on future action
anticipation. Furthermore, we design a forward and backward
action anticipation framework with our proposed J-AAN based
on a cyclic consistency constraint. The forward J-AAN anticipates
the future actions from the observed past actions, and the
backward J-AAN verifies the anticipation of the forward J-
AAN by anticipating the past actions from the anticipated future
actions. The proposed method outperforms all the latest state-of-
the-art action anticipation methods on the Breakfast, 50Salads,
and EPIC-Kitchens-55 datasets. This project will be publicly
available on https://github.com/MoniruzzamanMd/J-AAN.

Index Terms—Future Action Anticipation, Self-Knowledge Dis-
tillation, Cycle Consistency.

I . INTRODUC T I ON

IDEO analysis algorithms have been achieving tremen-
dous progress on automatic video-based object action

understanding in the past few years, including action recog-
nition [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12],
temporal action localization [13], [14], [15], [16], [17], [18],
[19], spatio-temporal action detection [20], [21], [22]. Most
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of these tasks analyze the entire video, such as the action
recognition task that infers an action category from a video
containing the complete action.

Early action recognition [23], [24], [25], [26], [27], [28] has
been investigated to infer the label of an action from the small
early portion of the video of that action. In contrast to early
action recognition, action anticipation, which predicts what
will happen in the future based on a short period of video
observation, infers the future actions that may not appear in the
early portion of the video. Similar to the literature, we use the
term of action anticipation in this paper to indicate that a future
action is anticipated to occur based on the past observation,
without using the term of action prediction which can be
defined as the inference of the action category of a video.
Action anticipation is an important and challenging problem in
computer vision, owing to its application in many areas such
as autonomous driving and human-robot collaboration.

Recently, some works [29], [30], [31], [32], [33] investi-
gated the anticipation of the next action immediately following
the current one, but such short-term near-future anticipation is
not sufficient for many real-world applications. For instance,
anticipating a future traffic accident from dashboard cameras
ahead of time is very valuable for autonomous driving, and
by anticipating a manufacturing worker’s future actions in
advance, collaborative robots can have sufficient time to grasp
materials and move to the correct location to assist humans.

In this work, we focus on the challenging problem of
anticipating future actions and their corresponding duration in
a longer time horizon from the observation of the past few
frames, which may include multiple sequential actions, as
illustrated in Fig. 1. However, anticipating the future actions
and their duration in a longer time horizon is challenging due to
the uncertainty of the future, and the weaker cause-effect
correlation between the observed past and the future actions
that are far-away from the observed actions. The above chal-
lenges lead to a research question: how to obtain an action
anticipation algorithm that can model the uncertain future
and accurately anticipate the actions and their corresponding
duration in both the near and far future?

Key observations: To address the above research question,
we have the following three key observations:

Observation 1: The future actions are jointly anticipable in
both direct and recursive ways. The direct anticipation directly
anticipates all the future actions and their corresponding dura-
tion in a single step, while the recursive anticipation anticipates
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Fig. 1. An example video of future action anticipation in the longer time horizon, where the future may contain multiple sequential actions.

Fig. 2. Illustration of our three main ideas: (a) Jointly-learnt Action Antici-
pation Network (J-AAN) that anticipates the future actions from the observed
past actions in both direct and recursive ways; (b) Self-knowledge distillation
mechanism to train the J-AAN, where the J-AAN gradually distills its own
knowledge during training; and (c) Forward and backward J-AANs with cycle
consistency, where the backward J-AAN evaluates how well the forward J-
AAN anticipates the future actions by anticipating the past actions from the
anticipated future actions.

the future actions and their corresponding duration one-by-one
in a recursive way. In joint learning, the recursive anticipation
can take the advantage of direct anticipation (since the direct
anticipation anticipates all the future actions in a single step)
for better future action anticipation.

Observation 2: In action anticipation, multiple action se-
quences may follow the same action. For example, both actions
“pour coffee” and “spoon powder” may happen after a person
takes a cup from the cupboard. In such cases, training an
action anticipation model with hard labels (i.e., the one-hot

encoded labels of the ground-truth future actions that assign
zero probabilities to incorrect yet semantically similar actions)
may not handle the future’s uncertainty. One possible solution
to deal with this challenge is to train the action anticipation
model with soft labels (i.e., the labels that reduce the most
confident value of the one-hot-vector and assign a small
amount of probability mass to semantically similar actions).

Observation 3: Actions are not only forward anticipable
but also backward anticipable, considering the relation among
sequential actions.

Our proposal: The above observations motivate us to de-
sign the following approaches to address the research question:

(1) The observation 1 leads us to design a novel Jointly-
learnt Action Anticipation Network (J-AAN) that anticipates
the future actions and their corresponding duration in both
direct and recursive ways (Fig. 2(a)) from the observed past
actions. Since the direct anticipation directly anticipates all
the actions in a single step, the recursive anticipation utilizes
them as an additional information in its one-by-one recursive
anticipation approach to improve the anticipation performance.

(2) The observation 2 motivates us to design a Self-
Knowledge Distillation (Self-KD) mechanism in the J-AAN,
where the J-AAN progressively distills its own knowledge
during the training to soften the hard labels of the ground-truth
future actions and handle the uncertainty on future action an-
ticipation. As shown in Fig. 2(b), J-AAN at epoch k is trained
with target labels that are generated from the combination
of the hard labels of the ground-truth future actions and the
anticipated future actions (soft labels) of the previous epoch. In
this Self-KD, the J-AANs at epoch k − 1 and k are teacher and
student anticipation models, respectively. The student model
at epoch k will be the teacher model for epoch k +  1, which
gradually utilizes its own knowledge for softening the hard
ground-truth labels to enhance the generalization performance
in the uncertain future.

(3) The observation 3 motivates us to design a forward-
backward mechanism based on a cyclic consistency constraint
to train the J-ANN, as shown in Fig. 2(c). Both the forward
and backward networks are constructed with the same J-AAN
architecture, satisfying a cyclic consistency constraint, in the
sense that if the forward J-AAN can accurately anticipate the
future from the past, then the backward J-AAN should be able
to translate it back from the future to the past.

Our contributions are four-folds:
• We propose a novel Jointly-learnt Action Anticipation

Network (J-AAN) that anticipates future actions jointly
in both direct and recursive ways, where the recursive
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anticipation takes the advantage of direct anticipation
for better future action anticipation. To the best of our
knowledge, this is the first work that integrates both the
direct and recursive anticipation in a unified network.

• We design a Self-Knowledge Distillation (Self-KD)
mechanism to train the J-AAN, where the J-AAN gradu-
ally distills its own anticipation to soften the hard labels
during the training to handle the uncertainty on future
action anticipation. To the best of our knowledge, this is
the first work that designs Self-KD mechanism in future
action anticipation.

• We design a forward and backward mechanism to train
the J-AAN, where the backward J-AAN verifies the
anticipation of the forward J-AAN based on a cyclic con-
sistency constraint to further improve the performance.

• Our proposed approach outperforms all the latest action
anticipation methods on the Breakfast [34], 50Salads
[35], and EPIC-Kitchens-55 [36] datasets.

I I . R E L AT E D  W O R K S

(1) Early action recognition: Human action recognition
has been widely studied with significant progress [37], [38],
[39], [40], [41], [42], [43], [44], [45]. Last few years, a large
body of works [23], [24], [25], [26], [46], [47], [48], [49],
[50], [51] focused on early action recognition, which aims to
recognize the label of an action from the small early portion of
the video of that action. Differently, in this paper, we focus on
anticipating the future actions based on the observation of the
small early portion of a video, where the future may contain
multiple actions that may not appear in observed frames.

(2) Action anticipation. Most of the previous action antic-
ipation algorithms [31], [52], [53], [54], [55], [56] anticipate
the near-future action, and are limited to a few seconds in the
future. Qi et. al [52] proposed a self-regulated learning
framework for egocentric video activity anticipation. Liu et. al
[53] introduced a memory augmented recurrent network to
anticipate egocentric near future actions. Recently, several
works [57], [58], [59] developed neural networks to anticipate
the future actions for longer time horizon. Farha et al. [57]
introduced an RNN model and a CNN model for future action
anticipation. The RNN model conducts the anticipation in an
iterative way, while the CNN model outputs a sequence of
future actions in a form of a matrix. Ke et. al [58] developed
a model to anticipate all the actions directly using temporal
convolutions with a time-variable. Sener et al. [59] introduced a
multi-granular temporal aggregation framework to anticipate
the future actions. More recently, Gong et. al [60] introduced
an end-to-end attention model to anticipate all future actions in
parallel using fine-grained visual features of past frames. Most
of these works anticipate the future actions either recursively
or directly. In contrast, we propose a novel Jointly-learnt
Action Anticipation Network (J-AAN) to anticipate the future
actions and their duration jointly in both direct and recursive
ways. Although our J-AAN may seem to be the combination of
the direct and recursive anticipation methods, we do not
simply train the direct anticipation and recursive anticipation
methods, and then fuse their anticipation results. Differently,

we jointly train the direct and recursive anticipation mod-
ules on top of a shared encoder, hence the encoded feature
learning is influenced by both of these modules, eventually
encoding the highly discriminative features from the observed
past actions. Furthermore, in the joint learning process, the
recursive anticipation takes the anticipated actions from the
direct anticipation as one of the inputs for better future action
anticipation. To the best of our knowledge, this is the first work
that integrates both the direct and recursive anticipation in a
unified network, and jointly train them to encode the highly
discriminative features from the observed past actions for the
better future action anticipation.

(3) Knowledge distillation: Distillation was originally pro-
posed to transfer knowledge from a complex network (Teacher
network) to a simple network (Student network) to improve
the performance of the simple network (Student network) [61],
[62], [63]. Recently, some works [23], [26] used the idea of
knowledge distillation for early action recognition, where the
Teacher network is first trained to recognize actions from full
videos, and then the Student network distills the knowledge
from the Teacher network and recognizes action from partial
videos. More recently, the Self-Knowledge Distillation (Self-
KD) becomes popular, in which the Student becomes the
Teacher itself, and gradually distills its own knowledge during
the training to soften the hard labels. Hence, the targets
are adjusted adaptively during each epoch of training by
combining the ground-truth (hard labels) and past predictions
(soft label) from the model itself. The idea of Self-KD was pre-
viously utilized in natural language processing [64] and image
classification [65], [66]. Differently, we design a new Self-KD
mechanism in the future action anticipation, where our action
anticipation model gradually distills its own anticipation dur-
ing the training to soften the hard labels of the ground-truth
future actions to enhance the generalization performance in
the uncertain future. To the best of our knowledge, this is the
first work that designs Self-KD mechanism in future action
anticipation to model the future’s uncertainty.

(4) Cycle consistency: Cycle consistency is a concept
from machine translation where a phrase translated from
English to French should translate it back from French to
English. Previously, the cycle consistency was utilized in many
computer vision tasks such as image-to-image translation
[67], natural language processing [68], [69], visual tracking
[70], trajectory prediction [71], depth estimation [72], and
dense semantic alignment [73]. Recently, Farha et al. [74]
utilized the cycle consistency concept in the future action
anticipation to evaluate how well the anticipation network
anticipates the future actions by anticipating the past actions
given the anticipated future actions. However, this method
evaluated the future actions by anticipating the past actions
only in a recursive way from the anticipated future actions.
Differently, we utilize the cycle consistency in the future action
anticipation by designing a forward and backward framework
for training the J-AAN, where the backward J-AAN anticipates
the past actions in both direct and recursive ways from the
anticipated future actions. Meanwhile, the anticipation of the
forward J-AAN is evaluated by both of the direct and recursive
anticipation modules, eventually leading to better anticipation.
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Fig. 3. Overview of our proposed Jointly-learnt Action Anticipation Network (J-AAN) for future action anticipation via Self-Knowledge Distillation (Self-KD) and
cycle consistency. During the training, it consists of two networks, a forward network, and a backward network. Both the forward and backward networks are
constructed with our proposed J-AAN. The forward J-AAN anticipates the future actions from the observed frame-wise past actions, and gradually distills its own
knowledge to soften the hard labels during the training to handle the uncertainty of future actions. The backward J-AAN takes the anticipated future actions from
the forward J-AAN as an input to anticipate the past actions, satisfying a cyclic consistency constraint, in the sense that if the forward J-AAN can accurately
anticipate the future actions from the past actions, then the backward J-AAN is expected to translate it back from the future actions to the past actions. During
the testing, we only use the forward J-AAN to anticipate future actions.

I I I . PROPOSED A P P ROAC H

A. Problem Formulation

Let V  =  { V i } T be a video with T frames, where V i
is the i-th frame in the video. Given the first few frames of
a video, we seek to anticipate the future actions, along with
their duration, which will be happening in the remainder of
that video. Specifically, given the first t frames of a video
V1:t     =  {V1 , . . . , Vt }  corresponding to n actions A 1 : n      =
{a1, ..., an} � R n × C  (each ai � R 1 × C ) ,  the task is to antic-
ipate future actions A n + 1 : N  =  {ãn+1 , ..., ãN }  � R ( N − n ) × C

and their corresponding duration ℓn + 1 : N  =  {ℓn+1 , ..., ℓN }  �
R ( N − n ) × 1  that will be happening in the remainder of that
video V t + 1 : T  , where N  is the total number of actions in that
video, and C  is the number of action classes.

For our forward and backward networks, we define the
forward and backward frames of different intervals as V i : j  and
V      , respectively, where the superscripts f  and b represent
the forward and backward directions, respectively, and the
subscript ( i  : j )  represents that the frame starts at time i  and
ends at time j ,  and vice versa for ( j  : i). For example, V f

represents the forward past frames, while V T : t + 1  represents
the backward future frames. Similarly, A f and ℓ
represent the anticipated forward future actions and their
duration, respectively, while A b        and ℓ

b       
represent the antic-

ipated backward past actions and their duration, respectively.

B. Method Overview

As shown in Fig. 3, we propose a novel Jointly-Learnt
Action Anticipation Network (J-AAN) via self-knowledge

distillation and cycle consistency for future action anticipation.
Our three major ideas are as follows:

Jointly-learnt Action Anticipation Network: The Jointly-
learnt Action Anticipation Network (J-AAN) anticipates future
actions and their duration jointly in both direct and recursive
ways from the observed frames. Our J-AAN contains a re-
current encoder, a direct anticipation module, and a recursive
anticipation module. The recurrent encoder encodes the actions
of the observed frames into a single feature vector, which
is then jointly used by the direct and recursive anticipation
modules. The direct anticipation module directly anticipates all
the future actions and their duration in one single step, while
the recursive anticipation module recursively anticipates the
future actions and their duration. During the recursive antic-
ipation, the direct anticipation supports the recurrent decoder
to improve the performance of the future action anticipation.

Self-Knowledge Distillation: We design a Self-Knowledge
Distillation (Self-KD) mechanism to train J-AAN, where the
J-AAN gradually distills its own anticipation to soften the
hard labels during the training. More specifically, during the
training at epoch k, our J-AAN is trained with target labels
that are generated from the combination of the hard labels of
the ground-truth future actions and the anticipated future
actions (soft labels) from the previous epoch k −  1, to handle
the uncertainty of future actions.

Cycle consistency: We design a forward and backward an-
ticipation framework based on a cyclic consistency constraint.
Both the forward and backward networks are constructed with
J-AAN. The forward J-AAN takes the forward frame-wise past
actions as the input to anticipate the forward future actions
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Fig. 4. The action representation generation for the forward J-AAN and the backward J-AAN.

and their duration, while the backward J-AAN evaluates
the anticipation of the forward J-AAN by anticipating the
backward past actions and their duration from the anticipation
of the forward J-AAN. Note that, during the testing, we only
use the forward J-AAN to anticipate future actions.

C. Action Representation Generation
Before discussing the architecture of the forward and back-

ward J-AANs, we introduce their inputs - an action represen-
tation based on frame-wise action labels, as shown in Fig. 4.
When generating the action representation for the forward J-
AAN (4(a)), we first separately train a recognition network to
infer the action label of each frame (since the anticipation of
the future actions significantly depends on the performed
actions within the observed part of the videos) of the forward
past frames, V f  . After that, we convert the inferred action
labels to one-hot-vectors and stack them in a matrix with the
size of t × C  as the representations of forward frame-wise past
actions, X f  . The forward J-AAN takes these forward frame-
wise past actions as an input to anticipate the forward future
actions and their duration.

On the other hand, the action representation for the back-
ward J-AAN (i.e., the backward frame-wise future actions) are
generated from the output of the forward J-AAN, as illustrated
in Fig. 4(b). Specifically, the anticipated future actions from
the forward J-AAN are stacked in a matrix according to their
duration to get the forward frame-wise future actions, X f ,
which is then reversed in the temporal domain to get the
backward frame-wise future actions, X b . The backward
J-AAN takes these backward frame-wise future actions as an
input to anticipate the backward past actions and their duration.

D. Jointly-learnt Action Anticipation Network (J-AAN)
Both the forward J-AAN and the backward J-AAN share

the same network architecture. In this section, we use the
forward J-AAN as an example to explain our network design.
As shown in Fig. 5, our forward J-AAN consists of three key

components: (1) a recurrent encoder; (2) a direct anticipation;
and (3) a recursive anticipation.

Recurrent encoder: The recurrent encoder encodes the
frame-wise action labels of the observed frames into a single
vector that will be used to anticipate future actions. Formally,
the recurrent encoder loads the forward frame-wise past ac-
tions X f � R t × C  into a Gated Recurrent Unit (GRU) to
capture the temporal pattern of the past action sequences and
encode them into a single vector, as follows:

h τ  =  GRU ( X f  , hτ −1 ), where τ =  1, ..., t (1)

where X f  is the input action representation of the forward
past frame at time τ , he and he are the hidden states at
time τ and τ −  1, respectively. The superscript e denotes the
‘encoder’. The hidden state at the last time step, he, encodes
all the forward frame-wise past actions.

Direct anticipation: The direct anticipation module antic-
ipates all the future actions and their corresponding duration in
one single step. Formally, the direct anticipation module loads
the encoded feature vector he and anticipates the forward future
actions, (A d i r

1 : N  ) f  =  [(ãdir
1 )f  , ..., (ãdir )f ], and their

duration, (ℓ ) f  =  [(ℓdir ) f  , ..., (ℓdir )f ]. The direct antici-
pation module consists of two separate branches (each branch is
configured with a fully-connected layer) to anticipate the
future actions and their duration. Mathematically, the future
actions and their duration are directly anticipated as follows:

(Ad i r
1 : N  ) f  =  Reshape(Wdir he )                     (2)

(ℓn + 1 : N  ) f  =  Reshape(Wdir he )                      (3)

where W d i r  and W d i r  are the trainable parameters.
Recursive anticipation: The recursive anticipation

aims to recursively anticipate the forward future actions,
(Ar e c

1 : N  ) f =      [(ãr ec
1 )f  , ..., (ãrec )f ], and their duration,

(ℓ ) f  =  [(ℓrec ) f  , ..., (ℓrec )f ]. The recursive anticipation
contains two components: (1) a recursive initialization module
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Fig. 5. Illustration of our proposed Jointly-learnt Action Anticipation Network (J-AAN). The J-AAN contains a recurrent encoder, a direct anticipation
module, and a recursive anticipation module. The recurrent encoder encodes the frame-wise actions over different time steps of the observed frames. The direct
anticipation module takes the encoded features and directly anticipates all the actions and their corresponding duration, while the recursive anticipation contains a
recursive initialization and a recurrent decoder to recursively anticipate the future actions and their duration. During the recursive anticipation, the recurrent
decoder takes the anticipated actions from the direct anticipation as one of the inputs for better future action anticipation.

that anticipates the immediate future, i.e., the (n+1)-th forward
future action (ãr ec ) f  and its duration (ℓrec ) f  to initialize the
recurrent decoder; and (2) a recurrent decoder that recursively
anticipates the remaining forward future actions ( A n + 2 : N  ) f

from n + 2 to N , and their corresponding duration (ℓn + 2 : N  ) f  .
(a) Recursive initialization: The recursive initialization

module loads the encoded feature he and anticipates the imme-
diate future action and its duration. The recursive initialization
module consists of two separate branches, where each branch
is configured with a fully-connected layer. One branch with a
fully-connected layer anticipates the immediate (i.e. the n + 1-

th) future action ( ã n + 1 ) f  , while the other branch with another
fully-connected layer anticipates the duration (ℓ       ) f  of that
immediate future action.

Please note that we use two fully-connected layers in the
recursive initialization module to respectively anticipate the
immediate (i.e., the n +  1-th) future action and its duration,
while we use two fully-connected layers in the direct initial-
ization module to respectively anticipate all the unseen (i.e.,
from n +  1 to N ) future actions and their duration

(b) Recurrent decoder: Given the outputs of the encoder
and the direct anticipation module, the recurrent decoder
recursively anticipates the future actions and their duration.
The recurrent decoder consists of GRU and the hidden state at
each time step is updated as follows:

h m  =  GRU([(ãrec 
1 ) f  , (ãdi r ) f  ], hm−1 ), m =  n +  2, ..., N

4)
where the input of the recurrent decoder at time step m
is the concatenation of the anticipated actions (ãr ec     ) f  and
(ãd i r ) f      i.e., the anticipated action at the previous step by
recursive anticipation and the anticipated action at the current

step by direct anticipation, respectively. The hidden states hd

and hd are the current and previous hidden states of the
decoder, respectively. The superscript d denotes the ‘decoder’.
During the first time step of the recurrent decoder, the input
is initialized with the concatenation of the (n +  1)-th forward
future action anticipated by the recursive initialization module
and the (n +  2)-th forward future action anticipated by the
direct anticipation module, and the output of the recurrent
encoder he is used as the previous hidden state.

Given the hidden state hd      at each time step, the future
action and its duration are anticipated as follows:

(ar ec )f  =  W r e c hd                                                  (5)

(ℓ r ec )f  =  W r e c h m                                                 (6)

where (ar ec )f  and (ℓ r ec )f  are the anticipated forward future
action and its duration from the recurrent decoder at time step
m. W r e c  and W r e c  are the trainable parameters.

E. Self-Knowledge Distillation
Since multiple action sequences may follow the same action,

training an action anticipation model with hard labels that
assign zero probabilities to incorrect yet semantically similar
actions may not handle the future’s uncertainty. Therefore, we
design a Self-Knowledge Distillation (Self-KD) mechanism in
the J-AAN, where our J-AAN gradually utilizes its previous
anticipations to have more informative supervision during
training to handle the future’s uncertainty.

Formally, let the forward J-AAN directly and recursively
anticipates the forward future actions and their duration from
the forward frame-wise past actions at epoch k. Mathemat-
ically, we get the following two functions from the forward J-
AAN at epoch k:
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Fig. 6. Illustration of our proposed forward and backward J-AANs. The forward J-AAN anticipates the forward future actions and their duration from the
forward frame-wise past actions. The anticipated future actions are stacked in a matrix according to their duration to get the forward frame-wise future actions,
which is then reversed in temporal domain to get the backward frame-wise future actions. The backward J-AAN loads the backward frame-wise future actions and
anticipates the backward past actions and their corresponding duration, which satisfies a cycle consistency. Note that, both the forward J-AAN and the backward
J-AAN perform their corresponding anticipation jointly in both direct and recursive ways. For the simplicity, we show the output of the recursive anticipation for
each J-AAN.

Forward direct anti.: X 1 : t  → ( ( A n + 1 : N  )k , (ℓn + 1 : N  )
f  )

Forward recursive anti.: X → ( (A r e c ) , (ℓn + 1 : N  )  )
Then our forward loss for the direct anticipation at k-th epoch
can be written as:

(L d i r ) k  =||(αAn + 1: N  +  (1 −  α ) ( A n + 1 : N  ) k −1 )
(7)−  ( A n + 1 : N  )k||2 +  ||ℓn+1:N −  (ℓn + 1 : N  )k||2

where A n + 1 : N  is the hard labels of the ground-truth forward
future actions and ℓn + 1 : N  is their corresponding ground-truth
duration, (αA + ( 1 − α ) ( A d i r ) )  is the soft labels
of the forward future actions that are generated from the
combination of the hard labels of the ground-truth forward
future actions and the directly anticipated forward future
actions of the previous epoch, and α is a hyper-parameter.
Similarly, our forward loss for the recursive anticipation at
epoch k can be written as:

(L r e c ) k  =||(αAn +1: N  +  (1 −  α ) ( A n + 1 : N  ) k −1 )

−  ( A n + 1 : N  )
f  ||2 +  ||ℓn+1:N −  (ℓn + 1 : N  )k||2

where (αA f +  (1 −  α)(Ar e c ) f )  is the soft labels
of the forward future actions for the recursive anticipation.
Note that, we use the anticipated action probabilities over C
action classes from epoch (k − 1) for softening the hard labels
to handle the uncertainty on future action anticipation, not

the duration since we only anticipate a single value for the
duration at each time step. Finally, the anticipation loss with
Self-KD for the forward J-AAN is computed as:

( L A n t i  
D ) k  =  ( L d i r ) k  +  (L r e c ) k (9)

F. Cycle Consistency
Since human actions are probably anticipable in both for-

ward and backward directions, we design a forward and
backward anticipation framework with our proposed J-AAN
based on a cyclic consistency constraint, as shown in Fig. 6.
Given the predicted future actions and their corresponding
duration from the forward J-AAN, we then anticipate the past
actions and their duration from the backward J-ANN. The
goal is to enforce the output of the backward J-ANN to be
consistent with the input of the forward J-ANN.

Specifically, the forward J-AAN directly ( ( A n + 1 : N  ) f  ,
(ℓ ) f  ) and recursively ((Ar e c ) f  , (ℓ ) f  ) antic-
ipates the forward future actions and their corresponding
duration from the forward frame-wise past actions. Since
the actions anticipated by the direct anticipation module are
already fed into the recursive anticipation module as one of
its input, we only use the recursively anticipated future
actions and their duration to generate the input to the backward
J-AAN. First, the recursively anticipated future actions are
stacked in a matrix according to their duration to get the for-
ward frame-wise future actions X t + 1 : T  , which is then reversed
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TA B L E  I
CO M PA R I S O N W I T H O T H E R  S TAT E - O F - T H E - A R T  M E T H O D S ON B R E A K F A S T  D A T A S E T  F O R F U T U R E A C T I O N A N T I C I PAT I O N F RO M T H E  I N F E R R E D  A C T I O N

L A B E L S  O F T H E  O B S E R V E D  F R A M E S ,  U S I N G M E A N - O V E R - C L A S S E S  (MOC) A C C U R A C Y

Observation first →
Prediction following →

20%
10% 20% 30% 50% 10%

30%
20% 30% 50%

Grammar (reported from [57]) 16.6
Nearest-Neighbor (reported from [57]) 16.4
RNN model [57], CVPR2018 18.1
CNN model [57], CVPR2018 17.9
Time-Conditioned [58], CVPR2019 18.4
TA B  [59], ECCV2020 37.4
Proposed approach 39.9

15.0 13.5
15.0 14.5
17.2 15.9
16.4 15.4
17.2 16.4
31.2 30.0
36.1 35.7

13.4 21.1 18.2
13.3 19.9 18.6
15.8 21.6 20.0
14.5 22.4 20.1
15.8 22.8 20.4
26.1 39.5 34.1
33.8 44.9 41.5

17.5 16.3
18.0 16.6
19.7 19.2
19.7 18.8
19.6 19.8
31.0 27.9
39.8 37.5

in the temporal domain to get the backward frame-wise future
actions X b . The backward J-AAN loads these backward
frame-wise future actions and anticipates the backward past
actions and their corresponding duration in both direct and
recursive ways. Mathematically, we obtain the following two
functions from the backward J-AAN at epoch k:

Backward direct anti.: X T : t + 1  → ((An : 1 )b  , (ℓn:1)b )
Backward recursive anti.: X b → ( (Ar e c ) b  , (ℓ )b )

The backward loss at epoch k for the direct anticipation can
be written as:

(L d i r ) k  =  ||An:1 −  (Adir )k ||2 +  ||ℓn:1 −  (ℓn:1)k||2 (10)

While the backward loss for the recursive anticipation at k-th
epoch can be written as:

(L r e c ) k  =  ||An:1 −  (Arec)k ||2 +  ||ℓn:1 −  (ℓn:1 )b ||2 (11)

where A b and ℓb are the ground-truth backward future
actions and their duration, respectively. Finally, the cycle
consistency loss for the backward J-AAN is computed from
the combination of the backward loss for the direct anticipation
and the backward loss for the recursive anticipation:

(L c y c ) k  =  ( L d i r ) k  +  (L r e c ) k (12)

G. Training and Inference
To train our forward and backward J-AANs, we sum up all

the related losses:

L k  = ( L S − K D ) k  +  (L c y c ) k

= ( ( L d i r ) k  +  (L r e c ) k )  +  ( (L d i r ) k  +  (L r e c ) k )

At the inference, we only use the forward J-AAN for our
future action anticipation.

I V. E X P E R I M E N T S

A. Datasets
Breakfast Dataset [34]: This dataset contains 1712 videos

of 52 different actors preparing breakfast meals. Overall, there
are 48 fine-grained action classes. The videos are recorded
in 18 different kitchens. The dataset is provided with four
different train/test splits. For evaluation, we quantify the
performance with the average scores over the four splits.

50Salads Dataset [35]: This dataset contains 50 videos with
17 fine-grained action classes. All the videos correspond to
salad preparation activities and the actions are performed by 25
subjects. We perform five-fold cross-validation for evaluation
using the splits provided by [35] and report the average scores.

Epic-Kitchens-55 Dataset [36]: This dataset is a large-scale
and fine-grained cooking video dataset, which involves 2513
unique actions. The actions are performed by 32 participants
in diverse kitchen environments. Following the literature [53],
[75], [76], [77], we follow the same experimental setting in
[33], where the 28,472 activity segments in the public training
set are further split into 23,493 segments for training and 4,979
segments for validation.

B. Evaluation Metric

Following the literature [57], [58], [59], [60], [74], we use
the Mean over Classes (MoC) as the quantitative evaluation
metric to evaluate the performance of the future action an-
ticipation on both the Breakfast and 50Salads datasets. We
also follow the standard training and testing protocol: for each
video in the training set, 4 training examples are generated
by using the first 10%, 20%, 30%, and 50% of the video,
respectively, as observation and the following 50% of the
video as ground-truth for the anticipation; for the testing, we
observe the first 20% or 30% of the video and anticipate the
following 10%, 20%, 30%, and 50% of that video. On the
other hand, following the literature [33], [52], [53], [77], we
use the Top-K accuracy, i.e., we assume a prediction correct
if the ground truth action falls in the Top-K predictions, to
evaluate the performance of the future action anticipation on
the EPIC-Kitchens-55 dataset.

C. Implementation Details

Our forward and backward Jointly-learnt Action Anticipa-
tion Networks (J-AANs) are constructed with a recurrent en-
coder, a direct anticipation module, and a recursive anticipation
module. The recurrent encoder is configured with GRUs and
hidden state’s dimension of the GRU is set to 512. The output of
the recurrent encoder is fed into the direct anticipation and
recursive anticipation modules. The direct anticipation module
learns the parameters W d i r  and W d i r  to directly anticipate
all the actions and their corresponding duration, while the re-
current decoder in recursive anticipation module is configured
with GRUs (hidden state is set to 512) to recursively anticipate
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TA B L E  II
CO M PA R I S O N W I T H O T H E R  S TAT E - O F - T H E - A R T  M E T H O D S ON 5 0 S A L A D S  D A T A S E T  F O R F U T U R E A C T I O N A N T I C I PAT I O N F RO M T H E  I N F E R R E D  A C T I O N

L A B E L S  O F T H E  O B S E R V E D  F R A M E S ,  U S I N G M E A N - O V E R - C L A S S E S  (MOC) A C C U R A C Y

Observation first →
Prediction following →

20%
10% 20% 30% 50% 10%

30%
20% 30% 50%

Grammar (reported from [57]) 24.7
Nearest-Neighbor (reported from [57]) 19.0
RNN model [57], CVPR2018 30.1
CNN model [57], CVPR2018 21.2
Time-Conditioned [58], CVPR2019 32.5
TA B  [59], ECCV2020 34.7
Proposed approach 36.9

22.3 19.8
16.1 14.1
25.4 18.7
19.0 16.0
27.6 21.3
25.9 23.7
29.8 24.9

12.7 29.7 19.2
10.4 21.6 15.5
13.5 30.8 17.2
09.9 29.1 20.1
16.0 35.1 27.1
15.7 34.5 26.1
17.7 37.5 30.1

15.2 13.1
13.5 13.9
14.8 09.8
17.5 10.9
22.1 15.6
19.0 15.5
25.6 18.1

TA B L E  II I
CO M PA R I S O N W I T H O T H E R  S TAT E - O F - T H E - A R T  M E T H O D S ON B R E A K F A S T  A N D 5 0 S A L A D S  D A T A S E T S  F O R F U T U R E A C T I O N A N T I C I PAT I O N F RO M T H E

G RO U N D - T RU T H A C T I O N L A B E L S  O F T H E  O B S E RVAT I O N , U S I N G M E A N - O V E R - C L A S S E S  (MOC) A C C U R A C Y

Observation first →
Prediction following →

Breakfast
30%

10% 20% 30% 50%

50Salads
30%

10% 20% 30% 50%
Grammar (reported in [57]) 52.3 42.2
Nearest-Neighbor (reported in [57]) 44.2 37.7
RNN model [57], CVPR2018 61.5 50.3
CNN model [57], CVPR2018 60.3 50.1
Time-Conditioned [58], CVPR2019 66.0 55.9
TA B  [59], ECCV2020 67.4 56.1
Proposed approach 71.1 59.7

38.4 33.1 26.7
35.7 30.2 22.1
44.9 41.8 44.2
45.2 40.5 37.4
49.1 44.2 46.4
47.4 41.5 44.8
54.2 50.6 48.2

14.6 11.7 09.3
17.2 18.4 14.7
29.5 20.0 10.4
24.8 20.8 14.1
34.8 25.2 13.8
32.7 23.5 15.3
37.1 28.4 18.5

TA B L E  I V
CO M PA R I S O N W I T H O T H E R  S TAT E - O F - T H E - A R T  M E T H O D S ON B R E A K F A S T  A N D 5 0 S A L A D S  D A T A S E T S  F O R F U T U R E A C T I O N A N T I C I PAT I O N D I R E C T L Y

F RO M T H E  F R A M E - W I S E  F E AT U R E S  O F T H E  O B S E RVAT I O N , U S I N G M E A N - O V E R - C L A S S E S  (MOC) A C C U R A C Y

Observation first →
Prediction following →

Breakfast
30%

10% 20% 30% 50%

50Salads
30%

10% 20% 30% 50%
CNN model [57], CVPR2018 17.7 16.9
Sequence-to-Sequence [74], GCPR2020 29.7 27.4
TA B  [59], ECCV2020 30.4 26.3
FUTR [60], CVPR2022 32.3 29.9
Proposed approach 33.6 31.0

15.5 14.1 -
25.6 25.2       34.4
23.8 21.2       30.6
27.5 25.9       35.2
28.4 26.5       34.9

-              -              -
23.7       18.9       15.9
22.5       19.1       11.2
24.9       24.2       15.3
25.8       24.4       16.1

the future actions and their corresponding duration. During
the training, we train the anticipation module with ground
truth action labels, whereas the labels generated by the action
representation module are used during the inference. Please
note that, at the inference, we only use the forward J-AAN
for our future action anticipation from the observation of the
forward frame-wise past actions.

D. Comparison with State-of-the-arts
Anticipation on Breakfast and 50Sladas: Table I  and

Table I I  show the comparison results of our proposed approach
with other state-of-the-art methods on Breakfast and 50Salads
datasets for the long-term future action anticipation, where
the future actions are anticipated based on the inferred action
(obtain from an action recognition network) labels of the
observed frames. We use the I3D features [3] and Temporal
Convolutional Networks (TCN) [81] as our action recognition
module on the observed frames. As shown in Table I  and
Table II, our approach gives a significant boost in performance,
outperforming all the latest methods and establishing a new
state-of-the-art on Breakfast and 50Salads.

We also compare the performance of our approach with
state-of-the-art methods on Breakfast and 50Salads datasets
using the ground-truth action labels on the observed frames.
Since every method to be compared has the same perfect
labels (ground truth) on the observed frames, this comparison
can show the effectiveness of each action anticipation method
clearly. As shown in Table III, our method outperforms all
the latest state-of-the-arts again when using the ground-truth
action labels of the observed frames.

Finally, to show the effectiveness of our proposed approach,
we further compare the anticipation performance with other
methods, where we directly apply our method on the observed
frame-wise features to anticipate the future actions. For this
experiment, as same as the latest works of future action
anticipation [60], [74] , we use the I3D features [3] as the input
observed features. The results are shown in Table IV, where
we achieve the superior performance compared to the latest
works of future action anticipation directly from the features,
for both the Breakfast and 50Salads datasets.

Anticipation on EPIC-Kitchens-55: Table V  shows the
comparison results of our proposed method with other state-
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TA B L E  V
C O M PA R I N G OU R P RO P O S E D A P P R O A C H W I T H O T H E R  S TAT E - O F - T H E - A R T  M E T H O D S ON E P I C - K I T C H E N S - 5 5 D AT A S E T ,  W H E R E  T H E  T A S K  I S  T O

A N T I C I PAT E  T H E  F U T U R E A C T I O N ONE S E C O N D B E F O R E  I T  S TA R T S .

Method
R L  [78], CVPR2016
VN-CE [79], ECCV2018
SVM-TOP3 [80], ECCVW2018
RU-LSTM [33], ICCV2019
FIA [75], ACMMM2020
AVHN [76], ICCVW2019
L S  [77], ICPR2021
S R L  [52], PAMI2021
HRO [53], CVPR2022
Proposed approach

Top-1 acc.
-
5.79
11.09
-
14.07
19.29
-
-
-
20.31

Top-5 acc.
29.61
17.31
25.42
35.32
33.37
35.91
35.90
35.52
37.42
38.94

TA B L E  V I
A B L AT I O N  S T U D Y  ON D I F F E R E N T  M O D U L E S O F T H E  P RO P O S E D A P P R O A C H ON B R E A K F A S T  D A T A S E T  F O R B O T H  G RO U N D T R U T H  (GT) A N D W I T H O U T

G RO U N D T R U T H  O B S E RVAT I O N S , W H E R E  T H E  O B S E RVAT I O N I S  T H E  F I R S T  30% O F T H E  V I D E O S  A N D T H E  A N T I C I PAT I O N I S  T H E  F O L L OW I N G 50%.

Methods
(i) Baseline (RNN model [57])
(ii) Direct anticipation
(iii) Recursive anticipation
(iv) Jointly-learnt Action Anticipation Network (J-AAN) (Direct + Recursive anticipation)
(v) J-AAN + Self-knowledge distillation
(vi) J-AAN + Self-knowledge distillation + Cycle consistency

MoC (w/GT obs.)
41.8
41.3
43.5
47.1
49.8
50.6

MoC (w/o GT obs.)
18.8
25.1
27.3
32.5
35.8
37.5

of-the-art methods on the EPIC-Kitchens-55 dataset, where
the task is to anticipate the future action one second before it
starts. For the fair comparison as same as the latest works
[52], [53], [76], [77], we directly use the appearance, motion,
and object features extracted from each time-step provided
by [33]. Similar to the existing methods, we first train our
model separately for each feature modality, and then the
final anticipation results are obtained by a late fusion of
predictions from the different modalities. As shown in Table V,
our method achieves superior performance compared to other
state-of-the-art methods on EPIC-Kitchens-55 dataset, on both
Top-1 and Top-5 accuracy.

E. Ablation Studies

To systematically evaluate our method and study the con-
tribution of each module, we perform several ablation studies
on the Breakfast dataset:

(i) Baseline: Since the RNN model [57] leverages recursive
prediction at the inference, we use this method as a baseline.

(ii) Direct anticipation: We apply a recurrent encoder and
a direct anticipation module to directly anticipate all the future
actions and their corresponding duration.

(iii) Recursive anticipation: We apply a recurrent encoder
and a recursive anticipation module to recursively anticipate
the future actions and their corresponding duration.

(iv) Jointly-learnt Action Anticipation Network (J-AAN)
(Direct + Recursive anticipation): We jointly train both the
direction and recursive anticipation modules on top a recurrent
encoder for anticipating the future actions and their duration.

(v) J-AAN + Self-knowledge distillation: In addition to
(iv), we apply self-knowledge distillation mechanism, where

the J-AAN graudally distills its own knowledge to soften the
hard labels during the training.

(vi) J-AAN + Self-knowledge distillation + Cycle con-
sistency: in addition to (v), we apply the cycle consistency
for which we design forward-backward J-AANs. The forward
J-AAN anticipates the future actions from the observed past
actions, and the backward J-AAN anticipates the past actions
from the anticipated future actions, satisfying a cyclic consis-
tency constraint. This is our proposed approach.

In Table VI, by comparing (iv) with (ii) and (iii), we
observe that the joint anticipation improves the anticipation
performance compared to the individual direct and recur-
sive baseline, respectively, which verifies the observation 1
described in the introduction. Comparing (iv) and (v), we
can see that the self-knowledge distillation can improve the
anticipation performance by handling the uncertainty on future
action anticipation, which justifies the observation 2. Finally,
comparing (v) and (vi), we observe that the cycle consistency
further helps to improve the anticipation performance, which
verifies the observation 3.

F. Qualitative analysis
We present some qualitative results on different modules of

the proposed approach on the test set of Breakfast and
50Salads datasets, as shown in Fig. 7-9, where our model
observes the first 30% of the video and anticipates the frame-
wise actions of the following 50% of that video.

Importance of Jointly-learnt Action Anticipation Net-
work (J-AAN): Fig. 7 shows the importance of our J-AAN
compared to the individual direct and recursive anticipation.
The J-AAN anticipates the future actions jointly in both direct
and recursive ways. In joint learning, the fusion of these
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Fig. 7. Importance of Jointly-learnt Action Anticipation Network (J-AAN). The J-AAN anticipates the future action jointly in both direct and recursive ways. The
joint learning of these two anticipation approaches performs better action anticipation compared to the individual ones. The model observes the first 30% of the
video and anticipates the frame-wise actions of following 50% of that video. (GT: ground truth).

Fig. 8. Impact of the Self-Knowledge Distillation (Self-KD) mechanism. Both actions “pour coffee” and “spoon powder” follow the same observed actions. The
J-AAN trained without Self-KD mechanism anticipates the same action for both cases. The Self-KD mechanism can handle this uncertainty on the future action
anticipation. The model observes the first 30% of the video and anticipates the frame-wise actions of following 50% of that video. (GT: ground truth).

two anticipation approaches performs better action anticipation
compared to the individual direct or recursive anticipation, as
shown in Fig. 7.

Impact of Self-Knowledge Distillation (Self-KD) mech-
anism: Fig. 8 shows the impact of the Self-KD mechanism in
our proposed J-AAN. In Fig. 8, we see the uncertainty on
future action anticipation, where both actions “pour coffee”
and “spoon powder” follow the same observed actions. As
shown in Fig. 8, the J-AAN trained without the Self-KD
mechanism anticipates the same action for both cases, while
the J-AAN trained with the Self-KD mechanism is capable of
handling the uncertainty on the future action anticipation.

Impact of cycle consistency loss: Fig. 9 shows the impact
of cycle consistency loss in our proposed J-AAN. Since the cy-
cle consistency anticipates the past actions from the anticipated
future actions, it can verify whether all the required future

actions are anticipated or not. As shown in Fig. 9, without the
cycle consistency loss, the J-AAN did not anticipate the “add
oil” action, which is an intermediate step to prepare salads.
The cycle consistency resolves this issue and the J-AAN can
anticipate the complete set of the future actions.

G. Discussions and future works
In this paper, we propose a Jointly-learnt Action An-

ticipation Network (J-AAN) via self-knowledge distillation
and cycle consistency, to anticipate actions in a longer time
horizon from the observed past actions. Our proposed J-
AAN anticipates the future actions jointly in both direct and
recursive ways. The performance improvement from our J-
AAN compared to the sole direct and recursive anticipa-
tion indicates that the joint learning process can encode the
highly informative information from the observed past actions.
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Fig. 9. Impact of the cycle consistency loss. By anticipating the past actions from the anticipated future actions, the cycle consistency verifies whether the
complete set of the future actions are anticipated or not. Without the cycle consistency loss, the J-AAN missed to anticipate the “add oil” action. The cycle
consistency resolves this issue. The model observes the first 30% of the video and anticipates the frame-wise actions of following 50% of that video.

TA B L E  VI I
A N T I C I PAT I O N ON B R E A K F A S T ,  G I V E N D I F F E R E N T  P E R C E N TA G E S  O F B O T H

G RO U N D T R U T H  (GT) A N D I N F E R R E D  A C T I O N L A B E L S  O B S E RVAT I O N S .

TA B L E  VI I I
D I F F E R E N T P E R C E N TA G E S  O F A N T I C I PAT I O N ON B R E A K F A S T  F O R B O T H
G RO U N D T R U T H  (GT) A N D I N F E R R E D  A C T I O N L A B E L S  O B S E RVAT I O N S .

Observation first →              10%             20%             30%             50%
Prediction following →       50%             50%             50%             50%

Observation first →              50%             50%             50%             50%
Prediction following →       10%             20%             30%             50%

A
Our approach
B
Our approach

From G T  labels
35.7 48.8 50.6 53.5
From inferred action labels
20.9 33.8 37.5 40.3

A
Our approach
B
Our approach

From G T  labels
74.7 63.1 57.9 53.5
From inferred action labels
47.1 44.8 42.6 40.3

Intuitively, training an action anticipation model with hard
labels that assigns zero probabilities to semantically similar
actions may not handle the future’s uncertainty. Therefore, we
design a Self-Knowledge Distillation (Self-KD) mechanism
to train our J-AAN, where the J-AAN gradually distills its
own knowledge to soften the hard labels during the training to
handle the uncertainty on future action anticipation. The
significant improvement in action anticipation after using the
Self-KD mechanism to train the J-AAN indicates that J-AAN
with Self-KD mechanism can handle the future’s uncertainty.
In addition to Self-KD, we design a forward and backward
mechanism to train the J-AAN, where the backward J-AAN
verifies the anticipation of the forward J-AAN based on a
cyclic consistency constraint. The further improvement in
action anticipation after using the cycle consistency constraint
indicates that the backward J-AAN helps the forward J-AAN
to learn better for future action anticipation.

Although we achieve superior performance compared to
the state-of-the-arts, as shown in Tables I  - V, the future
action anticipation is still challenging, particularly anticipating
the far-future actions. The challenge to anticipate the far-
future actions from the observation of the small early por-
tion of the video is obvious, since the network does not get
enough information from the small early portion of the
observed video and the future becomes more uncertain with
the increasing anticipation time. As shown in Table VII,  we
perform the anticipation experiments on different percentages
of observations. We observe the first 10%, 20%, 30%, or
50% of the video to anticipate the following 50% of that
video. As the observation percentage increases, the network
observes different actions and provides better anticipation.
We also perform the experiment on different percentages of

anticipation, as shown in Table VIII.  We observe the first
50% of the video to anticipate the following 10%, 20%,
30%, and 50% of that video. Since the future becomes more
uncertain with the increasing anticipation time, anticipating
the far-future actions becomes more challenging. In future, we
will focus on relational knowledge distillation to progressively
distill relation between the far-future and the observed actions
for better anticipation of the far-future.

V. CO N C L U S I O N

In this paper, we developed a new approach, Jointly-learnt
Action Anticipation Network (J-AAN) via Self-Knowledge
Distillation (Self-KD) and cycle consistency, for human action
anticipation. The extensive experiments show the effectiveness
of our three major contributions: (1) In contrast to anticipate
the future actions either directly or recursively, the joint
learning of these two approaches leads to a better future action
anticipation; (2) The self-knowledge distillation mechanism to
train the J-AAN can handle the uncertainty on future action
anticipation; and (3) The forward and backward mechanism
based on cycle consistency constraint to train the J-AAN fur-
ther improves the future action anticipation performance. Our
proposed approach outperforms other state-of-the-art methods
on the Breakfast [34], 50Salads [35], and EPIC-Kiteches-55
[36] datasets.
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