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Abstract—Most existing federated multi-armed bandits
(FMAB) designs are based on the presumption that clients will
implement the new design to collaborate with the server. In
reality, however, it may not be possible to modify the client
protocols. Motivated by this limitation, this work focuses on
clients who always maximize their individual cumulative rewards,
and introduces a novel idea of reward teaching, where the server
guides the clients towards global optimality through implicit
local reward adjustments. Under this framework, the server
faces two tightly coupled tasks of bandit learning and target
teaching, whose combination is non-trivial and challenging. A
novel algorithm, called Teaching-After-Learning (TAL), is pro-
posed, which encourages and discourages clients’ explorations
separately. General performance analyses of TAL on regret and
cost are first established when the clients’ strategies satisfy certain
requirements. To particularize the results, clients with UCB or
"-greedy strategies are then considered, where novel technical
approaches are developed to analyze their warm-start behaviors.
The obtained guarantees concretely demonstrate that when facing
these client strategies, TAL achieves logarithmic regrets while
only incurring logarithmic adjustment costs, which is order-
optimal w.r.t. a natural lower bound.

I. INTRODUCTION

Federated multi-armed bandits (FMAB) [2]–[8] is a recently
proposed framework that introduces the core principles of
federated learning (FL) [9] into multi-armed bandits (MAB)
[10]. In particular, FMAB often considers a system of one
global server and multiple heterogeneous local clients with the
goal of having the clients converge to the global optimality.

One practical difficulty of realizing existing FMAB designs
is to implement new protocols for both the server and clients
[3], [4], [11]. Specifically, the server and clients are required
to follow the carefully crafted designs collaboratively. In
real-world applications, it is relatively easy to update the
server’s protocols for FMAB. However, given the typically
large number of clients, it is often not realistic to assume
that all of their protocols can be updated, as it would result
in a significant infrastructure cost. For example, in cognitive
radio systems (which is a common motivating application for
FMAB), mobile devices (i.e., clients) are often configured to
optimize their individual communication qualities following
their built-in protocols. It is often hard and expensive to modify
these devices to follow the FMAB designs, especially since
such updates are often needed for both software and hardware.

A full version of this paper can be found in [1]. The work of CSs was
supported in part by the US National Science Foundation (NSF) under awards
2029978, 2143559, 2002902, Virginia Commonwealth Cyber Initiative, and
the Bloomberg Data Science Ph.D. Fellowship. The work of JY was supported
in part by the US NSF under awards 2030026, 2114542, and 1956276.

This work removes this limitation by designing mechanisms

only on the server’s side. Especially, the clients can still follow
the original routines to optimize their individual performances
(as in the aforementioned cognitive radio example) and no
change of their protocols is required. Towards this end, a
novel “reward teaching” approach is proposed: the server
implicitly adjusts the local rewards perceived by the clients
to indirectly influence their decision-making. This idea is
practical for cognitive radio, as it is widely adopted in standard
communication protocols for the server to measure rewards
(e.g., throughput) and send designed signals to mobile devices.

The seemingly simple idea of reward teaching brings con-
siderable challenges for the server strategy. In particular, the
server faces the following two tasks simultaneously: bandit
learning and target teaching. On one hand, the server has to
learn the unknown global model through the clients’ actions,
which are based on local observations and may not align with
the server’s objectives. Thus, reward adjustments should be
carefully placed to have the clients explore with respect to
(w.r.t.) the global information (instead of their local ones). On
the other hand, even if the global model is learned successfully,
the corresponding learning history has a cumulative effect on
guiding the clients towards the learned target, as all historical
(adjusted) rewards are considered in clients’ future decision-
making. As a result, while having been studied individually
(e.g., learning in MAB and teaching in data-poisoning MAB),
the combination of the aforementioned two tasks is novel and
challenging as they are tightly coupled.

The contributions of this work are summarized as follows.
• A reward-teaching framework. A novel idea of reward

teaching is proposed to let the server design reward signals
to guide clients with their own local strategies. This idea is
practically appealing for FMAB systems as existing client
protocols do not have to be modified – only the reward signals
they receive are adjusted. From another perspective, it also
provides a method to handle non-naive FMAB clients.

• Client-strategy-agnostic algorithm design. A phased
approach, coined “Teaching-After-Learning” (TAL), is first
proposed. It addresses the challenge of teaching in an unknown
environment by separately encouraging and discouraging ex-
plorations in two phases. It is worth noting that the design of
TAL is agnostic to the clients’ local strategies.

• Client-strategy-dependent analysis. Theoretical regret
and cost guarantees of TAL are first established when the
clients’ local strategies satisfy some general properties. Partic-
ularizing these properties to UCB1 and "-greedy [12] strategies
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at clients reveals that TAL can achieve a logarithmic regret
while only incurring a logarithmic adjustment cost, which is
order-optimal w.r.t. a natural lower bound. Moreover, the novel
technical approaches to analyzing warm-start bandit clients
may be of independent merit.

II. PROBLEM FORMULATION

A. Federated Multi-armed Bandits

Local and global models. Following [2]–[4], a standard
FMAB system of M local models and one global model is
considered. With the same set of K arms shared by all the
models, at each time step t 2 [T ], each arm k 2 [K] is
associated with a local reward Xk,m(t) 2 [0, 1] for each
local model m 2 [M ] and a global reward Yk(t) 2 [0, 1]
for the global model. These rewards of each arm k are all
independently sampled with unknown expectations denoted
as µk,m := E[Xk,m(t)], 8m 2 [M ] and ⌫k := E[Yk(t)]. In
general, the local arm utilities are model-dependent, i.e., µk,m

may not equal to µk,n for n 6= m. The optimal local arm for
each local model m is denoted as k⇤,m := argmax

k2[K] µk,m

with µ⇤,m := µk⇤,m,m, and the optimal global arm as k† :=
argmax

k2[K] ⌫k with ⌫† := ⌫k† .
As in [2]–[4], we consider the setting where each arm

k’s mean reward on the global model is the average of its
mean rewards on the local models, i.e., ⌫k := E[Yk(t)] =
1
M

P
m2[M ] µk,m. A global-local misalignment may occur as

the global optimality may not align with each local optimality,
i.e., k† may not be the same as k⇤,m for all or part of m 2 [M ].

Clients and server. In FMAB, there exist M clients and
one server. At time t, each client m 2 [M ] selects an arm
⇡m(t) (referred to as “local actions”) and then observes its
local reward X⇡m(t),m(t) on local model m. Additionally,
each client m’s action ⇡m(t) would also generate a reward
Y⇡m(t)(t) from the global model. It would be helpful to
interpret the local and global rewards as the individual-level
and system-level impacts from the clients’ actions.

The server in FMAB does not perform any arm-pulling
action herself. Instead, she focuses on guiding the local actions
to optimize their incurred global rewards. However, the global
rewards are not directly observable by the server and the
clients, which is often a result of practical measurement
limitations [3]. Instead, the server is assumed to be able to
observe the local actions and the corresponding local rewards,
i.e., {⇡m(t), X⇡m(t),m(t) : m 2 [M ]}.

To optimize global performance, previous FMAB studies
require clients to work collaboratively following new local pro-
tocols. Instead, this work considers that clients are fully com-
mitted to interacting with their own local models (i.e., client
m with local model m). Then, the clients would naturally
adopt their own MAB policies to maximize their local rewards.
This setting is practically appealing as in many applications
(e.g., the cognitive radio example in Sec. I), the local clients
are inherently configured to perform local policies to optimize
their local performance (e.g., IoT devices). Specifically, at time
t, each client m individually makes an arm-pulling decision

⇡m(t) based on her own history observed on local model m,
i.e., Hm(t� 1) := {⇡m(⌧), X⇡m(⌧),m(⌧) : ⌧ 2 [t� 1]}.

B. Reward Teaching

As mentioned, each client would select suitable actions w.r.t.
her own local rewards, which however may not necessarily
meet the server’s preference due to the global-local model
misalignment. To address this challenge, the following reward-
teaching mechanism is introduced for the server to indirectly
influence the clients’ action selections.

Specifically, after observing {X⇡m(t),m(t) : m 2 [M ]}, the
server can adjust each client m’s local reward X⇡m(t),m(t)
to X 0

⇡m(t),m(t) by an amount of �m(t), i.e., X 0

⇡m(t),m(t) :=
X⇡m(t),m(t) + �m(t), which is then revealed to the client
(instead of X⇡m(t),m(t)). Note that one implicit constraint
is that the adjusted rewards must still be in [0, 1], which is
the system limitation. If this constraint is satisfied, the clients
are assumed to be unable to detect the reward adjustments.
The adjusted rewards lead to an adjusted history of H 0

m
(t) :=

{⇡m(⌧), X 0

⇡m(⌧),m(⌧) : ⌧ 2 [t]} for client m, which ideally
can shape her future actions in favor of the server.

It is worth mentioning that such reward adjustments are
practical for FMAB applications. In the cognitive radio ex-
ample, it is common for the base station to first measure
the communication quality (via pilot signals) and then send
designed feedback to the devices; this is the case in both
cellular and WiFi. Adjusting rewards can be achieved via
either sending modified feedback signals or modifying the
allocated resources (e.g., bandwidth) to boost or reduce client
performance, which is standard in modern communication
protocols. The devices, on the other hand, are oblivious to
such adjustments thanks to their built-in protocols.

Fig. 1. The reward-teaching process with client m (among the overall M
clients) and action ⇡m(t) = k.

The reward-teaching process is summarized as the following
steps, which is also illustrated in Fig. 1:

• Each client m chooses ⇡m(t) using history H 0

m
(t� 1);

• The server observes {⇡m(t), X⇡m(t),m(t) : m 2 [M ]};
• The server adjusts X⇡m(t),m(t) into X 0

⇡m(t),m(t) by the
amount of �m(t) for each client m 2 [M ];

• Each client m observes the adjusted X 0

⇡m(t),m(t).

C. Learning Objectives

Following previous FMAB studies, we focus on the global
view of the server, which leads to a two-fold objective. First,
the server’s main goal is to maximize the cumulative global
rewards and can be characterized by minimizing the notion of
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global regret defined as RF (T ) :=
P

m2[M ] Rm(T ), where
Rm(T ) is the regret incurred by client m’s actions w.r.t.
the global model (instead of her local model) defined as
Rm(T ) := T⌫†�E[

P
t2[T ] Y⇡m(t)(t)]. The expectation is w.r.t.

both the reward generations and the client-system interactions.
Also, the server’s adjustments on local rewards are

quantified by the cumulative cost defined as CF (T ) :=P
m2[M ] Cm(T ), where Cm(T ) denotes the overall cost spent

on client m and is defined as Cm(T ) := E[
P

t2[T ] |�m(t)|].
The subscripts F refer to the global model (i.e., the federation).

Intuitively, there exists a trade-off between these two objec-
tives: with more adjustments on rewards, i.e., larger CF (T ),
the server can have bigger impacts on the clients’ selections
of actions, which ideally would decrease the regret RF (T ).
It is thus important to strike a balance between these two
objectives, which is the focus of the remainder of this paper.

D. Client Strategies

To facilitate discussion, we denote client m’s local strategy
as ⇧m. Note that while performing their own policies, the
clients are assumed not to be strategically against the server,
which is reasonable for most of the real-world applications of
FMAB, e.g., autonomous but not fully flexible mobile devices
in cognitive radio [3]. In addition, we denote Nk,m(t) as the
number of pulls by client m on arm k by time t, and N�1

k,m
(⌧)

refers to time step t such that Nk,m(t) = ⌧ .

III. TWO COUPLED TASKS AND DESIGN OBJECTIVES

In this section, two tightly coupled tasks faced by the
reward-teaching server, bandit learning and target teaching, are
elaborated. A reasonable design objective is also proposed.

Bandit learning. One major distinction between learning
in FMAB and in classical MAB [10], [13] is that the server
can only gather information through clients’ local actions.
Previous FMAB studies tackled this challenge by proposing
new protocols for clients to naively follow [2]–[4], [11]. In
contrast, in this work, such information collection can only be
indirectly guided via carefully designed rewards.

Target teaching. To understand teaching, a special case
is first considered where the optimal arm k† is known by
the server. Then, the goal is to assign adjustments to have
the clients pull the pre-specified arm k† as much as possible,
which is mathematically the same as the data-poisoning MAB

problem [14]–[17]. However, in this work, the identity of k†
is not available in advance.

Combination leads to a tight coupling. While both tasks
have been separately investigated (to some extent), the reward-
teaching server faces a combination of them. On one hand,
even if the server can perfectly learn the global model, she
still needs to teach it to the clients. On the other hand, to
teach correctly, sufficient information should be learned by
the server. The resulted tight coupling is the major challenge
of the design. Specifically, the learning attempt has cumulative
effects on teaching, which in return relies on the learned target.
One consequent major difficulty is the analysis of the “warm-
start” behaviors of bandit algorithms.

Design objective. For the cost, with a known target arm,
[18], [19] prove lower bounds that with UCB1 and "-greedy

clients (defined in Sec. V), it is necessary to spend a cost

Cm(T ) = ⌦(log(T )) to obtain a regret Rm(T ) = O(log(T )).
Thus, with M independent FMAB clients, a cost of CF (T ) =
⌦(M log(T )) is required to obtain a regret of RF (T ) =
O(M log(T )) while knowing arm k†, which naturally holds
for the more stringent case of not knowing the target k†.
For the regret, UCB1 and "-greedy clients can be shown
to be conservative [18] as each client m would pull each
arm at least ⌦(log(T )) times regardless of the rewards; thus
Rm(T ) = ⌦(log(T )) and RF (T ) = ⌦(M log(T )).

With these results, the following design goal, order-wise
tight w.r.t. both criteria, is established:

Goal: Design algorithms to achieve both

RF (T ) = O(M log(T )) and CF (T ) = O(M log(T )).

IV. ALGORITHM DESIGN

To address the coupled tasks of bandit learning and target
teaching, one idea is to first learn the server’s target and then
teach the clients to converge to it, which leads to the pro-
posed “Teaching-After-Learning” (TAL) algorithm (presented
in Alg. 1). Specifically, it starts with the learning phase to iden-
tify the optimal global arm. Then, in the teaching phase, the
server guides the clients toward the learned global optimality.
Note that although there is a separation of phases, the teaching
phase must handle clients that accumulate observations from
the learning phase (i.e., “warm-start” clients).

In the learning phase, TAL uniformly adjusts each client m’s
observed rewards to �1, i.e., �m(t) �1�X⇡m(t),m(t), where
�1 2 [0, 1] is a to-be-specified input parameter. Intuitively, this
uniform reward adjustment encourages sufficient (or ideally,
uniform) explorations among all arms, since their rewards are
all �1’s. Thus, the server can collect enough information on
each arm to identify her optimal arm k†.

This identification is designed to proceed in epochs indexed
by counter  to ensure statistical independence. If at time
t, each client m has pulled each arm k at least F ( ) :=P
⌧2[ ] f(⌧) times, where f( ) := 1

M
· 22 +3 log(2KT 2),

the server updates upper and lower confidence bounds (UCB
and LCB) for each arm k 2 [K] using its rewards collected
between its F ( � 1) + 1 and F ( ) pulls (i.e., overall f( )
pulls) by each client as follows:

UCBk( ),LCBk( ) :=
X

m2[M ]
µ̂k,m( )/M ± CB( ), (1)

where µ̂k,m( ) := 1
f( )

PF ( )
⌧=F ( �1)+1 Xk,m(N�1

k,m
(⌧)) and

CB( ) :=
p

log(2KT 2)/(2Mf( )) = 2� �2. Note that
with the estimation of µk,m from local samples, the first
term in Eqn. (1) is essentially an estimation ⌫̂k( ) of ⌫k.
The confidence bound CB( ) is specifically designed s.t.
LCB( )  ⌫k  UCB( ) holds for each arm k and each
epoch  in the learning phase with high probability.

The learning phase ends in epoch  if the confidence
interval of one arm k‡ dominates that of all other arms, i.e.,
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LCBk‡( ) � UCBk( ), 8k 6= k‡, which is recognized as the
optimal arm. Otherwise, a new epoch  + 1 begins. With the
designed confidence bound, this identification is guaranteed to
be correct with high probability.

With the identified arm k‡, the server utilizes the following
adjustments to guide the clients in the teaching phase:

�m(t) 

(
�2 �X⇡m(t),m(t) if ⇡m(t) 6= k‡
0 if ⇡m(t) = k‡

, (2)

where �2 is another to-be-specified input parameter and typ-
ically should be small. In other words, if the client does not
pull arm k‡, her reward is adjusted to a small value �2 to
discourage explorations; otherwise, the original reward of arm
k‡ is kept unchanged to save adjustments.

From Alg. 1, it can be observed that TAL is a pure server
protocol and agnostic to the clients’ local strategies – the only
interaction with the clients is the adjusted rewards.

Algorithm 1 TAL (with input �1, �2 2 [0, 1])
1: Initialize: F  1 (i.e., the learning phase);   1; k‡  0
2: for t  T do
3: Observe {⇡m(t), X⇡m(t),m(t) : m 2 [M ]}
4: if F = 1 & Nk,m(t) � F ( ), 8m 2 [M ], k 2 [K] then
5: Update {UCBk( ),LCBk( ) : k 2 [K]} as Eqn. (1)
6: if 9j 2 [K],LCBj( ) � UCBk( ), 8k 6= j then
7: Set k‡  j; F  2 (i.e., the teaching phase)
8: else Set    + 1
9: end if

10: end if
11: if F = 1 then �m(t) �1 �X⇡m(t),m(t), 8m 2 [M ]
12: else if F = 2 then Set �m(t) as Eqn. (2), 8m 2 [M ]
13: end if
14: Set X 0

⇡m(t),m(t) X⇡m(t),m(t) + �m(t), 8m 2 [M ]
15: Reveal X 0

⇡m(t),m(t) to each client m 2 [M ]
16: end for

V. PERFORMANCE ANALYSIS

We first provide a general analysis of TAL under a few
identified properties for clients’ strategies. Then, we consider
clients with UCB1 or "-greedy algorithms and show that TAL
achieves order-optimal performance with these clients.

Some useful notations are introduced as follows: �k :=
⌫† � ⌫k, 8k 6= k†, �min = �k† := mink 6=k† �k, �max :=
maxk2[K] �k, and µ†,m := µk†,m. Moreover, �k,m(�) :=
E[|� �Xk,m(t)|] and  max := dlog2(1/�min)e.

We first define sufficiently exploring algorithms for the
learning phase in TAL, which states that a bandit algorithm
would sufficiently explore when facing uniform rewards.

Definition 1 (Sufficiently Exploring Algorithms). Consider a

K-armed bandit environment where rewards from arms in a

set I ✓ [K] are always a fixed constant � 2 [0, 1]. In this

environment, a bandit algorithm ⇧ is said to be (I, �, ⌘, ⌘)-
sufficiently exploring if it would pull each arm in the set I

at least ⌘(⌧ ; �, I) and at most ⌘(⌧ ; �, I) times when total ⌧
pulls have been performed on set I.

If local strategies are sufficiently exploring, enough infor-
mation can be collected in the learning phase to identify the

global optimal arm, as stated in the following lemma, where
⌘�1(N ; �, [K]) denotes the value ⌧ s.t. ⌘(⌧ ; �, [K]) = N .

Lemma 1 (Learning Phase in TAL). If ⇧m is

([K], �1, ⌘
m
, ⌘

m
)-sufficiently exploring for all m 2 [M ], with

probability (w.p.) at least 1 � 1/T , the learning phase ends

with k‡ = k† by time step T1, and the regret and cost in the

learning phase of TAL are bounded, respectively, as

RF,1(T ) 
X

m2[M ]

X
k 6=k†

�k · ⌘
m
(T1; �1, [K]);

CF,1(T ) 
X

m2[M ]

X
k2[K]

�k,m(�1) · ⌘m(T1; �1, [K]),

where T1  maxm2[M ]{⌘
�1
m

(F ( max); �1, [K])}.

The sufficiently exploring lower bound (i.e., ⌘) ensures suf-
ficient information collection, while the corresponding upper
bound (i.e., ⌘) guarantees performance.

Then, for the teaching phase, since the cumulative obser-
vations from the learning phase are inherited to the client
strategies, we can view the clients as “warm-started”. The
following notion of warm-start pulls is introduced, which
measures the warm-start behavior of an algorithm.

Definition 2 (Warm-start Pulls). In a K-armed bandit en-

vironment B, if a reward sequence H = {Hk : k 2 [K]}
is input to a bandit algorithm ⇧, where Hk is a reward

sequence for arm k, warm-start pulls on arm k is defined

as ◆k(T ;H,B,⇧) := E⇧[
P

t2[T ] 1{⇡(t) = k}|H,B], which

represents the expected pulls performed by ⇧ on each arm k
during T steps in environment B with prior input H .

Using this notion of warm-start pulls, the following guar-
antee on the teaching phase can be established.

Lemma 2 (Teaching Phase in TAL). If the event in Lemma 1

occurs, the regret and cost in the teaching phase of TAL are

bounded, respectively, as

RF,2(T ) 
X

m2[M ]

max
Hm2Hm

X

k 6=k†

�k · ◆k(T ;Hm,Bm,⇧m);

CF,2(T ) 
X

m2[M ]

max
Hm2Hm

X

k 6=k†

�k,m(�2) · ◆k(T ;Hm,Bm,⇧m),

where Bm denotes an environment with constant rewards as

�2 for arm k 6= k† and stochastic rewards with expectation

µ†,m for arm k†. The set Hm is defined with each element

of it as a reward sequence Hm = {Hk,m : k 2 [K]} where

Hk,m 2 {{�1}⌧ : ⌧ 2 [⌘
m
(T1; �1, [K]), ⌘

m
(T1; �1, [K])]}.

Note that Bm characterizes the environment of client m
in the teaching phase while Hm represents the cumulative
observation inherited from the learning phase. As long as the
warm-start pulls on the sub-optimal arms are low, the regret
and cost in the teaching phase can be bounded.

Finally, the overall performance guarantee can be obtained.

Theorem 1 (Overall Performance of TAL). Under the assump-

tion in Lemma 1, with RF,1(T ), RF,2(T ) defined in Lemma 1

and CF,1(T ), CF,2(T ) in Lemma 2, the regret and cost of TAL
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are bounded, respectively, as RF (T )  RF,1(T )+RF,2(T )+
O(M) and CF (T )  CF,1(T ) + CF,2(T ) +O(M).

A. UCB Clients

The popular UCB-type algorithms are first considered to
particularize the general performance guarantee. In particu-
lar, we focus on the celebrated UCB1 algorithm [12] while
noting that the analysis generalizes to other UCB variants
[20], [21]. Especially, at time t, the UCB1 algorithm for
client m chooses arm ⇡m(t) = argmax

k2[K]{µ̂
0

k,m
(t� 1) +p

2 log(t)/Nk,m(t� 1)}, which the perceived sample mean
µ̂0

k,m
(t) :=

P
⌧2[Nk,m(t)] X

0

k,m
(N�1

k,m
(⌧))/Nk,m(t).

First, the sufficiently exploring assumption in Lemma 1 is
verified in Lemma 3. This is intuitive as with constant rewards,
the sample means are the same while additional pulls decrease
the confidence bound in UCB1.

Lemma 3. For any � 2 [0, 1] and set I ✓ [K], UCB1 is

(I, �, ⌘, ⌘)-sufficiently exploring with ⌘(⌧ ; �, I) = b⌧/|I|c
and ⌘(⌧ ; �, I) = d⌧/|I|e.

Then, the performance of TAL in the learning phase
(in Lemma 1) can be bounded by recognizing T1 =
O(K log(KT )/(M�2

min)), which further specifies the reward
sequence set Hm in Lemma 2 and leads to the following
lemma on the warm-start pulls of UCB1.

Lemma 4. If �1 � µ†,m > �2 and ⇧m is UCB1, for all

k 6= k†, it holds that maxHm2Hm{◆k(T ;Hm,Bm,⇧m)} =

O
⇣

(�1��2)T1

K(µ†,m��2)
+ log(KT )

(µ†,m��2)2

⌘
.

Proving this lemma is non-trivial and may be of independent
interest in understanding the warm-start behavior of UCB1.
Essentially, the result can be interpreted as first offsetting the
“warm-start” history (the first term) and then converging to
arm k† (the second term) in a environment Bm, whose rewards
for arm k 6= k† are constant �2’s and rewards for arm k† have
an expectation µ†,m (see Lemma 2).

It is noted that Lemma 4 first requires �1 � µ†,m, which
maintains the optimism for the estimation of arm k† on each
local model m. The other requirement µ†,m > �2 is intuitive
as otherwise the local client m would not converge to arm k†.
Since there is no prior information about µ†,m. a feasible and
sufficient solution is to set �1 = 1 while �2 = 0, which leads
to the following theorem.

Theorem 2 (TAL with UCB1 clients). For TAL with �1 = 1
and �2 = 0, if all clients run UCB1 locally and µ†,m 6= 0 for

all m 2 [M ], it holds that

RF (T ) = O

✓ X

m2[M ]

X

k 6=k†


�k log(KT )
µ†,mM�2

min

+
�k log(KT )

µ2
†,m

�◆
;

CF (T ) = O

✓ X

m2[M ]

X

k2[K]

(1� µk,m) log(KT )
M�2

min

+
X

m2[M ]

X

k 6=k†


µk,m log(KT )
µ†,mM�2

min

+
µk,m log(KT )

µ2
†,m

�◆
.

We note that the regret and cost are both of order
O(M log(T )); thus TAL is order-optimal w.r.t. both criteria

in this scenario according to Sec. III. Moreover, the regret
shows two dominating terms, which are from Lemma 4. In
fact, there is another non-dominating (thus hidden) term from
Lemma 1 for the learning phase. A similar three-part form is
shared by the cost: the first term is from the learning phase
while the last two terms are from the teaching phase.

B. "-greedy Clients

We further consider clients running the well-known "-
greedy algorithm [22]. Especially, the "-greedy algorithm for
client m chooses arm ⇡m(t) = argmax

k2[K] µ̂
0

k,m
(t � 1)

with probability 1 � "m(t); otherwise, arm ⇡m(t) is selected
uniformly random from [K], where the exploration probability
"m(t) 2 [0, 1] is taken as "m(t) = O(K/t), following [12].

First, the sufficiently-exploring property is verified.

Lemma 5. For any � 2 [0, 1], if ties among arms

are broken uniformly at random, with probability at least

1 � 1/T , "-greedy is ([K], �, ⌘, ⌘)-sufficiently exploring with

⌘(⌧ ; �, [K]) = O(⌧/K � log(KT )) and ⌘(⌧ ; �, [K]) =
O(⌧/K + log(KT )).

Due to the randomness in "-greedy, it is complicated to
analyze its warm-start pulls in general. Instead, the following
lemma focuses on �1 = �2 = 0.

Lemma 6. If ⇧m is "-greedy and µ†,m > �1 =
�2 = 0, with probability at least 1 � 1/T , it

holds that maxHm2Hm{
P

k 6=k†
◆k,m(T ;Hm,Bm,⇧m)} =

O(K log(KT )/µ2
†,m

).

Finally, the overall performance guarantees of TAL with "-
greedy clients are presented in the following theorem.

Theorem 3 (TAL with "-greedy clients). For TAL with �1 =
�2 = 0, if clients run "-greedy and break ties uniformly at

random, and µ†,m 6= 0, 8m 2 [M ], it holds that

RF (T ) = O

✓
K�max log(KMT )

�2
min

+
X

m2[M ]

K�max log(KMT )
µ2
†,m

◆
,

CF (T ) = O

✓ X

m2[M ]


Kµ⇤,m log(KMT )

M�2
min

+
Kµ⇤,m log(KMT )

µ2
†,m

�◆
.

The two parts in regret and cost are from the learning and
teaching phases, respectively. As typically M ⌧ T , the goal of
having regret and cost both of O(M log(T )) is also achieved.

VI. CONCLUSIONS

A novel idea of reward teaching was proposed to have
the server guide autonomous clients in an unknown FMAB
environment via reward adjustments, which avoids any pre-
viously required changes to the clients’ protocols. A novel
client-strategy-agnostic algorithm, TAL, was proposed. It was
designed with two phases to separately encourage and dis-
courage explorations. General performance analysis was estab-
lished when the clients’ strategies satisfy certain requirements.
Especially, for the representative UCB1 and "-greedy clients,
rigorous analyses showed that TAL strikes a balance between
regret and adjustment cost (logarithmic in both metrics), which
is order-optimal w.r.t. the natural lower bound.
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