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Abstract
Time-dependent covariates are often measured intermittently and with measurement 
errors. Motivated by the AIDS Clinical Trials Group (ACTG) 175 trial, this paper 
develops statistical inferences for the Cox model for partly interval censored failure 
times and longitudinal covariates with measurement errors. The conditional score 
methods developed for the Cox model with measurement errors and right censored 
data are no longer applicable to interval censored data. Assuming an additive meas-
urement error model for a longitudinal covariate, we propose a nonparametric max-
imum likelihood estimation approach by deriving the measurement error induced 
hazard model that shows the attenuating effect of using the plug-in estimate for the 
true underlying longitudinal covariate. An EM algorithm is devised to facilitate 
maximum likelihood estimation that accounts for the partly interval censored failure 
times. The proposed methods can accommodate different numbers of replicates for 
different individuals and at different times. Simulation studies show that the pro-
posed methods perform well with satisfactory finite-sample performances and that 
the naive methods ignoring measurement error or using the plug-in estimate can 
yield large biases. A hypothesis testing procedure for the measurement error model 
is proposed. The proposed methods are applied to the ACTG 175 trial to assess the 
associations of treatment arm and time-dependent CD4 cell count on the composite 
clinical endpoint of AIDS or death.
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1  Introduction

This work is motivated by the AIDS Clinical Trials Group (ACTG) 175 trial that 
compared four antiretroviral regimens in study participants living with HIV-1 [1]. 
CD4 cell count has long been considered as an important prognostic biomarker 
for disease progression. The participants had CD4 cell count measured every 12 
weeks and were followed for occurrence of the composite clinical endpoint of 
AIDS or death. One of the study objectives was to assess the associations of treat-
ments and time-dependent CD4 cell count with the clinical endpoint of AIDS or 
death. One complication is that CD4 cell count is measured intermittently and 
with measurement errors. Naive approaches that ignore the measurement errors 
or replace them with their estimated values can lead to biased estimation [2, 
3]. The other challenge is that the time to the clinical endpoint is partly inter-
val censored in which the time to death is subject to right censoring while the 
time to AIDS is interval censored between two visit dates. Statistical modeling 
with interval censored data has been well studied. There has also been extensive 
study of measurement errors in covariates for right censored data. However, to 
the best of our knowledge, no methodology exists for achieving valid statistical 
inference for the proportional hazards model with both partly interval censored 
failure times and longitudinal covariates subject to measurement error.

Many authors have studied regression analysis of interval censored failure 
time data under the Cox proportional hazards model [4–8]. Most of the existing 
work focused on time-independent covariates. Recently, Zeng et  al.  [9] consid-
ered maximum likelihood estimation for a class of semiparametric transformation 
models that includes the proportional hazards model and allows for time-depend-
ent covariates. On the other hand, research on partly interval censored failure 
time data is fairly limited. Due to the presence of exact failure times, partly inter-
val censored data requires a different treatment than interval censored data. To 
our knowledge, only two papers considered the proportional hazards model for 
partly interval censored data. In particular, Kim [10] studied maximum likelihood 
estimation for the proportional hazards model with time-independent covariates, 
while Zhou et al.  [11] developed an EM algorithm for nonparametric maximum 
likelihood estimation for a class of semiparametric transformation models as in 
Zeng et al.  [9] that allows for time-dependent covariates for partly interval cen-
sored data. However, these two papers did not consider covariate measurement 
errors.

There is extensive literature on statistical methods for right censored fail-
ure time data when some covariates are subject to measurement error. It is well 
known that standard estimation procedures yield biased estimation if measure-
ment error is not taken into account. For the proportional hazards model, Pren-
tice [2] showed that the naive approach using the observed covariate values with 
measurement errors in place of the underlying covariate values in the partial like-
lihood may result in substantial estimation bias, and proposed a modified par-
tial likelihood method that required estimating the conditional expectation of 
the hazard of each individual at each failure time. Nakamura  [12] proposed the 
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corrected partial score method that yielded approximately unbiased estimates. 
Hughes  [13] investigated regression dilution bias in the presence of covariate 
measurement errors. Buzas  [14] removed the condition of normal errors while 
assuming that the moment generating function of the error distribution is known. 
Huang and Wang  [15] proposed a nonparametric-correction approach for the 
Cox proportional hazards model. Hu and Lin  [16] extended the work of Naka-
mura [12] and Buzas [14] to obtain a class of consistent estimators when the true 
covariate is ascertained on a randomly selected validation set. Tsiatis and David-
ian  [3] proposed the conditional score estimator, which was further studied by 
Song et  al.  [17, 18]. Yi and Lawless [19] employed the corrected score meth-
ods of Nakamura [12] assuming a piecewise constant form of the baseline hazard 
function. Fu and Gilbert [20] extended the conditional score approach to accom-
modate missing values of the longitudinal covariates following a two-phase sam-
pling design. Tsiatis and Davidian [21] overviewed joint modeling of longitudinal 
covariates and time-to-event data.

All of the aforementioned works considered right censored data. Although both 
measurement error problems and interval censored data have been well studied, the 
literature on statistical methods for interval censored failure time data with covariate 
measurement error is rather limited. Song and Ma [22] proposed a multiple impu-
tation method for the Cox model with time-independent covariates to impute the 
time-to-event that falls within an interval and then analyzed the imputed data sets 
by the conditional score approach for right censored data. Mandal et al. [23] applied 
multiple imputation to handle both covariates with measurement error and interval 
censored failure time data under the linear transformation model. The imputed data 
were then analyzed using the method of Chen et al. [24]. Wen and Chen [25] pro-
posed a conditional score approach for the proportional odds model with interval 
censoring and covariate measurement error using the working independence strat-
egy. All of these approaches were developed assuming time-independent covariates 
with measurement errors. The multiple imputation approach depends on the imputa-
tion models and can only be approximate. The conditional score methods proposed 
by Tsiatis and Davidian [3] for right censored data and studied by many others [17, 
18, 20] are no longer applicable for interval censored data.

In this article, we develop an estimation method for the Cox proportional hazards 
model for partly interval censored failure times and longitudinal covariates meas-
ured with error. Assuming an additive measurement error model for a longitudinal 
covariate, we propose a nonparametric maximum likelihood estimation approach 
by deriving the measurement error induced hazard model that shows the attenuat-
ing effect of ignoring measurement errors. An EM algorithm is devised to facili-
tate maximum likelihood estimation that accounts for the partly interval censored 
failure times. Simulation studies show that the proposed methods perform well 
with satisfactory finite-sample performances and that the naive methods ignoring 
measurement error or using the plug-in estimate can yield large biases. The simula-
tion studies also show the attenuating bias of using the plug-in estimate for the true 
underlying longitudinal covariate. While the commonly used additive measurement 
error model for a time-independent covariate can be checked and often holds well 
in practice, use of a measurement error model for time-varying covariates requires 
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more care. Additive random effects models with known time-dependent basis func-
tions are commonly used, but misspecification may lead to bias. Although statis-
tical models of longitudinal covariates measured with error have been studied by 
many authors (e.g., papers noted above), few methods are available to evaluate their 
goodness-of-fit. In this article, we also propose a diagnostic testing procedure for the 
measurement error model of longitudinal covariates.

The rest of this article is organized as follows. Section 2 introduces the data struc-
ture, models and model assumptions. Section  3.1 derives the measurement error 
induced hazard model. Section 3.2 presents a nonparametric maximum likelihood 
estimation approach. An EM algorithm is devised to facilitate maximum likelihood 
estimation that accounts for the partly interval censored failure times. Section 3.3 
derives the variance estimator based on the profile likelihood that accounts for vari-
ation in the parameter estimation for the measurement error model. A test procedure 
for the measurement error model of longitudinal covariates is given in Section 4. 
The finite-sample performance of the proposed methods is examined through simu-
lation studies in Section 5. The proposed methods are applied to the ACTG 175 trial 
data in Section 6. Some concluding remarks are given in Section 7.

2 � Preliminaries

Suppose Ti is the failure time of interest with the end of follow-up time � . Let Zi 
be the d × 1 vector of time-independent covariates that includes baseline covariates 
and treatment assignment, and Xi(t) the time-dependent covariate of interest. Let 
X̄i(t) = {Xi(u), 0 ≤ u ≤ t} denote the history of Xi(⋅) up to time t. We assume that the 
conditional hazard function of Ti given X̄i(t) and Zi only depends on Zi and the cur-
rent value Xi(t) . Let 𝜆(t|X̄i(t), Zi) be the conditional hazard function of Ti given X̄i(t) 
and Zi . We consider the proportional hazards model

for 0 ≤ t ≤ � , where �(t) is an unspecified baseline function, and � and � are 1- and 
d-dimensional vectors of parameters, respectively. We investigate model (1) under 
partly interval censored failure time data and when the time-dependent covariate 
Xi(t) is subject to measurement error.

Partly interval censored failure time data include observations of failure times 
that are precisely observed, and failure times that are left, interval and/or right cen-
sored. Let �i indicate whether the failure time Ti is exactly observed, i.e., �i = 1 
if Ti is exactly observed and 0 otherwise. If �i = 0 , let (Li,Ri] denote the smallest 
observed interval that brackets Ti , where Li ≥ 0 is the last monitoring time at which 
failure has not occurred and Ri ≥ 0 is the first monitoring time at which failure has 
occurred. Let Ri = ∞ if failure has not occurred by the last monitoring time. Thus, 
if Li = 0 , Ti is left censored; if Ri = ∞ , Ti is right censored; if 0 < Li < Ri < ∞ , Ti is 
interval censored. The partly interval censored failure time data for individual i can 
be represented by 

{
(�i, �iTi, (1 − �i)Li, (1 − �i)Ri

}
 . The notations �iTi , (1 − �i)Li 

and (1 − �i)Ri mean that we observe Ti if �i = 1 and observe (Li,Ri] if �i = 0.

(1)𝜆(t|X̄i(t), Zi) = 𝜆(t) exp{𝛽Xi(t) + 𝛾TZi},



434	 Statistics in Biosciences (2023) 15:430–454

1 3

In the ACTG 175 study, the failure time of interest is the time to composi-
tie endpoint of AIDS or death, whichever occurs first. For individual i, if death 
has occurred before AIDS, then we observe the exact death time Ti and �i = 1 ; 
if AIDS has occurred prior to death, then we observe a time interval (Li,Ri] that 
brackets the AIDS onset time Ti and �i = 0.

Linear mixed effects models are commonly used to model longitudinal covari-
ates measured with errors [3, 17, 20]. Suppose that Xi(t) is measured at times 
vi1 < ⋯ < vi,Mi

 before � with errors and there are Bij repeated measurements or 
replicates of Xi(vij) , where we let Bij = 1 if there are no replicates. Let Wi,b(vij) 
denote the bth measurement of Xi(⋅) at time vij , j = 1,… ,Mi , b = 1,… ,Bij . We 
consider the linear mixed effects model for longitudinal covariates with measure-
ment errors:

where f (vij) is an r × 1 vector of known design functions, �i is an r × 1 vector of 
unobserved random effects, and eij,b is the measurement error at time vij . We assume 
�i = � + �i , where � is a vector of fixed parameters and �i ( i = 1,… , n ) are independ-
ent and identically distributed (iid) N(0, G) with G being a r × r nonnegative definite 
matrix. We also assume that eij,b ( j = 1,… ,Mi , b = 1,… ,Bij ) are iid N(0, �2) inde-
pendent of �i . Thus, the unknown parameters for the measurement error model are 
�W = (�,G, �2) . Also, note that the design function f (⋅) is usually chosen as a vector 
of basis functions, such as polynomials. In our simulation study and real data analy-
sis below, we consider f (t) = (1, t) or (1, t, t2).

Define Wij = (Wi,1(vij),… ,Wi,Bij
(vij)) and eij = (eij,1,… , eij,Bij

) . Let ṽi = (vi1,… , vi,Mi
)T , 

W̃i = (Wi1,… ,Wi,Mi
)T and ẽi = (ei1,… , ei,Mi

)T . The observed data consist of a random 
sample of n iid observations

We will employ individual-specific estimation of the longitudinal covariate Xi(t) 
via model (2). It does not require repeated measurements at each measurement time 
vij , as long as the number of longitudinal measurements over time is sufficient to 
estimate �i , i.e., Mi ≥ r . The proposed estimation method allows Bij = 1 for all i, j. 
However, the repeated measurements reduce the standard error in estimating �i and 
thus in estimating Xi(t) , which results in increased efficiency in estimating � for 
model (1).

3 � Estimation of the Cox Model with Partly Interval Censored Failure 
Times and Longitudinal Covariates with Measurement Errors

In this section, we propose a method for estimation of the Cox model (1). In 
Sect. 3.1, we derive the measurement error induced hazard model under the addi-
tive measurement error model for longitudinal covariates. In Sect. 3.2, we design 
an EM algorithm for the nonparametric maximum likelihood estimation of the 

(2)Wi,b(vij) = Xi(vij) + eij,b = �T
i
f (vij) + eij,b,

{
𝛥i, 𝛥iTi, (1 − 𝛥i)Li, (1 − 𝛥i)Ri, Zi, ṽi, W̃i

}
, i = 1,… , n.
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measurement error induced hazard model based on partly interval censored fail-
ure times. A variance estimation procedure is proposed in Sect. 3.3.

3.1 � Measurement Error Induced Hazard Model

The true longitudinal covariate Xi(t) is not observed. We obtain an individual-specific 
estimate X̂i(t) of Xi(t) using the ordinary least squares method based on the observed 
data (ṽi, W̃i) and propose an approach by deriving the conditional hazard function of Ti 
at time t conditional on Zi and X̂i(t) . Only the longitudinal covariates in the past can be 
meaningfully used to model current or future risk of failure. For example, in assessing 
the association of time-dependent CD4 cell count with the composite clinical endpoint 
of AIDS or death in the ACTG 175 trial, only the CD4 count measurements before 
AIDS or death are meaningfully associated with the endpoint. Therefore, we estimate 
Xi(t) based on the data before t to preserve the predictability [3, 20].

Let Mi(t) denote the index of the last measurement time before t such that 
vi,Mi(t)

< t ≤ vi,Mi(t)+1
 . Since �i is r-dimensional, at least r longitudinal measurements 

from individual i before t are required, i.e., Mi(t) ≥ r . Let ṽi(t) = (vi1,… , vi,Mi(t)
)T , 

W̃i(t) = (Wi1,… ,Wi,Mi(t))
T  and ẽi(t) = (ei1,… , ei,Mi(t)

)T . Under model (2), W̃i(t) = F̃i(t)�i + ẽi(t) , 
where F̃i(t) = �i(t)f̃i(t)

T with �i(t) = diag(1Bi1
,… , 1Bi,Mi (t)

) , 1m is a m × 1-vector of 
ones, and f̃i(t) = (f (vi1),… , f (vi,Mi(t)

)) . Hence the ordinary least squares estimator of �i 
based on (ṽi(t), W̃i(t)) for individual i equals

It is easy to see that F̃T
i
(t)F̃i(t) =

∑Mi(t)

j=1
Bijfi(vij)f

T
i
(vij) and F̃T

i (t)W̃i(t) =
∑Mi(t)

j=1 fi(vij)
∑Bij

b=1 Wi,b(vij).
We estimate �i based on the observations from subject i without pulling information 

from other individuals because only the past history of subject i can forecast his/her 
risk of failure. The longitudinal covariate Xi(t) is estimated by X̂i(t) = f T (t)𝜃̂i(t) based 
on the observed error-prone covariate information for individual i up to time t. This 
allows us to derive the measurement error induced hazard model conditional on the 
observed information from individual i’s past.

Since 𝜃̂i(t) = 𝜃i + {F̃T
i
(t)F̃i(t)}

−1F̃T
i
(t)ẽi(t) , we have

The two terms Xi(t) and ẽi(t) are independent under model (2). Then condi-
tional on (𝜃i, ṽi(t)) , X̂i(t) is normally distributed with mean Xi(t) and variance 
di(t, 𝜎

2) = 𝜎2f T (t){F̃T
i
(t)F̃i(t)}

−1f (t) . An estimator of �2 can be constructed using the 
residuals:

(3)𝜃̂i(t) = {F̃T
i
(t)F̃i(t)}

−1F̃T
i
(t)W̃i(t).

X̂i(t) = Xi(t) + f T (t){F̃T
i
(t)F̃i(t)}

−1F̃T
i
(t)ẽi(t).

(4)𝜎̂2 = n−1
n∑
i=1

Mi
−1

Mi∑
j=1

B−1
ij

Bij∑
b=1

(Wi,b(vij) − X̂i(vij))
2.
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Next, we derive the induced hazard model of Ti conditional on Zi and X̂i(t) under the 
measurement error model (2). The estimator X̂i(t) is based on the observed informa-
tion before t, and thus is predictable for the risk of failure at t. Define the count-
ing process increment dNi(t) = I(t ≤ Ti < t + dt, vir ≤ t) and the at-risk process 
Yi(t) = I(Ti ≥ t, vir ≤ t) . That is, dNi(t) = 1 if the failure time occurs at time t and 
after the rth longitudinal measurement.

Our approach is motivated by the conditional score method of [3]. 
They first derived the conditional likelihood of {dN∗

i
(t), X̂i(t)} given 

(𝜃i, Zi, ṽi(t), Yi(t) = 1) , where N∗
i
(t) is the counting process for the right cen-

sored data. They then noted that the conditional likelihood given Yi(t) = 1 , 
Qi(t, 𝛽, 𝜎

2) = X̂i(t) + di(t, 𝜎
2)𝛽dN∗

i
(t) , is a complete sufficient statistic for �i , and 

thus, conditional on Qi(t, �, �
2) , removes the dependence of the conditional dis-

tribution on the random effects �i . [3, 20] derived the conditional intensity pro-
cess by conditioning on Qi(t, �, �

2) , which turns out to be a Cox model with Zi 
and Qi(t, �, �

2) as the independent variables. We note that their papers did not 
derive the intensity model because of dN∗

i
(t) involved in Qi(t, �, �

2) . Further, 
their approaches do not work in the current setting because the counting process 
framework can not be utilized for interval censored or partly interval censored 
data.

We pursue a different approach by deriving the hazard model for Ti con-
ditional on Zi, ṽi(t), Yi(t) = 1 and X̂i(t) . Let Ft be the filtration generated by 
{Ni(s),Yi(s),Zi,Xi(s), X̂i(s), ṽi(s), W̃i(s)} , 0 ≤ s ≤ t . Then X̂i(t) and �2

i,rel
(t) are both 

predictable with respect to Ft . The following proposition presents the condi-
tional hazard function of Ti at time t given (X̂i(t),Zi, ṽi(t), vir ≤ t).

Proposition 1  Under Conditions (A1)-(A3) given in the Appendix,

where �i(t) = 1 − �2
i,rel

(t) , Oi(�, t, �W ) = ��2i,rel(t)[�
T f (t) + 1

2 f
T (t)Gf (t)�] , �2

i,rel(t) = di(t, �2)∕

(f T (t)Gf (t) + di(t, �2)) , and �W = (�,G, �2).

The proof of Proposition 1 is given in Web Appendix A. We refer to model (5) as 
the measurement error induced hazard model. This approach based on the induced 
hazard model can be easily extended to handle multivariate Xi(t) . The parameter 
�2
i,rel

(t) measures the percentage of the measurement error variation over the total 
variation in Wi,b(vij) under model (2). The factor �i(t) = 1 − �2

i,rel
(t) is termed as 

the reliability ratio [26] representing the attenuating effect of use of the estimated 
covariate X̂i(t) . If there is no measurement error, i.e., �2 = 0 , then �i(t) = 1 , 
Oi(�, t, �W ) = 0 and X̂i(t) = Wi(t) = Xi(t) . If the measurement times ṽi do not vary 
with i, then �2

i,rel
(t) does not depend on i.

Since only the longitudinal measurements in the past can be meaningfully used to 
model current or future risk of failure, the subject-specific estimates, X̂i(t) , are based 
on the measurements Wij before � if the failure event has not occurred by the end 

(5)
𝜆∗(t|X̂i(t), Zi, ṽi(t)) = 𝜆(t) exp

{
𝛽𝜔i(t)X̂i(t) + 𝛾TZi + Oi(𝛽, t, 𝜃W )

}
, for t ≥ vir,
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of study time, before Ti if the failure time is observed ( �i = 1 ), and before Li that is 
right before the failure time Ti if �i = 0.

3.2 � Estimation of Measurement Error Induced Hazard Model with Partly Interval 
Censored Data

Next, we derive an estimator of the induced hazard model based on partly interval cen-
sored data. The observed data from a random sample of n study participants consist of {
(𝛥i, 𝛥iTi, (1 − 𝛥i)Li, (1 − 𝛥i)RiI(Ri < ∞), Zi, ṽi, W̃i

}
 , i = 1,… , n. Recently, [11] 

developed maximum likelihood estimation for semiparametric transformation models with 
partly interval censored data. The method extended the EM algorithm approach of [9] for 
interval censored data to partly interval censored data. We adopt this approach to estimate 
the measurement error induced hazard model (5) with partly interval censored data.

Under model (5), the conditional survival function of Ti given Ti ≥ vir equals 
exp

(
− ∫ t

vir
𝜆∗(x|X̂i(x), Zi, ṽi(x)) dx

)
 . Let �0(t) = ∫ t

0
�(s) ds . Note that �W in model (5) 

can be estimated based on model (2) such that we treat it as known for now. Let 
hi(t, 𝛽, 𝛾) = 𝛽𝜔i(t)X̂i(t) + 𝛾TZi + Oi(𝛽, t, 𝜃W ) . The observed data likelihood function 
for (�, � ,�) under model (5) is Ln(�, � ,�;�W ) =

Because the likelihood (6) can become arbitrarily large within the class of 
absolutely continuous functions �(⋅) , the nonparametric maximum likeli-
hood estimator (NPMLE) is often obtained on a restricted space. Follow-
ing this typical approach, e.g., [9], we regard �(t) as a step function with non-
negative jumps at observed Ti and at the endpoints of the intervals (Li,Ri] , 
i = 1,… , n . Let 0 = t0 < t1 < ⋯ < tm be the ordered unique values of the set 
{(𝛥iTi, (1 − 𝛥i)Li, (1 − 𝛥i)RiI(Ri < ∞)) ∶ i = 1,… , n}.

Let �k be the jump size of the estimator for �(t) at tk for k = 1,… ,m and let �0 = 0 . 
Let hi(tik, 𝛽, 𝛾) = 𝛽𝜔ikX̂ik + 𝛾TZi + Oi(𝛽, tk, 𝜃W ) , where X̂ik = X̂i(tk) and �ik = �i(tk) . 
With �(t) a step function with jumps �k at tk , k = 1,… ,m , the likelihood (6) becomes 
Ln(�, � ,�;�W ) =

(6)

=

n∏
i=1

{[
��(Ti) exp{hi(Ti, �, �)}

]I(vir≤Ti) exp
(
− �

Ti

vir

exp
{
hi(t, �, �)

}
d�(t)

)}�i

{
exp

(
− �

Li

vir

exp
{
hi(t, �, �)

}
d�(t)

)
− exp

(
− �

Ri

vir

exp
{
hi(t, �, �)

}
d�(t)

)}1−�i

.

(7)

=

n∏
i=1

{[
𝛬{Ti} exp{hi(Ti, 𝛽, 𝛾)}

]I(vir≤Ti) exp
(
−

∑
tk≤Ti

I(vir ≤ tk)𝜆k exp
{
hi(tik, 𝛽, 𝛾)

})}𝛥i

{
exp

(
−

∑
tk≤Li

I(vir ≤ tk)𝜆k exp
{
hi(tik, 𝛽, 𝛾)

})

[
1 − exp

(
−

∑
Li<tk≤Ri

I(vir ≤ tk)𝜆k exp
{
hi(tik, 𝛽, 𝛾)

})]I(Ri<∞)}1−𝛥i

,
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where �{Ti} denotes the jump size of �(t) at Ti.
We consider an EM algorithm to maximize Ln(�, � ,�;�W ) . Let �ik be independ-

ent Poisson random variables with means �ik = �k exp
{
hi(tik, �, �)

}
 , i = 1,… , n , 

k = 1,… ,m . Following [11], for i = 1,… , n , we define

Let X̂i⋅ = {X̂ik, k = 1,… ,m} . The likelihood of the observed data given by 
(ṽi, Ti, X̂i⋅, Zi, Ai = 0, Bi = 1) for �i = 1 and (ṽi, Li, Ri, X̂i⋅, Zi, Ci = 0, Di > 0) for 
�i = 0 under model (5) is

Note that P(Ai = 0,Bi = 1) equals the term in the likelihood (7) corresponding to 
�i = 1 , and P(Ci = 0,Di > 0) equals the term in the likelihood (7) corresponding to 
�i = 0 . Hence, L∗

n
 equals the observed likelihood (7), which takes the form

We maximize the likelihood (8) through an EM algorithm by treating �ik as 
missing data. Let R∗

i
= 𝛥iTi + (1 − 𝛥i){LiI(Ri = ∞) + RiI(Ri < ∞)} . Let 

1∗
ik
= I(vir ≤ tk ≤ R∗

i
) . The complete-data log likelihood is given by

Taking derivatives of (9), we obtain the score functions

Ai = 𝛥i

∑
tk<Ti

I(vir ≤ tk) 𝜂ik,

Bi = 𝛥i

∑
tk=Ti

I(vir ≤ tk) 𝜂ik,

Ci = (1 − 𝛥i)
∑

tk≤Li I(vir ≤ tk) 𝜂ik,

Di = (1 − 𝛥i)I(Ri < ∞)
∑

Li<tk≤Ri
I(vir ≤ tk) 𝜂ik.

L∗
n
=

n∏
i=1

{
P(Ai = 0,Bi = 1)

}𝛥i
{
P(Ci = 0,Di > 0)

}1−𝛥i .

(8)

Ln(𝛽, 𝛾 ,𝛬;𝜃W ) =

n�
i=1

��
tk<Ti

P(𝜂ik = 0)I(vir≤tk)
�
tk=Ti

P(𝜂ik = 1)I(vir≤tk)
�𝛥i

⎧
⎪⎨⎪⎩

�
tk≤Li

P(𝜂ik = 0)I(vir≤tk)
�
1 −

�
Li<tk≤Ri

P(𝜂ik = 0)I(vir≤tk)
�I(Ri<∞)⎫⎪⎬⎪⎭

1−𝛥i

.

(9)Cln(�, � ,�;�W ) =

n∑
i=1

m∑
k=1

1∗
ik

[
�ik log(�ik) − log(�ik!) − �ik

]
.

(10)

𝜕Cln(𝛽, 𝛾 ,𝛬;𝜃W )

𝜕(𝛽, 𝛾)
=

n∑
i=1

m∑
k=1

1∗
ik
Z∗
ik

[
𝜂ik − 𝜆k exp

{
𝛽𝜔ikX̂ik + 𝛾TZi + Oi(𝛽, tk, 𝜃W )

}]
,

(11)
𝜕Cln(𝛽, 𝛾 ,𝛬;𝜃W )

𝜕𝜆k
=

n∑
i=1

1∗
ik

[
𝜂ik
𝜆k

− exp
{
𝛽𝜔ikX̂ik + 𝛾TZi + Oi(𝛽, tk, 𝜃W )

}]
,
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for k = 1,… ,m , where Z∗
ik
= ((𝜔ikX̂ik + Ȯi(𝛽, tk, 𝜃W ))

T , ZT
i
)T and Ȯi(𝛽, tk, 𝜃W ) is the 

derivative of Oi(�, tk, �W ) with respect to �.
In the M-step, we calculate �k based on the score (11):

for k = 1,… ,m , where Ê(𝜂ik) denotes the posterior mean given the observed data. 
We then plug (12) into (10) and solve the score equations for � and �:

The M-step estimators of �k ( k = 1,… ,m ) and (�, �) are obtained from (12) and 
(13).

In the E-step, we calculate the posterior mean Ê(𝜂ik) of �ik conditional on the observed 
data (ṽi, Ti, X̂i⋅, Zi, Ai = 0, Bi = 1) for �i = 1 and (ṽi, Li, Ri, X̂i⋅, Zi, Ci = 0, Di > 0) 
for �i = 0 . For �i = 1 , Ê(𝜂ik) = 0 for vir < tk < Ti and Ê(𝜂ik) = 1 for vir < tk = Ti . For 
�i = 0 , Ê(𝜂ik) = E(𝜂ik|ṽi, Li, Ri, X̂i⋅, Zi, Ci = 0, Di > 0) . It follows that Ê(𝜂ik) = 0 for 
vir ≤ tk ≤ Li , and

for vir ≤ tk and Li < tk ≤ Ri with Ri < ∞.
The estimators of (�k, k = 1,… ,m) and (�, �) are obtained by iterating between 

the E and M steps until convergence, which are denoted by (𝜆̂k, k = 1,… ,m) and 
(𝛽, 𝛾̂) . We estimate �(⋅) by 𝛬̂(⋅) , which is the step function with jump size 𝜆̂k at 
tk , k = 1,… ,m . This EM procedure assumes that the measurement error model 
parameters �W are known. In practice, they are usually unknown. These param-
eters can be estimated by existing methods for estimating a linear mixed effects 
model. In the numerical studies, we obtain the maximum likelihood estimates 
𝜃̂W using the lmer function in the R package lme4 [27]. The aforementioned EM 
procedure is then carried out by replacing �W with 𝜃̂W . Therefore, (𝛽, 𝛾̂ , 𝛬̂(⋅)) is 
a plug-in estimator that maximizes logLn(𝛽, 𝛾 ,𝛬;𝜃̂W ) for (�, �) ∈ B and � ∈ C , 
where B is a known compact set in Rd+1 and C is the set of step functions with 
nonnegative jumps at tk , k = 1,… ,m.

The following theorem summarizes the asymptotic properties of the estimators 
(𝛽, 𝛾̂ , 𝛬̂(⋅)) . The proof is outlined in Web Appendix A.

Theorem  1  Under Conditions (A1)-(A3) and (B1)-(B4) given in the Appen-
dix, (𝛽, 𝛾̂ , 𝛬̂(t)) converges almost surely to (�, � ,�(t)) uniformly in t ∈ [� , �] , and 

(12)𝜆k =

∑n

i=1
1∗
ik
Ê(𝜂ik)∑n

i=1
1∗
ik
exp

�
𝛽𝜔ikX̂ik + 𝛾TZi + Oi(𝛽, tk, 𝜃W )

� ,

(13)

n�
i=1

m�
k=1

1∗
ik
Ê(𝜂ik)

�
Z∗
ik
−

∑n

j=1
1∗
jk
exp

�
𝛾TZj + 𝛽𝜔jkŜjk + Oj(𝛽, tk, 𝜃W )

�
Z∗
jk∑n

j=1
1∗
jk
exp

�
𝛾TZj + 𝛽𝜔jkŜjk + Oj(𝛽, tk, 𝜃W )

�
�
= 0.

(14)

Ê(𝜂ik) = E
�
𝜂ik

���ṽi, Li, Ri, X̂i⋅, Zi, Ci = 0, Di > 0
�

=
𝜆k exp

�
𝛽𝜔ikX̂ik + 𝛾TZi + Oi(𝛽, tk, 𝜃W )

�

1 − exp{−
∑

Li<tk≤Ri
1∗
ik
𝜆k exp

�
𝛽𝜔ikX̂ik + 𝛾TZi + Oi(𝛽, tk, 𝜃W )

�
}
,
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√
n
�
𝛽 − 𝛽, 𝛾̂ − 𝛾 , 𝛬̂(t) − 𝛬(t)

�
 converges in distribution to a mean zero Gaussian 

process for t ∈ [� , �].

3.3 � Variance Estimation

The proposed estimator (𝛽, 𝛾̂) for model (1) is the profile likelihood estimator by 
profiling out the baseline � with the plugging in of 𝜃̂W for �W . Define the profile log 
likelihood

where �∗ = (�, �T )T , Ln(�, � ,�;�W ) is given in (7) and C is the set of step functions 
with nonnegative jumps at tk , k = 1,… ,m . Then 𝛽∗ = argmax𝛽∗∈B pln(𝛽∗;𝜃̂W ) . When 
�W is known, the profile likelihood approach can be used to estimate the covariance 
matrix of 𝛽  [28]. With the plug-in estimator 𝜃̂W , the estimator of the variance of 
𝛽∗ = (𝛽, 𝛾̂T )T needs to account for the variation of 𝜃̂W.

Let U(𝛽∗;𝜃̂W ) =
𝜕

𝜕𝛽∗
pln(𝛽

∗;𝜃̂W ) . Then U(𝛽∗;𝜃̂W ) = 0 . By (1) in the proof of Theo-
rem 1 in the Web Appendix A, we have

Under the measurement error model (2), the estimator 𝜃̂W admits the approximation 
𝜃̂W − 𝜃W = J−1

∑n

i=1
𝜉i + op(n

−1∕2) , where �i are iid random vectors with mean zero 
and J is a positive definite matrix. Under Conditions (A1)-(A3) given in the Appen-
dix, U(�∗;�W ) and 𝜃̂W − 𝜃W are uncorrelated. Therefore, the two summands in (15) 
are asymptotically independent.

The covariance matrix of 𝛽∗ equals

Thus Cov(𝛽∗) can be consistently estimated by replacing �∗ with 𝛽∗ , �W with 𝜃̂W and 
Cov(𝜃̂W ) with its estimator �Cov(𝜃̂W ) . The details of derivations for the variance esti-
mation are given in Web Appendix A.

The (j, k)th element of matrix 𝜕U(𝛽∗;𝜃̂W )

𝜕𝛽∗
 is estimated by

where ej and ek are the jth and kth canonical vector in Rd+1 , respectively, and hn is at 
the order of n−1∕2.

pln(�
∗;�W ) = max

�∈C
logLn(�, � ,�;�W ),

(15)

𝛽∗ − 𝛽∗ = −
(𝜕U(𝛽∗;𝜃W )

𝜕𝛽∗

)−1[
U(𝛽∗;𝜃W ) +

𝜕U(𝛽∗;𝜃W )

𝜕𝜃W
(𝜃̂W − 𝜃W )

]
+ op(n

−1∕2).

(16)
Cov(𝛽∗) =

(𝜕U(𝛽∗;𝜃W )

𝜕𝛽∗

)−1

+
(𝜕U(𝛽∗;𝜃W )

𝜕𝛽∗

)−1 𝜕U(𝛽∗;𝜃W )

𝜕𝜃W
Cov

(𝜃̂W )
(𝜕U(𝛽∗;𝜃W )

𝜕𝜃W

)T(𝜕U(𝛽∗;𝜃W )

𝜕𝛽∗

)−1

+ op(n
−1).

pln(𝛽
∗;𝜃̂W ) − pln(𝛽

∗ + hnek;𝜃̂W ) − pln(𝛽
∗ + hnej;𝜃̂W ) + pln(𝛽

∗ + hnek + hnej;𝜃̂W )

h2
n

,
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Similarly, the (j, k)th element of matrix �U(�∗;�W )

��W
 is estimated by

where ek is the kth canonical vector in Rd+1 and uj is the jth canonical vector in Rq 
with q the dimension of �W.

The R package merDeriv developed by [29] for generalized linear mixed models can 
be used to estimate Cov(𝜃̂W ) [27].

To calculate pln(�∗;�W ) , we apply the proposed EM algorithm with �∗ and �W 
held fixed. For any given values of �∗ and �W , the procedure iterates between (12) 
for �k and (14) for Ê(𝜂ik) . For fast convergence, one can take the estimate 𝜆̂k of the 
jump size of of the cumulative baseline function �(⋅) for model (5) as the initial 
value. The step size hn in calculating the second order differences can be taken as 
hn = Cn−1∕2 , where C is a constant that can be calibrated depending on data applica-
tions. Although there has been no existing study examining the optimal choice of hn , 
our simulation studies show that hn = 5n−1∕2 works well.

We summarize the steps for implementing the proposed method as follows: 

1.	 Obtain the the maximum likelihood estimates 𝜃̂W of the parameters �W = (�,G, �2) 
under the measurement error model (2).

2.	 Calculate the estimated longitudinal covariates X̂i(t) = f T (t)𝜃̂i(t) , where 𝜃̂i(t) is 
the least squares estimator of �i given by (3), i = 1,… , n.

3.	 Estimate the parameters (�, � ,�) in the measurement error induced hazard model 
(5) using the EM algorithm described in Section 3.2, where �W is replaced by 𝜃̂W.

4.	 Estimate the covariance matrix of 𝛽∗ = (𝛽, 𝛾̂) using Cov(𝛽∗) given by (16).

4 � A Diagnostic Testing Procedure for the Measurement Error Model

This section presents a diagnostic procedure to examine validity of the measurement 
error model (2). An invalid model can introduce additional bias and diminish the 
benefits of dealing with the measurement errors. The proposed test procedure pro-
vides a formal procedure to check for the model assumptions for the longitudinal 
covariate.

For each individual i, let êij = Wij − f (vij)
T 𝜃̂i1

T
Bij

 and eij = Wij − �T
i
f (vij)1

T
Bij

 , where 
𝜃̂i = 𝜃̂i(𝜏) . The regression residual process is defined as 𝜖i(vij) = êij1Bij

 . Let 𝜎̂ be the 
estimator of � given in (4) under model (2). We introduce the following weighted 
residual process for individual i,

pln(𝛽
∗;𝜃̂W ) − pln(𝛽

∗ + hnek;𝜃̂W ) − pln(𝛽
∗;𝜃̂W + hnuj) + pln(𝛽

∗ + hnek;𝜃̂W + hnuj)

h2
n

,

HiMi(t)
=

Mi(t)∑
j=1

B
−1∕2

ij
𝜖i(vij)

𝜎̂
(
1 − Bijf

T (vij){F̃
T
i
(𝜏)F̃i(𝜏)}

−1f (vij)
)1∕2

.
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In the following we construct the test based on the differences of the weighted resid-
ual processes. Let 0 = 𝜏0 < 𝜏1 < 𝜏2 < ⋯ < 𝜏K ≤ 𝜏 be the grid points on [0, �] . We 
set Mi(0) = 0 and HiMi(0)

= 0 . Define Dik = HiMi(�k)
− HiMi(�k−1)

 for 1 ≤ k ≤ K , and 
Hn =

∑n
i=1

(

Di1,Di2,… ,DiK
)T . We propose the test statistic

where �H is the covariance matrix of Hn . The diagonal of �H includes

for 1 ≤ k ≤ K , and the off-diagonal elements of �H are given by

for j ≠ k . Here

Theorem 2  Under model (2), the test statistic Q has a chi-square distribution with K 
degrees of freedom.

By Theorem 2, the test rejects model (2) at significance level � if Q > 𝜒2
K,1−𝛼

 . The 
proof of Theorem 2 is given in the Web Appendix A.

It is easy to show that the test statistic Q has an asymptotic chi-square distribu-
tion with K degrees of freedom as long as the random effects �i and the measurement 
errors eij,b are iid with mean zero and finite variances. The proposed test provides a 
method to test the form of the within-individual patterns defined by the basis func-
tion f(t). It does not test the normality assumptions of �i and the errors eij . Many 
existing tests such as the Kolmogorov-Smirnov test, Shapiro-Wilk test, and Ander-
son-Darling test can be used to test for normality. Testing of the normality assump-
tion of �i can be conducted based on {𝜃̂i(𝜏), i = 1,… , n} , while testing of the nor-
mality assumption of eij can be conducted based on {êij, j = 1,… ,Mi, i = 1,… , n} . 
Diagnostic tools such as Q-Q plots can be used to compliment the formal test proce-
dures for real data applications.

The proposed test is not overly sensitive to the choice of K. We suggest 3 ≤ K ≤ 8 
and that the grid points 0 = 𝜏0 < 𝜏1 < 𝜏2 < ⋯ < 𝜏K ≤ 𝜏 be evenly spaced in [0, �] . 
Our simulation results show that the test performs well.

(17)Q = HT
n
�−1

H
Hn,

n∑
i=1

Var(Dik) =

n∑
i=1

(
Mi(𝜏k) −Mi(𝜏k−1)

)
− 2

n∑
i=1

∑
Mi(𝜏k−1)<l<m≤Mi(𝜏k)

𝛹i,lm,

n∑
i=1

Cov(Dij,Dik) = −

n∑
i=1

∑
Mi(𝜏j−1)<l≤Mi(𝜏j)

∑
Mi(𝜏k−1)<m≤Mi(𝜏k)

𝛹i,lm,

𝛹i,jk =
B
−1∕2

ij
B
−1∕2

ik
f T (vij){F̃

T
i
(𝜏)F̃i(𝜏)}

−1f (vik)

(
1 − Bijf

T (vij){F̃
T
i
(𝜏)F̃i(𝜏)}

−1f (vij)
)1∕2(

1 − Bikf
T (vik){F̃

T
i
(𝜏)F̃i(𝜏)}

−1f (vik)
)1∕2

.
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5 � Simulation Studies

We evaluate the proposed method via simulation studies. Let n be the sample size. 
For i = 1,… , n , the failure time Ti is generated from the proportional hazards model

where �(t) = 1∕(2 + t) , � = 0.5 , � = − log(2) , Zi ∼ Ber(0.3) , and Xi(t) has the 
form Xi(t) = (�0 + b0i) + (�1 + b1i)t, with �0 = 1 , �1 = 0.5 , (b0i, b1i) ∼ N(0,G) , and 
G = [0.02,−0.01; − 0.01, 0.02] . Let Unif(0, a) denote a uniform random variable on 
(0, a) and Ber(p) a Bernoulli random variable with success probability p. We simu-
late the measurement times (vi1,… , vi,Mi

) for Xi(⋅) as follows. We first generate the 
measurement times as the cumulative sums of independent Unif(0, 0.2) random var-
iates until �∕6 is reached, and then keep adding up independent Unif(0, 0.4) random 
variates until � . We simulate partly interval censored data for individual i as fol-
lows. We first generate the number of monitoring times Ki ∼ Ber(0.8) + 1 . If Ki = 1 , 
we generate one monitoring time Ui1 ∼ Unif (0, �∕2) ; define (Li,Ri] = (0,Ui1] 
if Ti ≤ Ui1 and (Li,Ri] = (Ui1,∞) if Ti > Ui1 . If Ki = 2 , we generate two moni-
toring times Ui1 ∼ Unif (0, �∕2) and Ui2 ∼ min{0.1 + Ui1 + Unif (0, 3�∕4), �} ; 
define (Li,Ri] = (0,Ui1] if Ti ≤ Ui1 , (Li,Ri] = (Ui1,Ui2] if Ui1 < Ti ≤ Ui2 , and 
(Li,Ri] = (Ui2,∞) if Ti > Ui2 . If Ri = ∞ , we set �i = 0 ; if Ri < ∞ , we generate 
�i ∼ Ber(p) with p = 0.25 or 0.75. If �i = 1 , the failure time Ti is exactly observed. 
The length of study is taken to be � = 3 yielding about 40% right censoring. The 
error-prone measurements Wi,b(vij) are generated from the model

where Xi(vij) = (�0 + b0i) + (�1 + b1i)vij is specified above, eij,b ∼ N(0, �2) with 
� = 0.1 or 0.2 and the number of repeated measurements of Xi(vij) is Bij = B = 1 or 
3 for all i, j.

We compare four methods: (i) the proposed method; (ii) the ideal method using 
true X(t) which is not available in practice; (iii) the naive method that ignores meas-
urement error and uses W(t) directly, where W(t) at any time t is evaluated via last 
value carried forward from the longitudinal measurements (the average is used if 
there are replicates for W(t)); (iv) the naive method using X̂(t) by simply replac-
ing X(t) with X̂(t) in the proportional hazards model. For the variance estimation 
based on the profile likelihood method, we take hn = 5n−1∕2 . The results are similar 
with other choices of hn , such as n−1∕2 and 10n−1∕2 , which is also noted in [9]. We 
consider the sample size n = 400 and 600. The estimation results for (�, �) based on 
500 simulations are presented in Table 1 for B = 1 and in Table S1 of Web Appen-
dix B for B = 3 , where Bias is the average point estimate minus the true parameter 
value, SSD is the sample standard deviation of point estimates, ESE is the average 
of estimated standard errors and CP is the coverage proportion of the 95% confi-
dence interval.

We can see from Tables  1 and S1 that (i) for all scenarios considered, the 
proposed method yields unbiased estimates with reasonable estimated stand-
ard errors and coverage proportions; (ii) the sample standard deviation of the 

(18)𝜆(t|X̄i(t), Zi) = 𝜆(t) exp{𝛽Xi(t) + 𝛾Zi},

(19)Wi,b(vij) = Xi(vij) + eij,b, b = 1,… ,Bij,
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Table 1   Simulation results for (�, �) under models (18) and (19) when there are no repeated measure-
ments of Xi(t) , i.e., B = 1 . The random effects (b0i, b1i) ∼ N(0,G) with G = [0.02,−0.01; − 0.01, 0.02] . 
Each entry is based on 500 replicates

p = 0.25

� = 0.5 � = − log(2)

n � Method Bias SSD ESE CP Bias SSD ESE CP

400 0.1 Proposed 0.045 0.554 0.565 0.962 −0.017 0.166 0.154 0.922
X(t) 0.010 0.443 0.453 0.970 −0.016 0.162 0.152 0.930
W(t) −0.072 0.417 0.424 0.958 −0.015 0.162 0.152 0.928

X̂(t) −0.356 0.248 0.189 0.433 −0.016 0.167 0.155 0.918

0.2 Proposed 0.077 0.703 0.719 0.958 −0.017 0.166 0.154 0.920
X(t) 0.010 0.443 0.453 0.970 −0.016 0.162 0.152 0.930
W(t) −0.216 0.342 0.347 0.908 −0.014 0.161 0.152 0.930

X̂(t) −0.440 0.150 0.112 0.150 −0.014 0.168 0.154 0.914

600 0.1 Proposed 0.040 0.455 0.452 0.950 −0.001 0.130 0.126 0.944
X(t) −0.010 0.375 0.365 0.946 0.001 0.129 0.124 0.938
W(t) −0.082 0.352 0.341 0.936 0.001 0.129 0.124 0.932

X̂(t) −0.393 0.183 0.117 0.245 0.002 0.131 0.126 0.940

0.2 Proposed 0.073 0.569 0.572 0.956 −0.000 0.130 0.126 0.944
X(t) −0.010 0.375 0.365 0.946 0.001 0.129 0.124 0.938
W(t) −0.215 0.290 0.280 0.866 0.002 0.128 0.124 0.932

X̂(t) −0.457 0.110 0.067 0.053 0.002 0.130 0.126 0.942

p = 0.75

� = 0.5 � = − log(2)

n � Method Bias SSD ESE CP Bias SSD ESE CP

400 0.1 Proposed 0.022 0.535 0.537 0.954 −0.017 0.167 0.156 0.934
X(t) 0.017 0.430 0.437 0.960 −0.014 0.159 0.150 0.936
W(t) −0.128 0.380 0.377 0.942 −0.013 0.159 0.150 0.938

X̂(t) −0.405 0.197 0.125 0.267 −0.015 0.166 0.156 0.933

0.2 Proposed 0.030 0.652 0.662 0.948 −0.016 0.167 0.156 0.934
X(t) 0.017 0.430 0.437 0.960 −0.014 0.159 0.150 0.936
W(t) −0.296 0.289 0.282 0.804 −0.012 0.158 0.150 0.938

X̂(t) −0.466 0.111 0.068 0.049 −0.014 0.167 0.157 0.932

600 0.1 Proposed −0.004 0.423 0.432 0.952 0.002 0.132 0.128 0.938
X(t) −0.011 0.359 0.354 0.950 0.003 0.126 0.123 0.944
W(t) −0.146 0.310 0.306 0.912 0.004 0.126 0.123 0.944

X̂(t) −0.437 0.136 0.081 0.107 0.004 0.131 0.128 0.936

0.2 Proposed 0.004 0.517 0.532 0.958 0.003 0.132 0.128 0.944
X(t) −0.011 0.359 0.354 0.950 0.003 0.126 0.123 0.944
W(t) −0.304 0.236 0.229 0.725 0.005 0.125 0.123 0.940

X̂(t) −0.477 0.075 0.042 0.013 0.007 0.130 0.128 0.940
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proposed estimator of � decreases when the degree of measurement error repre-
sented by � decreases and when the sample size n, the number of repeated meas-
urements B of X(t), or the proportion of exact observations p increases; (iii) as 
expected, the ideal method that uses true X(t) is more efficient than the proposed 
method and the efficiency gain increases with the degree of measurement error 
given by � ; (iv) the naive method that ignores measurement error and uses W(t) 
directly yields acceptable results when � = 0.1 , but has large bias when � = 0.2 ; 
particularly, it tends to underestimate � ; (v) the naive method that replaces X(t) 
with X̂(t) in the proportional hazards model gives severely biased estimates of � 
for all scenarios considered (and it should be noted that this method underesti-
mates � due to the attenuating effect); and (vi) all methods perform well for the 
estimation of �.

We have also investigated the computational cost of the proposed method. For 
the simulation setup n = 400 , p = 0.75 , � = 0.1 and B = 1 , it takes about 409 sec-
onds (132 for parameter estimation and 277 for variance estimation) to implement 
the proposed method on a MacBook Pro (3.1GHz Quad-Core Intel Core i7).

To evaluate the robustness of our method to the normality assumption on ran-
dom effects in the measurement error model, we generate the random effects b0i 
and b1i from Unif (−0.25, 0.25) independently while keeping the other settings the 
same as in Tables 1 and S1. The results are presented in Table 2 for B = 1 and 
Table S2 of Web Appendix B for B = 3 . One can see that the proposed method 
performs well in such situations.

In addition, we obtain the estimate of the baseline hazard function �(t) using 
kernel smoothing with the Gaussian kernel and bandwidth 0.1. Figures S1 ∼ S4 
in Web Appendix B plot the estimated baseline hazard functions based on the 
simulation results of Tables 1, 2, S1 and S2, respectively. One can see that the 
proposed method and the ideal method yield unbiased estimates of the baseline 
hazard function �(t) except for t close to 0, while the naive methods yield biased 
estimates.

We also conduct a simulation study to examine the empirical sizes and pow-
ers of the proposed test for Xi(vij) = (� + �i)

T f (vij) under the measurement error 
model (2), for i = 1,… , n , j = 1,… ,Mi and b = 1,… ,B , where f(t) is an r × 1 
vector of basis functions, � is a vector of fixed parameters, and �i(i = 1,… , n) are 
iid N(0, G). We set the null model to be f (t) = (1, t) and generate data from the 
following four models: 

	 I:	 f (t) = (1, t) , � = (1, 0.5) and G = [0.02,−0.01; − 0.01, 0.02]

	 II:	 f (t) = (1, t, t2) , � = (1, 0.5, 0.01) and G = [0.02,−0.01, 0; − 0.01, 0.02, 0;0, 0, 0.02]
	 III:	 f (t) = (1, t, t2) , � = (1, 0.5, 0.02) and G = [0.02,−0.01, 0; − 0.01, 0.02, 0;0, 0, 0.02]
	 IV:	 f (t) = (1, t, t2) , � = (1, 0.5, 0.02) and G = [0.02,−0.01,−0.01; − 0.01, 0.02,−0.01; − 0.01, 

−0.01, 0.02]

Here for easy presentation G is the covariance matrix with rows separated by 
semicolons.
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Table 2   Simulation results for (�, �) under models (18) and (19) when there are no repeated measure-
ments of Xi(t) , i.e., B = 1 . The random effects b0i and b1i are independent Unif (−0.25, 0.25) . Each entry is 
based on 500 replicates

p = 0.25

� = 0.5 � = − log(2)

n � Method Bias SSD ESE CP Bias SSD ESE CP

400 0.1 Proposed 0.055 0.393 0.392 0.936 −0.007 0.168 0.154 0.938
X(t) 0.015 0.340 0.341 0.938 −0.007 0.164 0.152 0.930
W(t) −0.021 0.324 0.335 0.960 −0.007 0.164 0.152 0.930

X̂(t) −0.309 0.230 0.164 0.453 −0.006 0.165 0.154 0.944

0.2 Proposed 0.093 0.472 0.470 0.936 −0.008 0.168 0.154 0.942
X(t) 0.015 0.340 0.341 0.938 −0.007 0.164 0.152 0.930
W(t) −0.131 0.284 0.294 0.944 −0.006 0.164 0.152 0.934

X̂(t) −0.413 0.150 0.108 0.178 −0.006 0.166 0.154 0.944

600 0.1 Proposed 0.045 0.296 0.316 0.958 −0.014 0.135 0.126 0.932
X(t) 0.011 0.261 0.276 0.970 −0.013 0.135 0.124 0.938
W(t) −0.030 0.245 0.271 0.968 −0.012 0.135 0.124 0.936

X̂(t) −0.352 0.173 0.108 0.260 −0.011 0.133 0.126 0.929

0.2 Proposed 0.079 0.354 0.378 0.958 −0.013 0.135 0.126 0.930
X(t) 0.011 0.261 0.276 0.970 −0.013 0.135 0.124 0.938
W(t) −0.142 0.210 0.237 0.942 −0.011 0.134 0.124 0.932

X̂(t) −0.432 0.106 0.063 0.049 −0.009 0.132 0.126 0.929

p = 0.75

� = 0.5 � = − log(2)

n � Method Bias SSD ESE CP Bias SSD ESE CP

400 0.1 Proposed 0.031 0.381 0.380 0.940 −0.004 0.170 0.156 0.936
X(t) 0.017 0.327 0.334 0.952 −0.004 0.161 0.150 0.936
W(t) −0.074 0.291 0.311 0.962 −0.004 0.161 0.150 0.940

X̂(t) −0.356 0.199 0.121 0.318 −0.000 0.169 0.156 0.933

0.2 Proposed 0.038 0.446 0.443 0.940 −0.004 0.170 0.156 0.936
X(t) 0.017 0.327 0.334 0.952 −0.004 0.161 0.150 0.936
W(t) −0.224 0.234 0.250 0.888 −0.003 0.161 0.150 0.936

X̂(t) −0.441 0.116 0.069 0.065 0.000 0.169 0.156 0.928

600 0.1 Proposed 0.018 0.288 0.307 0.964 −0.012 0.135 0.128 0.936
X(t) 0.008 0.257 0.271 0.960 −0.011 0.135 0.123 0.932
W(t) −0.080 0.231 0.252 0.954 −0.010 0.134 0.123 0.936

X̂(t) −0.398 0.142 0.075 0.136 −0.009 0.133 0.128 0.944

0.2 Proposed 0.028 0.338 0.358 0.956 −0.011 0.136 0.128 0.938
X(t) 0.009 0.257 0.271 0.960 −0.011 0.135 0.123 0.932
W(t) −0.227 0.185 0.203 0.830 −0.009 0.134 0.123 0.932

X̂(t) −0.461 0.077 0.041 0.006 −0.009 0.133 0.128 0.943
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We simulate the measurement times (vi1,… , vi,Mi
) for X(⋅) as in Tables 1 and 

S1. Specifically, we first generate the measurement times as the cumulative sums 
of Unif(0, 0.2) until �∕6 is reached, and then keep adding up Unif(0, 0.4) variates 
until � . We set the length of follow-up to be � = 3 and take equally spaced grid 
points in [0, �] with K = 1, 3, 5, 7 . We conduct the test and compute the p-value 
for each simulated dataset. We calculate the empirical size for Model I and the 
power for Model II, III and IV as the proportion of p-values ≤ 0.05 for 500 simu-
lated datasets. The results are presented in Table 3 for B = 1 and in Table S3 of 
the Web Appendix B for B = 3 . The empirical sizes under Model I are around 
the 0.05 nominal level for all cases and remain the same for different values of � . 
The powers under Model II, III and IV are fairly high given the small effect sizes 
0.01 and 0.02. The power increases with the number of repeated measurements 
B, the sample size n and the effect size. Moreover, the power decreases when � 
increases, and seems to be similar when using different numbers of grid points K 
in the test.

6 � Application to ACTG 175

We apply the proposed method to the ACTG 175 trial, a randomized, double-blind 
phase II/III trial of antiretroviral regimens in persons living with HIV infection with 
CD4 cell count from 200 to 500 per cubic millimeter [1]. Between December 1991 
and October 1992, 2467 individuals were recruited and followed until November 

Table 3   Simulation results for the proposed test of the measurement error model (2) with 
Xi(t) = (� + �i)

T f (t) at significance level 0.05, when there are no repeated measurements of Xi(t) , i.e., 
B = 1 . Each entry is based on 500 replicates

Model I (size) Model II (power)

n � K=1 K=3 K=5 K=7 K=1 K=3 K=5 K=7

200 0.05 0.040 0.062 0.054 0.050 0.746 0.676 0.668 0.666
0.1 0.040 0.062 0.054 0.050 0.682 0.608 0.582 0.572
0.2 0.040 0.062 0.054 0.050 0.520 0.432 0.390 0.368

400 0.05 0.050 0.048 0.066 0.042 0.832 0.764 0.756 0.760
0.1 0.050 0.048 0.066 0.042 0.778 0.718 0.698 0.680
0.2 0.050 0.048 0.066 0.042 0.638 0.568 0.508 0.488

Model III (power) Model IV (power)

n � K=1 K=3 K=5 K=7 K=1 K=3 K=5 K=7

200 0.05 0.930 0.890 0.878 0.876 0.932 0.902 0.902 0.904
0.1 0.904 0.866 0.838 0.844 0.904 0.880 0.858 0.870
0.2 0.798 0.746 0.686 0.648 0.822 0.740 0.688 0.664

400 0.05 0.984 0.974 0.974 0.964 0.984 0.982 0.976 0.974
0.1 0.976 0.962 0.956 0.946 0.976 0.968 0.960 0.962
0.2 0.938 0.898 0.890 0.868 0.950 0.906 0.898 0.884
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1994. Among these, 1396 participants received antiretroviral therapy (ART) prior to 
the study while 1061 participants were ART naive. The objective of the trial was to 
compare the effectiveness of four antiretroviral regimens (zidovudine only, zidovu-
dine + didanosine, zidovudine + zalcitabine, and didanosine only) in preventing dis-
ease progression to AIDS or death. An important prognostic biomarker for progres-
sion to the clinical endpoint is CD4 cell count per cubic millimiter of blood [30]. All 
ACTG 175 trial participants had CD4 cell count measured every 12 weeks starting 
at Week 8, and were followed for occurrence of the composite clinical endpoint of 
AIDS or death. The median number of measurement times is 12 with interquartile 
range (IQR) [8,14], and its histogram is given by Figure S8 in the Web Appendix.

The original analysis of [1] found zidovudine alone to be inferior to the other 
three therapies. Following [17] and [20], we consider two treatment groups, zido-
vudine alone and the combination of the other three therapies. We demonstrate the 
utility of the proposed method by investigating associations of treatment arm and 
time-dependent trajectory log10(CD4) with the composite clinical endpoint of AIDS 
or death. Let Z be the treatment indicator (TRT) with value 0 for zidovudine alone 
and 1 for other three regimens. Let X(⋅) be the error-prone time-dependent covariate 
log10(CD4) (measured without replicates, i.e., B = 1 ) and T be the time from enroll-
ment to AIDS or death, whichever occurred first. We assume that the conditional 
hazard function of T given X̄(t) and Z follows the proportional hazards model (1),

where the regression coefficients � and � can be interpreted as log hazard ratios 
and represent the association of time to AIDS or death with log10(CD4) and TRT, 
respectively. Also, we assume that the measurement error model for X(t) is (2) with 
the quadratic basis function f (t) = (1, t, t2) . Our analysis includes 1396 participants 
who received ART prior to the study. There were 215 composite endpoint cases 
(15.4% ) with 167 AIDS events and 48 deaths. The time to the AIDS onset is interval 
censored while the time to death prior to AIDS is observed or right-censored. The 
observed data consist of exact, interval- and right-censored event times.

The true CD4 cell count values X(t) are generally not attainable. The observed 
CD4 cell count is measured intermittently and is an error-prone time-dependent 
covariate. The naive approaches often replace X(t) in model (1) with the observed 
W(t) by last value carried forward that ignores the measurement errors or with a 
model-based estimate X̂(t) without modifying the hazard model for the induced 
error. The former naive approach – termed the “naive approach using W(t)” 
– imputes the CD4 values at each failure time using “last value carried forward” 
that substitutes the unavailable CD4 cell count with the last observed value prior to 
the failure time. The latter naive approach – termed the “naive approach using X̂(t) ” 
– replaces CD4 cell count values with the estimated X̂(t) in model (1) using the 
measurement error model (2) based on each individual’s longitudinal profile prior 
to time t.

Fitting the quadratic measurement error model (2), we obtain average values of 
the individual-specific estimates of coefficients of (2.515,−0.035,−0.047) . The plot 
of the average fitted individual-specific curves along with the plot of the observed 

𝜆(t|X̄(t), Z) = 𝜆(t) exp{𝛽X(t) + 𝛾Z} = 𝜆(t) exp
{
𝛽 log10 (CD4) + 𝛾TRT

}
,
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log10(CD4) for 50 randomly selected individuals shows the downward trend in log10
(CD4) (Figure S5). The results of analysis using the proposed method and the two 
naive methods are summarized in Table 4, where Est is the estimates of the regres-
sion parameters and SE is the estimated standard errors. The estimated regression 
coefficient (the standard error) of log10(CD4) using the proposed method is −2.472 
(0.116), whose absolute value is much larger than that of the estimated regression 
coefficient (the standard error) −0.240 (0.051) obtained using the naive approach 
using X̂(t) but slightly less than that of the estimated regression coefficient (the 
standard error) −2.668 (0.119) using the naive approach using W(t). The estimated 
regression coefficient of log10(CD4) is the log hazards ratio for every unit increase 
in log10(CD4) under the Cox model (equivalently every 10-fold increase in CD4 cell 
count with units number of cells per cubic milimeter of blood, cells/mm3 ) and rep-
resents the association of log10(CD4) with the failure time. All methods suggest that 
lower values of log10(CD4) are significantly associated with higher risk of AIDS or 
death. The naive approach using X̂(t) yields an estimated association closer to zero 
( −0.240 ) as compared to the proposed method ( −2.472 ) partly due to the attenuat-
ing effect �i(t) from the measurement errors. The naive approach using W(t) yields 
a slightly stronger inverse association ( −2.668 ) as compared to the proposed method 
because it tends to carry forward a too-large value of CD4 cell count. While there 
is no significant treatment effect after adjusting for log10(CD4) with the proposed 
method and the naive approach using W(t), the naive approach using X̂(t) shows a 
significant treatment effect with p-value 0.034. Our study further confirms that the 
naive approaches can lead to biased estimates of the associations of interest for the 
variables measured in errors as well as biased estimates of treatment effects [2, 3, 
31].

Figure 1 plots the estimated survival functions at four different combinations of 
covariates: two values of Z (0 or 1) and two curves of log10(CD4) (25th or 75th per-
centile of the estimated log10(CD4) at each time point). The plots show that the naive 
approach using W(t) overestimates the survival probabilities and the naive approach 
using X̂(t) substantially underestimates the survival probabilities. The discrepancy 
is very large when X(t) is the 75th percentile of log10(CD4). Plots of the estimated 
baseline hazard functions for the three methods considered are given in Figure S7 
in Web Appendix B. It can be seen that the naive approach using W(t) overestimates 
the baseline hazard function, while the naive approach using X̂(t) highly underesti-
mates the baseline hazard function.

To examine appropriateness of the quadratic measurement error model (2), we 
conduct the model checking procedure. In particular, we consider the quadratic 

Table 4   Analysis results for ACTG 175

Proposed Method Naive Using W(t) Naive Using X̂(t)

Covariates Est SE p-value Est SE p-value Est SE p-value

log10(CD4) −2.472 0.116 <0.001 −2.668 0.119 <0.001 −0.240 0.051 <0.001
Treatment −0.119 0.160 0.458 0.056 0.155 0.718 −0.338 0.159 0.034
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measurement error model corresponding to f (t) = (1, t, t2) in (2). We set the grid 
points to be the (0, 25, 50, 75, 100)th quantiles of the follow-up times. The quadratic 
measurement error model yields a p-value of 0.298 suggesting that the quadratic 
model fits reasonably well to the data. As a comparison, we also test fitness of the 
linear measurement error model with f (t) = (1, t) . The test yields a p-value close to 
zero. In addition, we note that the log-likelihood value at the final estimates of the 
proposed method under the linear measurement error model is −932.56, while the 
log-likelihood value under the quadratic model is −856.54. The analysis supports 
that the quadratic measurement error model fits the data better than the linear model.

We further examine the fit of the quadratic measurement error model via 
graphical tools. The residual plots for the quadratic measurement error model, 
including the normal Q-Q plot and histogram, are presented in Figure  S6 of 
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(d) X75+Z0

Fig. 1   Plots of the estimated survival functions at four different combinations of covariates. For example, 
‘X25+Z0’ corresponds to the covariates combination with X(t) being the 25th percentile of log10(CD4) 
and for zidovudine alone, and ‘X25+Z1’ corresponds to the covariates combination with X(t) being the 
25th percentile of log10(CD4) and for the other three treatment arms pooled
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Web Appendix B. The normal Q-Q plot suggests that the sample quantiles of the 
standardized residuals are close to the theoretical ones except for slight devia-
tions at the two tails, while the histogram of the standardized residuals looks like 
a standard normal density curve except having slightly shorter tails. Furthermore, 
to evaluate the normality of random effects, we obtain the least-squares estimates 
of individual-specific coefficients in the quadratic measurement error model. The 
normal Q-Q plot and histogram of these estimated coefficients are given in Fig-
ure S6. These plots look satisfactory in general except for in the tails. The p-val-
ues from the Kolmogorov-Smirnov tests for normality are 0.0006 for the errors 
and < 0.0001 for the random effects of the quadratic measurement error model. 
The small p-values reflect lack of fit in the tail areas of the distributions though 
the normality assumptions seem reasonable overall based on the diagnostic plots. 
The very small p-values can also be a result of the large sample size. Neverthe-
less, as shown in the simulation studies, the proposed method seems to be robust 
to the normality assumption of the random effects.

7 � Concluding Remarks

This article develops an estimation method for the Cox model based on partly inter-
val censored failure time and a longitudinal covariate with measurement errors. The 
research is motivated by the ACTG 175 trial to understand the association of lon-
gitudinal CD4 cell count on the hazard of the composite clinical endpoint of AIDS 
or death, where the time to the composite endpoint is partly interval censored and 
the recorded values of CD4 cell count are error-prone measures of the unattainable 
true values. The proposed measurement error induced hazard approach is intuitively 
appealing and easy to interpret. The EM-algorithm is proposed to implement the 
maximum likelihood estimation with partly interval censored data. The developed 
method has broad applications. For example, COVID-19 vaccine efficacy trials will 
study longitudinal antibody biomarkers over time as correlates of the study endpoint 
acquisition of SARS-CoV-2 infection. This endpoint is a composite endpoint with 
the same structure as the AIDS/death composite endpoint, defined as the first event 
of asymptomatic SARS-CoV-2 infection measured by seroconversion from a blood 
sample (interval censored) and symptomatic virologically confirmed SARS-CoV-2 
infection that is symptom-triggered and hence measured exactly [32].

This paper assumes that the measurement errors are independent identically dis-
tributed. In practice, the measurement errors may be correlated or the measurement 
error variance is heterogeneous over time. In this case, the likelihood method can be 
used to estimate model (2) by assuming a certain covariance structure for the meas-
urement errors. This is an interesting scenario that is worth investigation in a future 
project. We have regarded Xi(t) as a scalar. The method can be extended to multivar-
iate longitudinal covariates. As with many works in the joint modeling framework, a 
limitation of the proposed method is the normality assumption of the random effects 
in the measurement error model for Xi(t) . A simulation study conducted to examine 
the robustness of the proposed method shows that the estimation bias remains small. 
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A formal test procedure is proposed to examine validity of the measurement error 
model.

7.1 � Supplementary Information

Web Appendices A and B, referenced in Sections  3, 5 and 6, are included in the 
Supplementary Information and are available with this paper on the journal website.

Appendix: Technical Details

In this appendix, we present the regularity conditions needed for Propositions 1 and 
Theorem 1.

Let Ũi = (Ui1,… ,Ui,Ki
) denote the monitoring times for the failure event 

for individual i, where 0 = Ui0 < Ui1 < ⋯ < Ui,Ki
< Ui,Ki+1

= ∞ . The moni-
toring times are the mechanism used to generate interval censored fail-
ure times [Li,Ri] , where Li = max{Uik ∶ Ti > Uik, k = 0,… ,Ki} and 
Ri = min{Uik ∶ Ti ≤ Uik, k = 1,… ,Ki + 1} with Ui0 = 0 and Ui,Ki+1

= ∞ . We 
assume Conditions (A1)-(A3) below that require noninformative monitoring/meas-
urement times and a nondifferential measurement error mechanism for the time-
dependent covariates. 

	(A1)	 The monitoring times, measurement times and measurement errors are non-
informative given the information already provided by Zi and �i , i.e., Ti is 
independent of (𝛥i, Ũi, ṽi, ẽi) given (Zi, �i).

	(A2)	 Measurement error ẽi is independent of (Ti,𝛥i, Ũi, ṽi, Zi).
	(A3)	 Xi(t) , 0 ≤ t ≤ � , is a left continuous process.

More discussion on the assumptions of noninformative observation times and a non-
differential measurement error mechanism can be found in [21, 26].

The estimation of the induced hazard model (5) for partly interval censored data 
follows the EM procedure developed by [11]. In addition to Conditions (A1)-(A3), 
we assume the following regularity conditions similar to [11]. 

	(B1)	 The true value of (�, �) lies in the interior of a known compact set B in Rd+1 , and 
the true value of �(⋅) is continuously differentiable with positive derivatives in 
[� , �] , where [� , �] is the union of the supports of {�iTi, (1 − �i)Li, (1 − �i)Ri}.

	(B2)	 The vector of the basis functions f(t) is left continuous and with bounded total 
variation over [� , �].

	(B3)	 If h(t) + 𝛽𝜔i(t)X̂i(t) + 𝛾TZi + Oi(𝛽, t, 𝜃W ) = 0 for all t ∈ [� , �] with a positive 
probability, then h(t) = 0 for t ∈ [� , �] and (�, �) = 0.

	(B4)	 0 < P(𝛥i = 0) < 1 , P(Li = �, Ri = ∞|�i = 0, X̄i(�), Zi
)

≥ c1 and P
(

Ri − Li > c2|�i = 0,
X̄i(�), Zi

)

= 1 for some positive constants c1 and c2 . The conditional density of 
(Li,Ri) given (X̄i(𝜏), Zi) , denoted by g(u, v), has continuous second-order partial 
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derivatives with respect to u and v when v − u > c2 and are continuously dif-
ferentiable with respect to (X̄i(𝜏), Zi).
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org/​10.​1007/​s12561-​023-​09372-y.
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