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Abstract

Time-dependent covariates are often measured intermittently and with measurement
errors. Motivated by the AIDS Clinical Trials Group (ACTG) 175 trial, this paper
develops statistical inferences for the Cox model for partly interval censored failure
times and longitudinal covariates with measurement errors. The conditional score
methods developed for the Cox model with measurement errors and right censored
data are no longer applicable to interval censored data. Assuming an additive meas-
urement error model for a longitudinal covariate, we propose a nonparametric max-
imum likelihood estimation approach by deriving the measurement error induced
hazard model that shows the attenuating effect of using the plug-in estimate for the
true underlying longitudinal covariate. An EM algorithm is devised to facilitate
maximum likelihood estimation that accounts for the partly interval censored failure
times. The proposed methods can accommodate different numbers of replicates for
different individuals and at different times. Simulation studies show that the pro-
posed methods perform well with satisfactory finite-sample performances and that
the naive methods ignoring measurement error or using the plug-in estimate can
yield large biases. A hypothesis testing procedure for the measurement error model
is proposed. The proposed methods are applied to the ACTG 175 trial to assess the
associations of treatment arm and time-dependent CD4 cell count on the composite
clinical endpoint of AIDS or death.
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1 Introduction

This work is motivated by the AIDS Clinical Trials Group (ACTG) 175 trial that
compared four antiretroviral regimens in study participants living with HIV-1 [1].
CD4 cell count has long been considered as an important prognostic biomarker
for disease progression. The participants had CD4 cell count measured every 12
weeks and were followed for occurrence of the composite clinical endpoint of
AIDS or death. One of the study objectives was to assess the associations of treat-
ments and time-dependent CD4 cell count with the clinical endpoint of AIDS or
death. One complication is that CD4 cell count is measured intermittently and
with measurement errors. Naive approaches that ignore the measurement errors
or replace them with their estimated values can lead to biased estimation [2,
3]. The other challenge is that the time to the clinical endpoint is partly inter-
val censored in which the time to death is subject to right censoring while the
time to AIDS is interval censored between two visit dates. Statistical modeling
with interval censored data has been well studied. There has also been extensive
study of measurement errors in covariates for right censored data. However, to
the best of our knowledge, no methodology exists for achieving valid statistical
inference for the proportional hazards model with both partly interval censored
failure times and longitudinal covariates subject to measurement error.

Many authors have studied regression analysis of interval censored failure
time data under the Cox proportional hazards model [4-8]. Most of the existing
work focused on time-independent covariates. Recently, Zeng et al. [9] consid-
ered maximum likelihood estimation for a class of semiparametric transformation
models that includes the proportional hazards model and allows for time-depend-
ent covariates. On the other hand, research on partly interval censored failure
time data is fairly limited. Due to the presence of exact failure times, partly inter-
val censored data requires a different treatment than interval censored data. To
our knowledge, only two papers considered the proportional hazards model for
partly interval censored data. In particular, Kim [10] studied maximum likelihood
estimation for the proportional hazards model with time-independent covariates,
while Zhou et al. [11] developed an EM algorithm for nonparametric maximum
likelihood estimation for a class of semiparametric transformation models as in
Zeng et al. [9] that allows for time-dependent covariates for partly interval cen-
sored data. However, these two papers did not consider covariate measurement
errors.

There is extensive literature on statistical methods for right censored fail-
ure time data when some covariates are subject to measurement error. It is well
known that standard estimation procedures yield biased estimation if measure-
ment error is not taken into account. For the proportional hazards model, Pren-
tice [2] showed that the naive approach using the observed covariate values with
measurement errors in place of the underlying covariate values in the partial like-
lihood may result in substantial estimation bias, and proposed a modified par-
tial likelihood method that required estimating the conditional expectation of
the hazard of each individual at each failure time. Nakamura [12] proposed the
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corrected partial score method that yielded approximately unbiased estimates.
Hughes [13] investigated regression dilution bias in the presence of covariate
measurement errors. Buzas [14] removed the condition of normal errors while
assuming that the moment generating function of the error distribution is known.
Huang and Wang [15] proposed a nonparametric-correction approach for the
Cox proportional hazards model. Hu and Lin [16] extended the work of Naka-
mura [12] and Buzas [14] to obtain a class of consistent estimators when the true
covariate is ascertained on a randomly selected validation set. Tsiatis and David-
ian [3] proposed the conditional score estimator, which was further studied by
Song et al. [17, 18]. Yi and Lawless [19] employed the corrected score meth-
ods of Nakamura [12] assuming a piecewise constant form of the baseline hazard
function. Fu and Gilbert [20] extended the conditional score approach to accom-
modate missing values of the longitudinal covariates following a two-phase sam-
pling design. Tsiatis and Davidian [21] overviewed joint modeling of longitudinal
covariates and time-to-event data.

All of the aforementioned works considered right censored data. Although both
measurement error problems and interval censored data have been well studied, the
literature on statistical methods for interval censored failure time data with covariate
measurement error is rather limited. Song and Ma [22] proposed a multiple impu-
tation method for the Cox model with time-independent covariates to impute the
time-to-event that falls within an interval and then analyzed the imputed data sets
by the conditional score approach for right censored data. Mandal et al. [23] applied
multiple imputation to handle both covariates with measurement error and interval
censored failure time data under the linear transformation model. The imputed data
were then analyzed using the method of Chen et al. [24]. Wen and Chen [25] pro-
posed a conditional score approach for the proportional odds model with interval
censoring and covariate measurement error using the working independence strat-
egy. All of these approaches were developed assuming time-independent covariates
with measurement errors. The multiple imputation approach depends on the imputa-
tion models and can only be approximate. The conditional score methods proposed
by Tsiatis and Davidian [3] for right censored data and studied by many others [17,
18, 20] are no longer applicable for interval censored data.

In this article, we develop an estimation method for the Cox proportional hazards
model for partly interval censored failure times and longitudinal covariates meas-
ured with error. Assuming an additive measurement error model for a longitudinal
covariate, we propose a nonparametric maximum likelihood estimation approach
by deriving the measurement error induced hazard model that shows the attenuat-
ing effect of ignoring measurement errors. An EM algorithm is devised to facili-
tate maximum likelihood estimation that accounts for the partly interval censored
failure times. Simulation studies show that the proposed methods perform well
with satisfactory finite-sample performances and that the naive methods ignoring
measurement error or using the plug-in estimate can yield large biases. The simula-
tion studies also show the attenuating bias of using the plug-in estimate for the true
underlying longitudinal covariate. While the commonly used additive measurement
error model for a time-independent covariate can be checked and often holds well
in practice, use of a measurement error model for time-varying covariates requires
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more care. Additive random effects models with known time-dependent basis func-
tions are commonly used, but misspecification may lead to bias. Although statis-
tical models of longitudinal covariates measured with error have been studied by
many authors (e.g., papers noted above), few methods are available to evaluate their
goodness-of-fit. In this article, we also propose a diagnostic testing procedure for the
measurement error model of longitudinal covariates.

The rest of this article is organized as follows. Section 2 introduces the data struc-
ture, models and model assumptions. Section 3.1 derives the measurement error
induced hazard model. Section 3.2 presents a nonparametric maximum likelihood
estimation approach. An EM algorithm is devised to facilitate maximum likelihood
estimation that accounts for the partly interval censored failure times. Section 3.3
derives the variance estimator based on the profile likelihood that accounts for vari-
ation in the parameter estimation for the measurement error model. A test procedure
for the measurement error model of longitudinal covariates is given in Section 4.
The finite-sample performance of the proposed methods is examined through simu-
lation studies in Section 5. The proposed methods are applied to the ACTG 175 trial
data in Section 6. Some concluding remarks are given in Section 7.

2 Preliminaries

Suppose 7; is the failure time of interest with the end of follow-up time 7. Let Z;
be the d X 1 vector of time-independent covariates that includes baseline covariates
and treatment assignment, and X;(¢) the time-dependent covariate of interest. Let
X,() = {X,(u),0 < u < t} denote the history of X;(-) up to time z. We assume that the
conditional hazard function of T; given X,(¢) and Z; only depends on Z; and the cur-
rent value X,(r). Let A(t|X,(), Z;) be the conditional hazard function of 7; given X;(f)
and Z;. We consider the proportional hazards model

A X0, Z;) = At) exp{ X,(t) + v" Z;}, (1

for 0 <t < 7, where A(¢) is an unspecified baseline function, and § and y are 1- and
d-dimensional vectors of parameters, respectively. We investigate model (1) under
partly interval censored failure time data and when the time-dependent covariate
X,(¢) is subject to measurement error.

Partly interval censored failure time data include observations of failure times
that are precisely observed, and failure times that are left, interval and/or right cen-
sored. Let 4; indicate whether the failure time 7; is exactly observed, i.e., 4, =1
if T; is exactly observed and O otherwise. If 4, = 0, let (L;, R;] denote the smallest
observed interval that brackets T;, where L; > 0 is the last monitoring time at which
failure has not occurred and R; > O is the first monitoring time at which failure has
occurred. Let R; = oo if failure has not occurred by the last monitoring time. Thus,
if L; = 0, T; is left censored; if R; = oo, T; is right censored; if 0 < L; < R; < o0, T} is
interval censored. The partly interval censored failure time data for individual i can
be represented by {(4;, 4,T;, (1 — A)L;, (1 — A)R;}. The notations 4A,T;, (1 — 4))L;
and (1 — 4,)R; mean that we observe T; if A; = 1 and observe (L;, R;]if 4; = 0.
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In the ACTG 175 study, the failure time of interest is the time to composi-
tie endpoint of AIDS or death, whichever occurs first. For individual i, if death
has occurred before AIDS, then we observe the exact death time 7; and 4; = 1;
if AIDS has occurred prior to death, then we observe a time interval (L;, R;] that
brackets the AIDS onset time T; and 4; = 0.

Linear mixed effects models are commonly used to model longitudinal covari-
ates measured with errors [3, 17, 20]. Suppose that X;(¢) is measured at times
Viy < -+ <y before 7 with errors and there are B;; repeated measurements or
replicates of X,-(vi,»), where we let B; = 1 if there are no replicates. Let W,-!b(v,j)
denote the bth measurement of X,(-) at time Viis j=L.. . M,b=1,... ,B,_»,-. We
consider the linear mixed effects model for longitudinal covariates with measure-
ment errors:

Wip(vy) = Xiyp) + €5 = 0] ) + €35 (@)

where f(vij) is an r X 1 vector of known design functions, 6; is an r X 1 vector of
unobserved random effects, and €ib is the measurement error at time Vij- ‘We assume
0, = 9 + v, where J is a vector of fixed parameters and v; (i = 1, ..., n) are independ-
ent and identically distributed (iid) N(0, G) with G being a r X r nonnegative definite
matrix. We also assume that €ip G=1...M,b=1,... ,B,-j) are iid N(0, ¢2) inde-
pendent of v,. Thus, the unknown parameters for the measurement error model are
Oy = @3,G, 62). Also, note that the design function f(-) is usually chosen as a vector
of basis functions, such as polynomials. In our simulation study and real data analy-
sis below, we consider f(¢) = (1,7) or (1,1, ).

Define Wy = (W, 00), o, W, (7)) and e; = (eij,l’ e eij,Bif)' Let ¥, = (v, ..., vi,M,-)Ts
W, =W, ...,W;, )" and & = (e, ..., ¢, ). The observed data consist of a random
sample of n iid observations

{4, AT, 1= A)L,, A = A)R,, Z, 7, W;}, i=1,....n

We will employ individual-specific estimation of the longitudinal covariate X;(¢)
via model (2). It does not require repeated measurements at each measurement time
v;» as long as the number of longitudinal measurements over time is sufficient to
estimate 6;, i.e., M; > r. The proposed estimation method allows B,»j =1 for all i, j.
However, the repeated measurements reduce the standard error in estimating 6; and
thus in estimating X;(¢), which results in increased efficiency in estimating f for
model (1).

3 Estimation of the Cox Model with Partly Interval Censored Failure
Times and Longitudinal Covariates with Measurement Errors

In this section, we propose a method for estimation of the Cox model (1). In
Sect. 3.1, we derive the measurement error induced hazard model under the addi-
tive measurement error model for longitudinal covariates. In Sect. 3.2, we design
an EM algorithm for the nonparametric maximum likelihood estimation of the
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measurement error induced hazard model based on partly interval censored fail-
ure times. A variance estimation procedure is proposed in Sect. 3.3.

3.1 Measurement Error Induced Hazard Model

The true longitudinal covariate X;(¢) is not observed. We obtain an individual-specific
estimate }A(l-(t) of X;(t) using the ordinary least squares method based on the observed
data (¥;, W;) and propose an approach by deriving the conditional hazard function of T;
at time ¢ conditional on Z; and )A(i(t). Only the longitudinal covariates in the past can be
meaningfully used to model current or future risk of failure. For example, in assessing
the association of time-dependent CD4 cell count with the composite clinical endpoint
of AIDS or death in the ACTG 175 trial, only the CD4 count measurements before
AIDS or death are meaningfully associated with the endpoint. Therefore, we estimate
X;(r) based on the data before 7 to preserve the predictability [3, 20].

Let M,(t) denote the index of the last measurement time before ¢ such that
Viry) <t S Vipoer- Since 8; is r-dimensional, at least r longitudinal measurements
from individual i before ¢ are required, i.e., M;(¥) > r. Let 9,(¢) = (v;, ... ,vi‘M‘_(Z))T,
Wit) = (Wiys oo Wy )" @0 (1) = (e, ... ,ei,M’,(r))T. Under model (2), W,¢) = F,()6, + &,1),
where F,(f) = By(O)f,()" with B,(r) = diag(1 . ..., 1, )1, is a mx l-vector of
ones, and f,-(t) =), ....f (v,-’Mi(,))). Hence the ordinary least squares estimator of 6,
based on (¥,(2), VNV[(t)) for individual i equals

0,() = {(FT()F,(0)} " FT () W,(). 3)
It is easy to see that FT(F,(1) = zjj‘f’) Byfivy)f (v;) and ET(n)W,(t) = zjjf’) f0p)
f; ‘/Vzb(vlj)

We estimate §; based on the observations from subject i without pulling information
from other individuals because only the past history of subject i can forecast his/her
risk of failure. The longitudinal covariate X;(¢) is estimated by Xi(t) =f T(t)éi(t) based
on the observed error-prone covariate information for individual i up to time ¢. This
allows us to derive the measurement error induced hazard model conditional on the
observed information from individual i’s past.

Since 8,(t) = 0, + {FT()F,()} ' FT (1)2,(t), we have

X0 = X,0) + fTOET OF (0} FT (02,().

The two terms X;(f) and é,(f) are independent under model (2). Then condi-
tional on (6;,V;(1)), X,-(t) is normally distributed with mean X;(f) and variance
d(t,6?) = c*fT(O{F I.T(t)i’ (1)} ~'f(¢). An estimator of 6% can be constructed using the
residuals:

n M/- B,‘j
52 ="t Y MY B Y (W, 000 — Riv)?. )
i=1 Jj=1 b=1
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Next, we derive the induced hazard model of 7} conditional on Z; and X,(z) under the
measurement error model (2). The estimator }A(l-(t) is based on the observed informa-
tion before ¢, and thus is predictable for the risk of failure at . Define the count-
ing process increment dN;(t) =I1(t < T, <t+dt, v, <t) and the at-risk process
Y;(t) = I(T; > t,v;, <t). That is, dN,(t) = 1 if the failure time occurs at time ¢ and
after the " longitudinal measurement.

Our approach is motivated by the conditional score method of [3].
They first derived the conditional likelihood of {le?"(t),)A(i(t)} given
0;,Z;,v,(t), Y,(t) = 1), where NI(7) is the counting process for the right cen-
sored data. They then noted that the conditional likelihood given Y;(¢) =1,
0.(t, p. %) = X,(1) + d.(t, 0?)BdN? (1), is a complete sufficient statistic for 6;, and
thus, conditional on Q,(, f, 6?%), removes the dependence of the conditional dis-
tribution on the random effects ;. [3, 20] derived the conditional intensity pro-
cess by conditioning on Q;(t, f, 62), which turns out to be a Cox model with Z;
and Q.(t, B, c*) as the independent variables. We note that their papers did not
derive the intensity model because of dN(7) involved in Q,(z, B, 62). Further,
their approaches do not work in the current setting because the counting process
framework can not be utilized for interval censored or partly interval censored
data.

We pursue a different approach by deriving the hazard model for 7; con-
ditional on Z,¥,(), Y(t) =1 and X(t) Let F, be the filtration generated by
{N;(5), Y;(s5), Z;, X, (), X(s) v,(5), W(s)} 0 <s<t. Then X(t) and 0 /(1) are both
predictable with respect to F;. The following proposition presents the condi-
tional hazard function of 7; at time ¢ given (X ®),Z;,9,(t), v, < 1).

Proposition 1 Under Conditions (A1)-(A3) given in the Appendix,

AW X0, Z;, () = AD) exp { o, (OX,(D) + v Z; + OB, 1,0y}, fort > v,
®)
where @/(t) = 1 = a7 (1), 0,p.1.0) = po2, ,OIF) + LT OG0B, 07,,(D) = di(t,67)/

i,rel

(T (OGF(1) + di(t, 62))- and Oy = (9, G, 6?).

The proof of Proposition 1 is given in Web Appendix A. We refer to model (5) as
the measurement error induced hazard model. This approach based on the induced
hazard model can be easily extended to handle multivariate X,(t). The parameter

o, l(t) measures the percentage of the measurement error varlatlon over the total
variation in W, ,(v;) under model (2). The factor w,(t) =1 — 0' (1) is termed as
the reliability ratio [26] representing the attenuating effect of use of the estimated
covariate Xi(t). If there is no measurement error, i.e., 62 =0, then w;(H) =1,
O0,(B,t,0y) = 0 and )A((t) = W,(t) = X;(0). If the measurement times ¥; do not vary
with i, then 6 /(1) does not depend on i.

Since only the longitudinal measurements in the past can be meaningfully used to

model current or future risk of failure, the subject-specific estimates, )A(,-(t), are based
on the measurements W before t if the failure event has not occurred by the end
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of study time, before T, if the failure time is observed (4; = 1), and before L; that is
right before the failure time T; if A; = 0.

3.2 Estimation of Measurement Error Induced Hazard Model with Partly Interval
Censored Data

Next, we derive an estimator of the induced hazard model based on partly interval cen-
sored data. The observed data from a random sample of 7 study participants consist of
{4, AT, (1 = A)L;, (1 = ARI(R; < ), Z;, ;, W;}, i=1,...,n. Recently, [11]
developed maximum likelihood estimation for semiparametric transformation models with
partly interval censored data. The method extended the EM algorithm approach of [9] for
interval censored data to partly interval censored data. We adopt this approach to estimate
the measurement error induced hazard model (5) with partly interval censored data.

Under model (5), the conditional survival function of 7; given T; > v;. equals
exp (= /, A" (1K), Z;, 7,(0) dx). Let Ag(0) = ' A(s) ds. Note that 8y in model (5)
can be estimated based on model (2) such that we treat it as known for now. Let
hit, B,y) = ﬂwi(t)f(i(t) + yTZi + O0,(p,t,0y). The observed data likelihood function
for (B, y, A) under model (5) is L, (f,y, A;0y,) =

~ TL{ 1T explcr )7 exp - / Vexp (e, .00} d0) )
i=1 v

ir

{ exp ( - [L’ exp {hi(t, b, y)} dA(t)) —exp < - /R‘ exp {hi(t, b, y)} dA(t)) }I_A
' ) ©

Because the likelihood (6) can become arbitrarily large within the class of
absolutely continuous functions A(:), the nonparametric maximum likeli-
hood estimator (NPMLE) is often obtained on a restricted space. Follow-
ing this typical approach, e.g., [9], we regard A(¢) as a step function with non-
negative jumps at observed 7; and at the endpoints of the intervals (L;,R;],
i=1,...,n. Let 0=1,<1¢t <--<t, be the ordered unique values of the set
(AT, 1 -A)L;, 1 -A)RIR; <)) : i=1,...,n}

Let 4, be the jump size of the estimator for A(¢f) atf, fork =1,...,mandlet 4, = 0.
Let hy(ty, B, 7) = Py Xy +17Z + O[(B, 1,, 0y), where X, = X,(t,) and wy, = w,(t;).
With A(¢) a step function with jumps A, at#,, k = 1, ..., m, the likelihood (6) becomes
L,(B,v, As0y) =
]I(V,,.ST,.

Dexp ( - Z 1(v;, < 1) A exp { bty B, 7’)}> }Al

4 <T;

= [T{ (AT} explnT. 5.2}
i=1

{ exp ( - Z 1(v;, < 1) A exp {hy(ty. B, 7)}>

1<L;

[1 —exp ( - Z 1(v;, < t) A exp {h(ty. B, 7)}>]1(R[<m)}1_4’

Li<t;<R;

)

@ Springer



438 Statistics in Biosciences (2023) 15:430-454

where A{T;} denotes the jump size of A(¢) at T,.

We consider an EM algorithm to maximize L,(f,y, A;0y,). Let n;, be independ-
ent Poisson random variables with means p; = 4, exp {hl-(t,»k,ﬁ, y)}, i=1,...,n,
k=1,...,m. Following [11], fori = 1,...,n, we define

i~ A Zt <T; I(Vzr = tk) ik

i =4, Zt =T; I(V”, —= tk) Mg

‘—(1 A)ZKLI(VW_%)%

;= (1= IR <00) ¥y g 10y < 1) 1y

Let X = (X, o k=1,...,m}. The likelihood of the observed data given by
¥ Ty X, Zy A; =0, B, = 1) for 4, = 1and (¥, L;, R, X;, Z;, C; = 0, D, > 0) for
A; = 0 under model (5) is

LF = P(A,=0,B, = 1) 4 P(C;=0,D; > 0) 4
o= [J{Pa =08, = D}Hrc =00,

i=1

Note that P(A; = 0, B; = 1) equals the term in the likelihood (7) corresponding to
4A; =1, and P(C; = 0,D; > 0) equals the term in the likelihood (7) corresponding to
4; = 0. Hence, L} equals the observed likelihood (7), which takes the form

Ai

i=1 4<T; =T,
1-4;
I(R;<0)
H P(ny, = 0)/0irsto 1 — H P(n, = 0yt
%=L, Li<t;<R
(®)

We maximize the likelihood (8) through an EM algorithm by treating #;, as
missing  data. Let R =AT,+ (- A){LI(R;, = 0)+RIR; <0)}. Let

1}, =1(v;, <1, < RY). The complete-data log likelihood is given by
CLpr A0 = Y. Z [ Togu) = Togn) - . ©
i=1 k=

Taking derivatives of (9), we obtain the score functions

CL,(B.7. Aby) <

(B, v) lz:f kZ VaZi [”tk A exp { Py Xy +v"Z; + O,(B, zk,aw)}]
(10)

oCL(B.y. Aby) o ., [ma ¢ T
e - ; | — o (P +7'Zi+ 0100} | 1)
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for k=1,...,m, where Z, = (0 Xy + Oi(B. 1., 04,)", Z))T and OB, 1,.,0y,) is the
derivative of O;(f, ¢, 8y,) with respect to f.
In the M-step, we calculate 4, based on the score (11):

Z?:l lka(”ik)

A= 2 ; (12)
Y U exp { P Xy +77Z + OB, 1, 0y) }
fork=1,...,m, where E(’hk) denotes the posterior mean given the observed data.
We then plug (12) into (10) and solve the score equations for f and y:
n m n * T Q *
Z Z Ry 2 Lexp {r"Z; + BwyS; + O;(8. zk,ew)}zjk ~
ik ik ik n N ~ =
i=1 k=1 2o L exp {r7Z; + Py Sy + OB, 11, 0 }
(13)

The M-step estimators of A, (k=1,...,m) and (f,y) are obtained from (12) and
(13).

In the E-step, we calculate the posterior mean £(17;,) of 1;, conditional on the observed
data (v, T}, X,, Z;, A; =0, B, = 1) for 4, = 1and (¥, L;, R;, X,., Z;, C; =0, D, > 0)
for A, = 0. For A; = 1, E(n,) = 0 for v, < t, < T;and E(y,) = 1forv, < t, = T,. For
A, =0, E(ny) = E(ny|9;, L., R, X,., Z;, C; =0, D, > 0). It follows that £(z;,) = 0 for
v, <t < L;, and

E(ny) = E('//ik|‘~}i’ L.R.X,.Z,C;=0,D,> 0>

3 Ay €Xp {ﬂa)ikf(ik + yTZi + 06,1, GW)}
1—exp{— %, ., p UiAcexp { By +17Z + 0B.1,.04)}}

(14)
forv, <t and L; < t, < R; with R; < oo.

The estimators of (4, k=1, ...,m) and (f, y) are obtained by iterating between
the E and M steps until convergence, which are denoted by (ﬁk, k=1,...,m)and
(ﬁ, 7). We estimate A(:) by /i(-), which is the step function with jump size ik at
t, k=1,...,m. This EM procedure assumes that the measurement error model
parameters 6y, are known. In practice, they are usually unknown. These param-
eters can be estimated by existing methods for estimating a linear mixed effects
model. In the numerical studies, we obtain the maximum likelihood estimates
éw using the Imer function in the R package Ime4 [27]. The aforementioned EM
procedure is then carried out by replacing 6y, with éw' Therefore, (/?,?,/i(-)) is
a plug-in estimator that maximizes logLn(ﬁ,y,A;éw) for (f,y) € B and A €C,
where B is a known compact set in R*! and C is the set of step functions with
nonnegative jumps atf,, k=1, ...,m.

The following theorem summarizes the asymptotic properties of the estimators
(8,7, A()). The proof is outlined in Web Appendix A.

Theorem 1 Under Conditions (A1)-(A3) and (B1)-(B4) given in the Appen-
dix, (p,7, A(t)) converges almost surely to (p,y, A(t)) uniformly in t € [{, 7], and
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\/ﬁ(ﬁ —B.7 -7y, A@t) — A(t)) converges in distribution to a mean zero Gaussian
process fort € [{, ]

3.3 Variance Estimation

The proposed estimator (B, %) for model (1) is the profile likelihood estimator by
profiling out the baseline A with the plugging in of éW for 8y,. Define the profile log
likelihood

pL,(B":0y) = max logL,(B,7, A;0y),

where g* = (B,yDT, L,(B,y, A;0y) is given in (7) and C is the set of step functions
with nonnegative jumps at 7, k = 1,...,m. Then f* = argmax .5 pl,(6*:0y,). When
0y, is known, the profile likelihood approach can be used to estimate the covariance
matrix of # [28]. With the plug-in estimator GW, the estimator of the variance of
B* = (8,51 needs to account for the variation of 6.

Let U(ﬁ*;éw) =% pl p; HW) Then U(f*; QW) 0. By (1) in the proof of Theo-
rem 1 in the Web Appendix A, we have

. (-

pr—p = 7 ) v +

5o by — ew)] +0,(171/?),

5)
Under the measurement error model (2), the estimator éW admits the approximation
Oy — 0y =J! Yo &+ op(n‘l/ 2), where ¢&; are iid random vectors with mean zero
and J is a positive definite matrix. Under Conditions (A1)-(A3) given in the Appen-
dix, U(p*;0y) and éW — 0y are uncorrelated. Therefore, the two summands in (15)
are asymptotically independent.

The covariance matrix of §* equals

o _ (UGBS0, QU 0y) 1 QU 0)
cOv(ﬁ)—( o ) +( o ) s C »
~ oUW 0u)N\T 1 0U(f*;0p) \ ! -
(=5 (F5=) +oo™

Thus Cov(f*) can be consistently estimated by replacing g* with *, 0y, with éW and

Cov(fy,) with its estimator C/(;/(éw) The details of derivations for the variance esti-
mation are given in Web Appendlx A.
The (j, k)" element of matrix (5 5 is estimated by

pL,(*:0y) — pL,(B* + h,e.:0y) — PL(B* + h,e;:0y) + L (B* + h,e; + hye;:0y)
h2

s

where ¢; and ¢, are the j™ and k™ canonical vector in R**!, respectively, and A, is at
the order of n~1/2.
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Similarly, the (j, k)" element of matrix %W is estimated by
w
pL(B*:0) — pL(B* + h,e,:0y) — L, (F*:0y + h,u) + pL(B* + h,e,:0y + hu)
h? ’

where ¢, is the k™ canonical vector in R™*! and u; is the j™ canonical vector in RY
with g the dimension of 6y,. '

The R package merDeriv developed by [29] for generalized linear mixed models can
be used to estimate Cov(@w) [27].

To calculate pl,(f*;0y,), we apply the proposed EM algorithm with * and 6y,
held fixed. For any given values of f* and 6y,, the procedure iterates between (12)
for A, and (14) for E(nik). For fast convergence, one can take the estimate 2,( of the
jump size of of the cumulative baseline function A(-) for model (5) as the initial
value. The step size A, in calculating the second order differences can be taken as
h, = Cn~'/2, where C is a constant that can be calibrated depending on data applica-
tions. Although there has been no existing study examining the optimal choice of 4,,,
our simulation studies show that , = 5n~'/? works well.

We summarize the steps for implementing the proposed method as follows:

1. Obtain the the maximum likelihood estimates éw of the parameters 6y, = (9, G, 62)
under the measurement error model (2).

2. Calculate the estimated longitudinal covariates Xi(t) =f T(t)éi(t), where @i(t) is
the least squares estimator of 6, given by (3),i =1, ..., n.

3. Estimate the parameters (f, y, A) in the measurement error induced hazard model
(5) using the EM algorithm described in Section 3.2, where 6y, is replaced by éw.

4. Estimate the covariance matrix of §* = (4, %) using Cov(f*) given by (16).

4 A Diagnostic Testing Procedure for the Measurement Error Model

This section presents a diagnostic procedure to examine validity of the measurement
error model (2). An invalid model can introduce additional bias and diminish the
benefits of dealing with the measurement errors. The proposed test procedure pro-
vides a formal procedure to check for the model assumptions for the longitudinal
covariate.

For each individual 7, let &; = W; — f(v)" 0,1, and e;; = W; — 0]f(v)1} . where
0, = 0,(7). The regression residual process is defined as €(vy) = ¢l By Let 6 be the
estimator of o given in (4) under model (2). We introduce the following weighted
residual process for individual i,

My B;'%vy)

Hiy i = Z :

2~ . 1/2°
= 0(1 — ByfT(w){F! (r)F,»(ﬂ}—lf(vU))
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In the following we construct the test based on the differences of the weighted resid-
ual processes. Let 0 =7, < 7, < 7, < -+ < Tx < 7 be the grid points on [0, 7]. We
set M;(0) =0 and HM(O) 0. Define Dy = Hyy -y — Hipyr,_,) for 1 <k <K, and
H,=Y", (Dy.Dy,....Dy)". We propose the test statistic

Q=H'>'H, (17)

where X}, is the covariance matrix of H,. The diagonal of X}, includes

n

Z Var(Dy) = Z (Mi(Tk) - Mi(Tk—l)) -2 Z Z ¥ im>
i=1

i=1 i=1 Mi(t;_)<l<m<M;(z;)

forl < k < K, and the off-diagonal elements of X, are given by

n

n
Y CovDy DY ==Y D P, s
i=1 i=1 M(z;_)<ISM(1j)) M(t,_)<m=<M;(7})

for j # k. Here

5 /2 -2 FTONFI@F ()} f(vy)

Tijk =

- - 1/2 - - 1/2
(1= BT (r)F,-(r)}—lf(v,-j)) (1= BT O OF )0

Theorem 2 Under model (2), the test statistic Q has a chi-square distribution with K
degrees of freedom.

By Theorem 2, the test rejects model (2) at significance level a if Q > )(12( \_q- The
proof of Theorem 2 is given in the Web Appendix A.

It is easy to show that the test statistic Q has an asymptotic chi-square distribu-
tion with K degrees of freedom as long as the random effects v; and the measurement
errors ey, are iid with mean zero and finite variances. The proposed test provides a
method to test the form of the within-individual patterns defined by the basis func-
tion f(1). It does not test the normality assumptions of 6; and the errors e;. Many
existing tests such as the Kolmogorov-Smirnov test, Shapiro-Wilk test, and Ander-
son-Darling test can be used to test for normality. Testing of the normality assump-
tion of 0; can be conducted based on {éi(r),i =1,...,n}, while testing of the nor-
mality assumption of e; can be conducted based on {é[j,j =1,....M,i=1,...,n}.
Diagnostic tools such as Q-Q plots can be used to compliment the formal test proce-
dures for real data applications.

The proposed test is not overly sensitive to the choice of K. We suggest3 < K < 8

and that the grid points 0 = 7, < 7, < 7, < -+ < 7x < T be evenly spaced in [0, 7].
Our simulation results show that the test performs well.
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5 Simulation Studies

We evaluate the proposed method via simulation studies. Let n be the sample size.
Fori =1, ..., n, the failure time T is generated from the proportional hazards model

AtXi(0), Z) = A0 exp{BX,(1) + vZ;}, (18)

where A(t) =1/2+1), f=0.5, y =—-log2), Z; ~ Ber(0.3), and X,(r) has the
form X,(1) = (vy + by;) + (v +byp)t, with vy = 1, v; = 0.5, (by;, by;) ~ N(0, G), and
G =[0.02,-0.01; — 0.01, 0.02]. Let Unif(0, a) denote a uniform random variable on
(0, a) and Ber(p) a Bernoulli random variable with success probability p. We simu-
late the measurement times (v;;, ..., v;, ) for X;(-) as follows. We first generate the
measurement times as the cumulative sums of independent Unif(0, 0.2) random var-
iates until 7 /6 is reached, and then keep adding up independent Unif(0, 0.4) random
variates until z. We simulate partly interval censored data for individual i as fol-
lows. We first generate the number of monitoring times K; ~ Ber(0.8) + 1. If K; = 1,
we generate one monitoring time U, ~ Unif(0,7/2); define (L, R;] = (0,U,;]
if T, <U; and (L;,R;] = (U;;,00) if T, > U;;. If K; =2, we generate two moni-
toring times U; ~ Unif(0,7/2) and U, ~ min{0.1 + U, + Unif(0,37/4), t};
define (L,R]1=,U;] it T, <U;, (L,R]1=U;,U,] if U;; <T,<U,, and
(L, R]1=(Up,0) if T; > Uy. If R, =00, we set 4, =0; if R; < oo, we generate
A; ~ Ber(p) with p = 0.25 or 0.75. If A; = 1, the failure time 7; is exactly observed.
The length of study is taken to be 7 = 3 yielding about 40% right censoring. The
error-prone measurements W; ,(v;) are generated from the model

Wip(vy) = Xi(vy) + ¢, b=1,....B, (19)
where X;(v;) = (vy + by;) + (v, + by)v; is specified above, e;, ~ N(0,6%) with
o =0.1or 0.2 and the number of repeated measurements of X;(v;) is B; = B =1 or
3 for all i, j.

We compare four methods: (i) the proposed method; (ii) the ideal method using
true X(f) which is not available in practice; (iii) the naive method that ignores meas-
urement error and uses W(¢) directly, where W(¢) at any time ¢ is evaluated via last
value carried forward from the longitudinal measurements (the average is used if
there are replicates for W(¢)); (iv) the naive method using X by simply replac-
ing X(f) with X() in the proportional hazards model. For the variance estimation
based on the profile likelihood method, we take &, = 5n~1/2, The results are similar
with other choices of #,, such as n~1/2 and 10n=1/2, which is also noted in [9]. We
consider the sample size n = 400 and 600. The estimation results for (f, y) based on
500 simulations are presented in Table 1 for B = 1 and in Table S1 of Web Appen-
dix B for B = 3, where Bias is the average point estimate minus the true parameter
value, SSD is the sample standard deviation of point estimates, ESE is the average
of estimated standard errors and CP is the coverage proportion of the 95% confi-
dence interval.

We can see from Tables 1 and S1 that (i) for all scenarios considered, the
proposed method yields unbiased estimates with reasonable estimated stand-
ard errors and coverage proportions; (ii) the sample standard deviation of the
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Table 1 Simulation results for (f,y) under models (18) and (19) when there are no repeated measure-
ments of X;(#), i.e., B = 1. The random effects (b;, b;;) ~ N(0, G) with G = [0.02,-0.01; — 0.01, 0.02].
Each entry is based on 500 replicates

p=0.25
=05 y = —log(2)
n c Method Bias SSD ESE CP Bias SSD ESE CP
400 0.1 Proposed  0.045 0.554 0565 0962 —0.017 0.166 0.154 0.922
X() 0.010 0443 0453 0970 -0.016 0.162 0.152  0.930
W(r) —0.072 0417 0424 0958 —0.015 0.162 0.152 0.928
X() —0.356 0248 0.189 0433 —0.016 0.167 0.155 00918
0.2 Proposed  0.077 0.703 0.719 0958 —0.017 0.166 0.154 0.920
X(1) 0.010 0443 0453 0970 —0.016 0.162 0.152  0.930
W(1) —-0.216 0342 0347 0908 —0.014 0.161 0.152 0.930
X —0.440 0.150 0.112 0.150 —0.014 0.168 0.154 0914
600 0.1 Proposed  0.040 0455 0452 0950 —0.001 0.130 0.126  0.944
X() —0.010 0375 0365 0.946 0.001 0.129  0.124  0.938
W(r) —0.082 0352 0341 0936 0.001 0.129  0.124  0.932
X —0.393  0.183 0.117 0.245  0.002 0.131  0.126  0.940
0.2 Proposed  0.073 0.569 0572 0956 —0.000 0.130 0.126  0.944
X(1) —0.010 0.375 0365 0946 0.001 0.129  0.124 0938
W(t) —0.215 0290 0.280 0.866  0.002 0.128  0.124  0.932
X —0457 0.110 0.067 0.053  0.002 0.130  0.126  0.942
p=0.75
f=05 y =—log(2)
n c Method Bias SSD ESE CP Bias SSD ESE CP
400 0.1 Proposed  0.022 0.535 0537 0954 -0.017 0.167 0.156 0.934
X(1) 0.017 0430 0437 0960 —0.014 0.159 0.150 0.936
W(t) —0.128 0380 0377 0942 —0.013 0.159 0.150 0.938
X0 —0405 0.197 0.125 0.267 —0.015 0.166 0.156  0.933
0.2 Proposed  0.030 0.652 0.662 0948 —0.016 0.167 0.156 0.934
X() 0.017 0430 0437 0960 —0.014 0.159 0.150 0.936
W(1) —-0.296 0289 0.282 0.804 —0.012 0.158 0.150 0.938
X —0466 0.111 0.068 0.049 —0.014 0.167 0.157 0.932
600 0.1 Proposed  —0.004  0.423 0432 0952 0.002 0.132  0.128 0.938
X(1) —0.011 0.359 0.354 0950 0.003 0.126  0.123  0.944
W(1) —0.146 0310 0306 0912  0.004 0.126  0.123  0.944
X —0437 0.136  0.081 0.107  0.004 0.131  0.128  0.936
0.2 Proposed  0.004 0.517 0.532 0958  0.003 0.132  0.128 0.944
X() —0.011 0359 0354 0.950 0.003 0.126  0.123 0944
W(1) —0.304 0.236 0229 0.725  0.005 0.125  0.123  0.940
Xo -0477 0.075 0.042 0.013  0.007 0.130  0.128  0.940
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proposed estimator of f decreases when the degree of measurement error repre-
sented by o decreases and when the sample size n, the number of repeated meas-
urements B of X(¢), or the proportion of exact observations p increases; (iii) as
expected, the ideal method that uses true X(#) is more efficient than the proposed
method and the efficiency gain increases with the degree of measurement error
given by o; (iv) the naive method that ignores measurement error and uses W(¢)
directly yields acceptable results when ¢ = 0.1, but has large bias when ¢ = 0.2;
particularly, it tends to underestimate f; (v) the naive method that replaces X(r)
with X(7) in the proportional hazards model gives severely biased estimates of f
for all scenarios considered (and it should be noted that this method underesti-
mates f due to the attenuating effect); and (vi) all methods perform well for the
estimation of y.

We have also investigated the computational cost of the proposed method. For
the simulation setup n = 400, p = 0.75, ¢ = 0.1 and B = 1, it takes about 409 sec-
onds (132 for parameter estimation and 277 for variance estimation) to implement
the proposed method on a MacBook Pro (3.1GHz Quad-Core Intel Core i7).

To evaluate the robustness of our method to the normality assumption on ran-
dom effects in the measurement error model, we generate the random effects b,
and by; from Unif(—0.25,0.25) independently while keeping the other settings the
same as in Tables 1 and S1. The results are presented in Table 2 for B =1 and
Table S2 of Web Appendix B for B = 3. One can see that the proposed method
performs well in such situations.

In addition, we obtain the estimate of the baseline hazard function A(¢) using
kernel smoothing with the Gaussian kernel and bandwidth 0.1. Figures S1 ~ $4
in Web Appendix B plot the estimated baseline hazard functions based on the
simulation results of Tables 1, 2, S1 and S2, respectively. One can see that the
proposed method and the ideal method yield unbiased estimates of the baseline
hazard function A(#) except for 7 close to 0, while the naive methods yield biased
estimates.

We also conduct a simulation study to examine the empirical sizes and pow-
ers of the proposed test for X;(v;) = (9 + vl-)Tf(v,_»i) under the measurement error
model (2), fori=1,...,n, j=1,...,M; and b=1,...,B, where f(t) is an r x 1
vector of basis functions, 9 is a vector of fixed parameters, and v,(i = 1, ... ,n) are
iid N(0, G). We set the null model to be f(r) = (1,7) and generate data from the
following four models:

I. f®O=,1,9=(,0.5)and G =[0.02,-0.01; — 0.01,0.02]

I: () =(1,1,1),9=(1,0.5,0.01) and G = [0.02, -0.01, 0; — 0.01, 0.02, 0;0, 0,0.02]
. £ =,t1),9 =(1,0.5,0.02) and G = [0.02, -0.01,0; — 0.01,0.02, 0:0, 0, 0.02]
IV: £ =(1,t,14)9 = (1,0.5,0.02)andG = [0.02, —0.01, —0.01; — 0.01,0.02, —0.01; — 0.01,

—0.01,0.02]

Here for easy presentation G is the covariance matrix with rows separated by
semicolons.
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Table 2 Simulation results for (f,y) under models (18) and (19) when there are no repeated measure-
ments of X;(¢), i.e., B = 1. The random effects b, and b, are independent Unif (—0.25, 0.25). Each entry is
based on 500 replicates

p=0.25
=05 y = —log(2)
n c Method Bias SSD ESE CP Bias SSD ESE CP
400 0.1 Proposed  0.055 0.393 0392 0936 —0.007 0.168 0.154 0.938
X() 0.015 0.340 0341 0938 —0.007 0.164 0.152  0.930
W(r) —0.021 0324 0335 0960 —0.007 0.164 0.152 0.930
X() —0.309 0230 0.164 0453 —0.006 0.165 0.154 0.944
0.2 Proposed  0.093 0472 0470 0936 —0.008 0.168 0.154 0.942
X(1) 0.015 0.340 0.341 0938 —0.007 0.164 0.152  0.930
W(1) —0.131  0.284 0294 0944 —0.006 0.164 0.152 0.934
X —0413 0.150 0.108 0.178 —0.006 0.166  0.154  0.944
600 0.1 Proposed  0.045 0296 0316 0958 —0.014 0.135 0.126 0932
X() 0.011 0261 0276 0970 —0.013 0.135 0.124  0.938
W(r) —0.030 0245 0271 0968 —0.012 0.135 0.124 0.936
X -0.352 0.173 0.108 0.260 —0.011 0.133 0.126  0.929
0.2 Proposed  0.079 0354 0378 0958 —0.013 0.135 0.126  0.930
X(1) 0.011 0261 0276 0970 —0.013 0.135 0.124 0938
W(t) —0.142 0210 0.237 0942 —0.011 0.134 0.124 0.932
X —-0432  0.106 0.063 0.049 —0.009 0.132 0.126  0.929
p=0.75
f=05 y =—log(2)
n c Method Bias SSD ESE CP Bias SSD ESE CP
400 0.1 Proposed  0.031 0.381 0380 0940 —-0.004 0.170 0.156  0.936
X(1) 0.017 0.327 0334 0952 —0.004 0.161 0.150 0.936
W(t) —-0.074 0291 0311 0962 —0.004 0.161 0.150 0.940
X0 -0.356 0.199 0.121 0318 —0.000 0.169 0.156  0.933
0.2 Proposed  0.038 0446 0443 0940 —0.004 0.170 0.156  0.936
X() 0.017 0.327 0334 0952 —-0.004 0.161 0.150 0.936
W(1) —0.224 0234 0250 0.888 —0.003 0.161 0.150 0.936
X —0441 0.116 0.069 0.065 0.000 0.169  0.156  0.928
600 0.1 Proposed  0.018 0.288 0307 0964 —0.012 0.135 0.128 0.936
X(1) 0.008 0.257 0271 0960 —0.011 0.135 0.123 0932
W(1) —-0.080 0231 0252 0954 —0.010 0.134 0.123  0.936
X —0.398 0.142 0.075 0.136  —0.009 0.133 0.128  0.944
0.2 Proposed  0.028 0338 0358 0956 —0.011 0.136 0.128  0.938
X() 0.009 0257 0271 0960 —0.011 0.135 0.123  0.932
W(1) —0.227 0.185 0.203 0.830 —0.009 0.134 0.123 0932
Xo —-0461 0.077 0.041 0.006 —0.009 0.133 0.128  0.943
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We simulate the measurement times (v;;, ..., v;y,) for X(-) as in Tables 1 and
S1. Specifically, we first generate the measurement times as the cumulative sums
of Unif(0, 0.2) until /6 is reached, and then keep adding up Unif(0, 0.4) variates
until 7. We set the length of follow-up to be 7 = 3 and take equally spaced grid
points in [0, 7] with K = 1,3,5,7. We conduct the test and compute the p-value
for each simulated dataset. We calculate the empirical size for Model I and the
power for Model II, IIT and IV as the proportion of p-values < 0.05 for 500 simu-
lated datasets. The results are presented in Table 3 for B = 1 and in Table S3 of
the Web Appendix B for B = 3. The empirical sizes under Model I are around
the 0.05 nominal level for all cases and remain the same for different values of o.
The powers under Model II, III and IV are fairly high given the small effect sizes
0.01 and 0.02. The power increases with the number of repeated measurements
B, the sample size n and the effect size. Moreover, the power decreases when o
increases, and seems to be similar when using different numbers of grid points K
in the test.

6 Application to ACTG 175

We apply the proposed method to the ACTG 175 trial, a randomized, double-blind
phase II/III trial of antiretroviral regimens in persons living with HIV infection with
CD4 cell count from 200 to 500 per cubic millimeter [1]. Between December 1991
and October 1992, 2467 individuals were recruited and followed until November

Table 3 Simulation results for the proposed test of the measurement error model (2) with
X(H=0O+ vl-)Tf(t) at significance level 0.05, when there are no repeated measurements of X;(?), i.e.,
B = 1. Each entry is based on 500 replicates

Model I (size) Model II (power)

n c K=1 K=3 K=5 K=7 K=1 K=3 K=5 K=7

200 0.05 0.040 0.062 0.054 0.050 0.746 0.676 0.668 0.666

0.1 0.040 0.062 0.054 0.050 0.682 0.608 0.582 0.572
0.2 0.040 0.062 0.054 0.050 0.520 0.432 0.390 0.368
400 0.05 0.050 0.048 0.066 0.042 0.832 0.764 0.756 0.760
0.1 0.050 0.048 0.066 0.042 0.778 0.718 0.698 0.680
0.2 0.050 0.048 0.066 0.042 0.638 0.568 0.508 0.488
Model III (power) Model IV (power)
n c K=1 K=3 K=5 K=7 K=1 K=3 K=5 K=7

200 0.05 0.930 0.890 0.878 0.876 0.932 0.902 0.902 0.904

0.1 0.904 0.866 0.838 0.844 0.904 0.880 0.858 0.870
0.2 0.798 0.746 0.686 0.648 0.822 0.740 0.688 0.664
400 0.05 0.984 0.974 0.974 0.964 0.984 0.982 0.976 0.974
0.1 0.976 0.962 0.956 0.946 0.976 0.968 0.960 0.962

0.2 0.938 0.898 0.890 0.868 0.950 0.906 0.898 0.884
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1994. Among these, 1396 participants received antiretroviral therapy (ART) prior to
the study while 1061 participants were ART naive. The objective of the trial was to
compare the effectiveness of four antiretroviral regimens (zidovudine only, zidovu-
dine + didanosine, zidovudine + zalcitabine, and didanosine only) in preventing dis-
ease progression to AIDS or death. An important prognostic biomarker for progres-
sion to the clinical endpoint is CD4 cell count per cubic millimiter of blood [30]. All
ACTG 175 trial participants had CD4 cell count measured every 12 weeks starting
at Week 8, and were followed for occurrence of the composite clinical endpoint of
AIDS or death. The median number of measurement times is 12 with interquartile
range (IQR) [8,14], and its histogram is given by Figure S8 in the Web Appendix.
The original analysis of [1] found zidovudine alone to be inferior to the other
three therapies. Following [17] and [20], we consider two treatment groups, zido-
vudine alone and the combination of the other three therapies. We demonstrate the
utility of the proposed method by investigating associations of treatment arm and
time-dependent trajectory log,,(CD4) with the composite clinical endpoint of AIDS
or death. Let Z be the treatment indicator (TRT) with value O for zidovudine alone
and 1 for other three regimens. Let X(-) be the error-prone time-dependent covariate
log,((CD4) (measured without replicates, i.e., B = 1) and T be the time from enroll-
ment to AIDS or death, whichever occurred first. We assume that the conditional
hazard function of T given X(¢) and Z follows the proportional hazards model (1),

M11X(1), Z) = A1) exp{ BX (1) + yZ} = A(t) exp { flog,, (CD4) + yTRT},

where the regression coefficients f and y can be interpreted as log hazard ratios
and represent the association of time to AIDS or death with log,,(CD4) and TRT,
respectively. Also, we assume that the measurement error model for X(¢) is (2) with
the quadratic basis function f(¢) = (1,¢,%). Our analysis includes 1396 participants
who received ART prior to the study. There were 215 composite endpoint cases
(15.4%) with 167 AIDS events and 48 deaths. The time to the AIDS onset is interval
censored while the time to death prior to AIDS is observed or right-censored. The
observed data consist of exact, interval- and right-censored event times.

The true CD4 cell count values X(f) are generally not attainable. The observed
CD4 cell count is measured intermittently and is an error-prone time-dependent
covariate. The naive approaches often replace X(¢) in model (1) with the observed
W(t) by last value carried forward that ignores the measurement errors or with a
model-based estimate X(¢) without modifying the hazard model for the induced
error. The former naive approach — termed the ‘“naive approach using W(¢)”
— imputes the CD4 values at each failure time using “last value carried forward”
that substitutes the unavailable CD4 cell count with the last observed value prior to
the failure time. The latter naive approach — termed the “naive approach using X(¢)”
— replaces CD4 cell count values with the estimated X() in model (1) using the
measurement error model (2) based on each individual’s longitudinal profile prior
to time ¢.

Fitting the quadratic measurement error model (2), we obtain average values of
the individual-specific estimates of coefficients of (2.515, —0.035, —0.047). The plot
of the average fitted individual-specific curves along with the plot of the observed

@ Springer



Statistics in Biosciences (2023) 15:430-454 449

Table 4 Analysis results for ACTG 175

Proposed Method Naive Using W(¢) Naive Using Xo

Covariates  Est SE p-value  Est SE p-value  Est SE p-value

log,((CD4) —2.472 0.116 <0.001 -2.668 0.119 <0.001 —0.240 0.051 <0.001
Treatment —0.119  0.160 0.458 0.056 0.155 0.718 —0.338  0.159 0.034

log,((CD4) for 50 randomly selected individuals shows the downward trend in log,
(CD4) (Figure S5). The results of analysis using the proposed method and the two
naive methods are summarized in Table 4, where Est is the estimates of the regres-
sion parameters and SE is the estimated standard errors. The estimated regression
coefficient (the standard error) of log,,(CD4) using the proposed method is —2.472
(0.116), whose absolute value is much larger than that of the estimated regression
coefficient (the standard error) —0.240 (0.051) obtained using the naive approach
using X(7) but slightly less than that of the estimated regression coefficient (the
standard error) —2.668 (0.119) using the naive approach using W(r). The estimated
regression coefficient of log,,(CD4) is the log hazards ratio for every unit increase
in log,,(CD4) under the Cox model (equivalently every 10-fold increase in CD4 cell
count with units number of cells per cubic milimeter of blood, cells/mm?) and rep-
resents the association of log,,(CD4) with the failure time. All methods suggest that
lower values of log,,(CD4) are significantly associated with higher risk of AIDS or
death. The naive approach using X(7) yields an estimated association closer to zero
(—0.240) as compared to the proposed method (—2.472) partly due to the attenuat-
ing effect w,(¢) from the measurement errors. The naive approach using W(¢) yields
a slightly stronger inverse association (—2.668) as compared to the proposed method
because it tends to carry forward a too-large value of CD4 cell count. While there
is no significant treatment effect after adjusting for log,,(CD4) with the proposed
method and the naive approach using W(r), the naive approach using X(r) shows a
significant treatment effect with p-value 0.034. Our study further confirms that the
naive approaches can lead to biased estimates of the associations of interest for the
variables measured in errors as well as biased estimates of treatment effects [2, 3,
311

Figure 1 plots the estimated survival functions at four different combinations of
covariates: two values of Z (0 or 1) and two curves of log,,(CD4) (25" or 75" per-
centile of the estimated log,,(CD4) at each time point). The plots show that the naive
approach using W(¢) overestimates the survival probabilities and the naive approach
using X(¢) substantially underestimates the survival probabilities. The discrepancy
is very large when X(7) is the 75" percentile of log,,(CD4). Plots of the estimated
baseline hazard functions for the three methods considered are given in Figure S7
in Web Appendix B. It can be seen that the naive approach using W(r) overestimates
the baseline hazard function, while the naive approach using X(r) highly underesti-
mates the baseline hazard function.

To examine appropriateness of the quadratic measurement error model (2), we
conduct the model checking procedure. In particular, we consider the quadratic
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Fig. 1 Plots of the estimated survival functions at four different combinations of covariates. For example,
X25+Z0° corresponds to the covariates combination with X(7) being the 25" percentile of log,,(CD4)
and for zidovudine alone, and ‘X25+4Z1’ corresponds to the covariates combination with X(#) being the
25™ percentile of log,(CD4) and for the other three treatment arms pooled

measurement error model corresponding to f(f) = (1,£,£?) in (2). We set the grid
points to be the (0, 25, 50, 75, 100)th quantiles of the follow-up times. The quadratic
measurement error model yields a p-value of 0.298 suggesting that the quadratic
model fits reasonably well to the data. As a comparison, we also test fitness of the
linear measurement error model with f(¢) = (1,¢). The test yields a p-value close to
zero. In addition, we note that the log-likelihood value at the final estimates of the
proposed method under the linear measurement error model is —932.56, while the
log-likelihood value under the quadratic model is —856.54. The analysis supports
that the quadratic measurement error model fits the data better than the linear model.

We further examine the fit of the quadratic measurement error model via
graphical tools. The residual plots for the quadratic measurement error model,
including the normal Q-Q plot and histogram, are presented in Figure S6 of
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Web Appendix B. The normal Q-Q plot suggests that the sample quantiles of the
standardized residuals are close to the theoretical ones except for slight devia-
tions at the two tails, while the histogram of the standardized residuals looks like
a standard normal density curve except having slightly shorter tails. Furthermore,
to evaluate the normality of random effects, we obtain the least-squares estimates
of individual-specific coefficients in the quadratic measurement error model. The
normal Q-Q plot and histogram of these estimated coefficients are given in Fig-
ure S6. These plots look satisfactory in general except for in the tails. The p-val-
ues from the Kolmogorov-Smirnov tests for normality are 0.0006 for the errors
and < 0.0001 for the random effects of the quadratic measurement error model.
The small p-values reflect lack of fit in the tail areas of the distributions though
the normality assumptions seem reasonable overall based on the diagnostic plots.
The very small p-values can also be a result of the large sample size. Neverthe-
less, as shown in the simulation studies, the proposed method seems to be robust
to the normality assumption of the random effects.

7 Concluding Remarks

This article develops an estimation method for the Cox model based on partly inter-
val censored failure time and a longitudinal covariate with measurement errors. The
research is motivated by the ACTG 175 trial to understand the association of lon-
gitudinal CD4 cell count on the hazard of the composite clinical endpoint of AIDS
or death, where the time to the composite endpoint is partly interval censored and
the recorded values of CD4 cell count are error-prone measures of the unattainable
true values. The proposed measurement error induced hazard approach is intuitively
appealing and easy to interpret. The EM-algorithm is proposed to implement the
maximum likelihood estimation with partly interval censored data. The developed
method has broad applications. For example, COVID-19 vaccine efficacy trials will
study longitudinal antibody biomarkers over time as correlates of the study endpoint
acquisition of SARS-CoV-2 infection. This endpoint is a composite endpoint with
the same structure as the AIDS/death composite endpoint, defined as the first event
of asymptomatic SARS-CoV-2 infection measured by seroconversion from a blood
sample (interval censored) and symptomatic virologically confirmed SARS-CoV-2
infection that is symptom-triggered and hence measured exactly [32].

This paper assumes that the measurement errors are independent identically dis-
tributed. In practice, the measurement errors may be correlated or the measurement
error variance is heterogeneous over time. In this case, the likelihood method can be
used to estimate model (2) by assuming a certain covariance structure for the meas-
urement errors. This is an interesting scenario that is worth investigation in a future
project. We have regarded X;(¢) as a scalar. The method can be extended to multivar-
iate longitudinal covariates. As with many works in the joint modeling framework, a
limitation of the proposed method is the normality assumption of the random effects
in the measurement error model for X;(#). A simulation study conducted to examine
the robustness of the proposed method shows that the estimation bias remains small.
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A formal test procedure is proposed to examine validity of the measurement error
model.

7.1 Supplementary Information

Web Appendices A and B, referenced in Sections 3, 5 and 6, are included in the
Supplementary Information and are available with this paper on the journal website.

Appendix: Technical Details

In this appendix, we present the regularity conditions needed for Propositions 1 and
Theorem 1.

Let U; = (Uy,...,U;x) denote the monitoring times for the failure event
for individual i, where 0= Upy< Uy < <Uyg <Uyg, =oco. The moni-
toring times are the mechanism used to genefate interval censored fail-
ure times [L;,R;], where L,=max{U, : T;,>Uy k=0,...,K;} and
Ri=min{U; : T, < Uy, k=1,...,K;+ 1} with Uy=0 and U;g, = oc0. We
assume Conditions (A1)-(A3) below that require noninformative mor{itoring/meas-
urement times and a nondifferential measurement error mechanism for the time-

dependent covariates.

(A1) The monitoring times, measurement times and measurement errors are non-
informative given the information already provided by Z; and 6,, i.e., T; is
independent of (4;, U,, ¥,, &;) given (Z,, 6,).

(A2) Measurement error &, is independent of (T}, 4;, U;, ;, Z;).

(A3) X;(1),0 <t < 7,isaleft continuous process.

More discussion on the assumptions of noninformative observation times and a non-
differential measurement error mechanism can be found in [21, 26].

The estimation of the induced hazard model (5) for partly interval censored data
follows the EM procedure developed by [11]. In addition to Conditions (A1)-(A3),
we assume the following regularity conditions similar to [11].

(B1) The true value of (8, y) lies in the interior of a known compact set B in R%*!, and
the true value of A(-) is continuously differentiable with positive derivatives in
[£, 7], where [{, 7] is the union of the supports of {A,T;, (1 — 4,)L;, (1 — 4)R;}.

(B2) The vector of the basis functions £(¢) is left continuous and with bounded total
variation over [{, T].

(B3) If h(r) + ﬂwi(t))A(i(t) +y7Z, + 0;B,1,0y,) = 0 for all t € [{, 7] with a positive
probability, then i(r) = O for ¢ € [{, z]and (f,y) = 0.

(B4) 0<P(4;=0)<1,P(L =1 R =ocolt; =0.%(r).2) > c, and P(R; = L; > ¢,|4; =0,
Xi(1), Zi) = 1 for some positive constants c¢; and c¢,. The conditional density of
(L;,R;) given X (1), Z;), denoted by g(u, v), has continuous second-order partial
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derivatives with respect to # and v when v — u > ¢, and are continuously dif-
ferentiable with respect to (X;(7), Z;).

Supplementary Information The online version contains supplementary material available at https://doi.
org/10.1007/s12561-023-09372-y.

Acknowledgements The authors thank the reviewers for their constructive comments that have improved
the paper. This research was partially supported by NIAID NIH award R37A1054165. Dr. Sun’s research
was also partially supported by National Science Foundation grant DMS1915829 and the Reassignment
of Duties fund provided by the University of North Carolina at Charlotte. Dr. Zhou’s research was par-
tially supported by National Science Foundation grant DMS1916170. The content is solely the responsi-
bility of the authors and does not necessarily represent the official views of the NIH.

Declarations

Conflict of interest The authors declare that there is no conflict of interest.

References

1. Hammer SM, Katzenstein DA, Hughes MD, Gundacker H, Schooley RT, Haubrich RH, Henry WK,
Lederman MM, Phair JP, Niu M et al (1996) A trial comparing nucleoside monotherapy with com-
bination therapy in HIV-infected adults with CD4 cell counts from 200 to 500 per cubic millimeter.
N Engl J Med 335:1081-1090

2. Prentice RL (1982) Covariate measurement errors and parameter estimation in a failure time regres-
sion model. Biometrika 69:331-342

3. Tsiatis AA, Davidian M (2001) A semiparametric estimator for the proportional hazards model with
longitudinal covariates measured with error. Biometrika 88:447-458

4. Finkelstein DM (1986) A proportional hazards model for interval-censored failure time data. Biom-
etrics 42:845-854

5. Huang J (1996) Efficient estimation for the proportional hazards model with interval censoring. Ann
Stat 24:540-568

6. Huang J, Wellner JA (1997) Interval censored survival data: a review of recent progress. In proceed-
ings of the first seattle symposium in biostatistics pp. 123—-169 Springer

7. Zhang Y, Hua L, Huang J (2010) A spline-based semiparametric maximum likelihood estimation
method for the Cox model with interval-censored data. Scand Stat Theory Appl 37:338-354

8. Wang L, McMahan CS, Hudgens MG, Qureshi ZP (2016) A flexible, computationally efficient
method for fitting the proportional hazards model to interval-censored data. Biometrics 72:222-231

9. Zeng D, Mao L, Lin D (2016) Maximum likelihood estimation for semiparametric transformation
models with interval-censored data. Biometrika 103:253-271

10. Kim JS (2003) Maximum likelihood estimation for the proportional hazards model with partly inter-
val-censored data. J R Stat Soc Series B 65:489-502

11. Zhou Q, Sun Y, Gilbert PB (2021) Semiparametric regression analysis of partly interval-censored
failure time data with application to an AIDS clinical trial. Stat Med 40:4376-4394

12. Nakamura T (1992) Proportional hazards model with covariates subject to measurement error.
Biometrics 48:829-838

13. Hughes M (1993) Regression dilution in the proportional hazards model. Biometrics 49:1056-1066

14. Buzas J (1998) Unbiased scores in proportional hazards regression with covariate measurement
error. J Stat Plan Inference 67:247-257

15. Huang Y, Wang CY (2000) Cox regression with accurate covariates unascertainable: a nonparamet-
ric-correction approach. J Am Stat Assoc 95:1209-1219

16. Hu C, Lin DY (2002) Cox regression with covariate measurement error. Scand Stat Theory Appl
29:637-655

@ Springer


https://doi.org/10.1007/s12561-023-09372-y
https://doi.org/10.1007/s12561-023-09372-y

454

Statistics in Biosciences (2023) 15:430-454

17.

20.

21.

22.

23.

24.

25.

26.
217.

28.
29.

30.

31.

Song X, Davidian M, Tsiatis AA (2002) An estimator for the proportional hazards model with mul-
tiple longitudinal covariates measured with error. Biostatistics 3(4):511-528

Song X, Huang Y (2005) On corrected score approach for proportional hazards model with covari-
ate measurement error. Biometrics 61:702-714

Yi G, Lawless J (2007) A corrected likelihood method for the proportional hazards model with
covariates subject to measurement error. J Stat Plan Inference 137:1816-1828

Fu R, Gilbert PB (2017) Joint modeling of longitudinal and survival data with the cox model and
two-phase sampling. Lifetime Data Anal 23:136-159

Tsiatis AA, Davidian M (2004) Joint modeling of longitudinal and time-to-event data: an overview.
Stat Sin 14:809-834

Song X, Ma S (2008) Multiple augmentation for interval-censored data with measurement error.
Stat Med 27(16):3178-3190

Mandal S, Wang S, Sinha S (2019) Analysis of linear transformation models with covariate meas-
urement error and interval censoring. Stat Med 38:4642-4655

Chen K, Jin Z, Ying Z (2002) Semiparametric analysis of transformation models with censored
data. Biometrika 89:659-668

Wen CC, Chen YH (2014) Functional inference for interval-censored data in proportional odds
model with covariate measurement error. Stat Sin 24:1301-1317

Yi G (2017) Statistical Analysis with Measurement Error or Misclassification. Springer, New York
Bates D, Michler M, Bolker B, Walker S (2015) Fitting linear mixed-effects models using lme4. J
Stat Softw 67:1-48

Murphy SA, Van der Vaart AW (2000) On profile likelihood. J Am Stat Assoc 95:449-465

Wang T, Merkle EC (2018) merDeriv: derivative computations for linear mixed effects models with
application to robust standard errors. J Stat Softw 87(1):1-16

Mellors JW, Munoz A, Giorgi JV, Margolick JB, Tassoni CJ, Gupta P, Kingsley LA, Todd JA, Saah
AlJ, Detels R et al (1997) Plasma viral load and CD4+ lymphocytes as prognostic markers of HIV-1
infection. Ann Intern Med 126(12):946-954

Dafni UG, Tsiatis AA (1998) Evaluating surrogate markers of clinical outcome when measured
with error. Biometrics 54(4):1445-1462

Mehrotra DV, Janes HE, Fleming TR, Annunziato PW, Neuzil KM, Carpp LN, Benkeser D, Brown
ER, Carone M, Cho I et al (2020) Clinical endpoints for evaluating efficacy in covid-19 vaccine tri-
als. Ann Intern Med 22:M20-6169

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and
applicable law.

@ Springer



	Analysis of the Cox Model with Longitudinal Covariates with Measurement Errors and Partly Interval Censored Failure Times, with Application to an AIDS Clinical Trial
	Abstract
	1 Introduction
	2 Preliminaries
	3 Estimation of the Cox Model with Partly Interval Censored Failure Times and Longitudinal Covariates with Measurement Errors
	3.1 Measurement Error Induced Hazard Model
	3.2 Estimation of Measurement Error Induced Hazard Model with Partly Interval Censored Data
	3.3 Variance Estimation

	4 A Diagnostic Testing Procedure for the Measurement Error Model
	5 Simulation Studies
	6 Application to ACTG 175
	7 Concluding Remarks
	7.1 Supplementary Information

	Appendix: Technical Details
	Anchor 15
	Acknowledgements 
	References




