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Abstract—We propose a novel communication design, termed

random orthogonalization, for federated learning (FL) in a mas-

sive multiple-input and multiple-output (MIMO) wireless system.

The key novelty of random orthogonalization comes from the

tight coupling of FL and two unique characteristics of massive

MIMO – channel hardening and favorable propagation. As

a result, random orthogonalization can achieve natural over-

the-air model aggregation without requiring transmitter side

channel state information (CSI) for the uplink phase of FL, while

significantly reducing the channel estimation overhead at the

receiver. We extend this principle to the downlink communication

phase and develop a simple but highly effective model broadcast

method for FL. We also relax the massive MIMO assumption by

proposing an enhanced random orthogonalization design for both

uplink and downlink FL communications, that does not rely on

channel hardening or favorable propagation. Theoretical analyses

with respect to both communication and machine learning per-

formance are carried out. In particular, an explicit relationship

among the convergence rate, the number of clients, and the

number of antennas is established. Experimental results validate

the effectiveness and efficiency of random orthogonalization for

FL in massive MIMO.

Index Terms—Federated Learning; Convergence Analysis;

Massive MIMO.

I. INTRODUCTION

Machine learning (ML) model communication is widely
considered as one of the primary bottlenecks for federated
learning (FL) [2]–[4]. This is because an FL task consists of
multiple learning rounds, each of which requires uplink and
downlink model exchanges between clients and the server. The
limited communication resources in both uplink and downlink,
combined with the detrimental effects from channel fading,
noise, and interference, severely impact the scalability (in
terms of the number of participating clients) of FL in a wireless
communication system.

One promising technique to tackle the scalability problem of
FL over wireless communications is over-the-air computation
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(also known as AirComp); see [5] and the references therein.
Instead of the standard approach of decoding the individual
local models of each client and then aggregating, AirComp
allows multiple clients to transmit uplink signals in a su-
perpositioned fashion, and decodes the average global model
directly at the FL server. In order to achieve this goal, a
common approach is to “invert” the fading channel at each
transmitter [6], [7], so that the sum model can be obtained at
the server. AirComp has attracted considerable interest and a
detailed literature review can be found in Section II.

However, much of the existing work on AirComp has
several limitations. First, these methods often require channel
state information at the transmitter (CSIT) for each individual
client. The process of enabling individual CSIT is complicated
– in a frequency division duplex (FDD) system, this involves
the receiver estimating the channels and then sending back
the estimates to the transmitters; in a time division duplex
(TDD) system, one can benefit from channel reciprocity [8],
[9], but there is still a need for an independent pilot for each
client. In both cases, practical mechanisms to obtain individual
CSIT do not scale with the number of clients. In addition, the
precision of CSIT is often worse than that of channel state
information at the receiver (CSIR). Second, most AirComp
approaches in the literature require a channel inversion-type
power control, which is well known to “blow up” when at least
one of the channels is experiencing deep fading [8]. Third,
AirComp approaches focus on improving the scalability and
efficiency of the uplink communication phase in FL. How to
address these challenges in the downlink communication phase
remains underdeveloped.

Another important limitation is that the AirComp solution
does not naturally extend to multiple-input and multiple-output
(MIMO) systems where the uplink and downlink channels
become vectors. Compared with the studies in scalar channels,
there are only a few recent papers that explore the potential
of MIMO for wireless FL. MIMO beamforming design to
optimize FL has been studied in [10], [11]. Coding, quanti-
zation, and compressive sensing over MIMO channels for FL
have been studied in [12], [13]. Nevertheless, none of these
works tightly incorporates the unique properties of MIMO
to the FL communication design. On the other hand, if we
ignore the unique characteristics of FL, MIMO can also be
utilized in a straightforward manner. In the uplink phase, we
can use conventional MIMO estimators such as zero-forcing
(ZF) or minimum mean square error (MMSE) to estimate
each local model, and then compute the global model. In the
downlink phase, we can design MIMO precoders to broadcast
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the global model. However, these approaches incur a large
channel estimation overhead, especially when the channels
have high dimensions. Moreover, matrix inversions in the ZF
or MMSE estimators and the optimization algorithms for the
precoding design are computationally demanding, in particular
for massive MIMO. This increases the complexity and latency
of the overall system. In addition, decoding individual local
models also makes it easier for the server to sketch the data
distribution of the clients, leading to potential privacy leakage.

This paper aims at designing simple-yet-effective FL com-
munication methods that can efficiently address the scalability
challenge in FL for both uplink and downlink phases. The
novelty comes from a tight integration of MIMO and FL
– our design explicitly utilizes the characteristics of both
components. The contributions of this paper are summarized
as follows.

• We propose a novel Random Orthogonalization design
for massive MIMO where the base station (BS) has a
large number of antennas. In uplink communications, by
leveraging the unique channel hardening and favorable
propagation properties of massive MIMO, the proposed
framework only requires the BS to estimate a summation
channel and allows it to directly compute the global
model via a simple linear projection, which significantly
alleviates the burden on channel estimation1 and achieves
extremely low complexity and low latency. In downlink
communications, the proposed method leads to a simple
but highly effective model broadcast method for FL.
Moreover, our approach is agnostic to the number of
clients, and thus improves the scalability of FL.

• As the random orthogonalization designs rely on channel
hardening and favorable propagation to eliminate the
interference, which do not always hold in practice (e.g.,
when the number of antennas is small), we further
propose an enhanced random orthogonalization design
for both uplink and downlink FL communications, that
leverages channel echos to compensate for the lack
of channel hardening and favorable propagation. The
enhanced random orthogonalization design thus can be
applied to a general MIMO system.

• To analyze the performances of random orthogonaliza-
tion, we derive the Cramer-Rao lower bounds (CRLBs)
of the average model estimation errors as a theoretical
benchmark. Moreover, taking both interference and noise
into consideration, a novel convergence bound of FL is
derived for the proposed methods over massive MIMO
channels. Notably, we establish an explicit relationship
among the convergence rate, the number of clients, and
the number of antennas, which provides practical design
guidance for wireless FL. Extensive numerical results
validate the effectiveness and efficiency of the proposed
random orthogonalization principle in a variety of FL and
MIMO settings.

1For example, a single pilot can be used by all clients as long as it is
sent synchronously, regardless of the number of clients that participate in the
current FL round.

The remainder of this paper is organized as follows. Related
works are surveyed in Section II. Section III introduces the FL
pipeline and the wireless communication model. The proposed
random orthogonalization principle is presented in Section
IV, and then the enhanced design is proposed in Section V.
Analyses of the CRLB as well as the FL model convergence
are given in Section VI. Experimental results are reported in
Section VII, followed by the conclusions in Section VIII.

II. RELATED WORKS

Improve FL communication efficiency. The original Fed-
erated Averaging (FEDAVG) algorithm [2] reduces the com-
munication overhead by only periodically averaging the lo-
cal models. Theoretical understanding of the communication-
computation tradeoff has been actively pursued and, depending
on the underlying assumptions (e.g., independent and iden-
tically distributed (i.i.d.) or non-i.i.d. local datasets, convex
or non-convex loss functions, gradient descent or stochastic
gradient descent (SGD)), convergence analyses have been
carried out [14], [15]. The approaches to reduce the payload
size or communication frequency include sparsification [16],
[17] and quantization [18]–[20]. There are also efforts to
improve resource allocation [21]–[23].
AirComp for FL. As a special case of computing over mul-
tiple access channels [24], AirComp [6], [7], [10], [25] lever-
ages the signal superposition properties in a wireless multiple
access channel to efficiently compute the average ML model.
This technique has attracted considerable interest, as it can
reduce the uplink communication cost to be (nearly) agnostic
to the number of participating clients. Client scheduling and
various power and computation resource allocation methods
have been investigated [26]–[31]. The assumption of full CSIT
is relaxed in [32] by only using the phase information of each
individual channel. Convergence guarantees of Aircomp under
different constraints are reported in [33]–[37].
Communication design for FL in MIMO systems. There
are some recent studies on optimizing the communication
efficiency and learning performance in MIMO systems for FL,
including transmit power control [38]–[40], data rate alloca-
tion [41], and compression [13], [42]. Several beamforming
designs have been proposed to improve the performance of
wireless FL [10], [43]–[46]. However, these methods require
full CSIT and rely on complex optimization methods to
design the beamformers, which becomes less attractive in
massive MIMO due to the high communication and compu-
tation cost. Asymptotic analysis of the aggregation error in
massive MIMO is provided in [43], [47], [48], which leads
to beamformer designs that can relax the individual CSIT
assumption in wireless FL. However, they only focus on the
uplink communication phase.

III. SYSTEM MODEL

A. FL Model
The FL problem studied in this paper mostly follows that in

the original paper [2]. In particular, we consider an FL system
with one central parameter server (e.g., base station) and a
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set of at most N clients (e.g., mobile devices). Client k 2

[N ] , {1, 2, · · · , N} stores a local dataset Dk = {⇠i}
Dk

i=1, with
its size denoted by Dk, that never leaves the client. Datasets
across clients are assumed to be non-i.i.d. and disjoint. The
maximum data size when all clients participate in FL is D =P

N

k=1 Dk. Each data sample ⇠ is denoted by an input-output
pair {x, y} for a supervised learning task. We use fk(w) to
denote the local loss function at client k, which measures how
well an ML model with parameter w 2 Rd fits its local dataset.
The global objective function over all N clients is f(w) =P

k2[N ] pkfk(w), where pk = Dk

D
is the weight of each local

loss function, and the purpose of FL is to distributively find
the optimal model parameter w

⇤ that minimizes the global
loss function: w

⇤ , argminw2Rd f(w). Let f⇤ and f⇤
k

be
the minimum value of f(w) and fk(w), respectively. Then,
� = f⇤

�
P

N

k=1
Dk

D
f⇤
k

quantifies the degree of non-i.i.d. as
defined in [15].

Specifically, the FL pipeline [2] iteratively executes the
following steps at the t-th learning round.

1) Downlink communication. The BS broadcasts the cur-
rent global model wt to K randomly selected clients over
the downlink wireless channel. We use [K] to denote
the selected client set to simplify the notation, but this
should be interpreted as possibly different sets of clients
at different round t.

2) Local computation. Each selected client uses its local
dataset to train a local model improved upon the received
global model wt. We assume that mini-batch SGD is
used to minimize the local loss function. The parame-
ter is updated iteratively (for E steps) at client k as:
w

k

t,0 = wt;wk

t,⌧
= w

k

t,⌧�1 � ⌘trf̃k(wk

t,⌧�1), 8⌧ =
1, · · · , E;wk

t+1 = w
k

t,E
, where rf̃k(w) denotes the

mini-batch SGD operation at client k on model w, and
⌘t is the learning rate (step size).

3) Uplink communication. Each selected client uploads its
latest local model to the server synchronously over the
uplink wireless channel.

4) Server aggregation. The BS aggregates the received
noisy local models w̃k

t+1 to generate a new global model:
wt+1 = ⌃k2[K]p̃kw̃

k

t+1, where p̃k , Dk

⌃k2[K]Dk

. For
simplicity, we assume that each local dataset has equal
size, hence p̃k = 1/K.

This work focuses on both downlink and uplink commu-
nication design in the FL pipeline. We next describe the
communication models under consideration.

B. Communication Model

Consider a MIMO TDD communication system equipped
with M antennas at the BS (server) where K randomly-
selected single-antenna devices (clients) are involved in the
t-th round of the aforementioned FL task. Let hk 2 CM⇥1

denote the uplink wireless channel between the k-th client and
the BS. During the uplink communication phase, each client
transmits the difference between the received global model
and the newly computed local model

xk
t
= wt �w

k

t+1, 8k 2 [K] (1)

to the BS, where xk
t
, [xk

1,t, · · · , x
k

d,t
]T 2 Rd⇥1 denotes the

d-dimensional model differential of client k at the t-th com-
munication round. To simplify the notation, we omit index t by
using xk,i instead of xk

i,t
barring any confusion. Throughout

this paper, we assume all active clients are synchronized. This
can be achieved in practice by having the BS send a beacon
signal to initialize uplink transmissions. For more details on
synchronization, please refer to [49]. Therefore, each client can
transmit every element of the differential model {xk,i}

d

i=1 via
d shared time slots2. For a given element xk,i, the received
signal at the BS is y

UL
i

=
p
PClient

P
k2[K] hkxk,i + ni, 8i =

1, · · · , d, where PClient is the maximum transmit power of each
client, and ni 2 CM⇥1 represents the uplink noise. Denoting
H , [h1, · · · ,hK ] 2 CM⇥K as the channel vectors from all
K clients and xi , [x1,i, · · · , xK,i]

T
2 RK⇥1, 8i = 1, · · · , d

as the i-th dimension model differential from all K clients at
the t-th learning round, the received signal3 can be written as

y
UL
i

=
p
PClientHxi + ni. (2)

It is easy to see that (2) is a standard MIMO communica-
tion model and traditional MIMO estimators can be adopted
to estimate x̂i = [x̂1,i, · · · , x̂K,i]

T . However, as discussed
before, decoding {xk,i}

d

i=1 individually and obtaining the
aggregated parameter x̃i , P

k2[K] x̂k,i by a summation is
inefficient. After the BS decoding all aggregated parameter
x̃t , [x̃1, · · · , x̃d]

T in d slots, it can compute the new global
model as

wt+1 = wt +
1

K
x̃t. (3)

In the downlink, after the computation of the global model
wt+1 = [w1,t+1, · · · , wd,t+1]T , the BS broadcasts the global
model to all clients via a precoder f 2 CM⇥1, and the received
signal at client k is given by

yDL
i

=
p
PBSh

H

k,t+1fwi,t+1 + zk
i
, 8i = 1, · · · , d, (4)

where PBS is the maximum transmit power of the BS and zk
i

denotes the downlink noise. We note that channel h
H

k,t+1 2

C1⇥M denotes the downlink vector channel that is reciprocal
of the uplink channel in round t+1. Each client then computes
an estimated global model and uses it as a new initial point
for the next learning round after all d elements are received
via (4). Traditionally, the precoder design of f belongs to
broadcasting common messages (see [50] and the references
therein). However, existing methods become impractical due
to the difficulty in obtaining full CSI in massive MIMO
systems, which motivates us to design f with only partial
CSI. For mathematical simplicity, we assume a normalized
symbol power4, i.e., E kxk,ik

2 = 1 and E kwi,t+1k
2 = 1;

2In general, differential model parameters can be transmitted over any d
shared orthogonal communication resources (e.g., time or frequency). For
simplicity, we use d time slots here.

3For simplicity, we assume real signals {xk,i}di=1 are transmitted in this
paper. It can be easily extended to complex signals by stacking two real model
parameters into a complex signal, so that the full degree of freedom (d.o.f.)
is utilized.

4The parameter normalization and de-normalization procedure in wireless
FL follows the same as that in the Appendix of [6].
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Fig. 1. An illustration of the proposed uplink FL design with massive MIMO.

normalized Rayleigh block fading channels5
hk ⇠ CN (0, 1

M
I)

in d slots; and i.i.d. Gaussian noise ni ⇠ CN (0, �
2
UL
M

I)
and zk

i
⇠ CN (0,�2

DL). We define the signal-to-noise ratio
(SNR) as SNRUL , PClient/�2

UL for uplink communications
and SNRDL , PBS/�2

DL for downlink communications, and
without loss of generality (w.l.o.g.) we set PClient = 1 and
PBS = 1.

IV. RANDOM ORTHOGONALIZATION

In this section, we present the key ideas of random or-
thogonalization. With this principle, the global model can be
directly obtained at the BS via a simple operation in the uplink
communications, and the global model can be broadcast to
clients efficiently in the downlink communications. By explor-
ing favorable propagation and channel hardening in massive
MIMO, our proposed methods only require partial CSI, which
significantly reduces the channel estimation overhead.

A. Uplink Communication Design
The designed framework contains the following three main

steps in the uplink communications.
(U1) Uplink channel summation. The BS first schedules all
clients participating in the current learning round to transmit
a common pilot signal s synchronously. The received signal at
the BS is

ys =
X

k2[K]

hks+ ns, (5)

and the BS can estimate the summation of channel vectors
hs ,

P
k2[K] hk from the received signal ys. Given the pilot

s, the estimates can be obtained via a maximum likelihood
estimator argminhs

kys � hssk
2 [52]. We can also adopt

multiple pilots to improve the accuracy of channel estimation.
We note that the complexity of this sum channel estimation
does not scale with K. For the purpose of illustrating our key
ideas, we assume perfect summation channel estimation at the
BS for now. The channel estimation error of hs will affect
the effective SNR of the decoded model, and we will evaluate
this impact in numerical experiments. We also note that when
the pilot SNR is sufficiently high, one can directly scale the
received signal ys (by 1/s) to obtain the estimated summation
channel.
(U2) Uplink model transmission. All selected clients trans-
mit model differential parameters {xk,i}

d

i=1 to the BS in d

5The large-scale pathloss and shadowing effect is assumed to be taken care
of by, e.g., open loop power control [51].

shared time slots. The received signal for each differential
model element is yi =

P
k2[K] hkxk,i + ni, 8i = 1, · · · , d.

(U3) Receiver computation. The BS estimates each aggre-
gated model element via the following simple linear projection
operation:

x̃i = h
H

s
yi =

X

k2[K]

h
H

k

X

k2[K]

hkxk,i +
X

k2[K]

h
H

k
ni

(a)
=

X

k2[K]

h
H

k
hkxk,i

| {z }
Signal

+
X

k2[K]

X

j2[K],j 6=k

h
H

k
hjxj,i

| {z }
Interference

+
X

k2[K]

h
H

k
ni

| {z }
Noise

(b)
⇡

X

k2[K]

xk,i, 8i = 1, · · · , d. (6)

The above three-step uplink communication procedure is il-
lustrated in Fig. 1. Based on Eqn. (6), the BS then computes
the global model via Eqn. (3) and begins the downlink global
model broadcast.

As shown in (a) of Eqn. (6), inner product h
H

s
yi can

be viewed as the combination of three parts: signal, inter-
ference, and noise. We next show that, taking advantage of
two fundamental properties of massive MIMO, the error-free
approximation (b) in (6) is asymptotically accurate (as the
number of BS antennas M goes to infinity).

Channel hardening. Since each element of hk is i.i.d. com-
plex Gaussian, by the law of large numbers, massive MIMO
enjoys channel hardening [53]: hH

k
hk ! 1, as M ! 1. In

practical systems, when M is large but finite, for the signal
part of (6), we have

Eh

2

4
X

k2[K]

h
H

k
hkxk,i

3

5 =
X

k2[K]

xk,i, (7)

and

Varh

2

4
X

k2[K]

h
H

k
hkxk,i

3

5 =

P
k2[K] x

2
k,i

M
. (8)

Favorable propagation. Since channels between different
users are independent random vectors, massive MIMO also
offers favorable propagation [53]: h

H

k
hj ! 0, as M ! 1,

8k 6= j. Similarly, when M is finite, we have

Eh

2

4
X

k2[K]

X

j2[K],j 6=k

h
H

k
hjxj,i

3

5 = 0, (9)
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and

Varh

2

4
X

k2[K]

X

j2[K],j 6=k

h
H

k
hjxj,i

3

5 =
(K � 1)

P
k2[K] x

2
k,i

M
.

(10)
Furthermore, the expectation of the noise part in (6) is
zero. Therefore, x̃i in (6) is an unbiased estimate of the
average model. For a given K, the variances of both signal
and interference decrease in the order of O(1/M), which
shows that massive MIMO offers random orthogonality

for analog aggregation over wireless channels. In particular,
the asymptotic element-wise orthogonality of channel vector
ensures channel hardening, and the asymptotic vector-wise
orthogonality among different wireless channel vectors pro-
vides favorable propagation. Both properties render the linear
projection operation h

H

s
yi an ideal fit for the server model

aggregation in FL.
To gain some insight of random orthogonality, we ap-

proximate the average signal-to-interference-plus-noise-ratio
(SINR) after the operation in (6) as

E[SINRi] ⇡

Eh,x

���
P

k2[K] h
H

k
hkxk,i

���
2

Eh,n,x

���
P

k2[K]

P
j2[K],j 6=k

h
H

k
hjxj,i +

P
k2[K] h

H

k
ni

���
2

=
M

K � 1 + 1/SNR
,

(11)

which grows linearly with M for a fixed K. On the other
hand, for a given number of antennas M , Eqn. (11) can
be used to guide the choice of K in each communication
round to satisfy an SINR requirement. We will provide more
details on the scalability of clients via the convergence analysis
of FL with random orthogonalization in Section VI-B. We
note that Eqn. (11) is an approximate expression for SINR
but it sheds light into the relationship between K and M .
This approximation, however, is not used in the convergence
analysis of FL with random orthogonalization in Section VI-B.

We note that the uplink random orthognalization design
presented above is similar to that in [47], which also relies on
orthogonality to directly compute the summation ML model
at the server. Our work, however, builds a more complete
framework that has both uplink and downlink designs, for both
massive MIMO and general MIMO. This will be elaborated
in the following sections.

B. Downlink Communication Design

Inspired by the uplink communication design, the downlink
design contains the following two steps.

(D1) Uplink channel summation. This step remains the
same as U1 in the uplink design. We similarly assume perfect
sum channel estimation hs =

P
k2[K] hk at the BS.

(D2) Downlink global model broadcast. The BS broadcasts
global model {wi} to all users, using the estimated summation

channel hs as the precoder. Hence the received signal at the
k-th user is

yk = hH

k hswi + z
k

i

(a)
= hH

k hkwi| {z }
Signal

+
X

j2[K],j 6=k

hH

k hjwi

| {z }
Interference

+ z
k

i|{z}
Noise

(b)
⇡ wi 8i = 1, · · · , d.

(12)

The above two-step downlink communication procedure is
illustrated in Fig. 2. Similar to the uplink case, the global
model signal obtained at each client can also be regarded as
the combination of three parts: signal, interference, and noise
as shown in (12). Leveraging channel hardening and favorable
propagation of massive MIMO channels as mentioned before,
we have

Eh

⇥
h
H

k
hkwi

⇤
= wi and Varh

⇥
h
H

k
hkwi

⇤
=

w2
i

M
, (13)

for the signal part of (12). Besides, we have

Eh

2

4
X

j2[K],j 6=k

h
H

k
hjwi

3

5 = 0 (14)

and

Varh

2

4
X

j2[K],j 6=k

h
H

k
hjwi

3

5 =
(K � 1)w2

i

M
, (15)

for the interference part. The above derivation demonstrates
that, similar to the uplink design, received signals obtained
via (12) are unbiased estimates of global model parameters
whose variances decrease in the order of O(1/M) with the
increase of BS antennas. We next give a few remarks about
the proposed uplink and downlink communication designs of
FL with random orthogonalization.

Remark 1. In uplink communications, unlike the analog
aggregation method in [6], the proposed random orthogonal-
ization does not require any individual CSIT. On the contrary,
it only requires partial CSIR, i.e., the estimation of a sum-
mation channel hs, which is 1/K of the channel estimation
overhead compared with the AirComp method in [10] or the
traditional MIMO estimators. In downlink communications,
the traditional precoder design for common message broadcast
requires CSIT for each client. By using the summation channel
hs as the precoder for global model broadcast, only partial
CSIT is needed. Since we assume a TDD system configuration,
the downlink summation channel hs can be estimated at a
low cost utilizing channel reciprocity as shown in Step D1.
Therefore, the proposed method is attractive in wireless FL
due to its mild requirement of partial CSI. Moreover, the
server obtains global models directly after a series of simple
linear projections, which improves the privacy and reduces the
system latency as a result of the extremely low computational
complexity of random orthogonalization. The same applies to
the downlink phase.

Remark 2. Note that although we assume i.i.d. Rayleigh
fading channels across different clients, the proposed random
orthogonalization method is still valid for other channel mod-

This article has been accepted for publication in IEEE Transactions on Wireless Communications. This is the author's version which has not been fully edited and 
content may change prior to final publication. Citation information: DOI 10.1109/TWC.2023.3302335

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.� � See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Penn State University. Downloaded on August 30,2023 at 14:32:12 UTC from IEEE Xplore.  Restrictions apply. 



6

Fig. 2. An illustration of the proposed downlink FL design with massive MIMO.

els as long as channel hardening and favorable propagation
are offered. In massive MIMO millimeter-wave (mmWave)
communications, Rayleigh fading channels and light-of-sight
(LOS) channels represent two extreme cases: rich scattering
and no scattering. It is shown in [53] that both channel models
offer asymptotic channel hardening and favorable propaga-
tion. In practice, we are likely to have a scenario which lies in
between these two cases. Therefore, even under some channel
correlations, the MIMO channels can still provide certain level
of channel hardening and favorable propagation. Generally
speaking, the random orthogonalization method is still valid
in MIMO channels with low to moderate correlations, albeit
with increased interference in the decoded models.

V. ENHANCED RANDOM ORTHOGONALIZATION DESIGN

The proposed random orthogonalization principle in Section
IV requires channel hardening and favorable propagation.
Although these two properties are quite common in massive
MIMO systems, in the case that they are not available (e.g.,
the number of BS antennas is small), our design philosophy
can still be applied by introducing a novel channel echo

mechanism. In this section, we present an enhanced design
to the methods in Section IV by taking advantage of channel
echos.

Channel echo refers to that the receiver sends whatever it
receives back to the original transmitter as the data payload.
Similar techniques have been proposed before, such as “Echo-
MIMO” and “two-way training” in [54] and [55]. However,
they are developed for cooperative beamforming and optimal
power allocation, respectively, and only focus on the single-
user case. The main purpose of channel echo in our setting,
however, is to “cancel” channel fading for each of the involved
clients. The enhanced design for the uplink communications
contains the following four main steps, which is demonstrated
in Fig. 3.
(EU1) Uplink channel summation. The first step of the
enhanced design follows the same as the random orthogonal-
ization method (U1 and D1), so that the BS has the estimate
sum channel vector hs =

P
j2[K] hk.

(EU2) Downlink channel echo. The BS sends the previ-
ously estimated hs (after normalization to satisfy the power
constraint) to all clients. For the k-th client, the received
signal is yk = hH

k
hsp
K

+ nk, by which client k can estimate
gk = h

H

k
hs = h

H

k

P
j2[K] hk = khkk

2 +
P

K

j2[K],j 6=k
h
H

k
hj .

Note again that we assume a perfect estimation of hs. An

additional error term will appear in the estimation of gk when
the summation channel estimation is imperfect, which will be
discussed later.

(EU3) Uplink model transmission. All involved clients
transmit local parameter {xk,i/Re(gk)}k2[K] to the BS syn-
chronously in d shared time slots: yi =

P
K

k2[K] hk

xk,i

Re(gk)
+

ni, 8i = 1, · · · , d.

(EU4) Server computation. The BS obtains
P

k2[K] xk,i

via the following operation:

x̃i = Re(yH

i hs) = Re

2

4
X

k2[K]

hH

k

xk,i

Re(gk)

KX

j2[K]

hj + nH

i

X

j2[K]

hj

3

5

=
X

k2[K]

xk,i

Re(gk)
Re

2

4hH

k

X

j2[K]

hj

3

5+ Re

2

4nH

i

X

j2[K]

hj

3

5

=
X

k2[K]

xk,i + Re

2

4
X

j2[K]

hH

j ni

3

5 .

(16)

Similarly, as shown in Fig. 4, the enhanced design for the
downlink communication contains the following four main
steps.

(ED1-2) Uplink channel summation and downlink channel

echo. The first two steps in the downlink design remain the
same as Steps EU1 and EU2 in the uplink design, so that the
BS can estimate channel vector summation hs =

P
j2[K] hk

and each client can estimate the parameter gk.

(ED3) Downlink global model broadcast. The BS broad-
casts global model {wi} to all clients using the estimated sum
channel hsp

K
as the precoder. The received signal at the k-th

client is yk = h
H

k

hsp
K
wi+ni =

1p
K
gkwi+zk

i
, 8i = 1, · · · , d.

(ED4) Model parameter computation. Each user obtains
the global model {wi} via the following calculation:

Re

"p
Kyk
gk

#
= wi + Re(

p
Kzk

i

gk
) 8i = 1, · · · , d. (17)

Note that the estimations of the aggregated signal and the
global model in (16) and (17) are both unbiased, since nj ,
hj and zk

i
are independent random variables with zero mean,

and E[gk] 6= 0. Compared with the random orthogonalization
method that offers asymptotic interference-free global model
estimation, the received FL parameters obtained by the en-
hanced method are completely interference-free at both the
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Fig. 3. An illustration of the proposed enhanced uplink FL design with massive MIMO.

Fig. 4. An illustration of the proposed enhanced downlink FL design with massive MIMO.

server and the clients, as shown in (16) and (17). The extra
channel echo steps (Step EU2 in uplink and Step ED1 in
downlink) allow clients to obtain partial CSI gk, so that they
can pre-cancel and post-cancel channel interference among
different user channels in uplink and downlink communica-
tions, respectively. Therefore, this enhancement is valid even

if channel hardening and favorable propagation are not

present in wireless channels, at a low cost of using one extra
slot for the channel echo operation, and preserves all the other
advantages of random orthogonalization.

Remark 3. We note that so far, both random orthogonalization
and enhanced methods assume a perfect estimation of hs. In
practical systems, to improve the accuracy of the estimate ĥs,
BS can use multiple pilots or multiple time slots for improved
channel estimation, but summation channel estimation error
will inevitably exist. In the following, we use uplink random
orthogonalization as an example to analytically evaluate the
impact of imperfect summation channel estimation. Denote the
imperfect summation channel as ĥs = hs + ✏, where ✏ ⇠

CN (0, �
2
✏

M
IM ) is the summation channel estimation error that

is modeled as a Gaussian random vector with i.i.d. elements.
The decoded signal in (6) becomes

x̃i = ĥ
H

s
yi =

2

4
X

k2[K]

h
H

k
+ ✏H

3

5
X

k2[K]

hkxk,i

+
X

k2[K]

h
H

k
ni + ✏Hni =

X

k2[K]

h
H

k
hkxk,i

| {z }
Signal

+
X

k2[K]

X

j2[K],j 6=k

h
H

k
hjxj,i +

X

k2[K]

✏Hhkxk,i

| {z }
Effective interference

+
X

k2[K]

h
H

k
ni + ✏Hni

| {z }
Effective noise

⇡

X

k2[K]

xk,i, 8i = 1, · · · , d. (18)

Note that estimation in (18) is still unbiased, since
E
hP

k2[K] ✏
H
hkxk,i

i
= 0 and E

⇥
✏Hni

⇤
= 0. Moreover, we

have

Varh,✏

2

4
X

k2[K]

✏Hhkxj,i

3

5 =
K�2

✏
P

k2[K] x
2
k,i

M
, (19)

and
Var

⇥
✏Hni

⇤
=

�2
UL�

2
✏

M
. (20)

Therefore, it is equivalent to consider the presence of channel
estimation error as a perfect estimation case with a larger
effective interference and noise, which depend on the channel
estimation quality �2

✏. In addition, for the enhanced method,
the estimation error of hs itself will not affect the performance,
since the imperfect estimated summation channel will cancel
out in Step EU/ED4. Only the imperfect estimation of gk will
influence the results. We provide more details on the robustness
of the proposed schemes over imperfect ĥs and gk in the
experiment results.

Remark 4. In the enhanced uplink design, each client pre-
cancels the channel fading effect so that the global model
can be directly obtained at the BS after simple operations.
Note that the analog aggregation method in [6] also uses
“channel inversion” to pre-cancel channel fading. However,
our design outperforms the method in [6] because the latter
requires full CSIT, which leads to a large channel estimation
overhead even with channel reciprocity in a TDD system. On
the contrary, our method only requires partial CSI, which can
be efficiently obtained via channel echos. Moreover, channel-
inversion-based methods do not naturally extend to MIMO
systems when the uplink channels become vectors, which
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makes the inversion operations at the transmitters nontrivial.

VI. PERFORMANCE ANALYSES

We analyze the performance of the proposed methods from
two aspects. On the communication performance side, we
derive CRLBs of the estimates of model parameters in both
uplink and downlink phases as the theoretical benchmarks. On
the machine learning side, we present the convergence analysis
of FL when the proposed communication designs are applied.

A. Cramer-Rao Lower Bounds

In the uplink communication, recall that the received signal
is yi = Hxi + ni. Denoting µUL = Hxi, we have yi ⇠

CN (µUL,
1

SNRI). To leverage CRLBs to evaluate the parameter
estimation, we first need to derive the Fisher information of
xi. Based on Example 3.9 in [52], we can write the Fisher
information matrix (FIM) of the estimation of xi as:

FUL = 2 · SNR · Re

@HµUL(xi)

@xi

@µUL(xi)

@xi

�
. (21)

After inserting @µUL(xi)
@xi

= H into the FIM, we have FUL =
2 · SNR · Re(HH

H). Note that for the enhanced uplink
design, we can absorb Re(gk) into the effective channel as
H̃ , [h1/Re(g1), · · · ,hK/Re(gK)], and calculate FIM via
FUL = 2 · SNR · Re(H̃H

H̃).
In the downlink communication, since yk = h

H

k
hswi +

nk, by the definition of µDL = h
H

k
hswi, we have that

yk ⇠ CN (µDL,
1

SNR ). The Fisher information of global model
parameters is

FDL = 2 · SNR · Re

@HµDL(wi)

@wi

@µDL(wi)

@wi

�

= 2 · SNR · Re(hH

k
hsh

H

s
hk).

(22)

The CRLBs of estimates are then given by the inverse of
the Fisher information (matrix): Cx̂i

= F
�1
UL and Cŵi

=
1/FDL, respectively. CRLBs are the lower bounds on the
variances of unbiased estimators, stating that the variance
of any such estimator is at least as high as the inverse of
the Fisher information (matrix). We have shown that the
proposed methods lead to unbiased estimations of the global
model in both uplink and downlink communications. Hence,
we can use the sum of all diagonal elements of Cx̂ as the
lower bound of the mean squared error (MSE) E kxi � x̂ik

2,
and use Cŵi

as the lower bound of MSE E kwi � ŵik
2, to

evaluate the performance of model estimation in both uplink
and downlink communications. These bounds will be validated
in the experiment results.

B. ML Model Convergence Analysis

We now analyze the ML model convergence performances
of the proposed methods. Note that as we have proposed
two different designs (basic and enhanced) for the uplink
and downlink communications, respectively, there would be
four cases of convergence analysis. Since these convergence
analyses are quite similar, we only report one of these results.

We first make the following standard assumptions that are
commonly adopted in the convergence analysis of FEDAVG
and its variants [15], [56], [57]. In particular, Assumption 1
indicates that the gradient of fk is Lipschitz continuous. The
strongly convex loss function in Assumption 2 is a category of
loss functions that are widely studied in the literature (see [15]
and its follow-up works). Assumptions 3 and 4 imply that the
mini-batch stochastic gradient and its variance are bounded
[14].

Assumption 1. L-smooth: 8 v and w, kfk(v)� fk(w)k 

L kv �wk;

Assumption 2. µ-strongly convex: 8 v and w,
hfk(v)� fk(w),v �wi � µ kv �wk

2;

Assumption 3. Bounded variance for unbiased mini-batch
SGD: 8k 2 [N ], E[rf̃k(w)] = rfk(w) and

E
���rfk(w)�rf̃k(w)

���
2
 H2

k
;

Assumption 4. Uniformly bounded gradient: 8k 2 [N ],

E
���rf̃k(w)

���
2
 H2 for all mini-batch data.

We next provide a convergence analysis of FL when the
uplink communication utilizes random orthogonalization and
the enhanced design is applied to the downlink communica-
tion. Note that unlike uplink communications, we cannot use
model differential for downlink FL communications because
of partial clients selection. To guarantee the convergence of
FL, we need to borrow the necessary condition for noisy FL
downlink communication from our previous work [58], i.e.,
downlink transmit power should scale in the order of O(t2).

Theorem 1 (Convergence for random orthogonalization in
the uplink and enhanced method in the downlink). Consider
a wireless FL task that applies random orthogonalization for
the uplink communications and the enhanced method for the
downlink communications. With Assumptions 1-4, for some
� � 0, if we set the learning rate as ⌘t = 2

µ(t+�) and downlink
SNR scales as SNRDL �

1�µ⌘t

⌘
2
t

in round t, we have

E[f(wt)]� f
⇤  L

2(t+ �)


4B
µ2

+ (1 + �) kw0 �w⇤k2
�
, (23)

for any t � 1, where

B ,
NX

k=1

H
2
k

N2
+ 6L�+ 8(E � 1)2H2 +

N �K

N � 1
4
K

E
2
H

2

+
4
K

✓
K

M
+

1
SNRUL

◆
E

2
H

2 +
MK

N2(K +M)
.

(24)

Proof. Proof of Theorem 1 is given in Appendix C.

Theorem 1 shows that applying random orthogonalization
in the uplink communications and enhanced method in the
downlink communications preserves the O(1/T ) convergence
rate of vanilla SGD in FL tasks with perfect communications
in both uplink and downlink phases. The factors that impact
the convergence rate are captured entirely in the constant
B, which come from multiple sources as explained below:P

k2[N] H
2
k

N2 comes from the variances of stochastic gradients;
6L� is introduced by the non-i.i.d. of local datasets; the
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choice of local computation steps and the fraction of partial
client participation lead to 8(E � 1)2H2 and N�K

N�1
4
K
E2H2,

respectively; and the interference and noise in uplink and
downlink communications result in 4

K

⇣
K

M
+ 1

SNRUL

⌘
E2H2

and
�
d+ dK

M

�
, respectively. Note that the impact of the

downlink noise, i.e., SNRDL, is not explicit in B due to the
requirement of SNRDL �

1�µ⌘t

⌘
2
t

to guarantee the convergence.

Remark 5. We note that Theorem 1 considers random or-
thogonalization in the uplink and enhanced method in the
downlink. When random orthogonalization is adopted in the
downlink, the convergence bound in (23) will suffer from an
additive constant term. This is because the interference cannot
be effectively reduced when downlink power scales in the
order of O(t2), as required for direct model transmission
[58]. This gap is also empirically observed in the experiments
(see Section VII-B). However, we also note that this gap is
inversely proportional to the number of antennas M . Hence,
as M becomes large, it reduces to zero asymptotically6.

We next analyze the relationship between the number of
selected clients K and the number of BS antennas M to
understand the scalability of multi-user MIMO for FL, which
provides more insight for practical system design. To this end,
we consider a simplified case where the system only configures
random orthogonalization in the uplink communications, as-
suming that the downlink communications are error-free. Note
that this configuration is reasonable when the BS has large
transmit power. We further assume full client participation
(N = K), one-step SGD at each device (E = 1), and i.i.d
datasets across all clients (� = 0). For this special case, we
establish Corollary 2 as follows.

Corollary 2 (Convergence for the simplified case). Consider
a MIMO system that applies random orthogonalization for the
uplink communications of FL with full client participation,
one-step SGD at each device, and i.i.d datasets across all
clients. Based on Assumptions 1-4 and choosing learning rate
as ⌘t =

2
µ(t+�) , 8t 2 [T ], the following inequality holds:

E[f(wt)]� f
⇤  L

2(t+ �)


4B̃
µ2

+ (1 + �) kw0 �w⇤k2
�

(25)

for any t � 1, where

B̃ ,

1 +

K

M
+

1

SNR

�
H2

K
. (26)

Proof. Corollary 2 comes naturally from Theorem 1 by setting
N = K, � = 0, E = 1, omitting the

�
d+ dK

M

�
term due

to the perfect downlink communications, and the fact that
E
���rfk(w)�rf̃k(w)

���
2
 E

���rf̃k(w)
���
2
 H2.

Corollary 2 shows that there are two main factors that
impact the convergence rate of FL with MIMO: variance

reduction and channel interference and noise. In particular,
the definition of B̃ in (26), which appears in Corollary 2,
captures the joint impact of both factors. The nature of

6Due to the space limitation, the technical details for this remark are
deferred to our technical report [59].

distributed SGD suggests that, for a fixed mini-batch size at
each client, involving K devices enjoys a 1

K
variance reduction

of stochastic gradient at each SGD iteration [60], which is
captured by the H

2

K
term in (26). However, due to the existence

of interference and noise, the convergence rate is determined
by both factors, shown as H

2

K
and (K/M+1/SNR)H2

K
⇡

H
2

M

terms in (26). This suggests that the desired variance reduction
may be adversely impacted if channel interference and noise
dominate the convergence bound. In particular, when M � K,
we have 1

K
�

1
M

, and the system enjoys almost the same
variance reduction as the interference-free and noise-free case.
However, in the case of K � M , we have (K/M+1/SNR)

K
⇡

1
M

�
1
K

, and H
2

M
dominates the convergence bound. In this

case, it is unwise to blindly increase the number of clients, as
it does not have the advantage of variance reduction.

Remark 6. In massive MIMO, a BS is usually equipped with
many (up to hundreds) antennas. Although there may be large
number of users participating in FL, only a small number of
them are simultaneously active [10]. Both factors indicate that
K ⌧ M often holds in typical massive MIMO systems. The
analysis reveals that our proposed framework enjoys nearly
the same interference-free and noise-free convergence rate
with low communication and computation overhead in massive
MIMO systems.

VII. EXPERIMENT RESULTS

We evaluate the performances of random orthogonalization
and the enhanced method for uplink and downlink FL com-
munications through numerical experiments. From a commu-
nication performance perspective, we compare the proposed
methods with the classic MIMO estimators and precoders with
respect to the MSE. We provide the computation time com-
parison as a measure of the complexity of various methods.
We also discuss the robustness of the proposed methods when
the properties of channel hardening and favorable propagation
are not fully offered and the channel estimation is imperfect.
We further verify the effectiveness of the proposed methods
via FL tasks using real-world datasets.

A. Communication Performance

We consider a massive MIMO BS with M = 64, 128, 256,
512, or 1024 antennas, with K = 8 active users participating
in an FL task. We assume a Rayleigh fading channel model,
i.e., hk ⇠ CN (0, 1

M
I), for each user, and use the MSE of

the computed global model parameters in uplink and downlink
communications to evaluate the system performance. All MSE
results are obtained from 2000 Monte Carlo experiments.
We use CRLBs derived in Section VI-A as the benchmark
of the computed MSEs. More specifically, the benchmark
corresponds to the mean CRLBs calculated via (21) and (22)
using the channel realizations in the Monte Carlo simulation.
In addition, we adopt the traditional MIMO MMSE estimator
and the semidefinite relaxation based (SDR-based) precoder
design method in [50] for performance comparisons of uplink
and downlink communications, respectively.
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Fig. 5. MSE of the received global ML model parameters versus SNR of random orthogonalization in uplink (a) and downlink (b) communications and of
the enhanced method in uplink (c) and downlink (d) communications.

Effectiveness. Fig. 5(a) and Fig. 5(b) compare the MSE
performance of the random orthogonalization method in uplink
and downlink communications with the traditional MIMO
estimator/precoder as well as the CRLB under different system
SNRs. As illustrated in these two plots, the proposed method
performs nearly identically to the CRLB in low and moderate
SNRs under different antenna configurations (see SNR  12
dB for uplink and SNR  18 dB for downlink, when
M = 128, 256 and 1024). As the SNR increases, the dominant
factor affecting system performances becomes the interference
among different users. In the uplink communications, when
K  M and at high SNR, Eqn. (11) shows that for a given
K and M , the proposed method has a fixed (approximate)
SIR = K�1

M
as SNR ! 1, which explains why the per-

formance of the proposed scheme deteriorates compared with
MMSE at high SNR. This phenomenon is more prominent
when the number of antennas at the BS is relatively small
(M = 64 and 128). However, this issue disappears naturally as
the number of BS antennas increases. It can be seen in Fig. 5(a)
that the performance gap between the proposed method and the
CRLB reduces, from about 12 dB when M = 64 to about 2 dB
when M = 1024 at SNR = 20 dB, in uplink communications.
We note that, although random orthogonalization produces
higher MSEs than the MMSE estimator, the FL tasks have
the same convergence rate under a constant SINR in uplink

communications as indicated by the convergence analysis.
This will be further validated in Section VII-B by showing
that random orthogonalization hardly slows the convergence
of FL. Similar to uplink, random orthogonalization performs
nearly identically to the CRLB in low and moderate SNRs in
downlink, and only loses about 0.5 ⇠ 6 dB under different
antenna configurations at SNR = 24 dB. Moreover, random
orthogonalization outperforms the SDR-based method at al-
most all SNRs and antenna configurations. Due to its sub-
optimality, the performance of SDR-based method deteriorates
as the number of antennas increases. In particular, it has about
3 dB loss compared with the CRLB when M = 1024, which
further highlights the strengths of our approach for large arrays
in massive MIMO. We should emphasize that our method only
requires 1/K of the channel estimation overheard (partial CSI)
compared with both MMSE and the SDR-based method (full
CSI), and this advantage is more pronounced when the BS is
equipped with a larger number of antennas.

Similarly, Fig. 5(c) and Fig. 5(d) compare the MSE per-
formance of the enhanced method in uplink and downlink
communications with the MMSE estimator / SDR-based pre-
coder. It is clear from both plots that the enhanced method
achieves MSEs that are very close to the CRLBs. Furthermore,
it performs nearly identically as the MMSE estimator in
uplink, and outperforms the SDR-based method by about
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TABLE I
COMPUTATION TIME COMPARISON BETWEEN THE PROPOSED METHODS AND THE MMSE/SDR METHOD

# antennas Total CPU time (second) Ratio Total CPU time (second) Ratio
(M) RO-UL MMSE RO-UL/MMSE Enhanced-UL MMSE Enhanced-UL/MMSE
256 0.0186 2.7141 0.68% 0.0203 2.9228 0.69%
512 0.0303 12.4155 0.24% 0.0469 16.3938 0.30%
1024 0.0448 82.3530 0.05% 0.0711 91.4117 0.07%

# antennas Total CPU time (second) Ratio Total CPU time (second) Ratio
(M) RO-DL SDR RO-DL/SDR Enhanced-DL SDR Enhanced-DL/SDR
256 0.0157 25.1492 0.062% 0.0163 28.8593 0.056%
512 0.0415 324.7349 0.012% 0.0592 492.9539 0.012%
1024 0.0571 4819.6221 0.0012% 0.0695 5925.9250 0.0011%

0.5 � 3 dB in downlink for different antenna configurations.
Therefore, by introducing channel echos, the enhanced method
achieves excellent performance while consuming relatively
low additional resource. Unlike random orthogonalization,
the enhanced method cancels out all the interference in the
decoded signal. Therefore, it is more attractive for smaller
antenna arrays when the MIMO channels are not sufficiently
orthogonal, despite at an additional channel echo cost. Random
orthogonalization and the enhancement hence supplement each
other, and they jointly serve as an efficient framework for both
uplink and downlink communications of FL under different
array configurations. The machine learning model parameters
we estimate in FL are real signals. This constraint leads to
a biased estimator at very low SNR, which leads to MSE
saturation. Therefore, the MMSE estimator achieves a lower
MSE than the CRLB when SNR  4 dB. It is worth noting
that we can obtain an unbiased estimator by using complex
signals and keeping the imaginary part of the estimates. For
more details on MSE saturation in low SNRs, please refer to
Section VI-D in [61].

Efficiency. We next focus on the low-latency advantage of
the proposed methods, which originate from the low com-
putational complexity. The complexity of both MMSE and
SDR-based methods scale as Õ(M3), which is considerably
higher compared with the Õ(M) complexity of random or-
thogonalization and the enhanced method. To illustrate the
benefit of low latency, we report the CPU time as a ref-
erence for an intuitive demonstration. Table I compares the
computational time of the proposed schemes with the MMSE
estimator and the SDR-based precoder when SNR = 10 dB in
the uplink and downlink communications, respectively. The
total CPU time is the cumulative time of each algorithm
over 2000 Monte Carlo experiments. We see that the time
consumption of random orthogonalization and the enhanced
method is much less than that of the MMSE estimator and the
SDR-based precoder. Especially, when M = 1024, despite
the 0.3 dB normalized MSE (NMSE) performance loss of
random orthogonalization compared with the MMSE estimator
in the uplink communications (as shown in Fig. 5(a)), the
computation time of the former is only 0.05% of the latter.
The proposed methods are even more computationally efficient
for the downlink communications, as the total CPU time is
less than 0.1% of the SDR-based method in all settings. All
these results suggest that both random orthogonalization and

its enhancement are attractive in massive MIMO systems,
because they have promising MSE performances but require
much less channel estimation overhead and achieve extremely
lower system latency than the classic MIMO estimators and
precoders.
Robustness. We now focus on the robustness of the proposed
methods, and evaluate the MSEs of the global model param-
eters obtained at SNR = 10 dB through 2000 Monte Carlo
experiments. Fig. 6 reports the achieved MSEs of the random
orthogonalization method when the (approximate) channel
hardening and favorable propagation are not strictly offered,
i.e., the wireless channels are correlated. We consider two
channel correlation models with covariance matrix elements
equal to 1 on the diagonal and equal to 0.01 or 0.05 off the
diagonal, respectively. It is observed that when the off-diagonal
elements are 0.01, random orthogonalization performs nearly
identically as that in the ideal i.i.d. Rayleigh fading channel
case. Even when the off-diagonal elements equal to 0.05, the
achieved MSEs only increase by less than 1 dB in the worst
case (when M = 256). The MSEs become closer to those of
the i.i.d. Rayleigh channel cases when M increases, as larger
antenna arrays offer higher orthogonality.

We next evaluate the performance when the estimation of
the summation channel hs (and gk in the enhanced method) is
imperfect. The right sub-figure of Fig. 6 compares the MSEs
of both proposed methods when the channel estimation is
obtained under SNR = 20 dB. It reveals that the downlink
communication is more robust than the uplink – the former
achieves nearly identical MSEs as the ideal case even when the
channel estimation is inaccurate. For the uplink, an imperfect
channel estimation increases the MSEs by 1 ⇠ 3 dB depending
on the antenna configurations. However, we emphasize again
that the FL tasks have the same convergence rate under a
constant SINR in the uplink communications (thanks to the
model differential transmission).

B. Learning Performance

To evaluate the learning performance, we carry out experi-
ments of FL classification tasks using two widely adopted real-
world datasets: MNIST and CIFAR-10, via a support vector
machine (SVM) model and a convolution neural network
(CNN) model, respectively. In the MNIST-SVM experiment,
we evaluate the proposed uplink and downlink design sep-
arately, to identify their individual influence on the learning
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Fig. 6. MSE comparison of the received global ML model parameters when channel hardening and favorable propagation are not fully offered (left) and
channel estimation is imperfect (right).
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(a) MNIST uplink

0 250 500 750 1000 1250

Training rounds

0.44

0.46

0.48

0.5

0.52

0.54

0.56

0.58

0.6

0.62

0.64

T
e

st
 A

cc
u

ra
cy

ideal
Downlink RO
Downlink enhancement

(b) MNIST downlink
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Fig. 7. Comparison of test accuracy. (a): a SVM FL task with an ideal uplink communication (interference and noise free), random orthogonalization, and
the enhanced method; (b): a SVM FL task with an ideal downlink communication (interference and noise free), random orthogonalization, and the enhanced
method; (c): a CIFAR classification FL task with ideal uplink and downlink communications (interference and noise free), random orthogonalization, and the
enhanced method.

performance. Then, in the CIFAR-CNN experiment, we jointly
consider the uplink and downlink designs to evaluate the
overall system performance of the proposed framework.

MNIST-SVM. The MNIST dataset collates small square
28 ⇥ 28 pixel gray-scale images of handwritten single digits
between 0 and 9 [62]. We implement a SVM to classify even
and odd numbers in the MNIST dataset, with d = 784. Total
clients are set as N = 20, the size of each local dataset is 500,
the size of the test set is 2000, and E = 1. The local dataset
can be regarded as non-i.i.d. since we only allocate data of
one label to each client. We consider a massive MIMO cell
with M = 256 antennas at the BS and K = 8 (out of 20)
randomly selected clients are involved in each learning round.
The channels between each client and the BS are assumed to
be i.i.d. Rayleigh fading.

Fig. 7(a) reports the test accuracy when the uplink adopts
the proposed method, and the downlink is assumed to be noise-
free. The uplink SNR is set as 10 dB. We can see that both
random orthogonalization and the enhanced method behave
almost identically as the ideal case where both uplink and
downlink communications are perfect. Note that although the
global model received at the BS has noise and interference
components, the actual learning performances of the two
methods do not deteriorate. Due to the model differential

transmission in the uplink communications, the effective SINR
of the received global model gradually increases as the model
converges, despite the presence of channel interference and
noise. Fig. 7(b) demonstrates the learning performance when
the proposed designs are applied to the downlink communica-
tions. Since the model differential transmission is infeasible,
we set the initial downlink SNR as 0 dB and scale at a rate
of O(t2) as the learning progresses (see [58]). We notice
that the learning performance of the enhanced method is
almost identical to that of the ideal case, while there is
about 2% test accuracy loss for random orthogonalization.
Note that, for downlink communications, because the BS only
applies the normalized summation channel as the precoder,
large-scale fading will result in different received SNRs for
different clients. In this case, the above downlink SNR can be
considered as the “worst” SNR among the involved clients (as
the BS power control will need to target the worst-case user).
Therefore, the reported result can be viewed as a lower bound
of the actual performance.

CIFAR-CNN. The CIFAR-10 dataset consists of 32 ⇥ 32
color images in 10 classes, and we train a CNN model
for the classification task. The CNN model consists of two
5 ⇥ 5 convolution layers (both with 64 channels), two fully
connected layers (384 and 192 units respectively) with the
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ReLU activation, and a final output layer with the softmax
activation. The two convolution layers are both followed by
2⇥ 2 max pooling and a local response norm layer. In the FL
tasks, we set N = K = 10, and the size of each local dataset is
1000, with mini-batch size 50 and E = 5. The initial learning
rate is ⌘ = 0.15 and decays every 10 rounds with rate 0.99.
We consider a massive MIMO cell with M = 1024 antennas
at the BS and the channels between each client and the BS
are assumed to be i.i.d. Rayleigh fading. The uplink SNR is
set as 10 dB and the initial downlink SNR is set as 0 dB, and
scales at the rate of O(t2).

Fig. 7(c) illustrates the training loss and test accuracy
versus the learning rounds when both the uplink and downlink
communications adopt the random orthogonalization method
or the enhanced method, respectively. It is observed that
the enhanced method achieves similar training loss and test
accuracy as the ideal case. Due to the constant interference
in the downlink communications, random orthogonalization
incurs a test accuracy loss of about 3%.

To summarize, experiments on both datasets demonstrate
that random orthogonalization suffers a slight performance
degradation over the ideal case when it is applied to the
downlink communications. As we have stated in Remark 5,
unlike the enhanced method that cancels all interference in
the received global model, the interference is constant in the
global model obtained via random orthogonalization despite
the increased SNR. Note that this gap can be reduced by
increasing M . Therefore, downlink random orthogonalization
is more attractive in systems with large number of antennas
or severely limited resources.

VIII. CONCLUSIONS

Leveraging the unique characteristics of channel hardening
and favorable propagation in a massive MIMO system, we
have proposed a novel uplink communication method, termed
random orthogonalization, that significantly reduces the chan-
nel estimation overhead while achieving natural over-the-air
model aggregation without requiring transmitter side channel
state information. We have extended this principle to the down-
link communication phase and developed a simple but highly
effective model broadcast method for FL. We also relaxed the
massive MIMO assumption by proposing an enhanced random
orthogonalization design that utilizes channel echos. Theoret-
ical performance analyses, from both communication (CRLB)
and machine learning (model convergence rate) perspectives,
have been carried out. The theoretical results suggested that
random orthogonalization achieves the same convergence rate
as vanilla FL with perfect communications asymptotically, and
were further validated with numerical experiments. We will
extend our work in the scenario where each client is equipped
with multiple antennas in the future research.

APPENDIX A
PRELIMINARIES

We first change the timeline to be with respect to the overall
SGD iteration time steps instead of the communication rounds,

i.e.,

t = 1, · · · , E| {z }
round 1

, E + 1, · · · , 2E| {z }
round 2

, · · · , (T � 1)E + 1, · · · , TE| {z }
round T

.

Note that the global model wt is only accessible at the clients
for specific t 2 IE , where IE = {nE | n = 1, 2, . . . }, i.e., the
time steps for communication. The notation for ⌘t is similarly
adjusted to this extended timeline, but their values remain
constant within the same round. The key technique in the
proof is the perturbed iterate framework in [63]. In particular,
we first define the following local training variables for client
k: v

k

t+1 , p
k

t
� ⌘trf̃k(pk

t
); when t + 1 /2 IE , we have

v
k

t+1 = u
k
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t+1; when t + 1 2 IE , we have:
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where Nt+1 , [n1, · · · ,ni, · · · ,nd]
H

2 Cd⇥M is the stack
of uplink noise in (5), and
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K
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Re(zk1/g1), · · · ,Re(zkd/gd)

⇤H 2 Cd⇥1 if k 2 [K],

0 otherwise,

are the downlink noise in (12), respectively. Then, we construct
the following virtual sequences: vt = 1
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P
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) for convenience. Therefore, vt+1 = wt �
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is only meaningful when t + 1 2 IE , hence we have
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it is sufficient to analyze the convergence of kwt+1 �w
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k
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to evaluate random orthogonalization.

APPENDIX B
LEMMAS

We first establish the following lemmas that are useful in
the proof of Theorem 1.

Lemma 1. Let Assumptions 1-4 hold, ⌘t is non-increasing,
and ⌘t  2⌘t+E for all t � 0. If ⌘t  1/(4L),
we have E kvt+1 �w

⇤
k
2

 (1 � ⌘tµ)E kp
t
�w

⇤
k
2 +

⌘2
t

⇣P
k2[N ] H

2
k
/N2 + 6L�+ 8(E � 1)2H2

⌘
.

Lemma 2. Let Assumptions 1-4 hold. With ⌘t  2⌘t+E

for all t � 0 and 8t + 1 2 IE , we have E [ut+1] =
vt+1, and E kvt+1 � ut+1k

2


N�K

N�1
4
K
⌘2
t
E2H2.

Lemmas 1 and 2 establish bounds for the one-step SGD
and random client sampling, respectively. These results only
concern the local model update and user selection, and are
not impacted by the noisy communication. The proofs are
similar to the technique in [14], and are omitted due to space
limitation.

Lemma 3. Let Assumptions 1-4 hold. With ⌘t  2⌘t+E

for all t � 0 and 8t + 1 2 IE , we have E [wt+1] =

ut+1, and E kwt+1 � ut+1k
2


4
K

h
K

M
+ 1

SNRUL

i
⌘2
t
E2H2.
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Proof. We take expectation over randomness of fading channel
and channel noise. As mentioned in Section IV, leveraging
channel hardening and favorable propagation properties, we
have
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We next evaluate the variance of wt+1. Based on the facts
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where in the last inequality we use the fact that ⌘t is non-
increasing and ⌘t+1�E  2⌘t.
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as learning round t. 8t + 1 2 IE ,

we have E
⇥
p
t+1

⇤
= wt+1, and E

��p
t+1 �wt+1

��2 ⇣
dMK

N2(K+M)

⌘
⌘
2
t

1�µ⌘t

.

Proof. We first show that

E


Re
✓
zk
i

gk

◆�
= Re

✓
E
⇥
zk
i

⇤ 1

E [gk]

◆
= 0,

and

Var


Re
✓
zk
i

gk

◆�
= E


Re

✓
zk
i

gk

◆
Re

✓
zk

⇤

i

gk⇤

◆�

= E


Re
✓
zk
i
zk

⇤

i

gkgk⇤

◆�


E
⇥
Re(zk

⇤

i
zk
i
)
⇤

E [Re(g⇤
k
gk)]

=
1/(2SNRDL)

1/2(1 +K/M)
=

✓
M

K +M

◆
1

SNRDL
,

from which we can easily obtain E
⇥
z̃
k

t+1

⇤
= 0 and

Var
⇥
z̃
k

t+1

⇤
=

⇣
M

K+M

⌘
d

SNRDL
. Therefore, we have

E
⇥
p
t+1

⇤
= 1

N

P
N

k=1 w
k

t+1 + 1
N

P
k2[K] E

⇥
z̃
k

t+1

⇤
= wt+1,
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and E
��p

t+1 �wt+1

��2 = E
��� 1
N

P
k2[K] z̃

k

t+1

���
2

=

1
N2

P
k2[K] E

��z̃k
t+1

��2 =
⇣

MK
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⌘
d

SNRDL


⇣
dMK

N2(K+M)

⌘
⌘
2
t

1�µ⌘t

.

APPENDIX C
PROOF OF THEOREM 1

We need to consider four cases for the analysis of the
convergence of E kwt+1 �w

⇤
k
2.

1) If t /2 IE and t + 1 /2 IE , vt+1 = wt+1 and p
t
= wt.

Using Lemma 1, we have:

E
��p

t+1 �w
⇤��2 = E kvt+1 �w

⇤
k
2

 (1� ⌘tµ)E kwt �w
⇤
k
2 + ⌘2

t
E kgt � g

t
k
2 + 6L⌘2

t
�
(27)

+ 2E
"
1

N

NX

k=1

��wt �w
k

t

��2
#
 (1� ⌘tµ)E kp

t
�w

⇤
k
2

+ ⌘2
t

"
NX

k=1

�2
k

N2
+ 6L�+ 8(E � 1)2H2

#
. (28)

2) If t 2 IE and t + 1 /2 IE , we still have vt+1 = wt+1.
With p

t
= wt +

1
N

P
N

k=1 z̃
k

t
, we have:

kwt �w
⇤
k
2 = kp

t
�wt +wt �w

⇤
k
2

= kwt �w
⇤
k
2 + kwt � p

t
k
2

| {z }
A1

+2 hwt � p
t
,p

t
�w

⇤
i| {z }

A2

.

We first note that the expectation of A2 over the noise and fad-
ing channel randomness is zero since we have E [wt � p

t
] =

0. Second, the expectation of A1 can be bounded using Lemma
4. We then have

E kwt+1 �w
⇤
k
2 = E kvt+1 �w

⇤
k
2

 (1� ⌘tµ)E kwt �w
⇤
k
2 + (1� ⌘tµ)E kwt � p

t
k
2
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t

"
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k
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t

"
NX

k=1
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k

N2
+ 6L�

+8(E � 1)2H2 +
MK

N2(K +M)

�
. (29)

3) If t /2 IE and t+1 2 IE , then we still have p
t
= wt. For

t+1, we need to evaluate the convergence of E kwt+1 �w
⇤
k
2.

We have
kwt+1 �w⇤k2 = kwt+1 � ut+1 + ut+1 �w⇤k2

= kwt+1 � ut+1k2| {z }
B1

+ kut+1 �w⇤k2
| {z }

B2

+2 hwt+1 � ut+1,ut+1 �w⇤i
| {z }

B3

.

(30)

We first note that the expectation of B3 over the noise is zero
since we have E [ut+1 �wt+1] = 0 and the expectation of

B1 can be bounded using Lemma 3. We next write B2 into

kut+1 �w⇤k2 = kut+1 � vt+1 + vt+1 �w⇤k2

= kut+1 � vt+1k2| {z }
C1

+ kvt+1 �w⇤k2
| {z }

C2

+2 hut+1 � vt+1,vt+1 �w⇤i
| {z }

C3

.

(31)

Similarly, the expectation of C3 over the noise is zero since
we have E [ut+1 � vt+1] = 0 and the expectation of C1 can
be bounded using Lemma 2. Therefore, we have
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2
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�
.

(32)

4) If t 2 IE and t + 1 2 IE , vt+1 6= wt+1 and p
t
6= wt.

(Note that this is possible only for E = 1.) Combining the
results from the previous two cases, we have

E kwt+1 �w
⇤
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2
 (1� ⌘tµ)E kwt �w

⇤
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2

+
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k
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+
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K
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+
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�
.

(33)

Let �t = E kwt �w
⇤
k
2. From (28), (29), (32) and (33), it

is clear that no matter whether t + 1 2 IE or t + 1 /2 IE ,
we always have �t+1  (1 � ⌘tµ)�t + ⌘2

t
B, where B =P

N

k=1
H

2
k

N2 +6L�+8(E�1)2H2+ 4
K

⇣
K

M
+ 1

SNRUL

⌘
E2H2+

N�K

N�1
4
K
E2H2+ MK

N2(K+M) . Define v , max{ 4B
µ2 , (1+�)�1},

by choosing ⌘t = 2
µ(t+�) , we can prove �t 

v

t+�
by

induction: �t+1 

⇣
1� 2

t+�

⌘
�t +

4B
µ2(t+�)2 = t+��2

(t+�)2 v +

4B
µ2(t+�)2 = t+��1

(t+�)2 v +
⇣

4B
µ2(t+�)2 �

v

(t+�)2

⌘


v

t+�+1 . By the
L-smoothness of f and v 

4B
µ2 + (1 + �)�1, we can prove

the result in (23).
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