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Abstract
Case–cohort studies are commonly used in various investigations, and many methods
have been proposed for their analyses. However, most of the available methods are
for right-censored data or assume that the censoring is independent of the underlying
failure time of interest. In addition, they usually apply only to a specific model such
as the Cox model that may often be restrictive or violated in practice. To relax these
assumptions, we discuss regression analysis of interval-censored data, which arise
more naturally in case–cohort studies than and include right-censored data as a special
case, and propose a two-step inverse probability weighting estimation procedure under
a general class of semiparametric transformation models. Among other features, the
approach allows for informative censoring. In addition, an EM algorithm is developed
for the determination of the proposed estimators and the asymptotic properties of
the proposed estimators are established. Simulation results indicate that the approach
workswell for practical situations and it is applied to aHIV vaccine trial that motivated
this investigation.
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1 Introduction

Case–cohort studies are commonly used in various investigations as a means of reduc-
ing the cost in large cohort studies, especiallywhen the disease rate is low and covariate
measurements may be expensive [13, 24, 25]. In these studies, instead of collecting
the covariate information on all study subjects, the covariate information is collected
only on the subjects whose failures are observed and on a subsample of the remain-
ing subjects. Among others, one area where the case–cohort design is often used is
epidemiological cohort studies in which the outcomes of interest are times to failure
events such as AIDS, cancer, heart disease and HIV infection. For such studies, in
addition to the incomplete nature on covariate information, another feature is that
the observations are usually interval-censored rather than right-censored due to the
periodic follow-up nature of the study [27].

An example of case–cohort studies thatmotivated this studywas given by theHVTN
505 Trial designed to assess the efficacy of a DNA prime-recombinant adenovirus type
5 boost (DNA/rAd5) vaccine to prevent human immunodeficiency virus type 1 (HIV-
1) infection [8–10, 12]. For the study, among others, one variable of interest is the
time to true HIV-1 infection but for which only interval-censored data are available
since the study subjects were only examined periodically. In the observed data, the
information on some demographical covariates is available for all subjects but the
information on somebiomarkerswas available only forHIV infection cases and a small
number of non-cases. One goal of the study is the determination of the important or
relevant prognostic covariates or biomarkers forHIV-1 infection. In addition to interval
censoring, as discussed below, the censoringmechanismmay be informative or related
to the HIV infection time. More details about the study will be given below.

By interval-censored failure time data, we usually mean that instead of being
observed exactly, the failure time of interest is only known or observed to belong
to an interval [27]. It is apparent that interval-censored data can have different forms
and include right-censored data as a special case. Among them, the most general form
is case K interval-censored data, meaning that there exists a sequence of observation
times for each subject [28]. It is easy to see that most of medical follow-up studies
such as clinical trials will naturally yield interval-censored data. For the analysis of
failure time data, one important factor that one has to pay attention is informative
censoring, meaning that the failure time of interest and the censoring mechanism are
correlated [11, 28, 30]. Among others, Huang and Wolfe [11] and Sun [27] discussed
the issue and pointed out that in the presence of informative censoring, the analysis
that ignores it may result in biased results or misleading conclusions. More discussion
on informatively interval-censored data can be found in [27].

Many authors have investigated the analysis of case–cohort studies but most of
the existing methods are for right-censored failure time data [2–4, 14–16, 20, 23–25].
Several methods were also developed for the analysis of interval-censored case–cohort
data but they apply only to some special types of interval-censored data [9, 18, 35].
Furthermore, most of the available methods assume that the censoring mechanism is
non-informative or independent of the failure time of interest. As discussed by many
authors and above, the informative censoring is a serious and difficult issue and the use
of the methods that do not take it into account can yield biased results or misleading
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conclusions [11, 21]. To the best of our knowledge, the only existing method that can
deal with informatively interval-censored case–cohort data was given by Du et al. [6],
who developed a frailty model approach but only considered a special type of interval-
censored data. More specifically, they discussed the situation where each subject only
has two observations, and also they assumed that the failure time of interest follows
the proportional hazards model, a special case of the model (2.1) discussed below.

Another main assumption behind the most of the existing methods for case–cohort
studies, especially all for interval-censored data, is that they suppose that the failure
time of interest follows the Cox proportional: hazards model. It is well-known that
the proportional hazards assumption may be violated or not true in some applications.
To address these and provide more flexible approaches, in the following, we will
consider regression analysis of case K informatively interval-censored case–cohort
data, the most general type of interval-censored data, under a class of semiparametric
transformation models. Semiparametric transformation models have been commonly
used for regression analysis of various types of complete and incomplete data partly
due to their flexibility, and this is especially the case for failure time data [1, 5, 7, 17,
19, 30, 33, 34]. For example, they include the Cox proportional hazards model and
the proportional odds model among others as special cases. In particular, unlike most
of the existing methods, the proposed approach allows for informative censoring.

To present the proposed estimation approach, in the following, we will first intro-
duce some background along with some notation and assumptions in Sect. 2. In
particular, the assumed models will be described and the latent variable approach will
be used to characterize the association between the failure time of interest and obser-
vation processes or informative censoring mechanism. In Sect. 3, a two-step inverse
probability weighting estimation procedure is proposed and a novel EM algorithm is
developed for the determination of the proposed estimators by following Wang et al.
[28]. Note that the main novelty lies on the use of Poisson variables, which makes
the implementation much easier than the standard EM algorithm. The consistency and
asymptotic normality of the resulting estimators of regression parameters are estab-
lished in Sect. 4, and a weighted bootstrap procedure is also provided for variance
estimation. Some results obtained from a simulation study are presented in Sect. 5,
and they suggest that the method works well in practical situations. In Sect. 6, we
apply the proposed methodology to the HIV vaccine study described above and some
concluding remarks are provided in Sect. 7.

2 Case K Interval-Censored Data and Semiparametric Transformation
Models

In this section, we will first introduce case K interval-censored case–cohort data and
the type of semiparametric transformation models that will be used throughout the
paper. It is followed by a brief discussion about the estimation problem if regular
interval-censored data are available. Consider a failure time study that consists of
n independent subjects. For subject i , let Ti denote the failure time of interest and
suppose that there exists a p-dimensional vector of covariates denoted by zi that may
affect Ti and a sequence of observation time points denoted by Ui0 = 0 < Ui1 <
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Ui2 < · · · < UiKi < ∞ = UiKi+1, where Ki is a random integer, i = 1, . . . , n.
Define Ñi (t) =∑Ki

j=1 I (Ui j ≤ t) and δi j = I (Ui j−1 < Ti ≤ Ui j ), i = 1, . . . , n, j =
1, . . . , Ki +1. Then, Ñi (t) is a point process characterizing the observation process on
subject i and jumps only at the observation times. In the following, it will be assumed
that one cannot observe Ti and instead only observes the δi j ’s. That is, we have case
K interval-censored data.

For case–cohort studies, as mentioned above, the information on covariates is avail-
able only for the subjects who either have experienced the failure event of interest or
are from the sub-cohort that is a random sample of the entire cohort. Define ξi = 1
if the covariate zi is available or observed and 0 otherwise, i = 1, . . . , n. For the
selection of the sub-cohort, by following Zhou et al. [35] and others, we will consider
the independent Bernoulli sampling with the selection probability q ∈ (0, 1). Then
under the assumption, the probability that the covariate zi is observed is given by

Pr(ξi = 1) = πq(δi ) =
Ki∑

j=1

δi j + δi Ki+1q ,

i = 1, . . . , n, and the observed data have the form

Oξ = { Oξ
i = (τi ,Ui0,Ui j , δi j , ξi , ξi zi , j = 1, . . . , Ki + 1); i = 1, . . . , n } .

In the above, δi = (δi1, . . . , δi Ki+1) and τi denotes a follow-up time for the i th subject
that is assumed to be independent of Ti . Note that if all covariates were observed, the
full cohort data would be

O = { Oi = (τi ,Ui0,Ui j , δi j , zi , j = 1, . . . , Ki + 1); i = 1, . . . , n } .

For the description of the covariate effect on Ti , suppose that for subject i , there
exists a latent variable ui and given zi and ui , the cumulative hazard function for Ti
takes the form

�(t |zi , ui ) = G
[
�(t) exp(zTi β1 + uiβ2)

]
. (2.1)

Here, G(·) is a prespecified increasing transformation function, �(·) is an unknown
increasing function, and β = (βT

1 , β2)
T represents unknown regression parameters.

As mentioned above, one advantage of the semiparametric transformation models is
their flexibility as they include many commonly used models as special cases. For
example, the choices of G(x) = x and G(x) = log(1 + x) yield the proportional
hazards and proportional odds models, respectively. In the following, we will also
assume that given zi and ui , Ñi (t) is a nonhomogeneous Poisson process with the
intensity function

λih(t |zi , ui ) = λh(t) exp(z
T
i α + ui ) , (2.2)
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and Ti and Ñi (t) are independent. In the above, λh(t) denotes a completely unknown
continuous baseline intensity function and α a vector of regression parameters as β.

Before presenting the proposed estimation procedure, first note that if the full-
cohort data O were available, then the conditional likelihood function of the observed
data has the form

L(β,�|u′
i s) =

n∏

i=1

Ki+1∏

j=1

{
exp
(
−G

[
�(Ui j−1) exp(z

T
i β1 + uiβ2)

])

− exp
(
−G

[
�(Ui j ) exp(z

T
i β1 + uiβ2)

])}δi j

given the u′
i s and U ′

i j s. Also note that for each subject, only one δi j is unity and the
others equal zero. It follows that the conditional likelihood function above can be
rewritten as

L(β,�|u′
i s) =

n∏

i=1

{
exp
(
−G

[
�(Li ) exp(z

T
i β1 + uiβ2)

])

− exp
(
−G

[
�(Ri ) exp(z

T
i β1 + uiβ2)

])}
,

where (Li , Ri ] denotes the smallest interval that brackets Ti . It is apparent that Li = 0
indicates that the i th subject is left-censored, while Ri = ∞ means that the subject is
right-censored.

In practice, of course, the ui ’s are unknown, and to deal with this, Wang et al. [30]
proposed a borrow-strength estimation procedure as follows. Let�h(t) = ∫ t0 λh(s)ds
and assume that �h(τ0) = 1, where τ0 denotes the longest follow-up time. Also, let
s(l)’s denote the ordered and distinct values of the observation times Ui j ’s, d(l) the
number of the observation times equal to s(l), and R(l) the number of the observation
times satisfying Ui j ≤ s(l) ≤ τi among all subjects. Then, Wang et al. [30] suggested
to estimate α by using the estimating equation

U (α) =
n∑

i=1

wi z̃i
(
Ki �̂

−1
h (τi ) − E(eui ) exp(zTi α)

)
= 0 ,

where z̃Ti = (1, zTi ), the w′
i s are some weights and

�̂h(t) =
∏

s(l)>t

(

1 − d(l)

R(l)

)

,

the estimator of �h . Let α̂ denote the estimator of α given by the estimating equation
above. Then, one can estimate β and � by maximizing L(β,�|u′

i s) with replacing ui
by
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ûi = log

{
Ki

�̂h(τi ) exp(zTi α̂)

}

.

In the next section, we will generalize the approach above to case–cohort studies,
and for this, there exist several difficulties. One is that although the generalizedmethod
may seem to be straightforward, the determination of the proposed estimators is much
more complicated than that considered in Wang et al. [30] due to missing covariates
and a novel EM algorithm has to be developed for the purpose. Another difficulty is
the establishment of the asymptotic properties of the proposed estimators again due
to the missing information. More comments on these are given below.

3 Inverse Probability Weighting Estimation

Now we consider inference procedure for case–cohort studies with the focus on esti-
mation of the regression parameter β. For this, let α̂ denote the same estimator defined
in the previous section but with the weight

wi = ξi

πq(δi )
= ξi
∑Ki

j=1 δi j + δi Ki+1q
.

For estimation of β as well as �, we propose to maximize the inverse probability
weighted log-likelihood function

lwn (β,�|û′
i s) =

n∑

i=1

wi log
{
exp
(
−G

[
�(Li ) exp(z

T
i β1 + ûiβ2)

])

− exp
(
−G

[
�(Ri ) exp(z

T
i β1 + ûiβ2)

])}
. (3.1)

In the remaining of this section, we will discuss the maximization of lwn (β,�|û′
i s)

by developing an EM algorithm. For this, first note that the transformation function G
can be derived by the Laplace transformation of the frailty variable with the support
[0,∞] through

exp{−G(x)} =
∫ ∞

0
exp(−xξ)φ(ξ |r)dξ ,

whereφ(ξ |r) is the density function of the frailty ξ .More specifically, by lettingφ(ξ |r)
be the gamma density function with mean 1 and variance r , we can obtain G(x) =
log(1 + r x)/r , the logarithmic transformation function family. In consequence, one
can convert the class of transformation models into the proportional hazards frailty
model and rewrite the inverse probability weighted log-likelihood function above as
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lwn (β,�|û′
i s) =

n∑

i=1

wi log

{∫

ξi

(
exp
[
−�(Li ) exp(z

T
i β1 + ûiβ2)ξi

]

− exp
[
−�(Ri ) exp(z

T
i β1 + ûiβ2)ξi

])
φ(ξi |r)dξi

}
. (3.2)

Let 0 = t0 < t1 < · · · < tm denote the set of the observation time points consisting
of 0 and the unique values of L0 > 0 and Ri < ∞ (i = 1, . . . , n). In the following,
we will treat � as a step function with nonnegative jumps at the t ′ks and the jump size
λk at tk . Assume that λ0 = 0. Then, the log-likelihood lwn (β,�|û′

i s) can be rewritten
as

lwn (β,�|û′
i s)

=
n∑

i=1

wi log

⎧
⎨

⎩

∫

ξi

exp

⎧
⎨

⎩
−
∑

tk≤Li

λk exp(z
T
i β1 + ûiβ2)ξi

⎫
⎬

⎭

⎡

⎣1 − exp

⎧
⎨

⎩
−

∑

Li<tk≤Ri

λk exp(z
T
i β1 + ûiβ2)ξi

⎫
⎬

⎭

⎤

⎦

I (Ri<∞)

φ(ξi |r)dξi

⎫
⎪⎬

⎪⎭
. (3.3)

By following Wang et al. [28], we introduce the latent variables { Pik; i =
1, . . . , n, k = 1, . . . ,m } which, conditional on ξi , are independent Poisson random
variables with the mean λk exp(zTi β1 + ûiβ2)ξi . Then, lwn (β,�|û′

i s) can be equiva-
lently expressed as

lwn (β,�|û′
i s) =

n∑

i=1

wi log

⎧
⎨

⎩

∫

ξi

⎧
⎨

⎩

∏

tk≤Li

p(Pik = 0|ξi )
⎫
⎬

⎭

⎡

⎣1 − p

⎛

⎝
∑

Li<tk≤Ri

Pik = 0|ξi
⎞

⎠

⎤

⎦

I (Ri<∞)

φ(ξi |r)dξi

⎫
⎪⎬

⎪⎭
. (3.4)

For the EM algorithm to be developed for maximizing lwn (β,�|û′
i s), we will treat

the ξ ′
i s and P ′

iks as missing data. If they were known, the pseudo complete data log-
likelihood function would be

lw∗
n (β,�|û′

i s) =
n∑

i=1

wi

( m∑

k=1

[
Pik log

{
ξiλk exp(z

T
i β1 + ûiβ2)

}

−ξiλk exp(z
T
i β1 + ûiβ2) − log Pik !

]
+ logφ(ξi |r)

)

. (3.5)
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In the above, we require that
∑

tk≤Li
Pik = 0 and

∑
Li<tk≤Ri Pik > 0 if Ri < ∞, and∑

tk≤Li
Pik = 0 if Ri = ∞. In the M-step, we calculate

λk =
∑n

i=1 wi Ê(Pik)
∑n

i=1 wi Ê(ξi ) exp(zTi β1 + ûiβ2)
, (k = 1, . . . ,m) , (3.6)

where Ê(·) denotes the posterior mean given the observed data. After incorporating
(3.6) into the conditional expectation of (3.5), we update β by solving the following
equation with the use of the one-step Newton–Raphson method

n∑

i=1

wi

{
m∑

k=1

Ê(Pik)

[

x̂i −
∑n

j=1 w j Ê(ξ j ) exp(zTj β1 + û jβ2)x̂i
∑n

j=1 w j Ê(ξ j ) exp(zTj β1 + û jβ2)

]}

= 0 , (3.7)

where x̂i = (zTi , ûi )T .

In the E-step, we evaluate the posterior means Ê(Pik) and Ê(ξi ). For this, note
that the posterior density function of ξi given the observed data is proportional to
{exp(−ξi Si1) − exp(−ξi Si2)}φ(ξi |r), where Si1 =∑tk≤Li

λk exp(zTi β1 + ûiβ2) and

Si2 =∑tk≤Ri λk exp(zTi β1 + ûiβ2). Thus, we have that

Ê(Pik) = I (Ri < ∞)λk exp(z
T
i β1 + ûiβ2)I (Li < tk ≤ Ri )

×
∫
ξi

ξi {exp(−ξi Si1)− exp(−ξi Si2)}[1− exp{−ξi (Si2−Si1)}]−1φ(ξi |r)dξi
exp{−G(Si1)}− exp{−G(Si2)}

+I (Ri < ∞)λk exp(z
T
i β1 + ûiβ2)E(ξi )I (tk > Ri )

+I (Ri = ∞)λk exp(z
T
i β1 + ûiβ2)E(ξi )I (tk > Li ), (3.8)

which can be calculated by using the Gaussian–Laguerre quadrature. In addition,

Ê(ξi ) = I (Ri < ∞)
exp{−G(Si1)}G ′(Si1) − exp{−G(Si2)}G ′(Si2)

exp{−G(Si1)} − exp{−G(Si2)}
+I (Ri = ∞)G ′(Si1) ,

where

G ′(x) =
∫
ξi

ξi exp(−xξi )φ(ξi |r)dξi
exp{−G(x)} = (r x + 1)−r−1−1

exp{−G(x)} .

4 Consistency and Asymptotic Normality

In this section, we will establish the asymptotic properties of the estimators proposed
in the previous sections. Let β̂ and �̂ denote the estimators of β and � defined in the
previous section andβ0,α0,�0 and�0h the true values ofβ,α,� and�h , respectively.
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To establish the asymptotic properties of β̂ and �̂, we need the following regularity
conditions.

(C1) β0 is an interior point of a known compact set B ∈ Rp+1, and �0(·) is con-
tinuously differentiable with positive derivatives in [0, τ0]. Moreover, α0 lies
in the interior of a known compact set A ∈ Rp and �0h(·) is continuously
differentiable with positive derivatives in [0, τ0] satisfying �0h(τ0) = 1.

(C2) The covariate vector z and the latent variable u are bounded and satisfy
E[exp(u)|z] = E[exp(u)]. Moreover, if h(t)+bT1 z+b2u = 0 for all t ∈ [0, τ0]
with probability 1, then h(t) = 0 for t ∈ [0, τ0] and b1 = b2 = 0.

(C3) The follow-up time τ satisfies that Pr(τ ∈ [ζ0, τ0]) = 1 for some constant
ζ0 ∈ (0, τ0] such that �0h(ζ0) > 0. In addition, Pr(τ = τ0) > 0.

(C4) The transformation function G(·) is twice continuously differentiable on [0,∞)

with positive first derivatives, and it satisfies G(0) = 0 and G(∞) = ∞.
(C5) 0 < q ≤ πq(δ1, . . . , δK+1) ≤ 1.

Now we can establish the asymptotic properties, including the strong consistency of
β̂ and �̂ in Theorem 4.1 and the asymptotic normality of β̂ in Theorem 4.2.

Theorem 4.1 Assume that the regularity conditions (C1)–(C5) given above hold. Then
as n → ∞, we have that ‖β̂ − β0‖ + supt∈[0,τ0] |�̂(t) − �0(t)| → 0 almost surely,
where ‖ · ‖ denotes the Euclidean norm.

Theorem 4.2 Assume that the regularity conditions (C1)–(C5) given above hold. Then
as n → ∞, we have that n1/2(β̂ − β0) converges in distribution to a normal random
vector with mean zero.

The proof of the results above is sketched in the Appendix. For inference about β,
it is apparent that one needs to estimate the covariance matrix of β̂, and for this, it
can be seen from the proof that it would be difficult to derive a consistent estimator.
Corresponding to this, we propose to employ the weighted bootstraps procedure dis-
cussed in Ma and Kosorok [22], which is easy to implement and seems to work well
in the numerical studies described below. More specifically, let {a1, . . . , an} denote n
independent realizations of a bounded positive random variable a satisfying E(a) = 1
and var(a) = ε0 < ∞ and define the new weights w∗

i = ai wi , i = 1, . . . , n. Also,
let β̂∗ denote the estimator of β proposed above with replacing the wi ’s by the w∗

i ’s.
Then if we repeat this B times, one can estimate the covariance matrix of β̂ by the
sample covariance matrix of the β̂∗’s.

5 A Simulation Study

Now we report some results obtained from a simulation study conducted to evaluate
the finite sample performance of the two-step inverse probability weighted estimation
procedure proposed in the previous sections. In the study, it was assumed that the
covariate z followed the Bernoulli distribution with the success probability of 0.5,
and to generate the sub-cohort, as mentioned above, we considered the independent
Bernoulli sampling with the selection probability being q = 0.1. To generate the true
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failure times, we first generated the latent variables ui ’s by assuming that u∗
i = exp(ui )

follows the gamma distribution with mean 4 and variance 8. Given the z′i s and u′
i s,

the true failure times were then generated from the transformation model (2.1) with
�(t) = log(1 + t/65) and G(x) = log(1 + r x)/r for r = 0, 0.5 or 1.

For the generation of the observation process or censoring intervals, it was sup-
posed that Ñi (t) follows model (2.2) with λh = 1/4 and the τ ′

i s follow the uniform
distribution over the interval [3, 4], which gives the proportion of the observed failure
events or the event rate of pe = 0.05. Then given zi , ui and τi , Ki , the number of
observation times for subject i , followed the Poisson distribution with mean

�ih(τi |zi , ui ) = τi exp(zTi α + ui )

4
,

and the observation times (Ui1, . . . ,UiKi ) were taken to be the order statistics of a
random sample of size Ki from the uniform distribution over (0, τi ), i = 1, 2, . . . , n.
The results given below are based on n = 2000 and B = 50 with 1000 replications.

Table 1 presents the results on estimation of the parameters α and β given by
the proposed estimation procedure with the true value of all parameters being 0.2. It
includes the estimated bias given by the average of the estimates minus the true value
(Bias), the sample standard error of the estimates (SSE), the average of the estimated
standard errors (ESE), and the 95% empirical coverage probability (CP). The results
suggest that the proposed estimators seem to be unbiased and the variance estimation
also appears to be reasonable. In addition, they indicate that the normal approximation
to the distribution of the proposed estimator seems to be appropriate. Note that the
bias on estimation of β2 may seem to be little large. On the other hand, this is expected
since β2 corresponds to the latent variable effect [6, 28], and more importantly, the
main interest here is on estimation of β1, the covariate effects. We also considered
some other set-ups, including different values for the true regression parameters, the
event rate of pe and B as well as different functions for �(t). All results are similar
to the above and suggest that the proposed approach is valid and works well.

Note that in the estimation procedure proposed above, it has been assumed that
the observation process follows the Poisson process and it is apparent that sometimes
this may not be true. To investigate the dependence of the proposed procedure on the
assumption, we repeated the study above by generating the observation times from
mixed Poisson processes. In particular, the number of observation times Ki for subject
i was generated from the mixed Poisson distribution with mean

�ih(τi |zi , ui ) = γiτi exp(zTi α + ui )

4
,

where the γ ′
i s follow the gamma distribution with mean 1 and variance 0.01. The

results on estimation of the parameters α and β obtained by the proposed estimation
procedure are given in Table 2 with the other set-ups being the same as in Table 1. One
can see that they are similar to those presented in Table 1 and again indicate that the
proposed estimation procedure works well for the situations considered and seems to
be robust to the Poisson assumption.
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Table 1 Simulation results on
estimation of regression
parameters

r True value Bias SSE ESE CP

0 α = 0.2 − 0.0260 0.1092 0.1045 0.9270

β1 = 0.2 0.0009 0.2505 0.2469 0.9530

β2 = 0.2 − 0.0490 0.1829 0.1753 0.9360

0.5 α = 0.2 − 0.0195 0.1095 0.1049 0.9270

β1 = 0.2 − 0.0013 0.2592 0.2517 0.9380

β2 = 0.2 − 0.0552 0.1841 0.1785 0.9400

1 α = 0.2 − 0.0238 0.1078 0.1047 0.9300

β1 = 0.2 0.0112 0.2572 0.2582 0.9480

β2 = 0.2 − 0.0640 0.1781 0.1817 0.9440

Table 2 Simulation results with
misspecified observation
processes

r True value Bias SSE ESE CP

0 α = 0.2 − 0.0239 0.1083 0.1058 0.9280

β1 = 0.2 0.0065 0.2473 0.2469 0.9480

β2 = 0.2 − 0.0554 0.1720 0.1752 0.9420

0.5 α = 0.2 − 0.0278 0.1077 0.1051 0.9360

β1 = 0.2 0.0063 0.2576 0.2528 0.9380

β2 = 0.2 − 0.0521 0.1705 0.1773 0.9450

1 α = 0.2 − 0.0216 0.1056 0.1061 0.9520

β1 = 0.2 0.0086 0.2673 0.2590 0.9330

β2 = 0.2 − 0.0625 0.1821 0.1809 0.9380

6 The Analysis of HVTN 505 Vaccine Trial

In this section, we will apply the methodology proposed in the previous sections to the
vaccine study discussed above, the HVTN 505 Trial, which is a randomized, multiple-
sites clinical trial of men or transgender women who had sex with men for assessing
the efficacy of the DNA/rAd5 vaccine for HIV-1 infection [8, 10, 12]. It is well-known
that HIV-1 infection is deadly as it causes AIDS for which there is no cure and thus it
is important and essential to develop a safe and effective vaccine for the prevention of
the infection. In the original study, the recruited subjects were randomly assigned to
receive either the DNA/rAd5 vaccine or placebo. For the analysis below, by following
Du et al. [6], we will focus on the HIV-1 infection time, the failure time of interest,
based on the data from the 1253 subjects in the vaccine group. As mentioned above,
only interval-censored data are available due to the design of the study.

During the study, for each subject, four demographic covariates were observed and
they are age, race, BMI and behavioural risk. In addition, to assess their relation-
ship with the HIV-1 infection, a number of T cell response biomarkers and antibody
response biomarkers were measured for a cohort of 150 subjects consisting of all
HIV infection cases 25 and other 125 randomly selected subjects among the vaccine
recipients. In particular, all of the previous analyses have identified the T cell response
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biomarker Env CD8+ polyfunctionality score and the antibody response biomarker
IgG.Cconenv03140CF.avi, which will be referred below to as Env CD8 Score and
IgG, respectively, to have some significant effects on the HIV infection time [6, 8,
10, 12]. In the following, we will focus on these two biomarkers along with race and
behavioural risk to assess their possible effects on the HIV-1 infection since all of the
existing joint analyses suggested that age and BMI did not seem to have any effects.

Table 3 presents the analysis results given by the proposed approach by taking
G(x) = log(1+ r x)/r with r = 0.4 as in the simulation study. Here, the r value was
chosen based on the grid search as it gave the smallest AIC value. The table includes
the estimated effects on both the HIV-1 infection time and the observation process
for each covariate, the estimated standard errors (ESE), and the p value for testing
the effect being zero. For comparison, the estimation results obtained under r = 0,
0.5 and 1 are also included. One can see from the table that the results seem to be
consistent with respect to r and suggest that only the biomarker Env CD8 Score seems
to have significant effect on the HIV-1 infection. Also, none of the covariates appears
to have any significant effect on the observation process, but the results indicate that
the HIV-1 infection time and the observation process seem to be significantly related.
In contrast, the application of the method proposed in [35] would suggest that both
biomarkers had significant effects on the HIV-1 infection, while Du et al. [6] indicated

Table 3 Estimated covariate effects for the HVTN 505 Trial

r Covariate β̂ SSE p value α̂ ESE p value

0 Race − 1.5993 1.0380 0.1234 − 0.7601 1.0285 0.4599

Behavioural risk 0.7468 1.4024 0.5944 0.0167 0.7681 0.9827

Env CD8 Score − 3.2794 1.7288 0.0578 − 1.1596 0.9746 0.2341

IgG − 0.2352 0.6460 0.7157 0.0855 0.7861 0.9134

β̂2 1.5997 0.1963 0.0000

0.4 Race − 0.7570 0.8300 0.3618 − 0.7600 1.1959 0.5251

Behavioural risk 0.3872 1.1773 0.7422 0.0167 1.1287 0.9882

Env CD8 Score − 3.0353 1.1585 0.0088 − 1.1596 1.0549 0.2716

IgG − 0.3057 0.5389 0.5706 0.0855 0.9285 0.9266

β̂2 1.5944 0.1639 0.0000

0.5 Race − 0.6786 0.9268 0.4641 − 0.7601 1.4533 0.6010

Behavioural risk 0.5050 1.4504 0.7277 0.0167 1.1996 0.9889

Env CD8 Score − 3.1005 1.0605 0.0035 − 1.1596 1.1122 0.2971

IgG − 0.2623 0.5152 0.6106 0.0855 0.8084 0.9158

β̂2 1.5786 0.1617 0.0000

1 race − 0.3916 0.6726 0.5605 − 0.7601 1.4472 0.5994

Behavioural risk 1.0256 1.1950 0.3908 0.0167 1.2430 0.9893

Env CD8 Score − 3.4832 1.0428 0.0008 − 1.1596 0.9863 0.2397

IgG − 0.1165 0.5591 0.8349 0.0855 0.8786 0.9225

β̂2 1.5244 0.1658 0.0000
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that in addition to the two biomarkers, behavioural risk also had some effects on the
HIV-1 infection. As discussed above, the former ignores the informative censoring and
the latter only applies to case II data and models the informative censoring through
the length of observation times.

7 Concluding Remarks

This paper discussed inference about semiparametric transformation models when
one faces interval-censored failure time data arising from case–cohort studies with
informative or dependent censoring. For the problem, a two-step inverse probabil-
ity weighting estimation approach was proposed, and for the implementation of the
approach, an EM algorithm based on Poisson variables was developed. The proposed
estimators of regression parameters were shown to be consistent and asymptoti-
cally normal, and the numerical study was performed and suggests that the proposed
approach works well for practical situations. It is worth to pointing out that although
only considered the special cases, Zhou et al. [35] and Du et al. [6] gave more and
similar simulation results.

The proposed estimation approach can be seen as generalizations of the methods
given in Zhou et al. [35] and Wang et al. [30]. The former considered the data arising
from the Cox proportional hazards model and assumed that the censoring is inde-
pendent. Although the method given in the latter allows for informative censoring, it
assumed that the complete information on covariates is available and unlike the case
discussed above, one advantage of their situation is that the proposed method can be
relatively easily implemented. As mentioned above, Du at al. [6] also investigated the
same problem as considered here but their method only applies to a much limited
situation.

As discussed above, for the situation considered here, one naive approach is to
ignore the informative censoring but the resulting analysis could easily lead to biased
estimation and even misleading conclusions. Another commonly used naive approach
is to simplify the interval-censored data structure to right-censored data structure by
employing, for example, an imputation procedure.As discussed bymany authors under
different contexts, this could result in biased analysis too and also lose some efficiency.
Furthermore, it does not seem to exist an established approach for regression analysis
of right-censored case–cohort data with informative censoring.

Note that in the preceding sections, the focus has been on case–cohort designs with
time-independent covariates. Instead, sometimes one may want to employ generalized
case–cohort designs, and for this, a new estimation would be needed. Also, it is appar-
ent that sometimes theremay exist time-dependent covariates, and somemodifications
would be needed too to apply the proposed method to the time-dependent covariate
case. In the proposed method, another assumption used is the intensity model (2.2) for
the observation process. Instead, one may prefer to employ the proportional mean or
rate model, and in this case, the proposed method should still be valid although some
modifications may be needed for the theoretical justification.

There exist several directions for future research. One is that in the proposed esti-
mation procedure, we have assumed that the observation process is a Poisson process.

123



M. Du and Q. Zhou

Although the numerical results indicate that the assumption can be relaxed, it would
be helpful to provide some theoretical justification. The focus of this paper has been on
univariate analysis of case–cohort studies, and it is apparent that sometimes there may
exist more than one failure times of interest. Thus, it would be useful to generalize the
proposed estimation procedure to bivariate or multivariate failure time situations. A
third direction, also a more difficult task, is the development of a model checking pro-
cedure. In the preceding sections, by following others [30, 33, 34], we have employed
the AIC to choose the best model under a given class of G. Although many authors
have pointed out this need, it does not seem to exist an established procedure for the
situation discussed here or similar situations.
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8 Appendix: Proofs of Theorems 4.1 and 4.2

In the following, we will sketch the proofs of Theorems 4.1 and 4.2. Let Pn denote
the empirical measure for n independent observations, P the true probability measure,
andGn = n1/2(Pn −P) the empirical process. Let l(β,�|u) be the log-likelihood for
a single subject based on the complete data O , given by

l(β,�|u) =
K+1∑

k=1

δk log
{
exp(−G[�(Uk−1) exp(β

T
1 z + β2u)])

− exp(−G[�(Uk) exp(β
T
1 z + β2u)])

}
,

and let lw(β,�|u) = w l(β,�|u) be the weighted log-likelihood for a single sub-
ject based on the observed data Oξ under the case–cohort design, where the weight
w is given by w = ξ/πq(δ1, . . . , δK+1). Since E(w|δ1, . . . , δK+1) = 1, we have
P{lw(β,�|u)} = P{l(β,�|u)}.
Proof of Theorem 4.1 We first show that lim supn �̂(τ0 − ε) < ∞ with probability 1
for any ε > 0. By the definition of (β̂, �̂), we have

Pnl
w(β̂, �̂|û) ≥ Pnl

w(β0,�0|û).

From the consistency of (α̂, �̂h) established by Wang et al. [29], we can show that

lim inf
n

Pnl
w(β̂, �̂|û) ≥ lim inf

n
Pnl

w(β0,�0|û) = Pl(β0,�0|u) = O(1)

with probability 1. Define u(α,�h; τ, K , z) = log{K/[�h(τ ) exp(αT z)]}. Let η > 0
be such that exp{βT

1 z + β2u(α,�h; τ, K , z)} ≥ η for β ∈ B, α ∈ A, τ ∈ [ζ0, τ0],
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1 ≤ K ≤ k0, and nondecreasing functions �h such that �h(ζ0) ≥ �0h(ζ0) − c0 > 0
and �h(τ0) ≤ 1, where k0 > 1 and c0 are positive constants. Then, we have

lim inf
n

Pnl
w(β̂, �̂|û)

≤ − lim sup
n

Pn

{
wδK+1G[�̂(UK ) exp(β̂T

1 z + β̂2û)]
}

≤ − lim sup
n

Pn

{
wδK+1 I (1 ≤ K ≤ k0)G[�̂(UK )η]

}

≤ − lim sup
n

Pn

{
wδK+1 I (1 ≤ K ≤ k0,UK ≥ τ0 − ε)G[�̂(τ0 − ε)η]

}
.

Hence,

lim sup
n

Pn

{
wδK+1 I (1 ≤ K ≤ k0,UK ≥ τ0 − ε)G[�̂(τ0 − ε)η]

}
= O(1).

Note that as n → ∞, Pn{wδK+1 I (1 ≤ K ≤ k0,UK ≥ τ0 − ε)} → P{wδK+1 I (1 ≤
K ≤ k0,UK ≥ τ0 − ε)}, which is positive under Condition (C3). Thus, by Condition
(C4), lim supn �̂(τ0 − ε) < ∞ with probability 1 for any ε > 0. By Helly’s selection
theorem and arguing as in the proof of Theorem 4.1 of Zeng et al. [32], for any
subsequence of (β̂, �̂), we can choose a further subsequence such that �̂ converges
weakly to some function �∗ on [0, τ0] almost everywhere and β̂ converges to some
constant β∗. The remaining is to show (β∗,�∗) = (β0,�0).

Define

m(β,�|u) = w log

{
p(β,�|u) + p(β0,�0|u)

2

}

,

where p(β,�|u) = exp(l(β,�|u)). SincePnlw(β̂, �̂|û) ≥ Pnlw(β0,�0|û), we have

Pnm(β̂, �̂|û) ≥ Pnl
w(β0,�0|û) = Pnm(β0,�0|û)

and thereby

[Pnm(β̂, �̂|û) − Pm(β∗,�∗|u)] + Pm(β∗,�∗|u)

≥ [Pnm(β0,�0|û) − Pm(β0,�0|u)] + Pm(β0,�0|u).

Arguing as in Zeng et al. [32], we can show that M = {m(β,�|u(α,�h; τ, K , z)) :
β ∈ B, α ∈ A, � ∈ L, �h ∈ Lh} is a Glivenko–Cantelli class, where L is the set
of nondecreasing functions � on [0, τ0] satisfying �(0) = 0 and Lh is the set of
nondecreasing functions �h on [0, τ0] satisfying �h(0) = 0, �h(ζ0) ≥ �0h(ζ0) −
c0 > 0 for some positive constant c0 and �h(τ0) ≤ 1. Furthermore, based on the
asymptotic properties of (α̂, �̂h) established by Wang et al. [29], we can show that
Pnm(β,�|û) converges to Pm(β,�|u) almost surely for any fixed (β,�). Therefore,
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we have Pm(β∗,�∗|u) ≥ Pm(β0,�0|u) and further

P log

{
p(β∗,�∗|u) + p(β0,�0|u)

2

}

≥ P log p(β0,�0|u).

By the properties of the Kullback–Leibler information, p(β∗,�∗|u) = p(β0,�0|u)

with probability 1. Thus, for any t ∈ [0, τ0], log{�∗(t)}+β∗T
1 z+β∗

2u = log{�0(t)}+
βT
01z+β02u. Under Condition (C2), we obtain β∗ = β0 and�∗ = �0. This completes

the proof. 
�
Proof of Theorem 4.2 Let β = (βT

1 , β2)
T and x = (zT , u)T . The score function for β

based on the log-likelihood l(β,�|u) is

lβ(β,�|u)

=
K+1∑

k=1

δk

{− exp(−G[�(Uk−1) exp(βT x)])G ′[�(Uk−1) exp(βT x)]�(Uk−1)

M(Uk−1,Uk;β,�, x)

+exp(−G[�(Uk) exp(βT x)])G ′[�(Uk) exp(βT x)]�(Uk)

M(Uk−1,Uk;β,�, x)

}

exp(βT x)x,

where

M(u, v;β,�, x) = exp(−G[�(u) exp(βT x)]) − exp(−G[�(v) exp(βT x)]).

The score function for β based on the weighted log-likelihood lw(β,�|u) is given by

lwβ (β,�|u) = w lβ(β,�|u).

To obtain the score operator for �, we consider a parametric submodel of � defined
by d�ε,h = (1+ εh)d� for h ∈ L2([0, τ0]). The score function along this submodel
based on the log-likelihood l(β,�|u) is

l�(β,�|u)(h)

= ∂

∂ε
l(β,�ε,h |u)

∣
∣
∣
ε=0

=
K+1∑

k=1

δk

{
− exp(−G[�(Uk−1) exp(β

T x)])G′[�(Uk−1) exp(β
T x)]

M(Uk−1,Uk; β,�, x)

∫ Uk−1

0
h(t)d�(t)

+ exp(−G[�(Uk) exp(β
T x)])G′[�(Uk) exp(β

T x)]
M(Uk−1,Uk;β, �, x)

∫ Uk

0
h(t)d�(t)

}

exp(βT x).

The score function along this submodel based on the weighted log-likelihood
lw(β,�|u) is

lw�(β,�|u)(h) = w l�(β,�|u)(h).
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By the definition of (β̂, �̂), we have Pn{lwβ (β̂, �̂|û)} = 0 and Pn{lw�(β̂, �̂|û)(h)} =
0. Also, P{lwβ (β0,�0|u)} = P{lβ(β0,�0|u)} = 0 and P{lw�(β0,�0|u)(h)} =
P{l�(β0,�0|u)(h)} = 0. Therefore,

n1/2[Pn{lwβ (β̂, �̂|û)} − P{lβ(β̂, �̂|u)}]
= −n1/2[P{lβ(β̂, �̂|u)} − P{lβ(β0,�0|u)}] (8.1)

and

n1/2[Pn{lw�(β̂, �̂|û)(h)} − P{l�(β̂, �̂|u)(h)}]
= −n1/2[P{l�(β̂, �̂|u)(h)} − P{l�(β0,�0|u)(h)}]. (8.2)

We first consider Pn{lwβ (β,�|û)} − P{lβ(β,�|u)} and Pn{lw�(β,�|û)(h)} − P{l�(β,

�|u)(h)} for fixed (β,�). Define the functions H(t) = E[exp(u)I (τ ≥ t)], R(t) =
H(t)�0h(t), Q(t) = ∫ t0 H(s)d�0h(s), and for i = 1, . . . , n,

bi (t) =
Ki∑

k=1

{∫ τ0

t

I (Uik ≤ s ≤ τi )

R2(s)
dQ(s) − I (t ≤ Uik ≤ τ0)

R(Uik)

}

.

In addition, for i = 1, . . . , n, define

ei = −
∫

w̃z̃kbi (τ )

�0h(τ )
dP(w̃, z̃, k, τ ) + w̃i z̃i {Ki�

−1
0h (τi ) − exp(γ T z̃i )},

where z̃i = (1, zTi )T , γ = (log{E[exp(u)]}, αT )T , w̃i is the weight given in the esti-
mating equations for α, andP(·) denotes the joint probability measure of (w̃, z̃, K , τ ).
FromWang et al. [29], we have �̂h(t)−�0h(t) = n−1∑n

i=1 �0h(t)bi (t)+op(n−1/2)

for inf{s : �0h(s) > 0} < t < τ0 and α̂ − α0 = n−1∑n
i=1 fi (α0) + op(n−1/2),

where fi (α) = E[−∂e1/∂γ ]−1ei without the first entry. Define the function
u(α,�h; τ, K , z) = log{K/[�h(τ ) exp(αT z)]}. Then û = u(α̂, �̂h; τ, K , z). Fur-
thermore, define

lβα(β,�|u(α,�h; τ, K , z)) = ∂

∂α
lβ(β,�|u(α,�h; τ, K , z))

and

lβ�h (β,�|u(α,�h; τ, K , z)) = ∂

∂s
lβ(β,�|u(α, s; τ, K , z))

∣
∣
∣
s=�h(τ )

.
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Then, we have

Pn{lwβ (β,�|û)} − P{lβ(β,�|u)}
= Pn{lwβ (β,�|u(α̂, �̂h; τ, K , z))} − Pn{lwβ (β,�|u(α0,�0h; τ, K , z))}

+ Pn{lwβ (β,�|u(α0,�0h; τ, K , z))} − P{lβ(β,�|u)}

= 1

n

n∑

i=1

{
P{lβα(β,�|u(α0,�0h; τi , Ki , zi )) fi (α0)}

+ P{lβ�h (β,�|u(α0,�0h; τi , Ki , zi ))�0h(τi )bi (τi )}
+ wi lβ(β,�|u(α0,�0h; τi , Ki , zi )) − P{lβ(β,�|u)}

}
+ op(n

−1/2)

= 1

n

n∑

i=1

cβi (β,�) + op(n
−1/2).

(8.3)

The cβi (β,�)’s are independent random variables because cβi (β,�) depends only on
the observed data from the i th subject. It follows from the law of large numbers that for
fixed (β,�), Pn{lwβ (β,�|û)}−P{lβ(β,�|u)} → 0 almost surely as n → ∞. Further-

more, by the central limit theorem, n1/2[Pn{lwβ (β,�|û)} − P{lβ(β,�|u)}] converges
in distribution to a zero-mean normal random vector. Similarly, we can derive the
asymptotic properties of Pn{lw�(β,�|û)(h)}−P{l�(β,�|u)(h)}. In particular, define

l�α(β,�|u(α,�h; τ, K , z))(h) = ∂

∂α
l�(β,�|u(α,�h; τ, K , z))(h)

and

l��h (β,�|u(α,�h; τ, K , z))(h) = ∂

∂s
l�(β,�|u(α, s; τ, K , z))(h)

∣
∣
∣
s=�h(τ )

.

Then, we have

Pn{lw�(β,�|û)(h)} − P{l�(β,�|u)(h)}
= Pn{lw�(β,�|u(α̂, �̂h; τ, K , z))(h)} − Pn{lw�(β,�|u(α0,�0h; τ, K , z))(h)}

+ Pn{lw�(β,�|u(α0,�0h; τ, K , z))(h)} − P{l�(β,�|u)(h)}

= 1

n

n∑

i=1

{P{[l�α(β,�|u(α0,�0h; τi , Ki , zi ))(h)] fi (α0)}

+ P{[l��h (β,�|u(α0,�0h; τi , Ki , zi ))(h)]�0h(τi )bi (τi )}
+wi [l�(β,�|u(α0,�0h; τi , Ki , zi ))(h)] − P{l�(β,�|u)(h)}} + op(n

−1/2)

= 1

n

n∑

i=1

c�i (β,�)(h) + op(n
−1/2).

(8.4)
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The c�i (β,�)(h)’s are independent random variables because c�i (β,�)(h) depends
only on the observed data from the i th subject. By the law of large numbers,
Pn{lw�(β,�|û)(h)} − P{l�(β,�|u)(h)} → 0 almost surely as n → ∞, for fixed
(β,�). By the central limit theorem, n1/2[Pn{lw�(β,�|û)(h)} − P{l�(β,�|u)(h)}]
converges in distribution to a zero-mean normal random vector.

On the other hand, arguing as in the proof of Theorem 2 of Zeng et al. [33], we can
show that

−[P{lβ(β̂, �̂|u)} − P{lβ(β0, �0|u)}] + [P{l�(β̂, �̂|u)(h∗)} − P{l�(β0, �0|u)(h∗)}]
= E[{lβ − l�(h∗)}{lβ − l�(h∗)}T ](β̂ − β0) + Op(‖β̂ − β0‖2 + n−2/3),

(8.5)

where lβ = lβ(β0,�0|u), l�(h∗) = lβ(β0,�0|u)(h∗), and h∗ is the least favourable
direction, a (p + 1)-vector with components in L2([0, τ0]), that solves the normal
equation l∗�l�(h∗) = l∗�lβ with l∗� being the adjoint operator of l�. The existence
of h∗ can be established as in Zeng et al. [33]. From Eqs. (8.3)–(8.5), the difference
between (8.1) and (8.2) yields

n−1/2
n∑

i=1

{cβi (β̂, �̂) − c�i (β̂, �̂)(h∗)} + op(1)

= n1/2E[{lβ − l�(h∗)}{lβ − l�(h∗)}T ](β̂ − β0) + Op(n
1/2‖β̂ − β0‖2 + n−1/6).

(8.6)

The left-hand side of (8.6) can be written as Gn{cβ(β̂, �̂) − c�(β̂, �̂)(h∗)} + op(1).
As argued in Zeng et al. [26], we can show that h∗(t) is continuously differentiable
on [0, τ0], and further we are able to prove that cβ(β̂, �̂)− c�(β̂, �̂)(h∗) belongs to a
Donsker class and converges in the L2(P)-norm to cβ − c�(h∗), where cβ and c�(h∗)
are evaluated at (β0,�0). In addition, it is easy to show via proof by contradiction
that the matrix E[{lβ − l�(h∗)}{lβ − l�(h∗)}T ] is invertible. Therefore, (8.6) entails
n1/2(β̂ − β0) = Op(1) and yields

n1/2(β̂ − β0) =
(
E[{lβ − l�(h∗)}{lβ − l�(h∗)}T ]

)−1
Gn{cβ − c�(h∗)} + op(1).

This implies that n1/2(β̂ − β0) converges to a zero-mean normal random vector. 
�
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