

Law of large numbers and central limit theorem for ergodic quantum processes

Lubashan Pathirana^{*1} and Jeffrey Schenker^{†2}

^{1,2}Department of Mathematics, Michigan State University.

Abstract

A discrete quantum process is represented by a sequence of quantum operations, which are completely positive maps that are not necessarily trace preserving. We consider quantum processes that are obtained by repeated iterations of a quantum operation with noise. Such ergodic quantum processes generalize independent quantum processes. An ergodic theorem describing convergence to equilibrium for a general class of such processes was recently obtained by Movassagh and Schenker. Under irreducibility and mixing conditions we obtain a central limit type theorem describing fluctuations around the ergodic limit.

Contents

1	Introduction and main results	2
2	Formal statement of the main results	2
2.1	Positive Linear Maps	2
2.2	Limiting results for eigenmatrices of ergodic quantum processes	3
2.3	Law of Large Numbers	5
2.4	Central Limit Theorem	6
3	Background results: geometry of \mathbb{S}_D, contraction for positive maps, and ergodic arguments	7
3.1	A metric on \mathbb{S}_D	7
3.2	Contraction Coefficient for ϕ	8
3.3	Invertible ergodic dynamics	10
4	Proof of the Law of Large Numbers	11
5	Proof the Central Limit Theorem	14
6	Mixing Conditions	17
Bibliography		21

^{*}pathiran@msu.edu

[†]schenke6@msu.edu

1 Introduction and main results

A *quantum channel* (QC) is a linear, completely positive, and trace preserving map on the trace class operators, where the state of the system is represented by a non-negative operator of trace one — a *density matrix*. Such maps can describe the evolution of an open quantum system over a discrete unit of time, including averaged effects of measurements and environmental noise. More generally, one introduces *quantum operations* (QOs) — completely positive and trace non-increasing maps — to describe processes with loss or which happen only with a certain probability. A *quantum process* is a sequence of QOs describing the evolution of the system over a consecutive sequence of time intervals. Quantum processes represent the most general description of the average evolution of an open quantum system neglecting memory effects in the environment.

In a pair of recent papers [22, 21], Movassagh and the second author formulated the notion of an *ergodic quantum process* in which the individual QOs are obtained by sampling a QO valued function along a trajectory of an ergodic dynamical system. For processes on a finite dimensional Hilbert space and satisfying a physically natural decoherence condition, they proved convergence of the density matrix to a stationary, ergodic sequence of density matrices as time goes to infinity. This theorem of [21] generalizes a result of Hennion [14] on products of non-negative random matrices and is closely related Oseledec's multiplicative ergodic theorem [23].

The results of [21] require essentially only decoherence and ergodicity. In the present paper, we examine processes that satisfy stronger integrability and mixing conditions. We prove a law of large numbers and a central limit theorem for the expectation values of observables in states evolving under such a processes. Although our main interest is in the application of these results to quantum processes, the results themselves do not require the maps to be trace non-increasing and require only *positivity* (not complete positivity).

This paper is organized as follows:

1. In §2 we state our main results after formulating certain background notions.
2. In §3, review some definitions and arguments from [22] that are fundamental to the proofs of our main results.
3. In §4, we prove Theorem 1 - [Law of Large Numbers](#).
4. In §5, we prove Theorem 2 - [Central Limit Theorem](#).
5. In §6, we prove Theorem 3, which gives sufficient conditions for the main hypothesis of Theorem 2 - [Central Limit Theorem](#) to hold.

2 Formal statement of the main results

2.1 Positive Linear Maps

Let $\mathbb{M}_D = \mathbb{C}^{D \times D}$ denote the space of $D \times D$ matrices. We consider the space \mathbb{M}_D with its standard topology as a finite-dimensional vector space. For definiteness, we take this to be the norm topology generated by the *trace norm*, $\|A\| := \text{Tr} \sqrt{(A^* A)}$ for any $A \in \mathbb{M}_D$, but of course the topology is independent of the norm (since \mathbb{M}_D is finite dimensional). For any matrix $A \in \mathbb{M}_D$ we denote by A^* the adjoint matrix (conjugate transpose).

The space of linear operators on \mathbb{M}^D will be denoted by $\mathcal{L}(\mathbb{M}_D)$. We equip the space $\mathcal{L}(\mathbb{M}_D)$ with the operator norm induced by the trace norm on \mathbb{M}_D . That is, for $\phi \in \mathcal{L}(\mathbb{M}_D)$:

$$\|\phi\| = \sup\{\|\phi(A)\| : A \in \mathbb{M}_D, \|A\| = 1\}. \quad (2.1)$$

For any $\phi \in \mathcal{L}(\mathbb{M}_D)$ the adjoint of ϕ is the unique map $\phi^* \in \mathcal{L}(\mathbb{M}_D)$ determined by the identity:

$$\langle A, \phi(B) \rangle = \langle \phi^*(A), B \rangle \text{ for all } A, B \in \mathbb{M}_D, \quad (2.2)$$

where $\langle A, B \rangle$ denotes the Hilbert-Schmidt inner product,

$$\langle A, B \rangle = \text{tr} A^* B . \quad (2.3)$$

We recall that a map $\phi \in \mathcal{L}(\mathbb{M}_D)$ is *positive*, if it maps the set of positive semi-definite matrices to itself. It is convenient to introduce notation for certain subsets of positive semi-definite matrices as follows:

1. POS_D is the set of all positive semi-definite $D \times D$ matrices,
2. POS_D^0 is the set of all positive definite $D \times D$ matrices,
3. \mathbb{S}_D is the set of positive semi-definite $D \times D$ matrices with trace one, and
4. \mathbb{S}_D^0 is the set of positive definite $D \times D$ matrices with trace one.

The subset \mathbb{S}_D , being bounded and closed, is compact by the Heine-Borel theorem. Note that ϕ is positive if and only if $\phi(\mathbb{S}_D) \subset \text{POS}_D$. We call ϕ *strictly positive* if $\phi(\mathbb{S}_D) \subset \text{POS}_D^0$.

Positive maps satisfy a generalization of the Perron-Frobenius Theorem (see [18, 10]): every such map ϕ has an eigenmatrix $R \in \mathbb{S}_D$ with eigenvalue equal to the spectral-radius $r(\phi)$. The map ϕ is called *irreducible* if $(\mathbf{1} + \phi)^n$ is strictly positive for some n .¹ By [10, Theorems 2.3 & 2.4] we have the following

Proposition 2.1. *If ϕ is an irreducible positive map, then there is a unique $R \in \mathbb{S}_D$ such that $\phi(R) = \Lambda R$ for some $\Lambda \in \mathbb{C}$. Furthermore, the eigen-matrix R is non-singular ($R \in \mathbb{S}_D^0$) and the eigenvalue $\Lambda = r(\phi) > 0$ is the spectral radius of ϕ .*

We call the unique eigenmatrix $R \in \mathbb{S}_D$ of an irreducible map ϕ the *right Perron-Frobenius eigenmatrix of ϕ* . The map ϕ also has a *left Perron-Frobenius eigenmatrix*, which is the Perron-Frobenius eigenmatrix of ϕ^* . (Note that ϕ is irreducible if and only if ϕ^* is.)

The Perron-Frobenius eigenmatrix R of an irreducible map ϕ may be interpreted as a fixed point of the *projective action of ϕ* :

$$\phi \cdot X = \frac{\phi(X)}{\text{tr} \phi(X)} . \quad (2.4)$$

For a general map, the projective action is defined for $X \in \mathbb{S}_D \setminus \ker \phi$. However, if $\ker \phi \cap \mathbb{S}_D = \emptyset$ then the projective action is defined on all of \mathbb{S}_D . As this condition will play a key role in our analysis, we make the following

Definition 1. A positive linear map $\phi \in \mathcal{L}(\mathbb{M}_D)$ is *non-destructive* if $\ker \phi \cap \mathbb{S}_D = \emptyset$. If ϕ^* is non-destructive, we say that ϕ is *non-transient*.

The terminology *non-transient* stems from the fact that if $\rho \in \ker \phi^* \cap \mathbb{S}_D$ and P is the projection onto $\text{ran } \rho$, then $\phi^*(P) = 0$ and $\text{ran } \phi$ is contained in the hereditary sub-algebra $P^\perp \mathbb{M}_D P^\perp$ where $P^\perp = I - P$. Thus the subspace corresponding to $\text{ran } P$ is a “transient subspace” for ϕ .

A sufficient condition for ϕ to be non-destructive and non-transient is that ϕ^n be strictly positive for some $n > 0$. This condition is, in turn, equivalent to ϕ being *irreducible and aperiodic*, i.e., irreducible and having no eigenvalues on the circle $\{|z| = r(\phi)\}$ except for the Perron-Frobenius eigenvalue.

2.2 Limiting results for eigenmatrices of ergodic quantum processes

As in [22], we are interested in sequences $\Phi^{(n)}$ such that

$$\Phi^{(n)} = \phi_n \circ \dots \circ \phi_1 \quad \text{with} \quad \phi_n = \phi_{0; \theta^n \omega} , \quad (2.5)$$

where $\omega \mapsto \phi_{0; \omega}$ is a positive map valued random variable defined on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ and $\theta : \Omega \rightarrow \Omega$ is an ergodic map. We recall that a measurable map $\theta : \Omega \rightarrow \Omega$ is

¹Equivalently, no *hereditary sub-algebra*, $P \mathbb{M}_D P$ with P an orthogonal projection, is invariant under ϕ . See [10].

1. *measure preserving* if $\mathbb{P}(\theta^{-1}(A)) = \mathbb{P}(A)$ for all $A \in \mathcal{F}$, and
2. *ergodic* if it is measure preserving and $\mathbb{P}(A) = 0$ or 1 whenever $\theta^{-1}(A) = A$.

We further recall that either of the following two conditions is sufficient for a measure preserving map θ to be ergodic:

1. *essentially θ -invariant sets have measure 0 or 1*, i.e., $\mathbb{P}(A) = 0$ or 1 whenever $A \in \mathcal{F}$ with $\mathbb{P}(A \Delta \theta^{-1}(A)) = 0$.
2. *essentially θ -invariant functions are almost surely constant*, i.e., if $f \circ \theta = f$ almost surely, then there is $c \in \mathbb{R}$ such that $f = c$ almost surely.

See [24] for proofs of these facts and further discussion of ergodic maps.

Now fix a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ and an ergodic map $\theta : \Omega \rightarrow \Omega$. For a random variable $X : \Omega \rightarrow \mathcal{S}$, with \mathcal{S} some measurable space, we denote the value of X at $\omega \in \Omega$ by X_ω , and will often omit ω from the notation for simplicity. This subscript notation is convenient as we consider map valued random variables which take a matrix as an argument. Let $\varphi_0 : \Omega \rightarrow \mathcal{L}(\mathbb{M}_D)$ be a positive map valued random variable, where we take the Borel σ -algebra on $\mathcal{L}(\mathbb{M}_D)$. For each $n \in \mathbb{N}$, define $\varphi_{n;\omega} = \varphi_{0;\theta^n(\omega)}$. Let

$$\Phi_\omega^{(n)} = \varphi_{n;\omega} \circ \varphi_{n-1;\omega} \circ \cdots \circ \varphi_{1;\omega}. \quad (2.6)$$

For $k \geq 0$, we have

$$\Phi_{\theta^k(\omega)}^{(n)} = \varphi_{n;\theta^k(\omega)} \circ \cdots \circ \varphi_{1;\theta^k(\omega)} = \varphi_{n+k;\omega} \circ \cdots \circ \varphi_{1+k;\omega}; \quad (2.7)$$

as above we may omit ω from the notation and simply write this as $\Phi_{\theta^k}^{(n)} = \varphi_{n+k} \circ \cdots \circ \varphi_{1+k}$.

In the present work, we study sequences $\Phi_\omega^{(n)}$ with the property that $\Phi_\omega^{(n)}$ is eventually strictly positive. We denote by τ_ω the time at which $\Phi_\omega^{(n)}$ becomes strictly positive and stays strictly positive thereafter:

$$\tau_\omega = \inf\{n \geq 1 : \Phi_\omega^{(n+k)} \text{ is strictly positive } \forall k \geq 0\}. \quad (2.8)$$

Our first assumption is that $\tau < \infty$ almost surely:

Assumption 1. *We have $\mathbb{P}\{\tau < \infty\} = 1$, i.e., the sequence $\Phi_\omega^{(n)}$ is almost surely eventually strictly positive.*

Assumption 1 was also the main assumption of [22], where it was shown to be equivalent to the following two conditions provided that θ is invertible (see [22, Lemma 2.1]):

1. there exists $N_0 \in \mathbb{N}$ such that $\mathbb{P}(\Phi^{(N_0)} \text{ is strictly positive}) > 0$, and
2. $\mathbb{P}\{\varphi_0 \text{ is non-destructive and non-transient}\} = 1$.

One consequence of this equivalence is that, if θ is invertible and Assumption 1 holds, then τ can be expressed as

$$\tau = \inf\{n \geq 1 : \Phi_\omega^{(n)} \text{ is strictly positive}\}. \quad (2.9)$$

In particular, τ is then a *stopping time* with respect to the filtration $(\mathcal{F}_n)_{n=0}^\infty$ where \mathcal{F}_n denotes the σ -algebra generated by ϕ_0, \dots, ϕ_n .

Since any strictly positive map is irreducible, Assumption 1 guarantees that the left and right Perron-Frobenius eigenmatrices, R_n and L_n , exist for for sufficiently large n :

$$\Phi_\omega^{(n)}(R_n) = \Lambda_n R_n \quad \text{and} \quad \Phi_\omega^{(n)*}(L_n) = \Lambda_n L_n. \quad (2.10)$$

Here $\Lambda_n = \Lambda_{n;\omega}$ denotes the spectral radius of $\Phi_\omega^{(n)}$ and L_n, R_n are \mathbb{S}_D^+ valued random variables, i.e., they are $D \times D$ positive definite matrix valued random variables with $\text{tr}R_n = \text{tr}L_n = 1$. We have the following

Lemma 2.2 ([22, Theorem 1]). *Let $(\varphi_n)_{n \geq 1}$ and $\Phi^{(n)}$ be as in eq. (2.6) and let L_n be as in eq. (2.10). If Assumption 1 holds, then there is an \mathbb{S}_D° valued random variable Z'_1 such that*

$$Z_1 \xrightarrow{a.s.} \lim_{n \rightarrow \infty} L_n \quad (2.11)$$

and, with $Z_k := Z_1 \circ \theta^{k-1}$, we have for every $k \in \mathbb{N}$, $\varphi_k^* \cdot Z_{k+1} = Z_k$ a.s..

Remark 2.3. This is half of [22, Theorem 1]. The other half involves the convergence of the right eigenvectors and requires invertibility of the ergodic map θ . A close reading of the proof (see [22, Lemma 3.12]) shows that invertibility of θ is not necessary for the portion stated here.

2.3 Law of Large Numbers

Our first main result is concerned with expectations of the form $\langle Y, \Phi^{(n)}(X) \rangle$ with $X, Y \in \mathbb{S}_D$. The main idea here is that for large n , the Perron-Frobenius eigenvalue Λ_n of $\Phi^{(n)}$ typically exhibits exponential growth or decay and dominates the expression, so that we expect

$$\langle Y, \Phi_n(X) \rangle \approx \Lambda_n \frac{\langle Y, R_n \rangle \langle L_n, X \rangle}{\langle L_n, R_n \rangle} + \text{lower order terms,} \quad (2.12)$$

where L_n and R_n are the left and right Perron-Frobenius eigenmatrices, respectively, normalized so that $\text{tr} L_n = \text{tr} R_n = 1$. Under Assumption 1, L_n and R_n are positive definite, so $\langle Y, R_n \rangle \langle L_n, X \rangle \neq 0$ and eq. (2.12) suggests that

$$\ln \langle Y, \Phi^{(n)}(X) \rangle \approx \ln \Lambda_n + O(1).$$

Thus we expect a Law of Large Numbers, $\frac{1}{n} \ln \langle Y, \Phi^{(n)}(X) \rangle \rightarrow l$, where $l = \lim_n \frac{1}{n} \ln \Lambda_n$.

To obtain this Law of Large Numbers, we require an integrability assumption for $\ln \|\varphi_0^*\|$ and for $\ln v(\varphi_0^*)$, where for $\phi \in \mathcal{L}(\mathbb{M}_D)$ we define

$$v(\phi) := \inf \{ \|\phi(X)\| : X \in \mathbb{S}_D \}. \quad (2.13)$$

Assumption 2. *We have $\mathbb{E}[\ln \|\varphi_0^*\|] < \infty$ and $\mathbb{E}[\ln v(\varphi_0^*)] < \infty$.*

Remark 2.4. We note that any non-destructive map ϕ (in particular, any strictly positive map) must have $v(\phi) > 0$ because \mathbb{S}_D is a compact set and the map $A \mapsto \|\phi(A)\|$ is continuous.

With Assumptions 1 and 2 we have the following

Theorem 1 - Law of Large Numbers. *Let $\Phi^{(n)}$ be a random sequence of positive maps as in eq. (2.6). If Assumptions 1 and 2 hold then*

$$\lim_{n \rightarrow \infty} \sup_{X, Y \in \mathbb{S}_D} \left| \frac{1}{n} \ln \langle Y, \Phi^{(n)}(X) \rangle - l \right| = 0 \quad a.s., \quad (2.14)$$

where $l = \mathbb{E}[\ln \|\varphi_0^*(Z_1)\|]$ with $Z_1 = \lim_n L_n$. Furthermore

$$\lim_{n \rightarrow \infty} \frac{1}{n} \ln \|\Phi^{(n)}\| = \lim_{n \rightarrow \infty} \frac{1}{n} \ln \Lambda_n = l \quad a.s., \quad (2.15)$$

with Λ_n the Perron-Frobenius eigenvalue of $\Phi^{(n)}$.

Remark 2.5. We take $\ln \langle Y, \Phi^{(n)}(X) \rangle = -\infty$ if $\langle Y, \Phi^{(n)}(X) \rangle = 0$; by Assumption 1 this happens for at most finitely many n . By Assumption 2, $l = \mathbb{E}[\ln \|\varphi_0^*(Z_1)\|]$ is finite.

Theorem 1 - Law of Large Numbers is closely related in spirit to the Furstenberg-Kesten theorem [11] and Oseledec's Theorem [23] (see also [12]). By the Furstenberg-Kesten Theorem, the following limit exists

$$\lim_{n \rightarrow \infty} \frac{1}{n} \ln \|\Phi^{(n)}\| \quad a.s. = \lambda \quad a.s.,$$

where λ is a deterministic quantity called the *top Lyapunov exponent* of the cocycle $(X, n) \mapsto \Phi^{(n)}(X)$. By Oseledet's Theorem, there is a (random) proper subspace $L \subset \mathbb{M}_D$ such that for $X \in \mathbb{M}_D \setminus L_{j+1}$ we have

$$\lim_{n \rightarrow \infty} \frac{1}{n} \ln \|\Phi^{(n)}(X)\| = \lambda.$$

The identity eq. (2.14) is the key result in Theorem 1 - **Law of Large Numbers**. Indeed, since $\Lambda_n = \langle L_n, \Phi^{(n)}(\mathbb{I}) \rangle$ it follows directly from eq. (2.14) that $l = \lim_n \frac{1}{n} \ln \Lambda_n$ almost surely. Furthermore, as the proof of eq. (2.14) will make clear (see Lemma 4.1), we also have $\lim_n \frac{1}{n} \ln \|\Phi^{(n)*}(Y)\| = l$ a.s. for any $Y \in \mathbb{S}_D$. Since $\text{span } \mathbb{S}_D = \mathbb{M}_D$, it follows from Oseledet's Theorem that $l = \lambda$, the top Lyapunov exponent, and thus that $l = \lim_n \frac{1}{n} \ln \|\Phi^{(n)}\|$. Therefore eq. (2.15) is a consequence of eq. (2.14). Thus to prove Theorem 1 - **Law of Large Numbers** it suffices to prove eq. (2.14). This is accomplished in §4 below.

2.4 Central Limit Theorem

Our second main result is a central limit theorem for the fluctuations of $\ln \langle Y, \Phi^{(n)}(X) \rangle$ around its asymptotic value nl . For this result we require additional integrability for $\ln \|\varphi_{0;\omega}^*\|$ and $\ln v(\varphi_{0;\omega}^*)$:

Assumption 2_p. For $p > 1$, the random variables $\ln \|\varphi_{0;\omega}^*\|$ and $\ln v(\varphi_{0;\omega}^*)$ are in L^p .

To obtain a central limit theorem, we require the ergodic map θ to be invertible, and extend the definition of φ_k to $k < 0$ by $\varphi_{k;\omega} = \varphi_{0;\theta^k \omega}$, just as for $k \geq 0$. Similarly we define $Z_{k;\omega} = Z_{1;\theta^{k-1}\omega}$ for $k \leq 0$. The key quantities that describe the fluctuations are the deviations of $\ln \|\varphi_k^*(Z_{k+1})\|$ from its mean:

$$\xi_k := \ln \|\varphi_k^*(Z_{k+1})\| - l, \quad (2.16)$$

where l is as in Theorem 1 - **Law of Large Numbers**. We also introduce the following reverse filtration $(\mathcal{F}^n)_{n \in \mathbb{Z}}$ on the probability space:

$$\mathcal{F}^n := \text{sigma algebra generated by } (\varphi_k)_{k \geq n}. \quad (2.17)$$

With these preliminaries, we have the following

Theorem 2 - Central Limit Theorem. Let $\Phi^{(n)}$ be a random sequence of positive maps as in eq. (2.6). Suppose that the ergodic map θ is invertible, that Assumption 1 holds, and that Assumption 2_p holds for some $p \geq 2$. If

$$\sum_{n=1}^{\infty} \|\mathbb{E}[\xi_0 | \mathcal{F}^n]\|_q < \infty \quad (2.18)$$

with $1/p + 1/q = 1$, then for any sequences $(X_n)_{n \geq 1}$ and $(Y_n)_{n \geq 1}$ in \mathbb{S}_n , the random sequence

$$\left(\frac{1}{\sqrt{n}} \left(\ln \langle Y_n, \Phi^{(n)}(X_n) \rangle - nl \right) \right)_{n \geq 1} \quad (2.19)$$

converges in distribution to a centered normal random variable with variance

$$\sigma^2 := \mathbb{E} \left[\left(\sum_{k \geq 0} (\mathbb{E}[\xi_{-k} | \mathcal{F}^0] - \mathbb{E}[\xi_{-k} | \mathcal{F}^1]) \right)^2 \right] \geq 0. \quad (2.20)$$

Remark 2.6. The proof will show that $\sigma < \infty$, but we have allowed the possibility that $\sigma = 0$. If $\sigma = 0$, the sequence in 2.19 converges to 0 in distribution (and hence in probability). Else, the sequence in 2.19 converges to a centered normal law with variance $\sigma^2 > 0$.

We prove Theorem 2 - Central Limit Theorem in §5 below.

The hypothesis eq. (2.18) of Theorem 2 - Central Limit Theorem may not be easy to verify directly. We close this section by introducing *mixing conditions* that are sufficient for eq. (2.18) to hold. Let

$$\mathcal{F}_n := \text{sigma algebra generated by } (\varphi_k)_{k \leq n}. \quad (2.21)$$

Note that $(\mathcal{F}_n)_{n \in \mathbb{Z}}$ is a filtration, i.e., $\mathcal{F}_n \subset \mathcal{F}_{n+1}$, while $(\mathcal{F}^n)_{n \in \mathbb{Z}}$ (defined above in eq. (2.17)) is a reverse filtration, i.e., $\mathcal{F}^n \supset \mathcal{F}^{n+1}$. We introduce the following *mixing coefficients*:

$$\alpha_n := \sup_{k \geq 0} \sup \left\{ |\mathbb{P}(A \cap B) - \mathbb{P}(A)\mathbb{P}(B)| : A \in \mathcal{F}_k, B \in \mathcal{F}^{n+k} \right\} \quad (2.22)$$

$$\rho_n := \sup_{k \geq 0} \sup \left\{ \left| \frac{\mathbb{E}[(Y - \mathbb{E}[Y])(X - \mathbb{E}[X])]}{\sigma(Y)\sigma(X)} \right| : Y \in L^2(\mathcal{F}_k), X \in L^2(\mathcal{F}^{n+k}), X, Y \neq 0 \right\} \quad (2.23)$$

We have the following:

Theorem 3. *If Assumption 2_p holds with $p > 2$ and $\sum_{n \geq 1} \alpha_n^{(p-2)/p} < \infty$, then*

$$\sum_{n=1}^{\infty} \|\mathbb{E}[\xi_0 | \mathcal{F}^n]\|_q < \infty,$$

with q the conjugate exponent to p . If Assumption 2_p holds with $p = 2$ and $\sum_{n \geq 1} \rho_n < \infty$, then

$$\sum_{n=1}^{\infty} \|\mathbb{E}[\xi_0 | \mathcal{F}^n]\|_2 < \infty$$

Theorem 3 is proved in §6 below.

3 Background results: geometry of \mathbb{S}_D , contraction for positive maps, and ergodic arguments

In this section we review some definitions and arguments from [22] that are fundamental to the proofs below.

3.1 A metric on \mathbb{S}_D

Following [22], we define the following metric on \mathbb{S}_D :

$$d(A, B) := \frac{1 - m(A, B)m(B, A)}{1 + m(A, B)m(B, A)}, \quad (3.1)$$

where

$$m(A, B) = \sup\{\lambda : \lambda B \leq A\} \quad (3.2)$$

for $A, B \in \mathbb{S}_D$. The following lemma lists key properties of this metric (see [22, Lemma 3.3, 3.8, 3.9] for further details and proofs):

Lemma 3.1. *The function d defined in eq. (3.1) is a metric on \mathbb{S}_D satisfying:*

1. $\frac{1}{2}\|A - B\| \leq d(A, B) \leq 1$ for $A, B \in \mathbb{S}_D$.
2. $d(A, B) < 1$ for $A, B \in \mathbb{S}_D^\circ$.
3. If $A \in \mathbb{S}_d^\circ$, then $d(A, B) = 1$ if and only if $B \in \mathbb{S}_D \setminus \mathbb{S}_D^\circ$.

4. The set \mathbb{S}_D° is open in the metric topology generated by d and (\mathbb{S}_D°, d) is homeomorphic to \mathbb{S}_D° in the standard topology (generated by $d_1(A, B) = \|A - B\|$).

In the proofs below, the following simple consequence of the lower bound $\frac{1}{2}\|A - B\| \leq d(A, B)$ will be useful.

Lemma 3.2. *Let $\phi \in \mathcal{L}(\mathbb{M}_D)$ be a positive map with the property that $\ker \phi \cap \mathbb{S}_D = \emptyset$. Then for all $X, Y \in \mathbb{S}_D$;*

$$|\ln \|\phi(X)\| - \ln \|\phi(Y)\|| \leq 2 \frac{\|\phi\|}{v(\phi)} d(X, Y) , \quad (3.3)$$

with $v(\phi)$ as in eq. (2.13).

Remark 3.3. For $\phi = \varphi_n^*$, we have $\ker \phi \cap \mathbb{S}_D = \emptyset$ with probability one under the Assumption 1, see [22, Lemma 2.1]. Under Assumption 2, $v(\phi)$ is non-zero with probability 1 and the right-hand-side of eq. (3.3) is finite almost surely.

Proof. Let $g : (\mathbb{S}_D, \|\cdot\|) \rightarrow \mathbb{R}$ be defined as $g(X) = \|\phi(X)\|$. Since ϕ is positive with no matrix in \mathbb{S}_D in its kernel we must have that $g(X) > 0$ for all $X \in \mathbb{S}_D$. Since \mathbb{S}_D is compact in the standard topology, we have that

$$v(\phi) = \min\{\|\phi(Z)\| : Z \in \mathbb{S}_D\} > 0 . \quad (3.4)$$

It follows from the mean value inequality, applied to \ln , that

$$|\ln \|\phi(X)\| - \ln \|\phi(Y)\|| \leq \frac{\|\phi(X)\| - \|\phi(Y)\|}{v(\phi)} \leq \frac{\|\phi\| \|X - Y\|}{v(\phi)} \quad (3.5)$$

The results follows from lemma 3.1 as $\|X - Y\| \leq 2d(X, Y)$. ■

3.2 Contraction Coefficient for ϕ

For any non-destructive positive map $\phi \in \mathcal{L}(\mathbb{M}_D)$ we define the *contraction coefficient* of ϕ , denoted $c(\phi)$, as follows:

$$c(\phi) = \sup\{d(\phi \cdot A, \phi \cdot B) : A, B \in \mathbb{S}_D\} . \quad (3.6)$$

We have the following properties of the contraction coefficient:

Lemma 3.4 ([22, Lemma 3.14]). *If $\phi \in \mathcal{L}(\mathbb{M}_D)$ be a non-destructive positive map, then*

1. $d(\phi \cdot X, \phi \cdot Y) \leq c(\phi)d(X, Y)$ for all $X, Y \in \mathbb{S}_D$.
2. $c(\phi) \leq 1$ and if ϕ is strictly positive then $c(\phi) < 1$.
3. If there exist X, Y such that $\phi \cdot X \in \mathbb{S}_D^\circ$ and $\phi \cdot Y \in \mathbb{S}_D \setminus \mathbb{S}_D^\circ$, then $c(\phi) = 1$.
4. For any non-destructive positive map ψ , we have $c(\phi \circ \psi) \leq c(\phi)c(\psi)$.
5. If ϕ is also non-transient, then $c(\phi) = c(\phi^*)$.

Remark 3.5. We note that the lemma above is stated slightly differently than [22, Lemma 3.14]. However a close reading of the proof in [22] shows that the above version holds.

Under Assumption 1, the maps Φ^n defined as in eq. (2.6) become strictly positive in finite time. As a consequence the following result was proved in [22] using Kingman's sub additive ergodic theorem [16, 17, 19]:

Lemma 3.6 ([22, Lemma 3.11]). *Let $(\varphi_n)_{n \geq 1}$ and Φ^n be as in eq. (2.6). If Assumption 1 holds, then there exists a deterministic constant $\kappa \in [0, 1]$ such that almost surely*

$$\ln \kappa = \lim_{n \rightarrow \infty} \frac{1}{n} \ln c(\Phi^{(n)})$$

and

$$\ln \kappa = \lim_{n \rightarrow \infty} \frac{1}{n} \mathbb{E} \ln c(\Phi^{(n)}) = \inf_{n \in \mathbb{N}} \frac{1}{n} \mathbb{E} \ln c(\Phi^{(n)}) .$$

Remark 3.7. In [22] the ergodic map θ is assumed to be invertible. However, a close reading of the proof of [22, Lemma 3.11] shows that invertibility of θ is not required.

Lemma 3.6 directly yields the following corollary:

Corollary 3.8. $\lim_{n \rightarrow \infty} c(\Phi^{(n)}) = 0$ almost surely.

The contraction provided by Lemma 3.6 is the driving force behind the convergence $L_n \rightarrow Z_1$ state in Lemma 2.2. In fact this convergence can be made more quantitative:

Lemma 3.9 ([22, Lemma 3.12]). *Let $(\varphi_n)_{n \geq 1}$ and Φ^n be as in eq. (2.6) and suppose that Assumption 1 holds. Let L_n be as in eq. (2.10) and let $Z_1 = \lim_n L_n$ and $Z_k = Z_1 \circ \theta^{k-1}$ be as in Lemma 2.2. Then, for each $Y \in \mathbb{S}_D$ and $k \in \mathbb{N}$,*

$$d((\varphi_k^* \circ \dots \circ \varphi_n^*) \cdot Y, Z_k) \leq c(\varphi_k^* \circ \dots \circ \varphi_n^*)$$

for all sufficiently large n . In particular, we have $\lim_n (\varphi_k^* \circ \dots \circ \varphi_n^*) \cdot Y = Z_k$ with probability one.

Below it will be useful to consider the contraction obtained from only a fraction of the process. This is described in the following

Lemma 3.10. *Let $(\varphi_n)_{n \geq 1}$ and Φ^n be as in eq. (2.6). Let $\alpha \in (0, 1)$ and let $n_\alpha = \lfloor (1 - \alpha)n \rfloor$, the integer part of $(1 - \alpha)n$. If Assumption 1 holds, then*

$$\lim_{n \rightarrow \infty} \frac{1}{n} \ln c(\varphi_n \circ \dots \circ \varphi_{n_\alpha+1}) = \alpha \ln \kappa \text{ almost surely,} \quad (3.7)$$

where κ is the deterministic constant in Lemma 3.6.

Proof. First note that, by Part 4 of Lemma 3.4, we have

$$\ln c(\varphi_n \circ \dots \circ \varphi_{n_\alpha+1}) \geq \ln c(\varphi_n \circ \dots \circ \varphi_1) - \ln c(\varphi_{n_\alpha} \circ \dots \circ \varphi_1) . \quad (3.8)$$

Thus, by Lemma 3.6,

$$\liminf_{n \rightarrow \infty} \frac{1}{n} \ln c(\varphi_n \circ \dots \circ \varphi_{n_\alpha+1}) \geq \alpha \ln \kappa \text{ almost surely.} \quad (3.9)$$

To prove the complementary upper bound, i.e., that

$$\limsup_{n \rightarrow \infty} \frac{1}{n} \ln c(\varphi_n \circ \dots \circ \varphi_{n_\alpha+1}) \leq \alpha \ln \kappa , \quad (3.10)$$

we will show that for each $m \in \mathbb{N}$

$$\limsup_{n \rightarrow \infty} \frac{1}{n} \ln c(\varphi_n \circ \dots \circ \varphi_{n_\alpha+1}) \leq \alpha \frac{1}{m} \mathbb{E}[\ln c(\Phi^{(m)})] \text{ almost surely.} \quad (3.11)$$

Eq. (3.10) will then follow by Lemma 3.4.

Let $m \in \mathbb{N}$ be fixed and consider $n \in \mathbb{N}$ large enough that $n - n_\alpha > 2m$. Let $p(n) = \lfloor \frac{n_\alpha + m}{m} \rfloor$ and let $q = q(n) \in \mathbb{N}$ and $r = r(n) \in \{0, 1, \dots, m-1\}$ be defined by $n = qm + r$. Then,

$$n_\alpha + 1 \leq p(n)m + 1 \leq n_\alpha + m < n - m + 1 \leq q(n)m. \quad (3.12)$$

Since $\ln c(\varphi) \leq 0$ for any $\varphi \in \mathcal{L}(\mathbb{M}_D)$, we have, using lemma 3.4, that

$$\ln c(\varphi_n \circ \dots \circ \varphi_{n_\alpha+1}) \leq \ln c(\varphi_{q(n)m+j} \circ \dots \circ \varphi_{p(n)m+j+1}) \quad (3.13)$$

for any $0 \leq j \leq m-1$, where eq. (3.12) guarantees that $p(n)m + j + 1 \geq 1$ and the composition on the right hand side has non-zero number of factors. Using, 3.4 again we find that

$$\ln c(\varphi_n \circ \dots \circ \varphi_{n_\alpha+1}) \leq \sum_{k=p(n)}^{q(n)-1} \ln c(\varphi_{km+j+m} \circ \dots \circ \varphi_{km+j+1}) = \sum_{k=p(n)}^{q(n)-1} \ln c(\varphi_m \circ \dots \circ \varphi_1) \circ \theta^{km+j}.$$

Since this holds for any $j \in \{0, 1, \dots, m-1\}$, we have

$$\begin{aligned} \ln c(\varphi_n \circ \dots \circ \varphi_{n_\alpha+1}) &\leq \frac{1}{m} \sum_{j=0}^{m-1} \sum_{k=p(n)}^{q(n)-1} \ln c(\varphi_m \circ \dots \circ \varphi_1) \circ \theta^{km+j} \\ &= \frac{1}{m} \sum_{i=p(n)m}^{q(n)m-1} \ln c(\varphi_m \circ \dots \circ \varphi_1) \circ \theta^i \\ &= \sum_{i=0}^{q(n)m-1} \frac{1}{m} \ln c(\Phi^{(m)}) \circ \theta^i - \sum_{i=0}^{p(n)m-1} \frac{1}{m} \ln c(\Phi^{(m)}) \circ \theta^i. \end{aligned}$$

Since $(\frac{1}{m} \ln c(\varphi_m \circ \dots \circ \varphi_1))^+ \in L^1(\Omega)$ (where $(\cdot)^+$ denotes the positive part), eq. (3.10) follows from the Birkhoff ergodic theorem. \blacksquare

3.3 Invertible ergodic dynamics

In this section, we assume that θ is an invertible ergodic map. It is often possible to replace the original dynamical system by a natural extension on which θ is invertible; for instance this is possible if θ is *essentially surjective*, i.e. if $\Omega \setminus \theta(\Omega)$ is a sub-null set —see [7]. We will denote this extension also by $(\Omega, \mathcal{F}, \mathbb{P}, \theta)$ and note that the previously stated results still hold.

Since θ is invertible and measure preserving, the inverse map θ^{-1} is also a measure preserving ergodic transformation. We extend the definition of $(\Phi^{(n)})$ to include negative indices as follows

$$\Phi^{(n)}(\omega) = \begin{cases} \varphi_n(\omega) \circ \dots \circ \varphi_1(\omega) & \text{for } n \geq 1, \\ \varphi_0 & \text{for } n = 0, \\ \varphi_{-1}(\omega) \circ \dots \circ \varphi_n(\omega) & \text{for } n \leq -1, \end{cases} \quad (3.14)$$

where $\varphi_n := \varphi_{\theta^n}$ for all n . When θ is invertible, Assumption 1 guarantees that with probability one $(\Phi^{(-n)})_{n \geq 1}$ is almost surely eventually strictly positive — see [22, Lemma 3.13].

With this extended dynamical system, we introduce some new notation. Let $n \in \mathbb{N}$ and define

$$\psi_n = \varphi_{-n}^* \quad \text{and} \quad \Psi^{(n)} = \psi_n \circ \dots \circ \psi_1. \quad (3.15)$$

Note that $\Psi^{(n)*} = \Phi^{(-n)}$. We see that $(\Psi^{(n)})_{n \in \mathbb{N}}$ is almost surely eventually strictly positive. This allows us to define a new stopping time τ' as:

$$\tau' = \inf\{n \geq 1 : \Phi^{(n+k)} \text{ and } \Psi^{(n+k)} \text{ are strictly positive } \forall k \geq 0\}, \quad (3.16)$$

satisfying $\mathbb{P}[\tau' < \infty] = 1$ if θ is invertible and Assumption 1 holds.

We have the following result analogous to Lemma 3.6 for the sequence $(\Psi^{(n)})_{n \geq 1}$:

Lemma 3.11. *If θ is invertible and $(\Phi_{(n)})_{n \geq 1}$ satisfies Assumption 1, then*

$$\ln \kappa \stackrel{a.s.}{=} \lim_{n \rightarrow \infty} \frac{1}{n} \ln c(\Psi^{(n)}), \quad (3.17)$$

where $\Psi^{(n)}$ is as in eq. (3.15) and κ is the deterministic constant appearing in lemma 3.6. In particular, $\lim_n c(\Psi^{(n)}) = 0$ almost surely.

Remark 3.12. The existence of the deterministic limit on the right hand side of eq. (3.17) follows directly from Lemma 3.6 applied with the sequence $\Psi^{(n)}$ in place of $\Phi^{(n)}$. That the limit equals κ follows from the identity

$$\mathbb{E} \ln c(\Psi^{(n)}) = \mathbb{E} \ln c(\Phi_{\theta^{-n-1}}^{(n)*}) = \mathbb{E} \ln c(\Phi^{(n)}),$$

where we have used the facts that θ is measure preserving and that $c(\phi^*) = c(\phi)$ for any ϕ .

If θ is invertible and Assumption 1 holds, then the left and right Perron-Frobenius eigenmatrices R_n and L_n for $\Phi^{(n)}$ exist also for large negative n . As a result we have the following lemma for the convergence of the right eigenvectors:

Lemma 3.13 ([22, Lemma 3.14]). *Let $(\varphi_n)_{n \geq 1}$ and Φ^n be as in eq. (2.6) and let R_n be the right Perron-Frobenius eigenmatrix for $\Phi^{(n)}$, see eq. (2.10). If θ is invertible and Assumption 1 holds, then there is an \mathbb{S}_D° valued random variable Z'_1 such that*

$$\lim_{n \rightarrow -\infty} R_n \stackrel{a.s.}{=} Z'_1 \quad (3.18)$$

and, with $Z'_k := Z'_1 \circ \theta^{-k+1}$, we have:

1. for every $k \in \mathbb{N}$, $\psi_k^* \cdot Z'_{k+1} = Z'_k$ a.s., and
2. for each $Y \in \mathbb{S}_D$ and $k \in \mathbb{N}$,

$$d((\psi_k^* \circ \dots \circ \psi_n^*) \cdot Y, Z'_k) \leq c(\psi_k^* \circ \dots \circ \psi_n^*)$$

for all sufficiently large n . In particular, we have $\lim_n (\psi_k^* \circ \dots \circ \psi_n^*) \cdot Y = Z'_k$ a.s..

If instead we take $n \rightarrow \infty$, we do not have almost sure convergence of R_n . However, we do have convergence in distribution:

Corollary 3.14. *We have that*

$$R_n \xrightarrow[n \rightarrow \infty]{d} Z'_1 \quad \text{and} \quad L_n \xrightarrow[n \rightarrow -\infty]{d} Z'_1, \quad (3.19)$$

where \xrightarrow{d} denotes convergence in distribution.

Proof. Note that $R_n = R_{-n; \theta^{n+1}}$, so that $R_n \stackrel{d}{=} R_{-n}$. Since $\lim_{n \rightarrow \infty} R_{-n} = Z'_1$ a.s., the first limit holds. The proof for the second limit is similar. \blacksquare

4 Proof of the Law of Large Numbers

We now describe the proof of Theorem 1 - Law of Large Numbers. Recall from the discussion following the statement of the theorem above, that it suffices to prove eq. (2.14), which states that

$$\lim_{n \rightarrow \infty} \sup_{X, Y \in \mathbb{S}_D} \left| \frac{1}{n} \ln \langle Y, \Phi^{(n)}(X) \rangle - l \right| = 0 \quad \text{a.s.}$$

To this end, note that by Assumption 2 we have $\mathbb{E}[\ln \|\varphi_k^*(Z_{k+1})\|] < \infty$ for each $k \in \mathbb{N}$. Thus by Birkhoff's ergodic theorem we have

$$\lim_{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^n \ln \|\varphi_k^*(Z_{k+1})\| \stackrel{a.s.}{=} \mathbb{E} \ln \|\varphi_0^*(Z_1)\| := l.$$

Thus eq. (2.14), and therefore Theorem 1 - Law of Large Numbers, follows from the following

Lemma 4.1. *Suppose that Assumption 1 holds and let*

$$D_n = \sup_{X, Y \in \mathbb{S}_D} \{ |\ln \langle Y, \Phi^{(n)}(X) \rangle - \ln \|\Phi^{(n)*}(Y)\| | \} , \quad (4.1)$$

and

$$E_n := \sup_{Y \in \mathbb{S}_D} \left\{ \left| \ln \|\Phi^{(n)*}(Y)\| - \sum_{k=1}^n \ln \|\varphi_{k,\omega}^*(Z_{k+1})\| \right| \right\} . \quad (4.2)$$

for $n \geq 1$. Then, with probability one,

1. D_n is eventually bounded, i.e., $\limsup_{n \rightarrow \infty} D_n < \infty$, and
2. $\lim_{n \rightarrow \infty} \frac{1}{n} E_n = 0$.

Remark 4.2. Note that from $\lim_n \frac{1}{n} E_n$ we conclude directly that $\lim_n \frac{1}{n} \ln \|\Phi^{(n)*}(Y)\| = l$ for every $Y \in \mathbb{S}_D$. In particular $l = \lambda$, the top Lyapunov exponent of $\Phi^{(n)}$, as claimed in the discussion following Theorem 1 - Law of Large Numbers above.

Proof. First note that for any $X, Y \in \mathbb{S}_D$,

$$\langle Y, \Phi^{(n)}(X) \rangle = \langle \Phi^{(n)*}(Y), X \rangle \leq \langle \Phi^{(n)*}(Y), \mathbb{I} \rangle = \|\Phi^{(n)*}(Y)\| , \quad (4.3)$$

Here we have used that $X \leq \mathbb{I}$ and $\text{tr}M = \|M\|$ for any positive semi-definite matrix.

For the rest of the proof, we restrict to a configuration ω such that $\tau = \tau_\omega < \infty$. Such configurations form a full measure set by Assumption 1.

Because $\Phi^{(\tau)}$ is strictly positive, we have $\min \sigma(\Phi^{(\tau)}(P)) > 0$ for any projection P , where $\sigma(\Phi^{(\tau)}(P))$ denotes the spectrum of $\Phi^{(\tau)}(P)$. Thus the map $P \mapsto \min \sigma(\Phi^{(\tau)}(P))$ is a continuous function from the set of rank-1 projections into $(0, \infty)$. Since the set of rank-1 projections is compact, we have

$$a := \min \{ \min(\sigma(\Phi^{(\tau)}(P))) : P \text{ is a rank-1 projection} \} > 0.$$

Given $X, Y \in \mathbb{S}_D$ and $n > \tau$, let $W = \varphi_{\tau+1}^* \circ \dots \circ \varphi_n^*(Y)$. Because X has at least one eigenvalue greater than or equal to $\frac{1}{D}$, we have $X \geq \frac{1}{D}P$ for some rank-1 projection P , and thus

$$\langle Y, \Phi^{(n)}(X) \rangle = \langle W, \Phi^{(\tau)}(X) \rangle \geq \frac{1}{D} \langle W, \Phi^{(\tau)}(P) \rangle \geq \frac{a}{D} \langle W, \mathbb{I} \rangle = \frac{a}{D} \|W\| .$$

Since $\|\Phi^{(n)*}(Y)\| = \|\Phi^{(\tau)*}(W)\| \leq \|\Phi^{(\tau)*}\| \|W\|$, we have

$$\langle Y, \Phi^{(n)}(X) \rangle \geq \frac{a}{D \|\Phi^{(\tau)*}\|} \|\Phi^{(\tau)*}(Y)\| . \quad (4.4)$$

Putting eqs. (4.3) and (4.4) together, we see that

$$\ln a - \ln D - \ln \|\Phi^{(\tau)*}\| \leq \ln \langle Y, \Phi^{(n)}(X) \rangle - \ln \|\Phi^{(\tau)*}(Y)\| \leq 0$$

for $X, Y \in \mathbb{S}_D$ and $n > \tau$. It follows that $\limsup_n D_n \leq \ln D + \ln \|\Phi^{(\tau)*}\| - \ln a < \infty$ whenever $\tau < \infty$.

Turning now to the proof that $\lim_n \frac{1}{n} E_n = 0$, consider $n > \tau$. Note that

$$\|\Phi^{(n)*}(Y)\| = \|\phi_1^*(\phi_2^* \circ \dots \circ \phi_n^*(Y))\| = \|\phi_1^*((\phi_2^* \circ \dots \circ \phi_n^*) \cdot Y)\| \|\phi_2^* \circ \dots \circ \phi_n^*(Y)\| ,$$

where in the final expression we have introduced the projective action by multiplying and dividing by $\|\phi_2^* \circ \dots \circ \phi_n^*(Y)\| = \text{tr} \phi_2^* \circ \dots \circ \phi_n^*(Y)$. Taking logarithms and iterating, we find that

$$\ln \|\Phi^{(n)*}(Y)\| = \sum_{k=1}^n \ln \|\varphi_k^*((\varphi_{k+1}^* \circ \dots \circ \varphi_n^*) \cdot Y)\| ,$$

where the empty composition $\varphi_{n+1}^* \circ \dots \circ \varphi_n^*$ is understood as the identity map. Thus

$$E_n(Y) := \left| \ln \|\Phi^{(n)*}(Y)\| - \sum_{k=1}^n \ln \|\varphi_k^*(Z_{k+1})\| \right| \leq \sum_{k=1}^n E_n^k(Y) ,$$

with $E_n^k(Y) := \left| \ln \|\varphi_k^*((\varphi_{k+1}^* \circ \dots \circ \varphi_n^*) \cdot Y)\| - \ln \|\varphi_k^*(Z_{k+1})\| \right| . \quad (4.5)$

Using Lemma 3.2, Remark 3.3, and Lemma 3.9 we may bound $E_n^k(Y)$ as follows

$$E_n^k(Y) \leq 2 \frac{\|\varphi_k^*\|}{v(\varphi_k^*)} c(\varphi_{k+1}^* \circ \dots \circ \varphi_n^*) . \quad (4.6)$$

Now let $\alpha \in (0, 1)$ and let n_α be the integer part of $(1 - \alpha)n$. We will bound the terms on the right hand side of (4.5) differently according to if $k < n_\alpha$ or $k \geq n_\alpha$. For $k < n_\alpha$, we have

$$E_n^k(Y) \leq 2 \frac{\|\varphi_k^*\|}{v(\varphi_k^*)} c(\varphi_{n_\alpha}^* \circ \dots \circ \varphi_n^*) ,$$

where we have used eq. (4.6) and applied Lemma 3.4 to bound $c(\varphi_{k+1}^* \circ \dots \circ \varphi_n^*) \leq c(\varphi_{n_\alpha}^* \circ \dots \circ \varphi_n^*)$. For $k \geq n_\alpha$, on the other hand, we have

$$E_n^k(Y) \leq \left| \ln \|\varphi_k^*((\varphi_{k+1}^* \circ \dots \circ \varphi_n^*) \cdot Y)\| \right| + \left| \ln \|\varphi_k^*(Z_{k+1})\| \right| \leq 2 \left(|\ln v(\varphi_k^*)| + |\ln \|\varphi_k^*\|| \right) .$$

Thus

$$E_n = \sup_{Y \in \mathbb{S}_D} E_n(Y) \leq S_n^< + S_n^> \quad (4.7)$$

with

$$S_n^< = 2 \sum_{k=1}^{n_\alpha-1} \frac{\|\varphi_k^*\|}{v(\varphi_k^*)} c(\varphi_{n_\alpha}^* \circ \dots \circ \varphi_n^*) ,$$

and

$$S_n^> = 2 \sum_{k=n_\alpha}^n \left(|\ln v(\varphi_k^*)| + |\ln \|\varphi_k^*\|| \right) .$$

We will prove that $\lim_n S_n^< = 0$ and $\lim_n \frac{1}{n} S_n^> = O(\alpha)$.

Note that by Assumption 2 we have $\mathbb{E}[|\ln(\frac{\|\varphi_0^*\|}{v(\varphi_0^*)})|] < \infty$. Thus, for any $\epsilon > 0$,

$$\begin{aligned} \infty &> \frac{1}{\epsilon} \mathbb{E}[|\ln(\frac{\|\varphi_0^*\|}{v(\varphi_0^*)})|] \geq \sum_{k=1}^{\infty} \mathbb{P}\left(\ln(\frac{\|\varphi_0^*\|}{v(\varphi_0^*)}) > k\epsilon\right) \\ &= \sum_{k=1}^{\infty} \mathbb{P}\left(\ln(\frac{\|\varphi_0^*\|}{v(\varphi_0^*)}) > k\epsilon\right) = \sum_{k=1}^{\infty} \mathbb{P}\left(\frac{\|\varphi_0^*\|}{v(\varphi_0^*)} > e^{k\epsilon}\right) . \end{aligned}$$

Hence, by the Borel-Cantelli Lemma, we find that $\limsup_k e^{k\epsilon} \frac{\|\varphi_k^*\|}{v(\varphi_k^*)} \leq 1$ with probability one. Taking $\epsilon < \alpha |\ln \kappa|$, we conclude from Lemma 3.10 that

$$\limsup_{n \rightarrow \infty} S_n^< \leq \limsup_{n \rightarrow \infty} n_\alpha e^{\epsilon n_\alpha} c((\varphi_{n_\alpha}^* \circ \dots \circ \varphi_n^*)) = 0.$$

In particular, we also have $\lim_n \frac{1}{n} S_n^< = 0$.

Now consider $S_n^>$. Since $\ln v(\varphi_0^*)$ and $\ln \|\varphi_0^*\|$ are L^1 random variables by Assumption 1, we conclude from the Birkhoff ergodic theorem [3] that

$$\lim_n \frac{1}{n} S_n^> = 2\alpha [\mathbb{E} |\ln \|\varphi_0^*\|| + \mathbb{E} |\ln v(\varphi_0^*)|].$$

We conclude that $\limsup_n \frac{1}{n} E_n = O(\alpha)$. Since $\alpha \in (0, 1)$ was arbitrary, we have $\lim_n \frac{1}{n} E_n = 0$. \blacksquare

5 Proof the Central Limit Theorem

In this section we prove Theorem 2 - Central Limit Theorem. Let $(X_n)_{n \geq 1}$ and $(Y_n)_{n \geq 1}$ be sequences in \mathbb{S}_n . Then

$$\begin{aligned} \frac{1}{\sqrt{n}} (\ln \langle Y_n, \Phi^{(n)}(X_n) \rangle - nl) &= \frac{1}{\sqrt{n}} (\ln \langle Y_n, \Phi^{(n)}(X_n) \rangle - \ln \|\Phi^{(n)*}(Y_n)\|) \\ &\quad + \frac{1}{\sqrt{n}} (\ln \|\Phi^{(n)*}(Y_n)\| - \sum_{k=1}^n \ln \|\varphi_k^*(\omega)(Z_{k+1}(\omega))\|) + \frac{1}{\sqrt{n}} \sum_{k=1}^n \xi_k, \end{aligned}$$

where $\xi_k = \ln \|\varphi_k^*(Z_{k+1})\| - l$. Thus

$$\left| \frac{1}{\sqrt{n}} (\ln \langle Y_n, \Phi^{(n)}(X_n) \rangle - nl) - \frac{1}{\sqrt{n}} \sum_{k=1}^n \xi_k \right| \leq \frac{1}{\sqrt{n}} (D_n + E_n)$$

with D_n and E_n as in eqs. (4.1) and (4.2), respectively. By Lemma 4.1, D_n is almost surely eventually bounded. Thus to prove that $(\frac{1}{\sqrt{n}} \ln \langle Y_n, \Phi^{(n)}(X_n) \rangle)_{n \geq 1}$ converges in distribution to a centered normal variable, it suffices to prove the following two results:

1. $\frac{1}{\sqrt{n}} E_n$ converges to 0 in probability, and
2. $Q_n := \frac{1}{\sqrt{n}} \sum_{k=1}^n \xi_k$ converges in distribution to a centered normal variable with variance given by eq. (2.20) above.

These results are proved in Lemma 5.1 and Lemma 5.2 below, respectively.

Lemma 5.1. *Suppose that θ is invertible and that Assumption 1 holds. Let $(E_n)_{n=1}^\infty$ be the variables defined in eq. (4.2). Then $(E_n)_{n=1}^\infty$ is tight. In particular, $(\frac{1}{\sqrt{n}} E_n)_{n=1}^\infty$ converges to 0 in probability.*

Proof. Following the proof of eq. (4.7) above, but applying in the proof of Lemma 4.1, we have

$$E_n \leq S_n := 2 \sum_{k=1}^n \frac{\|\varphi_k^*\|}{v(\varphi_k^*)} c(\varphi_{k+1}^* \circ \dots \circ \varphi_n^*).$$

We prove that E_n are tight by showing that $S_n \stackrel{d}{=} S'_n$ where the random variables S'_n satisfy $\sup_n S'_n < \infty$ almost surely.

Consider the variables $S'_n = S_{n;\theta^{-n}}$. Since $c(\phi^*) = c(\phi)$, we have

$$S'_n = 2 \sum_{k=0}^{n-1} \frac{\|\varphi_{-k}^*\|}{v(\varphi_{-k}^*)} c(\varphi_0 \circ \dots \circ \varphi_{1-k}) .$$

As above the empty composition appearing at $k = 0$ is understood as the identity map. By the Borel-Cantelli similar to that used to bound $S_n^<$ in the proof of Lemma 4.1 we see that

$$\limsup_{k \rightarrow \infty} \frac{1}{k} \ln \left(\frac{\|\varphi_{-k}^*\|}{v(\varphi_{-k}^*)} \right) = 0 \quad \text{a.s.}$$

On the other hand by Lemma 3.11 we have

$$\limsup_{k \rightarrow \infty} \frac{1}{k} \ln c(\varphi_0 \circ \dots \circ \varphi_{1-k}) = \ln \kappa < 0 \quad \text{a.s.}$$

It follows that

$$\lim_{n \rightarrow \infty} S'_n = 2 \sum_{k=0}^n \frac{\|\varphi_{-k}^*\|}{v(\varphi_{-k}^*)} c(\varphi_0 \circ \dots \circ \varphi_{1-k}) =: S'_\infty$$

is finite almost surely. Clearly $S'_\infty = \sup_n S'_n$.

Since $S_n \stackrel{d}{=} S'_n$ we have

$$\mathbb{P}[E_n > \epsilon] \leq \mathbb{P}[S_n > \epsilon] = \mathbb{P}[S'_n > \epsilon] \leq \mathbb{P}[S'_\infty > \epsilon] ,$$

so $(E_n)_{n=1}^\infty$ is tight as claimed. It follows that

$$\mathbb{P}\left[\frac{1}{\sqrt{n}} E_n > \epsilon\right] \leq \mathbb{P}[S'_\infty > \sqrt{n}\epsilon] \rightarrow 0 ,$$

so $\frac{1}{\sqrt{n}} E_n$ converges to zero in probability. ■

To prove the convergence of $Q_n = \frac{1}{\sqrt{n}} \sum_{k=1}^n \xi_k$ to a centered normal law in distribution, we use the martingale approximation method of Gordin [13]. The following proof is adapted from the proof of [14, Lemma 9.2] and is similar to the proof of [20, Theorem 1.1]. The key idea is to find a *reverse martingale difference* with respect to the filtration $(\mathcal{F}^n)_{n \geq 1}$ and use the Central Limit Theorem for (reverse) martingale differences [2, 4, 6] which was proved independently by Billingsly [1] and [15] for the ergodic case:

Martingale Difference Central Limit Theorem. *Let $(X_n)_{n \geq 1}$ be a stationary ergodic direct or reversed martingale difference with respect to a filtration $\{\mathcal{A}_n\}_{n \geq 1}$. If $X_1 \in L^2$, then $(\frac{1}{\sqrt{n}} \sum_{k=1}^n X_k)_{n \geq 1}$ converges in distribution to a centered normal random variable with variance $\sigma^2 = \mathbb{E}(X_1^2)$.*

Lemma 5.2. *Suppose that θ is invertible, that Assumption 1 holds, and Assumption 2_p holds for some $p \geq 2$. Let $\xi_k = \ln \|\varphi_k^*(Z_{k+1})\| - l$ for $k \in \mathbb{Z}$. If*

$$\sum_{n=1}^{\infty} \|\mathbb{E}[\xi_0 | \mathcal{F}^n]\|_q < \infty , \tag{5.1}$$

with $\frac{1}{p} + \frac{1}{q} = 1$, then the sequence $(Q_n)_{n=1}^\infty$ given by

$$Q_n = \frac{1}{\sqrt{n}} \sum_{k=1}^n \xi_k \tag{5.2}$$

converges in distribution to a centered normal law with variance $\sigma^2 < \infty$. Furthermore $\sigma = 0$ if and only if there exists stationary sequence $(g_n)_{n \geq 1}$ such that

$$g_n \in L^q(\mathcal{F}^n) \quad \text{and} \quad \xi_n = g_{n+1} - g_n \tag{5.3}$$

Proof. Let $M := \sum_{k=1}^{\infty} \|\mathbb{E}[\xi_0 | \mathcal{F}^k]\|_q < \infty$ by eq. (5.1). We define

$$g_0 := \sum_{k=1}^{\infty} \mathbb{E}[\xi_{-k} | \mathcal{F}^0], \quad (5.4)$$

and note that

$$\|g_0\|_q \leq \sum_{k=1}^{\infty} \|\mathbb{E}[\xi_{-k} | \mathcal{F}^0]\|_q = M,$$

since θ is measure preserving. Since $\|\cdot\|_1 \leq \|\cdot\|_q$, the series defining g_0 converges in L^1 and hence absolutely, almost everywhere.

We define

$$\zeta_0 = \sum_{k=0}^{\infty} (\mathbb{E}[\xi_{-k} | \mathcal{F}^0] - \mathbb{E}[\xi_{-k} | \mathcal{F}^1]), \quad (5.5)$$

and note that $\zeta_0 = \xi_0 + g_0 - g_0 \circ \theta$. For $n \in \mathbb{Z}$, we now define $\zeta_n = \zeta_0 \circ \theta^n$ and $g_n = g_0 \circ \theta^n$, so that

$$\xi_n = \zeta_n + g_{n+1} - g_n. \quad (5.6)$$

Since

$$|\xi_n| \leq \ln \|\phi_n^*\| + \ln v(\phi_n^*) + |l|, \quad (5.7)$$

we have $\xi_n \in L_p \subset L_q$ by Assumption 2_p, so $\zeta_n = \xi_n - g_{n+1} + g_n \in L_q \subset L^1$. Taking conditional expectation with respect to \mathcal{F}^{n+1} in eq. (5.5), we see that

$$\mathbb{E}[\zeta_n | \mathcal{F}^{n+1}] = 0, \quad (5.8)$$

i.e., $(\zeta_n)_{n \geq 1}$ is a reverse martingale difference (*reverse* because $(\mathcal{F}^n)_{n \geq 1}$ is a reverse filtration). Now eq. (5.6) shows that

$$\frac{1}{\sqrt{n}} \sum_{k=1}^n \xi_k = \frac{1}{\sqrt{n}} \sum_{k=1}^n \zeta_n + \frac{1}{\sqrt{n}} (g_{n+1} - g_1). \quad (5.9)$$

Since $g_{n+1} = g_1 \circ \theta^n$, we see that $g_{n+1} - g_1$ is tight and thus $\frac{1}{\sqrt{n}} (g_{n+1} - g_1)$ converges to 0 in probability. Therefore, by the Martingale Difference Central Limit Theorem, we will have the required convergence in distribution if we establish that $\zeta_0 \in L^2$.

Since $\zeta_0 = \xi_0 - (g_1 - g_0)$ and $\xi_0 \in L_p \subset L_2$ by eq. (5.7), it suffices to show that $g_1 - g_0 \in L^2$. We have $g_n \in L^q(\mathcal{F}^n)$, but this does not suffice as $q < 2$. To show that $g_1 - g_0 \in L^2$ we need to exploit cancellation between the two terms. To this end, let $\lambda \in (0, 1)$ and define

$$g_0^\lambda = \sum_{k=1}^{\infty} \lambda^{k-1} \mathbb{E}[\xi_{-k} | \mathcal{F}^0], \quad (5.10)$$

and define $g_n^\lambda = g_0^\lambda \circ \theta^n$ for $n \in \mathbb{Z}$. Since $\|\mathbb{E}[\xi_{-k} | \mathcal{F}^0]\|_p \leq \|\xi_{-k}\|_p = \|\xi_0\|_p$, the convergence factor λ^{k-1} in eq. (5.10) guarantees that $g_0^\lambda \in L^p \subset L^2$. Furthermore, we have

$$\|g_0^\lambda\|_q \leq \sum_{k=1}^{\infty} \lambda^{k-1} \|\mathbb{E}[\xi_{-k} | \mathcal{F}^0]\|_q \leq M, \quad (5.11)$$

since $\lambda \leq 1$.

We will now show that $\|g_1^\lambda - \lambda g_0^\lambda\|_2^2$ is bounded uniformly in λ . We start with the estimate

$$\begin{aligned} \|g_1^\lambda - \lambda g_0^\lambda\|_2^2 &= (1 + \lambda^2) \|g_1^\lambda\|_2^2 - 2\lambda \mathbb{E}[g_0^\lambda g_1^\lambda] \\ &\leq 2[\|g_1^\lambda\|_2^2 - \lambda \mathbb{E}[g_0^\lambda g_1^\lambda]] = 2\mathbb{E}[g_1^\lambda (g_1^\lambda - \lambda \mathbb{E}[g_0^\lambda | \mathcal{F}^1])], \end{aligned}$$

where we have noted that $\|g_1^\lambda\|_2 = \|g_0^\lambda\|_2$ (since $(g_n^\lambda)_{n=1}^\infty$ is stationary) and that g_1^λ is \mathcal{F}^1 measurable. Note that

$$g_1^\lambda - \lambda \mathbb{E}[g_0^\lambda | \mathcal{F}^1] = \sum_{k=1}^{\infty} \lambda^{k-1} \mathbb{E}[\xi_{-k+1} | \mathcal{F}^1] - \lambda \sum_{k=1}^{\infty} \lambda^{k-1} \mathbb{E}[\xi_{-k} | \mathcal{F}^1] = \mathbb{E}[\xi_0 | \mathcal{F}^1].$$

Thus

$$\|g_1^\lambda - \lambda g_0^\lambda\|_2^2 \leq 2 \int_{\Omega} \mathbb{E}[\xi_0 | \mathcal{F}^1] g_1^\lambda d\mathbb{P} \leq 2 \|\mathbb{E}[\xi_0 | \mathcal{F}^1]\|_p \|g_1^\lambda\|_q \leq 2 \|\xi_0\|_p M,$$

where we have used Hölder's inequality and eq. (5.11).

Since $g_1 - g_0 = \lim_{\lambda \uparrow 1} g_1^\lambda - \lambda g_0^\lambda$, we have

$$\mathbb{E}[(g_1 - g_0)^2] = \mathbb{E}\left[\lim_{\lambda \uparrow 1} (g_1^\lambda - \lambda g_0^\lambda)^2\right] \leq \liminf_{\lambda \uparrow 1} \mathbb{E}[(g_1^\lambda - \lambda g_0^\lambda)^2] \leq 2 \|\xi_0\|_p M,$$

by Fatou's Lemma. Therefore $g_1 - g_0 \in L^2$. Thus $\zeta_n \in L^2$ for each n and the martingale difference central limit theorem implies that $(\frac{1}{\sqrt{n}} \sum_{k=1}^n \zeta_k)_{n \geq 1}$ (and thus $(\frac{1}{\sqrt{n}} \sum_{k=1}^n \xi_k)_{n \geq 1}$) converges in distribution to a centered normal random variable with variance $\sigma^2 = \mathbb{E}[\zeta_0^2]$.

If $\sigma = 0$ then we have that $\zeta_n = 0$ a.s. for each $n \in \mathbb{Z}$. In this case, we have $\xi_n = g_{n+1} - g_n$ for the stationary processes $(g_n)_{n \in \mathbb{Z}}$ defined above. This concludes the proof of lemma 5.2 ■

This completes the proof of Theorem 2 - Central Limit Theorem. In the next section we discuss the mixing conditions sufficient to prove the hypothesis eq. (2.18).

6 Mixing Conditions

In this section we prove Theorem 3, which provides sufficient conditions for the main hypothesis eq. (2.18) of Theorem 2 - Central Limit Theorem. The arguments in this section are based on similar results in [9] and [14]. We rely on the following estimate on averages of sub-multiplicative random variables that combines [14, Lemma 6.2 & Lemma 6.3] — see also [5, Lemma 3 & Lemma 4].

Lemma 6.1 ([14]). *Consider a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ with an ergodic measure preserving map $\theta : \Omega \rightarrow \Omega$, a filtration $(\mathcal{F}_n)_{n \geq 0}$, and a reverse filtration $(\mathcal{F}^n)_{n \geq 0}$, such that $\theta^{-1}(\mathcal{F}_{n+1}) = \mathcal{F}_n$ and $\theta^{-1}(\mathcal{F}^{n+1}) = \mathcal{F}^n$ for each $n \geq 0$. Let α_n and ρ_n be mixing coefficients defined as defined in eqs. (2.22) and (2.23), respectively. Let $(M_n)_{n \geq 1}$ be a sequence of $[0, 1]$ -valued random variables with the following sub-multiplicative property*

$$M_{m+n} \leq M_m M_n \circ \theta^n. \quad (6.1)$$

If for each $0 \leq m < n$ it holds that $M_{n-m} \circ \theta^m$ is both \mathcal{F}_n and \mathcal{F}^m measurable, then we have:

1. *If $\alpha_n \leq cn^{-\lambda}$ with $c, \lambda > 0$, then $\mathbb{E}[M_n]$ almost vanishes to order $n^{-\lambda}$,*

$$\mathbb{E}[M_n] = O\left(\frac{a_n}{n}\right)^\lambda \quad (6.2)$$

for any sequence $(a_n)_{n \geq 1}$ of real numbers such that

$$\lim_{n \rightarrow \infty} \frac{\ln n}{a_n} = \lim_{n \rightarrow \infty} \frac{a_n}{n} = 0. \quad (6.3)$$

2. *If $\lim_{n \rightarrow \infty} \rho_n = 0$, then $\mathbb{E}[M_n]$ vanishes faster than any polynomial, i.e.,*

$$\mathbb{E}[M_n] = O\left(\frac{1}{n^k}\right). \quad (6.4)$$

for each $k \in \mathbb{N}$,

Lemma 6.1 directly implies bounds on $\mathbb{E}[c(\Phi^{(n)})]$, stated in the following

Lemma 6.2. *Suppose that Assumptions 1 and 2 hold, and let α_n and ρ_n be mixing coefficients defined as defined in eqs. (2.22) and (2.23), respectively. For $r \in (0, 1)$ define*

$$\tau_r = \inf\{n \geq 1 : c(\Psi^{(n)}) \leq r \text{ \& } c(\Phi^{(n)}) \leq r\}.$$

Then we have that $\tau_r < \infty$ almost surely. Moreover

1. *If $\sum_{k=1}^{\infty} \alpha_k^{1/\lambda} < \infty$, for some $\lambda > 0$, then*

$$\max\left\{\mathbb{P}[\tau_r > n], \mathbb{E}[c(\Phi^{(n)})]\right\} = O\left(\frac{\alpha_n}{n}\right)^{\lambda} \quad (6.5)$$

for any sequence $(a_n)_{n \geq 1}$ satisfying eq. (6.3).

2. *If $\lim_{n \rightarrow \infty} \rho_n = 0$, then*

$$\max\left\{\mathbb{P}[\tau_r > n], \mathbb{E}[c(\Phi^{(n)})]\right\} = O\left(\frac{1}{n^k}\right) \quad (6.6)$$

for any $k \geq 1$.

Proof. From Corollary 3.8 and Lemma 3.11 we see that $\mathbb{P}[\tau_r < \infty] = 1$. We also have, by Assumption 2, that ϕ_n is non-destructive and non-transient for all $n \geq 1$, with probability one. Therefore, we have that almost surely for all $n \in \mathbb{Z}$, $c(\Psi^{\tau_r+n}), c(\Phi^{\tau_r+n}) < r$.

Suppose that $\sum_{k=1}^{\infty} \alpha_k^{1/\lambda} < \infty$. We start with the observation that α_n is non-increasing in n ; this can be seen directly from the definition (2.22) of α_n using the fact that $(\mathcal{F}^n)_{n \geq 1}$ is decreasing in n . Since $\alpha_n^{1/\lambda}$ is a non-increasing sequence of positive numbers with $\sum_n \alpha_n^{1/\lambda} < \infty$, we have $\lim_{n \rightarrow \infty} n\alpha_n^{\lambda} = 0$. Therefore we have $\alpha_n \leq cn^{-\lambda}$. Now notice that the sequence $M_n = c(\Phi^{(n)})$, for $n \geq 1$, satisfies the sub-multiplicative condition in Lemma 6.1. Therefore we obtain

$$\mathbb{E}[c(\Phi^{(n)})] \leq c_1 \left(\frac{\alpha_n}{n}\right)^{\lambda} \quad (6.7)$$

for any sequence $(a_n)_{n \geq 1}$ satisfying eq. (6.3). A similar analysis can be applied to $(c(\Psi^n))_{n \in \mathbb{N}}$, resulting in

$$\mathbb{E}[c(\Phi^{(n)})] \leq c_2 \left(\frac{\alpha_n}{n}\right)^{\lambda}. \quad (6.8)$$

Since

$$\mathbb{P}[\tau_r > n] \leq \mathbb{P}[c(\Psi^{(n)}) > r] + \mathbb{P}[c(\Phi^{(n)}) > r] \leq \frac{1}{r} \mathbb{E}[c(\Phi^{(n)})] + \frac{1}{r} \mathbb{E}[c(\Psi^{(n)})], \quad (6.9)$$

we see that eq. (6.5) holds.

If $\lim_{n \rightarrow \infty} \rho_n = 0$, then the second part of Lemma 6.1 applies and eq. (6.9) still holds. These two combined give us eq. (6.6). \blacksquare

We are now ready to state the main technical estimate of this section:

Lemma 6.3. *Suppose that Assumptions 1 and 2 hold, and let α_n and ρ_n be mixing coefficients defined in eqs. (2.22) and (2.23), respectively. Let $r \in (0, 1)$ and let τ_r be as defined in Lemma 6.2. Let n_{α} denote the integer part of $(1 - \alpha)n$, for $\alpha \in (0, 1)$.*

1. *If Assumption 2_p holds with $p > 2$ then there is $K < \infty$ such that*

$$\|\mathbb{E}[\xi_0 | \mathcal{F}^n]\|_q \leq K \left[\alpha_{n-n_{\alpha}}^{(p-2)/p} + \mathbb{E}[c(\Phi^{(n_{\alpha})})] + (\mathbb{P}[\tau_r > n_{\alpha}])^{1/q} \right], \quad (6.10)$$

with q the conjugate exponent to p .

2. If Assumption 2_p holds with $p = 2$ then there is $K < \infty$ such that

$$\|\mathbb{E}[\xi_0 | \mathcal{F}^n]\|_2 \leq K \left[\rho_{n-n_\alpha} + \mathbb{E}[c(\Phi^{(n_\alpha)*})] + (\mathbb{P}(\tau_r > n_\alpha))^{1/2} \right]. \quad (6.11)$$

Before proving Lemma 6.3, let us show how it implies Theorem 3. First note that if $(b_n)_{n \geq 1}$ is a sequence of non-negative numbers then

$$\sum_{n=1}^{\infty} b_{n_\alpha} \leq \frac{1}{1-\alpha} \sum_{n=1}^{\infty} b_n, \quad (6.12)$$

$$\sum_{n=1}^{\infty} b_{n-n_\alpha} \leq \frac{1}{\alpha} \sum_{n=1}^{\infty} b_n. \quad (6.13)$$

To see that eq. (6.12) holds, note that given $m \in \mathbb{N}$, the number of integers n such that $n_\alpha = m$ is bounded by $\frac{1}{1-\alpha}$. The proof of eq. (6.13) is similar. Now suppose that Assumption 2_p holds with $p > 2$ and $\sum_n \alpha_n^{(p-2)/p} < \infty$. Then by Lemma 6.2, Lemma 6.3, and eqs. (6.12, 6.13), we have

$$\sum_{n=1}^{\infty} \|\mathbb{E}[\xi_0 | \mathcal{F}^n]\|_q \leq K' \sum_{n \geq 1} \left[\alpha_n^{\frac{p-2}{p}} + \left(\frac{a_n}{n} \right)^{\frac{p}{p-2}} + \left(\frac{a_n}{n} \right)^{\frac{p-2}{p} \frac{1}{q}} \right]$$

for a suitable $K' < \infty$ and a slowly increasing sequence $(a_n)_{n \geq 1}$ satisfying eq. (6.3). Since $\frac{p}{p-2} > 1$ and $\frac{p}{p-2} \frac{1}{q} = \frac{p-1}{p-2} > 1$ the right hand side is finite. Similarly, if $\sum_n \rho_n < \infty$, then we have

$$\sum_{n=1}^{\infty} \|\mathbb{E}[\xi_0 | \mathcal{F}^n]\|_q \leq K' \sum_{n \geq 1} \left[\rho_n + \frac{1}{n^k} \right]$$

for any k , which is clearly finite. This completes the proof of Theorem 3.

We now turn to the proof of Lemma 6.3:

Proof of Lemma 6.3. By Lemma 2.2, we have $\Phi^{(n_\alpha)} \cdot Z_{n_\alpha+1} = Z_1$. Therefore

$$\xi_0 = A_n + B_n - \mathbb{E}[A_n],$$

where

$$A_n = \ln \|\varphi_0^*(\Phi^{(n_\alpha)} \cdot Z_{n_\alpha+1})\| - \ln \|\varphi_0^*(\Phi^{(n_\alpha)} \cdot \frac{1}{D} \mathbb{I})\|$$

and

$$B_n = \ln \|\varphi_0^*(\Phi^{(n_\alpha)} \cdot \frac{1}{D} \mathbb{I})\| - \mathbb{E} \left[\ln \|\varphi_0^*(\Phi^{(n_\alpha)} \cdot \frac{1}{D} \mathbb{I})\| \right].$$

Now consider the event $\{\tau_r \leq n_\alpha\}$. On this event, $c(\Phi^{(n_\alpha)*}) \leq r$. To bound A_n on this event we will use the following proposition which we prove below after completing the present proof.

Proposition 6.4. *Let $\psi, \phi \in \mathcal{L}(\mathbb{M}_D)$. Suppose that ψ is a positive map and ϕ is a strictly positive map with $c(\phi) \leq r < 1$. If ψ is non-transient, then for any $A, B \in \mathbb{S}_D$ we have*

$$|\ln \|\psi(\phi \cdot A)\| - \ln \|\psi(\phi \cdot B)\|| \leq c(\phi) \frac{2}{r} \ln \frac{1}{1-r}$$

Using Proposition 6.4, we see that

$$|A_n| \leq \frac{2}{r} \ln \frac{1}{1-r} c(\Phi^{(n_\alpha)*}) \mathbf{1}_{\tau_r \leq n_\alpha} + 2 (|\ln \|\varphi_0^*\|| + |\ln v(\varphi_0^*)|) \mathbf{1}_{\tau_r > n_\alpha} =: A'_n.$$

Therefore, using Hölder's inequality and Assumption 2_p, we have

$$|\mathbb{E}A_n| \leq \mathbb{E}A'_n \leq C \left(\mathbb{E}[c(\Phi^{(n_\alpha)*})] + (\mathbb{P}(\tau_r > n_\alpha))^{(p-1)/p} \right) \quad (6.14)$$

with $C < \infty$. Furthermore we also have that

$$\sup_n \|A_n\|_p \leq \sup_n \|A'_n\|_p < \infty \text{ and } \sup_n \|B_n\|_p < \infty. \quad (6.15)$$

Now, for $\frac{1}{p} + \frac{1}{q} = 1$ we have that

$$\|\mathbb{E}[\xi_0 | \mathcal{F}^n]\|_q = \sup_{\{f \in L^p(\mathcal{F}^n) : \|f\|_p \leq 1\}} |\mathbb{E}[f \xi_0]|. \quad (6.16)$$

Hence to bound $\|\mathbb{E}[\xi_0 | \mathcal{F}^n]\|_q < \infty$ it suffices to find a uniform upper bound for $\mathbb{E}[\xi f]$ as f ranges over the unit ball in $L^p(\mathcal{F}^n)$. Since $\xi_0 = A_n + B_n - \mathbb{E}[A_n]$ and $\mathbb{E}[B_n] = 0$, we have

$$\begin{aligned} |\mathbb{E}[\xi_0 f]| &\leq |\mathbb{E}[A_n f]| + |\mathbb{E}[B_n f]| + |\mathbb{E}[A_n] \mathbb{E}[f]| \\ &\leq \mathbb{E}[A'_n | f |] + |\mathbb{E}[B_n f] - \mathbb{E}[B_n] \mathbb{E}[f]| + \mathbb{E}[A'_n] \mathbb{E}[|f|] \\ &\leq |\mathbb{E}[A'_n | f |] - \mathbb{E}[A'_n] \mathbb{E}[|f|]| + |\mathbb{E}[B_n f] - \mathbb{E}[B_n] \mathbb{E}[f]| + 2\mathbb{E}[A'_n] \mathbb{E}[|f|] \end{aligned} \quad (6.17)$$

To estimating the right hand side we use the following covariance inequalities involving the mixing coefficients α_n and ρ_n .

Lemma 6.5 ([8, §1.2 Theorem 3] —see also [14, §6.2]). *For each $n \in \mathbb{N}$, Let α_n and ρ_n be as defined in eqs. (2.22) and (2.23), respectively. For each $n, k \in \mathbb{N}$, we have*

$$|\mathbb{E}[XY] - \mathbb{E}[X]\mathbb{E}[Y]| \leq \rho_n \|X\|_2 \|Y\|_2$$

whenever $X \in L^2(\mathcal{F}_k)$ and $Y \in L^2(\mathcal{F}^{n+k})$, and

$$|\mathbb{E}[XY] - \mathbb{E}[X]\mathbb{E}[Y]| \leq 8\alpha_n^{1/r} \|X\|_p \|Y\|_q$$

whenever $X \in L^p(\mathcal{F}_k)$ and $Y \in L^q(\mathcal{F}^{k+n})$ with $p, q, r \in [1, \infty]$ such that $\frac{1}{p} + \frac{1}{q} + \frac{1}{r} = 1$.

We note that $A_n, B_n \in L^p(\mathcal{F}_{n_\alpha})$. If $p > 2$, then eq. (6.17) and Lemma 6.5 (with $q = p$ and $r = \frac{p}{p-2}$) together imply that

$$|\mathbb{E}[\xi_0 f]| \leq 8\alpha_{n-n_\alpha}^{\frac{p}{p-2}} (\|A'_n\|_p + \|B_n\|_p) \|f\|_p + 2\mathbb{E}[A'_n] \|f\|_p,$$

where we have used the estimate $\mathbb{E}[|f|] \leq \|f\|_p$ in the last term. Eq. (6.10) follows this inequality together with eqs. (6.14, 6.15, 6.16). If $p = 2$, then eq. (6.17) and Lemma 6.5 together imply that

$$|\mathbb{E}[\xi_0 f]| \leq \rho_{n-n_\alpha} (\|A'_n\|_2 + \|B_n\|_2) \|f\|_2 + 2\mathbb{E}[A'_n] \|f\|_2.$$

Eq. (6.11) follows from this inequality, again using eqs. (6.14, 6.15, 6.16). This completes the proof of Lemma 6.3. \blacksquare

It remains to prove Proposition 6.4:

Proof of Proposition 6.4. From [22, Lemma 3.3], the quantity $m(A, B)$ appearing in the definition (3.1) of the metric $d(A, B)$ can be expressed as

$$m(A, B) = \min \left\{ \frac{\text{tr}[XA]}{\text{tr}[XB]} : X \in \mathbb{S}_D \text{ and } \text{tr}[XA] \neq 0 \right\}.$$

Since

$$\frac{\|\psi(\phi \cdot A)\|}{\|\psi(\phi \cdot B)\|} = \frac{\text{tr}\psi^*(\mathbb{I})\phi \cdot A}{\text{tr}\psi^*(\mathbb{I})\phi \cdot B} = \frac{\text{tr}\psi^*(\frac{1}{D}\mathbb{I})\phi \cdot A}{\text{tr}\psi^*(\frac{1}{D}\mathbb{I})\phi \cdot B},$$

we see that

$$m(\phi \cdot A, \phi \cdot B) \leq \frac{\|\psi(\phi \cdot A)\|}{\|\psi(\phi \cdot B)\|} \leq \frac{1}{m(\phi \cdot B, \phi \cdot A)}.$$

Since $\phi \cdot A, \phi \cdot B$ are positive definite (because ϕ is strictly positive), the various terms appearing in this inequality are all finite and non-zero. Taking logarithms yields

$$\begin{aligned} |\ln \|\psi(\phi \cdot A)\| - \ln \|\psi(\phi \cdot B)\|| &\leq -\ln m(\phi \cdot A, \phi \cdot B) - \ln m(\phi \cdot B, \phi \cdot A) \\ &\leq \ln \frac{1 + d(\phi \cdot A, \phi \cdot B)}{1 - d(\phi \cdot A, \phi \cdot B)} \leq \ln \frac{1 + c(\phi)}{1 - c(\phi)}, \end{aligned}$$

where we have used the definition eq. (3.1) of $d(\cdot, \cdot)$ and Lemma 3.1 to obtain $d(\phi \cdot A, \phi \cdot B) \leq c(\phi)$. Now for $x \in [0, 1)$ we have

$$\frac{1+x}{1-x} \leq \frac{1}{(1-x)^2}$$

As $x = c(\phi) \in (0, 1)$ (since ϕ is strictly positive) we have that

$$|\ln \|\psi(\phi \cdot A)\| - \ln \|\psi(\phi \cdot B)\|| \leq 2 \ln \frac{1}{1 - c(\phi)}.$$

Now consider the convex function $f(x) = \ln 1/(1-x)$ for $x \in [0, 1)$. Since f is convex and $f(0) = 0$, we have $f(tr) \leq tf(r)$ for any $t, r \in [0, 1)$. Hence, $f(\lambda) \leq f(r)\lambda/r$ for any $\lambda \in [0, r]$. Thus

$$|\ln \|\psi(\phi \cdot A)\| - \ln \|\psi(\phi \cdot B)\|| \leq c(\phi) \frac{2}{r} \ln \frac{1}{1-r}$$

if $c(\phi) \leq r$. ■

Acknowledgements

This material is based upon work supported by the National Science Foundation under Grants No. 1900015 and 2153946.

References

- [1] Patrick Billingsley, *The lindeberg-levy theorem for martingales*, Proceedings of the American Mathematical Society **12** (1961), no. 5, 788–792.
- [2] ———, *Probability and measure*, John Wiley & Sons, 2008.
- [3] George D Birkhoff, *Proof of the ergodic theorem*, Proceedings of the National Academy of Sciences **17** (1931), no. 12, 656–660.
- [4] Bruce M Brown, *Martingale central limit theorems*, The Annals of Mathematical Statistics (1971), 59–66.
- [5] Harry Cohn, Olle Nerman, and Magda Peligrad, *Weak ergodicity and products of random matrices*, Journal of Theoretical Probability **6** (1993), no. 2, 389–405.
- [6] Jean-Pierre Conze and Albert Raugi, *Limit theorems for sequential expanding dynamical systems*, Ergodic Theory and Related Fields: 2004-2006 Chapel Hill Workshops on Probability and Ergodic Theory, University of North Carolina Chapel Hill, North Carolina, vol. 430, American Mathematical Soc., 2007, p. 89.

- [7] Isaac P Cornfeld, Sergej V Fomin, and Yakov Grigorevich Sinai, *Ergodic theory*, vol. 245, Springer Science & Business Media, 2012.
- [8] Paul Doukhan, *Mixing: properties and examples*, vol. 85, Springer Science & Business Media, 2012.
- [9] Detlef Dürr and Sheldon Goldstein, *Remarks on the central limit theorem for weakly dependent random variables*, Stochastic processes—Mathematics and physics, Springer, 1986, pp. 104–118.
- [10] David E Evans and Raphael Høegh-Krohn, *Spectral properties of positive maps on c^* -algebras*, Journal of the London Mathematical Society **2** (1978), no. 2, 345–355.
- [11] H. Furstenberg and H. Kesten, *Products of Random Matrices*, The Annals of Mathematical Statistics **31** (1960), no. 2, 457–469.
- [12] I Ya Gol'dsheid and G A Margulis, *Lyapunov indices of a product of random matrices*, Russian Mathematical Surveys **44** (1989), no. 5, 11–71.
- [13] Mikhail Iosifovich Gordin, *The central limit theorem for stationary processes*, Doklady Akademii Nauk, vol. 188, Russian Academy of Sciences, 1969, pp. 739–741.
- [14] H Hennion, *Limit theorems for products of positive random matrices*, The Annals of Probability (1997), 1545–1587.
- [15] Il'dar Abdulovich Ibragimov, *A central limit theorem for one class of dependent random variables*, Teoriya Veroyatnostei i ee Primeneniya **8** (1963), no. 1, 89–94.
- [16] John FC Kingman, *Subadditive processes*, Ecole d'Eté de Probabilités de Saint-Flour V-1975, Springer, 1976, pp. 167–223.
- [17] John Frank Charles Kingman et al., *Subadditive ergodic theory*, Annals of Probability **1** (1973), no. 6, 883–899.
- [18] M. G. Krein and M. A. Rutman, *Linear operators leaving invariant a cone in a Banach space*, American Mathematical Society Translations **1950** (1950), no. 26, 128. MR 0038008
- [19] Thomas M Liggett, *An improved subadditive ergodic theorem*, The Annals of Probability **13** (1985), no. 4, 1279–1285.
- [20] Carlangelo Liverani, *Central limit theorem for deterministic systems*, Pitman Research Notes in Mathematics Series (1996), 56–75.
- [21] Ramis Movassagh and Jeffrey Schenker, *Theory of ergodic quantum processes*, Physical Review X **11** (2021), no. 4, 041001.
- [22] ———, *An ergodic theorem for quantum processes with applications to matrix product states*, Communications in Mathematical Physics (2022), 1–22.
- [23] V Oseledec, *A multiplicative ergodic theorem, characteristic lyapnov exponents of dynamical systems (transactions of the moscow mathematical society, 19)*, American Mathematical Society, Providence, RI (1968).
- [24] Peter Walters, *An introduction to ergodic theory*, vol. 79, Springer Science & Business Media, 2000.