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Abstract—We report a power-efficient analog front-end 
integrated circuit (IC) for multi-channel, dual-band subcortical 
recordings. In order to achieve high-resolution multi-channel 
recordings with low power consumption, we implemented an 
incremental ΔΣ ADC (IADC) with a dynamic zoom-and-track 
scheme. This scheme continuously tracks local field potential 
(LFP) and adaptively adjusts the input dynamic range (DR) into a 
zoomed sub-LFP range to resolve tiny action potentials. Thanks to 
the reduced DR, the oversampling rate of the IADC can be 
reduced by 64.3% compared to the conventional approach, 
leading to significant power reduction. In addition, dual-band 
recording can be easily attained because the scheme continuously 
tracks LFPs without additional on-chip hardware. A prototype 
four-channel front-end IC has been fabricated in 180 nm standard 
CMOS processes. The IADC achieved 11.3-bit ENOB at 6.8 μW, 
resulting in the best Walden and SNDR FoMs, 107.9 fJ/c-s and 
162.1 dB, respectively, among two different comparison groups: 
the IADCs reported up to date in the state-of-the-art neural 
recording front-ends; and the recent brain recording ADCs using 
similar zooming or tracking techniques to this work. The intrinsic 
dual-band recording feature reduces the post-processing FPGA 
resources for subcortical signal band separation by >45.8%. The 
front-end IC with the zoom-and-track IADC showed an NEF of 
5.9 with input-referred noise of 8.2 μVrms, sufficient for 
subcortical recording. The performance of the whole front-end IC 
was successfully validated through in vivo animal experiments. 

Index Terms — Dual-band recording, Dynamic zoom-and-track 
scheme, Incremental delta-sigma ADC, Power-efficient ADC, Neural 
recording front-end 
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I. INTRODUCTION

EURAL activities from individual neurons and their 
ensembles control the brain functions [1]. In order to 

understand how the brain works, it is necessary to monitor the 
individual neural activities with high spatiotemporal resolution 
in subcortical regions of a behaving animal and correlate those 
with slow brain oscillations [2], [3]. Subcortical recording 
front-end integrated circuits (ICs) have been developed to meet 
this demand [4]-[7]. Typically, the front-end circuit is 
composed with low-noise amplifiers (LNAs) followed by 
analog-to-digital converters (ADCs) and digital wireline or 
wireless telemetry [8], [9]. The ADC is one of the most 
essential building blocks for construction of the front-end 
circuit because the acquired brain signals should be digitized 
for robust data transmission and post analysis [9], [10]. 
Therefore, it is important to choose an optimal architecture of 
ADCs for the energy-efficient recording front-end circuit. 

For high-performance subcortical recording, ADCs should 
satisfy a couple of requirements as shown in Fig. 1. First, the 
resolution of ADCs should be sufficiently high to resolve tiny 
action potentials (APs), often as small as 10 μV, mixed with 
mV-scale local field potentials (LFPs) [11], [12]. Considering 
this magnitude range of subcortical signals as well as the circuit 
noise floor that must be lower than the smallest input, it is 
desired to use an ADC with 10 bit or higher effective number of 
bits (ENOB). Here, the electrode DC offset (EDO), that is much 
larger than neural signals, is ignored because it can be easily 
removed by the AC-coupled front-end architecture with a 
DC-cutoff frequency of ~0.1 Hz [46]. Second, the ADC
integrated in the multi-channel recording front-end should
accommodate time-division multiplexed (TDM) inputs for
optimized power and area efficiencies [13]-[15].

Conventionally, Nyquist-rate ADCs, such as 
successive-approximation-register (SAR) ADCs, were widely 
used for multi-channel neural recording front-ends. The SAR 
ADCs consume low power and easily accommodate 
multiplexed inputs through sampling operation. However, the 
Nyquist ADCs are susceptible to performance degradation due 
to process variations, requiring additional circuits for 
compensation. For instance, the accuracy of high-resolution 
SAR ADCs typically depends on complex calibration 
techniques to alleviate distortions caused by mismatches and/or 
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incomplete settling in capacitor digital-to-analog converters 
(CDACs) [16], [17]. Alternative option is an oversampled ADC. 
Delta-sigma (ΔΣ) ADCs can achieve a high resolution through 
in-band quantization noise shaping by oversampling without 
complex calibration circuits. By taking advantage of low noise 
features, various ΔΣ ADC schemes, such as Δ or Δ-ΔΣ ADCs, 
have been adopted for recording front-ends [11], [12], [18]-[20]. 
However, one of drawback in the ΔΣ ADCs is that they cannot 
accommodate the multiplexed inputs unless multiple integrator 
memories are used to store the sampled data from each input, 
which may significantly increase the design complexity [21], 
[22]. Considering the pros and cons of the two types of ADCs, a 
hybrid of ΔΣ and Nyquist ADCs can be a good fit to 
multi-channel neural recording front-ends. Since the 
incremental ΔΣ ADC (IADC) inherits the quantization noise 
shaping from ΔΣ modulation, it can easily achieve an effective 
resolution higher than 10-bits without calibrations. 
Furthermore, integrate-and-reset operation can allow for TDM 
inputs, similar to the Nyquist ADCs [22]-[24], [51]. 

One thing that should be considered is the IADC may not 
give the best noise-power efficiency.  This is due to the 
accumulate-and-dump operation associated with periodic resets 
in IADCs [22]-[24]. In this operation, the quantized samples are 
accumulated in an integrate-and-reset filter, such as a 
cascade-of-integrators (CoI) filter, for decimation. Each sample 
has an uneven weighting coefficient in the multi-order (≥ 
2nd-order) implementation; in other words, the earlier quantized 
sample may have a larger weight than the later ones in the 
integrate-and-reset filter. Therefore, the total noise 
accumulated during a single conversion period can be 
unequally weighted and cannot be averaged out from the 
oversampled noise [22]-[24]. On the other hand, the 
oversampled noise can be averaged out in the ΔΣ ADCs 
because all the quantized samples have the equal weight during 
the integrate-and-differentiate decimation process which uses 
the previously sampled data without reset. Due to such noise 
penalty, the multi-order IADCs must consume more power than 
the ΔΣ ADCs to achieve the same target resolution. To 
compensate for the noise-power penalty, a novel power saving 
scheme is desired for the energy-efficient IADCs. 

A few techniques have been recently presented to enhance 

the performance of the IADCs for multi-channel neural 
recordings. A slicing technique was introduced to optimize the 
noise-power performance by dynamically activating or 
deactivating the sliced integrators during a single conversion 
period [22], [25]. However, this approach requires delicate 
design of multiple replica integrators as well as a complicated 
timing controller. In another approach, a two-step conversion 
was adopted to save power by reducing an oversampling ratio 
(OSR) [26]. Although the OSR could be effectively reduced, 
this technique is also affected by the mismatch between the 
coarse and fine DACs. 

Here, we propose an LFP-adaptive dynamic zoom-and-track 
scheme that can significantly enhance the power-efficiency of 
the IADC. In addition, it can also improve noise-power 
performance when engaged in multi-channel subcortical 
recording front-ends [27]. The proposed scheme enables the 
IADC to resolve tiny and fast-changing APs in a zoomed 
sub-LFP range while simultaneously tracking the large but 
slow-varying LFPs. The sub-LFP range is adaptively adjusted 
at each conversion period. This scheme has an inherent 
advantage because the envelope of subcortical signals (LFPs) 
has high temporal correlations while fast APs are sporadic. 
Note that neural signals have 1/fN (N = 1 – 2) spectral 
characteristics. The IADC can effectively narrow-down the 
input dynamic range (DR) by exploiting such a spectral 
characteristic of subcortical signals [28]-[30]. As a result, the 
dynamic range (DR) can be substantially relaxed. For example, 
the OSR of a 2nd-order IADC can be reduced by 64.3% when 
compared to the conventional design, resulting in low power 
operation. Furthermore, since the proposed zooming operation 
can be implemented without an additional coarse DAC or ADC, 
it completely eliminates the concern of mismatches in the 
coarse-fine conversion circuits, as found in [26], [31], [32]. The 
proposed scheme also allows for on-chip dual-band recording 
(broadband and LFP band) without using additional hardware. 
As a proof of the concept, we implemented a four-channel 
subcortical recording front-end IC employing the proposed 
LFP-adaptive dynamic zoom-and-track IADC. The 
implemented chip demonstrated the acquisition of dual-band 
neural recording from multi-channel high-resolution data 
conversion in animal experiments. 

The remaining contents of this paper are organized as 
follows. A concept of the proposed LFP-adaptive dynamic 
zoom-and-track incremental ΔΣ front-end is explained in 
Section II. The detailed implementations of subcortical 
recording front-end circuits are described in Section III. Section 
IV provides the results of bench-top and in vivo experimental 
results. The performance of the fabricated front-end IC is 
summarized and compared with the state-of-the-art works. 
Finally, Section V concludes the paper.  

II. LFP-ADAPTIVE DYNAMIC ZOOM-AND-TRACK FRONT-END 

A. Operational Principle 
Subcortical neural signals consist of APs and LFPs. The AP 

represents the activity of each individual neuron [1]. Since the 
AP is generated by the rapid change of membrane potential in 
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Fig. 1. ADC requirements for a high-performance subcortical recording 
front-end: (a) high effective resolution (>10bit ENOB), (b) capability of 
multiplexed inputs for high-channel count recording. 

This article has been accepted for publication in IEEE Transactions on Biomedical Circuits and Systems. This is the author's version which has not been fully edited and 
content may change prior to final publication. Citation information: DOI 10.1109/TBCAS.2023.3298662

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.  See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Michigan Library. Downloaded on August 30,2023 at 14:41:31 UTC from IEEE Xplore.  Restrictions apply. 



OH et al.: Power-Efficient LFP-Adaptive Dynamic Zoom-and-Track Incremental ΔΣ Front-End for Dual-Band Subcortical Recordings 1 

neurons, it appears as a high frequency spiky waveform (300 
Hz – 10 kHz) with a small magnitude (10 – 300 μV). On the 
other hand, the LFP composes the superposition of potentials 
generated from multiple neurons and other cells around a 
recording site. It varies slowly (0.1 – 300 Hz) with a relatively 
large magnitude (~3 mV). In terms of spectral characteristics, 
the LFPs strongly follow a 1/f slope, while the APs exhibit an 
approximately flat spectrum due to its Poisson-distributed 
characteristics in the frequency domain [28], [33]. The 
subcortical signal is observed as the mixture of APs and LFPs; 
thus, it shows the power spectrum approximated as a 1/fN curve 
(N = 1 – 2) [28], [29]. The subcortical recording front-end 
circuits should fully embrace both signal components with a 
wide input DR, a broad bandwidth, and low input-referred 
noise. 

Especially, the DR specification is directly related to the 
power consumption of the ADC. The DR imposes two things: 
the minimum resolvable signal for analog-to-digital conversion 
and the maximum signal the ADC can handle. The 
least-significant bit (LSB) size should be smaller than the given 
noise floor. With the fixed noise floor, a wider DR means that 
the ADC should accommodate a larger input amplitude. One 
solution is to increase the supply voltage accordingly to cover 
the full-scale range. Otherwise, input signals have to be folded, 
since the supply voltage is lower than the maximum input 
magnitude [34]. Either strategy necessitates more power 
consumption due to the increased supply voltage or from the 
signal folding circuits added in front of the ADC [35], [36]. The 

requirement of a wider DR eventually results in more power 
dissipation in the ADC. In some cases, the ADC often 
consumes more than half of the entire front-end [25], [37]. 

In order to reduce the power consumption, we propose the 
LFP-adaptive dynamic zoom-and-track scheme that 
significantly reduces the required signal DR in the 
analog-to-digital conversion. This scheme splits the DR into 
multiple amplitude ranges and adaptively allocates a given DR 
depending on the LFP magnitude. As shown in Fig. 2(a), the 
proposed scheme only requires a small sub-LFP dynamic range 
that marginally covers AP signals to record the whole neural 
signals. This is feasible because the proposed scheme tracks the 
large LFPs in the digital domain and reallocates a sub-LFP 
dynamic range. As a result, the IADC only needs to convert a 
small dynamic range of signals. Through this adaptive DR 
allocation, a relatively-low resolution A-D conversion can be 
used, consequently reducing the power consumption 
significantly. 

The proposed scheme may look similar to a signal folding 
technique in terms of operation principle: dividing the input 
signal into multiple amplitude ranges. However, this scheme 
gives much higher power-efficiency than the conventional 
signal folding technique since the large amplitude input is 
processed in digital domain at low power consumption. For 
example, a couple of recent works using the signal folding 
technique consumed ~2.6 μW to fold the input signal in analog 
domain, and achieved ~12 bit resolution [35], [36]. On the other 
hand, the proposed scheme adds a negligible digital power 
overhead (< 0.2 μW) but can achieve ~11 bit resolution. 
Assuming that the power needed to split the input signal is 
proportional to a target resolution, the proposed scheme can 
achieve ~6.5× higher power efficiency than the conventional 
signal folding technique. 

Some prior arts may also look similar to our approach. For 
example, a mixed-signal DC-servo loop was used to reject the 
EDO in the DC-coupled LNA or LFPs in the summing 
amplifier to truncate the signal over the ADC input range, with 
the assistance of an off-chip FPGA [52]. However, our 
approach reuses the tracked LFPs to adaptively allocate the 
signal DR into multiple amplitude regions to improve the 
power-efficiency of the ADC significantly. It realizes the LFP 
tracking by a compact zooming scheme using an on-chip digital 
tracker, which does not require an additional summing 
amplifier and an external FPGA. In addition, our scheme can 
remove the EDO by simply using the AC-coupled 
pre-amplification stage without a complicated offset 
cancellation loop. Neural signal acquisition can be reliably 
achieved with an AC-coupled front-end from the advanced 
high-density microelectrodes [12]. Other prior arts, such as the 
track-and-zoom ADC, cover the large inputs by using the 
radix-2 autoranging technique that dynamically expands the 
conversion range of the ΔΣ modulator [18-20]. Although this 
technique can effectively track rapidly-varying large signals, 
the resolution must be compromised during the tracking 
operation since the conversion range expands exponentially. 
On the other hand, the proposed scheme maintains the 
magnitude of conversion range; therefore, the resolution is not 
affected by tracking operation. 

Fig. 2(b) conceptually illustrates how the proposed scheme 
operates in a multi-channel subcortical recording front-end. 
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Fig. 2. (a) Concept of the LFP-adaptive dynamic zoom-and-track scheme 
using the 1/fN spectral characteristic of subcortical signals. (b) Conceptual 
architecture block diagram of the front-end using the proposed scheme. (c) 
Conceptual transient operation with the proposed LFP-adaptive dynamic 
zoom-and-track scheme. 
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The multi-channel subcortical neural signals are pre-amplified 
by the LNAs. The IADC resolves the amplified APs in a 
sub-LFP range, i.e., a zoom-in range, during a single 
conversion cycle. Then, the dynamic LFP tracker estimates the 
LFP magnitude by filtering the decimated outputs in digital 
domain. Finally, the sub-LFP range is updated according to the 
tracked LFP signals. The feedback of the LFP tracker allocates 
a small effective input range for the IADC. Fig. 2(c) shows a 
pre-recorded subcortical neural signal processed by the 
proposed scheme. The scheme follows the trace of LFPs 
(orange) without loss of signal integrity by seamlessly 
adjusting the sub-LFP range. The IADC operates with a 
sufficiently high rate (in this work, 25 kHz, that sets a Nyquist 
rate for sampling subcortical neural signals). 

As aforementioned, the reduced DR relaxes the resolution 
requirement of the ADC.  Since the resolution of the IADC is 
determined by the OSR, the proposed scheme significantly 
lowers the OSR. The required OSR of the conventional 
Nth-order IADC with 1-b quantization is proportional to 
(2n·N!)1/N, where n is a full-scale resolution in bits [24]. Here, it 
is assumed that the OSR is much larger than 1. By using the 
proposed scheme, the required resolution in a sub-LFP range is 
equal to [n – log2k] bit where k is a zoom ratio. The magnitude 
ratio of the full-scale to a sub-LFP range (i.e., k) is inversely 
proportional to the sub-LFP range magnitude. Therefore, the 
OSR can be reduced by a factor of k1/N. Fig. 3 shows the ratio of 
the OSR in the proposed scheme to the conventional design as a 
function of k, for 1st – 3rd-order incremental ΔΣ modulators. As 
shown in Fig. 3, the required OSR becomes smaller as k 
increases. It is noteworthy that the proposed technique is more 
useful for neural recording and bioinstrumentation applications, 
where the low order (< 3rd-order) ΔΣ modulators are preferred 
for optimal operation in terms of precision, speed, and area [7], 
[38], [39]. For choosing an optimal k, signal integrity has to be 
considered in addition to the OSR reduction. The larger k is, the 
narrower a sub-LFP range becomes. In case k becomes 
extremely large, the sub-LFP range may become smaller than 
the maximum magnitude of pre-amplified AP signals. This can 

severely degrade the signal integrity because the pre-amplified 
AP signals can be clipped in the sub-LFP range. In this work, 
we chose k as 8 to ensure the signal integrity. The related details 
are explained in Section III. 

Fig. 4 shows the estimated signal-to-quantization noise ratio 
(SQNR) as a function of the OSR for the 2nd-order IADCs. The 
SQNR values were simulated in time-domain with -6 dBFS 
input [59]. It indicates that the 2nd-order LFP-adaptive dynamic 
zoom-and-track IADC with the selected zoom ratio (k = 8) and 
loop-filter coefficients (a1 = 1.33, a2 = 0.25) can achieve the 
SQNR of ~82 dB at -6 dBFS input with an OSR of 80, which is 
by ~2.8× smaller than that required for the conventional design 
using the same loop-filter coefficients. Here, the values of a1 
and a2 are given according to the dynamic-range scaling [42]. 
The relevant detail is explained in Section III. 

This reduced OSR relieves the speed requirement of analog 
integrators in the IADC. Since the proposed scheme 
significantly down-scales the input amplitude of the ADC, we 
can easily implement an integrator from an operational 
transconductance amplifier (OTA) without stringent 
requirement of linearity and slew rates. Therefore, the relaxed 
requirement of gain-bandwidth product (GBW) for an OTA 
translates into power reduction by a factor of 2.8, 
corresponding to 64.3% power saving compared with the same 
linear OTA (no slewing) in the conventional IADC. For 
estimation, we also assume that the main transistors in the OTA 
operate in the sub-threshold region. Please note that the actual 
power saving can be larger than 64.3%. In the conventional 
design, the OTA slews when large input signals are applied; 
thus, it consumes more power to satisfy the required operation 
speed with the limited driving current [53]. The required slew 
rate of a quantizer is also relaxed according to the OSR 
reduction. Note that, an additional hardware, an LFP tracker, is 
required in the proposed scheme. However, this power 
overhead is negligible due to a slow clock speed of 25 kHz to 
process the 80× decimated signals in each recording channel 
with TDM operation. Please note that the LFP trackers are 
assigned to each recording channel individually. Actually, the 
LFP tracker contributes only 6% of the per-channel digital 
power consumption in this work. 

B. System Architecture 
Fig. 5 shows the overall system architecture of an 

incremental ΔΣ front-end using the proposed LFP-adaptive 
dynamic zoom-and-track scheme. The front-end is composed 
of two parts: a multi-channel pre-amplification stage and an 
LFP-adaptive dynamic zoom-and-track IADC. The total four 
subcortical neural recording channels have been implemented 
for proof of concept. Each recording channel consists of an 
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as a function of a zoom ratio (k) in 1st – 3rd-order incremental ΔΣ modulators. 
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Fig. 5. Overall architecture of the subcortical recording front-end IC using an 
LFP-adaptive dynamic zoom-and-track scheme. 
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LNA with a mid-band voltage gain of 40 dB and a pair of 
flipped voltage follower (FVF) buffers. Those four recording 
channels are time-division multiplexed with a 2nd-order 
LFP-adaptive dynamic zoom-and-track IADC. 

In the IADC block, a 2nd-order cascade-of-integrator (CoI) 
decimation filter and four digital LFP trackers are integrated 
with a 2nd-order incremental ΔΣ modulator. Since the LFP 
tracker is assigned to each recording channel, the LFPs from 
different recording sites can be tracked independently. 
Therefore, the proposed front-end circuit can record signals 
from broad regions in the brain without strict limitation in the 
spatial coverage, unlike the previous work that depends on the 
spatial correlation among the multi-channel LFP waveforms 
[40]. A multi-bit feedback CDAC is used for zooming 
operation. Since the sub-LFP range is determined according to 
the CDAC output, the CDAC mismatch can cause offsets and 
coverage variations in different sub-LFP ranges. Therefore, a 
dynamic element matching (DEM) module is used to suppress 
the CDAC mismatch. The front-end provides the two output 
signals: one is the decimated ADC output (broadband signal) 
and the other is the tracked LFP. Dual-band outputs are 
provided through the on-chip serial peripheral digital interface 
(not shown in the figure). The benefit of this feature is 
explained in detail in Section IV. 

III. CIRCUIT IMPLEMENTATION 

A. LFP-Adaptive Dynamic Zoom-and-Track IADC 
Fig. 6 shows a z-domain block diagram of the proposed 

LFP-adaptive dynamic zoom-and-track IADC. The IADC 
consists of two loops. The inner loop implements the 2nd-order 
ΔΣ modulation. The loop filter is constructed with a cascade of 
integrators with feed-forward (CIFF) topology for high 
linearity with minimal input referred noise and distortion 
contributed by the 2nd integrator, and low power 
implementation using a single feedback DAC [41], [42]. The 
loop filter coefficients (a1 = 1.33, a2 = 0.25) are determined 
through the dynamic-range scaling [42]. The output swing of 
each integrator can be much larger than the sub-LFP range that 
confines the ADC input. Therefore, the 1st integrator coefficient 

(a1) can be substantially upscaled for effectively suppressing 
the noise and distortion contributed from the 2nd integrator. The 
1-bit quantization has been chosen to avoid quantizer 
nonlinearity. 

The outer loop dynamically tracks the LFP band signals and 
regulates the sub-LFP range. The output range of the multi-bit 
DAC is tracked in the digital domain. As shown in Fig. 7, the 
LFP tracker adjusts the sub-LFP range up or down by one DAC 
level if the tracked LFP amplitude becomes higher or lower 
than the preset threshold, respectively. For design simplicity, 
the magnitude of a range relocating step (= one DAC level) is 
set to be equal to the preset threshold level. The values for 
sub-LFP ranges, preset thresholds, and range relocating steps 
are selected to meet the following condition given by: 
 
 (1) 
 
where Vthr is a preset threshold, VAP,max is the maximum 
magnitude of pre-amplified AP signals, ΔVLFP,max is the 
maximum variation of pre-amplified LFP signals during a 
single conversion period, α is the ratio of the additional 
amplitude margin to accommodate variations and external 
interferences in real operation, MSAsub is the maximum stable 
input amplitude in the sub-LFP range, and Vlim is the 
upper/lower limit amplitude of the sub-LFP range. Here, 
ΔVLFP,max can be approximated as: 
 
 (2) 
 
where VLFP,max is the maximum magnitude of pre-amplified 
LFP signals, ωLFP,max is the maximum frequency of the LFP, 
and TNyq is the conversion period of the IADC. With an enough 
amplitude margin (α = 0.3) and a given MSAsub (-3 dB), the 
sub-LFP range and preset threshold can be set at ±150 mV and 
±50 mV, respectively. In this work, k (zoom ratio) is selected to 
be 8 with a full scale of ±1.2 V. A 48-level DAC is adequate to 
cover the full-scale since the range adjusting steps are ±50 mV, 
the same as the preset threshold. 

Fig. 8 shows the schematic and operation timing diagram of 
the 2nd-order LFP-adaptive dynamic zoom-and-track IADC. 
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We chose a discrete-time ΔΣ modulator with 
switched-capacitor (SC) integrators which are more robust to 
process and timing variations than continuous-time 
RC-integrators [42]. The 48-level feedback CDAC, also 
working as a sampling capacitor (CS1) of the 1st integrator, is 
implemented with an array of unit metal-insulator-metal (MIM) 
capacitor of 35.6 fF, which is the minimum capacitance 
allowed in the given CMOS process. The total input sampling 
capacitance (CS1) is 1.71 pF. It contributes to the LNA input 
referred noise less than 1 μVrms. The 2nd integrator is 
implemented with a sampling capacitance (CS2) of 35.6 fF. The 
kT/C noise of CS2 is substantially attenuated by the 1st integrator 
gain. The outputs of the 1st and 2nd integrators are summed at 
the SC adder that is also implemented with the minimum 
capacitors. The data weighted averaging (DWA) is used to 
reject the in-band distortion caused by the feedback CDAC 
mismatches [43]. With the given OSR of 80, the in-band 
distortion from the 48-level CDAC is suppressed below -110 
dBFS. This is sufficiently low to achieve a target SQNR of 80 
dB. According to simulation assuming that the CDAC 
mismatch follows the Gaussian distribution, the DWA can 
reduce the total amount of the mismatch error accumulated in a 
Nyquist conversion period by 98.4% in average with various 
input amplitudes. We chose the DWA for its simple 
implementation with a multi-level feedback DAC although the 
DWA is not be fully optimized for the accumulate-and-dump 
operation of IADCs. As an alternative, the Smart-DEM, which 
may be more optimal but require more complicated architecture, 
can be considered for further improvement [54]. The 
oversampling frequency is set at 8 MHz for achieving the 
Nyquist rate of 25 kS/s per channel. 

Fig. 9(a) shows the schematic of a current mirror OTA used 
for SC integrators. The local positive feedback is used to boost 
the GBW of OTAs for high speed settling with low power 
consumption [11], [44]. The GBW of the designed OTA is 
given by: 
 
 (3) 
 
where gm is the input transconductance, α is the current ratio of 

M5,6 to M3,4, β is the current ratio of M7,8 to M3,4, and CL is the 
load capacitance. We chose α = 0.8 and β = 5 in the 1st 
integrator OTA, considering the relatively large integration 
capacitance (CI1) of 1.3 pF. Since the 2nd integrator uses much 
smaller integration capacitance (CI2) of 142.4 fF, we chose 
relatively relaxed parameters (α = 0.5 and β = 1) in the 2nd 
integrator OTA. A 1-bit quantizer was implemented with a 
low-power dynamic comparator as shown in Fig. 9(b). 

Fig. 10 shows the detailed components of an LFP tracker. A 
22-tap finite impulse response (FIR) digital low-pass filter 
(LPF) is used to reject high frequency signals out of the LFP 
band. The FIR filter is chosen to avoid the phase distortion of 
the tracked LFPs [45]. The LPF provides a low-pass cutoff 
frequency of 500 Hz at a sampling rate of 25 kS/s. Two LSBs of 
the FIR LPF input, i.e., the decimated ADC output, are 
truncated to reduce the area and power consumed by the FIR 
LPF. An error caused by this truncation is negligible because a 
sufficiently large amplitude margin is assigned between the 
upper (or lower) threshold and the corresponding sub-LFP 
range limits. For design simplicity, all the filter coefficients are 
set to be unity. The 48-level up/down counter is used to adjust 
the 6-bit DAC address according to the magnitude of tracked 
LPF band signals, i.e., the output of the FIR LPF. 

In this proof-of-concept, we implemented the 2nd order 
IADC with the most commonly used architecture that consists 
of SC integrators and feedback CDAC. However, it is 
noteworthy that the proposed zoom-and-track scheme can be 
applied to any IADCs with multi-bit feedback, in which the 
circuit performance can be further improved by combining our 
scheme with other design techniques used for 
high-performance IADCs, such as two-phase 
linear-exponential accumulation or low-power 
voltage-controlled oscillator-based integrators [55], [56]. 

B. Pre-Amplification Stage 
Fig. 11 shows the schematic of the low-noise 

pre-amplification stage dedicated to each recording channel. 
Neural signals from recording electrodes are 
capacitive-coupled to an LNA. This will reject the dc-offset 
that can easily saturate the LNA [46]. A pre-amplification gain 
of 40 dB is set by the ratio of the input capacitance (CIN) to the 
feedback capacitance (CFB). CIN is 3.56 pF and the minimum 
capacitance of 35.6 fF is used for CFB. The input impedance of 
an LNA is estimated as ~40 MΩ at 1 kHz. This is sufficiently 
large to be paired with typical microelectrodes for subcortical 
neural recording [47]. The LNA bandwidth is designed as 0.1 
Hz to 10 kHz for recording broadband neural signals, while 
rejecting the electrode DC-offset. The sub-Hz high-pass (DC) 
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cutoff frequency is realized by near off-state PMOS pseudo 
resistors (RPSEUDO) [12], [13]. The design of RPSEUDO was 
chosen due to its implementation simplicity. The PMOS 
transistors composing RPSEUDO were sized to achieve a sub-Hz 
cutoff frequency with the process variation. The post-layout 
Monte-Carlo simulation results (N = 200) show that the 
designed RPSEUDO limits the high-pass cutoff frequency under 1 
Hz (m = 0.14 Hz, σ = 0.057 Hz at room temperature; m = 0.40 
Hz, σ = 0.15 Hz at 40 ºC). The load capacitance (CL) of 3.63 pF 
is used to set the low-pass cutoff frequency. 

Fig. 12(a) shows the schematic of a class AB two-stage 
current-reuse OTA used for the AC-coupled LNA. The input gm 
of the OTA is doubled by using the complementary input 
transistor pairs, M1,2 and M3,4. As a result, the input referred 
thermal noise power of the OTA can be reduced by half. A 
push-pull output stage is used to provide a wide output linear 
range. A pair of flipped voltage follower (FVF) buffers are used 
to fix the LNA bandwidth regardless of TDM operation, and 
also drive the multiplexer and ADC input buffer. The FVF 
buffer was chosen due to low power consumption and design 
simplicity [48]. 

IV. EXPERIMENTAL RESULTS 
Fig. 13 shows a microphotograph of the front-end IC 

fabricated through the TSMC 180 nm mixed-signal CMOS 
process. The core of the front-end IC, including test patterns, 

occupies an area of 0.96 mm2. The active circuit area is 
measured as 0.23 mm2 per channel. Fig. 14 shows the 
breakdowns of per-channel power consumption measured from 
the fabricated front-end IC, compared with the one estimated 
from simulation without the proposed scheme. A significant 
amount (57.6%) of power reduction has been achieved because 
the proposed zoom-and-track scheme relaxes the speed 
requirement of an ADC input buffer as well as the dynamic 
range burden of the ADC. Each recording channel of the 
fabricated front-end IC consumes a total power of 25.2 μW. 
The dynamic zoom-and-track IADC only consumes 6.8 μW. 
The LFP tracker, the main overhead block in the presented 
architecture, dissipates 0.17 μW that is only 2.4% of the total 
ADC power consumption.  

A. Performance Measurements 
Fig. 15 shows the measured performance of the fabricated 

LFP-adaptive dynamic zoom-and-track IADC. The maximum 
signal-to-noise-and-distortion ratio (SNDR) was measured as 
69.5 dB. The corresponding ENOB was 11.3-bit. The peak 
signal-to-noise ratio (SNR) and DR were measured as 72.0 dB 
and 72.2 dB, respectively. Fig. 15(b) shows the power spectrum 
of the de-multiplexed ADC output at -1 dBFS input. The 
spurious-free dynamic range (SFDR) was measured as 79.2 dB. 
Fig. 15(c) shows the common-mode rejection ratio (CMRR) 
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measured from the fabricated IADC. The CMRR was higher 
than 74.5 dB. Finally, FoMWalden and FoMSNDR of the fabricated 
IADC are calculated as 107.9 fJ/c-s and 162.1 dB, respectively, 
based on the measurement. 

Fig. 16 shows the measured performance of the LFP tracker. 
According to the measured frequency response in Fig. 16(a), 
the FIR LPF shows a low-pass cutoff frequency at 506 Hz that 
is sufficient to obtain LFP band signals from an animal brain 
[49]. Fig. 16(b) shows the power spectrum of the LPF output at 
-1 dBFS input. As clearly shown in the spectrum, high 
frequency components outside the LFP band were well 
suppressed through the digital low-pass filtering. The LPF 
output achieves the peak SNDR (72.9 dB) and SNR (79.5 dB) 
that are slightly higher than those of the ADC output. 

Fig. 17 shows a test setup for dual-band recording 
performance of the fabricated IADC. As illustrated in Fig. 17(a), 
the dual-frequency inputs, consisting of a small amplitude high 
frequency signal (-32 dBFS at 1 kHz, emulating spikes) 
superimposed on a large amplitude low frequency signal (-1.6 
dBFS at 24.4 Hz, emulating LFPs), were applied to the 
fabricated IADC. Fig. 17(b) shows the dual-band output 
transients. The ADC output shows both signals clearly, while 
the LFP tracker provides only the large amplitude low 
frequency signal. Fig. 17(c) shows the output power spectra of 
the ADC and LFP tracker, respectively. As shown in the graphs, 
the fabricated IADC resolves both input components (i.e., 
broad-band signals that contains both LFPs and spikes) without 
amplitude degradation, while the LFP tracker suppresses the 

high-frequency signals accordingly. 
The measured performance of the pre-amplification stage is 

shown in Fig. 18. The frequency response of the fabricated 
LNA is depicted in Fig. 18(a). The LNA provides a mid-band 
gain of 39.6 dB within the bandwidth from 0.14 Hz to 10.6 kHz. 
Fig. 18(b) shows the LNA input-referred noise power spectrum. 
The input-referred noise of the fabricated LNA was measured 
as 8.2 μVrms within 0.1 Hz to 10.6 kHz. The noise efficiency 
factor (NEF) of the fabricated LNA is calculated as 5.9 from 4.3 
μW power consumption. The measured THD was lower than 
1% with <8.2 mVPP input. Here, the reference input of the 
measured LNA is shared with all the other LNAs.  

B. Evaluation of Post-Processing Hardware Reduction 
We also evaluated the benefit of on-chip dual-band recording 

features by estimating the amount of post-processing resources 
required to separate the subcortical signal bands (AP and LFP 
signals, respectively). For comparison, we prepared two 
different versions of post-processing codes in Verilog. The first 
code was written to extract dual-band signals, APs and LFPs, 
from the proposed front-end. The AP band signal can be easily 
acquired by subtracting the LFP tracker output from the ADC 
output. The second code was prepared for the conventional 
front-end. The AP and LFP bands are separated through the two 
filters that that are dedicated to each band, the same as the 
conventional procedure where the independent filters are used 
for each signal band of interest [57], [58]. For fair comparison, 
FIR filters with a 500 Hz cutoff frequency and 2-LSB truncated 
inputs are used in the second code. The LPF and HPF are 
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Fig. 16. Measured characteristics of the LFP tracker. (a) Frequency response 
of the FIR LPF. (b) Output power spectrum at -1 dBFS input. 
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Fig. 19. (a) Algorithm diagrams of two post-processing codes. (b) Reduction 
in the post-processing FPGA resources for subcortical signal band separation 
through the on-chip dual-band recording. 
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composed of 22 and 13 taps, respectively. Fig. 19(a) shows the 
algorithms used in the two post-processing codes. In the second 
code, it is assumed that the conventional front-end provides the 
same resolution to this work without zooming operation. 
Spartan-6 FPGA (XC6SLX45, Xilinx, CA, USA) was used to 
synthesize the prepared Verilog codes. Fig. 19(b) shows 
difference in the FPGA resources required between the two 
approaches. The on-chip dual-band recording reduces the 
significant amount of post-processing hardware resources: 
76.8% in registers and 45.8% in lookup tables, respectively. It 
is noteworthy that these reductions can be achieved by directly 
reusing the tracked LFP signals without additional on-chip 
circuit blocks [25]. 

C. Neural Recording Experiments 
We conducted a couple of experiments to evaluate the 

acquisition of subcortical signals. First, the performance of the 
fabricated IC was validated in a bench-top test using the 
pre-recorded neural signals. The pre-recorded mouse 
subcortical signal was applied to a PBS solution in which the 
four recording electrodes were placed to pick up the signals to 
the input of the fabricated front-end IC. Fig. 20 shows the 
measured results from the bench-top recording experiment. The 
transient response and power spectra support that the fabricated 
front-end IC successfully retrieved the pre-recorded subcortical 
signals by adjusting the sub-LFP ranges from the tracked LFPs. 

Second, in vivo experiments were conducted in an 
anesthetized mouse. The animal procedures were approved by 
the Institutional Animal Care and Use Committee of the 
University of Michigan IACUC (protocol number: 
PRO00009668). Fig. 21 shows the in vivo experimental setup 
and obtained results. As illustrated in Fig. 21(a), a commercial 
multi-channel neural probe (N1-A0-O36/18, NeuroLight 
Technology LLC, MI, USA) was used to acquire subcortical 
signals from the mouse brain. The neural probe was implanted 

in the CA1 hippocampus region and the recording sites were 
connected to the input of the fabricated front-end IC, as shown 
in Fig. 21(b). Fig. 21(c) shows the measured subcortical signals 
in the in vivo test. The fabricated front-end IC accurately 
recorded broadband neural signals with distinctive action 
potentials and simultaneously tracked the LFPs. Fig. 21(d) 
shows the AP waveforms obtained from different recording 
sites. The AP signals were sorted from the rest of the signals by 
subtracting the LFP tracker output from the ADC output, 
following the aforementioned resource-efficient band 
separation method.  

D. Performance Comparison 
Table I shows the comparison of performance with the 

state-of-the-art neural recording front-end ICs using an IADC.  
The proposed LFP-adaptive dynamic zoom-and-track scheme 
can significantly save the ADC power consumption. As a result, 
the IADC integrated in this front-end achieved the best 
FoMWalden of 107.9 fJ/c-s and FoMSNDR of 162.1 dB, 
respectively, compared to the recently reported IADCs 
implemented in the other state-of-the-art neural recording 
front-ends. Furthermore, this work provides the intrinsic 
dual-band recording features without additional on-chip circuit 
blocks. 

Table II summarizes the performance comparison with the 
recent brain recording oversampling ADCs. Majority of the 
works in the table adopted similar zooming or tracking 
techniques, such as radix-2 exponential tracking [18]-[20] or 
automatic gain control of a pre-amplifier [38]. This work 
realized the smallest FoMWalden and highest FoMSNDR among 
those ADCs implemented with zooming or tracking techniques. 
Also, the presented IADC provides a high bandwidth of >10 
kHz, which is required to accurately record the whole neural 
activities including APs, unlike the other works targeting the 
narrowband signals with limited information, such as the LFP, 
ECoG, or EEG [18]-[20]. 
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Fig. 20. Results of the bench-top test using the pre-recorded subcortical 
signals. (a) Transients of the pre-recorded (input) and retrieved (output) 
signals. (b) Power spectra of the pre-recorded (input) and retrieved (output) 
signals. 
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Fig. 21. In vivo experiments in an anesthetized mouse. (a) Overall 
experimental setup. (b) Brain implant configuration. (c) Recorded dual-band 
subcortical signals. (d) Sorted AP waveforms. 
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V. CONCLUSIONS 
In this paper, we presented an energy-efficient front-end 

integrated circuit chip employing an LFP-adaptive dynamic 
zoom-and-track scheme for high-resolution multi-channel 
subcortical recording systems. The implemented IADC in this 
front-end achieved the best FoMWalden (107.9 fJ/c-s) and 
FoMSNDR (162.1 dB), respectively, among the IADCs reported 
up to date in the neural recording front-ends. Also, among the 
state-of-the-art brain recording ADCs that adopted the zooming 
or tracking techniques similar to this work, the fabricated IADC 
showed the best FOMs. The performance of the front-end IC 
was successfully validated through bench-top tests and in vivo 
animal experiments. The dual-band subcortical signals were 
recorded with low noise of 8.2 μVrms, and high-resolution of 
11.3-bit ENOB at low power consumption of 6.8 μW. The 
inherent dual-band recording features can significantly reduce 
the post-processing hardware burdens for subcortical signal 
band separation. The presented front-end IC can be a suitable 

candidate for future low-power multi-channel high-resolution 
closed-loop neuromodulation systems. 
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